This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Structured dropout approaches, such as attention dropout and DropHead, have been investigated to regularize the multi-head attention mechanism in Transformers. In this paper, we propose a new regularization scheme based on token-level rather than structure-level to reduce overfitting. Specifically, we devise a novel Token-Level Masking (TLM) training strategy for Transformers to regularize the connections of self-attention, which consists of two masking techniques that are effective and easy to implement. The underlying idea is to manipulate the connections between tokens in the multi-head attention via masking, where the networks are forced to exploit partial neighbors’ information to produce a meaningful representation. The generality and effectiveness of TLM are thoroughly evaluated via extensive experiments on 4 diversified NLP tasks across 18 datasets, including natural language understanding benchmark GLUE, ChineseGLUE, Chinese Grammatical Error Correction, and data-to-text generation. The results indicate that TLM can consistently outperform attention dropout and DropHead, e.g., it increases by 0.5 points relative to DropHead with BERT-large on GLUE. Moreover, TLM can establish a new record on the data-to-text benchmark Rotowire (18.93 BLEU). Our code will be publicly available at https://github.com/Young1993/tlm.
Collecting high-quality labeled data for model training is notoriously time-consuming and labor-intensive for various NLP tasks. While copious solutions, such as active learning for small language models (SLMs) and prevalent in-context learning in the era of large language models (LLMs), have been proposed and alleviate the labeling burden to some extent, their performances are still subject to human intervention. It is still underexplored how to reduce the annotation cost in the LLMs era. To bridge this, we revolutionize traditional active learning and propose an innovative collaborative learning framework FreeAL to interactively distill and filter the task-specific knowledge from LLMs. During collaborative training, an LLM serves as an active annotator inculcating its coarse-grained knowledge, while a downstream SLM is incurred as a student to filter out high-quality in-context samples to feedback LLM for the subsequent label refinery. Extensive experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision.
In this paper, we propose SkipBERT to accelerate BERT inference by skipping the computation of shallow layers. To achieve this, our approach encodes small text chunks into independent representations, which are then materialized to approximate the shallow representation of BERT. Since the use of such approximation is inexpensive compared with transformer calculations, we leverage it to replace the shallow layers of BERT to skip their runtime overhead. With off-the-shelf early exit mechanisms, we also skip redundant computation from the highest few layers to further improve inference efficiency. Results on GLUE show that our approach can reduce latency by 65% without sacrificing performance. By using only two-layer transformer calculations, we can still maintain 95% accuracy of BERT.
The joint multiple Intent Detection (ID) and Slot Filling (SF) is a significant challenge in spoken language understanding. Because the slots in an utterance may relate to multi-intents, most existing approaches focus on utilizing task-specific components to capture the relations between intents and slots. The customized networks restrict models from modeling commonalities between tasks and generalization for broader applications. To address the above issue, we propose a Unified Generative framework (UGEN) based on a prompt-based paradigm, and formulate the task as a question-answering problem. Specifically, we design 5-type templates as instructional prompts, and each template includes a question that acts as the driver to teach UGEN to grasp the paradigm, options that list the candidate intents or slots to reduce the answer search space, and the context denotes original utterance. Through the instructional prompts, UGEN is guided to understand intents, slots, and their implicit correlations. On two popular multi-intent benchmark datasets, experimental results demonstrate that UGEN achieves new SOTA performances on full-data and surpasses the baselines by a large margin on 5-shot (28.1%) and 10-shot (23%) scenarios, which verify that UGEN is robust and effective.
Recent state-of-the-art (SOTA) effective neural network methods and fine-tuning methods based on pre-trained models (PTM) have been used in Chinese word segmentation (CWS), and they achieve great results. However, previous works focus on training the models with the fixed corpus at every iteration. The intermediate generated information is also valuable. Besides, the robustness of the previous neural methods is limited by the large-scale annotated data. There are a few noises in the annotated corpus. Limited efforts have been made by previous studies to deal with such problems. In this work, we propose a self-supervised CWS approach with a straightforward and effective architecture. First, we train a word segmentation model and use it to generate the segmentation results. Then, we use a revised masked language model (MLM) to evaluate the quality of the segmentation results based on the predictions of the MLM. Finally, we leverage the evaluations to aid the training of the segmenter by improved minimum risk training. Experimental results show that our approach outperforms previous methods on 9 different CWS datasets with single criterion training and multiple criteria training and achieves better robustness.
This paper presents Pyramid, a novel layered model for Nested Named Entity Recognition (nested NER). In our approach, token or text region embeddings are recursively inputted into L flat NER layers, from bottom to top, stacked in a pyramid shape. Each time an embedding passes through a layer of the pyramid, its length is reduced by one. Its hidden state at layer l represents an l-gram in the input text, which is labeled only if its corresponding text region represents a complete entity mention. We also design an inverse pyramid to allow bidirectional interaction between layers. The proposed method achieves state-of-the-art F1 scores in nested NER on ACE-2004, ACE-2005, GENIA, and NNE, which are 80.27, 79.42, 77.78, and 93.70 with conventional embeddings, and 87.74, 86.34, 79.31, and 94.68 with pre-trained contextualized embeddings. In addition, our model can be used for the more general task of Overlapping Named Entity Recognition. A preliminary experiment confirms the effectiveness of our method in overlapping NER.