Jason Ingyu Choi


2024

pdf
Combining Multiple Metrics for Evaluating Retrieval-Augmented Conversations
Jason Ingyu Choi | Marcus Collins | Eugene Agichtein | Oleg Rokhlenko | Shervin Malmasi
Proceedings of the Third Workshop on Bridging Human--Computer Interaction and Natural Language Processing

Conversational AI is a subtype of Human Computer Interaction that has gained wide adoption. These systems are typically powered by Large Language Models (LLMs) that use Retrieval Augmented Generation (RAG) to infuse external knowledge, which is effective against issues like hallucination. However, automatically evaluating retrieval augmented conversations with minimal human effort remains challenging, particularly in online settings. We address this challenge by proposing a lexical metric, and a novel method for combining it with other metrics, including semantic models. Our approach involves: (1) Conversational Information Utility (CIU), a new automated metric inspired by prior user studies on web search evaluation, to compute information overlap between conversation context and grounded information in an unsupervised, purely lexical way; and (2) a generalized reward model through Mixture-of-Experts (MoE-CIU) that dynamically ensembles CIU with other metrics, including learned ones, into a single reward. Evaluation against human ratings on two public datasets (Topical Chat and Persona Chat) shows that CIU improves correlation against human judgments by 2.0% and 0.9% respectively compared to the second best metric. When MoE is applied to combine lexical and learned semantic metrics, correlations further improve by 9.9% and 5.0%, suggesting that unified reward models are a promising approach.

2022

pdf
Wizard of Tasks: A Novel Conversational Dataset for Solving Real-World Tasks in Conversational Settings
Jason Ingyu Choi | Saar Kuzi | Nikhita Vedula | Jie Zhao | Giuseppe Castellucci | Marcus Collins | Shervin Malmasi | Oleg Rokhlenko | Eugene Agichtein
Proceedings of the 29th International Conference on Computational Linguistics

Conversational Task Assistants (CTAs) are conversational agents whose goal is to help humans perform real-world tasks. CTAs can help in exploring available tasks, answering task-specific questions and guiding users through step-by-step instructions. In this work, we present Wizard of Tasks, the first corpus of such conversations in two domains: Cooking and Home Improvement. We crowd-sourced a total of 549 conversations (18,077 utterances) with an asynchronous Wizard-of-Oz setup, relying on recipes from WholeFoods Market for the cooking domain, and WikiHow articles for the home improvement domain. We present a detailed data analysis and show that the collected data can be a valuable and challenging resource for CTAs in two tasks: Intent Classification (IC) and Abstractive Question Answering (AQA). While on IC we acquired a high performing model (>85% F1), on AQA the performance is far from being satisfactory (~27% BertScore-F1), suggesting that more work is needed to solve the task of low-resource AQA.