Jinsik Lee


2019

pdf
SUMBT: Slot-Utterance Matching for Universal and Scalable Belief Tracking
Hwaran Lee | Jinsik Lee | Tae-Yoon Kim
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In goal-oriented dialog systems, belief trackers estimate the probability distribution of slot-values at every dialog turn. Previous neural approaches have modeled domain- and slot-dependent belief trackers, and have difficulty in adding new slot-values, resulting in lack of flexibility of domain ontology configurations. In this paper, we propose a new approach to universal and scalable belief tracker, called slot-utterance matching belief tracker (SUMBT). The model learns the relations between domain-slot-types and slot-values appearing in utterances through attention mechanisms based on contextual semantic vectors. Furthermore, the model predicts slot-value labels in a non-parametric way. From our experiments on two dialog corpora, WOZ 2.0 and MultiWOZ, the proposed model showed performance improvement in comparison with slot-dependent methods and achieved the state-of-the-art joint accuracy.

2018

pdf
Learning to Embed Semantic Correspondence for Natural Language Understanding
Sangkeun Jung | Jinsik Lee | Jiwon Kim
Proceedings of the 22nd Conference on Computational Natural Language Learning

While learning embedding models has yielded fruitful results in several NLP subfields, most notably Word2Vec, embedding correspondence has relatively not been well explored especially in the context of natural language understanding (NLU), a task that typically extracts structured semantic knowledge from a text. A NLU embedding model can facilitate analyzing and understanding relationships between unstructured texts and their corresponding structured semantic knowledge, essential for both researchers and practitioners of NLU. Toward this end, we propose a framework that learns to embed semantic correspondence between text and its extracted semantic knowledge, called semantic frame. One key contributed technique is semantic frame reconstruction used to derive a one-to-one mapping between embedded vectors and their corresponding semantic frames. Embedding into semantically meaningful vectors and computing their distances in vector space provides a simple, but effective way to measure semantic similarities. With the proposed framework, we demonstrate three key areas where the embedding model can be effective: visualization, semantic search and re-ranking.