Antonios Anastasopoulos


2024

pdf
Language and Speech Technology for Central Kurdish Varieties
Sina Ahmadi | Daban Jaff | Md Mahfuz Ibn Alam | Antonios Anastasopoulos
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Kurdish, an Indo-European language spoken by over 30 million speakers, is considered a dialect continuum and known for its diversity in language varieties. Previous studies addressing language and speech technology for Kurdish handle it in a monolithic way as a macro-language, resulting in disparities for dialects and varieties for which there are few resources and tools available. In this paper, we take a step towards developing resources for language and speech technology for varieties of Central Kurdish, creating a corpus by transcribing movies and TV series as an alternative to fieldwork. Additionally, we report the performance of machine translation, automatic speech recognition, and language identification as downstream tasks evaluated on Central Kurdish subdialects. Data and models are publicly available under an open license at https://github.com/sinaahmadi/CORDI.

pdf
CODET: A Benchmark for Contrastive Dialectal Evaluation of Machine Translation
Md Mahfuz Ibn Alam | Sina Ahmadi | Antonios Anastasopoulos
Findings of the Association for Computational Linguistics: EACL 2024

Neural machine translation (NMT) systems exhibit limited robustness in handling source-side linguistic variations. Their performance tends to degrade when faced with even slight deviations in language usage, such as different domains or variations introduced by second-language speakers. It is intuitive to extend this observation to encompass dialectal variations as well, but the work allowing the community to evaluate MT systems on this dimension is limited. To alleviate this issue, we compile and release CODET, a contrastive dialectal benchmark encompassing 891 different variations from twelve different languages. We also quantitatively demonstrate the challenges large MT models face in effectively translating dialectal variants. All the data and code have been released.

pdf
A Study on Scaling Up Multilingual News Framing Analysis
Syeda Sabrina Akter | Antonios Anastasopoulos
Findings of the Association for Computational Linguistics: NAACL 2024

Media framing is the study of strategically selecting and presenting specific aspects of political issues to shape public opinion. Despite its relevance to almost all societies around the world, research has been limited due to the lack of available datasets and other resources. This study explores the possibility of dataset creation through crowdsourcing, utilizing non-expert annotators to develop training corpora. We first extend framing analysis beyond English news to a multilingual context (12 typologically diverse languages) through automatic translation. We also present a novel benchmark in Bengali and Portuguese on the immigration and same-sex marriage domains.Additionally, we show that a system trained on our crowd-sourced dataset, combined with other existing ones, leads to a 5.32 percentage point increase from the baseline, showing that crowdsourcing is a viable option. Last, we study the performance of large language models (LLMs) for this task, finding that task-specific fine-tuning is a better approach than employing bigger non-specialized models.

pdf bib
EmoMix-3L: A Code-Mixed Dataset for Bangla-English-Hindi for Emotion Detection
Nishat Raihan | Dhiman Goswami | Antara Mahmud | Antonios Anastasopoulos | Marcos Zampieri
Proceedings of the 7th Workshop on Indian Language Data: Resources and Evaluation

Code-mixing is a well-studied linguistic phenomenon that occurs when two or more languages are mixed in text or speech. Several studies have been conducted on building datasets and performing downstream NLP tasks on code-mixed data. Although it is not uncommon to observe code-mixing of three or more languages, most available datasets in this domain contain code-mixed data from only two languages. In this paper, we introduce EmoMix-3L, a novel multi-label emotion detection dataset containing code-mixed data from three different languages. We experiment with several models on EmoMix-3L and we report that MuRIL outperforms other models on this dataset.

pdf
Global Gallery: The Fine Art of Painting Culture Portraits through Multilingual Instruction Tuning
Anjishnu Mukherjee | Aylin Caliskan | Ziwei Zhu | Antonios Anastasopoulos
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Exploring the intersection of language and culture in Large Language Models (LLMs), this study critically examines their capability to encapsulate cultural nuances across diverse linguistic landscapes. Central to our investigation are three research questions: the efficacy of language-specific instruction tuning, the impact of pretraining on dominant language data, and the identification of optimal approaches to elicit accurate cultural knowledge from LLMs. Utilizing the GeoMLaMA benchmark for multilingual commonsense knowledge and an adapted CAMeL dataset (English-only) for evaluation of nuanced cultural aspects, our experiments span six different languages and cultural contexts, revealing the extent of LLMs’ cultural awareness. Our findings highlight a nuanced landscape: while language-specific tuning and bilingual pretraining enhance cultural understanding in certain contexts, they also uncover inconsistencies and biases, particularly in non-Western cultures. This work expands our understanding of LLMs’ cultural competence and emphasizes the importance of integrating diverse cultural perspectives in their development, aiming for a more globally representative and equitable approach in language modeling.

pdf
Extracting Lexical Features from Dialects via Interpretable Dialect Classifiers
Roy Xie | Orevaoghene Ahia | Yulia Tsvetkov | Antonios Anastasopoulos
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Identifying linguistic differences between dialects of a language often requires expert knowledge and meticulous human analysis. This is largely due to the complexity and nuance involved in studying various dialects. We present a novel approach to extract distinguishing lexical features of dialects by utilizing interpretable dialect classifiers, even in the absence of human experts. We explore both post-hoc and intrinsic approaches to interpretability, conduct experiments on Mandarin, Italian, and Low Saxon, and experimentally demonstrate that our method successfully identifies key language-specific lexical features that contribute to dialectal variations.

pdf
A Concise Survey of OCR for Low-Resource Languages
Milind Agarwal | Antonios Anastasopoulos
Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP 2024)

Modern natural language processing (NLP) techniques increasingly require substantial amounts of data to train robust algorithms. Building such technologies for low-resource languages requires focusing on data creation efforts and data-efficient algorithms. For a large number of low-resource languages, especially Indigenous languages of the Americas, this data exists in image-based non-machine-readable documents. This includes scanned copies of comprehensive dictionaries, linguistic field notes, children’s stories, and other textual material. To digitize these resources, Optical Character Recognition (OCR) has played a major role but it comes with certain challenges in low-resource settings. In this paper, we share the first survey of OCR techniques specific to low-resource data creation settings and outline several open challenges, with a special focus on Indigenous Languages of the Americas. Based on experiences and results from previous research, we conclude with recommendations on utilizing and improving OCR for the benefit of computational researchers, linguists, and language communities.

pdf
Data-Augmentation-Based Dialectal Adaptation for LLMs
Fahim Faisal | Antonios Anastasopoulos
Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)

This report presents gmnlp’s participation to the Dialect-Copa shared task at VarDial 2024 (Chifu et al., 2024), which focuses on evaluating the commonsense reasoning capabilities of large language models (LLMs) on South Slavic micro-dialects. The task aims to assess how well LLMs can handle non-standard dialectal varieties, as their performance on standard languages is already well-established. We propose an approach that combines the strengths of different types of language models and leverages data augmentation techniques to improve task performance on three South Slavic dialects: Chakavian, Cherkano, and Torlak. We conduct experiments using a language-family-focused encoder-based model (BERTić) and a domain-agnostic multilingual model (AYA-101). Our results demonstrate that the proposed data augmentation techniques lead to substantial performance gains across all three test datasets in the open-source model category. This work highlights the practical utility of data augmentation and the potential of LLMs in handling non-standard dialectal varieties, contributing to the broader goal of advancing natural language understanding in low-resource and dialectal settings.

2023

pdf
Language Generation Models Can Cause Harm: So What Can We Do About It? An Actionable Survey
Sachin Kumar | Vidhisha Balachandran | Lucille Njoo | Antonios Anastasopoulos | Yulia Tsvetkov
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Recent advances in the capacity of large language models to generate human-like text have resulted in their increased adoption in user-facing settings. In parallel, these improvements have prompted a heated discourse around the risks of societal harms they introduce, whether inadvertent or malicious. Several studies have explored these harms and called for their mitigation via development of safer, fairer models. Going beyond enumerating the risks of harms, this work provides a survey of practical methods for addressing potential threats and societal harms from language generation models. We draw on several prior works’ taxonomies of language model risks to present a structured overview of strategies for detecting and ameliorating different kinds of risks/harms of language generators. Bridging diverse strands of research, this survey aims to serve as a practical guide for both LM researchers and practitioners, with explanations of different strategies’ motivations, their limitations, and open problems for future research.

pdf
Noisy Parallel Data Alignment
Ruoyu Xie | Antonios Anastasopoulos
Findings of the Association for Computational Linguistics: EACL 2023

An ongoing challenge in current natural language processing is how its major advancements tend to disproportionately favor resource-rich languages, leaving a significant number of under-resourced languages behind. Due to the lack of resources required to train and evaluate models, most modern language technologies are either nonexistent or unreliable to process endangered, local, and non-standardized languages. Optical character recognition (OCR) is often used to convert endangered language documents into machine-readable data. However, such OCR output is typically noisy, and most word alignment models are not built to work under such noisy conditions. In this work, we study the existing word-level alignment models under noisy settings and aim to make them more robust to noisy data. Our noise simulation and structural biasing method, tested on multiple language pairs, manages to reduce the alignment error rate on a state-of-the-art neural-based alignment model up to 59.6%.

pdf
Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning
Aditi Chaudhary | Arun Sampath | Ashwin Sheshadri | Antonios Anastasopoulos | Graham Neubig
Findings of the Association for Computational Linguistics: EMNLP 2023

One of the challenges in language teaching is how best to organize rules regarding syntax, semantics, or phonology in a meaningful manner. This not only requires content creators to have pedagogical skills, but also have that language’s deep understanding. While comprehensive materials to develop such curricula are available in English and some broadly spoken languages, for many other languages, teachers need to manually create them in response to their students’ needs. This is challenging because i) it requires that such experts be accessible and have the necessary resources, and ii) describing all the intricacies of a language is time-consuming and prone to omission. In this work, we aim to facilitate this process by automatically discovering and visualizing grammar descriptions. We extract descriptions from a natural text corpus that answer questions about morphosyntax (learning of word order, agreement, case marking, or word formation) and semantics (learning of vocabulary). We apply this method for teaching two Indian languages, Kannada and Marathi, which, unlike English, do not have well-developed resources for second language learning. To assess the perceived utility of the extracted material, we enlist the help of language educators from schools in North America to perform a manual evaluation, who find the materials have potential to be used for their lesson preparation and learner evaluation.

