This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Dehumanisation involves the perception and/or treatment of a social group’s members as less than human. This phenomenon is rarely addressed with computational linguistic techniques. We adapt a recently proposed approach for English, making it easier to transfer to other languages and to evaluate, introducing a new sentiment resource, the use of zero-shot cross-lingual valence and arousal detection, and a new method for statistical significance testing. We then apply it to study attitudes to migration expressed in Slovene newspapers, to examine changes in the Slovene discourse on migration between the 2015-16 migration crisis following the war in Syria and the 2022-23 period following the war in Ukraine. We find that while this discourse became more negative and more intense over time, it is less dehumanising when specifically addressing Ukrainian migrants compared to others.
In this paper, we detail the methodology of team whatdoyoumeme for the SemEval 2024 Task on Multilingual Persuasion Detection in Memes. We integrate hierarchical label information to refine detection capabilities, and employ a cross-lingual approach, utilizing translation to adapt the model to Macedonian, Arabic, and Bulgarian. Our methodology encompasses both the analysis of meme content and extending labels to include hierarchical structure. The effectiveness of the approach is demonstrated through improved model performance in multilingual contexts, highlighting the utility of translation-based methods and hierarchy-aware learning, over traditional baselines.
An important and resource-intensive task in journalism is retrieving relevant foreign news and its adaptation for local readers. Given the vast amount of foreign articles published and the limited number of journalists available to evaluate their interestingness, this task can be particularly challenging, especially when dealing with smaller languages and countries. In this work, we propose a novel method for large-scale retrieval of potentially translation-worthy articles based on an auto-encoder neural network trained on a limited corpus of relevant foreign news. We hypothesize that the representations of interesting news can be reconstructed very well by an auto-encoder, while irrelevant news would have less adequate reconstructions since they are not used for training the network. Specifically, we focus on extracting articles from the Latvian media for Estonian news media houses. It is worth noting that the available corpora for this task are particularly limited, which adds an extra layer of difficulty to our approach. To evaluate the proposed method, we rely on manual evaluation by an Estonian journalist at Ekspress Meedia and automatic evaluation on a gold standard test set.
This paper analyzes a Named Entity Recognition task for South-Slavic languages using the pre-trained multilingual neural network models. We investigate whether the performance of the models for a target language can be improved by using data from closely related languages. We have shown that the model performance is not influenced substantially when trained with other than a target language. While for Slovene, the monolingual setting generally performs better, for Croatian and Serbian the results are slightly better in selected cross-lingual settings, but the improvements are not large. The most significant performance improvement is shown for the Serbian language, which has the smallest corpora. Therefore, fine-tuning with other closely related languages may benefit only the “low resource” languages.
Keyword extraction is the task of retrieving words that are essential to the content of a given document. Researchers proposed various approaches to tackle this problem. At the top-most level, approaches are divided into ones that require training - supervised and ones that do not - unsupervised. In this study, we are interested in settings, where for a language under investigation, no training data is available. More specifically, we explore whether pretrained multilingual language models can be employed for zero-shot cross-lingual keyword extraction on low-resource languages with limited or no available labeled training data and whether they outperform state-of-the-art unsupervised keyword extractors. The comparison is conducted on six news article datasets covering two high-resource languages, English and Russian, and four low-resource languages, Croatian, Estonian, Latvian, and Slovenian. We find that the pretrained models fine-tuned on a multilingual corpus covering languages that do not appear in the test set (i.e. in a zero-shot setting), consistently outscore unsupervised models in all six languages.
In this paper, we present the participation of the EMBEDDIA team in the SemEval-2022 Task 8 (Multilingual News Article Similarity). We cover several techniques and propose different methods for finding the multilingual news article similarity by exploring the dataset in its entirety. We take advantage of the textual content of the articles, the provided metadata (e.g., titles, keywords, topics), the translated articles, the images (those that were available), and knowledge graph-based representations for entities and relations present in the articles. We, then, compute the semantic similarity between the different features and predict through regression the similarity scores. Our findings show that, while our proposed methods obtained promising results, exploiting the semantic textual similarity with sentence representations is unbeatable. Finally, in the official SemEval-2022 Task 8, we ranked fifth in the overall team ranking cross-lingual results, and second in the English-only results.
