Edison Marrese-Taylor

Also published as: Edison Marrese-taylor


2024

pdf
Annotations for Exploring Food Tweets from Multiple Aspects
Matiss Rikters | Rinalds Vīksna | Edison Marrese-Taylor
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This research builds upon the Latvian Twitter Eater Corpus (LTEC), which is focused on the narrow domain of tweets related to food, drinks, eating and drinking. LTEC has been collected for more than 12 years and reaching almost 3 million tweets with the basic information as well as extended automatically and manually annotated metadata. In this paper we supplement the LTEC with manually annotated subsets of evaluation data for machine translation, named entity recognition, timeline-balanced sentiment analysis, and text-image relation classification. We experiment with each of the data sets using baseline models and highlight future challenges for various modelling approaches.

pdf
Media Bias Detection Across Families of Language Models
Iffat Maab | Edison Marrese-Taylor | Sebastian Padó | Yutaka Matsuo
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Bias in reporting can influence the public’s opinion on relevant societal issues. Examples include informational bias (selective presentation of content) and lexical bias (specific framing of content through linguistic choices). The recognition of media bias is arguably an area where NLP can contribute to the “social good”. Traditional NLP models have shown good performance in classifying media bias, but require careful model design and extensive tuning. In this paper, we ask how well prompting of large language models can recognize media bias. Through an extensive empirical study including a wide selection of pre-trained models, we find that prompt-based techniques can deliver comparable performance to traditional models with greatly reduced effort and that, similar to traditional models, the availability of context substantially improves results. We further show that larger models can leverage different kinds of context simultaneously, obtaining further performance improvements.

2023

pdf
Memory-efficient Temporal Moment Localization in Long Videos
Cristian Rodriguez-Opazo | Edison Marrese-Taylor | Basura Fernando | Hiroya Takamura | Qi Wu
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Temporal Moment Localization is a challenging multi-modal task which aims to identify the start and end timestamps of a moment of interest in an input untrimmed video, given a query in natural language. Solving this task correctly requires understanding the temporal relationships in the entire input video, but processing such long inputs and reasoning about them is memory and computationally expensive. In light of this issue, we propose Stochastic Bucket-wise Feature Sampling (SBFS), a stochastic sampling module that allows methods to process long videos at a constant memory footprint. We further combine SBFS with a new consistency loss to propose Locformer, a Transformer-based model that can process videos as long as 18 minutes. We test our proposals on relevant benchmark datasets, showing that not only can Locformer achieve excellent results, but also that our sampling is more effective than competing counterparts. Concretely, SBFS consistently improves the performance of prior work, by up to 3.13% in the mean temporal IoU, leading to a new state-of-the-art performance on Charades-STA and YouCookII, while also obtaining up to 12.8x speed-up at testing time and reducing memory requirements by up to 5x.

pdf
An Effective Approach for Informational and Lexical Bias Detection
Iffat Maab | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the Sixth Fact Extraction and VERification Workshop (FEVER)

In this paper we present a thorough investigation of automatic bias recognition on BASIL, a dataset of political news which has been annotated with different kinds of biases. We begin by unveiling several inconsistencies in prior work using this dataset, showing that most approaches focus only on certain task formulations while ignoring others, and also failing to report important evaluation details. We provide a comprehensive categorization of these approaches, as well as a more uniform and clear set of evaluation metrics. We argue about the importance of the missing formulations and also propose the novel task of simultaneously detecting different kinds of biases in news. In our work, we tackle bias on six different BASIL classification tasks in a unified manner. Eventually, we introduce a simple yet effective approach based on data augmentation and preprocessing which is generic and works very well across models and task formulations, allowing us to obtain state-of-the-art results. We also perform ablation studies on some tasks to quantify the strength of data augmentation and preprocessing, and find that they correlate positively on all bias tasks.

pdf
Towards Parameter-Efficient Integration of Pre-Trained Language Models In Temporal Video Grounding
Erica Kido Shimomoto | Edison Marrese-Taylor | Hiroya Takamura | Ichiro Kobayashi | Hideki Nakayama | Yusuke Miyao
Findings of the Association for Computational Linguistics: ACL 2023

