This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Retrieval-based dialogue agents aim at selecting a proper response according to multi-turn conversational history. Existing methods have achieved great progress in terms of retrieval accuracy on benchmarks with pre-trained language models. However, these methods simply concatenate all turns in the dialogue history as the input, ignoring the dialogue dependency and structural information between the utterances. Besides, they usually reason the relationship of the context-response pair at a single level of abstraction (e.g., utterance level), which can not comprehensively capture the fine-grained relation between the context and response. In this paper, we present the multi-grained conversational graph network (MCGN) that considers multiple levels of abstraction from dialogue histories and semantic dependencies within multi-turn dialogues for addressing. Evaluation results on two benchmarks indicate that the proposed multi-grained conversational graph network is helpful for dialogue context understanding and can bring consistent and significant improvement over the state-of-the-art methods.
Recent large-scale vision-language pre-training depends on image-text global alignment by contrastive learning and is further boosted by fine-grained alignment in a weakly contrastive manner for cross-modal retrieval. Nonetheless, besides semantic matching learned by contrastive learning, cross-modal retrieval also largely relies on object matching between modalities. This necessitates fine-grained categorical discriminative learning, which however suffers from scarce data in full-supervised scenarios and information asymmetry in weakly-supervised scenarios when applied to cross-modal retrieval. To address these issues, we propose expansive lexicon-patch alignment (ELA) to align image patches with a vocabulary rather than only the words explicitly in the text for annotation-free alignment and information augmentation, thus enabling more effective fine-grained categorical discriminative learning for cross-modal retrieval. Experimental results show that ELA could effectively learn representative fine-grained information and outperform state-of-the-art methods on cross-modal retrieval.
Recently, prefix-tuning was proposed to efficiently adapt pre-trained language models to a broad spectrum of natural language classification tasks. It leverages soft prefix as task-specific indicators and language verbalizers as categorical-label mentions to narrow the formulation gap from pre-training language models. However, when the label space increases considerably (i.e., many-class classification), such a tuning technique suffers from a verbalizer ambiguity problem since the many-class labels are represented by semantic-similar verbalizers in short language phrases. To overcome this, inspired by the human-decision process that the most ambiguous classes would be mulled over for an instance, we propose a brand-new prefix-tuning method, Counterfactual Contrastive Prefix-tuning (CCPrefix), for many-class classification. Basically, an instance-dependent soft prefix, derived from fact-counterfactual pairs in the label space, is leveraged to complement the language verbalizers in many-class classification. We conduct experiments on many-class benchmark datasets in both the fully supervised setting and the few-shot setting, which indicates that our model outperforms former baselines.
Summarization quality evaluation is a non-trivial task in text summarization. Contemporary methods can be mainly categorized into two scenarios: (1) reference-based: evaluating with human-labeled reference summary; (2) reference-free: evaluating the summary consistency of the document. Recent studies mainly focus on one of these scenarios and explore training neural models built on PLMs to align with human criteria. However, the models from different scenarios are optimized individually, which may result in sub-optimal performance since they neglect the shared knowledge across different scenarios. Besides, designing individual models for each scenario caused inconvenience to the user. Inspired by this, we propose Unified Multi-scenario Summarization Evaluation Model (UMSE). More specifically, we propose a perturbed prefix tuning method to share cross-scenario knowledge between scenarios and use a self-supervised training paradigm to optimize the model without extra human labeling. Our UMSE is the first unified summarization evaluation framework engaged with the ability to be used in three evaluation scenarios. Experimental results across three typical scenarios on the benchmark dataset SummEval indicate that our UMSE can achieve comparable performance with several existing strong methods which are specifically designed for each scenario.
