This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Logical reasoning has been an ongoing pursuit in the field of AI. Despite significant advancements made by large language models (LLMs), they still struggle with complex logical reasoning problems. To enhance reasoning performance, one promising direction is scalable oversight, which requires LLMs to identify their own errors and then improve by themselves. Various self-verification methods have been proposed in pursuit of this goal. Nevertheless, whether existing models understand their own errors well is still under investigation. In this paper, we take a closer look at the self-verification abilities of LLMs in the context of logical reasoning, focusing on their ability to identify logical fallacies accurately. We introduce a dataset, FALLACIES, containing 232 types of reasoning fallacies categorized in a hierarchical taxonomy. By conducting exhaustive experiments on FALLACIES, we obtain comprehensive and detailed analyses of a series of models on their verification abilities. Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods. Drawing from these observations, we offer suggestions for future research and practical applications of self-verification methods.
Although large language models demonstrate remarkable question-answering performances, revealing the intermediate reasoning steps that the models faithfully follow remains challenging. In this paper, we propose FAME (FAithful question answering with MontE-carlo planning) to answer questions based on faithful reasoning steps. The reasoning steps are organized as a structured entailment tree, which shows how premises are used to produce intermediate conclusions that can prove the correctness of the answer. We formulate the task as a discrete decision-making problem and solve it through the interaction of a reasoning environment and a controller. The environment is modular and contains several basic task-oriented modules, while the controller proposes actions to assemble the modules. Since the search space could be large, we introduce a Monte-Carlo planning algorithm to do a look-ahead search and select actions that will eventually lead to high-quality steps. FAME achieves advanced performance on the standard benchmark. It can produce valid and faithful reasoning steps compared with large language models with a much smaller model size.
Knowing the reasoning chains from knowledge to the predicted answers can help construct an explainable question answering (QA) system. Advances on QA explanation propose to explain the answers with entailment trees composed of multiple entailment steps. While current work proposes to generate entailment trees with end-to-end generative models, the steps in the generated trees are not constrained and could be unreliable. In this paper, we propose METGEN, a Module-based Entailment Tree GENeration framework that has multiple modules and a reasoning controller. Given a question and several supporting knowledge, METGEN can iteratively generate the entailment tree by conducting single-step entailment with separate modules and selecting the reasoning flow with the controller. As each module is guided to perform a specific type of entailment reasoning, the steps generated by METGEN are more reliable and valid. Experiment results on the standard benchmark show that METGEN can outperform previous state-of-the-art models with only 9% of the parameters.
In this paper, we propose a comprehensive benchmark to investigate models’ logical reasoning capabilities in complex real-life scenarios. Current explanation datasets often employ synthetic data with simple reasoning structures. Therefore, it cannot express more complex reasoning processes, such as the rebuttal to a reasoning step and the degree of certainty of the evidence. To this end, we propose a comprehensive logical reasoning explanation form. Based on the multi-hop chain of reasoning, the explanation form includes three main components: (1) The condition of rebuttal that the reasoning node can be challenged; (2) Logical formulae that uncover the internal texture of reasoning nodes; (3) Reasoning strength indicated by degrees of certainty. The fine-grained structure conforms to the real logical reasoning scenario, better fitting the human cognitive process but, simultaneously, is more challenging for the current models. We evaluate the current best models’ performance on this new explanation form. The experimental results show that generating reasoning graphs remains a challenging task for current models, even with the help of giant pre-trained language models.
Resolving pronouns to their referents has long been studied as a fundamental natural language understanding problem. Previous works on pronoun coreference resolution (PCR) mostly focus on resolving pronouns to mentions in text while ignoring the exophoric scenario. Exophoric pronouns are common in daily communications, where speakers may directly use pronouns to refer to some objects present in the environment without introducing the objects first. Although such objects are not mentioned in the dialogue text, they can often be disambiguated by the general topics of the dialogue. Motivated by this, we propose to jointly leverage the local context and global topics of dialogues to solve the out-of-text PCR problem. Extensive experiments demonstrate the effectiveness of adding topic regularization for resolving exophoric pronouns.
Grounding a pronoun to a visual object it refers to requires complex reasoning from various information sources, especially in conversational scenarios. For example, when people in a conversation talk about something all speakers can see, they often directly use pronouns (e.g., it) to refer to it without previous introduction. This fact brings a huge challenge for modern natural language understanding systems, particularly conventional context-based pronoun coreference models. To tackle this challenge, in this paper, we formally define the task of visual-aware pronoun coreference resolution (PCR) and introduce VisPro, a large-scale dialogue PCR dataset, to investigate whether and how the visual information can help resolve pronouns in dialogues. We then propose a novel visual-aware PCR model, VisCoref, for this task and conduct comprehensive experiments and case studies on our dataset. Results demonstrate the importance of the visual information in this PCR case and show the effectiveness of the proposed model.