This paper explores the task of Temporal Video Grounding (TVG) where, given an untrimmed video and a query sentence, the goal is to recognize and determine temporal boundaries of action instances in the video described by natural language queries. Recent works tackled this task by improving query inputs with large pre-trained language models (PLM), at the cost of more expensive training. However, the effects of this integration are unclear, as these works also propose improvements in the visual inputs. Therefore, this paper studies the role of query sentence representation with PLMs in TVG and assesses the applicability of parameter-efficient training with NLP adapters. We couple popular PLMs with a selection of existing approaches and test different adapters to reduce the impact of the additional parameters. Our results on three challenging datasets show that, with the same visual inputs, TVG models greatly benefited from the PLM integration and fine-tuning, stressing the importance of the text query representation in this task. Furthermore, adapters were an effective alternative to full fine-tuning, even though they are not tailored to our task, allowing PLM integration in larger TVG models and delivering results comparable to SOTA models. Finally, our results shed light on which adapters work best in different scenarios.

pdf
Perceptual Structure in the absence of grounding: the impact of abstractedness and subjectivity in color language for LLMs
Pablo Loyola | Edison Marrese-Taylor | Andres Hoyos-Idrobo
Findings of the Association for Computational Linguistics: EMNLP 2023

The need for grounding in language understanding is an active research topic. Previous work has suggested that color perception and color language appear as a suitable test bed to empirically study the problem, given its cognitive significance and showing that there is considerable alignment between a defined color space and the feature space defined by a language model. To further study this issue, we collect a large scale source of colors and their descriptions, containing almost a 1 million examples , and perform an empirical analysis to compare two kinds of alignments: (i) inter-space, by learning a mapping between embedding space and color space, and (ii) intra-space, by means of prompting comparatives between color descriptions. Our results show that while color space alignment holds for monolexemic, highly pragmatic color descriptions, this alignment drops considerably in the presence of examples that exhibit elements of real linguistic usage such as subjectivity and abstractedness, suggesting that grounding may be required in such cases.

pdf
Target-Aware Contextual Political Bias Detection in News
Iffat Maab | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Evaluating Large Language Models’ Understanding of Financial Terminology via Definition Modeling
James Jhirad | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: Student Research Workshop

pdf
Towards Better Evaluation for Formality-Controlled English-Japanese Machine Translation
Edison Marrese-Taylor | Pin Chen Wang | Yutaka Matsuo
Proceedings of the Eighth Conference on Machine Translation

In this paper we propose a novel approach to automatically classify the level of formality in Japanese text, using three categories (formal, polite, and informal). We introduce a new dataset that combine manually-annotated sentences from existing resources, and formal sentences scrapped from the website of the House of Representatives and the House of Councilors of Japan. Based on our data, we propose a Transformer-based classification model for Japanese, which obtains state-of-the-art results in benchmark datasets. We further propose to utilize our classifier to study the effectiveness of prompting techniques for controlling the formality level of machine translation (MT) using Large Language Models (LLM). Our experimental setting includes a large selection of such models and is based on an En->Ja parallel corpus specifically designed to test formality control in MT. Our results validate the robustness and effectiveness of our proposed approach and while also providing empirical evidence suggesting that prompting LLMs is a viable approach to control the formality level of En->Ja MT using LLMs.

pdf
Edit Aware Representation Learning via Levenshtein Prediction
Edison Marrese-taylor | Machel Reid | Alfredo Solano
Proceedings of the Fourth Workshop on Insights from Negative Results in NLP

2022

pdf
Improving Jejueo-Korean Translation With Cross-Lingual Pretraining Using Japanese and Korean
Francis Zheng | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 9th Workshop on Asian Translation

Jejueo is a critically endangered language spoken on Jeju Island and is closely related to but mutually unintelligible with Korean. Parallel data between Jejueo and Korean is scarce, and translation between the two languages requires more attention, as current neural machine translation systems typically rely on large amounts of parallel training data. While low-resource machine translation has been shown to benefit from using additional monolingual data during the pretraining process, not as much research has been done on how to select languages other than the source and target languages for use during pretraining. We show that using large amounts of Korean and Japanese data during the pretraining process improves translation by 2.16 BLEU points for translation in the Jejueo → Korean direction and 1.34 BLEU points for translation in the Korean → Jejueo direction compared to the baseline.

pdf
A Subspace-Based Analysis of Structured and Unstructured Representations in Image-Text Retrieval
Erica K. Shimomoto | Edison Marrese-Taylor | Hiroya Takamura | Ichiro Kobayashi | Yusuke Miyao
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)