Extracting event causality underlies a broad spectrum of natural language processing applications. Cutting-edge methods break this task into Event Detection and Event Causality Identification. Although the pipelined solutions succeed in achieving acceptable results, the inherent nature of separating the task incurs limitations. On the one hand, it suffers from the lack of cross-task dependencies and may cause error propagation. On the other hand, it predicts events and relations separately, undermining the integrity of the event causality graph (ECG). To address such issues, in this paper, we propose an approach for Structure-Aware Event Causality Generation (SEAG). With a graph linearization module, we generate the ECG structure in a way of text2text generation based on a pre-trained language model. To foster the structural representation of the ECG, we introduce the novel Causality Structural Discrimination training paradigm in which we perform structural discriminative training alongside auto-regressive generation enabling the model to distinguish from constructed incorrect ECGs. We conduct experiments on three datasets. The experimental results demonstrate the effectiveness of structural event causality generation and the causality structural discrimination training.
A neural ranker plays an indispensable role in the de facto ‘retrieval & rerank’ pipeline, but its training still lags behind due to the weak negative mining during contrastive learning. Compared to retrievers boosted by self-adversarial (i.e., in-distribution) negative mining, the ranker’s heavy structure suffers from query-document combinatorial explosions, so it can only resort to the negative sampled by the fast yet out-of-distribution retriever. Thereby, the moderate negatives compose ineffective contrastive learning samples, becoming the main barrier to learning a robust ranker. To alleviate this, we propose a multi-adversarial training strategy that leverages multiple retrievers as generators to challenge a ranker, where i) diverse hard negatives from a joint distribution are prone to fool the ranker for more effective adversarial learning and ii) involving extensive out-of-distribution label noises renders the ranker against each noise distribution, leading to more challenging and robust contrastive learning. To evaluate our robust ranker (dubbed R2anker), we conduct experiments in various settings on the passage retrieval benchmarks, including BM25-reranking, full-ranking, retriever distillation, etc. The empirical results verify the new state-of-the-art effectiveness of our model.
Although the incorporation of pre-trained language models (PLMs) significantly pushes the research frontier of multi-turn response selection, it brings a new issue of heavy computation costs. To alleviate this problem and make the PLM-based response selection model both effective and efficient, we propose an inference framework together with a post-training strategy that builds upon any pre-trained transformer-based response selection models to accelerate inference by progressively selecting and eliminating unimportant content under the guidance of context-response dual-attention. Specifically, at each transformer layer, we first identify the importance of each word based on context-to-response and response-to-context attention, then select a number of unimportant words to be eliminated following a retention configuration derived from evolutionary search while passing the rest of the representations into deeper layers. To mitigate the training-inference gap posed by content elimination, we introduce a post-training strategy where we use knowledge distillation to force the model with progressively eliminated content to mimic the predictions of the original model with no content elimination. Experiments on three benchmarks indicate that our method can effectively speeds-up SOTA models without much performance degradation and shows a better trade-off between speed and performance than previous methods.
Pre-trained language models greatly improve the performance of various tasks but at a cost of high computation overhead. To facilitate practical applications, there are mainly two lines of research to accelerate model inference: model compression and dynamic computation (e.g., dynamic token pruning). Existing works either adopt these methods individually or simply apply dynamic computation approaches upon a compressed small language model. We argue that they are sub-optimal since the two approaches are separately designed so the compressed model may not be tailored for dynamic computation. To tackle this problem and make compressed small language models faster, we propose Length-Adaptive Distillation, a two-stage knowledge distillation framework that aims to produce a customized small language model for dynamic token pruning. In the general distillation stage, we enforce the student to mimic and reconstruct the teacher’s output based on the dynamically pruned representations. Then in the task-specific distillation stage, the student is further accustomed to token pruning while absorbing the task-specific knowledge. Experimental results on GLUE benchmark demonstrate that our method can make the small language model more customized for dynamic token pruning and achieve better speed-performance trade-off.
