Ehsan Emadzadeh
2020
DiPair: Fast and Accurate Distillation for Trillion-Scale Text Matching and Pair Modeling
Jiecao Chen
|
Liu Yang
|
Karthik Raman
|
Michael Bendersky
|
Jung-Jung Yeh
|
Yun Zhou
|
Marc Najork
|
Danyang Cai
|
Ehsan Emadzadeh
Findings of the Association for Computational Linguistics: EMNLP 2020
Pre-trained models like BERT ((Devlin et al., 2018) have dominated NLP / IR applications such as single sentence classification, text pair classification, and question answering. However, deploying these models in real systems is highly non-trivial due to their exorbitant computational costs. A common remedy to this is knowledge distillation (Hinton et al., 2015), leading to faster inference. However – as we show here – existing works are not optimized for dealing with pairs (or tuples) of texts. Consequently, they are either not scalable or demonstrate subpar performance. In this work, we propose DiPair — a novel framework for distilling fast and accurate models on text pair tasks. Coupled with an end-to-end training strategy, DiPair is both highly scalable and offers improved quality-speed tradeoffs. Empirical studies conducted on both academic and real-world e-commerce benchmarks demonstrate the efficacy of the proposed approach with speedups of over 350x and minimal quality drop relative to the cross-attention teacher BERT model.
2011
Double Layered Learning for Biological Event Extraction from Text
Ehsan Emadzadeh
|
Azadeh Nikfarjam
|
Graciela Gonzalez
Proceedings of BioNLP Shared Task 2011 Workshop
Search
Co-authors
- Jiecao Chen 1
- Liu Yang 1
- Karthik Raman 1
- Michael Bendersky 1
- Jung-Jung Yeh 1
- show all...