This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Referring Expression Generation (REG) is the task of generating a description that unambiguously identifies a given target in the scene. Different from Image Captioning (IC), REG requires learning fine-grained characteristics of not only the scene objects but also their surrounding context. Referring expressions are usually not singular; an object can often be uniquely referenced in numerous ways, for instance, by color, by location, or by relationship with other objects. Most prior works, however, have not explored this ‘aspect-based multiplicity’ of referring expressions. Hence, in this work, we focus on the Aspect-Controlled REG task, which requires generating a referring expression conditioned on the input aspect(s), where an aspect captures a style of reference. By changing the input aspect such as color, location, action etc., one can generate multiple distinct expressions per target region. To solve this new task, we first modify BLIP for aligning image-regions and text-expressions. We achieve this through a novel approach for feeding the input by drawing a bounding box around the target image-region and prompting the model to generate the referring expression. Our base REG model already beats all prior works in CIDEr score. To tackle Aspect-Controlled REG, we append ‘aspect tokens’ to the prompt and show that distinct expressions can be generated by just changing the prompt. Finally, to prove the high-quality and diversity of the data generated by our proposed aspect-controlled REG model, we also perform data-augmentation-based evaluation on the downstream Referring Expression Comprehension (REC) task. With just half of the real data augmented with the generated synthetic data, we achieve performance comparable to training with 100% of real data, using a SOTA REC model.
Models of various NLP tasks have been shown to exhibit stereotypes, and the bias in the question answering (QA) models is especially harmful as the output answers might be directly consumed by the end users. There have been datasets to evaluate bias in QA models, while bias mitigation technique for the QA models is still under-explored. In this work, we propose BMBI, an approach to mitigate the bias of multiple-choice QA models. Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance by observing its influence on another instance. If the influenced instance is more biased, we derive that the query instance is biased. We then use the bias level detected as an optimization objective to form a multi-task learning setting in addition to the original QA task. We further introduce a new bias evaluation metric to quantify bias in a comprehensive and sensitive way. We show that our method could be applied to multiple QA formulations across multiple bias categories. It can significantly reduce the bias level in all 9 bias categories in the BBQ dataset while maintaining comparable QA accuracy.
Learning from multimodal data has become a popular research topic in recent years. Multimodal coreference resolution (MCR) is an important task in this area. MCR involves resolving the references across different modalities, e.g., text and images, which is a crucial capability for building next-generation conversational agents. MCR is challenging as it requires encoding information from different modalities and modeling associations between them. Although significant progress has been made for visual-linguistic tasks such as visual grounding, most of the current works involve single turn utterances and focus on simple coreference resolutions. In this work, we propose an MCR model that resolves coreferences made in multi-turn dialogues with scene images. We present GRAVL-BERT, a unified MCR framework which combines visual relationships between objects, background scenes, dialogue, and metadata by integrating Graph Neural Networks with VL-BERT. We present results on the SIMMC 2.0 multimodal conversational dataset, achieving the rank-1 on the DSTC-10 SIMMC 2.0 MCR challenge with F1 score 0.783. Our code is available at https://github.com/alexa/gravl-bert.
Traditional goal-oriented dialogue systems rely on various components such as natural language understanding, dialogue state tracking, policy learning and response generation. Training each component requires annotations which are hard to obtain for every new domain, limiting scalability of such systems. Similarly, rule-based dialogue systems require extensive writing and maintenance of rules and do not scale either. End-to-End dialogue systems, on the other hand, do not require module-specific annotations but need a large amount of data for training. To overcome these problems, in this demo, we present Alexa Conversations, a new approach for building goal-oriented dialogue systems that is scalable, extensible as well as data efficient. The components of this system are trained in a data-driven manner, but instead of collecting annotated conversations for training, we generate them using a novel dialogue simulator based on a few seed dialogues and specifications of APIs and entities provided by the developer. Our approach provides out-of-the-box support for natural conversational phenomenon like entity sharing across turns or users changing their mind during conversation without requiring developers to provide any such dialogue flows. We exemplify our approach using a simple pizza ordering task and showcase its value in reducing the developer burden for creating a robust experience. Finally, we evaluate our system using a typical movie ticket booking task integrated with live APIs and show that the dialogue simulator is an essential component of the system that leads to over 50% improvement in turn-level action signature prediction accuracy.
Natural Language Generation (NLG) for task-oriented dialogue systems focuses on communicating specific content accurately, fluently, and coherently. While these attributes are crucial for a successful dialogue, it is also desirable to simultaneously accomplish specific stylistic goals, such as response length, point-of-view, descriptiveness, sentiment, formality, and empathy. In this work, we focus on stylistic control and evaluation for schema-guided NLG, with joint goals of achieving both semantic and stylistic control. We experiment in detail with various controlled generation methods for large pretrained language models: specifically, conditional training, guided fine-tuning, and guided decoding. We discuss their advantages and limitations, and evaluate them with a broad range of automatic and human evaluation metrics. Our results show that while high style accuracy and semantic correctness are easier to achieve for more lexically-defined styles with conditional training, stylistic control is also achievable for more semantically complex styles using discriminator-based guided decoding methods. The results also suggest that methods that are more scalable (with less hyper-parameters tuning) and that disentangle context generation and stylistic variations are more effective at achieving semantic correctness and style accuracy.