Document ranking aims at sorting a collection of documents with their relevance to a query. Contemporary methods explore more efficient transformers or divide long documents into passages to handle the long input. However, intensive query-irrelevant content may lead to harmful distraction and high query latency. Some recent works further propose cascade document ranking models that extract relevant passages with an efficient selector before ranking, however, their selection and ranking modules are almost independently optimized and deployed, leading to selecting error reinforcement and sub-optimal performance. In fact, the document ranker can provide fine-grained supervision to make the selector more generalizable and compatible, and the selector built upon a different structure can offer a distinct perspective to assist in document ranking. Inspired by this, we propose a fine-grained attention alignment approach to jointly optimize a cascade document ranking model. Specifically, we utilize the attention activations over the passages from the ranker as fine-grained attention feedback to optimize the selector. Meanwhile, we fuse the relevance scores from the passage selector into the ranker to assist in calculating the cooperative matching representation. Experiments on MS MARCO and TREC DL demonstrate the effectiveness of our method.
Establishing retrieval-based dialogue systems that can select appropriate responses from the pre-built index has gained increasing attention. Recent common practice is to construct a two-stage pipeline with a fast retriever (e.g., bi-encoder) for first-stage recall followed by a smart response reranker (e.g., cross-encoder) for precise ranking. However, existing studies either optimize the retriever and reranker in independent ways, or distill the knowledge from a pre-trained reranker into the retriever in an asynchronous way, leading to sub-optimal performance of both modules. Thus, an open question remains about how to train them for a better combination of the best of both worlds. To this end, we present a cooperative training of the response retriever and the reranker whose parameters are dynamically optimized by the ground-truth labels as well as list-wise supervision signals from each other. As a result, the two modules can learn from each other and evolve together throughout the training. Experimental results on two benchmarks demonstrate the superiority of our method.
A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input. In this work, we first explore the summarization models’ robustness against perturbations including word-level synonym substitution and noise. To create semantic-consistent substitutes, we propose a SummAttacker, which is an efficient approach to generating adversarial samples based on pre-trained language models. Experimental results show that state-of-the-art summarization models have a significant decrease in performance on adversarial and noisy test sets. Next, we analyze the vulnerability of the summarization systems and explore improving the robustness by data augmentation. Specifically, the first vulnerability factor we found is the low diversity of the training inputs. Correspondingly, we expose the encoder to more diverse cases created by SummAttacker in the input space. The second factor is the vulnerability of the decoder, and we propose an augmentation in the latent space of the decoder to improve its robustness. Concretely, we create virtual cases by manifold softmixing two decoder hidden states of similar semantic meanings. Experimental results on Gigaword and CNN/DM datasets demonstrate that our approach achieves significant improvements over strong baselines and exhibits higher robustness on noisy, attacked, and clean datasets
Reasoning about events and their relations attracts surging research efforts since it is regarded as an indispensable ability to fulfill various event-centric or common-sense reasoning tasks. However, these tasks often suffer from limited data availability due to the labor-intensive nature of their annotations. Consequently, recent studies have explored knowledge transfer approaches within a multi-task learning framework to address this challenge. Although such methods have achieved acceptable results, such brute-force solutions struggle to effectively transfer event-relational knowledge due to the vast array of inter-event relations (e.g. temporal, causal, conditional) and reasoning formulations (e.g. discriminative, abductive, ending prediction). To enhance knowledge transfer and enable zero-shot generalization among various combinations, in this work we propose a novel unified framework, called UNIEVENT. Inspired by prefix-based multitask learning, our approach organizes event relational reasoning tasks into a coordinate system with multiple axes, representing inter-event relations and reasoning formulations. We then train a unified text-to-text generative model that utilizes coordinate-assigning prefixes for each task. By leveraging our adapted prefixes, our unified model achieves state-of-the-art or competitive performance on both zero-shot and supervised reasoning tasks, as demonstrated in extensive experiments
Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to facilitate multi-modal conversation better. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open domain. To build an engaging dialogue system with this dataset, we propose and normalize two response prediction tasks based on retrieval and generative scenarios. In addition, we build two baselines for the above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset is available in https://github.com/victorsungo/MMDialog.