pdf
GMNLP at SemEval-2023 Task 12: Sentiment Analysis with Phylogeny-Based Adapters
Md Mahfuz Ibn Alam | Ruoyu Xie | Fahim Faisal | Antonios Anastasopoulos
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This report describes GMU’s sentiment analysis system for the SemEval-2023 shared task AfriSenti-SemEval. We participated in all three sub-tasks: Monolingual, Multilingual, and Zero-Shot. Our approach uses models initialized with AfroXLMR-large, a pre-trained multilingual language model trained on African languages and fine-tuned correspondingly. We also introduce augmented training data along with original training data. Alongside finetuning, we perform phylogeny-based adapter-tuning to create several models and ensemble the best models for the final submission. Our system achieves the best F1-score on track 5: Amharic, with 6.2 points higher F1-score than the second-best performing system on this track. Overall, our system ranks 5th among the 10 systems participating in all 15 tracks.

pdf
BIG-C: a Multimodal Multi-Purpose Dataset for Bemba
Claytone Sikasote | Eunice Mukonde | Md Mahfuz Ibn Alam | Antonios Anastasopoulos
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present BIG-C (Bemba Image Grounded Conversations), a large multimodal dataset for Bemba. While Bemba is the most populous language of Zambia, it exhibits a dearth of resources which render the development of language technologies or language processing research almost impossible. The dataset is comprised of multi-turn dialogues between Bemba speakers based on images, transcribed and translated into English. There are more than 92,000 utterances/sentences, amounting to more than 180 hours of audio data with corresponding transcriptions and English translations. We also provide baselines on speech recognition (ASR), machine translation (MT) and speech translation (ST) tasks, and sketch out other potential future multimodal uses of our dataset. We hope that by making the dataset available to the research community, this work will foster research and encourage collaboration across the language, speech, and vision communities especially for languages outside the “traditionally” used high-resourced ones. All data and code are publicly available: [https://github.com/csikasote/bigc](https://github.com/csikasote/bigc).

pdf
Script Normalization for Unconventional Writing of Under-Resourced Languages in Bilingual Communities
Sina Ahmadi | Antonios Anastasopoulos
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The wide accessibility of social media has provided linguistically under-represented communities with an extraordinary opportunity to create content in their native languages. This, however, comes with certain challenges in script normalization, particularly where the speakers of a language in a bilingual community rely on another script or orthography to write their native language. This paper addresses the problem of script normalization for several such languages that are mainly written in a Perso-Arabic script. Using synthetic data with various levels of noise and a transformer-based model, we demonstrate that the problem can be effectively remediated. We conduct a small-scale evaluation of real data as well. Our experiments indicate that script normalization is also beneficial to improve the performance of downstream tasks such as machine translation and language identification.

pdf
Approaches to Corpus Creation for Low-Resource Language Technology: the Case of Southern Kurdish and Laki
Sina Ahmadi | Zahra Azin | Sara Belelli | Antonios Anastasopoulos
Proceedings of the Second Workshop on NLP Applications to Field Linguistics

One of the major challenges that under-represented and endangered language communities face in language technology is the lack or paucity of language data. This is also the case of the Southern varieties of the Kurdish and Laki languages for which very limited resources are available with insubstantial progress in tools. To tackle this, we provide a few approaches that rely on the content of local news websites, a local radio station that broadcasts content in Southern Kurdish and fieldwork for Laki. In this paper, we describe some of the challenges of such under-represented languages, particularly in writing and standardization, and also, in retrieving sources of data and retro-digitizing handwritten content to create a corpus for Southern Kurdish and Laki. In addition, we study the task of language identification in light of the other variants of Kurdish and Zaza-Gorani languages.

pdf
User-Centric Evaluation of OCR Systems for Kwak’wala
Shruti Rijhwani | Daisy Rosenblum | Michayla King | Antonios Anastasopoulos | Graham Neubig
Proceedings of the Sixth Workshop on the Use of Computational Methods in the Study of Endangered Languages

pdf
SentMix-3L: A Novel Code-Mixed Test Dataset in Bangla-English-Hindi for Sentiment Analysis
Md Nishat Raihan | Dhiman Goswami | Antara Mahmud | Antonios Anastasopoulos | Marcos Zampieri
Proceedings of the First Workshop in South East Asian Language Processing

pdf
GlobalBench: A Benchmark for Global Progress in Natural Language Processing
Yueqi Song | Simran Khanuja | Pengfei Liu | Fahim Faisal | Alissa Ostapenko | Genta Winata | Alham Fikri Aji | Samuel Cahyawijaya | Yulia Tsvetkov | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Despite the major advances in NLP, significant disparities in NLP system performance across languages still exist. Arguably, these are due to uneven resource allocation and sub-optimal incentives to work on less resourced languages. To track and further incentivize the global development of equitable language technology, we introduce GlobalBench. Prior multilingual benchmarks are static and have focused on a limited number of tasks and languages. In contrast, GlobalBench is an ever-expanding collection that aims to dynamically track progress on all NLP datasets in all languages. Rather than solely measuring accuracy, GlobalBench also tracks the estimated per-speaker utility and equity of technology across all languages, providing a multi-faceted view of how language technology is serving people of the world. Furthermore, GlobalBench is designed to identify the most under-served languages, and rewards research efforts directed towards those languages. At present, the most under-served languages are the ones with a relatively high population, but nonetheless overlooked by composite multilingual benchmarks (like Punjabi, Portuguese, and Wu Chinese). Currently, GlobalBench covers 966 datasets in 190 languages, and has 1,128 system submissions spanning 62 languages.

pdf
LIMIT: Language Identification, Misidentification, and Translation using Hierarchical Models in 350+ Languages
Milind Agarwal | Md Mahfuz Ibn Alam | Antonios Anastasopoulos
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Knowing the language of an input text/audio is a necessary first step for using almost every NLP tool such as taggers, parsers, or translation systems. Language identification is a well-studied problem, sometimes even considered solved; in reality, due to lack of data and computational challenges, current systems cannot accurately identify most of the world’s 7000 languages. To tackle this bottleneck, we first compile a corpus, MCS-350, of 50K multilingual and parallel children’s stories in 350+ languages. MCS-350 can serve as a benchmark for language identification of short texts and for 1400+ new translation directions in low-resource Indian and African languages. Second, we propose a novel misprediction-resolution hierarchical model, LIMIT, for language identification that reduces error by 55% (from 0.71 to 0.32) on our compiled children’s stories dataset and by 40% (from 0.23 to 0.14) on the FLORES-200 benchmark. Our method can expand language identification coverage into low-resource languages by relying solely on systemic misprediction patterns, bypassing the need to retrain large models from scratch.

pdf
Global Voices, Local Biases: Socio-Cultural Prejudices across Languages
Anjishnu Mukherjee | Chahat Raj | Ziwei Zhu | Antonios Anastasopoulos
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Human biases are ubiquitous but not uniform: disparities exist across linguistic, cultural, and societal borders. As large amounts of recent literature suggest, language models (LMs) trained on human data can reflect and often amplify the effects of these social biases. However, the vast majority of existing studies on bias are heavily skewed towards Western and European languages. In this work, we scale the Word Embedding Association Test (WEAT) to 24 languages, enabling broader studies and yielding interesting findings about LM bias. We additionally enhance this data with culturally relevant information for each language, capturing local contexts on a global scale. Further, to encompass more widely prevalent societal biases, we examine new bias dimensions across toxicity, ableism, and more. Moreover, we delve deeper into the Indian linguistic landscape, conducting a comprehensive regional bias analysis across six prevalent Indian languages. Finally, we highlight the significance of these social biases and the new dimensions through an extensive comparison of embedding methods, reinforcing the need to address them in pursuit of more equitable language models.

pdf
Mitigating Societal Harms in Large Language Models
Sachin Kumar | Vidhisha Balachandran | Lucille Njoo | Antonios Anastasopoulos | Yulia Tsvetkov
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Numerous recent studies have highlighted societal harms that can be caused by language technologies deployed in the wild. While several surveys, tutorials, and workshops have discussed the risks of harms in specific contexts – e.g., detecting and mitigating gender bias in NLP models – no prior work has developed a unified typology of technical approaches for mitigating harms of language generation models. Our tutorial is based on a survey we recently wrote that proposes such a typology. We will provide an overview of potential social issues in language generation, including toxicity, social biases, misinformation, factual inconsistency, and privacy violations. Our primary focus will be on how to systematically identify risks, and how eliminate them at various stages of model development, from data collection, to model development, to inference/language generation. Through this tutorial, we aim to equip NLP researchers and engineers with a suite of practical tools for mitigating safety risks from pretrained language generation models.

