This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Existing studies addressing gender bias of pre-trained language models, usually build a small gender-neutral data set and conduct a second phase pre-training on the model with such data. However, given the limited size and concentrated focus of the gender-neutral data, catastrophic forgetting would occur during second-phase pre-training. Forgetting information in the original training data may damage the model’s downstream performance by a large margin. In this work, we empirically show that catastrophic forgetting occurs in such methods by evaluating them with general NLP tasks in GLUE. Then, we propose a new method, GEnder Equality Prompt (GEEP), to improve gender fairness of pre-trained models with less forgetting. GEEP freezes the pre-trained model and learns gender-related prompts with gender-neutral data. Empirical results show that GEEP not only achieves SOTA performances on gender fairness tasks, but also forgets less and performs better on GLUE by a large margin.
We propose, DocQueryNet, a value retrieval method with arbitrary queries for form-like documents to reduce human effort of processing forms. Unlike previous methods that only address a fixed set of field items, our method predicts target value for an arbitrary query based on the understanding of the layout and semantics of a form. To further boost model performance, we propose a simple document language modeling (SimpleDLM) strategy to improve document understanding on large-scale model pre-training. Experimental results show that DocQueryNet outperforms previous designs significantly and the SimpleDLM further improves our performance on value retrieval by around 17% F1 score compared with the state-of-the-art pre-training method. Code is available here, https://github.com/salesforce/QVR-SimpleDLM.
We study the problem of response selection for multi-turn conversation in retrieval-based chatbots. The task involves matching a response candidate with a conversation context, the challenges for which include how to recognize important parts of the context, and how to model the relationships among utterances in the context. Existing matching methods may lose important information in contexts as we can interpret them with a unified framework in which contexts are transformed to fixed-length vectors without any interaction with responses before matching. This motivates us to propose a new matching framework that can sufficiently carry important information in contexts to matching and model relationships among utterances at the same time. The new framework, which we call a sequential matching framework (SMF), lets each utterance in a context interact with a response candidate at the first step and transforms the pair to a matching vector. The matching vectors are then accumulated following the order of the utterances in the context with a recurrent neural network (RNN) that models relationships among utterances. Context-response matching is then calculated with the hidden states of the RNN. Under SMF, we propose a sequential convolutional network and sequential attention network and conduct experiments on two public data sets to test their performance. Experiment results show that both models can significantly outperform state-of-the-art matching methods. We also show that the models are interpretable with visualizations that provide us insights on how they capture and leverage important information in contexts for matching.
We study response selection for multi-turn conversation in retrieval based chatbots. Existing work either concatenates utterances in context or matches a response with a highly abstract context vector finally, which may lose relationships among the utterances or important information in the context. We propose a sequential matching network (SMN) to address both problems. SMN first matches a response with each utterance in the context on multiple levels of granularity, and distills important matching information from each pair as a vector with convolution and pooling operations. The vectors are then accumulated in a chronological order through a recurrent neural network (RNN) which models relationships among the utterances. The final matching score is calculated with the hidden states of the RNN. Empirical study on two public data sets shows that SMN can significantly outperform state-of-the-art methods for response selection in multi-turn conversation.
While automatic response generation for building chatbot systems has drawn a lot of attention recently, there is limited understanding on when we need to consider the linguistic context of an input text in the generation process. The task is challenging, as messages in a conversational environment are short and informal, and evidence that can indicate a message is context dependent is scarce. After a study of social conversation data crawled from the web, we observed that some characteristics estimated from the responses of messages are discriminative for identifying context dependent messages. With the characteristics as weak supervision, we propose using a Long Short Term Memory (LSTM) network to learn a classifier. Our method carries out text representation and classifier learning in a unified framework. Experimental results show that the proposed method can significantly outperform baseline methods on accuracy of classification.