Modeling multi-party conversations (MPCs) with graph neural networks has been proven effective at capturing complicated and graphical information flows. However, existing methods rely heavily on the necessary addressee labels and can only be applied to an ideal setting where each utterance must be tagged with an “@” or other equivalent addressee label. To study the scarcity of addressee labels which is a common issue in MPCs, we propose MADNet that maximizes addressee deduction expectation in heterogeneous graph neural networks for MPC generation. Given an MPC with a few addressee labels missing, existing methods fail to build a consecutively connected conversation graph, but only a few separate conversation fragments instead. To ensure message passing between these conversation fragments, four additional types of latent edges are designed to complete a fully-connected graph. Besides, to optimize the edge-type-dependent message passing for those utterances without addressee labels, an Expectation-Maximization-based method that iteratively generates silver addressee labels (E step), and optimizes the quality of generated responses (M step), is designed. Experimental results on two Ubuntu IRC channel benchmarks show that MADNet outperforms various baseline models on the task of MPC generation, especially under the more common and challenging setting where part of addressee labels are missing.
Typical generative dialogue models utilize the dialogue history to generate the response. However, since one dialogue utterance can often be appropriately answered by multiple distinct responses, generating a desired response solely based on the historical information is not easy. Intuitively, if the chatbot can foresee in advance what the user would talk about (i.e., the dialogue future) after receiving its response, it could possibly provide a more informative response. Accordingly, we propose a novel dialogue generation framework named ProphetChat that utilizes the simulated dialogue futures in the inference phase to enhance response generation. To enable the chatbot to foresee the dialogue future, we design a beam-search-like roll-out strategy for dialogue future simulation using a typical dialogue generation model and a dialogue selector. With the simulated futures, we then utilize the ensemble of a history-to-response generator and a future-to-response generator to jointly generate a more informative response. Experiments on two popular open-domain dialogue datasets demonstrate that ProphetChat can generate better responses over strong baselines, which validates the advantages of incorporating the simulated dialogue futures.
Transferring the knowledge to a small model through distillation has raised great interest in recent years. Prevailing methods transfer the knowledge derived from mono-granularity language units (e.g., token-level or sample-level), which is not enough to represent the rich semantics of a text and may lose some vital knowledge. Besides, these methods form the knowledge as individual representations or their simple dependencies, neglecting abundant structural relations among intermediate representations. To overcome the problems, we present a novel knowledge distillation framework that gathers intermediate representations from multiple semantic granularities (e.g., tokens, spans and samples) and forms the knowledge as more sophisticated structural relations specified as the pair-wise interactions and the triplet-wise geometric angles based on multi-granularity representations. Moreover, we propose distilling the well-organized multi-granularity structural knowledge to the student hierarchically across layers. Experimental results on GLUE benchmark demonstrate that our method outperforms advanced distillation methods.
Knowledge-grounded conversation (KGC) shows great potential in building an engaging and knowledgeable chatbot, and knowledge selection is a key ingredient in it. However, previous methods for knowledge selection only concentrate on the relevance between knowledge and dialogue context, ignoring the fact that age, hobby, education and life experience of an interlocutor have a major effect on his or her personal preference over external knowledge. Without taking the personalization issue into account, it is difficult for existing dialogue systems to select the proper knowledge and generate persona-consistent responses. In this work, we introduce personal memory into knowledge selection in KGC to address the personalization issue. We propose a variational method to model the underlying relationship between one’s personal memory and his or her selection of knowledge, and devise a learning scheme in which the forward mapping from personal memory to knowledge and its inverse mapping is included in a closed loop so that they could teach each other. Experiment results show that our methods outperform existing KGC methods significantly on both automatic evaluation and human evaluation.
This paper focuses on the Data Augmentation for low-resource Natural Language Understanding (NLU) tasks. We propose Prompt-based Data Augmentation model (PromDA) which only trains small-scale Soft Prompt (i.e., a set of trainable vectors) in the frozen Pre-trained Language Models (PLMs). This avoids human effort in collecting unlabeled in-domain data and maintains the quality of generated synthetic data. In addition, PromDA generates synthetic data via two different views and filters out the low-quality data using NLU models. Experiments on four benchmarks show that synthetic data produced by PromDA successfully boost up the performance of NLU models which consistently outperform several competitive baseline models, including a state-of-the-art semi-supervised model using unlabeled in-domain data. The synthetic data from PromDA are also complementary with unlabeled in-domain data. The NLU models can be further improved when they are combined for training.
