Irean Navas Alejo


2020

pdf
Cross-lingual Emotion Intensity Prediction
Irean Navas Alejo | Toni Badia | Jeremy Barnes
Proceedings of the Third Workshop on Computational Modeling of People's Opinions, Personality, and Emotion's in Social Media

Emotion intensity prediction determines the degree or intensity of an emotion that the author expresses in a text, extending previous categorical approaches to emotion detection. While most previous work on this topic has concentrated on English texts, other languages would also benefit from fine-grained emotion classification, preferably without having to recreate the amount of annotated data available in English in each new language. Consequently, we explore cross-lingual transfer approaches for fine-grained emotion detection in Spanish and Catalan tweets. To this end we annotate a test set of Spanish and Catalan tweets using Best-Worst scaling. We compare six cross-lingual approaches, e.g., machine translation and cross-lingual embeddings, which have varying requirements for parallel data – from millions of parallel sentences to completely unsupervised. The results show that on this data, methods with low parallel-data requirements perform surprisingly better than methods that use more parallel data, which we explain through an in-depth error analysis. We make the dataset and the code available at https://github.com/jerbarnes/fine-grained_cross-lingual_emotion.