pdf
OffMix-3L: A Novel Code-Mixed Test Dataset in Bangla-English-Hindi for Offensive Language Identification
Dhiman Goswami | Md Nishat Raihan | Antara Mahmud | Antonios Anastasopoulos | Marcos Zampieri
Proceedings of the 11th International Workshop on Natural Language Processing for Social Media

pdf bib
FINDINGS OF THE IWSLT 2023 EVALUATION CAMPAIGN
Milind Agarwal | Sweta Agrawal | Antonios Anastasopoulos | Luisa Bentivogli | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | Mingda Chen | William Chen | Khalid Choukri | Alexandra Chronopoulou | Anna Currey | Thierry Declerck | Qianqian Dong | Kevin Duh | Yannick Estève | Marcello Federico | Souhir Gahbiche | Barry Haddow | Benjamin Hsu | Phu Mon Htut | Hirofumi Inaguma | Dávid Javorský | John Judge | Yasumasa Kano | Tom Ko | Rishu Kumar | Pengwei Li | Xutai Ma | Prashant Mathur | Evgeny Matusov | Paul McNamee | John P. McCrae | Kenton Murray | Maria Nadejde | Satoshi Nakamura | Matteo Negri | Ha Nguyen | Jan Niehues | Xing Niu | Atul Kr. Ojha | John E. Ortega | Proyag Pal | Juan Pino | Lonneke van der Plas | Peter Polák | Elijah Rippeth | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Yun Tang | Brian Thompson | Kevin Tran | Marco Turchi | Alex Waibel | Mingxuan Wang | Shinji Watanabe | Rodolfo Zevallos
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

pdf
GMU Systems for the IWSLT 2023 Dialect and Low-resource Speech Translation Tasks
Jonathan Mbuya | Antonios Anastasopoulos
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper describes the GMU Systems for the IWSLT 2023 Dialect and Low-resource Speech Translation Tasks. We submitted systems for five low-resource tasks and the dialectal task. In this work, we explored self-supervised pre-trained speech models and finetuned them on speech translation downstream tasks. We use the Wav2vec 2.0, XLSR-53, and Hubert as self-supervised models. Unlike Hubert, Wav2vec 2.0 and XLSR-53 achieve the best results when we remove the top three layers. Our results show that Wav2vec 2.0 and Hubert perform similarly with their relative best configuration. In addition, we found that Wav2vec 2.0 pre-trained on audio data of the same language as the source language of a speech translation model achieves better results. For the low-resource setting, the best results are achieved using either the Wav2vec 2.0 or Hubert models, while XLSR-53 achieves the best results for the dialectal transfer task. We find that XLSR-53 does not perform well for low-resource tasks. Using Wav2vec 2.0, we report close to 2 BLEU point improvements on the test set for the Tamasheq-French compared to the baseline system at the IWSLT 2022.

pdf
To token or not to token: A Comparative Study of Text Representations for Cross-Lingual Transfer
Md Mushfiqur Rahman | Fardin Ahsan Sakib | Fahim Faisal | Antonios Anastasopoulos
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)

pdf
Geographic and Geopolitical Biases of Language Models
Fahim Faisal | Antonios Anastasopoulos
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)

pdf
PALI: A Language Identification Benchmark for Perso-Arabic Scripts
Sina Ahmadi | Milind Agarwal | Antonios Anastasopoulos
Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023)

The Perso-Arabic scripts are a family of scripts that are widely adopted and used by various linguistic communities around the globe. Identifying various languages using such scripts is crucial to language technologies and challenging in low-resource setups. As such, this paper sheds light on the challenges of detecting languages using Perso-Arabic scripts, especially in bilingual communities where “unconventional” writing is practiced. To address this, we use a set of supervised techniques to classify sentences into their languages. Building on these, we also propose a hierarchical model that targets clusters of languages that are more often confused by the classifiers. Our experiment results indicate the effectiveness of our solutions.

pdf bib
Offensive Language Identification in Transliterated and Code-Mixed Bangla
Md Nishat Raihan | Umma Tanmoy | Anika Binte Islam | Kai North | Tharindu Ranasinghe | Antonios Anastasopoulos | Marcos Zampieri
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)

Identifying offensive content in social media is vital to create safe online communities. Several recent studies have addressed this problem by creating datasets for various languages. In this paper, we explore offensive language identification in texts with transliterations and code-mixing, linguistic phenomena common in multilingual societies, and a known challenge for NLP systems. We introduce TB-OLID, a transliterated Bangla offensive language dataset containing 5,000 manually annotated comments. We train and fine-tune machine learning models on TB-OLID, and we evaluate their results on this dataset. Our results show that English pre-trained transformer-based models, such as fBERT and HateBERT achieve the best performance on this dataset.

2022

pdf
Dataset Geography: Mapping Language Data to Language Users
Fahim Faisal | Yinkai Wang | Antonios Anastasopoulos
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As language technologies become more ubiquitous, there are increasing efforts towards expanding the language diversity and coverage of natural language processing (NLP) systems. Arguably, the most important factor influencing the quality of modern NLP systems is data availability. In this work, we study the geographical representativeness of NLP datasets, aiming to quantify if and by how much do NLP datasets match the expected needs of the language speakers. In doing so, we use entity recognition and linking systems, also making important observations about their cross-lingual consistency and giving suggestions for more robust evaluation. Last, we explore some geographical and economic factors that may explain the observed dataset distributions.

pdf
Systematic Inequalities in Language Technology Performance across the World’s Languages
Damian Blasi | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language processing (NLP) systems have become a central technology in communication, education, medicine, artificial intelligence, and many other domains of research and development. While the performance of NLP methods has grown enormously over the last decade, this progress has been restricted to a minuscule subset of the world’s 6,500 languages. We introduce a framework for estimating the global utility of language technologies as revealed in a comprehensive snapshot of recent publications in NLP. Our analyses involve the field at large, but also more in-depth studies on both user-facing technologies (machine translation, language understanding, question answering, text-to-speech synthesis) as well as foundational NLP tasks (dependency parsing, morphological inflection). In the process, we (1) quantify disparities in the current state of NLP research, (2) explore some of its associated societal and academic factors, and (3) produce tailored recommendations for evidence-based policy making aimed at promoting more global and equitable language technologies. Data and code to reproduce the findings discussed in this paper areavailable on GitHub (https://github.com/neubig/globalutility).

pdf
Quand être absent de mBERT n’est que le commencement : Gérer de nouvelles langues à l’aide de modèles de langues multilingues (When Being Unseen from mBERT is just the Beginning : Handling New Languages With Multilingual Language Models)
Benjamin Muller | Antonios Anastasopoulos | Benoît Sagot | Djamé Seddah
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

L’apprentissage par transfert basé sur le pré-entraînement de modèles de langue sur une grande quantité de données brutes est devenu la norme pour obtenir des performances état de l’art en TAL. Cependant, la façon dont cette approche devrait être appliquée pour des langues inconnues, qui ne sont couvertes par aucun modèle de langue multilingue à grande échelle et pour lesquelles seule une petite quantité de données brutes est le plus souvent disponible, n’est pas claire. Dans ce travail, en comparant des modèles multilingues et monolingues, nous montrons que de tels modèles se comportent de multiples façons sur des langues inconnues. Certaines langues bénéficient grandement de l’apprentissage par transfert et se comportent de manière similaire à des langues proches riches en ressource, alors que ce n’est manifestement pas le cas pour d’autres. En nous concentrant sur ces dernières, nous montrons dans ce travail que cet échec du transfert est largement lié à l’impact du script que ces langues utilisent. Nous montrons que la translittération de ces langues améliore considérablement le potentiel des larges modèles de langue neuronaux multilingues pour des tâches en aval. Ce résultat indique une piste prometteuse pour rendre ces modèles massivement multilingues utiles pour de nouveaux ensembles de langues absentes des données d’entraînement.

pdf
Educational Tools for Mapuzugun
Cristian Ahumada | Claudio Gutierrez | Antonios Anastasopoulos
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)

Mapuzugun is the language of the Mapuche people. Due to political and historical reasons, its number of speakers has decreased and the language has been excluded from the educational system in Chile and Argentina. For this reason, it is very important to support the revitalization of the Mapuzugun in all spaces and media of society. In this work we present a tool towards supporting educational activities of Mapuzugun, tailored to the characteristics of the language. The tool consists of three parts: design and development of an orthography detector and converter; a morphological analyzer; and an informal translator. We also present a case study with Mapuzugun students showing promising results. Short abstract in Mapuzugun: Tüfachi küzaw pegelfi kiñe zugun küzawpeyüm kelluaetew pu mapuzugun chillkatufe kimal kizu tañi zugun.

pdf bib
Proceedings of the First Workshop on Scaling Up Multilingual Evaluation
Kabir Ahuja | Antonios Anastasopoulos | Barun Patra | Graham Neubig | Monojit Choudhury | Sandipan Dandapat | Sunayana Sitaram | Vishrav Chaudhary
Proceedings of the First Workshop on Scaling Up Multilingual Evaluation

pdf bib
The SUMEval 2022 Shared Task on Performance Prediction of Multilingual Pre-trained Language Models
Kabir Ahuja | Antonios Anastasopoulos | Barun Patra | Graham Neubig | Monojit Choudhury | Sandipan Dandapat | Sunayana Sitaram | Vishrav Chaudhary
Proceedings of the First Workshop on Scaling Up Multilingual Evaluation

pdf
The GMU System Submission for the SUMEval 2022 Shared Task
Syeda Sabrina Akter | Antonios Anastasopoulos
Proceedings of the First Workshop on Scaling Up Multilingual Evaluation

pdf
Phylogeny-Inspired Adaptation of Multilingual Models to New Languages
Fahim Faisal | Antonios Anastasopoulos
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Large pretrained multilingual models, trained on dozens of languages, have delivered promising results due to cross-lingual learning capabilities on a variety of language tasks. Further adapting these models to specific languages, especially ones unseen during pre-training, is an important goal toward expanding the coverage of language technologies. In this study, we show how we can use language phylogenetic information to improve cross-lingual transfer leveraging closely related languages in a structured, linguistically-informed manner. We perform adapter-based training on languages from diverse language families (Germanic, Uralic, Tupian, Uto-Aztecan) and evaluate on both syntactic and semantic tasks, obtaining more than 20% relative performance improvements over strong commonly used baselines, especially on languages unseen during pre-training.