In this paper, we specifically look at the image-text retrieval problem. Recent multimodal frameworks have shown that structured inputs and fine-tuning lead to consistent performance improvement. However, this paradigm has been challenged recently with newer Transformer-based models that can reach zero-shot state-of-the-art results despite not explicitly using structured data during pre-training. Since such strategies lead to increased computational resources, we seek to better understand their role in image-text retrieval by analyzing visual and text representations extracted with three multimodal frameworks – SGM, UNITER, and CLIP. To perform such analysis, we represent a single image or text as low-dimensional linear subspaces and perform retrieval based on subspace similarity. We chose this representation as subspaces give us the flexibility to model an entity based on feature sets, allowing us to observe how integrating or reducing information changes the representation of each entity. We analyze the performance of the selected models’ features on two standard benchmark datasets. Our results indicate that heavily pre-training models can already lead to features with critical information representing each entity, with zero-shot UNITER features performing consistently better than fine-tuned features. Furthermore, while models can benefit from structured inputs, learning representations for objects and relationships separately, such as in SGM, likely causes a loss of crucial contextual information needed to obtain a compact cluster that can effectively represent a single entity.

pdf
A Parallel Corpus and Dictionary for Amis-Mandarin Translation
Francis Zheng | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 2nd International Workshop on Natural Language Processing for Digital Humanities

Amis is an endangered language indigenous to Taiwan with limited data available for computational processing. We thus present an Amis-Mandarin dataset containing a parallel corpus of 5,751 Amis and Mandarin sentences and a dictionary of 7,800 Amis words and phrases with their definitions in Mandarin. Using our dataset, we also established a baseline for machine translation between Amis and Mandarin in both directions. Our dataset can be found at https://github.com/francisdzheng/amis-mandarin.

pdf
Open-domain Video Commentary Generation
Edison Marrese-Taylor | Yumi Hamazono | Tatsuya Ishigaki | Goran Topić | Yusuke Miyao | Ichiro Kobayashi | Hiroya Takamura
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Live commentary plays an important role in sports broadcasts and video games, making spectators more excited and immersed. In this context, though approaches for automatically generating such commentary have been proposed in the past, they have been generally concerned with specific fields, where it is possible to leverage domain-specific information. In light of this, we propose the task of generating video commentary in an open-domain fashion. We detail the construction of a new large-scale dataset of transcribed commentary aligned with videos containing various human actions in a variety of domains, and propose approaches based on well-known neural architectures to tackle the task. To understand the strengths and limitations of current approaches, we present an in-depth empirical study based on our data. Our results suggest clear trade-offs between textual and visual inputs for the models and highlight the importance of relying on external knowledge in this open-domain setting, resulting in a set of robust baselines for our task.

2021

pdf
Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers
Machel Reid | Edison Marrese-Taylor | Yutaka Matsuo
Findings of the Association for Computational Linguistics: EMNLP 2021

Transformers have shown improved performance when compared to previous architectures for sequence processing such as RNNs. Despite their sizeable performance gains, as recently suggested, the model is computationally expensive to train and with a high parameter budget. In light of this, we explore parameter-sharing methods in Transformers with a specific focus on generative models. We perform an analysis of different parameter sharing/reduction methods and develop the Subformer. Our model combines sandwich-style parameter sharing, which overcomes naive cross-layer parameter sharing in generative models, and self-attentive embedding factorization (SAFE). Experiments on machine translation, abstractive summarization and language modeling show that the Subformer can outperform the Transformer even when using significantly fewer parameters.

pdf
Low-Resource Machine Translation Using Cross-Lingual Language Model Pretraining
Francis Zheng | Machel Reid | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This paper describes UTokyo’s submission to the AmericasNLP 2021 Shared Task on machine translation systems for indigenous languages of the Americas. We present a low-resource machine translation system that improves translation accuracy using cross-lingual language model pretraining. Our system uses an mBART implementation of fairseq to pretrain on a large set of monolingual data from a diverse set of high-resource languages before finetuning on 10 low-resource indigenous American languages: Aymara, Bribri, Asháninka, Guaraní, Wixarika, Náhuatl, Hñähñu, Quechua, Shipibo-Konibo, and Rarámuri. On average, our system achieved BLEU scores that were 1.64 higher and chrF scores that were 0.0749 higher than the baseline.

