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Introduction

Welcome to the SIGDIAL 2014 Conference, the 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue. The conference is held in Philadelphia, PA, USA on June 18-20th, jointly with
the 8th International Natural Language Generation (INLG) conference and immediately preceding the
52nd Annual Meeting of the Association for Computational Linguistics (ACL).

SIGDIAL continues to serve as a publication venue for research that spans many aspects of discourse
and dialogue. This year, the program included oral presentation and poster sessions on discourse,
semantics, generation, situated and multi-modal dialogue, dialogue system control and evaluation,
models of dialogue and spoken discourse and speech processing technology in dialogue. SIGDIAL
2014 also hosted a special session on the Dialogue State Tracking Challenge (DSTC), organized by Matt
Henderson, Blaise Thomson and Jason Williams. The papers related to the challenge that appear in the
proceedings were submitted and reviewed as regular SIGDIAL papers. Papers not accepted through the
regular review process are not included in the proceedings, but were still invited to present posters in the
special session. This is the first year SIGDIAL has issued a general call for special sessions.

We received 67 submissions—43 long papers, 20 short papers and 4 demo descriptions—from all around
the world. All papers received 3 reviews. The members of the Program Committee did a superb job in
reviewing the submitted papers. We thank them for their advice in selecting the accepted papers and for
helping to maintain the high quality of the program. In line with the SIGDIAL tradition, our aim has
been to create a balanced program that could accommodate as many favorably rated papers as possible.

Of the 43 long paper submissions: 13 were accepted as long papers for oral presentation, 9 were accepted
as long papers for poster presentation. Of the 20 short paper submissions, 8 were accepted for poster
presentation, for a total of 17 posters. There were 4 demonstration papers accepted. 9 papers were
accepted for publication to appear in the DSTC Special Session (7 long and 2 short). This year’s
SIGDIAL conference runs 2.5 days as it did in 2013 with the special session being on the final half
day.

We particularly thank the two keynote speakers, Lillian Lee (Cornell University) and Steve Young
(Cambridge University) and for their contributions to research on discourse and dialogue systems.

We thank Svetlana Stoyanchev, Mentoring Chair for SIGDIAL 2014, for her dedicated work on
coordinating the mentoring process. The goal of mentoring is to assist authors of papers that contain
important ideas but lack clarity. Mentors work with the authors to improve English language usage or
paper organization. This year, 9 of the accepted papers were mentored. We thank the Program Committee
members who served as mentors: Timo Baumann, Giuseppe Di Fabbrizio, Jens Edlund, Annie Louis,
Vincent Ng, Antoine Raux, Kristina Striegnitz, Nigel Ward and Jason Williams.

We extend special thanks to Keelan Evanini, the local arrangements chair, and his team Heather
Blackman (administrative support) and Denise Maurer (event planning). SIGDIAL 2014 would not
have been possible without Keelan and his team, who invested much effort in arranging the hotel venue
and accommodation, handling registration, making banquet arrangements and handling numerous other
preparations for the conference. We also thank the student volunteers for on-site assistance.

We thank Giuseppe Di Fabbrizio, Sponsorships Chair, for recruiting and liaising with our conference
sponsors. The sponsorship program enables valuable aspects of the program, such as the invited speakers,
conference reception and dinner. We gratefully acknowledge the support of our sponsors: Educational
Testing Service, Microsoft Research, Amazon.com, Yahoo! Labs, Honda Research Institute, Linguistic
Data Consortium, Mitsubishi Electric Research Laboratories, University of Pennsylvania Linguistics
Department, AT&T Labs Research, PARLANCE project and SENSEI project. We also thank Priscilla
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Rasmussen at the ACL for handling the financial aspects of sponsorship for SIGDIAL 2014.

We would also like to thank the INLG organizing committee, in particular Aoife Cahill and Margaret
Mitchell, for the smooth running of the joint INLG/SIGDIAL session.

We also thank the SIGdial board, especially officers Kristiina Jokinen, Amanda Stent and Jason Williams,
for their advice and support. Amanda’s guidance and direct help in all aspects of organization have been
most valuable. We thank Jason Williams and Barbara Di Eugenio for providing continuity and passing
on advice derived from their experience as program chairs for SIGDIAL 2013. We appreciate Jason’s
prompt and patient replies to all our questions.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Kallirroi Georgila and Matthew Stone
General Co-Chairs

Helen Hastie and Ani Nenkova
Technical Program Co-Chairs
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Keynote: Statistical Approaches to Open-domain
Spoken Dialogue Systems

Steve Young
Cambridge University, UK
sjyQ@eng.cam.ac.uk

In contrast to traditional rule-based approaches to building spoken
dialogue systems, recent research has shown that it is possible to imple-
ment all of the required functionality using statistical models trained
using a combination of supervised learning and reinforcement learning.
This approach to spoken dialogue is based on the mathematics of par-
tially observable Markov decision processes (POMDPs) in which user
inputs are treated as observations of some underlying belief state, and
system responses are determined by a policy which maps belief states
into actions.

Virtually all current spoken dialogue systems are designed to op-
erate in either a specific carefully defined domain such as restaurant
information and appointment booking, or they have very limited con-
versational ability such as in Siri and Google Now. However, if voice is
to become a significant input modality for accessing web-based infor-
mation and services, then techniques will be needed to enable conver-
sational spoken dialogue systems to operate within open domains.

This talk will discuss methods by which current statistical approaches
to spoken dialogue can be extended to cover much wider domains. It
will be argued that unlike many other areas of machine learning, spoken
dialogue systems always have a user on-hand to provide supervision.
Hence spoken dialogue systems provide a unique opportunity to auto-
matically adapt on large quantities of speech data without the need for
costly annotation.

1
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Crowdsourcing Street-level Geographic Information Using a
Spoken Dialogue System

Raveesh Meena Johan Boye

Gabriel Skantze  Joakim Gustafson

KTH Royal Institute of Technology
School of Computer Science and Communication
Stockholm, Sweden

{raveesh, jboyel}@csc.kth.se,

Abstract

We present a technique for crowd-
sourcing street-level geographic infor-
mation using spoken natural language. In
particular, we are interested in obtaining
first-person-view information about what
can be seen from different positions in
the city. This information can then for
example be used for pedestrian routing
services. The approach has been tested in
the lab using a fully implemented spoken
dialogue system, and has shown promis-
ing results.

1 Introduction

Crowdsourcing is increasingly being used in
speech processing for tasks such as speech data
acquisition, transcription/labeling, and assess-
ment of speech technology, e.g. spoken dialogue
systems (Parent & Eskenazi, 2011). However,
we are not aware of any attempts where a dia-
logue system is the vehicle for crowdsourcing
rather than the object of study, that is, where a
spoken dialogue system is used to collect infor-
mation from a large body of users. A task where
such crowdsourcing dialogue systems would be
useful is to populate geographic databases. While
there are now open databases with geographic
information, such as OpenStreetMap (Haklay &
Weber, 2008), these are typically intended for
map drawing, and therefore lack detailed street-
level information about city landmarks, such as
colors and height of buildings, ornamentations,
facade materials, balconies, conspicuous signs,
etc. Such information could for example be very
useful for pedestrian navigation (Tom & Denis,
2003; Ross et al., 2004). With the current grow-
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ing usage of smartphones, we might envisage a
community of users using their phones to con-
tribute information to geographic databases, an-
notating cities to a great level of detail, using
multi-modal method including speech. The key
reason for using speech for map annotation is
convenience; it is easy to talk into a mobile
phone while walking down the street, so a user
with a little experience will not be slowed down
by the activity of interacting with a database.
This way, useful information could be obtained
that is really hard to add offline, sitting in front
of one’s PC using a map interface, things like:
Can you see X from this point? Is there a big
sign over the entrance of the restaurant? What
color is the building on your right?

Another advantage of using a spoken dialogue
system is that the users could be asked to freely
describe objects they consider important in their
current view. In this way, the system could learn
new objects not anticipated by the system de-
signers, and their associated properties.

In this paper we present a proof-of-concept
study of how a spoken dialogue system could be
used to enrich geographic databases by
crowdsourcing. To our knowledge, this is the
first attempt at using spoken dialogue systems
for crowdsourcing in this way. In Section 2, we
elaborate on the need of spoken dialogue systems
for crowdsourcing geographic information. In
Section 3 we describe the dialogue system im-
plementation. Section 4 presents our in-lab
crowdsourcing experiment. We present an analy-
sis of crowd-sourced data in Section 5, and dis-
cuss directions for future work in Section 6.

2  The pedestrian routing domain

Routing systems have been around quite some
time for car navigation, but systems for pedestri-
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an routing are relatively new and are still in their
nascent stage (Bartie & Mackaness, 2006; Krug
et al., 2003; Janarthanam et al., 2012; Boye et al.,
2014). In the case of pedestrian navigation, it is
preferable for way-finding systems to base their
instructions on landmarks, by which we under-
stand distinctive objects in the city environment.
Studies have shown that the inclusion of land-
marks into system-generated instructions for a
pedestrian raises the user’s confidence in the sys-
tem, compared to only left-right instructions
(Tom & Denis, 2003; Ross et al., 2004).

Basing routing instructions on landmarks
means that the routing system would, for exam-
ple, generate an instruction “Go towards the red
brick building” (where, in this case, “the red
brick building” is the landmark), rather than
“Turn slightly left here” or “Go north 200 me-
ters”. This strategy for providing instructions
places certain requirements on the geographic
database: It has to include many landmarks and
many details about them as well, so that the sys-
tem can generate clear and un-ambiguous in-
structions. However, the information contained
in current databases is still both sparse and
coarse-grained in many cases.

Our starting point is a pedestrian routing sys-
tem we designed and implemented, using the
landmark-based approach to instruction-giving
(Boye et al., 2014). The system performs visibil-
ity calculations whenever the pedestrian ap-
proaches a waypoint, in order to compute the set
of landmarks that are visible for the user from his
current position. OpenStreetMap (Haklay & We-
ber, 2008) is used as the data source. Figure 1
shows a typical situation in pedestrian routing
session. The blue dot indicates the user’s position
and the blue arrow her direction. Figure 2 shows
the same situation in a first-person perspective.
The system can now compute the set of visible
landmarks, such as buildings and traffic lights,
along with distances and angles to those land-
marks. The angle to a building is given as an in-
terval in degrees relative to the direction of the
user (e.g. 90° left to 30° left). This is exemplified
in Figure 1, where four different buildings are in
view (with field of view marked with numbers
1-4). Landmarks that are not buildings are con-
sidered to be a single point, and hence the rela-
tive angle can be given as a single number.

When comparing the map with the street view
picture, it becomes obvious that the “SEB” bank
office is very hard to see and probably not very
suitable to use as a landmark in route descrip-
tions. On the other hand, the database does not

contain the fact that the building has six stories
and a facade made of yellow bricks, something
that would be easily recognizable for the pedes-
trian. This is not due to any shortcoming of the
OpenStreetMap database; it just goes to show
that the database has been constructed with map
drawing in mind, rather than pedestrian routing.
There are also some other notable omissions in
the database; e.g. the shop on the corner, visible
right in front of the user, is not present in the da-
tabase. Since OpenStreetMap is crowd-sourced,
there is no guarantee as to which information
will be present in the database, and which will
not. This also highlights the limitation of existing
approaches to crowd-sourcing geographic infor-
mation: Some useful information is difficult to
add off-line, using a map interface on a PC. On
the other hand, it would be a straightforward
matter given the kind of crowd-sourcing spoken
dialogue system we present next.

Figure 2: The visual scene corresponding to the
pedestrian routing scenario in Figure 1

3 A dialogue system for crowd-sourcing

To verify the potential of the ideas discussed
above, we implemented a spoken dialogue sys-
tem that can engage in spoken conversation with



users and learn details about landmarks in visual
scenes (such as Figure 2). To identify the kind of
details in a visual scene that the system could
potentially ask the users, we first conducted a
preliminary informal crowd-sourcing dialogue:
one person (the receiver), was instructed to seek
information that could be useful for pedestrian
navigation from the other person (the giver).
The receiver only had access to information
available in the maps from OpenStreetMap, as in
Figure 1, but without any marking of field of
views, whereas the giver only had access to the
corresponding visual scene (as in Figure 2). In-
teraction data from eight such dialogues (from
four participants, and four different visual
scenes) suggested that in a city environment,
buildings are prominent landmarks and much of
the interaction involves their properties such as
color, number of stories, color of roof, signs or
ornamentations on buildings, whether it has
shops, etc. Seeking further details on mentioned
signs, shops, and entities (whether mapped or
unmapped) proved to be a useful strategy to ob-
tain information. We also noted that asking for
open-ended questions, such as “Is there anything
else in this scene that I should be aware of?”
towards the end has the potential of revealing
unknown landmarks and details in the map.

Obtaining specific details about known objects
from the user corresponds to slot-filling in a dia-
logue system, where the dialogue system seeks a
value for a certain slot (= attribute). By engaging
in an open-ended interaction the system could
also obtain general details to identify new slot-
value pairs. Although slots could be in some cas-
es be multi-valued (e.g., a building could have
both color red and yellow), we have here made
the simplifying assumption that they are single
valued. Since users may not always be able to
specify values for slots we treat no-value as a
valid slot-value for all type of slots.

We also wanted the system to automatically
learn the most reliable values for the slots, over
several interactions. As the system interacts with
new users, it is likely that the system will obtain
a range of values for certain slots. The variability
of the answers could appear for various reasons:
users may have differences in perception about
slot-values such as colors, some users might
misunderstand what building is being talked
about, and errors in speech recognition might
result in the wrong slot values. Some of these
values may therefore be in agreement with those
given by other users, while some may differ
slightly or be in complete contradiction. Thus the

system should be able to keep a record of all the
various slot-values obtained (including the dis-
puted ones), identify slot-values that need to be
clarified, and engage in a dialogue with users for
clarification.

In view of these requirements, we have de-
signed our crowd-sourcing dialogue system to be
able to (1) take and retain initiative during the
interactions for slot-filling, (2) behave as a re-
sponsive listener when engaging in open-ended
dialogue, and (3) ask wh— and yes—no questions
for seeking and clarifying slot-values, respective-
ly. Thus when performing the slot-filling task,
the system mainly asks questions, acknowledges,
or clarifies the concepts learned for the slot-
values. Apart from requesting repetitions, the
user cannot ask any questions or by other means
take the initiative. A summary of all the attrib-
utes and corresponding system prompts is pre-
sented in Appendix A.

The top half of Figure 3 illustrates the key
components of the dialogue system. The Dia-
logue Manager queries the Scene Manager (SM)
for slots to be filled or slot-values to be clarified,
engages in dialogue with users to learn/clarify
slot-values, and informs the SM about the values
obtained for these slots. The SM manages a list
of scenes and the predefined slots — for each type
of landmark in visual scenes — that need to be
filled, maintains a record of slot-values obtained
from all the users, and identifies slot-values with
majority vote as the current reliable slot-value.
To achieve these objectives, the scene manager
uses an XML representation of visual scenes. In
this representation, landmarks (e.g., buildings,
junctions, etc.) — automatically acquired through
the OpenStreetMap database and the visibility
computations mentioned in Section 2 — are
stored as scene-objects (cf. Figure 4).
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text () Ot [ Dialogue
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Figure 3: Dialogue system architecture
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The Dialogue Manager (DM) uses scene-
object attributes, such as type, angle or interval
of a building, to generate referential expressions,
such as “Do you see a building on the far left?”



or “Do you see a shop on the left?” to draw the
users’ attention to the intended landmark in the
scene. During the course of interaction, the Sce-
ne Manager (SM) extends scene-objects with a
set of predefined attributes (= slots) that we iden-
tified in the preliminary study, along with their
various slot-values (cf. Figure 5). For each slot,
the SM keeps a record of slot-values obtained
through wh— questions as well as the ones dis-
puted by the users in yes—no questions (cf. ob-
tained and disputed tags in the XML), and
uses their tally to identify the slot-value in major-
ity. The system assumes this slot-value (or one of
them in case of a tie) as its best estimate of a
slot-value pair, which it could clarify with anoth-
er user using a yes—no query. During the slot-
filling mode the DM switches to open-ended in-
teraction mode to seek general details (using
prompts such as “Could you describe it/them?”),
if the user suggests/agrees that there are signs
on/at a scene-object, or a building has shops or
restaurants. Once all the slots for all the scene-
objects in a visual scene have been queried, the
DM once again switches to the open-ended inter-
action mode and queries the users whether there
are any other relevant signs or landmarks that the
system may have missed and should be aware of.
On completion of the open-ended queries the SM
selects the next visual scene, and the DM engag-
es in a new dialogue.

<scene xmlns="cityCS.scene" name=" view7.jpg" lat="59.34501"
lon="18.0614" fovl="-60" fovr="60" bearing="320" dist="100">
<scene-object>
<i1d>35274588</id> <type>building</type>
<from>-60</from> <end>-39</end>
</scene-object>
<scene-object>
<id>538907080</id> <type>shop</type>
<distance>34.82</distance>
<angle>-39</angle> <bearing>281</bearing>
</scene-object>
<scene-object>
<id>280604</id> <type>building</type>
<from>-38</from> <end>6</end>
</scene-object>
<scene-object>
<id>193906</id> <type>traffic_signals</type>
<distance>40.77</distance>
<angle>-14</angle> <bearing>306</bearing>
</scene-object>

</scééé>
Figure 4: XML representation of visual scenes

For speech recognition and semantic interpre-
tation the system uses a context-free grammar
with semantic tags (SRGS?), tailored for the do-
main. The output of semantic interpretation is a
concept. If the concept type matches the type of
the slot, the dialogue manager informs the scene
manager about the obtained slot-value. If the

! http://www.w3.0rg/TR/speech-grammar/

concept type is inappropriate the DM queries the
user once more (albeit using different utterance
forms). If still no appropriate concept is learned
the DM requests the SM for the next slot and
proceeds with the dialogue. For speech synthesis,
we use the CereVoice system developed by
CereProc?. The dialogue system has been imple-
mented using the IrisTK framework (Skantze &
Al Moubayed, 2012).

<scene-object>

<1d>35274588</id> <type>building</type>

<from>-60</from> <end>-39</end>

<slot slotName="VISIBLE">.. </slot>

<slot slotName="COLOR">

<obtained>
<value slotValue="Green">

<userlist>

<usrDtls uid="u0l1l" asrCnf="0.06" gType="WH"/>
</userlist>
</value>
<value slotValue="no-value">
<userlist>
<usrDtls uid="u02" asrCnf="0.46" gqType ="WH"/>
</userlist>
</value>
<value slotValue="Gray">
<userlist>
<usrDtls uid="u03" asrCnf="0.19" gType ="WH"/>
</userlist>
</value>
</obtained>
<disputed>

<value slotValue="Green">
<userlist>

<usrDtls uid="u02" asrCnf="0.92" gType ="YN"/>
</userlist>
</value>
</disputed>
</slot>
<slot slotName="STORIES">.. </slot>
<slot slotName="ROOF_COLOR">.. </slot>

</scene-object>

Figure 5: Every slot-value is recorded

In contrast to the slot-filling mode, when en-
gaging in an open-ended interaction, the system
leaves the initiative to the user and behaves as a
responsive listener. That is, the system only pro-
duces feedback responses, such as backchannels
(e.g., okay, mh-hmm, uh-huh), repetition requests
for longer speaker turns (e.g., could you repeat
that?), or continuation prompts such as “any-
thing else?” until the user is finished speaking.
Unless the system recognized an explicit closing
statement from the user (e.g., “I can’t”), the sys-
tem encourages the user to continue the descrip-
tions for 2 to 4 turns (chosen randomly).

To detect appropriate locations in users’
speech where the system should give feedback
response, the system uses a trained data-driven
model (Meena et al., 2013). When the voice ac-
tivity detector detects a silence of 200 ms in us-
ers’ speech, the model uses prosodic, contextual
and lexico-syntactic features from the preceding
speech segment to decide whether the system

2 https://www.cereproc.com/



should produce a feedback response. The lower
half of Figure 3 shows the additional components
of the dialogue system used in open-ended inter-
action mode. In this mode, the ASR system uses
a language model that is trained on interactions
from a related domain (verbal route descrip-
tions), in parallel to the SRGS grammar.

4 In-lab crowd-sourcing experiment

Nine visual scenes (wide-angle pictures in first-
person perspective and taken in Stockholm city,
cf. Figure 2) were used for the task of
crowdsourcing. Fifteen human participants (4
females and 11 males) participated in the
crowdsourcing exercise. All participants either
studied or worked at the School of Computer
Science and Communication, KTH, Stockholm.

Participants were placed in front of a computer
display and were told that the system will engage
them in a spoken conversation to seek or clarify
details about landmarks and other objects in vis-
ual scenes. They were told that the details would
be used for pedestrian routing and therefore they
are free to choose and specify details (in open-
ended questions) that they thought would be use-
ful when giving route instructions to another per-
son.

Each participant did the nine visual scenes in
the same order, with a 1 minute pause between
each of them. The first visual scene was used as
a trial in order to familiarize participants with the
interaction scenario. For this reason, the trial in-
teraction was specifically designed to engage the
participants in both wh— and yes—no type ques-
tions. We also wanted to investigate whether the
use of wh— or yes—no questions alone has any
impact on the interactions. For the remaining
eight interactions, the dialogue system therefore
alternatively used wh— and yes—no questions
throughout the whole dialogue. The order of que-
ry types was switched for each successive partic-
ipant. Thus visual scenes presented with wh—
queries to a participant p; were presented to par-
ticipant p;.; with only yes-no queries, and vice-
versa. After each interaction participants were
asked (1) whether the system appeared to be fa-
miliar with the visual scene; and (2) whether the
interactions went smoothly.

An example of a conversation with wh-type
queries is presented in Table 1. The second col-
umn indicates the various types of utterances
(dialogue acts) used by the system during this
interaction. Note that during the slot-filling
mode, the system has the initiative, whereas in

the open-ended queries (cf. rows 15-22 in Table
1) the system gives the initiative to the partici-
pant and only produces feedback responses. Ta-
ble 2 presents a conversation with yes—no queries
following the conversation in Table 1. In a con-
versation with only yes—no queries, a wh— query
may be presented if a slot has been observed
with no-value (cf. rows 9-10 in Table 1) or when
the participant disputes the system’s current best
estimate (cf. rows 6-9 in Table 2).

S Introduction Could you help me with some de-

tails about this view?

P Yes

S wh—query Do you see a building on the far
left?

P Yes

S Backchannel Mh-hmm

S wh—query What color does the building have?

P Cream color [Green color]

S Reprise Green

S wh—query How many floors is this building?

P | don’t know [l do no]

S wh—query Are there any important signs in
this scene that | may have missed?

P No

S Backchannel Uh-huh

S wh—query Is there anything peculiar in this

scene that | should be familiar with

P There is a bike painted on street
just in front of me
[ is the right pink university in front
of may ]

S Backchannel Anything else?

P Yeah its white paint [Yes light pink]
S Backchannel Mh-hmm

P That's it [that that]

S Backchannel Ehm

P I am done [okay]

S Ending Okay, thanks

Table 1: An example interaction with wh- que-
ries for the visual scene in Figure 2. S: system, P:
participant (here, u01 from Figure 5). ASR re-
sults are shown within square brackets.

S Introduction Could you help me with some details

about this view?

P Yes

S yes—no Is the building on the far left visible to
query you?

P Yes

S Backchannel Mh-hmm

S yes—no Does this building have green color?
query

P No

S Backchannel Uh-huh

S wh—query But than what color is the building?




P white [light]

S Repeat Sorry, what color did you say?

P white [light]

S wh-query How many stories is this building?

P I don’t know [l do rental]

S Backchannel Ehm

S wh-query Are there any important signs in this
scene that | may have missed?

P Ehm no [nine no]

S Backchannel Ehm

S yes—no I am informed that there are other

query important landmarks or structures in

this scene that | should be aware of,
is it true?

P No

S Backchannel uh-huh

S Ending Okay, thanks

Table 2: An example interaction with yes—no
queries corresponding to the visual scene in Fig-
ure 2. S: system, P: participant (here u02 from
Figure 5). ASR results are shown within square
brackets.

5 Data analysis

We analyzed the data (158 interactions) col-
lected from the experiment along the following
tracks: first, we compare the majority value of
the slots to the ground truth as given by a human
annotator; second, we explore how the ground
truth of slot-values could be estimated automati-
cally; third, we also analyzed the instances where
the participants disputed the system’s current
estimate of slot-values; and fourth, we examined
the post-experimental questionnaires.

5.1 Rate of learning slot-values

A total of 197 slots were learned in the exper-
iment. We analyzed how many slot-values had
been correctly retrieved after 1, 2... 15 users. In
Figure 6, the curve “Majority” illustrates the
fraction of slot-values correctly learned with
each new user, under the assumption that the
slot-values with majority votes — from all the 15
users — constitute the ground truth. Thus after
interacting with the first user the system had ob-
tained 67.0% of slot-values correctly (according
to the majority) and 96.4% of slot-values after
interacting with the first six users. Another eight
users, or fourteen in total, were required to learn
all the slot-values correctly. The progression
curve thus provides an estimate of how many
users are required to achieve a specific percent-
age of slot-values correctly if majority is to be
considered the ground truth. The curve “Not-in-

Majority” indicates the number of slot with val-
ues that were not in the majority. Thus after in-
teracting with the first user 20.8% of slot-values
the system had obtained were not in majority and
could be treated as incorrect. Note that the curves
Majority and Not-in-Majority do not sum up to
100%, this is because we consider no-value as a
valid slot-value, and treat the slot as unfilled. For
example, 12.2% of the slots remained unfilled
after interacting with the first user.
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Figure 6: Rate of learning slot-values with two differ-
ent estimates of ground truth

We also investigated how close the majority is
to the actual truth. A human annotator (one of the
coauthors) labeled all the obtained slot-values as
either sensible or insensible, based on the com-
bined knowledge from the corresponding maps,
the visual scenes, and the set of obtained values.
Thus a slot could have many sensible values. For
example, various parts of a building could be
painted in different colors. The progression
curves “Sensible” and “Insensible” in Figure 6
illustrate the fraction of total slots for which the
learned values were actually correct and incor-
rect, respectively. While the curve for sensible
values follows the same pattern as the progres-
sion curve for majority as the estimate of ground
truth, the percent of slot-values that were actually
correct is always lower than the majority as
ground truth, and it never reached 100%. The
constant gap between the two curves suggests
that some slot-values learned by the majority
were not actually the ground truth. What led the
majority into giving incorrect slot-values is left
as a topic for future work.

As mentioned earlier, much of the slot-filling
interaction involved buildings and their proper-
ties. Figure 7 illustrates that sensible values for
most slots, pertaining to whether a building is
visible, whether it is residential, whether it has
shops, and the color of roof were obtained by
interacting with only few participants. In con-
trast, properties such as color of the building and



number of stories required many more partici-
pants. This could be attributed to the fact that
participants may have differences in perception
about slot-values. As regards to whether there are
signs on buildings, we observed that the recall is
relatively low. This is largely due to lack of
common ground among participants about what
could be considered a sign. Our intentions with
designing this prompt was to retrieve any peculi-
ar detail on the building that is easy to locate: for
us a sign suggesting a name of restaurant is as
useful as the knowledge that the building has
blue sunshade on the windows. Some partici-
pants understood this while other didn’t.
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Figure 7: Learning rate of various slots for land-
mark type building

5.2  Estimated ground truth of slot-values

The 15 subjects in the in-lab experiment were all
asked for the same information. In a real applica-
tion, however, we want the system to only ask
for slots for which it has insufficient or conflict-
ing information. If the ground truth of a certain
slot-value pair can be estimated with a certainty
exceeding some threshold (given the quality re-
quirements of the database, say 0.8), the system
can consider the matter settled, and need not ask
about that slot again. We therefore want to esti-
mate the ground truth of slot-values along with a
certainty measure. To this end, we use the
CityCrowdSource  Trust software package
(Dickens & Lupu, 2014), which is based on the
probabilistic approach for supervised learning
when we have multiple annotators providing la-
bels (possibly noisy) but no absolute gold stand-
ard, presented in Raykar et al. (2009).

Using this approach, a question concerning the
color of a building, say with ID 24, (e.g. “What
color is the building?”’) would be translated into
several binary predicates COLOR_Red(24),
COLOR_Brown(24), COLOR_Orange(24), etc.
The justification for this binary encoding is that
the different color values are not mutually exclu-

sive: A building might of course have more than
one color, and in many cases more than one color
name might be appropriate even though the
building has only one dominating color (e.g. to
describe the color either as “brown” and “red”
might be acceptable to most people). Figure 8
shows the incremental estimates for different
colors for a certain building (OpenStreetMap 1D
163966736) after 1, 2... 15 subjects had been
asked. The answer from the first subject was er-
roneously recognized as “pink”. The next 9 sub-
jects all referred to the building as “brown”.
Among the final subjects, 3 subjects referred to
building as “red”, and 2 subjects as “brown”. The
final truth estimates are 0.98 for “brown”, 0.002
for “red”, and 0.00005 for “pink”. The diagram
shows that if the certainty threshold is set to 0.8,
the value “brown” would have been established
already after 4 subjects.
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Figure 8: Probabilities of different estimated ground
truth values for the color of a certain building

5.3 Disputed slot-values

We also examined all system questions of
yes—no type that received negative answers, i.e.
instances where the participants disputed the sys-
tem’s current best estimate (based on majority
vote) of a slot-value. Among the 95 such in-
stances, the system’s current best estimate was
actually insensible only on 43 occasions. In 30 of
these instances the participants provided a recti-
fied slot-value that was sensible. For the remain-
ing 13 instances the new slot-values proposed by
the participant were actually insensible. There
were 52 instances of false disputations, i.e. the
system’s current estimate of a slot-value was
sensible, but the participants disputed it. 6 of the-
se occurrences were due to errors in speech
recognition, but for the remaining 46 occasions,
error in grounding the intended landmark (15),
users’ perception of slot-values (3), and ambigui-
ty in what the annotator terms as sensible slot-
values (28), (e.g. whether there are signs on a
building (as discussed in Section 5.1)) were iden-



tified as the main reasons. This suggests that
slots (i.e. attributes) that are often disputed may
not be easily understood by users.

5.4  Post-experimental questionnaire

As described above, the participants filled in a
guestionnaire after each interaction. They were
asked to rate the system’s familiarity with the
visual scene based on the questions asked. A
Mann-Whitney U test suggests that participants’
perception of the system’s familiarity with the
visual scene was significantly higher for interac-
tions with yes—no queries than interactions with
wh— queries (U=1769.5, p= 0.007). This result
has implications for the design choice for sys-
tems that provide as well as ask for information
from users. For example, a pedestrian routing
system can already be used to offer routing in-
structions as well as crowdsourcing information.
The system is more likely to give an impression
of familiarity with the surrounding, to the user,
by asking yes—no type questions than wh-
questions. This may influence a user’s confi-
dence or trust in using the routing system.

Since yes-no questions expect a “yes” or
“no” in response, we therefore hypothesized that
interactions with yes—no questions would be per-
ceived smoother in comparison to interactions
with wh— questions. However, a Mann-Whitney
U test suggests that the participants perceived no
significant difference between the two interac-
tion types (U=1529.0, p= 0.248). Feedback
comments from participants suggest that abrupt
ending of open-ended interactions by the system
(due to the simplistic model of detecting whether
the user has anything more to say) gave users an
impression that the system is not allowing them
to speak.

6 Discussion and future work

We have presented a proof-of-concept study on
using a spoken dialogue system for crowd-
sourcing street-level geographic information. To
our knowledge, this is the first attempt at using
spoken dialogue systems for crowdsourcing in
this way. The system is fully automatic, in the
sense that it (i) starts with minimal details — ob-
tained from OpenStreetMap — about a visual sce-
ne, (ii) prompts users with wh— questions to ob-
tain values for a predefined set of attributes; and
(iii) assumes attribute-values with majority vote
as its beliefs, and engages in yes—no questions
with new participants to confirm them. In a data
collection experiment, we have observed that

after interacting with only 6 human participants
the system acquires more than 80% of the slots
with actually sensible values.

We have also shown that the majority vote (as
perceived by the system) could also be incorrect.
To mitigate this, we have explored the use of the
CityCrowdSource  Trust software package
(Dickens & Lupu, 2014) for obtaining the proba-
bilistic estimate of the ground truth of slot-values
in a real crowd-sourcing system. However, it is
important not only to consider the ground truth
probabilities per se, but also on how many con-
tributing users the estimate is based and the qual-
ity of information obtained. We will explore the-
se two issues in future work.

We have observed that through open-ended
prompts, the system could potentially collect a
large amount of details about the visual scenes.
Since we did not use any automatic interpretation
of these answers, we transcribed key concepts in
participants’ speech in order to obtain an esti-
mate of this. However, it is not obvious how to
quantify the number of concepts. For example,
we have learned that in Figure 2, at the junction
ahead, there is: a traffic-sign, a speed-limit sign,
a sign with yellow color, a sign with red color, a
sign with red boarder, a sign that is round, a sign
with some text, the text says 50. These are details
obtained in pieces from various participants.
Looking at Figure 2 one can see that these pieces
when put together refer to the speed-limit sign
mounted on the traffic-signal at the junction.
How to assimilate these pieces together into a
unified concept is a task that we have left for fu-
ture work.
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Appendix A

The table below lists slots (= landmark attributes) and the corresponding wh— and yes—no system questions. For
attributes marked with * the dialogue manager switches to open-ended interaction mode.

Slot (=attribute )

System wh— questions

System yes—no questions

Visible: whether a particular
landmark is visible from this
view.

Do you see a building on the far left?
Do you see another building in front of
you?

Is there a junction on the right?

Do you see a traffic-signal ahead?

Is the building on the far right visible to
you?

I think there is another building in front of
you, do you see it?

Can you see the junction on the right?

Are you able to see the traffic-signal
ahead?

Color of the building

What color does the building have?
What color is the building?

I think this building is red in color, what do
you think?
Does this building have red color?

Size of the building (in num-
ber of stories)

How many floors do you think are
there in this building
How many stories is this building

I think there are six floors in this building,
what do you think?
Is this building six storied?

Color of the building’s roof

What color does the roof of this build-
ing have?
What color is the roof of this building?

I think the roof of this building is orange in
color, what do you think?

Do you think that the roof of this building
is orange?

Signs or ornamentation on the
building

Do you see any signs or decorations
on this building?

I think there is a sign or some decoration
on this building, do you see it?

There may be a sign or a name on this
building, do you see it?

Shops or restaurants in the
building

Avre there any shops or restaurants in
this building?

I am informed that there are some shops or
restaurants in this building, is it true?

I think there are some shops or restaurants
in this building, what do you think?

Signs at landmarks

Are there any important signs at the
junction/crossing?

I believe there is a sign at this junc-
tion/crossing, do you see it?

Do you see the sign at this junc-
tion/crossing?

“Description of sign

Could you describe this sign?
What does this sign look like?
Does the sign say something?

Could you describe this sign?
What does this sign look like?
Does the sign say something?

“Signs in the visual scene

Avre there any important signs in this
scene that | may have missed?

Have | missed any relevant signs in
this scene?

There are some important signs in this
scene that could be useful for my
knowledge, am I right?

I am informed that there are some signs in
this scene that are relevant for me, is it
true?

“Landmarks in the visual sce-
ne

Are there any other important build-
ings or relevant structures in this scene
that I should be aware of?

Is there anything particular in this
scene that I should be familiar with?
Have | missed any relevant buildings
or landmarks in this scene?

I am informed that there are some im-
portant landmarks or structures in this sce-
ne that | should be aware of, is it true?

| have been told that there are some other
things in this scene that | are relevant for
me, is it true?

| believe | have missed some relevant
landmarks in this scene, am I right?

"Description  of  unknown
landmarks e.g. shop, restau-
rant, building, etc.

Could you describe it?
Could you describe them?
How do they look like?

Could you describe it?
Could you describe them?
How do they look like?
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Abstract

Mobile Internet access via smartphones
puts demands on in-car infotainment sys-
tems, as more and more drivers like to ac-
cess the Internet while driving. Spoken
dialog systems (SDS) distract drivers less
than visual/haptic-based dialog systems.
However, in conversational SDSs drivers
might speak utterances which are not in
the domain of the SDS and thus cannot
be understood. In a Wizard of Oz study,
we evaluate the effects of out-of-domain
utterances on cognitive load, driving per-
formance, and usability. The results show
that an SDS which reacts as expected by
the driver, is a good approach to control in-
car infotainment systems, whereas unex-
pected SDS reactions might cause severe
accidents. We evaluate how a dialog initia-
tive switch, which guides the user and en-
ables him to reach his task goal, performs.

1 Introduction

The acceptance of smartphones is a success story.
These devices allow people to access the Internet
nearly anywhere at anytime. While driving, using
a smartphone is prohibited in many countries as it
distracts the driver. Regardless of this prohibition,
people use their smartphone and cause severe in-
juries (National Highway Traffic Safety Adminis-
tration (NHTSA), 2013). In order to reduce driver
distraction, it is necessary to integrate the smart-
phones functionality safely into in-car infotain-
ment systems. Since hands and eyes are involved
in driving, a natural and intuitive speech-based in-
terface increases road safety (Maciej and Vollrath,
2009). There are already infotainment systems
with Internet applications like e.g. weather, music
streaming, gas prices, news, and restaurant search.

However, conversational spoken dialog sys-
tems (SDS) to control all these applications and
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the car’s functionality, are still missing. Cur-
rent SDSs operate mostly in specific domains and
they understand user utterances which are related
to these domains. While using natural language,
users are not restricted to specific domains. Thus
one crucial problem for them is to know which ut-
terances the system is able to understand. Peo-
ple use different approaches to solve this prob-
lem, for example by reading the manual, using on-
screen help, or relying on their mental model of
the SDS. In multi-domain SDSs, utterances can be
quite complex and remembering all of them or dis-
playing them on screen would not be possible. As
a result, as long as conversational SDSs are not
able to operate in much wider domains, sooner
or later the user will speak an utterance which is
in his mental model of the SDS, but cannot be
processed. Such utterances can be divided into
out-of-domain and out-of-application-scope (Bo-
hus and Rudnicky, 2005). We induce errors in
domain switches and not within one domain, thus
only out-of-domain utterances are considered.

In this paper, we present results from a Wizard
of Oz (WoZ) study on multi-domain interaction
with an in-car SDS to evaluate the effects of out-
of-domain utterances on driver performance. We
considered four different system reactions: suc-
cessful domain switch, misunderstanding, non-
understanding, and a dialog initiative switch. By
analyzing them concerning driver distraction and
usability, we are able to evaluate whether a dia-
log initiative switch is an appropriate response to
an out-of-domain utterance or not. The results of-
fer valuable clues for the development of multi-
domain in-car SDSs.