pdf bib
Proceedings of the Fifth Workshop on the Use of Computational Methods in the Study of Endangered Languages
Sarah Moeller | Antonios Anastasopoulos | Antti Arppe | Aditi Chaudhary | Atticus Harrigan | Josh Holden | Jordan Lachler | Alexis Palmer | Shruti Rijhwani | Lane Schwartz
Proceedings of the Fifth Workshop on the Use of Computational Methods in the Study of Endangered Languages

pdf
UniMorph 4.0: Universal Morphology
Khuyagbaatar Batsuren | Omer Goldman | Salam Khalifa | Nizar Habash | Witold Kieraś | Gábor Bella | Brian Leonard | Garrett Nicolai | Kyle Gorman | Yustinus Ghanggo Ate | Maria Ryskina | Sabrina Mielke | Elena Budianskaya | Charbel El-Khaissi | Tiago Pimentel | Michael Gasser | William Abbott Lane | Mohit Raj | Matt Coler | Jaime Rafael Montoya Samame | Delio Siticonatzi Camaiteri | Esaú Zumaeta Rojas | Didier López Francis | Arturo Oncevay | Juan López Bautista | Gema Celeste Silva Villegas | Lucas Torroba Hennigen | Adam Ek | David Guriel | Peter Dirix | Jean-Philippe Bernardy | Andrey Scherbakov | Aziyana Bayyr-ool | Antonios Anastasopoulos | Roberto Zariquiey | Karina Sheifer | Sofya Ganieva | Hilaria Cruz | Ritván Karahóǧa | Stella Markantonatou | George Pavlidis | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Candy Angulo | Jatayu Baxi | Andrew Krizhanovsky | Natalia Krizhanovskaya | Elizabeth Salesky | Clara Vania | Sardana Ivanova | Jennifer White | Rowan Hall Maudslay | Josef Valvoda | Ran Zmigrod | Paula Czarnowska | Irene Nikkarinen | Aelita Salchak | Brijesh Bhatt | Christopher Straughn | Zoey Liu | Jonathan North Washington | Yuval Pinter | Duygu Ataman | Marcin Wolinski | Totok Suhardijanto | Anna Yablonskaya | Niklas Stoehr | Hossep Dolatian | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Aryaman Arora | Richard J. Hatcher | Ritesh Kumar | Jeremiah Young | Daria Rodionova | Anastasia Yemelina | Taras Andrushko | Igor Marchenko | Polina Mashkovtseva | Alexandra Serova | Emily Prud’hommeaux | Maria Nepomniashchaya | Fausto Giunchiglia | Eleanor Chodroff | Mans Hulden | Miikka Silfverberg | Arya D. McCarthy | David Yarowsky | Ryan Cotterell | Reut Tsarfaty | Ekaterina Vylomova
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation, and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements on several fronts that were made in the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 66 new languages, including 24 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g., missing gender and macrons information. We have amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

pdf
BembaSpeech: A Speech Recognition Corpus for the Bemba Language
Claytone Sikasote | Antonios Anastasopoulos
Proceedings of the Thirteenth Language Resources and Evaluation Conference

We present a preprocessed, ready-to-use automatic speech recognition corpus, BembaSpeech, consisting over 24 hours of read speech in the Bemba language, a written but low-resourced language spoken by over 30% of the population in Zambia. To assess its usefulness for training and testing ASR systems for Bemba, we explored different approaches; supervised pre-training (training from scratch), cross-lingual transfer learning from a monolingual English pre-trained model using DeepSpeech on the portion of the dataset and fine-tuning large scale self-supervised Wav2Vec2.0 based multilingual pre-trained models on the complete BembaSpeech corpus. From our experiments, the 1 billion XLS-R parameter model gives the best results. The model achieves a word error rate (WER) of 32.91%, results demonstrating that model capacity significantly improves performance and that multilingual pre-trained models transfers cross-lingual acoustic representation better than monolingual pre-trained English model on the BembaSpeech for the Bemba ASR. Lastly, results also show that the corpus can be used for building ASR systems for Bemba language.

pdf
Revisiting the Effects of Leakage on Dependency Parsing
Nathaniel Krasner | Miriam Wanner | Antonios Anastasopoulos
Findings of the Association for Computational Linguistics: ACL 2022

Recent work by Søgaard (2020) showed that, treebank size aside, overlap between training and test graphs (termed leakage) explains more of the observed variation in dependency parsing performance than other explanations. In this work we revisit this claim, testing it on more models and languages. We find that it only holds for zero-shot cross-lingual settings. We then propose a more fine-grained measure of such leakage which, unlike the original measure, not only explains but also correlates with observed performance variation. Code and data are available here: https://github.com/miriamwanner/reu-nlp-project

pdf
Findings of the IWSLT 2022 Evaluation Campaign
Antonios Anastasopoulos | Loïc Barrault | Luisa Bentivogli | Marcely Zanon Boito | Ondřej Bojar | Roldano Cattoni | Anna Currey | Georgiana Dinu | Kevin Duh | Maha Elbayad | Clara Emmanuel | Yannick Estève | Marcello Federico | Christian Federmann | Souhir Gahbiche | Hongyu Gong | Roman Grundkiewicz | Barry Haddow | Benjamin Hsu | Dávid Javorský | Vĕra Kloudová | Surafel Lakew | Xutai Ma | Prashant Mathur | Paul McNamee | Kenton Murray | Maria Nǎdejde | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | John Ortega | Juan Pino | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Yogesh Virkar | Alexander Waibel | Changhan Wang | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.

pdf
SIGMORPHONUniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection
Jordan Kodner | Salam Khalifa | Khuyagbaatar Batsuren | Hossep Dolatian | Ryan Cotterell | Faruk Akkus | Antonios Anastasopoulos | Taras Andrushko | Aryaman Arora | Nona Atanalov | Gábor Bella | Elena Budianskaya | Yustinus Ghanggo Ate | Omer Goldman | David Guriel | Simon Guriel | Silvia Guriel-Agiashvili | Witold Kieraś | Andrew Krizhanovsky | Natalia Krizhanovsky | Igor Marchenko | Magdalena Markowska | Polina Mashkovtseva | Maria Nepomniashchaya | Daria Rodionova | Karina Scheifer | Alexandra Sorova | Anastasia Yemelina | Jeremiah Young | Ekaterina Vylomova
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

The 2022 SIGMORPHON–UniMorph shared task on large scale morphological inflection generation included a wide range of typologically diverse languages: 33 languages from 11 top-level language families: Arabic (Modern Standard), Assamese, Braj, Chukchi, Eastern Armenian, Evenki, Georgian, Gothic, Gujarati, Hebrew, Hungarian, Itelmen, Karelian, Kazakh, Ket, Khalkha Mongolian, Kholosi, Korean, Lamahalot, Low German, Ludic, Magahi, Middle Low German, Old English, Old High German, Old Norse, Polish, Pomak, Slovak, Turkish, Upper Sorbian, Veps, and Xibe. We emphasize generalization along different dimensions this year by evaluating test items with unseen lemmas and unseen features separately under small and large training conditions. Across the five submitted systems and two baselines, the prediction of inflections with unseen features proved challenging, with average performance decreased substantially from last year. This was true even for languages for which the forms were in principle predictable, which suggests that further work is needed in designing systems that capture the various types of generalization required for the world’s languages.

pdf
Findings of the WMT’22 Shared Task on Large-Scale Machine Translation Evaluation for African Languages
David Adelani | Md Mahfuz Ibn Alam | Antonios Anastasopoulos | Akshita Bhagia | Marta R. Costa-jussà | Jesse Dodge | Fahim Faisal | Christian Federmann | Natalia Fedorova | Francisco Guzmán | Sergey Koshelev | Jean Maillard | Vukosi Marivate | Jonathan Mbuya | Alexandre Mourachko | Safiyyah Saleem | Holger Schwenk | Guillaume Wenzek
Proceedings of the Seventh Conference on Machine Translation (WMT)

We present the results of the WMT’22 SharedTask on Large-Scale Machine Translation Evaluation for African Languages. The shared taskincluded both a data and a systems track, alongwith additional innovations, such as a focus onAfrican languages and extensive human evaluation of submitted systems. We received 14system submissions from 8 teams, as well as6 data track contributions. We report a largeprogress in the quality of translation for Africanlanguages since the last iteration of this sharedtask: there is an increase of about 7.5 BLEUpoints across 72 language pairs, and the average BLEU scores went from 15.09 to 22.60.

pdf
Language Adapters for Large-Scale MT: The GMU System for the WMT 2022 Large-Scale Machine Translation Evaluation for African Languages Shared Task
Md Mahfuz Ibn Alam | Antonios Anastasopoulos
Proceedings of the Seventh Conference on Machine Translation (WMT)

This report describes GMU’s machine translation systems for the WMT22 shared task on large-scale machine translation evaluation for African languages. We participated in the constrained translation track where only the data listed on the shared task page were allowed, including submissions accepted to the Data track. Our approach uses models initialized with DeltaLM, a generic pre-trained multilingual encoder-decoder model, and fine-tuned correspondingly with the allowed data sources. Our best submission incorporates language family and language-specific adapter units; ranking ranked second under the constrained setting.

pdf bib
Findings of the VarDial Evaluation Campaign 2022
Noëmi Aepli | Antonios Anastasopoulos | Adrian-Gabriel Chifu | William Domingues | Fahim Faisal | Mihaela Gaman | Radu Tudor Ionescu | Yves Scherrer
Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects

This report presents the results of the shared tasks organized as part of the VarDial Evaluation Campaign 2022. The campaign is part of the ninth workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with COLING 2022. Three separate shared tasks were included this year: Identification of Languages and Dialects of Italy (ITDI), French Cross-Domain Dialect Identification (FDI), and Dialectal Extractive Question Answering (DialQA). All three tasks were organized for the first time this year.