2020

pdf
Learning to Describe Editing Activities in Collaborative Environments: A Case Study on GitHub and Wikipedia
Edison Marrese-Taylor | Pablo Loyola | Jorge A. Balazs | Yutaka Matsuo
Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation

pdf
VCDM: Leveraging Variational Bi-encoding and Deep Contextualized Word Representations for Improved Definition Modeling
Machel Reid | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we tackle the task of definition modeling, where the goal is to learn to generate definitions of words and phrases. Existing approaches for this task are discriminative, combining distributional and lexical semantics in an implicit rather than direct way. To tackle this issue we propose a generative model for the task, introducing a continuous latent variable to explicitly model the underlying relationship between a phrase used within a context and its definition. We rely on variational inference for estimation and leverage contextualized word embeddings for improved performance. Our approach is evaluated on four existing challenging benchmarks with the addition of two new datasets, “Cambridge” and the first non-English corpus “Robert”, which we release to complement our empirical study. Our Variational Contextual Definition Modeler (VCDM) achieves state-of-the-art performance in terms of automatic and human evaluation metrics, demonstrating the effectiveness of our approach.

pdf bib
A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews
Edison Marrese-Taylor | Cristian Rodriguez | Jorge Balazs | Stephen Gould | Yutaka Matsuo
Second Grand-Challenge and Workshop on Multimodal Language (Challenge-HML)

Despite the recent advances in opinion mining for written reviews, few works have tackled the problem on other sources of reviews. In light of this issue, we propose a multi-modal approach for mining fine-grained opinions from video reviews that is able to determine the aspects of the item under review that are being discussed and the sentiment orientation towards them. Our approach works at the sentence level without the need for time annotations and uses features derived from the audio, video and language transcriptions of its contents. We evaluate our approach on two datasets and show that leveraging the video and audio modalities consistently provides increased performance over text-only baselines, providing evidence these extra modalities are key in better understanding video reviews.

2019

pdf
An Edit-centric Approach for Wikipedia Article Quality Assessment
Edison Marrese-Taylor | Pablo Loyola | Yutaka Matsuo
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

We propose an edit-centric approach to assess Wikipedia article quality as a complementary alternative to current full document-based techniques. Our model consists of a main classifier equipped with an auxiliary generative module which, for a given edit, jointly provides an estimation of its quality and generates a description in natural language. We performed an empirical study to assess the feasibility of the proposed model and its cost-effectiveness in terms of data and quality requirements.

2018

pdf
Learning to Automatically Generate Fill-In-The-Blank Quizzes
Edison Marrese-Taylor | Ai Nakajima | Yutaka Matsuo | Ono Yuichi
Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications

In this paper we formalize the problem automatic fill-in-the-blank question generation using two standard NLP machine learning schemes, proposing concrete deep learning models for each. We present an empirical study based on data obtained from a language learning platform showing that both of our proposed settings offer promising results.

pdf bib
Deep contextualized word representations for detecting sarcasm and irony
Suzana Ilić | Edison Marrese-Taylor | Jorge Balazs | Yutaka Matsuo
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Predicting context-dependent and non-literal utterances like sarcastic and ironic expressions still remains a challenging task in NLP, as it goes beyond linguistic patterns, encompassing common sense and shared knowledge as crucial components. To capture complex morpho-syntactic features that can usually serve as indicators for irony or sarcasm across dynamic contexts, we propose a model that uses character-level vector representations of words, based on ELMo. We test our model on 7 different datasets derived from 3 different data sources, providing state-of-the-art performance in 6 of them, and otherwise offering competitive results.

pdf
IIIDYT at IEST 2018: Implicit Emotion Classification With Deep Contextualized Word Representations
Jorge Balazs | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In this paper we describe our system designed for the WASSA 2018 Implicit Emotion Shared Task (IEST), which obtained 2nd place out of 30 teams with a test macro F1 score of 0.710. The system is composed of a single pre-trained ELMo layer for encoding words, a Bidirectional Long-Short Memory Network BiLSTM for enriching word representations with context, a max-pooling operation for creating sentence representations from them, and a Dense Layer for projecting the sentence representations into label space. Our official submission was obtained by ensembling 6 of these models initialized with different random seeds. The code for replicating this paper is available at https://github.com/jabalazs/implicit_emotion.

pdf
Content Aware Source Code Change Description Generation
Pablo Loyola | Edison Marrese-Taylor | Jorge Balazs | Yutaka Matsuo | Fumiko Satoh
Proceedings of the 11th International Conference on Natural Language Generation