The remainder is structured as follows: Section
2 provides an overview of studies in this context.
Section 3 describes the domain of the study which
is shown in Section 4. Data analysis methods are
defined in Section 5. We present and discuss the
results in Section 6 and conclude in Section 7.

Proceedings of the SIGDIAL 2014 Conference, pages 12-21,
Philadelphia, U.S.A., 18-20 June 2014. (©2014 Association for Computational Linguistics



2 Related Work

Driver distractions, due to secondary tasks, are
evaluated in many studies (a good overview pro-
vides Ei-Wen Lo and Green (2013)). The driver’s
performance is generally better when using speech
interfaces than manual or visual interfaces, how-
ever, interacting with an SDS is often worse than
just driving (Barén and Green, 2006). Most stud-
ies consider specific domains and do not evalu-
ate how to handle domain switches. Kun et al.
(2013) evaluated multi-threaded dialogs between
humans while driving. By interrupting a dialog,
they observed an increase of cognitive load, which
affected the driving performance negatively. The
participants were prepared that an interruption will
be initiated at some time. This means they might
be surprised, however, it won’t be as unexpected as
system reactions in response to out-of-domain ut-
terances. In this work, we evaluate a dialog initia-
tive switch, as a possible reaction to out-of-domain
utterances.

In a driving simulator study, Kun et al. (2007)
showed that low SDS recognition accuracy affects
the steering wheel angle variance negatively. This
is first evidence that in-car SDSs need to han-
dle speech recognition or language understand-
ing errors intelligently. In preliminary work to
this study, we analyzed a dataset containing dia-
log errors in relation to driving performance, mea-
sured by the lane change task (Mattes, 2003). This
showed slight evidence that dialog errors, such as
responses to out-of-domain utterances, have an in-
fluence on driving performance. However, the lane
change task is not the right driving task for such
a fine granular analysis, as drivers are only occu-
pied during a lane change and thus not constantly
at the same level. Therefore, we analyze driving
performance with the Continuous Tracking and
Reaction (ConTRe) task (Mahr et al., 2012).

3 User Tasks

In a user experiment it is crucial to set real tasks
for users, since artificial tasks will be hard to re-
member and can reduce their attention. We ana-
lyzed current in-car infotainment systems with In-
ternet access and derived eight multi-domain tasks
from their functionality (see Table 1). Since only
few natural use cases involve more than three do-
mains, every user task is a story of three subtasks.
In task number 5 for example, a user has to start
a subtask, which navigates him to Berlin. Then
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he would like to search an Italian restaurant at the
destination. Finally, he adds the selected restau-
rant to his address book.

No Domain 1 Domain 2 Domain 3

1 POI Search Restaurant Call

2 Knowledge | Ski Weather Navigation

3 Weather Hotel Search Address book

4 Play Artist | News Search | Forward by eMail
5 Navigation Restaurant Save Address

6 News Search Play Artist Share on Facebook
7 News Search | Knowledge Convert Currency
8 Navigation Gas Prices Status Gas Tank

Table 1: Multi-domain user tasks.

At the beginning of a task and during a sub-
task, the SDS always reacts as it is expected by
the users, which means it answers their requests.
This increases the stress when the system suddenly
starts to react unexpectedly. After presenting the
final answer of a subtask, the user has to initiate
a domain switch. In response to domain switch-
ing utterances four different system reactions were
used (see Section 4.2.2).

4 User Experiment

Developing an SDS includes specifying a gram-
mar or training statistical language models for
speech recognition. These steps precede any real
user test. In system-initiated dialogs, with a few
possible utterances, specifying a grammar is fea-
sible. However, in strictly user-initiative dialogs
covering multiple domains, this is rather compli-
cated. A WoZ study does not require to develop
speech recognition and language understanding as
this is performed by a human (Fraser and Gilbert,
1991). In addition, the system reaction is con-
trolled and not influenced by recognition errors.
Our study requires such a controlled environment,
as an unexpected system reaction, due to a recog-
nition error, would influence the results negatively.

Driver distraction and usability ratings vary
among people and depend on age, personality, ex-
perience, context, and many more. Therefore, it
is essential to conduct a user study with people
who might use the SDS later on. A study by
the NHTSA (National Highway Traffic Safety Ad-
ministration (NHTSA), 2013) showed that 73% of
the drivers involved in fatal crashes due to cell
phone use in 2011, were less than 40 years old. For
this reason, our study considers drivers between
18 and 40 years who are technically affine and are
likely to buy a car equipped with an infotainment
system with Internet access.



4.1 Set-Up of the Experiment

When designing a user interaction experiment, it is
important that it takes place in a real environment.
As driving on a real road is dangerous, we used
a fixed-base driving simulator in a laboratory. A
screen in front of the car covers the driver’s field
of view (see Figure 1). Steering and pedal signals
are picked from the car’s CAN bus.

It is important that the user assumes he is in-
teracting with a computer as “human-human in-
teractions are not the same as human-computer in-
teractions” (Fraser and Gilbert, 1991). The wiz-
ard, a person in charge of the experiment, was lo-
cated behind the car and mouse clicks or any other
interaction of the wizard was not audible in the
car. To ensure a consistent behavior of the wiz-
ard, we used SUEDE (Klemmer et al., 2000) to
define the dialog, which also provides an interface
for the wizard. SUEDE defines a dialog in a state
machine, in which the system prompts are states
and user inputs are edges between them. The con-
tent of system prompts was synthesized with NU-
ANCE Vocalizer Expressive! version 1.2.1 (Voice:
anna.full). During the experiment, the wizard
clicks the corresponding edge after each user in-
put and SUEDE plays the next prompt.

Figure 1: Set-up of the experiment

4.2 Design of the Experiment

Driving a car requires the driver to focus on the
road and react appropriately to sudden events.
However, if drivers are occupied with a secondary
task, such as controlling an infotainment system,
their attention to the road might suffer. This is due
to the fact that the human’s performance is reduced
when human resources overlap (Wickens, 2008).
In this experiment, a dual task scenario is used by
driving in a simulator and interacting with an SDS
at the same time. There is no visual display in

"http://www.nuance.com/for-business/mobile-
solutions/vocalizer-expressive/index.htm
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the car, as this would require additional human re-
sources and it would increase the driver distraction
(Young and Regan, 2007).

4.2.1 Primary Task: Driving Simulator

One major requirement for the driving simulator is
to ensure a controlled and comparable driver dis-
traction measure over all interaction variants and
participants. The open-source driving simulator
OpenDS provides a driving environment and ex-
tensive logging facilities (Math et al., 2012). As
explained in Section 2, it is essential to keep the
driver occupied at a constant level all the time.
Therefore, we used the ConTRe task (Mahr et al.,
2012), which consists of a continuous steering task
and a reaction task.

Figure 2 shows the ConTRe task with steering
cylinders and a traffic light. The yellow steering
cylinder moves unpredictably right and left at a
constant distance from the driver. The driver has
to steer the blue cylinder to superpose it with the
middle section of the yellow one. This is similar
to driving on a curved road. Sometimes a driver
needs to react to sudden events to prevent an acci-
dent. A traffic light shows randomly red and green
and requires the driver to push the throttle or brake
pedal. As the car drives constantly at 50km/h, the
pedals are only pushed in response to the traffic
light. The movement of the yellow cylinder and
the appearance of the traffic light can be controlled
by manipulating OpenDS’ control variables. We
used the “hard driving” condition as described by
Mabhr et al. (2012).

Figure 2: Continuous tracking and reaction task

4.2.2 Secondary Task: Responses to Domain
Switching Requests

A task in our experiment consists of three subtasks
and each subtask requires two to four semantic
concepts. For a user it is possible to insert mul-
tiple concepts at once:

U: “Search an Italian restaurant at my destination”



or as single utterances in a dialog:

U: “Search an Italian restaurant”

S: “Where do you search an Italian restaurant?”

U: “At my destination”
Prompts were created for all possible combina-
tions. SUEDE provides a GUI for the wizard to
select which semantic concepts a user input con-
tains. Depending on the selection, either another
concept is requested or the answer is provided.
Within one subtask, the system always reacts as
expected by the user. An answer for the presented
example might look like:

S: “There is one Italian restaurant: Pizzeria San Marco.”

After this, the user has to initiate a domain
switch to save the pizzeria’s address into his
personal address book. Such user-initiated do-
main switches challenge current SDSs as lan-
guage models increase and thus speech recogni-
tion as well as language understanding is error
prone (Carstensen et al., 2010). Furthermore, the
user could request a functionality which is not sup-
ported by the system. In case of such a request,
SDSs react differently and could apply error re-
covery strategies if the error is recognized. To an-
alyze the impact of error recovery strategies in the
car, we use four different kinds of responses to do-
main switching requests.

Figure 3 shows the study’s conditions. Detailed
dialogs that corresponds to them can be found
in the Appendix. First of all, we consider the
Expected Reaction (ER) condition, in which the
SDS reacts as expected by the user and switches
the domain. As the speech is recognized by a wiz-
ard, this is an optimal system without any errors.

Miscommunication can be distinguished be-
tween misunderstanding and non-understanding
(Skantze, 2007). In the MisUnderstanding (MU)
condition, the SDS does not recognize the do-
main switch request and it responses in context
of the current domain. On the contrary, in the
Non-Understanding (NU) condition, it recognizes
an out-of-domain utterance and refuses the ac-
tion by apologizing and encouraging the user to
rephrase his utterance (a combination of Bohus
and Rudnicky (2005)’s Notify and AskRephrase
error handling strategies). The only way to pro-
ceed with a MU or NU task in our experiment is to
use an explicit domain switching command, such
as “start radio application”. As we have shown
in Reichel et al. (2014), participants do not use
such commands naturally in a speech-only info-
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tainment system and only use them after trying
numerous unsuccessful utterances. Another ap-
proach is a Dialog Initiative Switch (DIS) to guide
the user after recognizing an out-of-domain utter-
ance (Notify and YouCanSay strategy (Bohus and
Rudnicky, 2005)). Therefore, the SDS proposes a
choice of four possible domains to interact with.
Users have to select the first option which was fol-
lowed by four possible actions within this domain.
By selecting the desired action, the SDS reads out
four examples of possible utterances. After that,
the dialog initiative is given back to the user.

e.g. “add restaurant”,

Execute Refuse

Non-Under-
standing (NU)

Misunder-
standing (MU)

Expected
Reaction (ER)

Dialog Initiative
Switch (DIS)

Y
Miscommunication

Figure 3: Domain switching response conditions

4.3 Procedure of the experiment

The experiment starts with an initial questionnaire
to create a profile of the participant, concerning
age, experience with smartphones, infotainment
systems and SDSs. Then participants are intro-
duced to the driving task and they have time to
practice till being experienced. After completing
a baseline drive, they start to use the SDS. For
each spoken dialog task users get a story describ-
ing in prose what they like to achieve. To mini-
mize priming effects, they have to remember their
task and are not allowed to keep the description
during the interaction. There is no explanation
or example of the SDS, apart from a start com-
mand for activation. After the start command, the
system plays a beep and the user can say what-
ever he likes to achieve his task. The exploration
phase consists of four tasks, in which the system
reacts as it is expected by the user. This enables
the user to get used to the SDS while driving. In
the second part of the experiment, one task for
each condition was completed (ER, MU, NU, and
DIS). The conditions were assigned randomly to
a task and each one was rated by a Subjective
Assessment of Speech System Interfaces (SASSI)
(Hone and Graham, 2000) and Driver Activity
Load Index (DALI) (Pauzi€ et al., 2007) question-
naire. At end of the experiment, each participant
completed a second baseline drive without using
the SDS to analyze whether the driving perfor-
mance changed to the first baseline drive or not.



After that, the four conditions were compared in a
questionnaire.

S Evaluation Metrics and Hypotheses

The goal of this study is to evaluate four SDS
response conditions concerning driver distraction
and usability. Therefore, we used four kinds
of measurements (see Table 2): objective driv-
ing performance logged by OpenDS, subjective
driver distraction with DALI questionnaires, us-
ability scores measured by SASSI questionnaires,
and dialog performance. The steering deviation
value measures the driver’s performance to keep
the blue cylinder superposed to the yellow one in
the ConTRe task. Reaction times between the ap-
pearance of a traffic light and the pedal press are
logged as well as wrong and missed pedal presses.
The DALI questionnaire consists of 7 questions
which are assigned to 7 domains to evaluate the
driver’s cognitive load. We did not ask for visual
or haptic demand, as the system does not have vi-
sual output or haptic input. A 7-point Likert scale
was used: low cognitive load (-3) to high cognitive
load (+3). SASSI is widely used to measure the
usability of an SDS covering 6 dimensions with
34 questions. We used a 7-point Likert scale from
strong disagree (-3) to strong agree (+3). High
values mean good usability, except for annoyance
and cognitive demand ratings, which are opposed.

objective driving
performance
(OpenDS)

steering deviation

reaction time

missed reaction

wrong reaction

global attention

auditory demand

interference

temporal demand

system response accuracy (SRA)
likeability (Like)

cognitive demand (Cog Dem)
annoyance (Ann)

habitability (Hab)

speed

task success

user response delay

system turn duration

user turn duration

cognitive load
(DALI)

usability (SASSI)

dialog performance

Table 2: Evaluation metrics

Obviously, we expect that drivers perform best
during the baseline drives without controlling the
SDS. As ER does not stress or frustrate drivers and
they do not need much cognitive power to think

16

what to say, there won’t be huge differences be-
tween ER and baseline drives. On the contrary,
if the system does not react as expected (MU and
NU), we expect a worse driving performance and
poor usability ratings. NU should be rated bet-
ter than MU, as the SDS explains the problem.
The interesting part is how a DIS will perform as
an error handling strategy to out-of-domain utter-
ances. We assume that it is rated better than MU
and NU and worse than ER. As the help dialogs in
DIS are long, DIS might tend towards MU and NU
in terms of driver distraction. However, it will be
rated better in terms of usability because the task
success is expected to be higher.

: s ER
| MU_NU
DIS

SRA Like CogDem Ann Hab Speed

Figure 4: Usability ratings, all of them are significant
(p<.001) except of: speed between DIS and MU_NU

6 Results

In the following, evaluation results of the four do-
main switching responses are shown. We analyzed
data from 30 participants (16m/14f), with average
age of 26.65 (SD: 3.32). Their experience with
SDS is little (6-Likert Scale, avg: 3.06, SD: 1.48)
as well as the usage of SDSs (5-Likert Scale, avg:
2.04, SD: 1.16). We asked them how they usu-
ally approach a new system to learn its interaction
schema and scope of operation. All 30 of them
try a new application on their smartphone without
informing themselves how it is used. Concerning
infotainment systems, trying is also the most used
learning approach, even while driving (26 people).
This means, people do not read a manual, but the
system has to be naturally usable. In terms of driv-
ing experience, all participants have a driver li-
cense for average 8.6 (SD: 3.5) years and most of
them use their car daily. Considering the objective
driving performances of the two baseline drives,
there are no significant differences, which means
the participants performed at a constant level over
the entire experiment. Figure 4, 5 and 6 show a
detailed overview of the evaluation results, which
will be explained in this Section.
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6.1 SDS which Reacts as Expected (ER)

First of all, results of an optimal SDS (ER), which
reacts as expected and does not make any mis-
takes, are presented. The objective driver perfor-
mance (see Figure 5) is slightly worse than the
baseline drives in terms of steering and pressing
the right pedals, but not significantly. However,
reaction times are worse than without interacting
with an SDS. This corresponds to the results from
Patten et al. (2004), who observed an increase in
reaction times when drivers talk to someone on the
phone. The cognitive load (see Figure 6) caused
by an optimal SDS is negative in all dimensions,
which means an optimal SDS does not put high
demands on the driver. In general, ER was rated

17

very good in terms of usability (see Figure 4) and
would most likely be accepted by young drivers.

6.2 Mis- and Non-Understanding (MU, NU)

The results of MU and NU do not show signifi-
cant differences in any dimension. Therefore, the
mean value of MU and NU is used. As shown in
Figure 6, the driver’s cognitive load is high in all
dimensions for MU_NU. In terms of stress and at-
tention, it is significantly higher than during base-
line drives (other DALI dimensions are not as-
sessed for baseline drives). Due to the increased
cognitive load, the driver’s performance (see Fig-
ure 5) concerning steering, reaction times, and
pedal presses decreases significantly compared to
baseline drives. Especially the number of times



drivers do not react to external events at all (missed
pedal), or they do not react appropriately (wrong
pedal), increases strongly. The usability ratings
provide evidence how users rate an SDS which is
not usable.

As expected, ER performs better than MU_NU.
An unexpected system reaction causes higher cog-
nitive load in all dimensions. However, in contrast
to what one might expect, the driver’s steering per-
formance and reaction times are not better than for
ER (psteeringz-og?’ and preaction=-215).

6.3 Dialog Initiative Switch as an Out-Of-
Domain Handling Strategy (DIS)

Previous Sections have shown that it is impor-
tant to minimize misunderstandings and non-
understandings in a safe and usable in-car infotain-
ment system. Comparing DIS with an optimal and
a worst-case SDS shows whether it is a reason-
able approach to handle out-of-domain utterances
or not. We use a single factor variance analysis
(ANOVA) with repeated measurements to identify
the best (Helmert contrast) and worst (difference
contrast) condition out of ER, DIS, and MU_NU.
If DIS lays between ER and MU_NU, we analyze
whether DIS tends towards ER or MU_NU. There-
fore, we compare the differences of ER-DIS with
MU _NU-DIS and use a one sample t-test.

6.3.1 Driving Performance

The ANOVA did not show any significant differ-
ences in drivers’ steering performances or reaction
times (see Figure 5). Using a Helmert contrast to
determine the best response, the ANOVA identi-
fied ER as the condition with significantly fewest
missed and wrong reactions. There is no differ-
ence between DIS and MU_NU, thus DIS tends in
terms of objective driver distraction more towards
MU_NU than to ER.

6.3.2 Cognitive Load

Analyzing the cognitive load of ER, DIS, and
MU _NU (see Figure 6), the ANOVA identifies ER
as the significant best condition (p<.002). The
significant worst one in terms of attention, stress,
and interference is MU_NU, which means DIS
lays in between for these dimensions. However,
no evidence is found for stress or interference
whether DIS tends towards ER or MU_NU. In
global attention, DIS tends slightly (p<.031) to-
wards MU_NU. Furthermore, the long prompts in
DIS put high auditive demands on the driver.
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6.3.3 Usability

As task success of MU_NU dialogs is poor (see
Section 6.4), it is obvious that ER is the best
(p<.001) and MU_NU is the worst condition
(p<.001) in terms of usability (see Figure 4). All
DIS ratings, except of speed, are between ER and
MU_NU (p<.001). Speed is basically identical
to the MU_NU rating, which is due to the long
prompts. There is a slight tendency of DIS towards
ER in system response accuracy (p<.051) and in
habitability (p<.077), however, this is not signif-
icant. In annoyance DIS tends towards MU _NU
(p<.002), which might be due to the three step
help dialog. For cognitive demand and likability,
DIS lays exactly between ER and MU_NU.

6.4 Dialog Performance

The task success is pretty low in MU (29.03%) and
NU (19.35%) as the task was aborted by the wiz-
ard, if drivers did not use explicit domain switch-
ing commands after multiple attempts. On the
contrary, the task success for ER (96.8%) and DIS
(93.6%) is good, however, 3 tasks were aborted by
users. Figure 7 shows the average user response
delay, system turn duration, and user turn dura-
tion. The rectangular bars drawn in line patterns
show successful interactions during a subtask and
the ones drawn in checked pattern dialogs between
two subtasks.

When the system responds as expected, users
need between 2 and 3 seconds to respond. If the
system does not react as expected (between two
subtasks), drivers need significantly more time to
respond, as they need to think what to say. In DIS,
they only need to repeat the proposed term, thus
they respond faster. In MU_NU, the system turns
in dialogs between subtasks are shorter, whereby
the user turns are longer (user turn duration does
not include the user’s response time). So either
drivers speak slower or provide longer sentences,
if the SDS does not react as expected. Due to the
four proposed utterances in DIS, system turn du-
rations are longer in dialogs between subtasks.

6.5 Summary and Discussion

In general, if an SDS reacts as expected by the
user, it will be a good approach to control the in-
car infotainment system. Except for the driver’s
reaction time, an optimal SDS does not influence
the driving performance. However, a delayed re-
action of 200ms might be better than glancing at a
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display. For example, the Driver Focus-Telematics
Working Group (2006) states in their guidelines to
visual distraction: “single glance durations gener-
ally should not exceed 2 seconds”.

As long as conversational SDSs are not able to
operate in much wider domains, sooner or later the
user will provide an utterance the system is not
able to respond to. Comparing the MU and NU
conditions shows that an out-of-domain recogni-
tion with a simple rephrase error recovery strategy
does not work. This is understandable, as both
conditions increase the cognitive load, which in-
fluences the driving performance negatively. Es-
pecially the reaction to external events, such as
traffic lights, suffers. In our experiment, the traf-
fic light was in the middle of the screen. Accord-
ing to Victor et al. (2005), drivers concentrate their
gaze on the road center at the expense of periph-
eral glances during auditory or complex driving
tasks. Thus we would expect even worse results
if the traffic light occurs in the driver’s peripheral
vision. This means an intelligent handling strat-
egy for out-of-domain utterances needs to be es-
tablished, which informs drivers of the system’s
capabilities.

We evaluated a dialog initiative switch as a re-
sponse to out-of-domain utterances. Mostly, this
strategy performed somewhere between the opti-
mal and worst-case SDS. Due to long narrative
system prompts, the auditive demand is rated high
by drivers and thus the driving performance tends
towards the worst-case SDS. The dialog initiative
switch was rated as usable, but different variants
need to be developed and evaluated in the future.

After the experiment, the participants rated the
four conditions with two questions from ITU-T
P.851 (ITU, 2003) on a 7-point Likert scale from
strong disagree (-3) to strong agree (+3):

Q1: “Would you have expected more help from the sys-
tem?”
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Q2: “You feel adequately informed about the system’s pos-

sibilities?”
ER (SD) MU (SD) NU (SD) DIS (SD)
QI | -1.73(1.78) | 1.47(1.81) | 2.1(1.32) | -1.1(1.58)
Q2 | 0.43(2.13) | -1.53(1.36) | -1.7(1.49) | 0.73(1.66)

Table 3: Adequate system help

Table 3 shows the results, whereby DIS tends
towards ER in Q1 (p<.004) and is even better than
ER in Q2. This means the drivers felt informed
adequately of the SDS, however, further research
is necessary to evaluate how to present this infor-
mation. Shorter helping prompts might be better.
Furthermore, multimodal aspects needs to be con-
sidered. For example, head-up displays are able to
present information, such as possible utterances,
right in the driver’s view. This might reduce the
auditive demand.

7 Conclusions

In this paper, we showed results from a WoZ
study on user-initiated multi-domain SDSs in the
car. If an in-car SDS cannot fulfill a user’s re-
quest due to, for example, missing functionality,
the driver’s cognitive load and distraction will in-
crease. Therefore, out-of-domain utterances need
to be identified and handled adequately by in-car
SDSs. Switching the dialog initiative is a good ap-
proach to guide users to the task goal and reduce
their cognitive load. However, if drivers need to
process any information, some mental activity will
be required. Therefore, the design and implemen-
tation of a dialog initiative switch strategy need
further efforts to minimize the driver’s distraction
and to make it enjoyable for the user. Other modal-
ities than speech-only SDSs, such as head-up dis-
plays, need to be evaluated in future studies.
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Appendix

ER:
U: Navigation

S: Navigation, what do you want?

U: City Berlin

S: To what address or place of interest do you
want?

U: Brandenburger Tor

S: Brandenburger Tor in Berlin was set as your
destination

U: Italian restaurant near Brandenburger Tor?
S: There is one Italian restaurant in Berlin:
Pizzeria San Marco

U: Save the address

S: Alright, the address was added

DIS:
U: | would like to go to the Brandenburger Tor
in Berlin

S: Brandenburger Tor in Berlin was set as your
destination.

U: Italian restaurant nearby?

S: Where do you search an Italian restaurant
U: Near Brandenburger Tor in Berlin

S: There is one Italian restaurant in Berlin:
Pizzeria San Marco

S: Alright, the address was added

MU:
U: Navigation to Berlin, Brandenburger Tor
S: Brandenburger Tor in Berlin was set as your

destination.

U: Italian restaurant at the destination

S: Restaurant search, what do you want?
U: An Italian restaurant in Berlin

S: There is one Italian restaurant in Berlin:
Pizzeria San Marco

S: Address book, what do you want?
U: Save the address of San Marco
S: Alright, the address was added

NU:

U: Drive me to the Brandenburger Tor in Berlin
S: Brandenburger Tor in Berlin was set as your
destination.

U: Is there an Italian restaurant near

Brandenburger Tor?

Appendix 1: Detailed dialog examples of the four response conditions. Translated from German and based on real experiment
data. Red rectangles identify the domain switching dialogs between two subtasks.
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Abstract

In this paper, we address issues in situ-
ated language understanding in a rapidly
changing environment — a moving car.
Specifically, we propose methods for un-
derstanding user queries about specific tar-
get buildings in their surroundings. Unlike
previous studies on physically situated in-
teractions such as interaction with mobile
robots, the task is very sensitive to tim-
ing because the spatial relation between
the car and the target is changing while
the user is speaking. We collected situated
utterances from drivers using our research
system, Townsurfer, which is embedded
in a real vehicle. Based on this data, we
analyze the timing of user queries, spa-
tial relationships between the car and tar-
gets, head pose of the user, and linguis-
tic cues. Optimized on the data, our al-
gorithms improved the target identification
rate by 24.1% absolute.

1 Introduction

Recent advances in sensing technologies have en-
abled researchers to explore applications that re-
quire a clear awareness of the systems’ dynamic
context and physical surroundings. Such appli-
cations include multi-participant conversation sys-
tems (Bohus and Horvitz, 2009) and human-robot
interaction (Tellex et al., 2011; Sugiura et al.,
2011). The general problem of understanding and
interacting with human users in such environments
is referred to as situated interaction.

We address yet another environment, where sit-
uated interactions takes place — a moving car. In
the previous work, we collected over 60 hours of
in-car human-human interactions, where drivers
interact with an expert co-pilot sitting next to them
in the vehicle (Cohen et al., 2014). One of the

* Currently with Lenovo.
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insights from the analysis on this corpus is that
drivers frequently use referring expressions about
their surroundings. (e.g. What is that big building
on the right?) Based on this insight, we have de-
veloped Townsurfer (Lane et al., 2012; Misu et
al., 2013), a situated in-car intelligent assistant.
Using geo-location information, the system can
answer user queries/questions that contain object
references about points-of-interest (POIs) in their
surroundings. We use driver (user) face orienta-
tion to understand their queries and provide the re-
quested information about the POI they are look-
ing at. We have previously demonstrated and eval-
uated the system in a simulated environment (Lane
et al., 2012). In this paper, we evaluate its utility
in real driving situations.

Compared to conventional situated dialog tasks,
query understanding in our task is expected to be
more time sensitive, due to the rapidly changing
environment while driving. Typically, a car will
move 10 meters in one second while driving at 25
mi/h. So timing can be a crucial factor. In addi-
tion, it is not well understood what kind of linguis-
tic cues are naturally provided by drivers, and their
contributions to situated language understanding
in such an environment. To the best of our knowl-
edge, this is the first study that tackles the issue of
situated language understanding in rapidly moving
vehicles.

In this paper, we first present an overview of the
Townsurfer in-car spoken dialog system (Section
2). Based on our data collection using the sys-
tem, we analyze user behavior while using the sys-
tem focusing on language understanding (Section
3). Specifically, we answer the following research
questions about the task and the system through
data collection and analysis:

1. Is timing an important factor of situated lan-
guage understanding?

2. Does head pose play an important role in lan-
guage understanding? Or is spatial distance
information enough?

Proceedings of the SIGDIAL 2014 Conference, pages 22-31,
Philadelphia, U.S.A., 18-20 June 2014. (©2014 Association for Computational Linguistics
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Figure 1: System overview of Townsurfer

Table 1: Example dialog with Townsurfer

Ul: Whatis that place. (POl in gaze)

S1: This is Specialty Cafe, a mid-scale coffee
shop that serves sandwiches.

U2: What is its (POI in dialog history) rating.

S2:  The rating of Specialty Cafe is above av-
erage.

U3: How about that one on the left.
(POI located on the left)

S3: This is Roger’s Deli, a low-priced restau-

rant that serves American food.

3. What is the role of linguistic cues in this task?
What kinds of linguistic cues do drivers nat-
urally provide?

Based on the hypothesis obtained from the analy-
sis for these questions, we propose methods to im-
prove situated language understanding (Section 4),
and analyze their contributions based on the col-
lected data (Sections 5 and 6). We then clarify our
research contributions through discussion (Section
7) and comparison with related studies (Section 8).

2 Architecture and Hardware of
Townsurfer

The system uses three main input modalities,
speech, geo-location, and head pose. Speech is
the main input modality of the system. It is used to
trigger interactions with the system. User speech
is recognized, then requested concepts/values are
extracted. Geo-location and head pose informa-
tion are used to understand the target POI of the
user query. An overview of the system with a pro-
cess flow is illustrated in Figure 1 and an exam-
ple dialog with the system is shown in Table 1. A
video of an example dialog is also attached.
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In this paper, we address issues in identify-
ing user intended POI, which is a form of ref-
erence resolution using multi-modal information
sources'. The POI identification process consists
of the following three steps (cf. Figure 1). This
is similar to but different from our previous work
on landmark-based destination setting (Ma et al.,
2012).

1) The system lists candidate POIs based on geo-
location at the timing of a driver query. Rela-
tive positions of POIs to the car are also cal-
culated based on geo-location and the head-
ing of the car.

2). Based on spatial linguistic cues in the user

utterance (e.g. fo my right, on the left), a

2D scoring function is selected to identify ar-

eas where the target POl is likely to be. This
function takes into account the position of the

POI relative to the car, as well as driver head

pose. Scores for all candidate POIs are cal-

culated.

3) Posterior probabilities of each POI are cal-
culated using the score of step 2 as prior,
and non-spatial linguistic information (e.g.
POI categories, building properties) as obser-
vations. This posterior calculation is com-
puted using our Bayesian belief tracker called
DPOT (Raux and Ma, 2011).

The details are explained in Section 4.

System hardware consists of a 3D depth sen-
sor (Primesense Carmine 1.09), a USB GPS (BU-
353S4), an IMU sensor (3DM-GX3-25) and a
close talk microphone (plantronics Voyage Leg-

"We do not deal with issues in language understanding
related to dialog history and query type. (e.g. General infor-
mation request such as U1 vs request about specific property
of POI such as U2 in Table 1)



end UC). These consumer grade sensors are in-
stalled in our Honda Pilot experiment car. We
use Point Cloud Library (PCL) for the face direc-
tion estimation. Geo-location is estimated based
on Extended Kalman filter-based algorithm using
GPS and gyro information as input at 1.5 Hz. The
system is implemented based on the Robot Oper-
ating System ROS (Quigley et al., 2009). Each
component is implemented as a node of ROS, and
communications between the nodes are performed
using the standard message passing mechanisms
in ROS.

3 Data Collection and Analysis
3.1 Collection Setting

We collected data using a test route. The route
passes through downtown Mountain View? and
residential area around Honda Research Institute.
We manually constructed our database containing
250 POIs (businesses such as restaurants, compa-
nies) in this area. Each database entry (POI) has
name, geo-location, category and property infor-
mation explained in Section 3.4. POI geo-location
is represented as a latitude-longitude pair (e.g.
37.4010,-122.0539). Size and shape of buildings
are not taken into account. It takes about 30 min-
utes to drive the route. The major difference be-
tween residential area and downtown is the POI
density. While each POI in downtown has on aver-
age 7.2 other POIs within 50 meters, in residential
area POIs have only 1.9 neighbors. Speed limits
also differ between the two (35 mi/h vs 25 mi/h).

We collected data from 14 subjects. They were
asked to drive the test route and make queries
about surrounding businesses. We showed a demo
video? of the system to the users before starting the
data collection. We also told them that the objec-
tive is a data collection for a situated spoken dia-
log system, rather than the evaluation of the whole
system. We asked subjects to include the full de-
scription of the target POI within a single utterance
to avoid queries whose understanding requires di-
alog history information®. Although the system
answered based on the baseline strategy explained
in Section 4.1, we asked subjects to ignore the sys-
tem responses.

As a result, we collected 399 queries with a
valid target POI. Queries about businesses that do

>We assumed that a POI is in downtown when it is located
within the rectangle by geo-location coordinates (37.3902, -
122.0827) and (37.3954, -122.0760).

3not the attached one.

*Understanding including dialog history information is
our future work.
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Figure 3: Target POI positions

not exist on our database (typically a vacant store)
were excluded. The data contains 171 queries in
downtown and 228 in residential area. The queries
were transcribed and the user-intended POIs were
manually annotated by confirming the intended
target POI with the subjects after the data collec-
tion based on a video taken during the drive.

3.2 Analysis of Spatial Relation of POI and
Head Pose

We first analyze the spatial relation between posi-
tion cues (right/left) and the position of the user-
intended target POIs Out of the collected 399
queries, 237 (59.4%) of them contain either right
or left position cue (e.g. What is that on the left?).
The relation between the position cues (cf. Figure
2) and POI positions at start-of-speech timing  is
plotted in Figure 3. The X-axis is a lateral distance
(a distance in the direction orthogonal to the head-
ing; a positive value means the right direction) and
the Y-axis is an axial distance (a distance in the
heading direction; a negative value means the POI
is in back of the car. ). The most obvious finding
from the scatter plot is that right and left are pow-

SSpecifically, the latest GPS and face direction informa-
tion at that timing is used.



Table 2: Comparison of average and standard deviation of distance (in meter) of POI form the car

ASR result timing Start-of-speech timing
Position cue | Site Ave dist. | Std dist. | Ave dist. Std dist.
Right/left Downtown 17.5 31.0 31.9 28.3
Residential 22.0 36.3 45.2 36.5
No right/left | Downtown 17.4 27.8 31.1 26.5
cue Residential 38.3 45.9 52.3 434
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Figure 4: Relation between POI positions and
head pose

erful cues for the system to identify target POlIs.
We can also see that the POI position distribution
has a large standard deviation. This is partly be-
cause the route has multiple sites from downtown
and residential area. Interestingly, while the aver-
age distance to the target POI in downtown is 37.0
meters, that of residential area is 57.4 meters.

We also analyze the relation between face di-
rection and POI positions. Figure 4 plots the re-
lation between the axial distance and the angular
difference 0 (between the user face direction and
the target POI direction) (cf. Figure 2). The scat-
ter plot suggests that the angular differences for
distant target POIs is often small. For close target
POIs the angular differences are larger and have a

large variance®.

3.3 Analysis of Timing

Referring expressions such as “the building on the
right” must be resolved with respect to the context
in which the user intended. However, in a moving
car, such a context (i.e. the position of the car and
the situation in the surroundings) can be very dif-
ferent between the time when the user starts speak-
ing the sentence and the time they finish speaking
it. Therefore, situated understanding must be very
time sensitive.

To confirm and investigate this issue, we ana-
lyze the difference in the POI positions between
the time the ASR result is output vs the time the
user actually started speaking. The hypothesis is

SWe will discuss the reason for this in Section 6.2.
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Table 3: User-provided linguistic cues

Category of linguistic cue Percentage

used (%)
Relative position to the car (right/left) 59.4
Business category (e.g. restaurant, cafe) 31.8
Color of the POI (e.g. green, yellow) 12.8
Cuisine (e.g. Chinese, Japanese, Mexican) 8.3
Equipments (e.g. awning, outside seating) 7.2
Relative position to the road (e.g. corner) 6.5

that the latter yields a more accurate context in
which to interpret the user sentence. In contrast,
our baseline system uses the more straightforward
approach of resolving expressions using the con-
text at the time of resolution, i.e. whenever the
ASR/NLU has finished processing an utterance
(hereafter “ASR results timing”).

Specifically, we compare the average axial dis-
tance to the target POIs and its standard deviation
between these two timings. Table 2 lists these fig-
ures broken down by position cue types and sites.
The average axial distance from the car to the tar-
get POIs is often small at the ASR result timing,
but the standard deviation is generally small at the
start-of-speech timing. This indicates that the tar-
get POI positions at the start-of-speech timing is
more consistent across users and sentence lengths
than that at the ASR result timing. This result indi-
cates the presence of a better POI likelihood func-
tion using the context (i.e. car position and orien-
tation) at the start-of-speech timing than using the
ASR result timing.

3.4 Analysis of Linguistic Cues

We then analyze the linguistic cues provided by
the users. Here, we focus on objective and sta-
ble cues. We exclude subjective cues (e.g. big,
beautiful, colorful) and cues that might change in
a short period of time (e.g. with a woman dressed
in green in front). We have categorized the linguis-
tic cues used to describe the target POIs. Table 3
lists the cue types and the percentage of user utter-
ances containing each cue type.

The cues that the users most often provided con-
cern POI position related to the car (right and left).
Nearly 60% of queries included this type of cue
and every subject provided it at least once. The
second most frequent cue is category of business,
especially in downtown. Users also provided col-



ors of POIs. Other cues include cuisine, equip-
ments, relative position to the road (e.g. on the
corner).

Another interesting finding from the analysis is
that the users provided more linguistic cues with
increasing candidate POIs in their field of view.
Actually, the users provided 1.51 categories in av-
erage per query in downtown, while they provided
1.03 categories in residential area. (cf. POI den-
sity in Section 3.2: 7.2 vs 1.9) This indicates that
users provide cues considering environment com-
plexity.

4 Methods for Situated Language
Understanding

4.1 Baseline Strategy

We use our previous version (Misu et al., 2013)
as the baseline system for situated language un-
derstanding. The baseline strategy consists of the
following three paragraphs, which correspond to
the process 1)-3) in Section 2 and Figure 1.

The system makes a POI look-up based on the
geo-location information at the time ASR result
is obtained. The search range of candidate POIs
is within the range (relative geo-location of POIs
against the car location) of -50 to 200 meters in
the travelling direction and 100 meters to the left
and 100 meters to the right in the lateral direction.
The ASR result timing is also used to measure the
distances to the candidate POlIs.

POI priors are calculated based on the distance
from the car (= axial distance) based on “the closer
to the car the likely” principle. We use a likelihood
function inversely proportional to the distance. We
use position cues simply to remove POIs from a
list of candidates. For example “right” position
cue is used to remove candidate POIs that are lo-
cated on < 0 position in the lateral distance. When
no right/left cue is provided, POIs outside of 45
degrees from the face direction are removed from
the list of candidates.

No linguistic cues except right/left are used to
calculate POI posterior probabilities. So, the sys-
tem selects the POI with the highest prior (POI
score) as the language understanding result.

4.2 Strategies Toward Better Situated
Language Understanding

To achieve better situated language understanding
(POI identification) based on the findings of the
analysis in Section 3, we modify steps 1)-3) as fol-
lows:

1. Using start-of-speech timing for the POI
prior calculation
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Figure 5: Example GMM fitting

2. Gaussian mixture model (GMM)-based POI
probability (prior) calculation

3. Linguistic cues for the posterior calculation.

We use the start-of-speech timing instead of the
time ASR result is output. Because the standard
deviations of the POI distances are small (cf. Sec-
tion 3.2), we expect that a better POI probability
score estimation with the POI positions at this tim-
ing in the subsequent processes than the positions
at the ASR result timing. The POI look-up range
is the same as the baseline.

We apply Gaussian mixture model (GMM) with
diagonal covariance matrices over the input pa-
rameter space. The POI probability (prior) is cal-
culated based on these Gaussians. We use two in-
put parameters of the lateral and axial distances for
queries with right/left cue, and three parameters of
the lateral and axial distances and the difference
in degree between the target and head pose direc-
tions for queries without right/left cue. (The effect
of the parameters is discussed later in Section 6.2.)
We empirically set the number of Gaussian com-
ponents to 2. An example GMM fitting to the POI
positions for queries with right and left cues is il-
lustrated in Figures 5. The center of ellipse is the
mean of the Gaussian.

We use the five linguistic cue categories of Sec-
tion 3.4 for the posterior calculation by the belief
tracker. In the following experiments, we use ei-
ther 1 or O as a likelihood of natural language un-
derstanding (NLU) observation. The likelihood
for the category value is 1 if a user query (NLU
result) contains the target value, otherwise 0. This
corresponds to a strategy of simply removing can-
didate POIs that do not have the category values
specified by the user. Here, we assume a clean POI
database with all their properties annotated manu-
ally.



Table 4: Comparison of POI identification rate

Method Success
rate (%)
right/left linguistic cues,
the-closer-the-likely likelihood, 43.1
ASR result timing) (Baseline)
1) Start-of-speech timing 429
2) GMM-based likelihood 47.9
3) Linguistic cues 54.6
1)+2) 50.6
1)+ 3) 54.4
2)+3) 62.2
1)+2)+3) 67.2

S Experiments

We use manual transcriptions and natural language
understanding results of the user queries to focus
our evaluations on the issues listed in Section 1.
We evaluate the situated language understanding
(POI identification) performance based on cross
validation. We use the data from 13 users to train
GMM parameters and to define a set of possible
linguistic values, and the data from the remaining
user for evaluation. We train the model parameters
of the GMM using the EM algorithm. Knowledge
about the sites (downtown or residential area) is
not used in the training’.

We do not set a threshold for the presentation.
We judge the system successfully understands a
user query when the posterior of the target (user-
intended) POI is the highest. The chance rate,
given by the average of the inverse number of can-
didate POIs in the POI look-up is 10.0%.

6 Analysis of the Results

We first analyze the effect of our three methods
described in Section 4.2. The results are listed in
Table 4.

Simply using the POI positions at the start-of-
speech timing instead of those of the ASR result
timing did not lead to an improvement. This re-
sult is reasonable because the distances to target
POIs are often smaller at the ASR result timing
as we showed in Table 2. However, we achieved
a better improvement (7.5% over the baseline) by
combining it with the GMM-based likelihood cal-
culation. The results supports our Section 3.3 hy-
pothesis that the POI position is less dependent
on users/scenes at the start-of-speech timing. The
linguistic cues were the most powerful informa-

"The performance was better when the knowledge was not
used.
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Figure 6: Breakdown of error causes

tion for this task. The improvement over the base-
line was 11.5%. By using these three methods to-
gether, we obtained more than additive improve-
ment of 24.1% in the POI identification rate over
the baseline®. The success rates per site were
60.8% in downtown and 71.9% in residential area.

6.1 Error Analysis

To analyze the causes of the remaining errors, we
have categorized the errors into the following four
categories:

1. Ambiguous references: There were multi-
ple POIs that matched the user query. (e.g.
another yellow building sat next to the target)
Linguistic cue: The driver used undefined
linguistic cues such subjective expressions or
dynamic references objects (e.g. optometrist,
across the street, colorful)

Localization error: FErrors in estimating
geo-location or heading of the car.

User error: There were errors in the user
descriptions (e.g. user misunderstood the
neighbor POI’s outside seating as the tar-
get’s)

The distribution of error causes is illustrated in
Figure 6. More than half of the errors are due
to reference ambiguity. These errors are expected
to be resolved through clarification dialogs. (e.g.
asking user “Did you mean the one in front or
back?”) Linguistic errors might be partly resolved
by using a better database with detailed category
information. For dynamic references and subjec-
tive cues, use of image processing techniques will
help. Localization errors can be solved by using
high-quality GPS and IMU sensors. User errors
were rare and only made in downtown.

6.2 Breakdown of Effect of the Spatial
Distance and Head Pose

We then evaluate the features used for the POI
prior calculation to investigate the effect of the in-
put parameters of the lateral and axial distances

8For reference, the performances of “1) + 2) + 3)” were

62.9%, 67.2%, 66.1%, 67.2%, and 66.2% when the number
of Gaussian components were 1, 2, 3, 4, and 5.



Table 5: Relation between the parameters used for
the POI identification and success rates (%)

Table 6: Effect of linguistic cues

linguistic cue Success
query type category used rate (%)
parameters used right/left | no cue No linguistic cues (*) 50.6
lateral (x) distance 58.6 51.2 (*) + Business category (e.g. cafe) 59.1
axial (y) distance 59.5 53.7 (*) + Color of the POI (e.g. green) 57.6
face direction 433 44 4 (*) + Cuisine (e.g. Chinese) 54.1
lateral + axial (z + y) 73.8 54.3 (*) + Equipments (e.g. awning) 53.9
lateral (x) + face direction 57.8 48.1 (*) + Relative position (e.g. corner) 51.4
axial (y) + face direction 59.1 54.9 . )
lateral + axial + face 68.4 57.4 1Mage processing.

and the difference in degree between the target
and user face direction angles. Table 5 lists the
relationship between the parameters used for the
GMM-based likelihood calculation and the POI
identification performances’.

The results indicate that the axial distance is
the most important parameter. We got a slight
improvement by using the face direction informa-
tion for the queries without right/left cue, but the
improvement was not significant. On the other
hand, use of face direction information for the
right/left queries clearly degraded the POI iden-
tification performance. We think this is because
the users finished looking at the POI and returned
the face to the front when they started speaking,
thus they explicitly provided right/left information
to the system. However, we believe that using a
long-term trajectory of the user face direction will
contribute to an improve in the POI identification
performance.

6.3 Breakdown of the Effect of Linguistic
Cues

We then evaluate the effect of the linguistic cues
per category. Table 6 lists the relationship between
the categories used for the posterior calculation
and the success rates. There is a strong correlation
between the frequency of the cues used (cf. Table
3) and their contributions to the improvement in
success rate. For example, business category in-
formation contributed the most, boosting the per-
formance by 8.5%.

Another point we note is that the contribution of
business category and cuisine categories is large.
Because other categories (e.g. color) are not read-
ily available in a public POI database (e.g. Google
Places API, Yelp API), we can obtain reasonable
performance without using a special database or

“Note that, we first determine the function to calculate
POI scores (priors) based on the position cues, then calculate
scores with the selected function.
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We also found that linguistic cues were espe-
cially effective in downtown. Actually, while the
improvement'® was 20.0% in downtown that for
residential area was 14.4%. This mainly would be
because the users provided more linguistic cues in
downtown considering the difficulty of the task.

6.4 Using Speech Recognition Results

We evaluate the degradation by using automatic
speech recognition (ASR) results. We use Google
ASR!! and Julius (Kawahara et al., 2004) speech
recognition system with a language model trained
from 38K example sentences generated from a
grammar. An acoustic model trained from the
WSIJ speech corpus is used. Note that they are
not necessarily the best system for this domain.
Google ASR uses a general language model for
dictation and Julius uses a mismatched acoustic
model in terms of the noise condition.

The query success rate was 56.3% for Julius and
60.3% for Google ASR. We got ASR accuracies
of 77.9% and 80.4% respectively. We believe the
performance will improve when N-best hypothe-
ses with confidence scores are used in the posterior
calculating using the belief tracker.

7 Discussion

The main limitation of this work comes from the
small amount of data that we were able to collect.
It is not clear how the results obtained here would
generalize to other sites, POI density, velocities
and sensor performances. Also, results might de-
pend on experimental conditions, such as weather,
hour, season. Hyper-parameters such as the opti-
mal number of Gaussian components might have
to be adapted to different situations. We there-
fore acknowledge that the scenes we experimented
are only a limited cases of daily driving activities.

D +2)vs 1) +2) +3).

! Although it is not realistic to use cloud-based speech
recognition system considering the current latency, we use
this as a reference system.



However, the methods we propose are general and
our findings should be verifiable without loss of
generality by collecting more data and using more
input parameters (e.g. velocity) for the POI prior
calculation.

In addition, much future work remains to realize
a natural interaction with the system, such as tak-
ing into account dialog history and selecting opti-
mal system responses. On the other hand, we be-
lieve this is one of the best platform to investigate
situated interactions. The major topics that we are
going to tackle are:

1. Dialog strategy: Dialog strategy and system
prompt generation for situated environments
are important research topics, especially to
clarify the target when there is ambiguity as
mentioned in Section 6.1. The topic will in-
clude an adaptation of system utterances (en-

trainment) to the user (Hu et al., 2014).

Eye tracker: Although we believe head pose
is good enough to estimate user intentions be-
cause we are trained to move the head in driv-
ing schools to look around to confirm safety,
we would like to confirm the difference in
this task between face direction and eye-gaze.

. POI identification using face direction trajec-
tory: Our analysis showed that the use of face
direction sometimes degrades the POI identi-
fication performance. However, we believe
that using a trajectory of face direction will
change the result.

Database: We assumed a clean and perfect
database but we are going to evaluate the per-
formance when noisy database is used. (e.g.
A database based on image recognition re-
sults or user dialog log.)

. Feedback: Koller et al. (2012) demonstrated
referential resolution is enhanced by giving
gaze information feedback to the user. We
would like to analyze the effect of feedback
with an automotive augmented reality envi-
ronment using our 3D head-up display (Ng-
Thow-Hing et al., 2013).

8 Related Work

The related studies include a landmark-based nav-
igation that handles landmarks as information for
a dialog. Similar system concepts have been
provided for pedestrian navigation situations (Ja-
narthanam et al., 2013; Hu et al., 2014), they do
not handle a rapidly changing environment.
Several works have used timing to enhance
natural interaction with systems. Rose and
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Horvitz (2003) and Raux and Eskenazi (2009)
used timing information to detect user barge-ins.
Studies on incremental speech understanding and
generation (Skantze and Hjalmarsson, 2010; Deth-
lefs et al., 2012) have proved that real-time feed-
back actions have potential benefits for users.
Komatani et al. (2012) used user speech timing
against user’s previous and system’s utterances
to understand the intentions of user utterances.
While the above studies have handled timing fo-
cusing on (para-)linguistic aspect, our work han-
dles timing issues in relation to the user’s physical
surroundings.

Recent advancements in gaze and face direction
estimation have led to better user behavior under-
standing. There are a number of studies that have
analyzed relationship between gaze and user in-
tention, such as user focus (Yonetani et al., 2010),
preference (Kayama et al., 2010), and reference
expression understanding (Koller et al., 2012), be-
tween gaze and turn-taking (Jokinen et al., 2010;
Kawahara, 2012). Nakano et al. (2013) used face
direction for addressee identification. The previ-
ous studies most related to ours are reference res-
olution methods by Chai and Prasov (2010), lida
et al. (2011) and Kennington et al. (2013). They
confirmed that the system’s reference resolution
performance is enhanced by taking the user’s eye
fixation into account. However, their results are
not directly applied to an interaction in a rapidly
changing environment while driving, where eye
fixations are unusual activities.

Marge and Rudnicky (2010) analyzed the effect
of space and distance for spatial language under-
standing for a human-robot communication. Our
task differs with this because we handle a rapidly
changing environment. We believe we can im-
prove our understanding performance based on
their findings.

9 Conclusion

We addressed situated language understanding in
a moving car. We focused on issues in understand-
ing user language of timing, spatial distance, and
linguistic cues. Based on the analysis of the col-
lected user utterances, we proposed methods of us-
ing start-of-speech timing for the POI prior calcu-
lation, GMM-based POI probability (prior) calcu-
lation, and linguistic cues for the posterior calcula-
tion to improve the accuracy of situated language
understanding. The effectiveness of the proposed
methods was confirmed by achieving a significant
improvement in a POI identification task.
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Table 7: Example user utterances

- What is that blue restaurant on the right?

- How about this building to my right with outside seating?

- What is that Chinese restaurant on the left?

- Orange building to my right.

- What kind of the restaurant is that on the corner?

- The building on my right at the corner of the street.

- What about the building on my right with woman with a jacket in front
- Do you know how good is this restaurant to the left?

- Townsurfer, there is an interesting bakery what is that?

- Is this restaurant on the right any good?
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ural language commands for robotic navigation and
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pages 101-104.

11 Appendix

Test route:
https://www.google.com/maps/
preview/dir/Honda+Research+
Institute, +425+National+Ave+
%$23100, +Mountain+View, +CA+
94043/37.4009909,-122.0518957/
37.4052337,-122.0565795/37.
3973374,-122.0595982/37.4004787,
-122.0730021/Wells+Fargo/37.
4001639,-122.0729708/37.3959193,
-122.0539449/37.4009821,-122.
0540093/@37.3999836, -122.
0792529, 14z/data=!4m21!4m20!
Im5!1ml1!1s0x808fb713¢c225003d:
0xcf989a0bb230e5c0!2m2!
1d-122.054006!2d37.401016!
ImO!ImO0!ImO0!1Im0!1Im5!1ml!1s0x0:
0x86ca%pa8a2f15150!2m2!1d-122.
082546!2d37.388722!1m0!1m0!1m0!
3e0
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Abstract

We present a spoken dialogue system for
navigating information (such as news ar-
ticles), and which can engage in small
talk. At the core is a partially observ-
able Markov decision process (POMDP),
which tracks user’s state and focus of at-
tention. The input to the POMDP is pro-
vided by a spoken language understanding
(SLU) component implemented with lo-
gistic regression (LR) and conditional ran-
dom fields (CRFs). The POMDP selects
one of six action classes; each action class
is implemented with its own module.

1 Introduction

A large number of spoken dialogue systems have
been investigated and many systems are deployed
in the real world. Spoken dialogue applications
that interact with a diversity of users are avail-
able on smart-phones. However, current appli-
cations are based on simple question answering
and the system requires a clear query or a def-
inite task goal. Therefore, next-generation dia-
logue systems should engage in casual interactions
with users who do not have a clear intention or a
task goal. Such systems include a sightseeing nav-
igation system that uses tour guide books or doc-
uments in Wikipedia (Misu and Kawahara, 2010),
and a news navigation system that introduces news
articles updated day-by-day (Yoshino et al., 2011;
Pan et al., 2012). In this paper, we develop an in-
formation navigation system that provides infor-
mation even if the user request is not necessarily
clear and there is not a matching document in the
knowledge base. The user and the system converse
on the current topic and the system provides po-
tentially useful information for the user.

Dialogue management of this kind of systems
was usually made in a heuristic manner and based
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on simple rules (Dahl et al., 1994; Bohus and Rud-
nicky, 2003). There is not a clear principle nor
established methodology to design and implement
casual conversation systems. In the past years, ma-
chine learning, particularly reinforcement learn-
ing, have been investigated for dialogue manage-
ment. MDPs and POMDPs are now widely used
to model and train dialogue managers (Levin et
al., 2000; Williams and Young, 2007; Young et
al., 2010; Yoshino et al., 2013b). However, the
conventional scheme assumes that the task and di-
alogue goal can be clearly stated and readily en-
coded in the RL reward function. This is not true
in casual conversation or when browsing informa-
tion.

Some previous work has tackled with this prob-
lem. In a conversational chatting system (Shibata
et al., 2014), users were asked to make evalua-
tion at the end of each dialogue session, to define
rewards for reinforcement learning. In a listen-
ing dialogue system (Meguro et al., 2010), levels
of satisfaction were annotated in logs of dialogue
sessions to train a discriminative model. These
approaches require costly input from users or de-
velopers, who provide labels and evaluative judg-
ments.

In this work, we present a framework in which
reward is defined for the quality of system actions
and also for encouraging long interactions, in con-
trast to the conventional framework. Moreover,
user focus is tracked to make appropriate actions,
which are more rewarded.

2 Conversational Information
Navigation System

In natural human-human conversation, partici-
pants have topics they plan to talk about, and they
progress through the dialogue in accordance with
the topics (Schegloff and Sacks, 1973). We call
this dialogue style “information navigation.” An
example is shown in Figure 1. First, the speaker
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Figure 1: An example of information navigation.
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Figure 2: Overview of the information navigation
system.

offers a new topic and probes the interest of the
listener. If the listener shows interest, the speaker
describes details of the topic. If the listener asks
a specific question, the speaker answers the ques-
tion. On the other hand, if the listener is not inter-
ested in the topic, the speaker avoids the details of
that topic, and changes the topic. Topics are often
taken from current news.

In our past work, we have developed a news
navigation system (Yoshino et al., 2011) based on
this dialogue structure. The system provides top-
ics collected from Web news texts, and the user
gets information according to his interests and
queries.

2.1 System overview

An overview of the proposed system is depicted
in Figure 2. The system has six modules, each of
which implements a class of actions. Each module
takes as input a recognized user utterance, an an-
alyzed predicate-argument (P-A) structure and the
detected user focus.

33

The system begins dialogues by selecting the
“topic presentation (TP)” module, which presents
a new topic selected from a news article. The sys-
tem chooses the next module based on the user’s
response. In our task, the system assumes that
each news article corresponds to a single topic,
and the system presents a headline of news in the
TP module. If the user shows interest (positive
response) in the topic without any specific ques-
tions, the system selects the “story telling (ST)”
module to give details of the news. In the ST mod-
ule, the system provides a summary of the news
article by using lead sentences. The system can
also provide related topics with the “proactive pre-
sentation (PP)” module. This module is invoked
by system initiative; this module is not invoked by
any user request. If the user makes a specific ques-
tion regarding the topic, the system switches to the
“question answering (QA)” module to answer the
question. This module answers questions on the
presented topic and related topics.

The modules of PP and QA are based on a di-
alogue framework which uses the similarity of P-
A structures (Yoshino et al., 2011). This frame-
work defines the similarity of P-A structures be-
tween user queries and news articles, and retrieves
or recommends the appropriate sentence from the
news articles. This method searches for appropri-
ate information from automatically parsed docu-
ments by referring to domain knowledge that is
automatically extracted from domain corpus.

Transitions between the modules are allowed as
shown in Figure 2. The modules “greeting (GR)”
and “keep silence (KS)” are also implemented.
GR module generates fixed greeting patterns by
using regular expression matching. In terms of
dialogue flow, these modules can be used at any
time.

2.2 User focus in information navigation

“Focus” in discourse is ‘“‘attentional state (that)
contains information about the objects, properties,
relations, and discourse intentions that are most
salient at any given point.” (Grosz and Sidner,
1986). The user has specific attention to an ob-
ject if the user utterance contains the focus. In
this work, we define the user focus as “the main
piece of information of interest to the user.” It
makes a central component when making a reply
or selecting relevant topics at the current dialogue
state. For example, given “Did Ichiro perform bril-



told him "Come back as a player!”

to young players.”

"o

USR, tp, 0, "Next news, please.”,

SYS, tp, “Matsui, a part-time coach for the Giants, demonstrated 5 homeruns. The Giants president

USR, st, 0, " Give me the detail?”, “"Give:me/0 the:detail/0”
SYS, st, "Matsui joined the extra batting training in the Giants' camp, and demonstrated his batting

USR, ga, 1, “Will Matsui become the Giants' manager in the future?”, “Matsui/0 will:become/0
the Giants' manager/1 in the future/0”

SYS, qga, "The director of Giants told him "Come back as a player!””

Next:news/0 please/0"

SYS, tp, ” To be a ace pitcher, has Fujinami improved from the rookie year?

Figure 3: An example of annotation for collected dialogue. System utterances have a tuple of three
elements separated by a comma: speaker, called module and utterance. User utterances have a tuple of
four elements: speaker, the module the user request falls in, binary information of user focus, utterance
and user focus annotation on each phrase or P-A element. (This example is translated from Japanese)

liantly?,” user focus is “Ichiro” because the sys-
tem reply should include information on Ichiro.
This information is annotated on content words or
named entities in a user utterance. In the POMDP,
decisions are made based on whether any user fo-
cus was detected in the user’s utterance.

3 Spoken Language Understanding
(SLU)

In this section, we present the spoken language un-
derstanding components of our system. It detects
the user’s focus and intention and provides these
to the dialogue manager. These spoken language
understanding modules are formulated with a sta-
tistical model to give likelihoods which are used
in POMDP.

3.1 Dialogue data

We collected 606 utterances (from 10 users) with a
rule-based dialogue system (Yoshino et al., 2011).
We annotated two kinds of tags: user intention (6
tags defined in Section 3.3), and focus information
defined in Section 2.2. An example of annotation
is shown in Figure 3. We highlighted annotation
points in the bold font.

To prepare the training data, each utterance was
labeled with one of the six modules, indicating the
best module to respond. In addition, each phrase
or P-A elements is labeled to indicated whether it
is the user’s focus or not. The user focus is deter-
mined by the attributes (=specifications of words
in the domain) and preference order of phrases to
identify the most appropriate information that the
user wants to know. For example, in the second
user utterance in Figure 3, the user’s focus is the
phrase “the Giants’ manager”. These tags are an-
notated by one person.
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3.2 User focus detection based on CRF

To detect the user focus, we use a conditional
random field (CRF) !. The problem is defined as
a sequential labeling of the focus labels to a se-
quence of the phrases of the user utterance. Fea-
tures used are shown in the Table 1. ORDER fea-
tures are the order of the phrase in the sequence
and in the P-A structure. We incorporate these
features because the user focus often appears in
the first phrase of the user utterance. POS fea-
tures are part-of-speech (POS) tags and their pairs
in the phrase. P-A features are semantic role of the
P-A structure. We also incorporate the domain-
dependent predicate-argument (P-A) scores that
are defined with an unsupervised method (Yoshino
etal., 2011). The score is discretized to 0.01, 0.02,
0.05,0.1,0.2,0.5.

Table 2 shows the accuracy of user focus de-
tection, which was conducted via five-fold cross-
validation. “Phrase” is phrase-base accuracy and
“sentence” indicates whether the presence of any
user focus phrase was correctly detected (or not),
regardless of whether the correct phrase was iden-
tified. This table indicates that WORD features
are effective for detecting the user focus, but they
are not essential for in the sentence-level accuracy.
In this paper, we aim for portability across do-
mains; therefore the dialogue manager only uses
the sentence-level feature, so in our system we do
not user the WORD features.

3.3 User intention analysis based on LR
The module classifies the user intention from the
user utterance. We define six intentions as below.
e TP: request to the TP module.
'CRFsuite (Okazaki, 2007).



Table 1: Features of user focus detection.

Table 3: Features of user intention analysis.

feature type feature ’ feature type ‘ feature
ORDER Rank in a sequence of phrases POS Bag of POS tags
Rank in a sequence of elements of P-A Bag of POS bi-gram
POS POS tags in the phrase P-A Bag of semantic role labels
POS tag sequence Bag of semantic role labels bi-gram
POSORDER | Pair of POS tag and its order in the Pair of semantic role label and its rank
phrase P-A score | P-A templates score
P-A Which semantic role the phrase has TYPICAL Occurrence of typical expressions
Which semantic roles exist on the
utterance
P-AORDER | Pair of semantic role and its order in Table 4: Accuracy of user intention analysis.
the utterance ’ ‘ All features ‘ without TYPICAL
P-A score P-A templates score TP 100% 100%
WORD Words in the phrase ST 75.3% 64.2%
Pair of words in the phrase QA 94.1% 93.5%
Pair of word and its order in the phrase GR 100% 100%
Il 16.7% 16.7%
All 92.1% 90.2%

Table 2: Accuracy of user focus detection.

’ ‘ Accuracy ‘
phrase 86.7%
phrase + (WORD) 90.3%
sentence (focus exist or not) 99.8%
sentence (focus exist or not) + (WORD) 99.8%

ST: request to the ST module.
QA: request to the QA module.

GR: greeting to the GR module.

e NR: silence longer than a threshold.

e [I:irrelevant input due to ASR errors or noise.

We adopt logistic regression (LR)-based dia-
logue act tagging approach (Tur et al., 2006). The
probability of user intention o given an ASR result
of the user utterance h is defined as,

exp(w - ¢(h, 0))
Soexp(w - ¢(h,0))

Here, w is a vector of feature weights and ¢(h, o)
1s a feature vector. We use POS, P-A and P-A tem-
plates score as a feature set. In addition, we add a
typical expression feature (TYPICAL) to classify
TP, ST or GR tags. For example, typical expres-
sions in conversation are “Hello” or “Go on,” and
those in information navigation are “News of the
day” or “Tell me in detail.” Features for the clas-
sifier are shown in the Table 3.

The accuracy of the classification in five-fold
cross-validation is shown in Table 4. The TYP-

P(o|h) (1)
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ICAL feature improves the classification accuracy
while keeping the domain portability.

3.4 SLU for ASR output

ASR and intention analysis involves errors. Here,
s is a true user intention and o is an observed in-
tention. The observation model P(o|s) is given
by the likelihood of ASR result P(h|u) (Komatani
and Kawahara, 2000) and the likelihood of the in-
tention analysis P(o|h),

> " P(o,hls)
h

> P(olh)P(h|u).
h

P(ols) ()

Q

3)

Here, v is an utterance of the user. We combine
the N-best (/N = 5) hypotheses of the ASR result
h.

4 Dialogue Management for Information
Navigation

The conventional dialogue management for task-
oriented dialogue systems is designed to reach a
task goal as soon as possible (Williams and Young,
2007). In contrast, information navigation does
not always have a clear goal, and the aim of infor-
mation navigation is to provide as much relevant
information as the user is interested in. Therefore,
our dialogue manager refers user involvement or
engagement (=level of interest) and the user focus



(=object of interest). This section describes the
general dialogue management based on POMDP,
and then gives an explanation of the proposed dia-
logue management using the user focus.

4.1 Dialogue management based on POMDP

The POMDP-based statistical dialogue manage-
ment is formulated as below. The random vari-
ables involved at a dialogue turn ¢ are as follows:

e s € I,: user state
User intention.

a € K: system action
Module that the system selects.

o € I: observation

Observed user state, including ASR and in-
tention analysis errors.

bs, = P(si|o'?): belief

Stochastic variable of the user state.

7: policy function

This function determines a system action a
given a belief of user b. 7* is the optimal pol-
icy function that is acquired by the training.

r: reward function
This function gives a reward to a pair of the
user state s and the system action a.

The aim of the statistical dialogue management is
to output an optimal system action &' given a se-
quence of observation o' from 1 to ¢ time-steps.

Next, we give the belief update that includes the
observation and state transition function. The be-
lief update of user state s; in time-step ¢ is defined
as,

bgl o P(o"s) Y P(s)|si, @) b, (4)

Si

Obs. Trans.

Obs. is an observation function which is defined
in Equation (3) and Trans. is a state transition
probability of the user state. Once the system es-
timates the belief b’;i, the policy function outputs
the optimal action a as follows:

i = (). 5)

4.2 Training of POMDP

We applied Q-learning (Monahan, 1982; Watkins
and Dayan, 1992) to acquire the optimal policy
7*. Q-learning relies on the estimation of a Q-
function, which maximizes the discounted sum of
future rewards of the system action a' at a dialogue
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turn t given the current belief b'. Q-learning is
performed by iterative updates on the training dia-
logue data:

Q(bt7 at) = (1 - ‘E)Q(bt7 at)
+ e[R(s, a) + v max QU a™)], (6
a
where ¢ is a learning rate, y is a discount factor of
a future reward. We experimentally decided ¢ =
0.01 and v = 0.9. The optimal policy given by the
Q-function is determined as,
7*(b") = argmax Q(b', a').

at

(N

However, it is impossible to calculate the Q-
function for all possible real values of belief b.
Thus, we train a limited Q-function given by a
Grid-based Value Iteration (Bonet, 2002). The be-
lief is given by a function,

bsi_{

Here, 7 is a likelihood of s 7 that is output
of the intention analyzer, and we selected 11 dis-
crete points from 0.0 to 1.0 by 0.1. We also added
the case of uniform distribution. The observation
function of the belief update is also given in a sim-
ilar manner.

if s=1

if s#£i

n
1-n
[7s]

(®)

4.3 Dialogue management using user focus

Our POMDP-based dialogue management
chooses actions based on its belief in: the user
intention s and the user focus f (0 or 1 € Jy).
The observation o is controlled by hidden states
f and s that are decided by the state transition
probabilities,

PS8t ab),
P(St—i-l’ft-i-l ft St at).

©)
(10)

We constructed a user simulator by using the an-
notated data described in Section 3.1.

Equation (10) is also used for the state transition
probability of the belief update. The equation of
the belief update (4) is extended by introducing the
previous user focus f; and current user focus f;,
information,

bgrl = P(0t+1\s;~)
Obs.

XD Pl s fissis @) B, g (A1)

Trans.




Table 5: Rewards in each turn.

state | focus action a
s | f [[TPISTIQA[PPGR]KS
P (1) +10 | <10 | -10 | <10 | -10 | -10
ST (1) -10 | +10 | -10 0 -10 -10
0 +10 | +10 | -10
A 71 (w0 e 1010
GR (1) -10 -10 -10 -10 | +10 | -10
0 +10 -10
NR T 10 -10 -10 +10 -10 0
9410 | 10 | 210 | <10 | <10 | 410
The resultant optimal policy is,
A ¢
a=m"(t" fi). (12)

4.4 Definition of rewards

Table 5 defines a reward list at the end of a each
turn. The reward of +10 is given to appropriate
actions, 0 to acceptable actions, and -10 to inap-
propriate actions.

In Table 5, pairs of a state and its apparently
corresponding action, TP and TP, ST and ST, QA
and QA, GR and GR, and II and KS, have posi-
tive rewards. Rewards in bold fonts (+10) are de-
fined for the following reasons. If the user asks a
question (QA) without a focus (e.g. “What hap-
pened on the game?”), the system can continue by
story telling (ST). But when the question has a fo-
cus, the system should answer the question (QA),
which is highly rewarded (+30). If the system can-
not find an answer, it can present relevant informa-
tion (PP). When the user says nothing (NR), the
system action should be decided by considering
the user focus; present a new topic if the user is
not interested in the current topic ( f=0) or present
an article related to the dialogue history (f=1).

Reward of +200 is given if 20 turns are passed,
to reward a long continued dialogue. The user sim-
ulator terminates the dialogue if the system selects
an inappropriate action (action of r = —10) five
times, and a large penalty -200 is given to the sys-
tem.

5 Evaluations of Dialogue

We evaluated the proposed system with two exper-
iments; dialogue state tracking with real users and
average reward with a user simulator. For the eval-
uation, we collected an additional 312 utterances
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Figure 4: Effect of introduction of the user focus
in simulation.

(8 users, 24 dialogues) with the proposed dialogue
system.

5.1 Evaluation of dialogue manager with
user simulator

First, we evaluated the dialogue manager with
user simulation that is constructed from the train-
ing corpus (Section 3.1). In this evaluation, the
system calculated average reward of 100,000 di-
alogue sessions between the system and the user
simulator given a fixed noise rate. Figure 4 shows
the effect of the user focus. By introducing the
user focus, the system receives higher rewards
than the model without the user focus. Especially,
the proposed model is more robust with a noise
level of 10-30% that spoken dialogue systems of-
ten encounter (Yoshino et al., 2013a).

5.2 Evaluation of dialogue state tracking
with real users

Dialogue state tracking (DST) is a task of track-
ing the correct user state with a noisy input (e.g.
ASR and NLU errors) (Williams et al., 2013).
It tries to maximize the probability of the belief
of the correct states, but we evaluated the accu-
racy of the 1-best result of the belief update. We
also evaluated the average reward of each dia-
logue. The baseline system is a rule-based dia-
logue manager which we previously implemented.
The baseline system is operated by a score of
the question-answering module using predicate-
argument structures (Yoshino et al., 2011) and reg-
ular expressions for TP and GR modules.

The DST accuracy and average reward are
shown in Table 6. This result shows that the pro-
posed method tracks the dialogue state of the user
with a high accuracy. Our statistical framework

Noise



Dialogue 1

Sys: Hello.

Usr: Hello. Tell me today's news.

Sys:
Sabathia was stunned.

Usr: What is the crazy split?

Sys:

Tanaka showed a crazy split. His colleague

His split comes just like a four-seam, but it

s=TP, P(0|s)=0.8, b(s=TP)=0.800, f=0
a=TP, b(s=TP f=0)=0.8

s=0A, P(0|s)=0.4, b(s=0A4)=0.934, f=1
a=QA, b(s=04, f=1)=0.9

drops quickly in front of the home plate.

Usr:
Sys:

Where was he training?

York Yankees' camp on Feb. 20th.
Usr: (pause)
Sys:

two-seam on Feb. 18.
Usr: Does his two-seam drop?
Sys:

only slides, but also drops."
Usr: OK, any other news?
Sys:
Usr:
Sys:
usual and trained strenuously.

Tell me more.

Dialogue 2

Sys: Hello.

Usr: Hello. Tell me today's news?
Sys:

Tanaka practiced at the bullpen in the New

By the way, he also practiced a drop

The catcher said "Tanaka's two-seam not

Yankees' Ichiro is training strenuously!

Ichiro came to the field an hour earlier than

Matsui, a part-time coach for the Giants,

demonstrated 5 homeruns. The Giants
president told him "Come back as a player!"

Usr:
Sys:

What happened?

spring camp in Miyazaki.
Usr: What is the Godzilla cannon?
Sys:
home-run batting to young players.
Usr: Next please.
Sys:
from the rookie year?

The godzilla cannon came back to the Giants’

The Godzilla coach demonstrated his

To be a ace pitcher, has Fujinami improved

s=0A, P(0|s)=0.8, b(s=04)=0.973, f=1
a=QA, b(s=04, f=1)=1.0

s=NR, P(0|s)=1.0, b(s=NR)=1.00, f=1
a=PP, b(s=NR, f=1)=1.0

s=0A, P(0|s)=0.6, b(s=04)=0.867, f=1
a=QA, b(s=04, f=1)=0.9

s=TP, P(0]|s)=0.8, b(s=TP)=0.984, f=0
a=TP, b(s=TP, f=0)=1.0
s=ST, P(0|s)=0.9, b(s=ST)=0.871, f=0
a=ST, b(s=ST, f=0)=0.9

s=TP, P(0|s)=0.8, b(s=TP)=0.800, f=0
a=TP, b(s=TP f=0)=0.8

s=0A, P(0|s)=0.8, b(s=04)=0.532, f=0
a=ST, b(s=0Q4, f=0)=0.5

s=0QA4, P(0|s)=0.8, b(s=0A4)=0.806, =1
a=QA, b(s=04, f=1)=0.8

s=TP, P(0]|s)=0.8, b(s=TP)=0.986, f=0
a=TP, b(s=TP, f=0)=1.0

Figure 5: A dialogue example. (This example is translated from Japanese)

Table 6: Accuracy of dialogue state tracking.

rule focus POMDP
Accuracy of tracking 0.561 0.869
(1-best) (=175/312) (=271/312)
Average reward -22.9 188.6

improved SLU accuracy and robustness against
ASR errors, especially reducing confusions be-
tween question answering (QA) and topic presen-
tation (TP). Moreover, belief update can detect the
TP state even if the SLU incorrectly predicts QA
or ST.

5.3 Discussion of trained policy

An example dialogue is shown in Figure 5. In
the example, the system selects appropriate ac-
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tions even if the observation likelihood is low. At
the 4th turn of Dialogue 1 in this example, the sys-
tem with the user focus responds with an action of
proactive presentation a=PP, but the system with-
out the user focus responds with an action of topic
presentation a=TP. At the 2nd turn of Dialogue 2,
the user asks a question without a focus. The con-
fidence of s=QA is lowered by the belief update,
and the system selects the story telling module
a=ST. These examples show that the training re-
sult (=learned policy) reflects our design described
in Section 4.4: It is better to make a proactive pre-
sentation when the user is interested in the topic.

6 Conclusions

We constructed a spoken dialogue system for in-
formation navigation of Web news articles updated
day-by-day. The system presents relevant infor-



mation according to the user’s interest, by track-
ing the user focus. We introduce the user focus
detection model, and developed a POMDP frame-
work which tracks user focus to select the appro-
priate action class (module) of the dialogue sys-
tem. In experimental evaluations, the proposed di-
alogue management approach determines the state
of the user more accurately than the existing sys-
tem based on rules. An evaluation with a user sim-
ulator shows that including user focus in the dia-
logue manager’s belief state improves robustness
to ASR/SLU errors.

In future work, we plan to evaluate the system
with a large number of real users on a variety of
domains, and optimize the reward function for the
information navigation task.
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Abstract

This paper explores dialogue adaptation
over repeated interactions within a task-
oriented human tutorial dialogue corpus.
We hypothesize that over the course of
four tutorial dialogue sessions, tutors
adapt their strategies based on the person-
ality of the student, and in particular to
student introversion or extraversion. We
model changes in strategy over time and
use them to predict how effectively the
tutorial interactions support student learn-
ing. The results suggest that students lean-
ing toward introversion learn more effec-
tively with a minimal amount of inter-
ruption during task activity, but occasion-
ally require a tutor prompt before voicing
uncertainty; on the other hand, students
tending toward extraversion benefit signif-
icantly from increased interaction, partic-
ularly through tutor prompts for reflection
on task activity. This line of investiga-
tion will inform the development of future
user-adaptive dialogue systems.

1 Introduction

Throughout dialogue interactions, humans adapt
to each other in a variety of ways (Cohen et al.,
1981; Power, 1974; Wahlster and Kobsa, 1989).
Some recent studies suggest that dialogue systems
that mirror these adaptations to the user, e.g., by
adopting the user’s vocabulary (Niederhoffer and
Pennebaker, 2002) or linguistically aligning to the
user’s context (Pickering and Garrod, 2004), may
be more effective than those that do not. For sup-
porting human dialogue, it has been demonstrated
that tutorial dialogue systems improve in effective-
ness when they adapt to user uncertainty (Forbes-
Riley and Litman, 2007) or perform ‘small talk’
to increase the user’s trust in the system (Cassell
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and Bickmore, 2003). Some studies have provided
evidence that adapting to the user at the person-
ality level also increases effectiveness; for exam-
ple, users may become more agreeable when sys-
tems mirror their personality (Reeves and Nass,
1997), and varying levels of encouragement may
help users of extraverted or introverted personali-
ties accomplish a task more effectively (Tapus and
Mataric, 2008).

With this substantial evidence that adapting to
user personality may improve the effectiveness of
a dialogue system, there is little investigation of
how personality affects repeated interactions. For
supporting human learning in particular, we hy-
pothesize that taking personality into account may
enhance outcomes by providing a more tailored
experience. To explore this hypothesis, this paper
presents an analysis that uses the change in human
tutorial dialogue policies over repeated interaction
with introverted and extraverted students to pre-
dict the effectiveness of the tutoring. We utilize a
widely-used and validated questionnaire, the Big
Five Inventory, to determine a personality profile
for each student. We hypothesize that introverted
and extraverted students learn more effectively un-
der different dialogue policies. The results sug-
gest dialogue policy progressions that could aid in
the future development of personality-based user-
adaptive tutorial dialogue systems.

2 Related Work

Humans adapt to their dialogue partner in a va-
riety of ways: for example, using knowledge ac-
quired through the dialogue to inform subsequent
utterances (Carberry, 1989), maintaining a set of
subdialogues (Litman and Allen, 1987), and struc-
turing dialogue to achieve a common goal (Power,
1974), including asking particular sorts of ques-
tions (Cohen et al., 1981), reaching dialogue con-
vergence (Mitchell et al., 2012), and understand-
ing context-specific vocabulary (Grosz, 1983). It
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has been strongly suggested by a number of stud-
ies that dialogue systems would benefit greatly
from mirroring this sort of adaptation, e.g., by
adopting the user’s syntax (Niederhoffer and Pen-
nebaker, 2002), goal-oriented language (Brennan,
1996), and dialogue structure (Levelt and Kelter,
1982).

Some of these factors have been successfully
applied to task-oriented dialogue systems. For
example, ‘entrainment’ (the alignment between
partners at various linguistic levels) has been
shown to be predictive of task success in tele-
phone conversation (Nenkova et al., 2008) and
of less misunderstanding in personality-matching
systems (Mairesse and Walker, 2010).

In order to gauge user personality, we utilize
the Big Five Factor model, which was developed
to objectively measure five particular aspects of a
person’s personality (Goldberg, 1993). This per-
sonality model has been widely implemented in a
number of studies of personality in dialogue sys-
tems, including recommender systems (Dunn et
al., 2009) and conversational systems (Mairesse
and Walker, 2010). The investigation of person-
ality as it pertains to tutorial dialogue systems is a
natural step for user-adaptive dialogue systems.

3 Tutorial Dialogue Corpus

The corpus under examination in this study con-
sists of computer-mediated human-human textual
dialogue (Mitchell et al., 2013; Ha et al., 2013).
For each dialogue session, participants included
one tutor and one student who cooperated with
the goal of creating a working software artifact,
a text-based adventure game, by the end of the re-
peated interactions. Students were first-year uni-
versity students from an introductory engineering
course who volunteered in exchange for course
credit. No previous computer science knowledge
was assumed or required. The tutors were primar-
ily graduate students with previous experience in
tutoring or teaching Java programming.

The tutorial sessions were conducted within a
web-based textual dialogue interface for introduc-
tory programming in Java. The tutorial dialogue
interface, displayed in Figure 1, consists of four
panes in which the student interacts: the task de-
scription, the compilation and execution output,
the student’s Java source code, and the textual di-
alogue messages between the tutor and the stu-
dent. The student could modify, compile, and ex-
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Figure 1: The task-oriented tutorial dialogue inter-
face.

ecute Java code from within the interface, in ad-
dition to conversing with the tutor via the textual
dialogue pane. The content of the interface was
synchronized in real time between the student and
the tutor; however, the tutor’s interactions with the
environment were constrained to the textual di-
alogue with the student and the progression be-
tween tasks.

The corpus was collected during two university
semesters in Fall 2011 and Spring 2012. A total
of N = 67 students interacted with one of seven
tutors to complete the series of interactions during
this time frame. The tutoring curriculum was com-
posed of six task-based lessons completed over
four weeks, each constrained to forty minutes in
duration. Each lesson consisted of multiple sub-
tasks, with each lesson concluding at a milestone.
This paper considers only the first four of the six
lessons, because the fifth lesson suffered from sig-
nificant data loss due to a database connectivity
error, and the sixth lesson consisted of an unstruc-
tured review of the previous five lessons, and is
therefore a different type of dialogue than the prior
lessons. The structure of the corpus is illustrated
in Table 1.

The sessions under consideration contained
67 students, with a total of 45,904 utterances:
13, 732 student utterances and 32, 172 tutor utter-
ances. There were an average of 117 utterances
per session: 82 tutor utterances (652 words) and
35 student utterances (184 words). Introverted stu-
dents averaged 36 utterances and 172 words per
session, while extraverted students averaged 34 ut-
terances and 187 words per session. There was
no statistically significant difference between in-



Tutor | Student Lessons The tutoring was statistically significantly effec-
1 1 L1 | L2 | L3 | L4 | L5 | L6 tive overall and within each student group (p <
1 2 L1 | L2 | L3 | L4 | L5 | L6 0.0001, on all accounts).
. Pretest Posttest
| 2 [ 15 Jufr2[w3|4]|Ls [Le | Lesson | —
ntrovert | Extravert | Introvert | Extravert
: L1 50.69% 47.42% 71.63% 68.18%
18 L1 | L2 | L3 | L4 |L5 L6 L2 43.70% 38.96% 71.01% 73.59%
19 L1 | L2 | L3 | L4 | L5 | L6 L3 55.88% 54.55% 67.65% 64.85%
L4 68.79% 65.66% 80.56% 79.97%

Table 1: A diagram of the structure of the corpus.
Gray cells indicate dialogue sessions that were not
considered in the present analysis.

troverts and extraverts on these counts. The possi-
ble extraversion score on the questionnaire ranges
from —10 (highly introverted) to 25 (highly ex-
traverted), and the mean extraversion score of the
students in our corpus was 6.40 (standard devia-
tion 6.42). The distribution of scores across the
sample was comparable to a normal distribution,
as demonstrated by the histogram in Figure 2.
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Figure 2: Histogram of extraversion scores across
students in the corpus. Lighter bars indicate fe-
male students, while darker bars indicate male stu-
dents.

3.1 Learning Gain

Students completed an identical pretest and
posttest for each lesson. The average pretest and
posttest scores for students scoring above and be-
low the median extraversion score in the four
lessons are detailed in Table 3 (determination of
extraversion is detailed in Section 3.2). There
was no statistically significant difference between
the scores of extraverted and introverted students.
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Table 3: Average pretest and posttest scores for
each lesson.

This equation adjusts for negative learning gain
in the rare cases that posttest score is less than
pretest score (Marx and Cummings, 2007).

post—pre

. = post > pre
norm_gain = Ostf Tie (D)
POS"=PTC  post < pre
pre

Since pretest and posttest scores for introverts and
extraverts were not identical, normalized learning
gain was standardized within each group before
developing models to predict learning (Section 4).

3.2 Extraversion vs. Introversion

One of the standard frameworks for identifying
personality traits is the Big Five Factor model
of personality (Goldberg, 1993). The standard
method of testing for the Big Five personality
traits is by questionnaire (John and Srivastava,
1999; Gosling et al., 2003). The students un-
der consideration in this study were adminis-
tered a Big Five Inventory survey, a type of self-
assessment of personality, prior to any interac-
tion with the tutorial dialogue system. The Big
Five Inventory consists of 44 items to measure
an individual on the Big Five Factors of per-
sonality: Openness, Conscientiousness, Extraver-
sion, Agreeableness, and Neuroticism (Goldberg,
1993). This study focuses on a student’s responses
to the items reflective of extraversion and introver-
sion. These items are identified in Table 4. Ex-
traversion is defined as the part of the Big Five
Factors that identifies gregariousness, assertive-
ness, activity, excitement-seeking, positive emo-
tions, and warmth (John and Srivastava, 1999).

3.3 Dialogue Act Annotation

As described in the previous section, the corpus
being considered consists of 268 dialogues, four



Extraverted Student Dialogue Excerpt

STUDENT: So do we need an else statement for each
one? [QI]

TuTOR: That wouldn’t actually work. [AWH]

STUDENT: Really? [FNU]

TUTOR: See, because it’s testing them each independently.
[E]

TUTOR: So when it gets to 2 and 4, any other combination
goes toits else. [E]

Pause for 29 seconds.
TUTOR: If we added an else clause for each statement,
we’d end up with 3 of them printing out for every valid
input. [E]
STUDENT: Oh. [ACK]
Pause for 44 seconds.
TuToOR: What else do you think we could try? [QP]
Pause for 49 seconds.

STUDENT: Well the first one worked last time be-
cause it was checking only playerChoice ...maybe
currentChoice has something to do with this case.
[AWH]

Introverted Student Dialogue Excerpt

STUDENT: The else applies no matter what because it
doesn’t have an else 1if to combine with? [QI]

TuTOR: Well, it’s a little different than that. [AWH]
TUTOR: Each if statement applies no matter what. [I]

TUTOR: So, instead of checking the values as mutually
exclusive conditions, each if is checked in sequence. [I]

Pause for 22 seconds.

TUTOR: Your else occurs only with the final 1 £, regard-
less of what happened with the previous if statements!
[E]

Pause for 31 seconds.

TuUTOR: Let’s fix it by doing the change that you started
much earlier. [D]

Pause for 50 seconds.
TUTOR: Much better. :) [FP]
STUDENT: Thanks! [ACK]

Pause for 22 seconds.

TUTOR: Do you have any issues with the input checking
as it is now? [QP]

FPause for 46 seconds.
STUDENT: I do not! [AYN]

Table 2: Excerpts of similar dialogue between an extraverted and an introverted student.

I see myself as someone who ...

...1s talkative.
...is reserved.*
...1is full of energy.
... generates a lot of enthusiasm.
...tends to be quiet.*
... has an assertive personality.
...1s sometimes shy, inhibited.*

...1s outgoing, sociable.

Table 4: Items of the Big Five Inventory reflective
of a student’s extraversion traits. Asterisks repre-
sent items negatively associated with extraversion.

for each of 67 students, with 45, 904 utterances to-
tal. As described in this section, a portion of these
dialogues were manually annotated, and then a
supervised dialogue act classifier was trained on
them and was used to tag the remaining dialogues.

The annotation scheme applied to the corpus
consisted of 31 dialogue act tags grouped into
four high-level categories (Statement, Question,
Answer, Feedback) (Vail and Boyer, In press).
This tagset represents a refinement of previous di-
alogue act tagsets developed for task-oriented tu-
toring (Ha et al., 2013). During this refinement,
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emphasis was placed on decomposing frequent
tags that tended to be broad, such as STATEMENT
and QUESTION, in order to capture more fine-
grained pedagogical and social phenomena in the
dialogues. The annotation scheme is detailed in
Table 5.

A total of 30 sessions (4,035 utterances) were
manually annotated by a single annotator. Of
those 30 sessions, 37% were annotated by a sec-
ond independent annotator. Inter-annotator agree-
ment on this subset reached a Cohen’s kappa of
k=0.87 (agreement of 89.6%). These manually
annotated sessions form the basis for developing
an automated classifier.

The automated classifier was trained using the
WEKA machine learning software (Hall et al.,
2009). We used a J48 decision tree classifier,
which has a low running time (Verbree et al.,
2006) and as we will see, performed very well for
this task. The classifier was provided the features
listed in Table 6.

Before the construction of the classifier, the 30
sessions of the manually annotated corpus were
systematically split into a training and a test set,
consisting of 24 and 6 sessions, respectively; the
test set contained the first three sessions with stu-
dents identified as introverts and the first three ses-
sions with students identified as extraverts. Ut-
terances were defined as single textual messages.



Tag Example Session Type K
Introvert | Extravert
ACKNOWLEDGE (ACK) Okay. 10.46% 10.36% | 0.872
EXTRA-DOMAIN ANSWER (AEX) I’'m doing great. 1.33% 1.42% | 0.813
READY ANSWER (AR) I’'m ready. 2.75% 3.08% | 0.963
WH-QUESTION ANSWER (AWH) Line 9. 8.14% 8.10% | 0.819
YES/NO ANSWER (AYN) No, sir. 2.99% 3.73% | 0.839
CORRECTION (CO) *exclamation 0.43% 0.41% | 0.700
DIRECTIVE (D) Test what you have. 6.01% 5.97% | 0.888
EXPLANATION (E) Your code stops on line 2. 31.48% 26.70% | 0.822
NEGATIVE FEEDBACK (FN) No, that’s wrong. 0.02% 0.02% | 0.615
ELABORATED NEGATIVE FEEDBACK (FNE) | You're using the wrong function. 0.21% 0.14% | 0.689
NOT UNDERSTANDING FEEDBACK (FNU) I’'m not sure. 0.05% 0.04% | 0.749
OTHER FEEDBACK (FO) That’s okay. 0.17% 0.16% | 0.614
ELABORATED OTHER FEEDBACK (FOE) What you had was fine. 0.29% 0.27% | 0.665
POSITIVE FEEDBACK (FP) Very good! 6.78% 5.45% | 0.927
ELABORATED POSITIVE FEEDBACK (FPE) That’s a very good approach. 0.05% 0.12% | 0.705
UNDERSTANDING FEEDBACK (FU) Ohh, I see! 0.76% 0.92% | 0.804
GREETING (GRE) Hello! 2.59% 3.03% | 0.941
INFORMATION (I) Variable names must be one word. 4.55% 5.33% | 0.859
OBSERVATION (0) As you see, we have a bug. 0.25% 0.31% | 0.760
EXTRA-DOMAIN OTHER (OEX) Calculus is difficult. 1.49% 2.22% | 0.789
CONFIRMATION QUESTION (QC) Does that work? 0.16% 0.16% | 0.857
DIRECTION QUESTION (QD) What do I do now? 0.68% 0.58% | 0.758
EVALUATIVE QUESTION (QE) Does that make sense? 0.87% 0.83% | 0.763
EXTRA-DOMAIN QUESTION (QEX) How are you today? 0.42% 0.45% | 0.781
FACTUAL QUESTION (QF) What line is it waiting on? 4.10% 5.12% | 0.832
INFORMATION QUESTION (QI) How do you add spaces? 4.06% 4.91% | 0.820
OPEN QUESTION (QO) How can you fix it? 0.15% 0.14% | 0.725
PROBING QUESTION (QP) Do you think that looks correct? 4.99% 4.76% | 0.731
QUESTION PROMPT (QQ) Any questions? 2.49% 2.24% | 0.978
READY QUESTION (QR) Are you ready to move on? 2.47% 2.75% | 0.989
REASSURANCE (R) We have plenty of time left. 0.12% 0.15% | 0.763

Table 5: Dialogue act tags comprising the annotation scheme, the average composition of a Lesson 4
session with introverted and extraverted students, and the Cohen’s kappa achieved by the automated

classifier.

Feature Description Number of Features
Initial Selected
TUTOR or STUDENT 1 1
Two-step tag history 2 2
Two-step category history 2 2
Number of tokens in the utterance 1 1
Existence of a question mark 1 1
Existence of word unigrams 1459 160
Existence of word bigrams 8959 150
Existence of POS unigrams 50 31
Existence of POS bigrams 928 152

Table 6: Features provided to the J48 automatic
dialogue act classifier.
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Feature selection was performed on the features
occurring more than three times in the training
set using the WEKA machine learning software:
various top-N cut-offs were examined for perfor-
mance on tenfold cross-validation after ranking
the features by information gain. A peak in per-
formance during cross-validation on the training
set was observed at N=500 features.

The final dialogue act classifier includes the fol-
lowing features: speaker role, two-step dialogue
act history (category and tag), utterance length, ex-
istence of the ‘7’ token, existence of 160 unigrams
and 150 bigrams, and existence of 31 part-of-
speech unigrams and 152 part-of-speech bigrams.



The part-of-speech tagger used in this analysis was
an n-gram tagger within the Natural Language
Tool Kit for Python, trained on the NPS chat cor-
pus (Bird et al., 2009; Forsyth and Martell, 2007).
The classifier performance on the held-out test set
consisting of 714 utterances was 80.11% accuracy,
Cohen’s kappa of 0.786. This classifier was then
used to tag dialogue acts in the remaining 41, 869
utterances.

4 Extraversion and Dialogue Policy

With the annotated corpus in hand, the goal is to
examine how dialogue policy progression, as rep-
resented by tutors’ contextualized dialogue acts,
occurs over time with students tending toward ex-
traversion or introversion. We hypothesize that
tutors adapt differently to introverted and ex-
traverted students, and that students of different
extraverted or introverted tendencies learn more
effectively from different dialogue policies.

Students were binned into two groups, the ‘in-
troverts’, consisting of the students scoring below
or equal to the median extraversion score of 7, and
the ‘extraverts’, consisting of the students scoring
above the median score!. These groups included
34 and 33 students, respectively.

We describe tutor dialogue policy by identify-
ing the conditional probabilities of a tutor move
following a student move (i.e., the probabilities
Pr(T,|Sn—1)) during each session. In other
words, we compute bigram probabilities over di-
alogue acts, where the second dialogue act of the
bigram is a tutor move. Because the task-oriented
nature of the dialogue allows for extended periods
of dialogue silence while the student is working
on the task, a WAIT tag was added to the corpus
when there was a pause in the dialogue for more
than twenty seconds. This threshold was chosen
based upon qualitative inspection of the corpus. To
identify the changes in this policy over time, we
calculated the difference in the probability of each
dialogue act bigram between the first and fourth
lessons of each student-tutor pair. Finally, in or-
der to allow for directly comparing parameter val-
ues across models, each column of predictors was
standardized by subtracting the mean and dividing

"We split on the median introversion/extraversion score
as observed in our student sample rather than splitting on a
larger population median because the range of personality
traits differs significantly based on the sample. To date, no
large study has examined university students in order to es-
tablish personality norms.
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by the standard deviation.

After all of the bigram probabilities were stan-
dardized, we split the students into two groups
based on median extraversion score: those tend-
ing toward extraversion and those tending toward
introversion. A feature selection algorithm was
then applied to each of these sets in order to iden-
tify the most relevant dialogue act bigram fea-
tures for predicting learning. Any feature that
provided non-positive information gain was elim-
inated from consideration. A stepwise linear re-
gression model was then applied using the SAS
statistical modeling software, resulting in the mod-
els displayed in Tables 7 and 8. Subscripts indicate
the speaker of the dialogue act, student or tutor.
Note that in each of these tables, the predictors are
not just bigram probabilities, but change in that
particular bigram probability from the first to the
fourth dialogue within repeated-interactions tutor-
ing.

Students Tending Toward Extraversion

Normalized Learning Gain = | Partial R? D
1.244 * OEXs — FPr 0.228 < 0.001
—0.445 * AYNs — Rt 0.169 < 0.001
0.440 * Es — QEr 0.139 0.001
0.359 * QIs — QFr 0.092 0.002
—0.298 * AWHs — QOr 0.081 0.013
0.207 * WAIT— QPr 0.050 0.037
—0.226 * QIs — It 0.038 0.041
0.000 (intercept) 1.000
RSME = 50.97% of range in Normalized Learning Gain

Table 7: Stepwise linear regression model for stan-
dardized Normalized Learning Gain in students
scoring above the median in extraversion.

Students Tending Toward Introversion

Normalized Learning Gain = | Partial R* p

—0.447 * QIs — Rt 0.262 0.003
0.371 * QIs — QPr 0.125 0.007
—0.331 * QIs — QOr 0.092 0.015
—0.278 * WAIT— FPET 0.083 0.018
0.384 * AYNs — QOr 0.067 0.010
0.288 * ACKs — ET 0.067 0.022
0.000 (intercept) 1.000
RSME = 60.89% of range in Normalized Learning Gain

Table 8: Stepwise linear regression model for stan-
dardized Normalized Learning Gain in students
scoring below the median in extraversion.



Several tutorial dialogue policy progressions
were identified as statistically significantly asso-
ciated with learning gain in both extraverted and
introverted students. An increase in factual ques-
tions following extra-domain statements was asso-
ciated with increased learning in students scoring
above the median in extraversion, as was an in-
crease in evaluative questions after explanations,
an increase in the number of factual questions fol-
lowing information questions, and an increase in
probing questions initiated after the conclusion of
a sub-dialogue. On the other hand, extraverted
students achieved a lower learning gain when tu-
tors offered increasing reassurance after yes/no an-
swers, asked more open questions after answers to
WH-questions, or gave increasing instruction after
an information question.

A similar number of tutorial dialogue policy
progressions were identified as statistically signif-
icantly correlated with learning gain in introverted
students. For these students, a higher learning gain
was achieved when tutors followed more infor-
mation questions with a probing question, more
yes/no answers with a prompt for questions, or
offered increasing explanation after acknowledge-
ments. Students scoring below the median in ex-
traversion achieved a lower learning gain when
tutors offered more reassurance after information
questions, more prompts for questions after infor-
mation questions, or increasing elaborated positive
feedback after pauses in the dialogue.

5 Discussion

This section examines the tutorial dialogue pol-
icy progressions that were identified as statisti-
cally significant to learning gain in these groups
of students; recall that each feature represents a
change over time in the probability that the second
dialogue act follows the first. First we examine
the extraverted student model, and then we exam-
ine the introverted student model. Dialogue ex-
cerpts illustrating these dialogue interactions are
displayed in Appendix 1.

5.1 Extraverted Students

Students scoring higher in extraversion tend to
be assertive, outgoing, and energetic (Goldberg,
1993). As the models show, these characteris-
tics likely influence the extent to which particu-
lar dialogue policies are effective for supporting
learning for extraverted students. For example,
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the high energy nature of the extraversion per-
sonality trait may influence how dialogues tran-
sition. The model shows that students learned
more when tutors progressed over time toward
more positive feedback following extra-domain
statements (Extra-Domain Statementg — Positive
FeedbackT) and toward more probing questions
following pauses (Wait — Probing Questionr).
Both of these bigrams indicate important transi-
tion points within dialogue. For the former, extra-
domain statements represent off-topic utterances,
whereas tutor positive feedback can only be task-
related (if it were a positive response to an extra-
domain statement, the response would also have
been tagged extra-domain). For tutor probing
questions following pauses, it is likely that ex-
traverted students benefited from this adaptation
over time because in being asked to reflect and
explain their current understanding or goals, they
may have been re-engaged. It should be noted that
in general, asking students to self-explain can sup-
port learning (VanLehn et al., 1992).

Another example of a dialogue policy progres-
sion that emerged in the model and illustrates a
widely known fact about tutoring is reflected in the
Information Questions — Informationt bigram,
which when tutors progressed more toward this
approach, is associated with decreased learning.
Our prior work has shown that directing students
what to do, even if they have just asked for such
direction, is strongly associated with decreased
learning (Mitchell et al., 2013).

Extraverted students tend to be assertive, and
this characteristic influences how they make and
interpret particular dialogue moves. An example
of this can be seen within the model: when tutors
progressed toward providing more reassurance af-
ter student yes/no answers, students learned less.
This Yes/No Answers — Reassurancer policy is
likely a form of indirect feedback or politeness,
both of which have been shown to be unhelpful,
and sometimes harmful, to learning (Johnson and
Rizzo, 2004), and this seems to be a particularly
marked effect for extraverted students who may
benefit more from direct evaluations of their an-
swers. Another example of this indirect approach
may be within the WH-Question Answers — Open
Questiony tutor policy, whose increasing use over
time was associated with lower student learning.
Like reassurance, a follow-up question may be in-
terpreted by extraverted students as an indirect in-



dication that the previous answer was incorrect,
and a more direct approach may have been more
helpful.

Finally, extraverted students tend to be talkative.
This tendency is consistent with two of the
model’s findings regarding the helpfulness of par-
ticular types of tutor questions. Students tended
to learn more when tutors progressed toward fol-
lowing student explanations with evaluative ques-
tions (Explanationg — Evaluative Questiont).
Although students’ responses to evaluative ques-
tions (e.g., ‘Do you understand?’) are frequently
considered to be inherently inaccurate, especially
when students are first introduced to material, it
may be the case that as students work on a task for
an extended period of time, evaluative questions
may become increasingly helpful. Another tutor
questioning policy was also positively associated
with learning gain for extraverted students: Infor-
mation Questions — Factual Questiont involves
the tutor answering a question with a question,
potentially a very helpful strategy for talkative or
highly social students.

5.2 Introverted Students

Students scoring lower in extraversion tend to be
less talkative, more reserved, and more shy (Gold-
berg, 1993). This may result in introverted stu-
dents being less outspoken about their understand-
ing, and less likely to ask questions about misun-
derstandings. These characteristics affect the way
that tutor choices impact student learning during
tutoring. For example, when less talkative stu-
dents ask information questions and tutors tend to
provide more reassurance as time goes on, this In-
Sformation Questiong — Reassurancer pair is as-
sociated with decreased student learning. It is pos-
sible that since introverts are less likely to speak
up with a question, the “stakes” or importance of
providing a direct answer may be higher for these
students. Another dialogue policy progression that
is not helpful for student learning is to provide
elaborated positive feedback after a pause in di-
alogue (Wait — Elaborated Positive Feedbackr).
Because pauses in the dialogue typically corre-
spond to student task actions, it is possible that in-
troverted students who are on the right track would
benefit more from the tutor allowing them to con-
tinue working.

Introverted students also tend to describe them-
selves as shy or inhibited, which may be influential
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in the apparent helpfulness of tutors’ increasing
their question prompts following student answers
(Answer Yes/Nog — Question Promptr). This
could be due to the fact that introverted students
are prone to giving terse responses, and may need
extra encouragement to ask questions if they are
uncertain. Increasing the number of these prompts
could increase the likelihood that more of the stu-
dent’s questions are voiced. Another helpful type
of question for introverted students seems to be
probing questions, even when they follow a stu-
dent question (Question Informationsg — Probing
Questiont). A probing question is an indirect re-
quest for reflection, prompting the student to re-
consider her approach; this has previously been
shown to have a positive effect on learning gain
(VanLehn et al., 1992).

6 Conclusion and Future Work

Adapting to personality during dialogue may
substantially improve the effectiveness of both
human-human interactions as well as interactions
with dialogue systems. We have investigated the
ways in which human tutorial dialogue policy pro-
gressions are associated with learning within a
repeated-interactions dialogue study. The models
indicate that depending on a student’s tendencies
toward introversion or extraversion, different di-
alogue policy progressions support higher learn-
ing. In particular, introverts may benefit from ad-
ditional prompting and encouragement to speak
their mind, while extraverts may benefit from be-
ing given opportunities to discuss their thoughts
with a tutor.

While this study has focused on the extraversion
facet of personality, future work may benefit from
examining the other facets of the Big Five Fac-
tors: Neuroticism, Openness, Conscientiousness,
and Agreeableness. How we may best design a tu-
torial dialogue policy around a more fully-featured
model of the student’s personality is an important
research area. It will also be important to examine
task actions closely in future analyses, as this may
have significant effects on task-oriented dialogue
system design in particular. Additionally, analyz-
ing the intermediate sessions in order to capture
a fuller picture of the interaction over time is a
promising direction. Finally, examining tutor per-
sonality may also reveal important insight for the
design of tutorial systems. It is hoped that these
lines of investigation will lead to a next generation



of user-adaptive dialogue systems with increased
effectiveness facilitated by their adaptation to per-
sonality traits.
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Extraverted Student Dialogue Excerpt

Extra-Domain Other — Positive Feedback

STUDENT: I haven’t really done this before.
TUTOR: You’re doing well!

Yes/No Answer — Reassurance

STUDENT: Yes.

TUTOR: Actually, I was wording the question incor-
rectly. ..

Explanation — Evaluative Question

STUDENT: But it still prompts for 3 or 4...

TUTOR: Yes; does that make sense from what you
learned about sequential program flow?

Information Question — Factual Question

STUDENT: What did I do wrong?

TUTOR: What is your Scanner’s name?

WH-Question Answer — Open Question

STUDENT: Previous.

TUTOR: Why did previousChoice get assigned
a value?

Wait — Probing Question

TUTOR: What do you think about your program’s
behavior?

Information Question — Instruction

STUDENT: There wouldn’t have been any output?

TUTOR: Yeah, but more than that, the program
would report an error.

Introverted

Student Dialogue Excerpt

Information Question — Reassurance

STUDENT: So the previous answer needs to be
stored as a part of PlayerInput2?

TuTOR: That would work fine.

Information Question — Probing Question

STUDENT: That’s not what I want?

TUTOR: Do you really want ‘or’?

Information Question — Question Prompt

STUDENT: So I need an else if for every if
statement?

TUTOR: Do you have any questions?

Wait — Elaborated Positive Feedback

TUTOR: Nice, you compiled the code.

Yes/No Answer — Question Prompt

STUDENT: No, I got it.

TUTOR: Any questions so far?

Acknowledgement — Explanation

STUDENT: Okay.

TUTOR: When Java gets to the nextLine (), it
will stop.

Appendix 1: Dialogue excerpts illustrating the dialogue interactions emergent as significant in the anal-
ysis. All excerpts originate from Lesson 4, at the end of the series of dialogue sessions.
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Abstract

Human-computer trust has shown to be a
critical factor in influencing the complex-
ity and frequency of interaction in techni-
cal systems. Particularly incomprehensi-
ble situations in human-computer interac-
tion may lead to a reduced users trust in the
system and by that influence the style of
interaction. Analogous to human-human
interaction, explaining these situations can
help to remedy negative effects. In this pa-
per we present our approach of augment-
ing task-oriented dialogs with selected ex-
planation dialogs to foster the human-
computer trust relationship in those kinds
of situations. We have conducted a web-
based study testing the effects of different
goals of explanations on the components
of human-computer trust. Subsequently,
we show how these results can be used in
our probabilistic trust handling architec-
ture to augment pre-defined task-oriented
dialogs.

1 Introduction

Human-computer interaction (HCI) has evolved in
the past decades from classic stationary interaction
paradigms featuring only human and computer to-
wards intelligent agent-based paradigms featuring
multiple devices and sensors in intelligent envi-
ronments. For example, ubiquitous computing no
longer seems to be a vision of future HCI, but has
become reality, at least in research labs and pro-
totypical environments. Additionally, the tasks a
technical system has to solve cooperatively with
the user have become increasingly complex. How-
ever, this change from simple task solver to intel-
ligent assistant requires the acceptance of and the
trust in the technical system as dialogue partner
and not only as ordinary service device.

felix.richter,
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Especially trust has shown to be a crucial part in
the interaction between human and technical sys-
tem. If the user does not trust the system and its
actions, advices or instructions the way of interac-
tion may change up to complete abortion of future
interaction (Parasuraman and Riley, 1997). Espe-
cially those situations in which the user does not
understand the system or does not expect the way
how the system acts are critical to have a negative
impact on the human-computer trust (HCT) rela-
tionship (Muir, 1992). Those situations do occur
usually due to incongruent models of the system:
During interaction the user builds a mental model
of the system and its underlying processes deter-
mining system actions and output. However, if
this perceived mental model and the actual system
model do not match the HCT relationship may be
influenced negatively (Muir, 1992). This may, for
example, be due to a mismatch in the expected and
the actual system action and output.

For example, if a technical system would assist
the user in having his day scheduled in a time ef-
fective manner, the user would be in a vulnerable
situation of relying on the reasoning capabilities of
the system. However, when the user-expected time
schedule does not match the system-generated, the
question arises if the user will trust the system, de-
spite lacking the knowledge if the schedule is cor-
rect. If the user trusts the automated day schedul-
ing capability of the system, he will probably at-
tend the appointments exactly as scheduled. How-
ever, if he does not trust this automated outcome
he won’t rely on it and will question the plan.

Therefore, the goal should be to detect those
critical situations in HCI and to react appropri-
ately. If we take a look at how humans detect
and handle critical situations, we can conclude that
they use contextual information combined with in-
terpreted multimodal body analysis (e.g., facial
expression, body posture, speech prosody) for de-
tection and usually some sort of explanation to

Proceedings of the SIGDIAL 2014 Conference, pages 51-59,
Philadelphia, U.S.A., 18-20 June 2014. (©2014 Association for Computational Linguistics



Goals
Transparency
Justification
Relevance
Conceptualization
Learning

Details
How was the systems answer reached?
Explain the motives of the answer?
Why is the answer a relevant answer?
Clarify the meaning of concepts
Learn something about the domain

Table 1: Goals of explanation after (Sgrmo and
Cassens, 2004). These goals subsume different
kinds of explanation as e.g., why, why-not, what-
if, how-to explanations

clarify the process of reasoning (i.e. increasing
transparency and understandability). As even hu-
mans are sometimes insecure about judging the di-
alog partner and to decide whether and which type
of reaction would be appropriate, it seems valid
that a technical system will not overcome this is-
sue of uncertainty. Therefore, we assume that the
transfer of this problem to a technical system can
only be handled effectively by incorporating un-
certainty and thus using a probabilistic model. In
the remainder of this paper, we will first elaborate
how to react to not understandable situations and
secondly present how to incorporate these findings
into a multimodal dialogue system using a proba-
bilistic model.

2 Coping with Incomprehensible
Situations

Analogous to human-human interaction provid-
ing explanations in not understandable situations
in HCI can reduce the loss of trust (Glass et al.,
2008). However, HCT is not a one-dimensional
simple concept. It may be devided into several
components, which all have to be well-functioning
to have the user trust a technical system. Exis-
tent studies concentrated on showing that explana-
tions or different kinds of explanations can influ-
ence HCT in general (Lim et al., 2009). So, what
is lacking currently is which explanations do influ-
ence which bases of human-computer trust.

2.1 Explanations

In general, explanations are given to clarify,
change or impart knowledge. Usually the implicit
idea consists of aligning the mental models of the
participating parties. The mental model is the per-
ceived representation of the real world, or in our
case of the technical system and its underlying
processes. In this context explanations try to es-
tablish a common ground between the parties in
the sense that the technical system tries to clar-
ify its actual model to the user. This is the at-
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tempt of aligning the user’s mental model to the
actual system. However, explanations do not al-
ways have the goal of aligning mental models, but
can be used for other purposes as well. Analogous
to human-human interaction, in human-computer
interaction the sender of the explanation pursues a
certain goal, with respect to the addressee, which
should be achieved. The question remains, how
these different goals of explanation (see table 1)
map to HCT, meaning, how they influence HCT
or components of it.

2.2 Human-Computer Trust

Mayer et al. (1995) define trust in human-human
interaction to be “the extent to which one party is
willing to depend on somebody or something, in
a given situation with a feeling of relative secu-
rity, even though negative consequences are pos-
sible”. For HCI trust can be defined as “’the atti-
tude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty
and vulnerability” (Lee and See, 2004). Techni-
cal Systems which serve as intelligent assistants
with the purpose of helping the user in complex as
well as in critical situations seem to be very de-
pendent on an intact HCT relationship. However,
trust is multi-dimensional and consists of several
bases. For human relationships, Mayer et al. de-
fined three levels that build the bases of trust: abil-
ity, integrity and benevolence. The same holds for
HCI, where HCT is a composite of several bases.
For human-computer trust Madsen and Gregor
(2000) constructed a hierarchical model (see fig-
ure 1) resulting in five basic constructs or so-called
bases of trust, which can be divided in two general
components, namely cognitive-based and affect-
based bases. In short-term human-computer in-
teraction, cognitive-based HCT components seem
to be more important, because it will be easier to
influence those. Perceived understandability can
be seen in the sense that the human supervisor
or observer can form a mental model and predict
future system behavior. The perceived reliabil-
ity of the system, in the usual sense of repeated,
consistent functioning. And technical competence
means that the system is perceived to perform the
tasks accurately and correctly based on the input
information. In this context it is important to men-
tion, that as Mayer already stated, the bases of
trust are separable, yet related to one another. All
bases must be perceived highly for the trustee to be
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Figure 1: Human-computer trust model: Personal
attachment and faith build the bases for affect-
based trust. Rerceived understandability, techni-
cal competence and reliability for cognition-based
trust.

Affect-Based
Trust

Overall
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deemed trustworthy. If any of the bases does not
fulfill this requirement, the overall trustworthiness
can suffer (Madsen and Gregor, 2000).

3 Related Work

Previous work on handling trust in technical sys-
tems was done for example by Glass et al. (2008).
They investigated factors that may change the
level of trust users are willing to place in adaptive
agents. Among these verified findings were state-
ments like “provide the user with the information
provenance for sources used by the system”, “in-
telligently modulating the granularity of feedback
based on context- and user-modeling” or “supply
the user with access to information about the in-
ternal workings of the system”. However, what is
missing in Glass et al.’s work is the idea of rat-
ing the different methods to uphold HCT in gen-
eral and the use of a complex HCT model. Other
related work was for example done by Lim et al.
(2009) on how different kinds of explanations can
improve the intelligibility of context-aware intel-
ligent systems. They concentrate on the effect of
Why, Why-not, How-to and What-if explanations
on trust and understanding system’s actions or re-
actions. The results showed that Why and Why-
not explanations were the best kind of explanation
to increase the user’s understanding of the sys-
tem, though trust was only increase by providing
Why explanations. Drawbacks of this study were
that they did only concentrate on understanding
the system and trusting the system in general and
did not consider that HCT is on the one hand not
only influenced by the user’s understanding of the
system and on the other hand that if one base of
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trust is flawed, the HCT in general will be dam-
aged (Mayer et al., 1995).

Regarding the issue of trusting a technical sys-
tem or its actions and reactions related work ex-
ists for example on “credibility” (Fogg and Tseng,
1999). However, this term developed in the web
community focusing on the believability of exter-
nal sources. The term trust is used in the web
research community as well as in work on “trust
in automation”. However, as Fogg stated himself
later (Tseng and Fogg, 1999) credibility should be
called believability and trust-in-automation should
be called dependability to reduce the missunder-
standings. In this work we use the term human-
computer trust and its model by Madsen and Gre-
gor (2000) subsuming both terms.

4 Experiment on Explanation
Effectiveness

The insight that human-computer trust is not a
simple but complex construct and the lack of di-
rected methods to influence components of HCT
motivated us to conduct an experiment which tried
to overcome some of these issues. The use of ex-
planations to influence HCT bases in a directed
and not arbitrary way, depends on whether an
effective mapping of explanation goals to HCT
bases can be found. This means, that we have
to identify which goal of explanation influences
which base of trust in the most effective way.
Therefore, the goal was to change undirected
strategies to handle HCT issues into directed and
well-founded ones, substantiating the choice and
goal of explanation.

For that we conducted a web-based study in-
ducing events to create not understandable or not
expected situations and then compared the effects
of the different goals of explanations on the HCT-
bases. For our experiment we concentrated on jus-
tification and transparency explanations. Justifica-
tions are the most obvious goal an explanation can
pursue. The main idea of this goal is to provide
support for and increase confidence in given sys-
tem advices or actions. The goal of transparency
is to increase the users understanding in how the
system works and reasons. This can help the user
to change his perception of the system from a
black-box to a system the user can comprehend.
Thereby, the user can build a mental model of the
system and its underlying reasoning processes.

The participants in the experiment where ac-



quired by using flyers in the university as well as
through facebook. The age of the participants was
in a range from 14 to 61, with the mean being 24,1.
Gender wise, the distribution was 59% (male) to
41% (female), with most of the participants be-
ing students. For the participation the students did
receive a five euro voucher for a famous online
store. However, this was only granted when fin-
ishing the complete experiment. Therefore, partic-
ipants dropping out of the experiment would waive
the right on the voucher.

4.1 Set-Up

The main objective of the participants to organize
four parties for friends or relatives in a web-based
environment. This means that they had to use the
browser at home or the university to organize for
example, the music, select the type and amount of
food or order drinks. Each party was described
by an initial screen depicting the key data for the
party. This included which tasks had to be accom-
plished and how many people were expected to
join (see figure 2). Each task was implemented
as a single web-page, with the goal to organize
one part of the party (i.e., dinner, drinks, or cham-
pagne reception). The user had to choose from
several drop-down menus which item should be
ordered for the party and in what number. For ex-
ample, the user had to order the components of
the dinner (see figure 3). When an entry inside
a drop-down menu was chosen, the system gave
an advice on how much of this would be needed
to satisfy the needs of one guest. Additionally, be-
fore the participant could move on to the next task,
the orders were checked by the system. The sys-
tem would output whether the user had selected
too much, too little or the right amount and only if
everything was alright could proceed to the next
task. The experiment consisted in total of four
rounds. The first two rounds were meant to go
smoothly and were supposed to get the subject
used to the system and by that building a men-
tal model of it. After the first two rounds a HCT
questionnaire was presented to the user. As ex-
pected the user has built a relationship with the
system by gaining an understanding of the systems
processes. The next two rounds were meant to
influence the HCT-relationship negative with un-
expected external events. These unexpected, and
incongruent to the user’s mental model, system
events were influencing pro-actively the decisions
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Figure 2: General information on the party. How
many people plan to attend the event and what type
of tasks have to be accomplished.

and solutions the user made to solve the task. This
means, without warning, the user was overruled
by the system and either simply informed by this
change, or was presented an additional justifica-
tion or transparency explanation as seen in figure
3. In this figure we can see that the user’s order
(’Bestellungsliste’) was changed pro-actively be-
cause of an external event. Here the attendance of
some participants was cancelled in the reservation
system, thus the system did intervene. This pro-
active change was explained at the bottom of the
web-page by, in this case, providing a justification
(The order was changed by the system, because
the number of attending persons decreased’). The
matching transparency explanation would not only
provide a reason, but explain how the system an-
swer was reached ("Due to recent events the or-
der was changed by the system. The order vol-
ume has been reduced, because several persons
canceled their attendance in the registration sys-
tem.”). Events like this occurred several times in
the rounds 3 and 4 of the party planning.

4.2 Results

139 starting participants were distributed among
the three test groups (no explanation, transparency,
justifications). 98 accomplished round 2, reach-
ing the point until the external events were in-
duced and 59 participants completed the experi-
ment. The first main result was that 47% from
the group receiving no explanations quit during
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Figure 3: This screenshot shows one of the tasks the user has to accomplish. In this case dinner ("Haupt-
gerichte’) including entree (" Vorspeisen’) and desserts has to be ordered.

the critical rounds 3 and 4. However, if expla-
nations were presented only 33% (justifications)
and 35% (transparency) did quit. This means that
eventhough the participants would encounter neg-
ative consequences of losing the reward money,
they did drop out of the experiment. Therefore,
we can state that the use of explanations in incom-
prehensible and not expected situations can help
to keep the human-computer interaction running.
The main results from the HCT-questionnaires can
be seen in figure 4. The data states that providing
no explanations in rounds three and four resulted
in a decrease in several bases of trust. Therefore,
we can conclude that the external events did in-
deed result in our planned negative change in trust.
Perceived understandability diminished on aver-
age over the people questioned by 1.2 on a Lik-
ert scale with a range from 1 to 5 when providing
no explanation at all compared to only 0.4 when
providing transparency explanations (no explana-
tion vs. transparency t(34)=-3.557 p<0.001), and
on average by 0.5 with justifications (no expla-
nation vs. justifications t(36)=-2.023 p<0.045).
Omitting explanations resulted in an average de-
crease of 0.9 for the perceived reliability, with
transparency explanations in a decrease of 0.4 and
for justifications in a decrease of 0.6 (no explana-
tion vs. transparency t(34)=-2.55 p<0.015).

These results support our hypotheses that trans-
parency explanations can help to reduce the neg-
ative effects of trust loss regarding the user’s per-
ceived understandability and reliability of the sys-
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tem in incomprehensible and unexpected situa-
tions. Especially for the base of understandability,
meaning the prediction of future outcomes, trans-
parency explanations fulfill their purpose in a good
way. Additionally, they seem to help with the per-
ception of a reliable, consistent system. The re-
sults show that it is worthwhile to augment ongo-
ing dialogs with explanations to maintain HCT.

While analyzing the data we did not find any
statistically significant differences between pro-
viding transparency and justification explanations.
However, this could be due to limited differences
in the goals of explanation. Usually, the trans-
parency explanations in the experiment were in-
cluding more information on what happened in-
side the system, and how the system did recognize
the external event (e.g., the reduction of attend-
ing persons). In future experiments we will try to
distinguish those two goals of explanations more
from each other. For example, the justification for
reduce attendance to an event can be changed to
something like *The order was changed by the sys-
tem, because otherwise you would have too much
food’ instead of 'The order was changed by the
system, because the number of attending persons
decreased’ and by that making it more different
from the transparency explanation ("Due to recent
events the order was changed by the system. The
order volume has been reduced, because several
persons canceled their attendance in the registra-
tion system.”). In the following, we will describe
how this is used in our developed explanation aug-
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Figure 4: This figure shows the changes of HCT bases from round 2 to round 4. The scale was a 5 point
likert scale with e. g., 1 the system being not understandable at all and 5 the opposite.

mentation architecture (see figure 5).

5 Implementation

The augmentation of the dialog is done using two
different kinds of dialog models. On the one hand
we are using a classic dialog model based on a
finite-state machine approach for the task-oriented
part of the dialog. On the other hand a planner
(Miiller et al., 2012) is used to generate from a
POMDP a decision tree. This POMDP is used
only for the augmentation of the task-oriented part
of the dialog with explanations. The communi-
cation between each module of the architecture
is controlled by a XML-based message-oriented
middleware (Schroder, 2010), using a publish-
subscribe system to distribute the XML-messages.
In order to decide when to induce additional ex-
planations, on one hand critical situations in HCI
have to be recognized and on the other hand, if
necessary the appropriate type of explanation has
to be given. Obviously, recognizing those situa-
tions cannot be done solely by using information
coming from interaction and its history. Multi-
modal input as speech recognition accuracy, fa-
cial expressions or any other sensor information
can help to improve the accuracy of recognizing
critical moments in HCI. However, mapping sen-
sor input to semantic information is usually done
by classifiers and those classifiers convey a certain
amount of probabilistic inaccuracy which has to
be handled. Therefore, a decision model has to be
able to handle probabilistic information in a suit-
able manner.

5.1 Probabilistic Decision Model

For the problem representation when and how to
react, a so-called partially observable Markov de-
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cision process (POMDP) was chosen and formal-
ized in the Relational Dynamic Influence Dia-
gram Language (RDDL) (Sanner, 2010). RDDL
is a uniform language which allows an efficient
description of POMDPs by representing its con-
stituents (actions, observations, belief state) with
variables. Formally, a POMDP consists of a set
S of world states, a set A of system actions, and
a set O of possible observations the system can
make. Further, transition probabilities P(s'[s, a)
describe the dynamics of the environment, i.e., the
probability of the successor world state being s’
when action a is executed in state s. The obser-
vation probabilities P(o|s’, a) represent the sen-
sors of the system in terms of the probability of
making observation o when executing a resulted
in successor world state s’. Each time the system
executes an action a, it receives a reward R(s, a)
which depends on the world state s the action was
executed in. The overall goal of the system is to
maximize the accumulated reward it receives over
a fixed number of time steps. (For more informa-
tion on POMDPs, see Kaelbling et al. (1998).)

A POMDP is then used by a planner (Silver and
Veness, 2010; Miiller et al., 2012) to search for a
policy that determines the system’s behavior. This
policy is, e.g., represented as a decision tree that
recommends the most suitable action based on the
system’s previous actions and observations. For
example, a policy for a POMDP that models HCI
with respect to HCT, can thus represent a decision
tree which represents a guideline for a dialog flow
which ensures an intact HCT-relationship.

The RDDL model is a probabilistic representa-
tion of the domain, which determines when and
how to augment the dialog with explanations at
run-time. Each observation o consists of the du-
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Figure 5: The architecture consists of two dialog models, a fission and fusion engine, sensors as well as
the multimodal interface representation to interact with the user. The dialog models can be seperated in
a task-oriented FSM-dialog model and into a POMDP-based decision tree for explanation augmentation.
This decision tree is generated from a POMDP-model by a planner.

ration of interaction for each dialog step as well as
the semantic information of the input (i.e., which
action in the interface was triggered by speech,
touch or point-and-click interaction). Those types
of interaction can bring along uncertainty (e.g.,
speech recognition rate). The state s in terms of
HCT is modeled by its respective bases, namely
understandability, technical-competence, reliabil-
ity, faith and personal attachment. The system
actions A are the dialogs presented to the user.
These are the different goals of explanations (jus-
tification, transparency, conceptualization, rele-
vance and learning) as well as the task-oriented
part of the dialog represented by a so-called com-
municative function(c) with ¢ from set C (e.g.,
question, inform, answer, offer, request, instruct).
This means, that in the POMDP only the com-
municative function of the task-oriented dialogs is
represented without the specific content.

The transition probabilities are defined as con-
ditional probability functions (CPFs) and model
user behavior dependent on the system’s actions
and the user’s current HCT values. Basically, con-
ditional functions are defined using if else for all
wanted cases. For example, we defined that the
user’s understanding in s’ will probably be high
if a transparency explanation was the last system
action. When the user’s understanding is indeed
high in s’, the observation will probably be that
the user clicked okay, and the time he took for the
interaction was around his usual amount taken for
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explanations. From this observation, a planner can
infer that the transparency explanation indeed in-
creased the user’s understanding.

Now, the quest is to define the reward func-
tion R(s,a) in a way that it leads to an optimal
flow of actions. l.e., the system should receive a
penalty when the bases of trust do not remain in-
tact, and actions should incur a cost so that the sys-
tem only executes them when trust is endangered.
However, because POMDPs tend to be become
very quick very complex, we chose to seperate
the task-oriented dialog from the additional dialog
augmentation with explanations when needed.

5.2 Dialog Augmentation Process

The task-oriented dialog is modeled as a classic
finite-state machine (FSM). Each dialog action has
several interaction possibilities, each leading to
another specified dialog action. Each of those di-
alog action is represented as POMDP action a as
part of C' (communicative function(c)). As already
mentioned, only the communicative function is
modeled to reduce the complexity in the POMDP.

The HCI is started using the FSM-based di-
alog model approach and uses the POMDP to
check whether the user’s trust or components of
the user’s trust are endangered. At run-time the
next action in the FSM is compared to the one
determined by the POMDP (see figure 6). This
means, that if the next action in the FSM is not the
same as the one planned by the POMDP, the dia-
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Figure 6: This figure shows the comparison of
FSM to Decision Tree. The next action mg in the
FSM does not correspond to the one endorsed by
the POMDP Decision Tree. Therefore, the dialog
will be augmented by explanation action mg.

log flow is interrupted, and the ongoing dialog is
augmented by the proposed explanation. For ex-
ample, if the user is presented currently a commu-
nicative function of type inform and the decision
tree recommends to provide a transparency expla-
nation, because the understanding and reliability
are probably false, the originally next step in the
FSM is postponed and first the explanation is pre-
sented. The other way around, if the next action in
the FSM is subsumed by the one scheduled by the
POMDP, the system does not need to intervene.
For example, if the next FSM-action is to instruct
the user about how to connect amplifier and re-
ceiver and the POMDP would recommend an ac-
tion of type communicative function instruct, no
dialog augmentation is needed.

6 Dialog Interface

Each dialog action in the FSM as well as the ex-
planation dialogs are represented by a so-called di-
alog goal, which is allocated on the one hand a
type of communicative function c. On the other
hand the dialog content is composed of multiple
information objects referencing so-called informa-
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Figure 7: A typical output presentation of the fis-
sion component of a dialog goal. Here the user
gets instruction on how to connect the BluRay-
Player with an HDMI cable.

tion IDs in the information model. Each informa-
tion object can consist of different types (e.g., text,
audio, and pictures). For interface presentation
the dialog goal is passed to the fission which se-
lects and combines the information objects at run-
time by a fission sub-component to compose the
user interface in a user- and situation-adaptive way
(Honold et al., 2012). In figure 7 we can see a typi-
cal interface for a transmitted dialog goal in which
the user can interact via speech, touch or GUL

7 Conclusion and Future Work

In this paper we showed the necessity to deal with
critical situations in HCI in a probabilistic ap-
proach. The advantage of our approach is that
the designer still can define a FSM-based task-
oriented dialog. Usually most commercial sys-
tems are still based on such approaches. However,
expanding the dialog by a probabilistic decision
model seems to be a valuable choice. Our experi-
ment on the influence of explanations on HCT has
clearly shown, that it is worthwhile to augment the
ongoing dialog by transparency or justification ex-
planations for an intact HCT relationship. In the
future we will run experiments on how effective
the hybrid FSM-POMDP approach is compared to
classic as well as POMDP dialog systems.

Acknowledgment

This work was supported by the Transregional
Collaborative Research Centre SFB/TRR 62
“Companion-Technology for Cognitive Technical
Systems” which is funded by the German Re-
search Foundation (DFG).



References

B. J. Fogg and Hsiang Tseng. 1999. The elements of
computer credibility. In Proceedings of the SIGCHI
conference on Human Factors in Computing Sys-
tems, CHI °99, pages 80-87, New York, NY, USA.
ACM.

Alyssa Glass, Deborah L. McGuinness, and Michael
Wolverton. 2008. Toward establishing trust in adap-
tive agents. In IUI '08: Proceedings of the 13th in-
ternational conference on Intelligent user interfaces,
pages 227-236, NY, USA. ACM.

Frank Honold, Felix Schiissel, and Michael Weber.
2012. Adaptive probabilistic fission for multimodal
systems. In Proceedings of the 24th Australian
Computer-Human Interaction Conference, OzCHI
"12, pages 222-231.

. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
1998. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, pages
99-134.

John D. Lee and Katrina A. See. 2004. Trust in au-
tomation: Designing for appropriate reliance. Hu-
man Factors, 46(1):50-80.

Brian Y. Lim, Anind K. Dey, and Daniel Avrahami.
2009. Why and why not explanations improve the
intelligibility of context-aware intelligent systems.
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI *09, pages
2119-2128, NY, USA. ACM.

Maria Madsen and Shirley Gregor. 2000. Measur-
ing human-computer trust. In Proceedings of the 11
th Australasian Conference on Information Systems,
pages 6-8.

Roger C. Mayer, James H. Davis, and F. David Schoor-
man. 1995. An Integrative Model of Organiza-
tional Trust. The Academy of Management Review,
20(3):709-734.

B M Muir. 1992. Trust in automation: Part i. theoret-
ical issues in the study of trust and human interven-

tion in automated systems. In Ergonomics, pages
1905-1922.

Felix Miiller, Christian Spith, Thomas Geier, and Su-
sanne Biundo. 2012. Exploiting expert knowl-
edge in factored POMDPs. In Proceedings of the
20th European Conference on Artificial Intelligence
(ECAI 2012), pages 606—611.

Raja Parasuraman and Victor Riley. 1997. Humans
and automation: Use, misuse, disuse, abuse. Human
Factors: The Journal of the Human Factors and Er-
gonomics Society, 39(2):230-253, June.

Scott Sanner. 2010. Relational dynamic in-
fluence diagram language (rddl):  Language
description. http://users.cecs.anu.edu.au/ ssan-
ner/IPPC2011/RDDL.pdf.

59

Marc Schroder. 2010. The semaine api: Towards
a standards-based framework for building emotion-
oriented systems. Advances in Human-Machine In-
teraction, (319406):21.

D. Silver and J. Veness. 2010. Monte-carlo planning
in large POMDPs. In NIPS, pages 2164-2172.

F. Sgrmo and J. Cassens. 2004. Explanation goals
in case-based reasoning. In Proceedings of the
7th European Conference on Case-Based Reason-
ing, pages 165—174.

Shawn Tseng and B. J. Fogg. 1999. Credibility and
computing technology. Commun. ACM, 42(5):39—
44, May.
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Abstract

Non-cooperative dialogue behaviour has
been identified as important in a vari-
ety of application areas, including educa-
tion, military operations, video games and
healthcare. Howeyver, it has not been ad-
dressed using statistical approaches to di-
alogue management, which have always
been trained for co-operative dialogue.
We develop and evaluate a statistical dia-
logue agent which learns to perform non-
cooperative dialogue moves in order to
complete its own objectives in a stochas-
tic trading game. We show that, when
given the ability to perform both coopera-
tive and non-cooperative dialogue moves,
such an agent can learn to bluff and to lie
so as to win games more often — against
a variety of adversaries, and under var-
ious conditions such as risking penalties
for being caught in deception. For exam-
ple, we show that a non-cooperative dia-
logue agent can learn to win an additional
15.47% of games against a strong rule-
based adversary, when compared to an op-
timised agent which cannot perform non-
cooperative moves. This work is the first
to show how an agent can learn to use non-
cooperative dialogue to effectively meet
its own goals.

1 Introduction

Research in automated conversational systems has
almost exclusively focused on the case of coopera-
tive dialogue, where a dialogue system’s core goal
is to assist humans in particular tasks, such as buy-
ing airline tickets (Walker et al., 2001) or finding
a place to eat (Young et al., 2010). Gricean co-
operative principles have been shown to emerge
from multi-agent decision theory, in a language
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task modelled using Decentralised Partially Ob-
servable Markov Decision Processes (Vogel et al.,
2013a), and in related work conversational impli-
cature was argued to be a by-product of agents
who maximise joint utility (Vogel et al., 2013b).

However, non-cooperative dialogues, where an
agent may act to satisfy its own goals rather than
those of other participants, are also of practi-
cal and theoretical interest (Georgila and Traum,
2011), and the game-theoretic underpinnings of
non-Gricean behaviour are actively being investi-
gated (Asher and Lascarides, 2008). For example,
it may be advantageous for an automated agent not
to be fully cooperative when trying to gather in-
formation from a human, and when trying to per-
suade, argue, or debate, when trying to sell them
something, when trying to detect illegal activity
(for example on internet chat sites), or in the area
of believable characters in video games and edu-
cational simulations (Georgila and Traum, 2011;
Shim and Arkin, 2013). Another arena in which
non-cooperative dialogue behaviour is desirable is
in negotiation (Traum, 2008), where hiding infor-
mation (and even outright lying) can be advanta-
geous. Furthermore, deception is considered to be
an essential part of successful military operations.
According to Sun Tzu “All warfare is based on de-
ception” and Machiavelli clearly states in The Dis-
courses that “Although deceit is detestable in all
other things, yet in the conduct of war it is laud-
able and honorable”(Arkin, 2010). Indeed, Den-
nett argues that deception capability is required for
higher-order intentionality in Al (Dennett, 1997).

A complementary research direction in recent
years has been the use of machine learning meth-
ods to automatically optimise cooperative dia-
logue management - i.e. the decision of what di-
alogue move to make next in a conversation, in
order to maximise an agent’s overall long-term ex-
pected utility, which is usually defined in terms of
meeting a user’s goals (Young et al., 2010; Rieser
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and Lemon, 2011). This research has shown how
robust and efficient dialogue management strate-
gies can be learned from data, but has only ad-
dressed the case of cooperative dialogue. These
approaches use Reinforcement Learning with a re-
ward function that gives positive feedback to the
agent only when it meets the user’s goals.

An example of the type of non-cooperative dia-
logue behaviour which we are generating in this
work is given by agent B in the following dia-
logue:

A: “Twill give you a sheep if you give me a wheat”
B: “No”

B: “I really need rock” [B actually needs wheat]
A: “OK... T'll give you a wheat if you give me
rock”

B: “OK”

Here, A is deceived into providing the wheat
that B actually needs, because A believes that B
needs rock rather than wheat. Similar behaviour
can be observed in trading games such as Settlers
of Catan (Afantenos et al., 2012).

1.1 Non-cooperative dialogue and
implicature

Our trading dialogues are linguistically coop-
erative (according to the Cooperative Principle
(Grice, 1975)) since their linguistic meaning is
clear from both sides and successful information
exchange occurs. Non-linguistically though they
are non-cooperative, since they they aim for per-
sonal goals. Hence they violate Attardo’s Per-
locutionary Cooperative Principle (PCP) (Attardo,
1997). In our non-cooperative environment, the
manipulative utterances such as “I really need
sheep” can imply that “I don’t really need any of
the other two resources”, as both of the players are
fully aware that three different resources exist in
total and more than one is needed to win the game,
so therefore they serve as scalar implicatures (Vo-
gel et al., 2013b). Hence we will show that the
LA learns how to include scalar implicatures in
its dialogue to successfully deceive its adversary
by being cooperative on the locutionary level and
non-cooperative on the perlocutionary level.

1.2 Structure of the paper

In this paper we investigate whether a learn-
ing agent endowed with non-cooperative dialogue
moves and a ‘personal’ reward function can learn
how to perform non-cooperative dialogue. Note
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that the reward will not be given for perform-
ing non-cooperative moves themselves, but only
for winning trading games. We therefore explore
whether the agent can learn the advantages of be-
ing non-cooperative in dialogue, in a variety of
settings. This is similar to (Vogel et al., 2013a)
who show how cooperativity emerges from multi-
agent decision making, though in our case we
show the emergence of non-cooperative dialogue
behaviours.

We begin with the case of a simple but challeng-
ing 2-player trading game, which is stochastic and
involves hidden information.

In section 2 we describe and motivate the trad-
ing game used in this work, and in section 3 we
describe the Learning Agent. In section 4 we ex-
plain the different adversaries for experimentation,
in section 5 we provide results, and in section 6 we
conclude and discuss areas for future work.

2 The Trading Game

To investigate non-cooperative dialogues in a con-
trolled setting we created a 2-player, sequential,
non-zero-sum game with imperfect information
called “Taikun”. Motivated by the principle of
Occam’s razor we shaped this game as simply as
possible, while including the key features of a re-
source trading game. The precise goal was also to
implement mechanics that are not restrictive for
the future of this research and therefore can be
flexibly extended to capture different aspects of
trading and negotiation. We call the 2 players the
“adversary” and the “learning agent” (LA).

The two players can trade three kinds of re-
sources with each other sequentially, in a 1-for-1
manner, in order to reach a specific number of re-
sources that is their individual goal. The player
who first attains their goal resources wins. Both
players start the game with one resource of each
type (wheat, rock, and sheep). At the beginning
of each round the game updates the number of re-
sources of both players by either removing one of
them or adding two of them, thereby making the
opponent’s state (i.e. the cards that they hold) un-
observable. In the long run, someone will eventu-
ally win even if no player ever trades. However,
effective trading can provide a faster victory.

2.1 “Taikun” game characteristics

Taikun is a sequential, non-cooperative, non-zero-
sum game, with imperfect information, where:



The goal is to reach either 4 or 5 of two
specific resources (4 wheat and 5 rocks
for the learning agent and 4 wheat and
5 sheep for the adversary). The players
share a goal resource (wheat).

Each round consists of an update of re-
sources turn, the learning agent’s trad-
ing proposal turn (and adversary’s ac-
ceptance or rejection), and finally the
adversary’s trading proposal turn (and
LA’s acceptance or rejection).

The update turn, which is a hidden ac-
tion, changes one of the resources of
each player at random by +2 or -1.
When a resource is “capped”, that is if
its number is 5 or more, then no update
rule can be applied to it. Trading can
still change its quantity though.

2.2 Actions (Trading Proposals)

Trade occurs through trading proposals that may
lead to acceptance from the other player. In an
agent’s turn only one ‘I-for-1’ trading proposal
may occur, or nothing (7 actions in total):

1. I will do nothing
2. I'will give you a wheat if you give me a rock

3. I'will give you a wheat if you give me a sheep

4. T will give you a rock if you give me a wheat

. I will give you a rock if you give me a sheep
I will give you a sheep if you give me a wheat

. I will give you a sheep if you give me a rock

Agents respond by either saying “No” or “OK”
in order to reject or accept the other agent’s pro-
posal.

2.3 Non-cooperative dialogue moves

In our second experiment three manipulative ac-
tions are added to the learning agent’s set of ac-
tions:

1. “Ireally need wheat”

2. “I really need rock”

3. “Ireally need sheep”

The adversary believes these statements, result-

ing in modifying their probabilities of making cer-
tain trades.
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Note that in the current model we assume that
only these 3 manipulative actions potentially have
an effect on the adversary’s reasoning about the
game. An alternative would be to allow all
the trading utterances to have some manipulative
power. For example the LA’s uttering “I will give
you a wheat if you give me a rock” could lead the
adversary to believe that the LA currently needs
rock. For the present work, we prefer to sepa-
rate out the manipulative actions explicitly, so as
to first study their effects in the presence of non-
manipulative dialogue actions. In future work, we
will consider the case where all trading proposals
can cause adversaries to change their game strat-

cgy.
3 The Learning Agent (LA)

The game state can be represented by the learning
agent’s set of resources, its adversary’s set of re-
sources, and a trading proposal (if any) currently
under consideration. We track up to 19 of each
type of resource, and have a binary variable repre-
senting whose turn it is. Therefore there are 20 x
20 x 20 x 2 = 16,000 states.

The learning agent (LA) plays the game and
learns while perceiving only its own set of re-
sources. This initial state space can later be ex-
tended with elements of history (previous dialogue
moves) and estimates of the other agent’s state
(e.g. beliefs about what the adversary needs).

The LA is aware of its winning condition (to ob-
tain 4 wheat and 5 rocks) in as much as it experi-
ences a large final reward when reaching this state.
It learns how to achieve the goal state through
trial-and-error exploration while playing repeated
games.

The LA is modelled as a Markov Decision Pro-
cess (Sutton and Barto, 1998): it observes states,
selects actions according to a policy, transitions to
a new state (due to the adversary’s move and/or a
update of resources), and receives rewards at the
end of each game. This reward is then used to up-
date the policy followed by the agent.

The rewards that were used in these experi-
ments were 1,000 for the winning case, 500 for
a draw and -100 when losing a game. The win-
ning and draw cases have the same goal states and
that would initially suggest the same reward but
they can be achieved through different strategies.
Experiments that we have conducted using either
the above rewards or the same rewards for win and



draw have verified this. The learning agent’s per-
formance is slightly better when the reward for a
win is 1000 and 500 for a draw.

The LA was trained using a custom SARSA())
learning method (Sutton and Barto, 1998) with an
initial exploration rate of 0.2 that gradually decays
to O at the end of the training games. After exper-
imenting with the learning parameters we found
that with A equal to 0.4 and - equal to 0.9 we ob-
tain the best results for our problem and therefore
these values have been used in all of the experi-
ments that follow.

4 Adversaries

We investigated performance with several differ-
ent adversaries. As a baseline, we first need
to know how well a LA which does not have
non-cooperative moves at its disposal can per-
form against a rational rule-based adversary. Our
hypothesis is then that a LA with additional
non-cooperative moves can outperform this base-
line case when the adversary becomes somewhat
gullible.

A ‘gullible’ adversary is one who believes state-
ments such as “I really need rock™ and then acts so
as to restrict the relevant resource(s) from the LA.
Our experiments (see experiments 3.1-3.3) show
that this gullible behaviour may originate from
sound reasoning. The adversary confronts in this
case a very important dilemma. It suddenly does
not know if it should stay with its goal-oriented
strategy (baseline) or instead it should boycott the
LA’s stated needed resources. A priori, both of
these strategies might be equally successful, and
we will show that their performances are indeed
very close to each other.

4.1 Rule-based adversary: experiment 1

This strategy was designed to form a challenging
rational adversary for measuring baseline perfor-
mance. It cannot be manipulated at all, and non-
cooperative dialogue moves will have no effect on
it — it simply ignores statements like “I really need
wheat”.

The strict rule-based strategy of the adversary
will never ask for a resource that it does not need
(in this case rocks). Furthermore, if it has an avail-
able non-goal resource to give then it will offer it.
It only asks for resources that it needs (goal re-
sources: wheat and sheep). In the case where it
does not have a non-goal resource (rocks) to offer
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then it offers a goal resource only if its quantity
is more than it needs, and it asks for another goal
resource if it is needed.

Following the same reasoning, when replying
to the LA’s trading proposals, the adversary will
never agree to receive a non-goal resource (rock).
It only gives a non-goal resource (rock) for another
one that it needs (wheat or sheep). It also agrees to
make a trade in the special case where it will give
a goal resource of which it has more than it needs
for another one that it still needs. This is a strong
strategy that wins a significant number of games.
In fact, it takes about 100,000 training games be-
fore the LA is able to start winning more games
than this adversary, and a random LA policy loses
66% of games against this adversary (See Table 1,
LA policy ‘Random’).

4.2 Gullible adversary: experiment 2

The adversary in this case retains the above strict
base-line policy but it is also susceptible to the
non-cooperative moves of the LA, as explained
above. For example, if the LA utters “I really need
rock”, weights of actions which transfer rock from
the adversary will decrease, and the adversary will
then be less likely to give rock to the LA. Con-
versely, the adversary is then more likely to give
the other two resources to the LA. In this way the
LA has the potential to mislead the adversary into
trading resources that it really needs.

4.3 The restrictive adversaries: experiments
3.1,3.2,33

Here we investigate performance against adver-
saries who cannot be manipulated, but their strat-
egy is to always restrict the LA from gaining a spe-
cific type of resource. We need to explore how
well a manipulated adversary (for example one
who will no longer give rocks that only its op-
ponent needs) performs. This will show us the
potential advantage to be gained by manipulation
and most important, it will generalise our prob-
lem by showing that the restriction (boycott) of a
resource that only the opponent needs, or of a re-
source that both of the players need, are actually
reasonably good strategies compared to the base-
line case (Experiment 1). Hence, the manipulated
adversary has indeed a reason for choosing to re-
strict resources (Experiment 2) rather than staying
with its rule-based strategy. In other words it has
a rational reason to become gullible and fall in the
learning agent’s trap.



4.4 Gullible-based adversary with risk of
exposure: experiments 4.1, 4.2

Here we extend the problem to include possi-
ble negative consequences of manipulative LA ac-
tions. The adversary begins each game with a
probability of detecting manipulation, that expo-
nentially increases after every one of the LA’s ma-
nipulative actions. In more detail, every time the
LA performs a manipulation, there is an additional
chance that the adversary notices this (starts at 1-
in-10 and increases after every manipulative move,
up to 100% in the case of the 10th manipulative
attempt). The consequence of being detected is
that the adversary will refuse to trade with the LA
any further in that game (experiment 4.1), or that
the adversary automatically wins the game (exper-
iment 4.2). In these two cases there is always a
risk associated with attempting to manipulate, and
the LA has to learn how to balance the potential
rewards with this risk.

5 Results

The LA was trained over 1.5 million games against
each adversary for the cases of the rule-based (ex-
periment 1), gullible (experiment 2) and restrictive
adversaries (experiments 3.1, 3.2, 3.3). The result-
ing policies were tested in 20 thousand games.
For reasons of time, the LA was trained for only
35 thousand games for the case of the gullible
adversary who stops trading when the LA be-
comes exposed (experiment 4.1), and 350 thou-
sand games for the gullible adversary who wins
the game when the LA becomes exposed (experi-
ment 4.2). In the former case we used 2 thousand
testing games and in the latter 20 thousand.

5.1 Baseline performance: Experiment 1

The LA scored a winning performance of 49.5%
against 45.555% for the adversary, with 4.945%
draws (Table 1), in the 20 thousand test games,
see Figure 1. This represents the baseline perfor-
mance that the LA is able to achieve against an
adversary who cannot be manipulated at all. This
shows that the game is ‘solvable’ as an MDP prob-
lem, and that a reinforcement learning agent can
outperform a strict hand-coded adversary.

Here, the learning agent’s strategy mainly fo-
cuses on offering the sheep resource that it does
not need for the rocks that does need (for example
action7 > action2 > action6 > action3 Ta-
ble 2). It is also interesting to notice that the LA
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learnt not to use action 3 at all (gives 1 wheat that
they both need for 1 sheep that only the adversary
needs). Hence its frequency is 0. The actions 4 and
5 are never accepted by the adversary so their role
in both of the experiments is similar to that of the
action 1 (do nothing). The rejections of the adver-
sary’s trades dominate the acceptances with a ratio
of 94 to 1 as our learning agent learns to become
negative towards the adversarial trading proposals
and therefore to prohibit its strategy.

Average reward-victory per training cycle
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Figure 1: Learning Agent’s reward-victory graph
over 1.5 million training games of Experiment 1.

5.2 Non-cooperative actions: Experiment 2

In Experiment 2 the learning agent scored a
winning performance of 59.17% against only
39.755% of its adversary, having 1.075% draws
(Table 1), in the 20 thousand test games, see Fig-
ure 2.

Similarly to the previous experiment, the LA’s
strategy focuses again mainly on action 7, by of-
fering the sheep resource that it does not need for
rocks that it needs (Table 2). However in this case
we also notice that the LA has learnt to use ac-
tion 2 very often, exploiting cases where it will
win by giving the wheat resource that they both
need for a rock that only it needs. This is a result
of its current manipulation capabilities. The high
frequency manipulative actions 8 (“I really need
wheat”) and 9 (“I really need rock”) assist in de-
ceiving its adversary by hiding information, there-
fore significantly reinforcing its strategy as they
both indirectly result in gaining sheep that only the
adversary needs (experiment 3.2).

Rejections to adversarial trading offers over the



acceptances were again the majority in this exper-
iment. However in this case they are significantly
fewer than before, with a ratio of only 2.5 to 1,
as our learning agent is now more eager to accept
some trades because it has triggered them itself by
appropriately manipulating its adversary.

Average reward-victory per training cycle
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Figure 2: Learning Agent’s reward-victory graph
in 1.5 million training games of Experiment 2.

In Experiment 1 the LA’s dominating strategy
(mainly based on requiring the rocks resource
from its adversary) provides it with a difference
in winning performance of +3.945%. In Experi-
ment 2 the adversary, further being deceived by the
learning agent’s hiding information actions, loses
19.415% more often than the learning agent.

Action Exp. 1 Exp. 2
number frequency | frequency
1. Do nothing 81969 144727
2. Give wheat for rock | 8077 46028
3. Give wheat for sheep | 0 10358
4. Give rock for wheat | 80578 62874
5. Give rock for sheep | 78542 55627
6. Give sheep for wheat | 6429 24687
7. Give sheep for rock | 23888 31132
8. I really need wheat - 68974
9. I really need rock - 87123
10. I really need sheep | - 18

Table 2: Frequencies of LA actions.

Table 2 shows that the LA’s strategy in Experi-
ment 1 mainly focuses on requiring rocks from the
adversary by offering sheep (for example action 7
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> action 2 or 6). In Experiment 2 the agent’s strat-
egy is similar. However, it is now enhanced by the
frequent use of the manipulative actions 8 and 9
(both hide information). The LA gathers mainly
sheep (8 and 9) through its manipulation and then
wheat (9 > 8) that the adversary needs to win. It
also offers them ‘selectively’ back (2 and 7) for
rock that only it needs in order to win.

5.3 Restrictive adversaries: Experiment 3

In experiment 3 the LA uses no manipulative ac-
tions. It is the same LA as that of Experiment 1. It
is trained and then tested against 3 different types
of restrictive adversaries. The first one (Experi-
ment 3.1) never gives wheat, the second one (Ex-
periment 3.2) never gives rocks, and the third one
never gives sheep (Experiment 3.3). They all act
randomly regarding the other 2 resources which
are not restricted. In the first case (adversary re-
stricts wheat that they both need), the LA scored
a winning performance of 50.015% against 47.9%
of its adversary, having 2.085% draws in the 20
thousand test games. In the second case (adver-
sary restricts rocks that the LA only needs), the LA
scored a winning performance of 53.375% against
44.525% of its adversary, having 2.1% draws in
the 20 thousand test games. In the third case
(adversary restricts sheep that only itself needs),
the LA scored a winning performance of 62.21%
against 35.13% of its adversary, having 2.66%
draws in the 20 thousand test games. These re-
sults show that restricting the resource that only
the opponent needs (i.e. LA only needs rocks) and
especially the resource that they both need (i.e.
wheat) can be as effective as the strategy followed
by the rule-based adversary (see Table 1). The dif-
ference in the performances for the former case
(rock) is +8.85% and for the latter (wheat) only
+2.115%. That means the adversary has indeed
a reason to believe that boycotting its opponent’s
resources could be a winning opposing strategy,
motivating its gullibility in experiment 2 (section
5.2).!

5.4 Non-cooperative actions and risk of
exposure: Experiment 4.1 (adversary
stops trading)

In this case when the LA is exposed by the adver-
sary then the latter does not trade for the rest of the
"Further experiments showed that having the same num-

ber of goal resources (i.e. both need 4 of their own goal re-
sources, rather than 5) still produces similar results.



Exp. | Learning Agent policy | Adversary policy LA wins | Adversary wins | Draws
Random Baseline 32% 66% 2%

1 SARSA Baseline 49.5% 45.555% 4.945%
2 SARSA + Manipulation | Baseline + Gullible 59.17%* | 39.755% 1.075%
3.1 | SARSA Restrict wheat 50.015%* | 47.9% 2.085%
3.2 | SARSA Restrict rock 53.375%* | 44.525% 2.1%
3.3 | SARSA Restrict sheep 62.21%* | 35.13% 2.66%
4.1 SARSA + Manipulation | Basel. + Gull. + Expos.(no trade) 53.2%* 45.15% 1.65%
4.2 | SARSA + Manipulation | Basel. + Gull. + Expos.(win game) || 36.125% | 61.15% 2.725%

Table 1: Performance (% wins) in testing games, after training. (*= significant improvement over base-

line, p < 0.05)

game. The LA scored a winning performance of
53.2% against 45.15% for this adversary, having
1.65% draws in the 2 thousand test games, see Fig-
ure 3. This shows that the LA managed to locate a
successful strategy that balances the use of the ma-
nipulative actions and the normal trading actions
with the risk of exposure (Table 3). In more de-
tail, the strategy that the LA uses here makes fre-
quent use of the manipulative actions 8 (“I really
need wheat”) and 9 (“I really need rock™) again
which mainly result in the collection of sheep that
only its adversary needs to win. Restriction of a
resource that the opponent only needs is a good
strategy (as our experiment 3.2 suggests) and the
LA managed to locate that and exploit it. The next
highest frequency action (excluding actions 4 and
5 that mostly lead to rejection from the adversary
as it also follows its rule-based strategy) is 7 (“I
will give you a sheep if you give me arock”) that is
exclusively based on the LA’s goal and along with
6 they ‘selectively’ give back the sheep for goal re-
sources. Rejections to adversary’s proposals over
the acceptances were in a ratio of approximately
4 to 1. The LA is quite eager (in contrast to the
baseline case of experiment 1) to accept the adver-
sary’s proposals as it has already triggered them
by itself through deception.

5.5 Non-cooperative actions and risk of
exposure: Experiment 4.2 (adversary
wins the game)

In this case if the LA becomes exposed by the ad-
versary then the latter wins the game. The LA
scored a winning performance of 36.125% against
61.15% of its adversary, having 2.725% draws in
20 thousand test games, see Figure 4. It is the
only case where the LA so far has not yet found
a strategy that wins more often than its adversary,
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and therefore in future work a larger set of training
games will be used. Note that this was only trained
for 350 thousand games — we expect better perfor-
mance with more training. In fact, here we would
expect a good policy to perform at least as well as
experiment 1, which would be the case of learning
never to use manipulative actions, since they are
so dangerous. Indeed, a good policy could be to
lie (action 10) only once, at the start of a dialogue,
and then to follow the policy of experiment 2. This
would lead to a winning percentage of about 49%
(the 59% of experiment 2 minus a 10% loss for the
chance of being detected after 1 manipulation).

The LA has so far managed to locate a strat-
egy that again balances the use of the manipula-
tive actions and that of the normal ones with the
risk of losing the game as a result of exposure
(Table 3). According to Figure 4 we notice that
the LA gradually learns how to do that. How-
ever its performance is not yet desirable, as it is
still only slightly better than that of the Random
case against the Baseline (Table 1). It is interest-
ing though to see that the strategy that the LA uses
here makes frequent use of the action 10 (“I really
need sheep”) that lies. On the other hand, the ac-
tions 8 and 9 are almost non-existent. That results
in accepting wheat that they both need and rocks
that it only needs, showing that the main focus of
the manipulation is on the personal goal. The LA
has learned so far in this case that by lying it can
get closer to its personal goal. Rejections to adver-
sary’s proposals over the acceptances resulted in a
ratio of approximately 1.7 to 1, meaning that the
LA is again quite eager to accept the adversarial
trading proposals that it has triggered already by
itself through lying.

We report further results on this scenario in
an updated version of this paper (Efstathiou and




Lemon, 2014).

Action Exp. 4.1 | Exp. 4.2
number frequency | frequency
1 Do nothing 8254 74145

2 Give wheat for rock | 2314 3537

3 Give wheat for sheep | 1915 4633

4 Give rock for wheat | 5564 46120

5 Give rock for sheep | 4603 57031

6 Give sheep for wheat | 2639 2737

7 Give sheep for rock | 3132 3105

8 I really need wheat 7200 4

9 1 really need rock 7577 7

10 I really need sheep | 548 19435

Table 3: Frequencies of LA actions.
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Figure 3: Learning Agent’s reward-victory graph
in 35 thousand training games of Experiment 4.1.

6 Conclusion & Future Work

We showed that a statistical dialogue agent can
learn to perform non-cooperative dialogue moves
in order to enhance its performance in trad-
ing negotiations. This demonstrates that non-
cooperative dialogue strategies can emerge from
statistical approaches to dialogue management,
similarly to the emergence of cooperative be-
haviour from multi-agent decision theory (Vogel
et al., 2013a).

In future work we will investigate more com-
plex non-cooperative situations. For example a
real dialogue example of this kind is taken from
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Figure 4: Learning Agent’s reward-victory graph
in 350 thousand training games of Experiment 4.2.

the “Settlers of Catan” game corpus (Afantenos et
al., 2012):

A: Do you have rock?

B: I've got lots of wheat [in fact, B has

a rock]

A:T'll give you 2 clay for a rock

B: How about 2 clay for a wheat?

A:T'll give 1 clay for 3 wheat

e B: Ok, it’s a deal.

In future more adversarial strategies will also be
applied, and the learning problem will be made
more complex (e.g. studying ‘when’ and ‘how
often’ an agent should try to manipulate its ad-
versary). Alternative methods will also be con-
sidered such as adversarial belief modelling with
the application of interactive POMDPs (Partially
Observable Markov Decision Processes) (Gmy-
trasiewicz and Doshi, 2005). The long-term goal
of this work is to develop intelligent agents that
will be able to assist (or even replace) users in in-
teraction with other human or artificial agents in
various non-cooperative settings (Shim and Arkin,
2013), such as education, military operations, vir-
tual worlds and healthcare.
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Abstract

Although data-driven techniques are com-
monly used for Natural Language Under-
standing in dialogue systems, their effi-
cacy is often hampered by the lack of ap-
propriate annotated training data in suffi-
cient amounts. We present an approach
for rapid and cost-effective annotation of
training data for classification-based lan-
guage understanding in conversational di-
alogue systems. Experiments using a web-
accessible conversational character that in-
teracts with a varied user population show
that a dramatic improvement in natural
language understanding and a substantial
reduction in expert annotation effort can
be achieved by leveraging non-expert an-
notation.

1 Introduction

Robust Natural Language Understanding (NLU)
remains a challenge in conversational dialogue
systems that allow arbitrary natural language input
from users. Although data-driven approaches are
now commonly used to address the NLU problem
as one of classification, e.g. (Heintze et al., 2010;
Leuski and Traum, 2010; Moreira et al., 2011),
where input utterances are mapped automatically
into system-specific categories, the dependence of
such approaches on training data annotated with
semantic classes or dialogue acts creates a chicken
and egg problem: user utterances are needed to
create the annotated training data necessary for
NLU by classification, but these cannot be col-
lected without a working system that users can in-
teract with.

Common solutions to this problem include the
use of Wizard-of-Oz data collection, where a hu-
man expert manually provides the functionality of
data-driven modules while data is collected from
users, or the use of scenario authors who attempt
to anticipate user input to create an initial set of
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training data. While these options offer practical
ways around the training data acquisition prob-
lem, they typically require substantial work from
system experts and provide suboptimal solutions:
data-driven approaches work best when utterances
in the training data are drawn from the same distri-
bution as those encountered in actual system use,
but the conditions under which training data is col-
lected (a human expert filling in for systems mod-
ules, or a human expert generating possible user
utterances) are quite different from those where
users interact with the final system. High qual-
ity results are often obtained through an iterative
process where an initial training set is authored
by a scenario designer, but NLU resources are
gradually updated based on real user data over
time (Gandhe et al., 2011). Although this can ulti-
mately produce training data composed primarily
of real user utterances, and therefore result in bet-
ter performance from data-driven models, an ex-
pert annotator is required to perform manual clas-
sification of user utterances. This is a laborious
process that assumes availability and willingness
of the annotator for as long as it takes to collect
enough user utterances, which may range from
weeks to months or even years, depending on the
size of the domain and the number and type of ut-
terance categories.

The main question we address is whether an-
notation by non-experts can be leveraged to speed
up utterance classification and lower its cost. We
present a technique that frames the annotation of
training data as a human intelligence task suit-
able for crowdsourcing. Although there are sim-
ilarities between our technique and active learning
(e.g. see (Gambck et al., 2011)), an important dif-
ference is that our technique does not reduce the
annotation effort by reducing the size of the data
to be labeled, but by casting the annotation task
into a simpler problem. This allows us to take ad-
vantage of the entire data generated by the users.
Through an experiment with a conversational dia-
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logue system deployed on the web, we show that a
dramatic improvement in the quality of NLU can
be achieved with non-expert data annotation, re-
ducing the time required of an expert annotator by
70%.

2 Improving understanding with data

Our approach for creating accurate utterance clas-
sifiers for NLU in conversational dialogue systems
is based on a simple strategy, which we describe
next in general terms. NLU is assumed to be per-
formed through multiclass classification.

The first step is to create a small initial train-
ing dataset 1jy either through Wizard-of-Oz data
collection or by generation of utterances by a sys-
tem developer or content author. This training set
is used to train a NLU model Mj. Although this
model is likely to be inadequate, it allows users
to interact with an initial version of the system.
As input utterances are collected from real users,
these utterances are annotated with their desired
NLU output labels. Periodically, at time 7, we add
to the initial training dataset 1 the annotated user
utterances accumulated up to that point. We train
anew NLU model M; using this augmented train-
ing set, 7;.! We also keep aside a small fraction
of utterances to test the performance of the NLU
models, that is, at each time ¢ we also have an eval-
uation set F; and the union of F; and Tj is the en-
tire set of user utterances collected up to time i. As
more utterances are added and annotated, an NLU
model M; is expected to surpass the initial model
Mpy. In general, we replace the running NLU
model M, whenever we have a better perform-
ing M; model. This straightforward process can
be used to obtain increasingly more accurate lan-
guage understanding, at the cost of data annotation
in the form of labelling utterances with categories
that are defined according to the needs of the spe-
cific system and the specific domain. The cate-
gories may be based on dialogue acts, e.g. (Core
and Allen, 1997; Bunt et al., 2010), user informa-
tion needs, e.g. (Moreira et al., 2011), or stand
in for entire semantic frames, e.g. (DeVault and
Traum, 2013). The technical nature of the task of
categorizing utterances in schemes such as these
usually means that substantial time is required of
an expert annotator.

2.1 Annotation as a human intelligence task

Although the task of annotating NLU training data
involves assigning categories with technical defi-

"For every time 7 and j with 4 < j it holds that T; C Tj.
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nitions to utterances, and therefore would appear
to require knowledge of these technical defini-
tions, in fact the task requires primarily the type
of language understanding that is common to all
native speakers of a given language. Our main hy-
pothesis is that this annotation can be structured
as a trivial task that requires no specific exper-
tise, and that annotations performed this way can
have a substantial impact on the quality of utter-
ance classification. We define the NLU annotation
task as follows.

Before annotation begins, each utterance cate-
gory in the system is associated with one or more
canonical utterance(s) that capture the meaning
and communicative intent of that category. These
canonical utterances allow for trivial generation
of surface text from NLU categories by simple
lookup.

Given a set of dialogues between the system
and individual users, each dialogue is split into
segments. Segments are typically composed of
a user utterance and the preceding system utter-
ance. In cases where users produce multiple utter-
ances without intervening system utterances, seg-
ments may consist of a system utterance followed
by consecutive user utterances, so that there is ex-
actly one segment corresponding to each user ut-
terance v in the dialogue and each segment starts
with a system utterance and ends with u.

Annotators work on one dialogue at a time, and
within a dialogue they are presented with one seg-
ment at a time, following the order in which the
utterances appear in the dialogue. Assignment
of a system category to the utterance targeted in
a segment is a multiple choice task, involving n
choices, one of which is none of the above. The re-
maining n — 1 choices are generated automatically
by running the current NLU utterance classifier on
the target utterance, and generating the canonical
surface realizations of each of the n — 1 highest
scoring categories. The annotator is then asked to
choose the option containing language that means
the same as the targeted utterance in the segment.
The choice of n depends on the quality of the cur-
rent NLU model, and must be made to balance the
length of the list of options with the expected num-
ber of times the appropriate choice is not in the list
of options. The more none of the above annota-
tions are performed, the less effective the annota-
tion exercise will be in reducing the effort required
by an annotation expert.

The utterances annotated as none of the above
are given to an expert for annotation. The impact



System Hello and welcome.

User Are you married?
System Yeah, forty-four years this September. I can’t be-
lieve Linda’s stuck with me this long.

System Okay, let’s get to it. Why are you here today?
User I've been having trouble sleeping lately.
System This must be hard for you.

System Are you feeling stressed at all?

User Yes, quite a bit

System So, I've got some questions I need to ask you, to get
to know you better.

System Just double checking, you haven’t been sleeping
good. Is that right?

User That’s right
System Have you been having any nightmares?
User Every once in a while, but mostly I can’t stay asleep

Figure 1: Excerpt of a sample interaction with a
Simcoach character over the web. User input is
typed into a text box on a web page.

of this procedure on how quickly user utterances
are annotated as training examples for the NLU
and how much expert time is saved depends on
the quality of the initial classification model and
the choice of n. These are practical factors that are
expected to vary greatly from one dialogue system
to another. In the next section, we present one ap-
plication of this procedure to an existing conversa-
tional dialogue system deployed on the web, and
show examples of dialogue segments and annota-
tion options.

3 Experiment

To test our hypothesis that language understand-
ing can be improved with much reduced expert ef-
fort, we applied the framework described above to
a system that implements a conversational char-
acter that talks with users about issues relating
to mental and behavioral disorders and presents
health care options. The system is publicly ac-
cessible at http://www.simcoach.org, and receives
traffic on the order of one hundred users per week.
Of these, about one quarter engage the system in
a meaningful dialogue with multiple turns, with
the dialogues containing on average 16 user utter-
ances. Because our process depends crucially on
user traffic to generate data for annotation, a web-
accessible system is ideally suited for it. An ex-
cerpt from a typical interaction with the system is
shown in Figure 1. The system and the NLU clas-
sifier based on Maximum Entropy models (Berger
etal., 1996) are described respectively in (Rizzo et
al., 2011) and (Sagae et al., 2009).
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3.1 Data collection

Starting with an initial system deployed with an
NLU model trained with data generated by an au-
thor attempting to anticipate user behavior, we ap-
plied the approach described in section 2 to im-
prove NLU accuracy over a period of approxi-
mately five months. The initial accuracy of the
NLU classifier was 62%, measured as the number
of utterances classified correctly divided by the to-
tal number of user utterances. This accuracy fig-
ure was obtained only after the five months of data
annotation, using the heldout set of manually an-
notated dialogues.

Although the data annotation procedure as de-
scribed in section 2 could in principle be per-
formed continuously as user data come in, we
instead performed all of our annotation in three
rounds, the first consisting of approximately 2,000
user utterances, the second one month later, con-
sisting of an additional 1,000 utterances. The last
round, collected about two months later, contained
about 2,000 utterances. We used five annotators?
working in parallel, and the average speed of each
annotator exceeded 500 utterances per hour.

The total number of NLU utterance classes in
the system is 378, although only 120 classes were
used by annotators in all rounds of annotation to
cover all of the utterances collected®. In our an-
notation exercise we set the number of multiple
choice items at n = 6, including 5 choices gener-
ated from categories chosen by the NLU classifier,
and one none of the above choice. Figure 2 shows
a sample dialogue segment with the corresponding
multiple choice items. During annotation, clicking
on a multiple choice item advances the annotation
by presenting the next segment containing a user
utterance to be annotated.

3.2 Results

Of the utterances in the three rounds of data col-
lection, respectively 29%, 34% and 17% were
marked by annotators as none of the above. These
were given to a developer of the NLU system who
assigned a category to each of them. In this ex-
pert annotation step the choice is not restricted to
a small set of options, and may be any of the cat-
egories in the system. Given this rate of use of

>The non-expert annotators belonged to the same team
that developed the system but did not participate in the de-
velopment of the NLU module and the NLU classes used in
the particular dialogue system used.

3This difference is a further evidence of the difficulty of
correctly anticipating how the end users will interact with the
dialogue system.



System Okay, let’s get to it. Why are you here today?

User I've been having trouble sleeping lately.

Which of the following options correspond most
closely to the last user utterance? If none of them have
the same general meaning as the user utterance, select
”none of the above.”

(a) Thave been in a bad mood lately
(b) Ihave nightmares often

(¢) Ihaven’t been sleeping well

(d) My family is worried about me
(e) Ieat too much

(f) None of the above

Figure 2: Example of a dialogue segment with cor-
responding multiple choice items. The annotation
task consists of choosing the item that has approx-
imately the same meaning and communicative in-
tent as the targeted utterance (the user utterance).

the none of the above category, the need for ex-
pert annotation is not eliminated, but the amount
of expert effort necessary is reduced by over 70%.

The NLU classification accuracy figures ob-
tained after each round of annotation are shown in
Table 1. In the table, Our Approach represents the
results obtained by the technique described here.
A large improvement is observed after the first
round of annotation, with a more modest improve-
ment observed after the other two rounds. The ini-
tial jump in accuracy after round 1 is explained
by the fact that the initial model based on a sys-
tem author’s expectation of what users may say to
the system (approximately 3,000 utterances) is im-
proved using utterances that users did in fact pro-
duce in real interactions with the system. Clearly,
a more well-matched distribution of utterances in
the training data produces higher accuracy.

To assess the value of our approach, we com-
pare it with two other reasonable experimental
conditions: a baseline where only expert annota-
tion is used (Expert Only), and a condition where
no expert annotation is used (No Expert). The Ex-
pert Only condition is meant to represent what can
be achieved with the same workload for the expert
used in Our Approach. This is achieved by random
selection of user utterances to create a set with
the same number of utterances set aside for ex-
pert annotation in Our Approach. The expert then
annotates each of these utterances to create train-
ing data. For the No Expert condition, we used
only utterances annotated by non-experts, leaving
out completely utterances labeled as none of the
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NLU accuracy after
each annotation round [%]

Base 1st 2nd 3rd
round round round
Our Approach 62 70 73 78
Expert Only 62 64 68 70
No Expert 62 64 65 71

Table 1: NLU accuracy obtained using the initial
training dataset 7y, after one round of annotation
with T7 (2,013 utterances), after two rounds of an-
notation with 75 (additional 948 utterances), and
after three rounds with T3 (additional 1806 utter-
ances). Accuracy is estimated on the same heldout
set of dialogues E’3 for all conditions, accounting
for roughly 10% of the annotated data.

above. Both Expert Only and No Expert condi-
tions achieve significantly lower performance than
the approach described here. This indicates that
expert annotation is important, but also that cheap
and fast non-expert annotation can provide sub-
stantial improvements to NLU.

4 Conclusion

We described a framework for annotation of train-
ing data by non-experts that can provide dramatic
improvements to natural language understanding
in dialogue systems that perform NLU through ut-
terance classification. Our approach transforms
the annotation NLU training data into a task that
can be performed by anyone with language profi-
ciency. Annotation is structured as a simple mul-
tiple choice task, easily delivered over the web.

Using our approach with a conversational char-
acter on the web, we improved NLU accuracy
from 62% to 78% using only less than 30% of the
effort it would be required of an expert to annotate
data without non-expert annotation.
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User Modeling by Using Bag-of-Behaviors for Building a Dialog System
Sensitive to the Interlocutor’s Internal State
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Abstract

When using spoken dialog systems in ac-
tual environments, users sometimes aban-
don the dialog without making any in-
put utterance. To help these users before
they give up, the system should know why
they could not make an utterance. Thus,
we have examined a method to estimate
the state of a dialog user by capturing the
user’s non-verbal behavior even when the
user’s utterance is not observed. The pro-
posed method is based on vector quan-
tization of multi-modal features such as
non-verbal speech, feature points of the
face, and gaze. The histogram of the VQ
code is used as a feature for determining
the state. We call this feature “the Bag-
of-Behaviors.” According to the experi-
mental results, we prove that the proposed
method surpassed the results of conven-
tional approaches and discriminated the
target user’s states with an accuracy of
more than 70%.

1 Introduction

Spoken dialog systems have an advantage of be-
ing a natural interface since speech commands are
less subject to the physical constraints imposed by
devices. On the other hand, if the system accepts
only a limited expression, the user need to learn
how to use the system. If the user is not familiar
with the system, he/she cannot even make an in-
put utterance. Not all users are motivated to con-
verse with the system in actual environments, and
sometimes a user will abandon the dialog with-
out making any input utterance. When the user
has difficulty to make the utterance, conventional
systems just repeat the prompt at fixed interval
(Yankelovich, 1996) or taking the initiative in the
dialog to complete the task (Chung, 2004; Bo-
hus and Rudnicky, 2009). However, we think that
the system has to cope with the user’s implicit re-
quests to help the user more adequately. To solve
this problem, Chiba and Ito (2012) proposed a
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method to estimate two “user’s states” by captur-
ing their non-verbal cues. Here, the state A is
when the user does not know what to input, and
the state B is when the user is considering how to
answer the system’s prompt. These states have not
been distinguished by the conventional dialog sys-
tems so far, but should be handled differently.

The researchers of spoken dialog systems have
focused on the various internal states of users
such as emotion (Forbes-Riley and Litman, 2011a;
Metallinou et al., 2012), preference (Pargellis et
al., 2004) and familiarity with the system (Jokinen
and Kanto, 2004; Rosis et al., 2006) to build natu-
ral dialog system. In particular, the user’s “uncer-
tainty” is assumed to be the nearest user’s states
that we wish to study. Forbes-Riley and Litman
(2011b) and Pon-Barry et al. (2005) introduced a
framework for estimating the user’s uncertainty to
a tutor system.

The above-mentioned researches have a cer-
tain result by employing linguistic information
for the estimation, but it remains difficult to as-
sist a user who does not make any input utter-
ance. By contrast, the method by Chiba and Ito
(2012) estimated the target user’s state by only
using the user’s non-verbal information. In their
work, the user’s multi-modal behaviors were de-
fined empirically, and the labels of the behaviors
were annotated manually. Based on this result, the
present paper proposes the method that does not
use manually-defined labels nor manual annota-
tion. The multi-modal behaviors are determined
automatically using the vector quantization, and
the frequency distribution of the VQ code is used
for estimation of the user’s state. Because this ap-
proach expects to construct clusters of the speech
events or behaviors of the user, we called it as Bag-
of-Behaviors approach.

2 Data collection

The experimental data (video clips) were the same
as those used in the experiment by Chiba et al.
(Chiba and Ito, 2012; Chiba et al., 2012). The
video clips contained the frontal image of the user

Proceedings of the SIGDIAL 2014 Conference, pages 7478,
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and their speech, which were recorded with a web
camera and a lapel microphone, respectively. The
task of the dialog was a question-and-answer task
to ask users to answer common knowledge or
a number they remembered in advance, such as
“Please input your ID.” 16 users (14 males and 2
females) participated in the dialog collection.

Recorded clips were divided into sessions,
where one session included one interchange of the
system’s prompt and the user’s response. The total
number of sessions was 792. Then we employed
evaluators to label each video clip as either state A,
B or C, where state A and B were that described in
the previous section, and state C is the state where
the user had no problem answering the system. We
took the majority vote of the evaluators’ decisions
to determine the final label of a clip. Fleiss’ s
among the evaluators was 0.22 (fair agreement).
Finally, we obtained 59, 195 and 538 sessions of
state A, B and C, respectively.

3 Discrimination method by using
Bag-of-Behaviors

In the work of Chiba et al. (2013), the user’s
state was determined using the labels of the multi-
modal events such as fillers or face orientation,
which were estimated from the low-level acoustic
and visual features.

Here, inventory of multi-modal events was de-
termined empirically. There were, however, two
problems with this method. The first one was that
the optimality of the inventory was not guaran-
teed. The second one is that it was difficult to esti-
mate the events from the low-level features, which
made the final decision more difficult. Therefore,
we propose a new method for discriminating the
user’s state using automatically-determined events
obtained by the vector quantization.

First, a codebook of the low-level features
(which will be described in detail in the next
section) is created using k-means++ algorithm
(Arthur and Vassilvitskii, 2007). Let a low-level
feature vector at time ¢ of session s of the training
data be azgs). Then we perform the clustering of
the low-level feature vectors for all of ¢ and s, and
create a codebook C = {ey,...,cx}, where ¢
denotes the k-th centroid of the codebook.

Then the input feature vectors are quantized
frame-by-frame using the codebook. When a ses-

sion for evaluation sg is given, we quantize the in-

put low-level feature vectors azgsE ), e :cgf 5)

q,--.,qr, where

into

g = arg min ||z{*® — ¢,||. (1)
q
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Then we calculate the histogram Qo(sg)

(Q1,...,Qk) where
T
Qr =Y (K, q) 2)
t=1
1 z=y9
5(a:,y)={0 4y 3)

Then Q(sg) = Qo(sr)/||Qou(sk)|| is used as
the feature of the discrimination. The similar fea-
tures based on the vector quantization were used
for image detection and scene analysis (Csurka
et al., 2004; Jiang et al., 2007; Natarajan et al.,
2012) and called “Bag-of-Features” or “Bag-of-
Keypoints.” In our research, each cluster of the
low-level features is expected to represent some
kind of user’s behavior. Therefore, we call the pro-
posed method the “Bag-of-Behaviors™ approach.

After calculating the Bag-of-Behaviors, we em-
ploy an appropriate classifier to determine the
user’s state in the given session. In this research,
the support vector machine (SVM) is used as a
classifier.

4 The low-level features

In this section, we describe the acoustic and visual
features employed as the low-level features.

The target user’s states are assumed to have sim-
ilar aspects to emotion. Collignon et al. (2008)
suggested that emotion has a multi-modality na-
ture. For example, Wollmer et al. (2013) showed
that the acoustic and visual features contributed to
discriminate arousal and expectation, respectively.
Several other researches also have reported that
recognition accuracy of emotion was improved by
combining multi-modal information (Lin et al.,
2012; Wang and Venetsanopoulos, 2012; Paul-
mann and Pell, 2011; Metallinou et al., 2012).
Therefore, we employed similar features as those
used in these previous works, such as the spectral
features and intonation of the speech, and facial
feature points, etc.

4.1 Audio features

To represent spectral characteristics of the speech,
MFCC was employed as an acoustic feature. We
used a 39-dimension MFCC including the veloc-
ity and acceleration of the lower 12th-order coef-
ficients and log power. In addition, a differential
component of log F'0 was used to represent the
prosodic feature of the speech, and zero cross (ZC)
was used to distinguish voiced and unvoiced seg-
ments. Therefore, total number of audio features
was 3. The basic conditions for extracting each
feature are shown in Table 1. Here, five frames



(the current frame, the two previous frames and
two following frames) were used to calculate the
A and AA components of MFCC and A compo-
nent of log F'0.

4.2 Face feature

Face feature (Chiba et al., 2013) was extracted by
the Constraint Local Model (CLM) (Saragih et al.,
2011) frame by frame. The coordinates of the
points relative to the center of the face were used
as the face features. The scale of the feature points
was normalized by the size of the facial region.
The number of feature points was 66 and the di-
mension of the feature was 132.

4.3 Gaze feature

The evaluators of the dialogs declared that move-
ment of the user’s eyes seems to express their in-
ternal state. The present paper used the Haar-
like feature which has a fast calculation algo-
rithm using the integral image to represent the
brightness of the user’s eye regions. This feature
was extracted by applying filters comprehensively
changed the size and location to the image (eye
regions in our case). The eye regions were de-
tected by the facial feature points. Because this
feature had large dimensions, the principal com-
ponent analysis (PCA) was conducted to reduce
the dimensionality. Finally, gaze feature had 34 di-
mensions and the cumulative contribution rate was
about 95%.

4.4 Feature synchronization

The audio features were calculated every 10 ms
(see Table 1) while the visual features were ex-
tracted every 33 ms. Therefore, the features were
synchronized by copying the visual features of the
previous frame in every 10 ms.

5 Discrimination examination

5.1 Conditions of the Bag-of-Behaviors
construction

We built the Bag-of-Behaviors under two condi-

tions described below.
Let :cg‘i)7 33521) and ws) represent the audio fea-
ture, face feature and gaze feature of the session s

at time ¢, respectively.

Table 1: Conditions of audio feature extraction
MF 7C

log F'O
Frame width 25.0ms 17.0ms 10.0 ms
Frame shift 100ms 10.0ms 10.0ms
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Table 2: Experimental conditions

# of sessions State A(59), State B(195)
Codebook size | K 4,8, 16, 32, 64
K, | 4,8,16,32,64
Ky | 4,8,16,32,64
K. | 4,8,16,32,64

In Condition (1), the three features are com-

bined to single feature vector :cgs) :

2 = ()

at

(s) .(s)

= (x a:ft),a:et )

“

Then, the low-level feature vectors mgs) are clus-

tered to construct one codebook C with size K.
When an input session sg is given, we calculate

the combined feature vector z,”” ), and generate
the Bag-of-Behaviors Q(sg). This method is a
kind of the feature-level fusion method.

In Condition (2), the three features are used sep-
arately. First, we generate three codebooks C,, Cy
and C. using the audio, face and gaze features, re-
spectively. Size of those codebooks were K, K
and K.. When an input session sg is given,
we generate three Bag-of-Behaviors feature vec-
tors Q. (sk), Qf(sk) and Q.(sg) using the three
codebooks. Finally, we combine those features as

Q(sg) = (Qu(sk), Qs (sE), Qe(sr)).  (5)

5.2 Experimental condition

We employed the SVM with RBF-kernel as a clas-
sifier. The experimental conditions are summa-
rized in Table 2. The hyperparameters of the clas-
sifier were decided by grid-searching. Since the
session of state C and the other states (state A and
state B) were clearly distinguished by the duration
of the session, we used only the session of state
A and state B for the experiments. Hence, each
experiment was a two-class discrimination task.

As explained, the experimental data were un-
balanced. Since it is desirable that the system can
discriminate the user’s state without deviation, the
harmonic mean H of the accuracy of the two states
was used for measuring the performance. This is
calculated by

_ 204 ©
4+ CB

where C'4 and C'p represent the discrimination ac-

curacy of state A and state B, respectively. The ex-

periments were conducted based on a 5-fold cross

validation.
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5.3 Experimental results

The results of condition (1) are shown in Figure
1. The figure shows the best H of each num-
ber of clusters. In condition (1), the best result
(H = 70.0%) was obtained when the number of
clusters K was 64. Figure 2 shows the results of
condition (2). In this figure, the results are shown
in descending order of the harmonic mean for all
combination of codebook size of the three code-
books (there were 52 = 125 conditions). The best
H = 70.7% was obtained when K, = 8, Ky = 8
and K., = 64.

The best results of the tested methods are sum-
marized in Table 3. Here, “Baseline + NN” in
the table denotes the result in Chiba et al. (2013),
where the visual events and acoustic events were
annotated manually, and the manual labels were

Table 3: Comparison of estimation methods

State A State B Harm.
Baseline + NN 52.5 65.1 58.2
Baseline + Gaze + NN 64.5 59.5 61.9
Condition (1) + RBF-SVM | 67.9 723 700
Condition (2) + RBF-SVM | 67.7 73.8  70.7
Condition (2) + MKL-SVM | 68.0 764 720
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used as input for a neural network for the classi-
fication. The gaze feature was not used in “Base-
line + NN.” We added the result when including
the gaze feature, shown as “Baseline + Gaze +
NN.” As shown in Table 3, the performance of the
method proposed in this paper surpassed the base-
line methods. Therefore, the proposed method
could not only automatically determine the inven-
tory of the audio-visual events, but also achieved
better discrimination accuracy. One of the reasons
of the improvement is VQ can construct the clus-
ters in proper quantities.

Comparing the two conditions of feature combi-
nation, H of condition (2) (denoted as “Condition
(2) + RBF-SVM”) was slightly higher than that of
condition (1) (denoted as “Condition (1) + RBF-
SVM”). This result was similar to Split-VQ (Pari-
wal and Atal, 1991) where a single feature vec-
tor split into subvectors and the input vector was
quantized subvector by subvector.

We conducted additional experiments for con-
dition (2) by using SVM with combined kernel
trained by Multiple Kernel Learning (MKL) (Son-
nenburg et al., 2006). The combined kernel is rep-
resented as a linear combination of several sub-
kernels. The distinct kernel was employed for
the speech, face feature and gaze feature, respec-
tively. This paper used the RBF-kernel having the
same width as the sub-kernels{0The best result was
shown as “Condition (2) + MKL-SVM” in Table 3.
As shown in the table, the MKL-SVM showed the
highest performance of 72.0 %. The weights of the
audio, face and gaze feature were 0.246, 0.005 and
0.749, respectively. This result suggested that the
contribution of the face feature was weaker than
the other features.

6 Conclusion

In this paper, we proposed a method to estimate
the state of the user of the dialog system by us-
ing non-verbal features. We proposed the Bag-
of-Behaviors approach, in which the user’s mult-
modal behavior was first classified by vector quan-
tization, and then the histogram of the VQ code
was used as a feature of the discrimination. We
verified that the method could discriminate the tar-
get user’s state with an accuracy of 70% or more.
One of the disadvantages of the current frame-
work is that it requires to observe the session until
just before the user’s input utterance. This prob-
lem makes it difficult to apply this method to an
actual system, because the system has to be able
to evaluate the user’s state successively in order to
help the user at an appropriate timing. Therefore,
we will examine a sequential estimation method
by using the Bag-of-Behaviors in a future work.
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Abstract

When deploying a spoken dialogue sys-
tem in a new domain, one faces a situation
where little to no data is available to train
domain-specific statistical models. We de-
scribe our experience with bootstrapping
a dialogue system for public transit and
weather information in real-word deploy-
ment under public use. We proceeded in-
crementally, starting from a minimal sys-
tem put on a toll-free telephone number to
collect speech data. We were able to incor-
porate statistical modules trained on col-
lected data — in-domain speech recogni-
tion language models and spoken language
understanding — while simultaneously ex-
tending the domain, making use of auto-
matically generated semantic annotation.
Our approach shows that a successful sys-
tem can be built with minimal effort and
no in-domain data at hand.

1 Introduction

The Alex Public Transit Information System is an
experimental Czech spoken dialogue system pro-
viding information about all kinds of public tran-
sit in the Czech Republic, publicly available at a
toll-free 800 telephone number.! It was launched
for public use as soon as a first minimal working
version was developed, using no in-domain speech
data. We chose an incremental approach to sys-
tem development in order to collect call data and
use them to bootstrap statistical modules. Nearly

*This work was funded by the Ministry of Education,
Youth and Sports of the Czech Republic under the grant
agreement LK11221 and core research funding, SVV project
260 104, and grants GAUK 2058214 and 2076214 of Charles
University in Prague. It used language resources stored and
distributed by the LINDAT/CLARIN project of the Min-
istry of Education, Youth and Sports of the Czech Republic
(project LM2010013).

!Call 800-899-998 from the Czech Republic.
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a year after launch, we have collected over 1,300
calls from the general public, which enabled us
to train and deploy an in-domain language model
for Automatic Speech Recognition (ASR) and a
statistical Spoken Language Understanding (SLU)
module. The domain supported by the system has
extended from transit information in one city to ca.
5,000 towns and cities in the whole country, plus
weather and time information. This shows that a
even a very basic system is useful in collecting in-
domain data and that the incremental approach is
viable.

Spoken dialogue systems have been a topic of
research for the past several decades, and many
experimental systems were developed and tested
with users (Walker et al., 2001; Gasié et al., 2013;
Janarthanam et al., 2013). However, few experi-
mental systems became available to general public
use. Let’s Go (Raux et al., 2005; Raux et al., 2006)
is a notable example in the public transportation
domain. Using interaction with users from the
public to bootstrap data-driven methods and im-
prove the system is also not a common practice.
Both Let’s Go and the GOOG-411 business finder
system (Bacchiani et al., 2008) collected speech
data, but applied data-driven methods only to im-
prove statistical ASR. We use the call data for sta-
tistical SLU as well and plan to further introduce
statistical modules for dialogue management and
natural language generation.

Our spoken dialogue system framework is
freely available on GitHub? and designed for easy
adaptation to new domains and languages. An En-
glish version of our system is in preparation.

We first present the overall structure of the Alex
SDS framework and then describe the minimal
system that has been put to public use, as well as
our incremental extensions. Finally, we provide
an evaluation of our system based on the recorded
calls.

http://github.com/UFAL-DSG/alex
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2 Overall Alex SDS System Structure

The basic architecture of Alex is modular and con-
sists of the traditional SDS components: automatic
speech recognizer (ASR), spoken language under-
standing (SLU), dialogue manager (DM), natural
language generator (NLG), and a text-to-speech
(TTS) module.

We designed the system to allow for easy re-
placement of the individual components: There is
a defined interface for each of them. As the in-
terfaces are domain-independent, changing the do-
main is facilitated as well by this approach.

3 Baseline Transit Information System

We decided to create a minimal working system
that would not require any in-domain data and
open it to general public to collect call data as soon
as possible. We believe that this is a viable al-
ternative to Wizard-of-Oz experiments (Rieser and
Lemon, 2008), allowing for incremental develop-
ment and producing data that correspond to real
usage scenarios (see Section 4).

3.1 Baseline Implementation of the
Components

Having no in-domain data available, we resorted
to very basic implementations using hand-written
rules or external services:

o ASR used a neural network based voice activity
detector trained on small out-of-domain data.
Recordings classified as speech were fed to the

the web-based Google ASR service.

SLU was handcrafted for our domain using sim-
ple keyword-spotting rules.

In DM, the dialogue tracker held only one value
per dialogue slot, and the dialogue policy was
handcrafted for the basic tasks in our domain.

NLG is a simple template-based module.

We use a web-based Czech TTS service pro-
vided to us by SpeechTech.?

3.2 Baseline Domain

At baseline, our domain only consisted of a very
basic public transport information for the city of
Prague. Our ontology contained ca. 2,500 public
transit stops. The system was able to present the
next connection between two stops requested by
the user, repeat the information, or return several

Shttp://www.speechtech.cz/
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Figure 1: ASR word error rate depending on the
size of in-domain language model training data

The full training set amounts to 9,495 utterances (30,126 to-
kens). The test set contains 1,187 utterances (4,392 tokens).

following connections. Connection search was
based on Google Directions APL*

4 Collecting Data and Extending the
System in Real Usage

We launched our system at a public toll-free 800
number and advertised the service at our univer-
sity, among friends, and via Facebook. We also
cooperate with the Czech Blind United associa-
tion,’ promoting our system among its members
and receiving comments about its use. We adver-
tised our extensions and improvements using the
same channels.

We record and collect all calls to the system,
including our own testing calls, to obtain training
data and build statistical models into our system.

4.1 Speech Recognition: Building In-Domain
Models

The Google on-line ASR service, while reach-
ing state-of-the-art performance in some tasks
(Morbini et al., 2013), showed very high word er-
ror rate in our specific domain (see Figure 1). We
replaced it with the Kaldi ASR engine (Povey et
al., 2011) trained on general-domain Czech acous-
tic data (Korvas et al., 2014) with an in-domain
class-based language model built using collected
call data and lists of all available cities and stops.
We describe our modifications to Kaldi for on-
line decoding in Platek and Jurcicek (2014). A
performance comparison of Google ASR with

‘https://developers.google.com/maps/
documentation/directions/
Shttp://www.sons.cz
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Figure 2: SLU performance (F-measure on dia-
logue act items) depending on training data size

The same data sets as in Figure 1 are used, with semantic
annotations from handcrafted SLU running on manual tran-
scriptions.

Kaldi trained on our data is shown in Figure 1.
One can see that the in-domain language model
brings a substantial improvement, even with very
small data sizes.

4.2 Spoken Language Understanding

To increase system robustness, we built a statisti-
cal SLU based on a set of logistic regression clas-
sifiers and word n-gram features (Jurcicek et al.,
2014). We train it on the output of our handcrafted
SLU applied to manual transcriptions. We chose
this approach over obtaining manual semantic an-
notation due to two main reasons:

1. Obtaining semantic annotation for Czech data is
relatively slow and complicated; using crowd-
sourcing is not a possibility due to lack of
speakers of Czech on the platforms.

2. As we intended to gradually extend our domain,
semantic annotation changed over time as well.

This approach still allows the statistical SLU to
improve on a handcrafted one by compensating
for errors made by the ASR. Figure 2 shows that
the performance of the statistical SLU module in-
creases with more training data and with the in-
domain ASR models.

4.3 Dialogue Manager

We have replaced the initial simplistic dialogue
state tracker (see Section 3.1) by the probabilis-
tic discriminative tracker of Zilka et al. (2013),
which achieves near state-of-the-art performance
while remaining completely parameter-free. This
property allowed us to employ the tracker without
any training data; our gradual domain extensions

also required no further adjustments.

The dialogue policy is handcrafted, though it
takes advantage of uncertainty estimated by the
belief tracker. Its main logic is similar to that of

Jur¢icek et al. (2012). First, it implements a set of
domain-independent actions, such as:

e dialogue opening, closing, and restart,

e implicit confirmation of changed slots with high
probability of the most probable value,

e explicit confirmation for slots with a lower
probability of the most probable value,

e a choice among two similarly probable values.

Second, domain-specific actions are imple-
mented for the domain(s) described in Section 4.4.

4.4 Extending the Domain

We have expanded our public transit information
domain with the following tasks:

e The user may specify departure or arrival time
in absolute or relative terms (“in ten minutes”,
“tomorrow morning”, “at 6 pm.”, “at 8:35” etc.).

e The user may request more details about the
connection: number of transfers, journey dura-
tion, departure and arrival time.

e The user may travel not only among public
transport stops within one city, but also among
multiple cities or towns.

The expansion to multiple cities has lead to an
ontology improvement: The system is able to find
the corresponding city in the database based on a
stop name, and can use a default stop for a given
city. We initially supported three Czech major
cities covered by the Google Directions service,
then extended the coverage to the whole country
(ca. 44,000 stops in 5,000 cities and towns) using
Czech national public transport database provided
by CHAPS.®

We now also include weather information for all
Czech cities in the system. The user may ask for
weather at the given time or on the whole day. We
use OpenWeatherMap as our data source.’

Furthermore, the user may ask about the current
time at any point in the dialogue.

5 System Evaluation from Recorded
Calls

We have used the recorded call data for an eval-
uation of our system. Figure 3 presents the num-

*http://www.idos.cz
"http://openweathermap.org/
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The dashed line shows all recorded calls, including those
made by the authors. The full line shows calls from the public
only.

Spikes: A — initial testing, B — first advertising, C — system
partially offline due to a bug, D — testing statistical SLU mod-
ule, E — larger advertising with Czech Blind United, F — test-
ing domain enhancements, G — no advertising and limited
system performance, H — deploying Kaldi ASR and nation-
wide coverage, I — no further advertising.
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Figure 4: System success rates by month

Percentage of calls where the system provided information
(or apology for not having one) and percentage of rather pos-
itive responses to the final question, both shown with standard
error bars.

ber of calls to our system per week and reflects
the testing and advertising phases, as well as some
of our extensions and improvements described in
Section 4. A steeper usage increase is visible in
recent weeks after the introduction of Kaldi ASR
engine and nationwide coverage (see Sections 4.1
and 4.4). The number of calls and unique users
(caller phone numbers) grows steadily; so far,
more than 300 users from the public have made
over 1,300 calls to the system (cf. Figure 5 and
Table 1 in the appendix).®

Figure 4 (and Table 1 in the appendix) give a de-
tailed view of the success of our system. Informa-

SWe only count calls with at least one valid user utterance,
disregarding calls where users hang up immediately.
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tion is provided in the vast majority of calls. Upon
manual inspection of call transcripts, we discov-
ered that about half of the cases where no infor-
mation is provided can be attributed to the system
failing to react properly; the rest is off-topic calls
or users hanging up too early.

We have also introduced a “final question® as
an additional success metric. After the user says
good-bye, the system asks them if they received
the information they were looking for. By looking
at the transcriptions of responses to this question,
we recognize a majority of them as rather positive
(“Yes”, “Nearly” etc.); the proportion of positive
reactions seems to remain stable. However, the fi-
nal question is not an accurate measure as most
users seem to hang up directly after receiving in-
formation from the system.

6 Conclusions and Further Work

We use an iterative approach to build a complex
dialogue system within the public transit informa-
tion domain. The system is publicly available on a
toll-free phone number. Our extensible dialogue
system framework as well as the system imple-
mentation for our domain can be downloaded from
GitHub under the Apache 2.0 license.

We have shown that even very limited work-
ing version can be used to collect calls from
the public, gathering training data for statistical
system components. Our experiments with the
Kaldi speech recognizer show that already a small
amount of in-domain data for the language model
brings a substantial improvement. Generating au-
tomatic semantic annotation from recording tran-
scripts allows us to maintain a statistical spoken
language understanding unit with changing do-
main and growing data.

The analysis of our call logs shows that our sys-
tem is able to provide information in the vast ma-
jority of cases. Success rating provided by the
users themselves is mostly positive, yet the con-
clusiveness of this metric is limited as users tend
to hang up directly after receiving information.

In future, we plan to add an English version
of the system and further expand the domain, al-
lowing more specific connection options. As we
gather more training data, we plan to introduce sta-
tistical modules into the remaining system compo-
nents.



A System Evaluation Data

In the following, we include additional data from
call logs evaluation presented in Section 5.
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Figure 5: Cumulative number of calls and unique
callers from the public by weeks

The growth rates of the number of unique users and the total
number of calls both correspond to the testing and advertising
periods shown in Figure 3.

Total calls 1,359
Unique users (caller phone numbers) 304
System informed (or apologized) 1,124
System informed about directions 990
System informed about weather 88
System informed about current time 41
Apologized for not having information 223
System asked the final question 229
Final question answered by the user 199
Rather positive user’s answer 146
Rather negative user’s answer 23

Table 1: Detailed call statistics

Total absolute numbers of calls from general public users
over the period of nearly one year are shown.
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Abstract

In order to process incremental situated
dialogue, it is necessary to accept infor-
mation from various sensors, each track-
ing, in real-time, different aspects of the
physical situation. We present extensions
of the incremental processing toolkit IN-
PROTK which make it possible to plug in
such multimodal sensors and to achieve
situated, real-time dialogue. We also de-
scribe a new module which enables the use
in INPROTK of the Google Web Speech
API, which offers speech recognition with
a very large vocabulary and a wide choice
of languages. We illustrate the use of these
extensions with a description of two sys-
tems handling different situated settings.

1 Introduction

Realising incremental processing of speech in-
and output — a prerequisite to interpretation and
possibly production of speech concurrently with
the other dialogue participant — requires some fun-
damental changes in the way that components
of dialogue systems operate and communicate
with each other (Schlangen and Skantze, 2011;
Schlangen and Skantze, 2009). Processing situ-
ated communication, that is, communication that
requires reference to the physical setting in which
it occurs, makes it necessary to accept (and fuse)
information from various different sensors, each
tracking different aspects of the physical situation,
making the system multimodal (Atrey et al., 2010;
Dumas et al., 2009; Waibel et al., 1996).
Incremental situated processing brings together
these requirements. In this paper, we present a col-
lection of extensions to the incremental process-
ing toolkit INPROTK (Baumann and Schlangen,
2012) that make it capable of processing situ-
ated communication in an incremental fashion:
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we have developed a general architecture for
plugging in multimodal sensors whith we denote
INPROTKg, which includes instantiations for mo-
tion capture (via e.g. via Microsoft Kinect and
Leap Motion) and eye tracking (Seeingmachines
Facel AB). We also describe a new module we
built that makes it possible to perform (large vo-
cabulary, open domain) speech recognition via the
Google Web Speech API. We describe these com-
ponents individually and give as use-cases in a
driving simulation setup, as well as real-time gaze
and gesture recognition.

In the next section, we will give some back-
ground on incremental processing, then describe
the new methods of plugging in multimodal sen-
sors, specifically using XML-RPC, the Robotics
Service Bus, and the InstantReality framework.
We then explain how we incorporated the Google
Web Speech API into InproTK, offer some use
cases for these new modules, and conclude.

2 Background: The IU model, INPROTK

As described in (Baumann and Schlangen, 2012),
INPROTK realizes the /U-model of incremen-
tal processing (Schlangen and Skantze, 2011;
Schlangen and Skantze, 2009), where incremental
systems consist of a network of processing mod-
ules. A typical module takes input from its left
buffer, performs some kind of processing on that
data, and places the processed result onto its right
buffer. The data are packaged as the payload of
incremental units (IUs) which are passed between
modules.

The 1Us themselves are also interconnected via
so-called same level links (SLL) and grounded-in
links (GRIN), the former allowing the linking of
IUs as a growing sequence, the latter allowing that
sequence to convey what 1Us directly affect it (see
Figure 1 for an example). A complication partic-
ular to incremental processing is that modules can
“change their mind” about what the best hypothe-

Proceedings of the SIGDIAL 2014 Conference, pages 8488,
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Figure 1: Example of IU network; part-of-speech
tags are grounded into words, tags and words have
same level links with left IU; four is revoked and
replaced with forty.

sis is, in light of later information, thus 1Us can be
added, revoked, or committed to a network of IUs.

INPROTK determines how a module network is
“connected” via an XML-formatted configuration
file, which states module instantiations, includ-
ing the connections between left buffers and right
buffers of the various modules. Also part of the
toolkit is a selection of “incremental processing-
ready” modules, and so makes it possible to realise
responsive speech-based systems.

3 InproTK and new I/O: InproTKj

The new additions introduced here are realised as
INPROTK modules. The new modules that input
information to an INPROTKg module network are
called listeners in that they “listen” to their respec-
tive message passing systems, and modules that
output information from the network are called
informers. Listeners are specific to their method
of receiving information, explained in each sec-
tion below. Data received from listeners are pack-
aged into an 1U and put onto the module’s right
buffer. Listener module left buffers are not used
in the standard way; left buffers receive data from
their respective message passing protocols. An in-
former takes all 1Us from its left buffer, and sends
their payload via that module’s specific output
method, serving as a kind of right buffer. Figure
2 gives an example of how such listeners and in-
formers can be used. At the moment, only strings
can be read by listeners and sent by informers; fu-
ture extensions could allow for more complicated
data types.

Listener modules add new IUs to the network;
correspondingly, further modules have to be de-
signed in instatiated systems then can make use
of these information types. These 1Us created by
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the listeners are linked to each other via SLLs.
As with audio inputs in previous version of IN-
PROTK, these IUs are considered basedata and not
explictly linked via GRINs in the sensor data. The
modules defined so far also simply add 1Us and do
not revoke.

We will now explain the three new methods of
getting data into and out of INPROTKG.

3.1 XML-RPC

XML-RPC is a remote procedure call protocol
which uses XML to encode its calls, and HTTP as a
transport mechanism. This requires a server/client
relationship where the listener is implemented as
the server on a specified port.! Remote sensors
(e.g., an eye tracker) are realised as clients and can
send data (encoded as a string) to the server using
a specific procedural call. The informer is also re-
alised as an XML-RPC client, which sends datato a
defined server. XML-RPC was introduced in 1998
and is widely implemented in many programming

languages.
Motion Gesture : InproTKs
Sensor Classifier fisiencr

‘\ '[E".’
I (| speaker

- —

Figure 2: Example architecture using new mod-
ules: motion is captured and processed externally
and class labels are sent to a listener, which adds
them to the IU network. Arrows denote connec-
tions from right buffers to left buffers. Information
from the DM is sent via an Informer to an external
logger. External gray modules denote input, white
modules denote output.

<«

3.2 Robotics Service Bus

The Robotics Service Bus (RSB) is a middleware
environment originally designed for message-
passing in robotics systems (Wienke and Wrede,
2011).2 As opposed to XML-RPC which requires

The specification can be found at http://xmlrpc.

scripting.com/spec.html
https://code.cor-lab.de/projects/rsb



point-to-point connections, RSB serves as a bus
across specified transport mechanisms. Simply,
a network of communication nodes can either in-
form by sending events (with a payload), or lis-
ten, i.e., receive events. Informers can send in-
formation on a specific scope which establishes
a visibility for listeners (e.g., a listener that re-
ceives events on scope /one/ will receive all events
that fall under the /one/ scope, whereas a listener
with added constants on the scope, e.g., /one/two/
will not receive events from different added con-
stants /one/three/, but the scope /one/ can listen
on all three of these scopes). A listener mod-
ule is realised in INPROTKg by setting the de-
sired scope in the configuration file, allowing IN-
PROTKjy seamless interconnectivity with commu-
nication on RSB.

There is no theoretical limit to the number of in-
formers or listeners; events from a single informer
can be received by multiple listeners. Events are
typed and any new types can be added to the avail-
able set. RSB is under active development and is
becoming more widely used. Java, Python, and
C++ programming languages are currently sup-
ported. In our experience, RSB makes it particu-
larly convenient for setting distributed sensor pro-
cessing networks.

3.3 InstantReality

In (Kousidis et al., 2013), the InstantReality
framework, a virtual reality environment, was
used for monitoring and recording data in a real-
time multimodal interaction.> Each information
source (sensor) runs on its own dedicated work-
station and transmits the sensor data across a net-
work using the InstantlO interface. The data can
be received by different components such as In-
stantPlayer (3D visualization engine; invaluable
for monitoring of data integrity when recording
experimental sessions) or a logger that saves all
data to disk. Network communication is achieved
via multicast, which makes it possible to have any
number of listeners for a server and vice-versa.

The InstantlO API is currently available in C++
and Java. It comes with a non-extensible set of
types (primitives, 2D and 3D vectors, rotations,
images, sounds) which is however adequate for
most tracking applications. InstantlO listeners and
informers are easily configured in INPROTKg con-
figuration file.

3http: //www.instantreality.org/
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3.4 Venice: Bridging the Interfaces

To make these different components/interfaces
compatible with each other, we have developed a
collection of bridging tools named Venice. Venice
serves two distinct functions. First, Venice.HUB,
which pushes data to/from any of the following
interfaces: disk (logger/replayer), InstantlO, and
RSB. This allows seamless setup of networks for
logging, playback, real-time processing (or com-
binations; e.g, for simulations), minimizing the
need for adaptations to handle different situations.
Second, Venice.IPC allows interprocess communi-
cation and mainly serves as a quick and efficient
way to create network components for new types
of sensors, regardless of the platform or language.
Venice.IPC acts as a server to which TCP clients
(a common interface for sensors) can connect. It
is highly configurable, readily accepting various
sensor data outputs, and sends data in real-time to
the InstantIO network.

Both Venice components operate on all three
major platforms (Linux, Windows, Mac OS X),
allowing great flexibility in software and sensors
that can be plugged in the architecture, regardless
of the vendor’s native API programming language
or supported platform. We discuss some use cases
in section 5.

4 Google Web Speech

One barrier to dialogue system development is
handling ASR. Open source toolkits are available,
each supporting a handful of languages, with each
language having a varying vocabulary size. A step
in overcoming this barrier is “outsourcing” the
problem by making use of the Google Web Speech
APIL* This interface supports many languages, in
most cases with a large, open domain of vocabu-
lary. We have been able to access the API directly
using INPROTKj, similar to (Henderson, 2014).3
INPROTKj already supports an incremental vari-
ant of Sphinx4; a system designer can now choose
from these two alternatives.

At the moment, only the Google Chrome
browser implements the Web Speech API. When
the INPROTKs Web Speech module is invoked,
it creates a service which can be reached from

“The Web Speech API Specificiation: https:
//dvcs.w3.0org/hg/speech-api/raw-file/
tip/speechapi.html

SIndeed, we used Matthew Henderson’s webdial project

as a basis: https://bitbucket.org/matthen/
webdialog



the Chrome browser via an URL (and hence, mi-
crophone client, dialogue processor and speech
recogniser can run on different machines). Navi-
gating to that URL shows a simple web page where
one can control the microphone. Figure 3 shows
how the components fit together.

While this setup improves recognition as com-
pared to the Sphinx4-based recognition previously
only available in INPROTK, there are some ar-
eas of concern. First, there is a delay caused by
the remote processing (on Google’s servers), re-
quiring alignment with data from other sensors.
Second, the returned transcription results are only
‘semi-incremental’; sometimes chunks of words
are treated as single increments. Third, n-best lists
can only be obtained when the API detects the end
of the utterance (incrementally, only the top hy-
pothesis is returned). Fourth, the results have a
crude timestamp which signifies the end of the au-
dio segment. We use this timestamp in our con-
struction of word 1Us, which in informal tests have
been found to be acceptable for our needs; we de-
fer more systematic testing to future work.

GO\/SIQ
ti
t_> e =9 InproTK

Figure 3: Data flow of Google Web Speech API:
Chrome browser controls the microphone, sends
audio to API and receives incremental hypotheses,
which are directly sent to InproTKg.

5 INPROTKj in Use

We exemplify the utility of INPROTKj in two ex-
periments recently performed in our lab.

In-car situated communication We have tested
a “pause and resume” strategy for adaptive in-
formation presentation in a driving simulation
scenario (see Figure 4), using INPROTKg and
OpenDS (Math et al., 2013). Our dialogue man-
ager — implemented using OpenDial (Lison, 2012)
— receives trigger events from OpenDS in order to
update its state, while it verbalises calendar events
and presents them via speech. This is achieved
by means of InstantlO servers we integrated into
OpenDS and respective listeners in INPROTKg. In
turn, InstantlO informers send data that is logged
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Figure 4: Participant performing driving test while
listening to iNLG speech delivered by InProTKg.

by Venice.HUB. The results of this study are pub-
lished in (Kousidis et al., 2014). Having available
the modules described here made it surprisingly
straightforward to implement the interaction with
the driving simulator (treated as a kind of sensor).

Real-time gaze fixation and pointing gesture
detection Using the tools described here, we
have recently tested a real-time situated commu-
nication environment that uses speech, gaze, and
gesture simultaneously. Data from a Microsoft
Kinect and a Seeingmachines Facelab eye tracker
are logged in realtime to the InstantlO network.
A Venice.HUB component receives this data and
sends it over RSB to external components that
perform detection of gaze fixation and pointing
gestures, as described in (Kousidis et al., 2013).
These class labels are sent in turn over RSB to
INPROTK listeners, aggregating these modalities
with the ASR in a language understanding module.
Again, this was only enabled by the framework de-
scribed here.

6 Conclusion

We have developed methods of providing mul-
timodal information to the incremental dialogue
middleware INPROTK. We have tested these
methods in real-time interaction and have found
them to work well, simplifying the process of
connecting external sensors necessary for multi-
modal, situated dialogue. We have further ex-
tended its options for ASR, connecting the Google
Web Speech API. We have also discussed Venice,
a tool for bridging RSB and InstantlO interfaces,
which can log real-time data in a time-aligned
manner, and replay that data. We also offered
some use-cases for our extensions.
INPROTKj is freely available and accessible.®

®https://bitbucket.org/inpro/inprotk
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Abstract

This paper describes an approach for a
robotic arm to learn new actions through
dialogue in a simplified blocks world. In
particular, we have developed a three-
tier action knowledge representation that
on one hand, supports the connection be-
tween symbolic representations of lan-
guage and continuous sensorimotor repre-
sentations of the robot; and on the other
hand, supports the application of existing
planning algorithms to address novel situ-
ations. Our empirical studies have shown
that, based on this representation the robot
was able to learn and execute basic actions
in the blocks world. When a human is
engaged in a dialogue to teach the robot
new actions, step-by-step instructions lead
to better learning performance compared
to one-shot instructions.

1 Introduction

When a new generation of robots start to work
side-by-side with their human partners in joint
tasks (Christensen et al., 2010), they will often
encounter new objects or are required to perform
new actions. It is important for the robots to au-
tomatically learn new knowledge about the en-
vironment and the tasks from their human part-
ners. To address this issue, this paper describes
our recent work on action learning through dia-
logue. As a first step, we limit our investigation to
a simple blocks world motivated by Terry Wino-
grad’s early work (Winograd, 1972). By using
an industrial robotic arm (SCHUNK) in this small
world, we are interested in addressing the follow-

&9

ing questions. First, human language has a dis-
crete and symbolic representation, but the robot
arm has a continuous representation for its move-
ments. Where should the connections between the
symbolic representation and the continuous repre-
sentation take place so that human language can
be used to direct the robot’s movements? Second,
when the robot learns new tasks from its human
partner, how to represent the acquired knowledge
effectively so that it can be applied in novel situa-
tions? Third, during human-robot dialogue, when
the robot fails to perform the expected actions due
to the lack of knowledge, how should the human
teach the robot new actions? through step-by-step
instructions or one-shot instructions?

With these questions in mind, we have devel-
oped a three-tier action knowledge representation
for the robotic arm. The lower level connects to
the physical arm and defines the trajectories of
executing three atomic actions supported by the
arm (i.e., open_gripper, close_gripper, move). The
middle level defines primitive operators such as
Open_Grip, Close_Grip and MoveTo in the fash-
ion of the traditional AI planner (Fikes and Nils-
son, 1971) and directly links to the lower level.
The upper-level captures the high-level actions ac-
quired by learning from the human. These high-
level actions are represented as the desired goal
states of the environment as a result of these ac-
tions. This three-tier representation allows the
robot to automatically come up with a sequence of
lower-level actions by applying existing planning
algorithms.

Based on this representation, we implemented
a dialogue system for action learning and further
conducted an empirical study with human sub-
jects. In particular, we compared the dialogue

Proceedings of the SIGDIAL 2014 Conference, pages 89-97,
Philadelphia, U.S.A., 18-20 June 2014. (©2014 Association for Computational Linguistics



H1: Stack the blue block on the red
block on your right.

R1: How to stack, could you teach me?

H2: Grab the blue block.

R2: What do you mean by grab?

H3: Open your gripper.

R3: Ok.

H4: Move to the blue block.

R4: Sure.

~ H5: Close gripper.

RS: Alright then.

H6: Now you achieve the grab action.

R6: Ok, got it.

H7: Move the blue block to the top of
the right red block.

R7: Understood.

H8: Open gripper.

R8: Sure.

H9: Ok, now you are done with the
stack action.

R9: Ok.

Figure 1: An example setup and dialogue. Objects
are marked with labels only for the illustration pur-
pose.

based on the step-by-step instructions (i.e., one
step at a time and wait for the robot’s response
at each step before going to the next step) with
the one-shot instructions (i.e., give the instruction
with all steps at once). Our empirical results have
shown that the three-tier knowledge representation
can capture the learned new action and apply it
to novel situations. Although the step-by-step in-
structions resulted in a lengthier teaching process
compared to the one-shot instructions, they led to
better learning performance for the robot.

2 Related Work

Over forty years ago, Terry Winograd developed
SHRDLU (Winograd, 1972) to demonstrate nat-
ural language understanding using a simulated
block-moving arm. One aspect he did not address,
but mentioned in his thesis (Winograd, 1972) as
an important aspect, was learning new actions
through natural language. Motivated by Wino-
grad’s early work, we start our initial investigation
on action learning in a physical blocks world and
with a physical robotic arm. The blocks world is
the most famous domain used for planning in ar-
tificial intelligence. Thus it allows us to focus on
mechanisms that, on one hand, connect symbolic
representations of language with lower-level con-
tinuous sensorimotor representations of the robot;
and on the other hand, support the use of the plan-
ning algorithms to address novel situations.

Most previous work on following human in-
structions are based on supervised learning (Kol-
lar et al., 2010; Tellex et al., 2011; Chen et al.,
2010) or reinforcement learning (Branavan et al.,
2012; Branavan et al., 2010). These types of learn-
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ing may not be adequate in time-critical situations
where only resources available to the robot is its
human partners. Thus it is desirable that humans
can engage in a natural language dialogue to teach
robots new skills. Using natural language dialogue
to learn new skills have been explored previously
by (Allen et al., 2007) where an artificial agent was
developed to acquire skills through natural lan-
guage instructions (i.e., find restaurant). But this
work only grounds language to symbolic interface
widgets on web pages.

In the robotics community, previous work has
applied learning by demonstration to teach robots
new skills (Cakmak et al., 2010). To potentially
allow natural language instructions, previous work
has also explored connecting language with lower-
level control systems (Kress-Gazit et al., 2008;
Siskind, 1999; Matuszek et al., 2012). Different
from these previous works, here we investigate the
use of natural language dialogue for learning ac-
tions. Previous work described in (Cantrell et al.,
2012; Mohan et al., 2013) is most similar to our
work. Here we focus on both grounded learning
and the use of planning for action learning.

3 Dialogue System
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Figure 2: System Architecture

We developed a dialogue system to support
learning new actions. An example setup is shown
in Figure 1, in which a SCHUNK arm is used to
manipulate blocks placed on a surface. In Hi,
the human starts to ask the robot to stack the blue
block (i.e., B1) on top of the red block (i.e., R1).
The robot does not understand the action ‘“‘stack”,
so it asks the human for instructions. Then the hu-



Semantic Representation

H1: Human
Intent: Command
Action: Stack
Theme:
Focus: x1
Refs: ['x1']
Sem: Color(x1,blue)
Destination:
Focus: x2
Refs: ['x2']
Sem: Color(x2, red)?
Location(x2, right)

Grounded

Referential Action Frame

Grounding

)

H1: Human
Action: Stack
Theme: x1->B1
Destination: x2->R1

Figure 3: Example semantic representation and
action frame for the human utterance “stack the
blue block on the red block on your right.”

man provides detailed steps to accomplish this ac-
tion (i.e., Hs to Hg) and also observes the robot’s
response in each step. Note that during this pro-
cess, another unknown action (i.e., “grab” as in
H>) is encountered. The robot thus needs to learn
this action first. The robot is able to keep track
of the dialogue structure so that actions and sub-
actions can be learned accordingly. Once the robot
receives a confirmation from the human that the
corresponding action is successfully performed
(i.e., Hg and Hy), it acquires the new action and
explicitly represents it in its knowledge base for
future use. Instead of representing the acquired
knowledge as specific steps as illustrated by the
human, the acquired action is represented by the
expected final state, which represents the changes
of environment as a result of the action. The new
action can be directly applied to novel situations
by applying planning algorithms. Figure 2 shows
the system structure. Next we explain main system
modules in detail.

Natural Languge Processing: Natural language
processing modules capture semantic information
from human language inputs. In particular, the
Intention Recognizer isused torecognize
human intent (e.g., Command and Confirmation).
The Semantic Processor, implemented as
Combinatory Categorial Grammar (CCG) !, is
used to generate semantic representation. Current
semantic information includes the actions (e.g.,
stack) and their roles (e.g., Theme and Destina-
tion). The roles are further represented by objects’
properties (Color, Location and Spatial Relation).
An example semantic representation of “H1: Stack
the blue block on the red block on your right.” is
shown in Figure 3.

'We utilized OpenCCG, which could be found at:
http://openccg.sourceforge.net/
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Perception Modules: Besides interpreting human
language, the robot also continuously perceives
the shared environment with its camera. Ob-
jects in video frames are recognized through vi-
sion system (Collet et al., 2011), and further repre-
sented as a Vision Graph (computed by Vision
Graph Builder), which captures objects and
their properties (in the numerical form). The robot
can also access to its own internal status, such as
the location of the gripper and whether it’s open
or closed. Combining the robot’s state and en-
vironment information, the Discrete State
Builder can represent the entire environment as
a conjunction of predicates, which will be later
used for action planning.

Referential Grounding: To make the semantic
representation meaningful, it must be grounded to
the robot’s representation of perception. We use
the graph-based approach for referential ground-
ing as described in (Liu et al., 2012)(Liu et al.,
2013). Once the references are grounded, the se-
mantic representation becomes a Grounded Action
Frame. For example, as shown in Figure 3, “the
blue block” refers to Bl and “the red block on your
right” refers to R1.

Dialogue Manager: The Dialogue Manager
is used to decide what dialog acts the system
should perform give a situation. It is composed by:
a representation of dialogue state, a space of sys-
tem activity and a dialogue policy. The dialogue
status is computed based on the human intention a
dialogue state captures (from semantic representa-
tion) and the Grounded Action Frame. The
current space of system activities includes asking
for instructions, confirming, executing actions and
updating its action knowledge base with new ac-
tions. The dialogue policy stores the (dialogue
state, system activities) pairs. During interaction,
the Dialogue Manager will first identify the
current dialogue state and then apply the dialogue
acts associated with that state as specified in the
dialogue policy.

Action Modules: The Action Modules are
used to realize a high-level action from the
Grounded Action Frame with the physi-
cal arm and to learn new actions. For re-
alizing high-level actions, if the action in the
Grounded Action Frame has a record in
the Action Knowledge, which keeps track
of all the knowledge about various actions, the




Discrete Planner will do planning to find a
sequence of primitive actions to achieve the high-
level action. Then these primitive actions will se-
quentially go through Continuous Planner
and be translated to the trajectories of arm motors.
By following these trajectories, the arm can per-
form the high-level action. For learning new ac-
tions, these modules will calculate state changes
before and after applying the action on the focus
object. Such changes of the state are generalized
and stored as knowledge representation of the new
action.

Response Generator: Currently, the Response
Generator is responsible for language genera-
tion to realize the detail sentence. In our current
investigation, the speech feedback is simple, so we
just used a set of pre-defined templates to do lan-
guage generation. And the parameters in the tem-
plates will be realized during run time.

4 Action Learning through Dialogue

To realize the action learning functionality we
have developed a set of action related processes
including an action knowledge base, action execu-
tion processes and action learning processes. Next
we give detailed explanations.

4.1 Action Modules

Continuous Action Knowledge Base
Environment
Discrete Env
Builder

Action Frame
Action: PickUp
Object: B1
estination: None

High-level action Knowledge
(_Action ) C State

I
|
|
: PickUp(x) G_Close ~ In_G(x) ~
|
|
I

I

I

|

|

On(x,air) |
I
|

I

}’Ianning Problem,

(Initial State:) (Goal State:) ClearTop(x) —>  G_Close " Top_Clr(x)
G_Closen lecceccccccccccccccccacaaaane |
G_Emptyr G_Close® | - |
Top_Clr(B1)A In_G(B1)A I Discrete Planner (STRIPS) |
On(B1,table)r On(B1,air) | _ Primitivc_e ctions |
Out_Grip(B1)A | (:rp:n_Grlp :I:fe_Grlp PM:eToE(x,y) |
Top_Uclr(G1)A e e |
On(G1,table)A... | |
AOut_Grip(R2) | |
| |
Robot Arm |s=eeeccccccccdeccccccccncaan |

|

Continuous Planner

|
Control commands |
N«(to different motors] | i locoe| Lo ﬂ |

Figure 4: Execution example for “Pick up the blue
block”.

As shown in Figure 4, the action knowledge
base is a three-level structure, which consists of
High-level action Knowledge, Discrete Planner
and Continuous Planner.
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4.1.1 Continuous Planner

This lowest level planner defines three primitive
actions: open (i.e., open gripper), close (i.e., close
gripper) and move (i.e., move to the destination).
Each primitive action is defined as a trajectory
computing function, implemented as inverse kine-
matics. The outputs of these functions are control
commands sendt to each arm motor to keep the
arm following the trajectory.

4.1.2 Discrete Planner

The Discrete Planner is used to decompose a
high-level action into a sequence of primitive ac-
tions. In our system, it is implemented as a
STRIPS (Fikes and Nilsson, 1971) planner, which
is defined as a quadruple (P, O, I, G):

e P: Set of predicates describing a domain.

e (O: Set of operators. Each is specified by a set
of preconditions and effects. An operator is
applicable only when its preconditions could
be entailed in a state.

o [: Initial state, the starting point of a problem.

e G: Goal state, which should be achieved if the
problem is solved.

In our system, O set includes Open_Gripper,
Close_Gripper and 8 different kinds of
MoveTo (She et al., 2014). And the P set
consists of two dimensions of the environment:

o Arm States: G_Open/Close (i.e., whether the
gripper is open or closed), G_Full/Empty
(i.e., whether the gripper has an object in it)
and G_At(x) (i.e, location of the arm).

e Object States: Top_Uclr/Clr(o) (i.e., whether
the block o has another block on its top),
In/Out_G(o) (i.e., whether o is within the
gripper fingers or not) and On(o,x) (i.e., 0 is
supported by x).

The I and G are captured real-time during the
dialogue interaction.

4.1.3 High-level action Knowledge

The high-level actions represent actions specified
by the human partner. They are modeled as de-
sired goal states rather than the action sequence
taught by human. For example, the “Stack(x,y)”
could be represented as “On(x,y)AG_Open”. 1f the
human specifies a high-level action out of the ac-
tion knowledge base, the dialogue manager will
verbally request for instructions to learn the action.
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Figure 5: Learning process illustration. After hearing the stack action, the robot cannot perform. So the
human gives step by step instruction. When the instruction is completed, new knowledge of Grab(x) and
Stack(x,y) are learned in the high-level action knowledge base as the combination of the goal state of the
robotic arm and the changes of the state for the involved objects.

4.2 Action Execution

Given a Grounded Action Frame, it is
firstly checked with the high-level action knowl-
edge base. If the knowledge base has its record
(e.g., the Pickup and ClearTop in Figure 4.), a goal
state describing the action effect will be retrieved.
This goal state, together with the initial state cap-
tured from the current environment, will be sent
to the Discrete Planner. And, through au-
tomated planning, a sequence of primitive actions
will be generated to complete the task, which can
be immediately executed by the arm.

Take the “Pick up” action frame in Figure 4
as an example. By checking the grounded ac-
tion frame with the high-level action knowledge,
a related goal state (i.e., “G_CloseNTop_Clr(BI)
AIn_G(BI)\On(Bl,air)’) can be retrieved. At
the same time, the Discrete Evn Builder
translates the real world environment as a con-
junction of predicates, which serves as the ini-
tial state. Given the combination of initial state
and goal state, the STRIPS planner can search for
a path of primitive actions to solve the problem.
For example, the PickUp(BI) in Figure 4 can be
solved by Open_Grip, MoveTo(Bl), Close_Grip
and MoveTo(air).

The primitive actions are executed by the con-
tinuous planner and control process in the lower
robotic system. For the “open” and “close”, they
are executed by controlling the position of the
gripper fingers. For the “move”, a task-space tra-
jectory is first planned based on the minimum-time
motion planning algorithm to move the robot end-
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effector from the current position to the final posi-
tion. A kinematic controller with redundancy res-
olution (Zhang et al., 2012) is then used to gener-
ate the joint movements for the robot to track the
planned trajectory. Achieving the end of the tra-
jectory indicates the action completion.

4.3 Action Learning

Figure 5 illustrates the system internal process of
acquiring action knowledge from the dialogue in
Figure 1.

At the beginning of the dialogue, the grounded
action frame Stack(BI, R1) captured from the first
human utterance is not in the action knowledge,
so it will be pushed to the top of the unknown ac-
tion stack as a new action waiting to be learned.
The environment state at this point is calculated as
shown in the figure. Then the robot will verbally
request instructions. During the instruction, it’s
possible that another unknown action Grab(B1) is
referred. The same as the Stack action, it will be
pushed to the top of unknown action stack waiting
to be learned.

In the next instruction, the human says “Open
your gripper”. This sentence can be translated as
action frame Open and the goal state “G_Open”
can be retrieved from the action knowledge base.
After executing the action sequence, the grip-
per state will be changed from “G_Close” to
“G_Open”, as shown in Figure 5. In the follow-
ing two instructions, the human says “Move fo the
blue block” and “Close gripper”. Similarly, these
two instructions are translated as action frames
Move(BI) and Close, then are executed accord-



ingly. After executing these two steps, the state of
B1 is changed from “Out_G(B1)” to “In_-G(B1)”.

At this point, the previous unknown action
Grab(Bl1) is achieved, so the human says “Now
you achieve the grab action” as a signal of teach-
ing completion. After acknowledging the teach-
ing completion, the action learning module will
learn the new action representation by combining
the arm state with the state changes of the argu-
ment objects in the unknown action frame. For
example, the argument object of unknown action
Grab(Bl1) is Bl. By comparing the original state
of BI, [(Out_G Bl )\(Top_Clr BI)\(On Bl table)]
with the final state, [(In_G BI)\(Top_Clr B1)\(On
BI table)], Bl is changed from (Out-G Bl) to
(In_.G BI). So, the learning module will gener-
alize such state changes and acquire the knowl-
edge representation of the new action Grab(x) as
G_CloseNIn_G(x).

5 Empirical Studies

The objectives of our empirical studies are two
folds. First, we aim to exam whether the current
representation can support planning algorithms
and execute the learned actions in novel situations.
Second, we aim to evaluate how extra effort from
the human partner through step-by-step instruc-
tions may affect the robot’s learning performance.