2021

pdf
SD-QA: Spoken Dialectal Question Answering for the Real World
Fahim Faisal | Sharlina Keshava | Md Mahfuz Ibn Alam | Antonios Anastasopoulos
Findings of the Association for Computational Linguistics: EMNLP 2021

Question answering (QA) systems are now available through numerous commercial applications for a wide variety of domains, serving millions of users that interact with them via speech interfaces. However, current benchmarks in QA research do not account for the errors that speech recognition models might introduce, nor do they consider the language variations (dialects) of the users. To address this gap, we augment an existing QA dataset to construct a multi-dialect, spoken QA benchmark on five languages (Arabic, Bengali, English, Kiswahili, Korean) with more than 68k audio prompts in 24 dialects from 255 speakers. We provide baseline results showcasing the real-world performance of QA systems and analyze the effect of language variety and other sensitive speaker attributes on downstream performance. Last, we study the fairness of the ASR and QA models with respect to the underlying user populations.

pdf
When Being Unseen from mBERT is just the Beginning: Handling New Languages With Multilingual Language Models
Benjamin Muller | Antonios Anastasopoulos | Benoît Sagot | Djamé Seddah
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP. Still, it remains unclear how this approach should be applied for unseen languages that are not covered by any available large-scale multilingual language model and for which only a small amount of raw data is generally available. In this work, by comparing multilingual and monolingual models, we show that such models behave in multiple ways on unseen languages. Some languages greatly benefit from transfer learning and behave similarly to closely related high resource languages whereas others apparently do not. Focusing on the latter, we show that this failure to transfer is largely related to the impact of the script used to write such languages. We show that transliterating those languages significantly improves the potential of large-scale multilingual language models on downstream tasks. This result provides a promising direction towards making these massively multilingual models useful for a new set of unseen languages.

pdf bib
Code to Comment Translation: A Comparative Study on Model Effectiveness & Errors
Junayed Mahmud | Fahim Faisal | Raihan Islam Arnob | Antonios Anastasopoulos | Kevin Moran
Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)

Automated source code summarization is a popular software engineering research topic wherein machine translation models are employed to “translate” code snippets into relevant natural language descriptions. Most evaluations of such models are conducted using automatic reference-based metrics. However, given the relatively large semantic gap between programming languages and natural language, we argue that this line of research would benefit from a qualitative investigation into the various error modes of current state-of-the-art models. Therefore, in this work, we perform both a quantitative and qualitative comparison of three recently proposed source code summarization models. In our quantitative evaluation, we compare the models based on the smoothed BLEU-4, METEOR, and ROUGE-L machine translation metrics, and in our qualitative evaluation, we perform a manual open-coding of the most common errors committed by the models when compared to ground truth captions. Our investigation reveals new insights into the relationship between metric-based performance and model prediction errors grounded in an error taxonomy that can be used to drive future research efforts.

pdf
When is Wall a Pared and when a Muro?: Extracting Rules Governing Lexical Selection
Aditi Chaudhary | Kayo Yin | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Learning fine-grained distinctions between vocabulary items is a key challenge in learning a new language. For example, the noun “wall” has different lexical manifestations in Spanish – “pared” refers to an indoor wall while “muro” refers to an outside wall. However, this variety of lexical distinction may not be obvious to non-native learners unless the distinction is explained in such a way. In this work, we present a method for automatically identifying fine-grained lexical distinctions, and extracting rules explaining these distinctions in a human- and machine-readable format. We confirm the quality of these extracted rules in a language learning setup for two languages, Spanish and Greek, where we use the rules to teach non-native speakers when to translate a given ambiguous word into its different possible translations.

pdf
Evaluating the Morphosyntactic Well-formedness of Generated Texts
Adithya Pratapa | Antonios Anastasopoulos | Shruti Rijhwani | Aditi Chaudhary | David R. Mortensen | Graham Neubig | Yulia Tsvetkov
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Text generation systems are ubiquitous in natural language processing applications. However, evaluation of these systems remains a challenge, especially in multilingual settings. In this paper, we propose L’AMBRE – a metric to evaluate the morphosyntactic well-formedness of text using its dependency parse and morphosyntactic rules of the language. We present a way to automatically extract various rules governing morphosyntax directly from dependency treebanks. To tackle the noisy outputs from text generation systems, we propose a simple methodology to train robust parsers. We show the effectiveness of our metric on the task of machine translation through a diachronic study of systems translating into morphologically-rich languages.

pdf
Investigating Post-pretraining Representation Alignment for Cross-Lingual Question Answering
Fahim Faisal | Antonios Anastasopoulos
Proceedings of the 3rd Workshop on Machine Reading for Question Answering

Human knowledge is collectively encoded in the roughly 6500 languages spoken around the world, but it is not distributed equally across languages. Hence, for information-seeking question answering (QA) systems to adequately serve speakers of all languages, they need to operate cross-lingually. In this work we investigate the capabilities of multilingually pretrained language models on cross-lingual QA. We find that explicitly aligning the representations across languages with a post-hoc finetuning step generally leads to improved performance. We additionally investigate the effect of data size as well as the language choice in this fine-tuning step, also releasing a dataset for evaluating cross-lingual QA systems.

pdf
Multilingual Code-Switching for Zero-Shot Cross-Lingual Intent Prediction and Slot Filling
Jitin Krishnan | Antonios Anastasopoulos | Hemant Purohit | Huzefa Rangwala
Proceedings of the 1st Workshop on Multilingual Representation Learning

Predicting user intent and detecting the corresponding slots from text are two key problems in Natural Language Understanding (NLU). Since annotated datasets are only available for a handful of languages, our work focuses particularly on a zero-shot scenario where the target language is unseen during training. In the context of zero-shot learning, this task is typically approached using representations from pre-trained multilingual language models such as mBERT or by fine-tuning on data automatically translated into the target language. We propose a novel method which augments monolingual source data using multilingual code-switching via random translations, to enhance generalizability of large multilingual language models when fine-tuning them for downstream tasks. Experiments on the MultiATIS++ benchmark show that our method leads to an average improvement of +4.2% in accuracy for the intent task and +1.8% in F1 for the slot-filling task over the state-of-the-art across 8 typologically diverse languages. We also study the impact of code-switching into different families of languages on downstream performance. Furthermore, we present an application of our method for crisis informatics using a new human-annotated tweet dataset of slot filling in English and Haitian Creole, collected during the Haiti earthquake.

pdf bib
Proceedings of the Fifth Workshop on Widening Natural Language Processing
Erika Varis | Ryan Georgi | Alicia Tsai | Antonios Anastasopoulos | Kyathi Chandu | Xanda Schofield | Surangika Ranathunga | Haley Lepp | Tirthankar Ghosal
Proceedings of the Fifth Workshop on Widening Natural Language Processing

pdf bib
Reducing Confusion in Active Learning for Part-Of-Speech Tagging
Aditi Chaudhary | Antonios Anastasopoulos | Zaid Sheikh | Graham Neubig
Transactions of the Association for Computational Linguistics, Volume 9

Active learning (AL) uses a data selection algorithm to select useful training samples to minimize annotation cost. This is now an essential tool for building low-resource syntactic analyzers such as part-of-speech (POS) taggers. Existing AL heuristics are generally designed on the principle of selecting uncertain yet representative training instances, where annotating these instances may reduce a large number of errors. However, in an empirical study across six typologically diverse languages (German, Swedish, Galician, North Sami, Persian, and Ukrainian), we found the surprising result that even in an oracle scenario where we know the true uncertainty of predictions, these current heuristics are far from optimal. Based on this analysis, we pose the problem of AL as selecting instances that maximally reduce the confusion between particular pairs of output tags. Extensive experimentation on the aforementioned languages shows that our proposed AL strategy outperforms other AL strategies by a significant margin. We also present auxiliary results demonstrating the importance of proper calibration of models, which we ensure through cross-view training, and analysis demonstrating how our proposed strategy selects examples that more closely follow the oracle data distribution. The code is publicly released here.1

pdf
Lexically Aware Semi-Supervised Learning for OCR Post-Correction
Shruti Rijhwani | Daisy Rosenblum | Antonios Anastasopoulos | Graham Neubig
Transactions of the Association for Computational Linguistics, Volume 9

Much of the existing linguistic data in many languages of the world is locked away in non- digitized books and documents. Optical character recognition (OCR) can be used to produce digitized text, and previous work has demonstrated the utility of neural post-correction methods that improve the results of general- purpose OCR systems on recognition of less- well-resourced languages. However, these methods rely on manually curated post- correction data, which are relatively scarce compared to the non-annotated raw images that need to be digitized. In this paper, we present a semi-supervised learning method that makes it possible to utilize these raw images to improve performance, specifically through the use of self-training, a technique where a model is iteratively trained on its own outputs. In addition, to enforce consistency in the recognized vocabulary, we introduce a lexically aware decoding method that augments the neural post-correction model with a count-based language model constructed from the recognized texts, implemented using weighted finite-state automata (WFSA) for efficient and effective decoding. Results on four endangered languages demonstrate the utility of the proposed method, with relative error reductions of 15%–29%, where we find the combination of self-training and lexically aware decoding essential for achieving consistent improvements.1

pdf bib
FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN
Antonios Anastasopoulos | Ondřej Bojar | Jacob Bremerman | Roldano Cattoni | Maha Elbayad | Marcello Federico | Xutai Ma | Satoshi Nakamura | Matteo Negri | Jan Niehues | Juan Pino | Elizabeth Salesky | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Alexander Waibel | Changhan Wang | Matthew Wiesner
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2021) featured this year four shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Multilingual speech translation, (iv) Low-resource speech translation. A total of 22 teams participated in at least one of the tasks. This paper describes each shared task, data and evaluation metrics, and reports results of the received submissions.

pdf
Machine Translation into Low-resource Language Varieties
Sachin Kumar | Antonios Anastasopoulos | Shuly Wintner | Yulia Tsvetkov
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

State-of-the-art machine translation (MT) systems are typically trained to generate “standard” target language; however, many languages have multiple varieties (regional varieties, dialects, sociolects, non-native varieties) that are different from the standard language. Such varieties are often low-resource, and hence do not benefit from contemporary NLP solutions, MT included. We propose a general framework to rapidly adapt MT systems to generate language varieties that are close to, but different from, the standard target language, using no parallel (source–variety) data. This also includes adaptation of MT systems to low-resource typologically-related target languages. We experiment with adapting an English–Russian MT system to generate Ukrainian and Belarusian, an English–Norwegian Bokmål system to generate Nynorsk, and an English–Arabic system to generate four Arabic dialects, obtaining significant improvements over competitive baselines.

pdf
Towards more equitable question answering systems: How much more data do you need?
Arnab Debnath | Navid Rajabi | Fardina Fathmiul Alam | Antonios Anastasopoulos
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Question answering (QA) in English has been widely explored, but multilingual datasets are relatively new, with several methods attempting to bridge the gap between high- and low-resourced languages using data augmentation through translation and cross-lingual transfer. In this project we take a step back and study which approaches allow us to take the most advantage of existing resources in order to produce QA systems in many languages. Specifically, we perform extensive analysis to measure the efficacy of few-shot approaches augmented with automatic translations and permutations of context-question-answer pairs. In addition, we make suggestions for future dataset development efforts that make better use of a fixed annotation budget, with a goal of increasing the language coverage of QA datasets and systems.

pdf
Findings of the WMT Shared Task on Machine Translation Using Terminologies
Md Mahfuz Ibn Alam | Ivana Kvapilíková | Antonios Anastasopoulos | Laurent Besacier | Georgiana Dinu | Marcello Federico | Matthias Gallé | Kweonwoo Jung | Philipp Koehn | Vassilina Nikoulina
Proceedings of the Sixth Conference on Machine Translation

Language domains that require very careful use of terminology are abundant and reflect a significant part of the translation industry. In this work we introduce a benchmark for evaluating the quality and consistency of terminology translation, focusing on the medical (and COVID-19 specifically) domain for five language pairs: English to French, Chinese, Russian, and Korean, as well as Czech to German. We report the descriptions and results of the participating systems, commenting on the need for further research efforts towards both more adequate handling of terminologies as well as towards a proper formulation and evaluation of the task.