We propose to study the generation of descriptions from source code changes by integrating the messages included on code commits and the intra-code documentation inside the source in the form of docstrings. Our hypothesis is that although both types of descriptions are not directly aligned in semantic terms —one explaining a change and the other the actual functionality of the code being modified— there could be certain common ground that is useful for the generation. To this end, we propose an architecture that uses the source code-docstring relationship to guide the description generation. We discuss the results of the approach comparing against a baseline based on a sequence-to-sequence model, using standard automatic natural language generation metrics as well as with a human study, thus offering a comprehensive view of the feasibility of the approach.

pdf
IIIDYT at SemEval-2018 Task 3: Irony detection in English tweets
Edison Marrese-Taylor | Suzana Ilic | Jorge Balazs | Helmut Prendinger | Yutaka Matsuo
Proceedings of the 12th International Workshop on Semantic Evaluation

In this paper we introduce our system for the task of Irony detection in English tweets, a part of SemEval 2018. We propose representation learning approach that relies on a multi-layered bidirectional LSTM, without using external features that provide additional semantic information. Although our model is able to outperform the baseline in the validation set, our results show limited generalization power over the test set. Given the limited size of the dataset, we think the usage of more pre-training schemes would greatly improve the obtained results.

2017

pdf
Mining fine-grained opinions on closed captions of YouTube videos with an attention-RNN
Edison Marrese-Taylor | Jorge Balazs | Yutaka Matsuo
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Video reviews are the natural evolution of written product reviews. In this paper we target this phenomenon and introduce the first dataset created from closed captions of YouTube product review videos as well as a new attention-RNN model for aspect extraction and joint aspect extraction and sentiment classification. Our model provides state-of-the-art performance on aspect extraction without requiring the usage of hand-crafted features on the SemEval ABSA corpus, while it outperforms the baseline on the joint task. In our dataset, the attention-RNN model outperforms the baseline for both tasks, but we observe important performance drops for all models in comparison to SemEval. These results, as well as further experiments on domain adaptation for aspect extraction, suggest that differences between speech and written text, which have been discussed extensively in the literature, also extend to the domain of product reviews, where they are relevant for fine-grained opinion mining.

pdf
EmoAtt at EmoInt-2017: Inner attention sentence embedding for Emotion Intensity
Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In this paper we describe a deep learning system that has been designed and built for the WASSA 2017 Emotion Intensity Shared Task. We introduce a representation learning approach based on inner attention on top of an RNN. Results show that our model offers good capabilities and is able to successfully identify emotion-bearing words to predict intensity without leveraging on lexicons, obtaining the 13t place among 22 shared task competitors.

pdf
Refining Raw Sentence Representations for Textual Entailment Recognition via Attention
Jorge Balazs | Edison Marrese-Taylor | Pablo Loyola | Yutaka Matsuo
Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP

In this paper we present the model used by the team Rivercorners for the 2017 RepEval shared task. First, our model separately encodes a pair of sentences into variable-length representations by using a bidirectional LSTM. Later, it creates fixed-length raw representations by means of simple aggregation functions, which are then refined using an attention mechanism. Finally it combines the refined representations of both sentences into a single vector to be used for classification. With this model we obtained test accuracies of 72.057% and 72.055% in the matched and mismatched evaluation tracks respectively, outperforming the LSTM baseline, and obtaining performances similar to a model that relies on shared information between sentences (ESIM). When using an ensemble both accuracies increased to 72.247% and 72.827% respectively.

pdf
Replication issues in syntax-based aspect extraction for opinion mining
Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics

Reproducing experiments is an important instrument to validate previous work and build upon existing approaches. It has been tackled numerous times in different areas of science. In this paper, we introduce an empirical replicability study of three well-known algorithms for syntactic centric aspect-based opinion mining. We show that reproducing results continues to be a difficult endeavor, mainly due to the lack of details regarding preprocessing and parameter setting, as well as due to the absence of available implementations that clarify these details. We consider these are important threats to validity of the research on the field, specifically when compared to other problems in NLP where public datasets and code availability are critical validity components. We conclude by encouraging code-based research, which we think has a key role in helping researchers to understand the meaning of the state-of-the-art better and to generate continuous advances.

pdf
A Neural Architecture for Generating Natural Language Descriptions from Source Code Changes
Pablo Loyola | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We propose a model to automatically describe changes introduced in the source code of a program using natural language. Our method receives as input a set of code commits, which contains both the modifications and message introduced by an user. These two modalities are used to train an encoder-decoder architecture. We evaluated our approach on twelve real world open source projects from four different programming languages. Quantitative and qualitative results showed that the proposed approach can generate feasible and semantically sound descriptions not only in standard in-project settings, but also in a cross-project setting.