Recently, various response generation models for two-party conversations have achieved impressive improvements, but less effort has been paid to multi-party conversations (MPCs) which are more practical and complicated. Compared with a two-party conversation where a dialogue context is a sequence of utterances, building a response generation model for MPCs is more challenging, since there exist complicated context structures and the generated responses heavily rely on both interlocutors (i.e., speaker and addressee) and history utterances. To address these challenges, we present HeterMPC, a heterogeneous graph-based neural network for response generation in MPCs which models the semantics of utterances and interlocutors simultaneously with two types of nodes in a graph. Besides, we also design six types of meta relations with node-edge-type-dependent parameters to characterize the heterogeneous interactions within the graph. Through multi-hop updating, HeterMPC can adequately utilize the structural knowledge of conversations for response generation. Experimental results on the Ubuntu Internet Relay Chat (IRC) channel benchmark show that HeterMPC outperforms various baseline models for response generation in MPCs.
Generating natural and informative texts has been a long-standing problem in NLP. Much effort has been dedicated into incorporating pre-trained language models (PLMs) with various open-world knowledge, such as knowledge graphs or wiki pages. However, their ability to access and manipulate the task-specific knowledge is still limited on downstream tasks, as this type of knowledge is usually not well covered in PLMs and is hard to acquire. To address the problem, we propose augmenting TExt Generation via Task-specific and Open-world Knowledge (TegTok) in a unified framework. Our model selects knowledge entries from two types of knowledge sources through dense retrieval and then injects them into the input encoding and output decoding stages respectively on the basis of PLMs. With the help of these two types of knowledge, our model can learn what and how to generate. Experiments on two text generation tasks of dialogue generation and question generation, and on two datasets show that our method achieves better performance than various baseline models.
We study video-grounded dialogue generation, where a response is generated based on the dialogue context and the associated video. The primary challenges of this task lie in (1) the difficulty of integrating video data into pre-trained language models (PLMs) which presents obstacles to exploiting the power of large-scale pre-training; and (2) the necessity of taking into account the complementarity of various modalities throughout the reasoning process. Although having made remarkable progress in video-grounded dialogue generation, existing methods still fall short when it comes to integrating with PLMs in a way that allows information from different modalities to complement each other. To alleviate these issues, we first propose extracting pertinent information from videos and turning it into reasoning paths that are acceptable to PLMs. Additionally, we propose a multi-agent reinforcement learning method to collaboratively perform reasoning on different modalities (i.e., video and dialogue context). Empirical experiment results on two public datasets indicate that the proposed model can significantly outperform state-of-the-art models by large margins on both automatic and human evaluations.
Building retrieval-based dialogue models that can predict appropriate responses based on the understanding of multi-turn context messages is a challenging problem. Early models usually concatenate all utterances or independently encode each dialogue turn, which may lead to an inadequate understanding of dialogue status. Although a few researchers have noticed the importance of context modeling in multi-turn response prediction, there is no systematic comparison to analyze how to model context effectively and no framework to unify those methods. In this paper, instead of configuring new architectures, we investigate how to improve existing models with a better context modeling method. Specifically, we heuristically summarize three categories of turn-aware context modeling strategies which model the context messages from the perspective of sequential relationship, local relationship, and query-aware manner respectively. A Turn-Aware Context Modeling (TACM) layer is explored to flexibly adapt and unify these context modeling strategies to several advanced response selection models. Evaluation results on three public data sets indicate that employing each individual context modeling strategy or multiple strategies can consistently improve the performance of existing models.