2020

pdf bib
SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection
Ekaterina Vylomova | Jennifer White | Elizabeth Salesky | Sabrina J. Mielke | Shijie Wu | Edoardo Maria Ponti | Rowan Hall Maudslay | Ran Zmigrod | Josef Valvoda | Svetlana Toldova | Francis Tyers | Elena Klyachko | Ilya Yegorov | Natalia Krizhanovsky | Paula Czarnowska | Irene Nikkarinen | Andrew Krizhanovsky | Tiago Pimentel | Lucas Torroba Hennigen | Christo Kirov | Garrett Nicolai | Adina Williams | Antonios Anastasopoulos | Hilaria Cruz | Eleanor Chodroff | Ryan Cotterell | Miikka Silfverberg | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems’ ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.

pdf
The CMU-LTI submission to the SIGMORPHON 2020 Shared Task 0: Language-Specific Cross-Lingual Transfer
Nikitha Murikinati | Antonios Anastasopoulos
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper describes the CMU-LTI submission to the SIGMORPHON 2020 Shared Task 0 on typologically diverse morphological inflection. The (unrestricted) submission uses the cross-lingual approach of our last year’s winning submission (Anastasopoulos and Neubig, 2019), but adapted to use specific transfer languages for each test language. Our system, with fixed non-tuned hyperparameters, achieved a macro-averaged accuracy of 80.65 ranking 20th among 31 systems, but it was still tied for best system in 25 of the 90 total languages.

pdf
Transliteration for Cross-Lingual Morphological Inflection
Nikitha Murikinati | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

Cross-lingual transfer between typologically related languages has been proven successful for the task of morphological inflection. However, if the languages do not share the same script, current methods yield more modest improvements. We explore the use of transliteration between related languages, as well as grapheme-to-phoneme conversion, as data preprocessing methods in order to alleviate this issue. We experimented with several diverse language pairs, finding that in most cases transliterating the transfer language data into the target one leads to accuracy improvements, even up to 9 percentage points. Converting both languages into a shared space like the International Phonetic Alphabet or the Latin alphabet is also beneficial, leading to improvements of up to 16 percentage points.

pdf bib
Proceedings of the Fourth Widening Natural Language Processing Workshop
Rossana Cunha | Samira Shaikh | Erika Varis | Ryan Georgi | Alicia Tsai | Antonios Anastasopoulos | Khyathi Raghavi Chandu
Proceedings of the Fourth Widening Natural Language Processing Workshop

pdf
A Resource for Studying Chatino Verbal Morphology
Hilaria Cruz | Antonios Anastasopoulos | Gregory Stump
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present the first resource focusing on the verbal inflectional morphology of San Juan Quiahije Chatino, a tonal mesoamerican language spoken in Mexico. We provide a collection of complete inflection tables of 198 lemmata, with morphological tags based on the UniMorph schema. We also provide baseline results on three core NLP tasks: morphological analysis, lemmatization, and morphological inflection.

pdf
A Resource for Computational Experiments on Mapudungun
Mingjun Duan | Carlos Fasola | Sai Krishna Rallabandi | Rodolfo Vega | Antonios Anastasopoulos | Lori Levin | Alan W Black
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present a resource for computational experiments on Mapudungun, a polysynthetic indigenous language spoken in Chile with upwards of 200 thousand speakers. We provide 142 hours of culturally significant conversations in the domain of medical treatment. The conversations are fully transcribed and translated into Spanish. The transcriptions also include annotations for code-switching and non-standard pronunciations. We also provide baseline results on three core NLP tasks: speech recognition, speech synthesis, and machine translation between Spanish and Mapudungun. We further explore other applications for which the corpus will be suitable, including the study of code-switching, historical orthography change, linguistic structure, and sociological and anthropological studies.

pdf
AlloVera: A Multilingual Allophone Database
David R. Mortensen | Xinjian Li | Patrick Littell | Alexis Michaud | Shruti Rijhwani | Antonios Anastasopoulos | Alan W Black | Florian Metze | Graham Neubig
Proceedings of the Twelfth Language Resources and Evaluation Conference

We introduce a new resource, AlloVera, which provides mappings from 218 allophones to phonemes for 14 languages. Phonemes are contrastive phonological units, and allophones are their various concrete realizations, which are predictable from phonological context. While phonemic representations are language specific, phonetic representations (stated in terms of (allo)phones) are much closer to a universal (language-independent) transcription. AlloVera allows the training of speech recognition models that output phonetic transcriptions in the International Phonetic Alphabet (IPA), regardless of the input language. We show that a “universal” allophone model, Allosaurus, built with AlloVera, outperforms “universal” phonemic models and language-specific models on a speech-transcription task. We explore the implications of this technology (and related technologies) for the documentation of endangered and minority languages. We further explore other applications for which AlloVera will be suitable as it grows, including phonological typology.

pdf
It’s Easier to Translate out of English than into it: Measuring Neural Translation Difficulty by Cross-Mutual Information
Emanuele Bugliarello | Sabrina J. Mielke | Antonios Anastasopoulos | Ryan Cotterell | Naoaki Okazaki
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The performance of neural machine translation systems is commonly evaluated in terms of BLEU. However, due to its reliance on target language properties and generation, the BLEU metric does not allow an assessment of which translation directions are more difficult to model. In this paper, we propose cross-mutual information (XMI): an asymmetric information-theoretic metric of machine translation difficulty that exploits the probabilistic nature of most neural machine translation models. XMI allows us to better evaluate the difficulty of translating text into the target language while controlling for the difficulty of the target-side generation component independent of the translation task. We then present the first systematic and controlled study of cross-lingual translation difficulties using modern neural translation systems. Code for replicating our experiments is available online at https://github.com/e-bug/nmt-difficulty.

pdf
Predicting Performance for Natural Language Processing Tasks
Mengzhou Xia | Antonios Anastasopoulos | Ruochen Xu | Yiming Yang | Graham Neubig
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Given the complexity of combinations of tasks, languages, and domains in natural language processing (NLP) research, it is computationally prohibitive to exhaustively test newly proposed models on each possible experimental setting. In this work, we attempt to explore the possibility of gaining plausible judgments of how well an NLP model can perform under an experimental setting, without actually training or testing the model. To do so, we build regression models to predict the evaluation score of an NLP experiment given the experimental settings as input. Experimenting on~9 different NLP tasks, we find that our predictors can produce meaningful predictions over unseen languages and different modeling architectures, outperforming reasonable baselines as well as human experts. %we represent experimental settings using an array of features. Going further, we outline how our predictor can be used to find a small subset of representative experiments that should be run in order to obtain plausible predictions for all other experimental settings.

pdf
Should All Cross-Lingual Embeddings Speak English?
Antonios Anastasopoulos | Graham Neubig
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Most of recent work in cross-lingual word embeddings is severely Anglocentric. The vast majority of lexicon induction evaluation dictionaries are between English and another language, and the English embedding space is selected by default as the hub when learning in a multilingual setting. With this work, however, we challenge these practices. First, we show that the choice of hub language can significantly impact downstream lexicon induction zero-shot POS tagging performance. Second, we both expand a standard English-centered evaluation dictionary collection to include all language pairs using triangulation, and create new dictionaries for under-represented languages. Evaluating established methods over all these language pairs sheds light into their suitability for aligning embeddings from distant languages and presents new challenges for the field. Finally, in our analysis we identify general guidelines for strong cross-lingual embedding baselines, that extend to language pairs that do not include English.

pdf
Automatic Interlinear Glossing for Under-Resourced Languages Leveraging Translations
Xingyuan Zhao | Satoru Ozaki | Antonios Anastasopoulos | Graham Neubig | Lori Levin
Proceedings of the 28th International Conference on Computational Linguistics

Interlinear Glossed Text (IGT) is a widely used format for encoding linguistic information in language documentation projects and scholarly papers. Manual production of IGT takes time and requires linguistic expertise. We attempt to address this issue by creating automatic glossing models, using modern multi-source neural models that additionally leverage easy-to-collect translations. We further explore cross-lingual transfer and a simple output length control mechanism, further refining our models. Evaluated on three challenging low-resource scenarios, our approach significantly outperforms a recent, state-of-the-art baseline, particularly improving on overall accuracy as well as lemma and tag recall.

pdf
Endangered Languages meet Modern NLP
Antonios Anastasopoulos | Christopher Cox | Graham Neubig | Hilaria Cruz
Proceedings of the 28th International Conference on Computational Linguistics: Tutorial Abstracts

