Howard Chen


2023

pdf
What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
Jane Pan | Tianyu Gao | Howard Chen | Danqi Chen
Findings of the Association for Computational Linguistics: ACL 2023

Large language models (LLMs) exploit in-context learning (ICL) to solve tasks with only a few demonstrations, but its mechanisms are not yet well-understood. Some works suggest that LLMs only recall already learned concepts from pre-training, while others hint that ICL performs implicit learning over demonstrations. We characterize two ways through which ICL leverages demonstrations. Task recognition (TR) captures the extent to which LLMs can recognize a task through demonstrations – even without ground-truth labels – and apply their pre-trained priors, whereas task learning (TL) is the ability to capture new input-label mappings unseen in pre-training. Using a wide range of classification datasets and three LLM families (GPT-3, LLaMA and OPT), we design controlled experiments to disentangle the roles of TR and TL in ICL. We show that (1) models can achieve non-trivial performance with only TR, and TR does not further improve with larger models or more demonstrations; (2) LLMs acquire TL as the model scales, and TL’s performance consistently improves with more demonstrations in context. Our findings unravel two different forces behind ICL and we advocate for discriminating them in future ICL research due to their distinct nature.

pdf
C-STS: Conditional Semantic Textual Similarity
Ameet Deshpande | Carlos Jimenez | Howard Chen | Vishvak Murahari | Victoria Graf | Tanmay Rajpurohit | Ashwin Kalyan | Danqi Chen | Karthik Narasimhan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Semantic textual similarity (STS) has been a cornerstone task in NLP that measures the degree of similarity between a pair of sentences, with applications in information retrieval, question answering, and embedding methods. However, it is an inherently ambiguous task, with the sentence similarity depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called conditional STS (C-STS) which measures similarity conditioned on an aspect elucidated in natural language (hereon, condition). As an example, the similarity between the sentences “The NBA player shoots a three-pointer.” and “A man throws a tennis ball into the air to serve.” is higher for the condition “The motion of the ball.” (both upward) and lower for “The size of the ball.” (one large and one small). C-STS’s advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS, and (2) enables fine-grained similarity evaluation using diverse conditions. C-STS contains almost 20,000 instances from diverse domains and we evaluate several state-of-the-art models to demonstrate that even the most performant fine-tuning and in-context learning models (GPT-4, Flan, SimCSE) find it challenging, with Spearman correlation scores of <50. We encourage the community to evaluate their models on C-STS to provide a more holistic view of semantic similarity and natural language understanding.

2022

pdf
Can Rationalization Improve Robustness?
Howard Chen | Jacqueline He | Karthik Narasimhan | Danqi Chen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

A growing line of work has investigated the development of neural NLP models that can produce rationales–subsets of input that can explain their model predictions. In this paper, we ask whether such rationale models can provide robustness to adversarial attacks in addition to their interpretable nature. Since these models need to first generate rationales (“rationalizer”) before making predictions (“predictor”), they have the potential to ignore noise or adversarially added text by simply masking it out of the generated rationale. To this end, we systematically generate various types of ‘AddText’ attacks for both token and sentence-level rationalization tasks and perform an extensive empirical evaluation of state-of-the-art rationale models across five different tasks. Our experiments reveal that the rationale models promise to improve robustness over AddText attacks while they struggle in certain scenarios–when the rationalizer is sensitive to position bias or lexical choices of attack text. Further, leveraging human rationale as supervision does not always translate to better performance. Our study is a first step towards exploring the interplay between interpretability and robustness in the rationalize-then-predict framework.

2021

pdf
Non-Parametric Few-Shot Learning for Word Sense Disambiguation
Howard Chen | Mengzhou Xia | Danqi Chen
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Word sense disambiguation (WSD) is a long-standing problem in natural language processing. One significant challenge in supervised all-words WSD is to classify among senses for a majority of words that lie in the long-tail distribution. For instance, 84% of the annotated words have less than 10 examples in the SemCor training data. This issue is more pronounced as the imbalance occurs in both word and sense distributions. In this work, we propose MetricWSD, a non-parametric few-shot learning approach to mitigate this data imbalance issue. By learning to compute distances among the senses of a given word through episodic training, MetricWSD transfers knowledge (a learned metric space) from high-frequency words to infrequent ones. MetricWSD constructs the training episodes tailored to word frequencies and explicitly addresses the problem of the skewed distribution, as opposed to mixing all the words trained with parametric models in previous work. Without resorting to any lexical resources, MetricWSD obtains strong performance against parametric alternatives, achieving a 75.1 F1 score on the unified WSD evaluation benchmark (Raganato et al., 2017b). Our analysis further validates that infrequent words and senses enjoy significant improvement.

pdf
Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems
Derek Chen | Howard Chen | Yi Yang | Alexander Lin | Zhou Yu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Existing goal-oriented dialogue datasets focus mainly on identifying slots and values. However, customer support interactions in reality often involve agents following multi-step procedures derived from explicitly-defined company policies as well. To study customer service dialogue systems in more realistic settings, we introduce the Action-Based Conversations Dataset (ABCD), a fully-labeled dataset with over 10K human-to-human dialogues containing 55 distinct user intents requiring unique sequences of actions constrained by policies to achieve task success. We propose two additional dialog tasks, Action State Tracking and Cascading Dialogue Success, and establish a series of baselines involving large-scale, pre-trained language models on this dataset. Empirical results demonstrate that while more sophisticated networks outperform simpler models, a considerable gap (50.8% absolute accuracy) still exists to reach human-level performance on ABCD.

2020

pdf
Interactive Classification by Asking Informative Questions
Lili Yu | Howard Chen | Sida I. Wang | Tao Lei | Yoav Artzi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We study the potential for interaction in natural language classification. We add a limited form of interaction for intent classification, where users provide an initial query using natural language, and the system asks for additional information using binary or multi-choice questions. At each turn, our system decides between asking the most informative question or making the final classification pre-diction. The simplicity of the model allows for bootstrapping of the system without interaction data, instead relying on simple crowd-sourcing tasks. We evaluate our approach on two domains, showing the benefit of interaction and the advantage of learning to balance between asking additional questions and making the final prediction.

pdf
Autoregressive Knowledge Distillation through Imitation Learning
Alexander Lin | Jeremy Wohlwend | Howard Chen | Tao Lei
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The performance of autoregressive models on natural language generation tasks has dramatically improved due to the adoption of deep, self-attentive architectures. However, these gains have come at the cost of hindering inference speed, making state-of-the-art models cumbersome to deploy in real-world, time-sensitive settings. We develop a compression technique for autoregressive models that is driven by an imitation learning perspective on knowledge distillation. The algorithm is designed to address the exposure bias problem. On prototypical language generation tasks such as translation and summarization, our method consistently outperforms other distillation algorithms, such as sequence-level knowledge distillation. Student models trained with our method attain 1.4 to 4.8 BLEU/ROUGE points higher than those trained from scratch, while increasing inference speed by up to 14 times in comparison to the teacher model.