This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Empathetic response generation endeavors to empower dialogue systems to perceive speakers’ emotions and generate empathetic responses accordingly. Psychological research demonstrates that emotion, as an essential factor in empathy, encompasses trait emotions, which are static and context-independent, and state emotions, which are dynamic and context-dependent. However, previous studies treat them in isolation, leading to insufficient emotional perception of the context, and subsequently, less effective empathetic expression. To address this problem, we propose Combining Trait and State emotions for Empathetic Response Model (CTSM). Specifically, to sufficiently perceive emotions in dialogue, we first construct and encode trait and state emotion embeddings, and then we further enhance emotional perception capability through an emotion guidance module that guides emotion representation. In addition, we propose a cross-contrastive learning decoder to enhance the model’s empathetic expression capability by aligning trait and state emotions between generated responses and contexts. Both automatic and manual evaluation results demonstrate that CTSM outperforms state-of-the-art baselines and can generate more empathetic responses. Our code is available at https://github.com/wangyufeng-empty/CTSM
Textual backdoor attacks pose significant security threats. Current detection approaches, typically relying on intermediate feature representation or reconstructing potential triggers, are task-specific and less effective beyond sentence classification, struggling with tasks like question answering and named entity recognition. We introduce TABDet (Task-Agnostic Backdoor Detector), a pioneering task-agnostic method for backdoor detection. TABDet leverages final layer logits combined with an efficient pooling technique, enabling unified logit representation across three prominent NLP tasks. TABDet can jointly learn from diverse task-specific models, demonstrating superior detection efficacy over traditional task-specific methods.
Efforts have been made to apply topic seed words to improve the topic interpretability of topic models. However, due to the semantic diversity of natural language, supervisions from seed words could be ambiguous, making it hard to be incorporated into the current neural topic models. In this paper, we propose SeededNTM, a neural topic model enhanced with supervisions from seed words on both word and document levels. We introduce a context-dependency assumption to alleviate the ambiguities with context document information, and an auto-adaptation mechanism to automatically balance between multi-level information. Moreover, an intra-sample consistency regularizer is proposed to deal with noisy supervisions via encouraging perturbation and semantic consistency. Extensive experiments on multiple datasets show that SeededNTM can derive semantically meaningful topics and outperforms the state-of-the-art seeded topic models in terms of topic quality and classification accuracy.
Recent studies have revealed that Backdoor Attacks can threaten the safety of natural language processing (NLP) models. Investigating the strategies of backdoor attacks will help to understand the model’s vulnerability. Most existing textual backdoor attacks focus on generating stealthy triggers or modifying model weights. In this paper, we directly target the interior structure of neural networks and the backdoor mechanism. We propose a novel Trojan Attention Loss (TAL), which enhances the Trojan behavior by directly manipulating the attention patterns. Our loss can be applied to different attacking methods to boost their attack efficacy in terms of attack successful rates and poisoning rates. It applies to not only traditional dirty-label attacks, but also the more challenging clean-label attacks. We validate our method on different backbone models (BERT, RoBERTa, and DistilBERT) and various tasks (Sentiment Analysis, Toxic Detection, and Topic Classification).
Trojan attacks raise serious security concerns. In this paper, we investigate the underlying mechanism of Trojaned BERT models. We observe the attention focus drifting behavior of Trojaned models, i.e., when encountering an poisoned input, the trigger token hijacks the attention focus regardless of the context. We provide a thorough qualitative and quantitative analysis of this phenomenon, revealing insights into the Trojan mechanism. Based on the observation, we propose an attention-based Trojan detector to distinguish Trojaned models from clean ones. To the best of our knowledge, we are the first to analyze the Trojan mechanism and develop a Trojan detector based on the transformer’s attention.