This tutorial will focus on NLP for endangered languages documentation and revitalization. First, we will acquaint the attendees with the process and the challenges of language documentation, showing how the needs of the language communities and the documentary linguists map to specific NLP tasks. We will then present the state-of-the-art in NLP applied in this particularly challenging setting (extremely low-resource datasets, noisy transcriptions, limited annotations, non-standard orthographies). In doing so, we will also analyze the challenges of working in this domain and expand on both the capabilities and the limitations of current NLP approaches. Our ultimate goal is to motivate more NLP practitioners to work towards this very important direction, and also provide them with the tools and understanding of the limitations/challenges, both of which are needed in order to have an impact.

pdf
Automatic Extraction of Rules Governing Morphological Agreement
Aditi Chaudhary | Antonios Anastasopoulos | Adithya Pratapa | David R. Mortensen | Zaid Sheikh | Yulia Tsvetkov | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Creating a descriptive grammar of a language is an indispensable step for language documentation and preservation. However, at the same time it is a tedious, time-consuming task. In this paper, we take steps towards automating this process by devising an automated framework for extracting a first-pass grammatical specification from raw text in a concise, human- and machine-readable format. We focus on extracting rules describing agreement, a morphosyntactic phenomenon at the core of the grammars of many of the world’s languages. We apply our framework to all languages included in the Universal Dependencies project, with promising results. Using cross-lingual transfer, even with no expert annotations in the language of interest, our framework extracts a grammatical specification which is nearly equivalent to those created with large amounts of gold-standard annotated data. We confirm this finding with human expert evaluations of the rules that our framework produces, which have an average accuracy of 78%. We release an interface demonstrating the extracted rules at https://neulab.github.io/lase/

pdf
Dynamic Data Selection and Weighting for Iterative Back-Translation
Zi-Yi Dou | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Back-translation has proven to be an effective method to utilize monolingual data in neural machine translation (NMT), and iteratively conducting back-translation can further improve the model performance. Selecting which monolingual data to back-translate is crucial, as we require that the resulting synthetic data are of high quality and reflect the target domain. To achieve these two goals, data selection and weighting strategies have been proposed, with a common practice being to select samples close to the target domain but also dissimilar to the average general-domain text. In this paper, we provide insights into this commonly used approach and generalize it to a dynamic curriculum learning strategy, which is applied to iterative back-translation models. In addition, we propose weighting strategies based on both the current quality of the sentence and its improvement over the previous iteration. We evaluate our models on domain adaptation, low-resource, and high-resource MT settings and on two language pairs. Experimental results demonstrate that our methods achieve improvements of up to 1.8 BLEU points over competitive baselines.

pdf
OCR Post Correction for Endangered Language Texts
Shruti Rijhwani | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

There is little to no data available to build natural language processing models for most endangered languages. However, textual data in these languages often exists in formats that are not machine-readable, such as paper books and scanned images. In this work, we address the task of extracting text from these resources. We create a benchmark dataset of transcriptions for scanned books in three critically endangered languages and present a systematic analysis of how general-purpose OCR tools are not robust to the data-scarce setting of endangered languages. We develop an OCR post-correction method tailored to ease training in this data-scarce setting, reducing the recognition error rate by 34% on average across the three languages.

pdf
X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models
Zhengbao Jiang | Antonios Anastasopoulos | Jun Araki | Haibo Ding | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Language models (LMs) have proven surprisingly successful at capturing factual knowledge by completing cloze-style fill-in-the-blank questions such as “Punta Cana is located in _.” However, while knowledge is both written and queried in many languages, studies on LMs’ factual representation ability have almost invariably been performed on English. To assess factual knowledge retrieval in LMs in different languages, we create a multilingual benchmark of cloze-style probes for typologically diverse languages. To properly handle language variations, we expand probing methods from single- to multi-word entities, and develop several decoding algorithms to generate multi-token predictions. Extensive experimental results provide insights about how well (or poorly) current state-of-the-art LMs perform at this task in languages with more or fewer available resources. We further propose a code-switching-based method to improve the ability of multilingual LMs to access knowledge, and verify its effectiveness on several benchmark languages. Benchmark data and code have be released at https://x-factr.github.io.

pdf
Fine-Tuning MT systems for Robustness to Second-Language Speaker Variations
Md Mahfuz Ibn Alam | Antonios Anastasopoulos
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

The performance of neural machine translation (NMT) systems only trained on a single language variant degrades when confronted with even slightly different language variations. With this work, we build upon previous work to explore how to mitigate this issue. We show that fine-tuning using naturally occurring noise along with pseudo-references (i.e. “corrected” non-native inputs translated using the baseline NMT system) is a promising solution towards systems robust to such type of input variations. We focus on four translation pairs, from English to Spanish, Italian, French, and Portuguese, with our system achieving improvements of up to 3.1 BLEU points compared to the baselines, establishing a new state-of-the-art on the JFLEG-ES dataset. All datasets and code are publicly available here: https://github.com/mahfuzibnalam/finetuning_for_robustness .

pdf
It’s not a Non-Issue: Negation as a Source of Error in Machine Translation
Md Mosharaf Hossain | Antonios Anastasopoulos | Eduardo Blanco | Alexis Palmer
Findings of the Association for Computational Linguistics: EMNLP 2020

As machine translation (MT) systems progress at a rapid pace, questions of their adequacy linger. In this study we focus on negation, a universal, core property of human language that significantly affects the semantics of an utterance. We investigate whether translating negation is an issue for modern MT systems using 17 translation directions as test bed. Through thorough analysis, we find that indeed the presence of negation can significantly impact downstream quality, in some cases resulting in quality reductions of more than 60%. We also provide a linguistically motivated analysis that directly explains the majority of our findings. We release our annotations and code to replicate our analysis here: https://github.com/mosharafhossain/negation-mt.

pdf
A Summary of the First Workshop on Language Technology for Language Documentation and Revitalization
Graham Neubig | Shruti Rijhwani | Alexis Palmer | Jordan MacKenzie | Hilaria Cruz | Xinjian Li | Matthew Lee | Aditi Chaudhary | Luke Gessler | Steven Abney | Shirley Anugrah Hayati | Antonios Anastasopoulos | Olga Zamaraeva | Emily Prud’hommeaux | Jennette Child | Sara Child | Rebecca Knowles | Sarah Moeller | Jeffrey Micher | Yiyuan Li | Sydney Zink | Mengzhou Xia | Roshan Sharma | Patrick Littell
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)

Despite recent advances in natural language processing and other language technology, the application of such technology to language documentation and conservation has been limited. In August 2019, a workshop was held at Carnegie Mellon University in Pittsburgh, PA, USA to attempt to bring together language community members, documentary linguists, and technologists to discuss how to bridge this gap and create prototypes of novel and practical language revitalization technologies. The workshop focused on developing technologies to aid language documentation and revitalization in four areas: 1) spoken language (speech transcription, phone to orthography decoding, text-to-speech and text-speech forced alignment), 2) dictionary extraction and management, 3) search tools for corpora, and 4) social media (language learning bots and social media analysis). This paper reports the results of this workshop, including issues discussed, and various conceived and implemented technologies for nine languages: Arapaho, Cayuga, Inuktitut, Irish Gaelic, Kidaw’ida, Kwak’wala, Ojibwe, San Juan Quiahije Chatino, and Seneca.

pdf
TICO-19: the Translation Initiative for COvid-19
Antonios Anastasopoulos | Alessandro Cattelan | Zi-Yi Dou | Marcello Federico | Christian Federmann | Dmitriy Genzel | Franscisco Guzmán | Junjie Hu | Macduff Hughes | Philipp Koehn | Rosie Lazar | Will Lewis | Graham Neubig | Mengmeng Niu | Alp Öktem | Eric Paquin | Grace Tang | Sylwia Tur
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

The COVID-19 pandemic is the worst pandemic to strike the world in over a century. Crucial to stemming the tide of the SARS-CoV-2 virus is communicating to vulnerable populations the means by which they can protect themselves. To this end, the collaborators forming the Translation Initiative for COvid-19 (TICO-19) have made test and development data available to AI and MT researchers in 35 different languages in order to foster the development of tools and resources for improving access to information about COVID-19 in these languages. In addition to 9 high-resourced, ”pivot” languages, the team is targeting 26 lesser resourced languages, in particular languages of Africa, South Asia and South-East Asia, whose populations may be the most vulnerable to the spread of the virus. The same data is translated into all of the languages represented, meaning that testing or development can be done for any pairing of languages in the set. Further, the team is converting the test and development data into translation memories (TMXs) that can be used by localizers from and to any of the languages.

2019

pdf
An Analysis of Source-Side Grammatical Errors in NMT
Antonios Anastasopoulos
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

The quality of Neural Machine Translation (NMT) has been shown to significantly degrade when confronted with source-side noise. We present the first large-scale study of state-of-the-art English-to-German NMT on real grammatical noise, by evaluating on several Grammar Correction corpora. We present methods for evaluating NMT robustness without true references, and we use them for extensive analysis of the effects that different grammatical errors have on the NMT output. We also introduce a technique for visualizing the divergence distribution caused by a source-side error, which allows for additional insights.

pdf
Findings of the First Shared Task on Machine Translation Robustness
Xian Li | Paul Michel | Antonios Anastasopoulos | Yonatan Belinkov | Nadir Durrani | Orhan Firat | Philipp Koehn | Graham Neubig | Juan Pino | Hassan Sajjad
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

We share the findings of the first shared task on improving robustness of Machine Translation (MT). The task provides a testbed representing challenges facing MT models deployed in the real world, and facilitates new approaches to improve models’ robustness to noisy input and domain mismatch. We focus on two language pairs (English-French and English-Japanese), and the submitted systems are evaluated on a blind test set consisting of noisy comments on Reddit and professionally sourced translations. As a new task, we received 23 submissions by 11 participating teams from universities, companies, national labs, etc. All submitted systems achieved large improvements over baselines, with the best improvement having +22.33 BLEU. We evaluated submissions by both human judgment and automatic evaluation (BLEU), which shows high correlations (Pearson’s r = 0.94 and 0.95). Furthermore, we conducted a qualitative analysis of the submitted systems using compare-mt, which revealed their salient differences in handling challenges in this task. Such analysis provides additional insights when there is occasional disagreement between human judgment and BLEU, e.g. systems better at producing colloquial expressions received higher score from human judgment.

