Dennis Fucci


2024

pdf
A Prompt Response to the Demand for Automatic Gender-Neutral Translation
Beatrice Savoldi | Andrea Piergentili | Dennis Fucci | Matteo Negri | Luisa Bentivogli
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Gender-neutral translation (GNT) that avoids biased and undue binary assumptions is a pivotal challenge for the creation of more inclusive translation technologies. Advancements for this task in Machine Translation (MT), however, are hindered by the lack of dedicated parallel data, which are necessary to adapt MT systems to satisfy neutral constraints. For such a scenario, large language models offer hitherto unforeseen possibilities, as they come with the distinct advantage of being versatile in various (sub)tasks when provided with explicit instructions. In this paper, we explore this potential to automate GNT by comparing MT with the popular GPT-4 model. Through extensive manual analyses, our study empirically reveals the inherent limitations of current MT systems in generating GNTs and provides valuable insights into the potential and challenges associated with prompting for neutrality.

2023

pdf
Gender Neutralization for an Inclusive Machine Translation: from Theoretical Foundations to Open Challenges
Andrea Piergentili | Dennis Fucci | Beatrice Savoldi | Luisa Bentivogli | Matteo Negri
Proceedings of the First Workshop on Gender-Inclusive Translation Technologies

Gender inclusivity in language technologies has become a prominent research topic. In this study, we explore gender-neutral translation (GNT) as a form of gender inclusivity and a goal to be achieved by machine translation (MT) models, which have been found to perpetuate gender bias and discrimination. Specifically, we focus on translation from English into Italian, a language pair representative of salient gender-related linguistic transfer problems. To define GNT, we review a selection of relevant institutional guidelines for gender-inclusive language, discuss its scenarios of use, and examine the technical challenges of performing GNT in MT, concluding with a discussion of potential solutions to encourage advancements toward greater inclusivity in MT.

pdf
Integrating Language Models into Direct Speech Translation: An Inference-Time Solution to Control Gender Inflection
Dennis Fucci | Marco Gaido | Sara Papi | Mauro Cettolo | Matteo Negri | Luisa Bentivogli
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

When translating words referring to the speaker, speech translation (ST) systems should not resort to default masculine generics nor rely on potentially misleading vocal traits. Rather, they should assign gender according to the speakers’ preference. The existing solutions to do so, though effective, are hardly feasible in practice as they involve dedicated model re-training on gender-labeled ST data. To overcome these limitations, we propose the first inference-time solution to control speaker-related gender inflections in ST. Our approach partially replaces the (biased) internal language model (LM) implicitly learned by the ST decoder with gender-specific external LMs. Experiments on enes/fr/it show that our solution outperforms the base models and the best training-time mitigation strategy by up to 31.0 and 1.6 points in gender accuracy, respectively, for feminine forms. The gains are even larger (up to 32.0 and 3.4) in the challenging condition where speakers’ vocal traits conflict with their gender.

pdf
Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the GeNTE Corpus
Andrea Piergentili | Beatrice Savoldi | Dennis Fucci | Matteo Negri | Luisa Bentivogli
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Gender inequality is embedded in our communication practices and perpetuated in translation technologies. This becomes particularly apparent when translating into grammatical gender languages, where machine translation (MT) often defaults to masculine and stereotypical representations by making undue binary gender assumptions. Our work addresses the rising demand for inclusive language by focusing head-on on gender-neutral translation from English to Italian. We start from the essentials: proposing a dedicated benchmark and exploring automated evaluation methods. First, we introduce GeNTE, a natural, bilingual test set for gender-neutral translation, whose creation was informed by a survey on the perception and use of neutral language. Based on GeNTE, we then overview existing reference-based evaluation approaches, highlight their limits, and propose a reference-free method more suitable to assess gender-neutral translation.

2022

pdf
Efficient yet Competitive Speech Translation: FBK@IWSLT2022
Marco Gaido | Sara Papi | Dennis Fucci | Giuseppe Fiameni | Matteo Negri | Marco Turchi
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The primary goal of this FBK’s systems submission to the IWSLT 2022 offline and simultaneous speech translation tasks is to reduce model training costs without sacrificing translation quality. As such, we first question the need of ASR pre-training, showing that it is not essential to achieve competitive results. Second, we focus on data filtering, showing that a simple method that looks at the ratio between source and target characters yields a quality improvement of 1 BLEU. Third, we compare different methods to reduce the detrimental effect of the audio segmentation mismatch between training data manually segmented at sentence level and inference data that is automatically segmented. Towards the same goal of training cost reduction, we participate in the simultaneous task with the same model trained for offline ST. The effectiveness of our lightweight training strategy is shown by the high score obtained on the MuST-C en-de corpus (26.7 BLEU) and is confirmed in high-resource data conditions by a 1.6 BLEU improvement on the IWSLT2020 test set over last year’s winning system.