Grounding dialogue generation by extra knowledge has shown great potentials towards building a system capable of replying with knowledgeable and engaging responses. Existing studies focus on how to synthesize a response with proper knowledge, yet neglect that the same knowledge could be expressed differently by speakers even under the same context. In this work, we mainly consider two aspects of knowledge expression, namely the structure of the response and style of the content in each part. We therefore introduce two sequential latent variables to represent the structure and the content style respectively. We propose a segmentation-based generation model and optimize the model by a variational approach to discover the underlying pattern of knowledge expression in a response. Evaluation results on two benchmarks indicate that our model can learn the structure style defined by a few examples and generate responses in desired content style.
Knowledge-grounded dialogue (KGC) shows excellent potential to deliver an engaging and informative response. However, existing approaches emphasize selecting one golden knowledge given a particular dialogue context, overlooking the one-to-many phenomenon in dialogue. As a result, existing paradigm limits the diversity of knowledge selection and generation. To this end, we establish a multi-reference KGC dataset and propose a series of metrics to systematically assess the one-to-many efficacy of existing KGC models. Furthermore, to extend the hypothesis space of knowledge selection to enhance the mapping relationship between multiple knowledge and multiple responses, we devise a span-based variational model and optimize the model in a wake-sleep style with an ameliorated evidence lower bound objective to learn the one-to-many generalization. Both automatic and human evaluations demonstrate the efficacy of our approach.
Knowledge distillation has been proven effective when customizing small language models for specific tasks. Here, a corpus as ‘textbook’ plays an indispensable role, only through which the teacher can teach the student. Prevailing methods adopt a two-stage distillation paradigm: general distillation first with task-agnostic general corpus and task-specific distillation next with augmented task-specific corpus. We argue that such a paradigm may not be optimal. In general distillation, it’s extravagant to let the diverse but desultory general knowledge overwhelms the limited model capacity of the student. While in task-specific distillation, the task corpus is usually limited and narrow, preventing the student from learning enough knowledge. To mitigate the issues in the two gapped corpora, we present a better textbook for the student to learn: contextualized corpus that contextualizes task corpus with large-scale general corpus through relevance-based text retrieval. Experimental results on GLUE benchmark demonstrate that contextualized corpus is the better textbook compared with jointly using general corpus and augmented task-specific corpus. Surprisingly, it enables task-specific distillation from scratch without general distillation while maintaining comparable performance, making it more flexible to customize the student model with desired model size under various computation constraints.
Learning sentence embeddings in an unsupervised manner is fundamental in natural language processing. Recent common practice is to couple pre-trained language models with unsupervised contrastive learning, whose success relies on augmenting a sentence with a semantically-close positive instance to construct contrastive pairs. Nonetheless, existing approaches usually depend on a mono-augmenting strategy, which causes learning shortcuts towards the augmenting biases and thus corrupts the quality of sentence embeddings. A straightforward solution is resorting to more diverse positives from a multi-augmenting strategy, while an open question remains about how to unsupervisedly learn from the diverse positives but with uneven augmenting qualities in the text field. As one answer, we propose a novel Peer-Contrastive Learning (PCL) with diverse augmentations. PCL constructs diverse contrastive positives and negatives at the group level for unsupervised sentence embeddings. PCL performs peer-positive contrast as well as peer-network cooperation, which offers an inherent anti-bias ability and an effective way to learn from diverse augmentations. Experiments on STS benchmarks verify the effectiveness of PCL against its competitors in unsupervised sentence embeddings.
Grounding dialogue agents with knowledge documents has sparked increased attention in both academia and industry. Recently, a growing body of work is trying to build retrieval-based knowledge-grounded dialogue systems. While promising, these approaches require collecting pairs of dialogue context and the corresponding ground-truth knowledge sentences that contain the information regarding the dialogue context. Unfortunately, hand-labeling data to that end is time-consuming, and many datasets and applications lack such knowledge annotations. In this paper, we propose a reciprocal learning approach to jointly optimize a knowledge retriever and a response ranker for knowledge-grounded response retrieval without ground-truth knowledge labels. Specifically, the knowledge retriever uses the feedback from the response ranker as pseudo supervised signals of knowledge retrieval for updating its parameters, while the response ranker also receives the top-ranked knowledge sentences from knowledge retriever for optimization. Evaluation results on two public benchmarks show that our model can significantly outperform previous state-of-the-art methods.