pdf
Improving Robustness of Neural Machine Translation with Multi-task Learning
Shuyan Zhou | Xiangkai Zeng | Yingqi Zhou | Antonios Anastasopoulos | Graham Neubig
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

While neural machine translation (NMT) achieves remarkable performance on clean, in-domain text, performance is known to degrade drastically when facing text which is full of typos, grammatical errors and other varieties of noise. In this work, we propose a multi-task learning algorithm for transformer-based MT systems that is more resilient to this noise. We describe our submission to the WMT 2019 Robustness shared task based on this method. Our model achieves a BLEU score of 32.8 on the shared task French to English dataset, which is 7.1 BLEU points higher than the baseline vanilla transformer trained with clean text.

pdf
Pushing the Limits of Low-Resource Morphological Inflection
Antonios Anastasopoulos | Graham Neubig
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent years have seen exceptional strides in the task of automatic morphological inflection generation. However, for a long tail of languages the necessary resources are hard to come by, and state-of-the-art neural methods that work well under higher resource settings perform poorly in the face of a paucity of data. In response, we propose a battery of improvements that greatly improve performance under such low-resource conditions. First, we present a novel two-step attention architecture for the inflection decoder. In addition, we investigate the effects of cross-lingual transfer from single and multiple languages, as well as monolingual data hallucination. The macro-averaged accuracy of our models outperforms the state-of-the-art by 15 percentage points. Also, we identify the crucial factors for success with cross-lingual transfer for morphological inflection: typological similarity and a common representation across languages.

pdf
Investigating Meta-Learning Algorithms for Low-Resource Natural Language Understanding Tasks
Zi-Yi Dou | Keyi Yu | Antonios Anastasopoulos
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Learning general representations of text is a fundamental problem for many natural language understanding (NLU) tasks. Previously, researchers have proposed to use language model pre-training and multi-task learning to learn robust representations. However, these methods can achieve sub-optimal performance in low-resource scenarios. Inspired by the recent success of optimization-based meta-learning algorithms, in this paper, we explore the model-agnostic meta-learning algorithm (MAML) and its variants for low-resource NLU tasks. We validate our methods on the GLUE benchmark and show that our proposed models can outperform several strong baselines. We further empirically demonstrate that the learned representations can be adapted to new tasks efficiently and effectively.

pdf
Unsupervised Domain Adaptation for Neural Machine Translation with Domain-Aware Feature Embeddings
Zi-Yi Dou | Junjie Hu | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The recent success of neural machine translation models relies on the availability of high quality, in-domain data. Domain adaptation is required when domain-specific data is scarce or nonexistent. Previous unsupervised domain adaptation strategies include training the model with in-domain copied monolingual or back-translated data. However, these methods use generic representations for text regardless of domain shift, which makes it infeasible for translation models to control outputs conditional on a specific domain. In this work, we propose an approach that adapts models with domain-aware feature embeddings, which are learned via an auxiliary language modeling task. Our approach allows the model to assign domain-specific representations to words and output sentences in the desired domain. Our empirical results demonstrate the effectiveness of the proposed strategy, achieving consistent improvements in multiple experimental settings. In addition, we show that combining our method with back translation can further improve the performance of the model.

pdf
Neural Machine Translation of Text from Non-Native Speakers
Antonios Anastasopoulos | Alison Lui | Toan Q. Nguyen | David Chiang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Neural Machine Translation (NMT) systems are known to degrade when confronted with noisy data, especially when the system is trained only on clean data. In this paper, we show that augmenting training data with sentences containing artificially-introduced grammatical errors can make the system more robust to such errors. In combination with an automatic grammar error correction system, we can recover 1.0 BLEU out of 2.4 BLEU lost due to grammatical errors. We also present a set of Spanish translations of the JFLEG grammar error correction corpus, which allows for testing NMT robustness to real grammatical errors.

pdf
Choosing Transfer Languages for Cross-Lingual Learning
Yu-Hsiang Lin | Chian-Yu Chen | Jean Lee | Zirui Li | Yuyan Zhang | Mengzhou Xia | Shruti Rijhwani | Junxian He | Zhisong Zhang | Xuezhe Ma | Antonios Anastasopoulos | Patrick Littell | Graham Neubig
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Cross-lingual transfer, where a high-resource transfer language is used to improve the accuracy of a low-resource task language, is now an invaluable tool for improving performance of natural language processing (NLP) on low-resource languages. However, given a particular task language, it is not clear which language to transfer from, and the standard strategy is to select languages based on ad hoc criteria, usually the intuition of the experimenter. Since a large number of features contribute to the success of cross-lingual transfer (including phylogenetic similarity, typological properties, lexical overlap, or size of available data), even the most enlightened experimenter rarely considers all these factors for the particular task at hand. In this paper, we consider this task of automatically selecting optimal transfer languages as a ranking problem, and build models that consider the aforementioned features to perform this prediction. In experiments on representative NLP tasks, we demonstrate that our model predicts good transfer languages much better than ad hoc baselines considering single features in isolation, and glean insights on what features are most informative for each different NLP tasks, which may inform future ad hoc selection even without use of our method.

pdf
Generalized Data Augmentation for Low-Resource Translation
Mengzhou Xia | Xiang Kong | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Low-resource language pairs with a paucity of parallel data pose challenges for machine translation in terms of both adequacy and fluency. Data augmentation utilizing a large amount of monolingual data is regarded as an effective way to alleviate the problem. In this paper, we propose a general framework of data augmentation for low-resource machine translation not only using target-side monolingual data, but also by pivoting through a related high-resource language. Specifically, we experiment with a two-step pivoting method to convert high-resource data to the low-resource language, making best use of available resources to better approximate the true distribution of the low-resource language. First, we inject low-resource words into high-resource sentences through an induced bilingual dictionary. Second, we further edit the high-resource data injected with low-resource words using a modified unsupervised machine translation framework. Extensive experiments on four low-resource datasets show that under extreme low-resource settings, our data augmentation techniques improve translation quality by up to 1.5 to 8 BLEU points compared to supervised back-translation baselines.

2018

pdf
Tied Multitask Learning for Neural Speech Translation
Antonios Anastasopoulos | David Chiang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We explore multitask models for neural translation of speech, augmenting them in order to reflect two intuitive notions. First, we introduce a model where the second task decoder receives information from the decoder of the first task, since higher-level intermediate representations should provide useful information. Second, we apply regularization that encourages transitivity and invertibility. We show that the application of these notions on jointly trained models improves performance on the tasks of low-resource speech transcription and translation. It also leads to better performance when using attention information for word discovery over unsegmented input.

pdf
Part-of-Speech Tagging on an Endangered Language: a Parallel Griko-Italian Resource
Antonios Anastasopoulos | Marika Lekakou | Josep Quer | Eleni Zimianiti | Justin DeBenedetto | David Chiang
Proceedings of the 27th International Conference on Computational Linguistics

Most work on part-of-speech (POS) tagging is focused on high resource languages, or examines low-resource and active learning settings through simulated studies. We evaluate POS tagging techniques on an actual endangered language, Griko. We present a resource that contains 114 narratives in Griko, along with sentence-level translations in Italian, and provides gold annotations for the test set. Based on a previously collected small corpus, we investigate several traditional methods, as well as methods that take advantage of monolingual data or project cross-lingual POS tags. We show that the combination of a semi-supervised method with cross-lingual transfer is more appropriate for this extremely challenging setting, with the best tagger achieving an accuracy of 72.9%. With an applied active learning scheme, which we use to collect sentence-level annotations over the test set, we achieve improvements of more than 21 percentage points.

pdf
Freezing Subnetworks to Analyze Domain Adaptation in Neural Machine Translation
Brian Thompson | Huda Khayrallah | Antonios Anastasopoulos | Arya D. McCarthy | Kevin Duh | Rebecca Marvin | Paul McNamee | Jeremy Gwinnup | Tim Anderson | Philipp Koehn
Proceedings of the Third Conference on Machine Translation: Research Papers

To better understand the effectiveness of continued training, we analyze the major components of a neural machine translation system (the encoder, decoder, and each embedding space) and consider each component’s contribution to, and capacity for, domain adaptation. We find that freezing any single component during continued training has minimal impact on performance, and that performance is surprisingly good when a single component is adapted while holding the rest of the model fixed. We also find that continued training does not move the model very far from the out-of-domain model, compared to a sensitivity analysis metric, suggesting that the out-of-domain model can provide a good generic initialization for the new domain.

2017

pdf
A case study on using speech-to-translation alignments for language documentation
Antonios Anastasopoulos | David Chiang
Proceedings of the 2nd Workshop on the Use of Computational Methods in the Study of Endangered Languages

pdf
Spoken Term Discovery for Language Documentation using Translations
Antonios Anastasopoulos | Sameer Bansal | David Chiang | Sharon Goldwater | Adam Lopez
Proceedings of the Workshop on Speech-Centric Natural Language Processing

Vast amounts of speech data collected for language documentation and research remain untranscribed and unsearchable, but often a small amount of speech may have text translations available. We present a method for partially labeling additional speech with translations in this scenario. We modify an unsupervised speech-to-translation alignment model and obtain prototype speech segments that match the translation words, which are in turn used to discover terms in the unlabelled data. We evaluate our method on a Spanish-English speech translation corpus and on two corpora of endangered languages, Arapaho and Ainu, demonstrating its appropriateness and applicability in an actual very-low-resource scenario.

2016

pdf
An Attentional Model for Speech Translation Without Transcription
Long Duong | Antonios Anastasopoulos | David Chiang | Steven Bird | Trevor Cohn
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf
An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages
Antonios Anastasopoulos | David Chiang | Long Duong
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2014

pdf
Adaptive Quality Estimation for Machine Translation
Marco Turchi | Antonios Anastasopoulos | José G. C. de Souza | Matteo Negri
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Search
Co-authors