Eng Siong Chng


2023

pdf
UniS-MMC: Multimodal Classification via Unimodality-supervised Multimodal Contrastive Learning
Heqing Zou | Meng Shen | Chen Chen | Yuchen Hu | Deepu Rajan | Eng Siong Chng
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal learning aims to imitate human beings to acquire complementary information from multiple modalities for various downstream tasks. However, traditional aggregation-based multimodal fusion methods ignore the inter-modality relationship, treat each modality equally, suffer sensor noise, and thus reduce multimodal learning performance. In this work, we propose a novel multimodal contrastive method to explore more reliable multimodal representations under the weak supervision of unimodal predicting. Specifically, we first capture task-related unimodal representations and the unimodal predictions from the introduced unimodal predicting task. Then the unimodal representations are aligned with the more effective one by the designed multimodal contrastive method under the supervision of the unimodal predictions. Experimental results with fused features on two image-text classification benchmarks UPMC-Food-101 and N24News show that our proposed Unimodality-Supervised MultiModal Contrastive UniS-MMC learning method outperforms current state-of-the-art multimodal methods. The detailed ablation study and analysis further demonstrate the advantage of our proposed method.

pdf
CASSI: Contextual and Semantic Structure-based Interpolation Augmentation for Low-Resource NER
Tanmay Surana | Thi-Nga Ho | Kyaw Tun | Eng Siong Chng
Findings of the Association for Computational Linguistics: EMNLP 2023

While text augmentation methods have been successful in improving performance in the low-resource setting, they suffer from annotation corruption for a token-level task like NER. Moreover, existing methods cannot reliably add context diversity to the dataset, which has been shown to be crucial for low-resource NER. In this work, we propose Contextual and Semantic Structure-based Interpolation (CASSI), a novel augmentation scheme that generates high-quality contextually diverse augmentations while avoiding annotation corruption by structurally combining a pair of semantically similar sentences to generate a new sentence while maintaining semantic correctness and fluency. To accomplish this, we generate candidate augmentations by performing multiple dependency parsing-based exchanges in a pair of semantically similar sentences that are filtered via scoring with a pretrained Masked Language Model and a metric to promote specificity. Experiments show that CASSI consistently outperforms existing methods at multiple low resource levels, in multiple languages, and for noisy and clean text.

pdf
MIR-GAN: Refining Frame-Level Modality-Invariant Representations with Adversarial Network for Audio-Visual Speech Recognition
Yuchen Hu | Chen Chen | Ruizhe Li | Heqing Zou | Eng Siong Chng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Audio-visual speech recognition (AVSR) attracts a surge of research interest recently by leveraging multimodal signals to understand human speech. Mainstream approaches addressing this task have developed sophisticated architectures and techniques for multi-modality fusion and representation learning. However, the natural heterogeneity of different modalities causes distribution gap between their representations, making it challenging to fuse them. In this paper, we aim to learn the shared representations across modalities to bridge their gap. Different from existing similar methods on other multimodal tasks like sentiment analysis, we focus on the temporal contextual dependencies considering the sequence-to-sequence task setting of AVSR. In particular, we propose an adversarial network to refine frame-level modality-invariant representations (MIR-GAN), which captures the commonality across modalities to ease the subsequent multimodal fusion process. Extensive experiments on public benchmarks LRS3 and LRS2 show that our approach outperforms the state-of-the-arts.

pdf
Hearing Lips in Noise: Universal Viseme-Phoneme Mapping and Transfer for Robust Audio-Visual Speech Recognition
Yuchen Hu | Ruizhe Li | Chen Chen | Chengwei Qin | Qiu-Shi Zhu | Eng Siong Chng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Audio-visual speech recognition (AVSR) provides a promising solution to ameliorate the noise-robustness of audio-only speech recognition with visual information. However, most existing efforts still focus on audio modality to improve robustness considering its dominance in AVSR task, with noise adaptation techniques such as front-end denoise processing. Though effective, these methods are usually faced with two practical challenges: 1) lack of sufficient labeled noisy audio-visual training data in some real-world scenarios and 2) less optimal model generality to unseen testing noises. In this work, we investigate the noise-invariant visual modality to strengthen robustness of AVSR, which can adapt to any testing noises while without dependence on noisy training data, a.k.a., unsupervised noise adaptation. Inspired by human perception mechanism, we propose a universal viseme-phoneme mapping (UniVPM) approach to implement modality transfer, which can restore clean audio from visual signals to enable speech recognition under any noisy conditions. Extensive experiments on public benchmarks LRS3 and LRS2 show that our approach achieves the state-of-the-art under various noisy as well as clean conditions. In addition, we also outperform previous state-of-the-arts on visual speech recognition task.