Sequential information, a.k.a., orders, is assumed to be essential for processing a sequence with recurrent neural network or convolutional neural network based encoders. However, is it possible to encode natural languages without orders? Given a bag of words from a disordered sentence, humans may still be able to understand what those words mean by reordering or reconstructing them. Inspired by such an intuition, in this paper, we perform a study to investigate how “order” information takes effects in natural language learning. By running comprehensive comparisons, we quantitatively compare the ability of several representative neural models to organize sentences from a bag of words under three typical scenarios, and summarize some empirical findings and challenges, which can shed light on future research on this line of work.
Recently, various neural models for multi-party conversation (MPC) have achieved impressive improvements on a variety of tasks such as addressee recognition, speaker identification and response prediction. However, these existing methods on MPC usually represent interlocutors and utterances individually and ignore the inherent complicated structure in MPC which may provide crucial interlocutor and utterance semantics and would enhance the conversation understanding process. To this end, we present MPC-BERT, a pre-trained model for MPC understanding that considers learning who says what to whom in a unified model with several elaborated self-supervised tasks. Particularly, these tasks can be generally categorized into (1) interlocutor structure modeling including reply-to utterance recognition, identical speaker searching and pointer consistency distinction, and (2) utterance semantics modeling including masked shared utterance restoration and shared node detection. We evaluate MPC-BERT on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that MPC-BERT outperforms previous methods by large margins and achieves new state-of-the-art performance on all three downstream tasks at two benchmarks.
Recently, many studies are emerging towards building a retrieval-based dialogue system that is able to effectively leverage background knowledge (e.g., documents) when conversing with humans. However, it is non-trivial to collect large-scale dialogues that are naturally grounded on the background documents, which hinders the effective and adequate training of knowledge selection and response matching. To overcome the challenge, we consider decomposing the training of the knowledge-grounded response selection into three tasks including: 1) query-passage matching task; 2) query-dialogue history matching task; 3) multi-turn response matching task, and joint learning all these tasks in a unified pre-trained language model. The former two tasks could help the model in knowledge selection and comprehension, while the last task is designed for matching the proper response with the given query and background knowledge (dialogue history). By this means, the model can be learned to select relevant knowledge and distinguish proper response, with the help of ad-hoc retrieval corpora and a large number of ungrounded multi-turn dialogues. Experimental results on two benchmarks of knowledge-grounded response selection indicate that our model can achieve comparable performance with several existing methods that rely on crowd-sourced data for training.
Arguably, the visual perception of conversational agents to the physical world is a key way for them to exhibit the human-like intelligence. Image-grounded conversation is thus proposed to address this challenge. Existing works focus on exploring the multimodal dialog models that ground the conversation on a given image. In this paper, we take a step further to study image-grounded conversation under a fully open-ended setting where no paired dialog and image are assumed available. Specifically, we present Maria, a neural conversation agent powered by the visual world experiences which are retrieved from a large-scale image index. Maria consists of three flexible components, i.e., text-to-image retriever, visual concept detector and visual-knowledge-grounded response generator. The retriever aims to retrieve a correlated image to the dialog from an image index, while the visual concept detector extracts rich visual knowledge from the image. Then, the response generator is grounded on the extracted visual knowledge and dialog context to generate the target response. Extensive experiments demonstrate Maria outperforms previous state-of-the-art methods on automatic metrics and human evaluation, and can generate informative responses that have some visual commonsense of the physical world.
We study knowledge-grounded dialogue generation with pre-trained language models. To leverage the redundant external knowledge under capacity constraint, we propose equipping response generation defined by a pre-trained language model with a knowledge selection module, and an unsupervised approach to jointly optimizing knowledge selection and response generation with unlabeled dialogues. Empirical results on two benchmarks indicate that our model can significantly outperform state-of-the-art methods in both automatic evaluation and human judgment.