Crosslingual terminology alignment task has many practical applications. In this work, we propose an aligning method for the shared task of the 15th Workshop on Building and Using Comparable Corpora. Our method combines several different approaches into one cohesive machine learning model, based on SVM. From shared-task specific and external sources, we crafted four types of features: cognate-based, dictionary-based, embedding-based, and combined features, which combine aspects of the other three types. We added a post-processing re-scoring method, which reducess the effect of hubness, where some terms are nearest neighbours of many other terms. We achieved the average precision score of 0.833 on the English-French training set of the shared task.
There is a global trend for responsible investing and the need for developing automated methods for analyzing and Environmental, Social and Governance (ESG) related elements in financial texts is raising. In this work we propose a solution to the FinSim4-ESG task, consisting of binary classification of sentences into sustainable or unsustainable. We propose a novel knowledge-based latent heterogeneous representation that is based on knowledge from taxonomies and knowledge graphs and multiple contemporary document representations. We hypothesize that an approach based on a combination of knowledge and document representations can introduce significant improvement over conventional document representation approaches. We consider ensembles on classifier as well on representation level late-fusion and early fusion. The proposed approaches achieve competitive accuracy of 89 and are 5.85 behind the best achieved score.
Depression is a mental illness that negatively affects a person’s well-being and can, if left untreated, lead to serious consequences such as suicide. Therefore, it is important to recognize the signs of depression early. In the last decade, social media has become one of the most common places to express one’s feelings. Hence, there is a possibility of text processing and applying machine learning techniques to detect possible signs of depression. In this paper, we present our approaches to solving the shared task titled Detecting Signs of Depression from Social Media Text. We explore three different approaches to solve the challenge: fine-tuning BERT model, leveraging AutoML for the construction of features and classifier selection and finally, we explore latent spaces derived from the combination of textual and knowledge-based representations. We ranked 9th out of 31 teams in the competition. Our best solution, based on knowledge graph and textual representations, was 4.9% behind the best model in terms of Macro F1, and only 1.9% behind in terms of Recall.
Keyword extraction is the task of identifying words (or multi-word expressions) that best describe a given document and serve in news portals to link articles of similar topics. In this work, we develop and evaluate our methods on four novel data sets covering less-represented, morphologically-rich languages in European news media industry (Croatian, Estonian, Latvian, and Russian). First, we perform evaluation of two supervised neural transformer-based methods, Transformer-based Neural Tagger for Keyword Identification (TNT-KID) and Bidirectional Encoder Representations from Transformers (BERT) with an additional Bidirectional Long Short-Term Memory Conditional Random Fields (BiLSTM CRF) classification head, and compare them to a baseline Term Frequency - Inverse Document Frequency (TF-IDF) based unsupervised approach. Next, we show that by combining the keywords retrieved by both neural transformer-based methods and extending the final set of keywords with an unsupervised TF-IDF based technique, we can drastically improve the recall of the system, making it appropriate for usage as a recommendation system in the media house environment.
This paper presents tools and data sources collected and released by the EMBEDDIA project, supported by the European Union’s Horizon 2020 research and innovation program. The collected resources were offered to participants of a hackathon organized as part of the EACL Hackashop on News Media Content Analysis and Automated Report Generation in February 2021. The hackathon had six participating teams who addressed different challenges, either from the list of proposed challenges or their own news-industry-related tasks. This paper goes beyond the scope of the hackathon, as it brings together in a coherent and compact form most of the resources developed, collected and released by the EMBEDDIA project. Moreover, it constitutes a handy source for news media industry and researchers in the fields of Natural Language Processing and Social Science.
Team Name: team-8 Embeddia Tool: Cross-Lingual Document Retrieval Zosa et al. Dataset: Estonian and Latvian news datasets abstract: Contemporary news media face increasing amounts of available data that can be of use when prioritizing, selecting and discovering new news. In this work we propose a methodology for retrieving interesting articles in a cross-border news discovery setting. More specifically, we explore how a set of seed documents in Estonian can be projected in Latvian document space and serve as a basis for discovery of novel interesting pieces of Latvian news that would interest Estonian readers. The proposed methodology was evaluated by Estonian journalist who confirmed that in the best setting, from top 10 retrieved Latvian documents, half of them represent news that are potentially interesting to be taken by the Estonian media house and presented to Estonian readers.