2021

pdf
A Unified Speaker Adaptation Approach for ASR
Yingzhu Zhao | Chongjia Ni | Cheung-Chi Leung | Shafiq Joty | Eng Siong Chng | Bin Ma
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transformer models have been used in automatic speech recognition (ASR) successfully and yields state-of-the-art results. However, its performance is still affected by speaker mismatch between training and test data. Further finetuning a trained model with target speaker data is the most natural approach for adaptation, but it takes a lot of compute and may cause catastrophic forgetting to the existing speakers. In this work, we propose a unified speaker adaptation approach consisting of feature adaptation and model adaptation. For feature adaptation, we employ a speaker-aware persistent memory model which generalizes better to unseen test speakers by making use of speaker i-vectors to form a persistent memory. For model adaptation, we use a novel gradual pruning method to adapt to target speakers without changing the model architecture, which to the best of our knowledge, has never been explored in ASR. Specifically, we gradually prune less contributing parameters on model encoder to a certain sparsity level, and use the pruned parameters for adaptation, while freezing the unpruned parameters to keep the original model performance. We conduct experiments on the Librispeech dataset. Our proposed approach brings relative 2.74-6.52% word error rate (WER) reduction on general speaker adaptation. On target speaker adaptation, our method outperforms the baseline with up to 20.58% relative WER reduction, and surpasses the finetuning method by up to relative 2.54%. Besides, with extremely low-resource adaptation data (e.g., 1 utterance), our method could improve the WER by relative 6.53% with only a few epochs of training.

2020

pdf
Adapting BERT for Word Sense Disambiguation with Gloss Selection Objective and Example Sentences
Boon Peng Yap | Andrew Koh | Eng Siong Chng
Findings of the Association for Computational Linguistics: EMNLP 2020

Domain adaptation or transfer learning using pre-trained language models such as BERT has proven to be an effective approach for many natural language processing tasks. In this work, we propose to formulate word sense disambiguation as a relevance ranking task, and fine-tune BERT on sequence-pair ranking task to select the most probable sense definition given a context sentence and a list of candidate sense definitions. We also introduce a data augmentation technique for WSD using existing example sentences from WordNet. Using the proposed training objective and data augmentation technique, our models are able to achieve state-of-the-art results on the English all-words benchmark datasets.

2018

pdf
Named-Entity Tagging and Domain adaptation for Better Customized Translation
Zhongwei Li | Xuancong Wang | Ai Ti Aw | Eng Siong Chng | Haizhou Li
Proceedings of the Seventh Named Entities Workshop

Customized translation need pay spe-cial attention to the target domain ter-minology especially the named-entities for the domain. Adding linguistic features to neural machine translation (NMT) has been shown to benefit translation in many studies. In this paper, we further demonstrate that adding named-entity (NE) feature with named-entity recognition (NER) into the source language produces better translation with NMT. Our experiments show that by just including the different NE classes and boundary tags, we can increase the BLEU score by around 1 to 2 points using the standard test sets from WMT2017. We also show that adding NE tags using NER and applying in-domain adaptation can be combined to further improve customized machine translation.

2013

pdf
Modeling of term-distance and term-occurrence information for improving n-gram language model performance
Tze Yuang Chong | Rafael E. Banchs | Eng Siong Chng | Haizhou Li
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2012

pdf
An Empirical Evaluation of Stop Word Removal in Statistical Machine Translation
Tze Yuang Chong | Rafael Banchs | Eng Siong Chng
Proceedings of the Joint Workshop on Exploiting Synergies between Information Retrieval and Machine Translation (ESIRMT) and Hybrid Approaches to Machine Translation (HyTra)

2010

pdf
Non-Isomorphic Forest Pair Translation
Hui Zhang | Min Zhang | Haizhou Li | Eng Siong Chng
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing