David Wilmot


2021

pdf
Memory and Knowledge Augmented Language Models for Inferring Salience in Long-Form Stories
David Wilmot | Frank Keller
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Measuring event salience is essential in the understanding of stories. This paper takes a recent unsupervised method for salience detection derived from Barthes Cardinal Functions and theories of surprise and applies it to longer narrative forms. We improve the standard transformer language model by incorporating an external knowledgebase (derived from Retrieval Augmented Generation) and adding a memory mechanism to enhance performance on longer works. We use a novel approach to derive salience annotation using chapter-aligned summaries from the Shmoop corpus for classic literary works. Our evaluation against this data demonstrates that our salience detection model improves performance over and above a non-knowledgebase and memory augmented language model, both of which are crucial to this improvement.

2020

pdf
Modelling Suspense in Short Stories as Uncertainty Reduction over Neural Representation
David Wilmot | Frank Keller
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Suspense is a crucial ingredient of narrative fiction, engaging readers and making stories compelling. While there is a vast theoretical literature on suspense, it is computationally not well understood. We compare two ways for modelling suspense: surprise, a backward-looking measure of how unexpected the current state is given the story so far; and uncertainty reduction, a forward-looking measure of how unexpected the continuation of the story is. Both can be computed either directly over story representations or over their probability distributions. We propose a hierarchical language model that encodes stories and computes surprise and uncertainty reduction. Evaluating against short stories annotated with human suspense judgements, we find that uncertainty reduction over representations is the best predictor, resulting in near human accuracy. We also show that uncertainty reduction can be used to predict suspenseful events in movie synopses.
Search
Co-authors
Venues