We study how to sample negative examples to automatically construct a training set for effective model learning in retrieval-based dialogue systems. Following an idea of dynamically adapting negative examples to matching models in learning, we consider four strategies including minimum sampling, maximum sampling, semi-hard sampling, and decay-hard sampling. Empirical studies on two benchmarks with three matching models indicate that compared with the widely used random sampling strategy, although the first two strategies lead to performance drop, the latter two ones can bring consistent improvement to the performance of all the models on both benchmarks.
Currently, researchers have paid great attention to retrieval-based dialogues in open-domain. In particular, people study the problem by investigating context-response matching for multi-turn response selection based on publicly recognized benchmark data sets. State-of-the-art methods require a response to interact with each utterance in a context from the beginning, but the interaction is performed in a shallow way. In this work, we let utterance-response interaction go deep by proposing an interaction-over-interaction network (IoI). The model performs matching by stacking multiple interaction blocks in which residual information from one time of interaction initiates the interaction process again. Thus, matching information within an utterance-response pair is extracted from the interaction of the pair in an iterative fashion, and the information flows along the chain of the blocks via representations. Evaluation results on three benchmark data sets indicate that IoI can significantly outperform state-of-the-art methods in terms of various matching metrics. Through further analysis, we also unveil how the depth of interaction affects the performance of IoI.
We study learning of a matching model for response selection in retrieval-based dialogue systems. The problem is equally important with designing the architecture of a model, but is less explored in existing literature. To learn a robust matching model from noisy training data, we propose a general co-teaching framework with three specific teaching strategies that cover both teaching with loss functions and teaching with data curriculum. Under the framework, we simultaneously learn two matching models with independent training sets. In each iteration, one model transfers the knowledge learned from its training set to the other model, and at the same time receives the guide from the other model on how to overcome noise in training. Through being both a teacher and a student, the two models learn from each other and get improved together. Evaluation results on two public data sets indicate that the proposed learning approach can generally and significantly improve the performance of existing matching models.
We present open domain dialogue generation with meta-words. A meta-word is a structured record that describes attributes of a response, and thus allows us to explicitly model the one-to-many relationship within open domain dialogues and perform response generation in an explainable and controllable manner. To incorporate meta-words into generation, we propose a novel goal-tracking memory network that formalizes meta-word expression as a goal in response generation and manages the generation process to achieve the goal with a state memory panel and a state controller. Experimental results from both automatic evaluation and human judgment on two large-scale data sets indicate that our model can significantly outperform state-of-the-art generation models in terms of response relevance, response diversity, and accuracy of meta-word expression.
The 20 Questions (Q20) game is a well known game which encourages deductive reasoning and creativity. In the game, the answerer first thinks of an object such as a famous person or a kind of animal. Then the questioner tries to guess the object by asking 20 questions. In a Q20 game system, the user is considered as the answerer while the system itself acts as the questioner which requires a good strategy of question selection to figure out the correct object and win the game. However, the optimal policy of question selection is hard to be derived due to the complexity and volatility of the game environment. In this paper, we propose a novel policy-based Reinforcement Learning (RL) method, which enables the questioner agent to learn the optimal policy of question selection through continuous interactions with users. To facilitate training, we also propose to use a reward network to estimate the more informative reward. Compared to previous methods, our RL method is robust to noisy answers and does not rely on the Knowledge Base of objects. Experimental results show that our RL method clearly outperforms an entropy-based engineering system and has competitive performance in a noisy-free simulation environment.
In this paper, we introduce Iterative Text Summarization (ITS), an iteration-based model for supervised extractive text summarization, inspired by the observation that it is often necessary for a human to read an article multiple times in order to fully understand and summarize its contents. Current summarization approaches read through a document only once to generate a document representation, resulting in a sub-optimal representation. To address this issue we introduce a model which iteratively polishes the document representation on many passes through the document. As part of our model, we also introduce a selective reading mechanism that decides more accurately the extent to which each sentence in the model should be updated. Experimental results on the CNN/DailyMail and DUC2002 datasets demonstrate that our model significantly outperforms state-of-the-art extractive systems when evaluated by machines and by humans.