5.1 Instruction Effort

Previous work on mediating perceptual differ-
ences between humans and robots have shown that
a high collaborative effort from the robot leads to
better referential grounding (Chai et al., 2014).
Motivated by this previous work, we are inter-
ested in examining how different levels of effort
from human partners may affect the robot’s learn-
ing performance. More specifically, we model two
levels of variations:

e Collaborative Interaction: In this setting, a
human partner provides step-by-step instruc-
tions. At each step, the human will observe
the the robot’s response (i.e., arm movement)
before moving to the next step. For exam-
ple, to teach “stack”, the human would is-
sue “pick up the blue block”, observe the
robot’s movement, then issue “put it on the
red block” and observe the robot movement.
By this fashion, the human makes extra effort
to make sure the robot follows every step cor-
rectly before moving on. The human partner
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can detect potential problems and respond to
immediate feedback from the robot.

Non-Collaborative Interaction: In this set-
ting, the human only provides a one-shot in-
struction. For example, to teach “stack”,
the human first issues a complete instruction
“pick up the blue block and put it on top of
the red block™” and then observes the robot’s
responses. Compared to the collaborative set-
ting, the non-collaborative setting is poten-
tially more efficient.

5.2 Experimental Tasks

Similar to the setup shown in Figure 1, in the
study, we have multiple blocks with different col-
ors and sizes placed on a flat surface, with a
SCHUNK arm positioned on one side of the sur-
face and the human subject seated on the opposite
side. The video stream of the environment is sent
to the vision system (Collet et al., 2011). With the
pre-trained object model of each block, the vision
system could capture blocks’ 3D positions from
each frame. Five human subjects participated in
our experiments 2. During the study, each sub-
ject was informed about the basic actions the robot
can perform (i.e., open gripper, close gripper, and
move to) and was instructed to teach the robot sev-
eral new actions through dialogue. Each subject
would go through the following two phases:

5.2.1 Teaching/Learning Phase

Each subject was asked to teach the following five
new actions under the two strategies (i.e., step-
by-step instructions vs. one-shot instructions):
{Pickup, Grab, Drop, ClearTop, Stack} Each time,
the subject can choose any blocks they think are
useful to teach the action. After finishing teaching
one action (either under step-by-step instructions
or under one-shot instructions), we would survey
the subject whether he/she thinks the teaching is
completed and the corresponding action is suc-
cessfully performed by the robot. We record the
teaching duration and then re-arrange the table top
setting to move to the next action.

For the teaching/learning phase, we use two
metrics for evaluation: 1) Teaching Completion
Rate(R;) which stands for the number of actions
successfully taught and performed by the robot;
2)Teaching Completion Duration (Dy which mea-
sures the amount of time taken to teach an action.

*More human subjects will be recruited to participate in
our studies.



5.2.2 Execution Phase

The goal of learning is to be able to apply the
learned knowledge in novel situations. To evalu-
ate such capability, for each action, we designed
10 additional setups of the environment which
are different from the environment where the ac-
tion was learned. For example, as illustrated in
Figure 6, the human teaches the pick Up action
by instructing the robot how to perform “pick up
the blue block(i.e., BI1)” under the environment
in 6(a). Once the knowledge is acquired about the
action “pick up”, we will test the acquired knowl-
edge in a novel situation by instructing the robot to
execute “pick up the green block(i.e., GI)” in the
environment shown in 6(b).

i

(a) Learning: the human (b) Execution: the human
teaches the robot how to asks the robot to “pick up
“pick up the blue block the green block (i.e., G1)”
(i.e., BI1)” during the learn- after the robot acquires the
ing phase knowledge about “pick up”

Figure 6: Examples of a learning and an execution
setup.

For the execution phase, we also used
two factors to evaluate: 1) Action Sequence
Generation(I?4) which measures how many high-
level actions among the 10 execution scenarios
where the corresponding lower-level action se-
quences are correctly generated; 2) Action Se-
quence Execution(R4.) which measures the num-
ber of high level actions that are correctly executed
based on the lower level action sequences.

5.3 Empirical Results

Our experiments resulted in a total of 50 action
teaching dialogues. Half of these are under the
step-by-step instructions (i.e., collaborative inter-
action) and half are under one-shot instructions
(i.e., non-collaborative). As shown in Figure 7,
5 out of the 50 teaching dialogues were consid-
ered as incomplete by the human subjects and all
of them are from the Non-Collaborative setting.
For each of the 45 successful dialogues, an action
would be learned and acquired. For each of these
acquired actions, we further tested its execution
under 10 different setups.
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Action learning [INALLEN User 2 User 3 User 4 User 5
successfulrate | Non [ Col | Non | Col | Non | Col | Non |Col | Non | Col
Pickup 1 1 1 1 1 1 1 1 0 1
Grab 1 1 1 1 1 1 1 1 1 1
Drop 1 1 1 1 1 1 1 1 0 1
ClearTop | 1 1 1 1 1 1 1 1 1 1
Stack 1 1 0 1 0 1 0 1 1 1
Total 5 5 4 5 4 5 4 5 3 5
Figure 7: The teaching completion result of the

50 teaching dialogues. “1” stands for the dialogue
where the subject considers the teaching/learning
as complete since the robot performs the corre-
sponding action correctly; and “0” indicates a fail-
ure in learning. The total numbers of teaching
completion are listed in the bottom row.

Average Duration of Action Learning
Drop c

Pickup Grab lear Top

Learning Duration/S

Figure 8: The teaching completion duration re-
sults. The durations under the non-collaborative
strategy are smaller than the collaborative strategy
in most cases.

5.3.1 Teaching Performance

The result of teaching completion is shown in Fig-
ure 7. Each subject contributes two columns: the
“Non” stands for the Non-Collaborative strategy
and the “Col” column refers to the Collaborative
strategy. As the table shows, all the 5 uncom-
pleted teaching are from the Non-Collaborative
strategy. In most of these 5 cases, the subjects
thought the actual performed actions were differ-
ent from their expectations. For example, in one of
the “stack” failures, the human one-shot instruc-
tion was “move the blue block to the red block on
the left.”. She thought the arm would put the blue
block on the top of red block, open gripper and
then move away. However, based on the robot’s
knowledge, it just moved the blue block above
the red block and stopped there. So the subject
considered this teaching as incomplete. On the
other hand, in the Collaborative interactions, the
robot’s actual actions could also be different from
the subject’s expectation. But, as the instruction



Non-Col Col

Mon-Col Col Non-Col  Col Non-Col  Col Non-Col  Col

Pick Up Grab Clear Top Stack

Figure 9: Each bar represents the number of suc-
cessfully generated action sequences during test-
ing. The solid portion of each bar represents the
number of successfully executed action sequences.
The number of successfully execution is always
smaller than or equal to the generation. This is be-
cause we are dealing with dynamic environment,
and the inaccurate real-time localization will make
some correct action sequence fail to be executed.

was given step-by-step, the instructors could no-
tice the difference from the immediate feedback
and adjust their follow-up steps, which contributed
to a higher completion rate.

The duration of each teaching task is shown in
Figure 8. Bar heights represent average teaching
duration, the ranges stand for standard error of
the mean (SEM). The 5 actions are represented
by different groups. As shown in the figure, the
teaching duration under the Collaborative strategy
tends to take more time. Because in the Collab-
orative case, the human needs to plan next step
after observing the robot’s response to a previous
step. If an exception happens, a sub-dialogue is
often arranged to do correction. But in the Non-
Collaborative case, the human comes up with an
entire instruction at the beginning, which appears
more efficient.

5.3.2 Execution Performance

Figure 9 illustrates the action sequence generation
and execution results in the execution phase.

As shown in Figure 9, testing results of actions
learned under the Collaborative strategy are higher
than the ones using Non-Collaborative, this is be-
cause teaching under the Collaborative strategy is
more likely to be successful. One exception is the
Clear Top action, which has lower generation rate
under the Col setting. By examining the collected
data, we noticed that our system failed to learn the
knowledge of Clear Top in one of the 5 teaching
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phases using Col setting, although the human sub-
ject labeled it as successful. Another phenomenon
shown in Figure 9 is that the generation results are
always larger than or equal with the correspond-
ing execution results. This is caused by inaccurate
localization and camera calibration, which intro-
duced exceptions during executing the action se-
quence.

6 Conclusion

This paper describes an approach to robot action
learning in a simplified blocks world. The sim-
plifications of the environment and the tasks allow
us to explore connections between symbolic repre-
sentations of natural language and continuous sen-
sorimotor representations of the robot which can
support automated planning for novel situations.
This investigation is only our first step. Many is-
sues have not been addressed. For example, the
world is full of uncertainties. Our current ap-
proach can only either succeed or fail executing
an action based on the acquired knowledge. There
is no approximation or reasoning of the uncertain
states which may affect potential execution. Also,
when the robot fails to execute an action, there is
no explanation why it fails. If the robot can artic-
ulate its internal representations regarding where
the problem occurs, the human can provide better
help or targeted teaching. These are the directions
we will pursue in our future work.
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Abstract

Incrementality as a way of managing the
interactions between a dialogue system
and its users has been shown to have
concrete advantages over the traditional
turn-taking frame. Incremental systems
are more reactive, more human-like, of-
fer a better user experience and allow the
user to correct errors faster, hence avoid-
ing desynchronisations. Several incremen-
tal models have been proposed, however,
their core underlying architecture is dif-
ferent from the classical dialogue systems.
As a result, they have to be implemented
from scratch. In this paper, we propose a
method to transform traditional dialogue
systems into incremental ones. A new
module, called the Scheduler is inserted
between the client and the service so that
from the client’s point of view, the sys-
tem behaves incrementally, even though
the service does not.

1 Introduction

An incremental compiler (Lock, 1965) processes
each instruction irrespectively from the others so
that local modifications of the source code do not
affect the global result. This idea of incrementality
has been adapted to the field of natural language
analysis (Wirén, 1992): instead of feeding mod-
ules with full utterances, the input signal is deliv-
ered and processed chunk by chunk (word by word
for example) and each new piece engenders a new
output hypothesis.

Human beings behave similarly when interact-
ing with each other (Levelt, 1989; Clark, 1996).
They understand each other gradually when they
speak, they can interrupt each other and the lis-
tener is able to predict the end of an utterance be-
fore it is fully pronounced by the speaker (Tanen-
haus et al., 1995; Brown-Schmidt and Hanna,
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2011; DeVault et al., 2011). Reading is also a task
that we perform incrementally (Ilkin and Sturt,
2011).

Traditional dialogue systems' work in a turn-
taking manner. The user pronounces his request
and after a silence is detected, the systems starts
processing the utterance and planning an answer.
Some systems can even allow the user to barge in
on them, however, they do not take the timing of
the interruption into account nor try to link it with
the system’s utterance. On the other hand, incre-
mental dialogue systems process the user’s request
chunk by chunk as the latter is divided in several
incremental units (IU) (Schlangen and Skantze,
2011). They keep a hypothetical user request that
evolves as new IUs arrive as input. The response
to this hypothesis can be used to make live feed-
back to the user using voice or other modalities if
available. As opposed to traditional systems, when
the user interrupts the system, the content and the
timing of its utterance are taken into account (Mat-
suyama et al., 2009; Selfridge et al., 2013) to de-
termine how to act on it. Therefore, incremental
systems have been shown to be more reactive, to
offer a more human-like experience (Edlund et al.,
2008) and to correct errors faster hence achieving
better results in terms of user experience (Skantze
and Schlangen, 2009; Baumann and Schlangen,
2013; El Asri et al., 2014) and task completion
(Matthias, 2008; El Asri et al., 2014).

Many incremental architectures have already
been proposed. Nevertheless, designing systems
based on them requires an implementation from
scratch as they are fundamentally different from
traditional dialogue systems. The objective of this
paper is to propose a method of transforming a tra-
ditional system into an incremental one at minimal
cost. A new module called the Scheduler is in-
serted between the client and the service so that

"We will use the expression traditional dialogue systems
to talk about non incremental ones.

Proceedings of the SIGDIAL 2014 Conference, pages 98—107,
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from the client’s point of view, the system behaves
incrementally, even though the service works in a
traditional way.

Section 2 draws a state-of-the-art concerning in-
cremental dialogue systems. The architecture pro-
posed here and the role of the Scheduler are pre-
sented in Section 3. In Section 4, two implemen-
tations of our method are presented: CFAsST and
DictaNum. Then, a discussion is held in Section
5 before concluding the paper and presenting our
next objectives in Section 6.

2 Related work

Dialogue systems can be split into four groups
according to how they integrate incrementality
in their behaviour. Traditional dialogue systems
(Laroche et al., 2011) form the first category
whereas the second one refers to systems that
propose some incremental strategies among tra-
ditional others (El Asri et al.,, 2014). The ar-
chitecture presented in this paper belongs to the
third group which contains incremental systems
based on a traditional inner behaviour (Hastie et
al., 2013; Selfridge et al., 2012). The fourth cate-
gory contains incremental systems where internal
modules work incrementally (Dohsaka and Shi-
mazu, 1997; Allen et al., 2001; Schlangen and
Skantze, 2011). Figure 1 discussed later provides
a list of the features that are available in each cat-
egory.

Several dialogue strategies have been imple-
mented in NASTIA (El Asri et al., 2014), a dia-
logue system helping the user to find a date and
a time for an appointment with a technician (com-
pleting the work made during the European project
CLASSIC (Laroche and Putois, 2010)). Among
them, List of Availabilities is an incremental strat-
egy where the system enumerates a list of alterna-
tives for the appointment. The user is supposed to
interrupt this enumeration when he hears an op-
tion that is convenient for him. An experiment
showed that List of Availabilities produced better
results than other traditional strategies in terms of
task completion and user satisfaction.

PARLANCE (Hastie et al., 2013) is an exam-
ple of a third category system (it was developed
in the European project PARLANCE). Its archi-
tecture is similar to the traditional ones but it inte-
grates a new module, called MIM (Micro-turn In-
teraction Manager), which decides when the sys-
tem should speak, listen to the user and when it
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should generate back-channels. The closest ap-
proach to the method introduced in this paper is
presented in (Selfridge et al., 2012) : the IIM (In-
cremental Interaction Manager) is an intermediate
module between an incremental ASR and a TTS
on the one hand and the service on the other hand.
Instead of replicating the dialogue context as it is
suggested in this paper, different instances of the
service are run. Moreover, the IIM is introduced as
preliminary work in order to simulate incremen-
tal dialogue whereas in this paper, the Scheduler
approach is fully studied and placed into the con-
text of the current state-of-the-art concerning in-
cremental dialogue. It is also viewed as a new
layer that can be extended later on, into a smart
turn-taking manager.

The architecture proposed in (Dohsaka and Shi-
mazu, 1997) contains eight modules that work in
parallel: the Speech Recognizer, the Response
Analyzer, the Dialogue Controller, the Problem
Solver, the Utterance Planner, the Utterance Con-
troller, the Speech Synthesizer and the Pause Mon-
itor. The user asks the system to solve a problem.
Then, his request is submitted incrementally to the
Speech Recognizer which sends its output text to
the Response Analyzer that figures out concepts to
be sent to the Dialogue Controller. The latter in-
teracts with the Problem Solver and the Utterance
Planner in order to compute a solution that is com-
municated to the user through the Utterance Con-
troller then the Speech Synthesizer. This system
belongs to the fourth category as all its modules
behave incrementally in order to start suggesting
a solution to the user’s problem before it is to-
tally computed. In the same category, (Allen et al.,
2001) proposes another architectures split in three
main modules: the Interpretation Manager, the Be-
havioral Agent and the Generation Manager. The
first module catches the user’s request and broad-
casts it incrementally inside the system. The sec-
ond one manages the system’s action plan and the
third is in charge of the response delivery.

A general and abstract model is introduced in
(Schlangen and Skantze, 2011). A dialogue sys-
tem can be viewed as a chain of modules. Each
module has a Left Buffer (LB) where its inputs are
pushed, an Internal State (IS) and a Right Buffer
(RB) where it makes its outputs available. Data
(audio, text, concepts...) flows through these mod-
ules in the form of Incremental Units (IU). When
an IU is put in the LB of a module, it can be pro-



cessed immediately hence modifying its RB. For
example, every 500 ms, a new IU in the form of
a chunk of audio signal can be put into the LB
of the ASR which can modify its output accord-
ing to what the user said during this time window.
All dialogue systems from the four categories can
be viewed as instances of this general model: we
can now see that a non-incremental system can be
characterised as a special case of an incremental
system, namely one where IUs are always maxi-
mally complete [...] and where all modules update
in one go.

In this paper, we introduce an architecture that
belongs to the third category. In comparison with
the first two categories, these systems behave in-
crementally during the whole dialogue. On the
other hand, they can be built at a lower cost than
the systems from the fourth category.

3 Architecture

Traditional dialogue systems are generally com-
posed of a client on the user’s terminal and a ser-
vice that is deployed on a remote machine. They
work in a turn-taking manner as when the user
speaks, the system waits until the end of his re-
quest before processing it and vice versa (except
for some systems where the user can interrupt the
system). To make such a system incremental, we
suggest inserting a new module between the client
and the service: the Scheduler (this denomination
is taken from (Laroche, 2010)). This new archi-
tecture can be cast as an instance of the general
abstract model of (Schlangen and Skantze, 2011).
The client, the Scheduler and the service are the
three modules that compose the system. The first
two ones are incremental but the last one is not.
We will not use the notions of LB and RB and
will consider that these modules interact with each
other through some channel (network in the case
of our implementation, see Section 4).

3.1 The traditional architecture

In a traditional architecture, the client receives a
stream of data (audio signal, string...). If it is not
the case (a web interface where each button rep-
resents a request for example), it does not make
sense to transform such a system in an incremen-
tal one, so they are out of the scope of this paper.
The end of a request is determined by a condition
EndTurnCond. It can be a long enough silence
(Raux and Eskenazi, 2008; Wlodarczak and Wag-
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ner, 2013) in the case of vocal services or a car-
riage return for text systems. A dialogue turn is
the time interval during which the user sends a re-
quest to the system and gets a response. These
turns will be called 7, T2, ..., T*... and each one
of them can be split into a user furn T*V and a
system turn T*5: TF = T®U TS During the
user turn, a request Reg® is sent and during the
system turn, the corresponding response Resp” is
received. The instant when a condition goes from
false to true will be called its activation time. As
a consequence, TkU ends at the activation time
of EndTurnCond and T** is finished when the
system gives the floor to the user.

The service is made up of three parts: the inter-
nal interface, the internal context and the external
interface. The internal interface manages the inter-
actions between the service and the client. The in-
ternal context handles the way the client’s requests
should be acted on and the external interface is in
charge of the interactions with the external world
(database, remote device...).

3.2 Incrementality integration

The way the client sends the user’s request to the
service should be modified in order to make the
system incremental. A new sending condition is
defined: EndMicroTurnCond and it is less re-
strictive than EndTurnCond (which makes the
latter imply the former). Therefore, the new client
sends requests more frequently than the traditional
one. A user micro-turn is the time interval between
two activation times of EndMicroTurnCond so
the user turn 7%Y can be divided into n*V user
micro-turns uTik’U: ™V = f:kl MTik’U. We
also define the p** sub-turn of the user turn 75V
as: T;“U [ /LTik’U. The union symbol is
used as we concatenate time intervals. In gen-
eral, EndMicroTurnCond can be activated at
a constant frequency or at each new input made
by the user. Moreover, when EndTurnCond is
activated, the Scheduler is informed by the client
thanks to a dedicated signal: signal_ETC. At each
T*5, the user makes a new request but at the
micro-turn ,uTZ-k’S with i < n*U | the complete re-
quest is not available yet. Consequently, a tempo-
rary request which we will call sub-request (Reqf)
is sent. Sending the whole request from the begin-
ning of the turn at each micro-turn is called restart
incremental processing (Schlangen and Skantze,
2011). Let us notice that if i1 < iz then Reql



is not necessarily a prefix of Reqﬁ“2 (in spoken di-
alogue, a new input in the ASR can modify the
whole or a big part of the output).

The Scheduler is an intermediate module be-
tween the client and the service whose aim is to
make the combination {Scheduler + Service} be-
have incrementally from the client’s point of view.
We define Service ReqC'ond as the condition con-
straining the Scheduler to send a request to the sys-
tem or not. At each user micro-turn MTik’S, it re-
ceives a sub-request Reqf . If ServiceReqCond
is true, the latter is sent to the system and the
corresponding response Respf is stored so that
the client can ask for it later. For example,
ServiceReqCond can be constantly true which
makes the Scheduler send all the sub-requests that
it receives or it can be activated only if the new
sub-request is different from the previous one (if
the client already behaves the same way through
EndMicroTurnCond it is redundant to do so in
ServiceReqCond t00).

The end of a turn is determined by the Sched-
uler. This module decides when to validate the
current sub-request and to no longer wait for new
information to complete it. It engages the di-
alogue in the direction of this hypothesis as it
is considered as the user’s intent. The Sched-
uler is said to commit the sub-request (Schlangen
and Skantze, 2011) (this notion is described in
Section 3.3). We define CommitCond as the
condition for the Scheduler to commit a hy-
pothesis. For example, in the case of a sys-
tem that asks for a 10 digits phone number,
CommitCond = (length(num) == 10) where
length(num) is the number of digits in each sub-
request. Hence, a user turn ends at the activa-
tion time of C'ommitCond and not when a sig-
nal_ETC is received. However, EndTurnCond
implies CommitCond.

The client is made of two threads: the send-
ing thread and the recuperation thread. The first
one is in charge of sending sub-requests at each
micro-turn and the second one gets the last re-
sponse hypothesis available in the Scheduler. The
recuperation thread is activated at the same fre-
quency as micro-turns so that the client is always
up to date. In the case of vocal services, it is the
Scheduler’s task to decide which intermediate re-
sponses should be pronounced by the system and
which ones should be ignored. Therefore, a flag
in the message must be set by this module to de-
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clare whether it has to be outputted or not. When
the recuperation thread gets new messages from
the Scheduler, it decides whether to send it to the
Text-To-Speech module or not based on the value
of this flag.

The service in our architecture is kept un-
changed (apart from some changes at the ap-
plicative level, see Section 4.2). The only func-
tional modification is that the context is dupli-
cated: the simulation context (see Section 3.3) is
added. When a new sub-request is received by
the Scheduler and Service ReqCond is true, an
incomplete request (sub-request) is sent to the ser-
vice. Therefore, the system knows what would be
the response of a sub-request if it has to be com-
mitted. As the service is not incremental and can-
not process the request chunk by chunk, all the in-
crements from the beginning of the turn have to
be sent and that is what justifies the choice of the
restart incremental mode.

The service can also order the Scheduler
to commit.  This behaviour is described in
(Schlangen and Skantze, 2011) where the IUs in
the RB of a module are grounded in the ones in
the LB that generated them. Consequently, when
a module decides to commit to an output IU, all
the IUs that it is grounded in must be committed.
In our architecture, when the service commits to
the result of a request (if it already started deliv-
ering the response to the user for example), this
request has to be committed by the Scheduler.

On the other hand, as we defined the user
micro-turn, we can introduce the system micro-
turn. In traditional systems, the service’s re-
sponse is played by the TTS during the system turn
T*5. In incremental dialogue, this turn can be di-

vided into nf system micro-turns uTik’S: TS =

U?El ,uTik’S. Their duration depends on the way
the service decides to chunk its response (for ex-
ample, every item in an enumeration can be con-
sidered as a chunk). When the user interrupts the
system, the timing of his interruption is given by
the micro-turn during which he reacted. Moreover,
when the user barges in, a new tour is started. Only
vocal systems are concerned with this behaviour as
textual systems cannot be interrupted (the whole
service response is displayed instantly).

3.3 Commit, rollback and double context

The request hypothesis fluctuates as long as new
increments are taken into account. However, at



some point, the system has to take an action that
is based on the last hypothesis and visible by the
user. For example, a response may be sent to the
TTS or a database can be modified. At that point,
the system is said to commit to its last hypothe-
sis which means that it engages the dialogue ac-
cording to its understanding of the request at that
moment. It no longer waits for other incremental
units to complete the request as it can no longer
change it. On the contrary, the system can decide
to forget its last hypothesis and come back to the
state it was in at the moment of the last commit.
This operation is called rollback (both terms are
taken from the database terminology).

Most of the requests sent by the Scheduler to the
service are aimed to know what would the latter
respond if the current hypothesis contains all the
information about the user’s intent. Consequently,
these requests should not modify the current con-
text of the dialogue. We suggest that the service
maintains two contexts: the real context and the
simulation context. The first one plays the same
role as the classical context whereas the second
one is a buffer that can be modified by partial re-
quests.

In our architecture, committing to a hypothesis
will be made by copying the content of the sim-
ulation context (generated by the current request
hypothesis) into the real context. On the opposite,
a rollback is performed by copying the real con-
text into the simulation one, hence going back to
the state the system was in right after the last com-
mit.

Every user micro-turn, the client sends to the
Scheduler the whole user’s sub-request since the
last commit. This incomplete request is then
sent to the service and the answer is stored in
the Scheduler. If during the next micro-turn, the
Scheduler does not ask for a commit but needs to
send a new sub-request instead, a rollback signal is
sent first as the system works in a restart incremen-
tal way (in this paper, rollbacks are only performed
in this case). Figures A.1 and A.2 represent the
way our three modules interact and how the dou-
ble context is handled. In Figure A.1, the con-
ditions EndTurnCond, EndMicroTurnCond,
ServiceReqCond and CommitCond are written
on the left of the streams they generate. On the left
of the figure, the times where the sending thread of
the client is active and inactive are represented and
dashed arrows represent streams that are received
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by the recuperation thread. They are not synchro-
nized with the rest of the streams, even though
they are in this figure (for more clarity). Also, the
commit decision has been taken by the Scheduler
after it received a signal_ETC which is not always
the case.

We call ctat(T*) the real context at the end of
T* (ctzt(TC) being the initial context at the begin-
ning of the dialogue). The context is not modified
during the system turn, hence, we may notice that
ctxt(THY) = ctat(T*). During the commit at the
end of 7%V, the simulated context is copied into
the real context: ctat(T*) = ctat(TF 1 + T:k({/)

4 Implementations

We implemented our method in the case of two
dialogue systems developed at Orange Labs. The
first one is a text service where the client is a web
interface and the second one is a vocal service de-
signed to record numbers. With only a few modifi-
cations, these two systems have been made incre-
mental, showing that our solution is easy to im-
plement, and demonstrating the incremental be-
haviour of the transformed systems, in the limit
of the implemented strategies and according to
the modalities that have been used (text and vocal
modes).

4.1 CFAST: Content Finder AssitanT

CFAsT is an application developed at Orange Labs
and which can be used to generate textual dialogue
systems and whose objective is to help the user
search for some specific content in a database.

The client is a web page with a text-box where
the user can type a request using natural language
(validated by a carriage return or by clicking on
the validate button). This page also contains
buttons representing keywords or content sugges-
tions. In this implementation, the content base
chosen is the list of accepted papers at the NIPS
2013 conference. A list of keywords is maintained
through the interaction. It is initially empty and for
each new request, if new keywords are detected,
they are added to the list. The interaction ends
when the user selects a unique content.

In our implementation?, the client is made of
two screens. The first one contains the same
view as the classical system and the second
one fluctuates incrementally. When the user is
typing a request, the second view is updated

*http://dialogue.orange-labs.fr/CFAsTIncrEng/



each time the space button is hit: it shows
the answer that the service would have given
in case of a carriage return at that moment.
When a request is validated, a commit is per-
formed and the two views are identical. In this
case: EndMicroTurnCond is activated when
the space button is hit (Service ReqCond does
not filtrate any sub-request) and EndTurnCond
is true if a carriage return is detected. In addition,
CommitCond = EndTurnCond.

4.2 DictaNum

The second implementation is a vocal system
called DictaNum and inspired by NUMBERS di-
alogue system (Skantze and Schlangen, 2009). It
asks the user to dictate a number and then gives
a feedback to confirm that it has been well un-
derstood. The client is an HTML web page that
interacts with the Scheduler using AJAX3. It uses
the Google web API for both the ASR and TTS
tasks. Other existing systems ask the user to dic-
tate a number (telephone, credit card...) such as
How may I help you? (Langkilde et al., 1999).
Here is an example of an interaction with the tra-
ditional version of DictaNum:

System: Welcome to the DictaNum service. Please dictate
your number.

User: 01456579 98.

System: The dictated number is: 01 45 67 79 98. Is that
correct?

User: No.

System: Sorry. Let us try again. Please dictate your number.
User: 0145 6579 98.

System: The dictated number is: 01 47 65 79 98. Is that
correct?

No.

System: Sorry. Let us try again. Please dictate your number.
System: The dictated number is: 01 45 65 79 98. Is that
correct?

User:

User: Yes.

System: Thank you for using DictaNum. Bye.

If the user’s request has not been understood
correctly in one shot, he has to dictate it again.
This is not an optimal strategy. DictaNum has
been modified to support chunk by chunk dicta-
tion as in the following example:

3http://dialogue.orange-labs.fr/DictaNumEng/

103

System: Welcome to the DictaNum service. Please dictate
your number.

User: 0145

System: 01 45

User: 6579

System: 67 79

User: No, 6579

System: Sorry, 65 79

User: 98

System: 98

User: ...

System: The dictated number is: 01 45 65 79 98. Is that
correct?

Yes.

System: Thank you for using DictaNum. Bye.

User:

In order to generate feedbacks, the service has
been modified at the applicative level. It maintains
a string that is supposed to contain the complete
number at the end of the interaction. Initially, this
string is empty. When a silence is detected af-
ter a chunk is dictated, the system repeats the lat-
ter as a feedback to the user and concatenates it
at the end of the number string. If the user be-
gins a new chunk with No, the system understands
that it has to correct the last one (starting the next
feedback with Sorry...), otherwise, it keeps it and
moves forward in the dictation. Finally, if after
a feedback a silence is detected with nothing dic-
tated, the system understands that the dictation is
over and makes a general feedback over the whole
number.

These modifications are not enough for the sys-
tem to be used in an incremental way. It is not
optimal for the user to insert silences in his dic-
tation. Of course, he can, but it is not convenient
nor natural. The client has been modified so that it
no longer waits for a silence to send the user’s re-
quest, instead, it sends a partial request every 500
ms (EndMicroTurnCond). The partial request
is sent on a restart incremental mode.

Also, DictaNum can detect silences in a micro-
turn level. We call A, the silence threshold used
to determine the end of a request in the tradi-
tional system and we introduce a new threshold
0, such as 6 < Ag. A silence whose duration is
greater than dg is called micro-silence. The sys-
tem has been modified in order to detect these
shorter silences during the dictation, to commit
(EndTurnCond = CommitCond) and deliver
a feedback right after. Additionally, our system’s



response time is very short, the feedback message
is available before the end of the micro-silence, so
it is fed to the TTS without any delay. If 65 = Ag,
it is more convenient to dictate the number in one
shot. Therefore, moving s between zero and A,
creates a continuum between traditional systems
and incremental ones. One may argue that these
modifications are enough and no incremental be-
haviour is required, but the response delay will be
higher, hence, the user will not wait for any feed-
back and will try to dictate his number in one shot.

If the user manifests a silence that is longer than
Ay right after a feedback, the dictation ends and
a general feedback is made to confirm the whole
number. In our system, silences are determined by
the number micro-turns during which there is no
new input from the ASR but we could have used
the VAD (Voice Activity Detection) (Breslin et al.,
2013).

We set EndMicroTurnCond to be activated
by a 2 Hz clock and at every micro-turn, the
Scheduler checks whether the new request is dif-
ferent from the previous one (Service ReqCond).
If that is the case, a rollback signal is sent followed
by all the digits in the current number fragment.
When a micro-silence is detected, a string silence
is sent to the Scheduler (as signal_ETC) and that is
when the Scheduler decides to commit. The recu-
peration thread requests the last message from the
service with the same frequency as micro-turns, so
when CommitCond is activated, the feedback is
already available and is delivered instantly to the
TTS.

Finally, it is also possible for the user to in-
terrupt the system during the final feedback. To
do so, the service sends a feedback message in
the following format: The dictated number is: 01
<sep> 45 <sep> 65 <sep> 79 <sep> 98. Is that
correct?. The <sep> is a separator that is used to
delimit the system micro-turns ,uTik’S. They are
pronounced one after another by the TTS. As a re-
sult, a dictation may end like this:

System: The dictated number is: 01 45 67 ...

User: No, 65.

System: Sorry. The dictated number is: 01 45 65 79 98. Is
that correct?

User: Yes.

System: Thank you for using DictaNum. Bye.

After the interruption, a message sent to the ser-
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vice under the following format: {part of the re-
quest that has been pronounced so far | barge-in
content}. In our example, this message is {The
dictated number is: 01 45 67 | No, 65} which
makes the service know how to perform the cor-
rection (or not, if the interruption is just a confir-
mation for example).

5 Discussion

Incremental dialogue systems present new fea-
tures compared to traditional ones. In this section,
we analyse the abilities of these systems given the
way they integrate incrementality. To do so, we
classify them as suggested in Section 2. Figure
1 summarizes the features discussed. These fea-
tures are specific to incremental dialogue systems,
so they do not exist in the first category. On the
contrary, they have all been implemented in sys-
tems from the fourth category.

To interact with the NASTIA service, the user
has to call a vocal platform which handles the ASR
and TTS tasks. It has been configured in order to
interrupt the TTS when activity is detected in the
ASR. When using the List of Availabilities strat-
egy, each item during an enumeration is a dialogue
turn where the timeout duration is set to a low
value (time to declare that the user did not answer)
so that if he does not barge-in, the system moves to
the next item of the list. If the user speaks, the TTS
is stopped by the vocal platform and the user’s ut-
terance and its timing are communicated to the ser-
vice. The latter can ignore the barge-in (if the user
says No for example) or select an item in the list
according to this input. Some traditional systems
allow the user to interrupt them but they do not
take the content of the utterance into account nor
its timing (in order to make the link with the utter-
ance of the TTS). Hence, these two features can be
implemented in a dialogue system provided that
it is permanently listening to the user and that it
catches his utterance and its timing. These condi-
tions are true for systems from the third category
which make it possible for them to integrate these
features.

Incremental dialogue systems can sometimes
detect desynchronisations before the user has fin-
ished his utterance. Therefore, the dialogue would
take less time if the system can interrupt the user
asking him to repeat his request. Feedbacks are
also a form of interrupt as it is the case for Dic-
taNum because they are uttered after a short si-



Features Category 1 | Category 2 | Category 3 | Category 4
TTS interruption after input analysis - + + +
Link interruption time with TTS - + + +
User interruption by the system - - + +
Better reactivity - - + +
Optimal processing cost - - - +

Figure 1: Available features for dialogue systems given the way they integrate incrementality

lence (micro-silence). These features can only be
implemented in systems from the third and the
fourth group, as for the the first two ones, the sys-
tem is only requested at the end of a user’s utter-
ance.

As far as reactivity is concerned, systems from
the third and the fourth category process the user’s
request every time that a new increment is pushed
into the system. Therefore, when the end of the
request is detected (long enough silence), the ser-
vice’s response is already ready and can be de-
livered immediately. On the other hand, systems
from group 1 and 2 wait until the end of the user’s
utterance to send the request to the service, hence,
being less reactive. However, systems from the
third group work on a restart incremental, repro-
cessing the whole request at each new increment.
On the contrary, systems from the fourth cate-
gory can process the request increment by incre-
ment hence optimizing the processing cost. Some-
times, a new increment can modify the whole re-
quest (or a part of it) and those systems are de-
signed to handle this too by canceling some pre-
vious processing (revoke mechanism (Schlangen
and Skantze, 2011)). While integrating incremen-
tality in CFAsT and DictaNum, we noticed that
the system responded so quickly that no efforts are
necessary to optimise the processing time. How-
ever, systems from the fourth group can make the
difference if the system needs to process tasks that
create a delay (slow access to a remote database
for example).

In our method, the service is not modified in a
functional level (except from the double context
management). However, as it is the case for Dic-
taNum, some modifications at the applicative level
might be compulsory. The Scheduler is not sup-
posed to generate messages by himself or to per-
form traditional dialogue management tasks. As
a consequence, when one needs to add some new
feedback messages at the micro-turn level or the
possibility to correct an utterance, these features
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must be implemented in the service.

Finally, in order for the Scheduler to decide
when to commit and when to take the floor in
an optimal way, it might need information com-
ing from the back-end modules. Once again, this
should be handled in the applicative level. A fu-
ture paper, focused on how to implement systems
using the Scheduler, will cover the ideas briefly
described in the last two paragraphs.

6 Conclusion and future work

This paper describes a method for transforming
a traditional dialogue system into an incremen-
tal one. The Scheduler is an intermediate mod-
ule that is inserted between the client and the ser-
vice. From the client’s point of view, the system’s
behaviour is incremental despite the fact that the
service works in a traditional turn-taking manner.
Most requests that are sent by the Scheduler to the
service are aimed to see what would be the answer
if the current request hypothesis is the final one.
In this case, the service’s context should not be
modified. Therefore, two context have to be main-
tained: the real context and the simulated one.

This solution has been implemented in the case
of a textual dialogue system generated by the
CFAST application. It helps the user navigate
through the NIPS 2013 proceedings titles. It has
also been used to make a vocal system incremen-
tal: DictaNum. This service asks the users to dic-
tate a number and confirms that it has been well
understood.

In the future, we will explore how to make the
Scheduler learn when to commit the current re-
quest hypothesis and when to take the floor. We
will use reinforcement learning to figure out the
optimal strategies.
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Abstract

This paper presents an extension of
the Kaldi automatic speech recognition
toolkit to support on-line recognition.
The resulting recogniser supports acous-
tic models trained using state-of-the-
art acoustic modelling techniques. As
the recogniser produces word posterior lat-
tices, it is particularly useful in statisti-
cal dialogue systems, which try to ex-
ploit uncertainty in the recogniser’s out-
put. Our experiments show that the on-
line recogniser performs significantly bet-
ter in terms of latency when compared to
a cloud-based recogniser.

1 Introduction

There are many choices of speech recognisers, but
we find no alternative with both a permissive li-
cense and on-line recognition suitable for a spo-
ken dialogue system. The Google speech recog-
nition service! provides state-of-the-art quality for
many tasks (Morbini et al., 2013) and may be used
for free; however, the licensing conditions are not
clear, adaptation of acoustic and language models
to a task at hand is not possible and the service is
not officially supported.

Another option is Nuance cloud based recogni-
tion?; however, again adjustments to the system
are not possible. Moreover, it is a paid service.

When considering local ASR systems, we
found no viable alternatives either. The HTK
toolkit does not provide on-line large vocabulary
decoders suitable for real-time decoding. Open-
Julius can be used with custom-built acoustic and

'"The API is available at nteps://wew.google.
com/speech-api/vl/recognize, and its use described
in a blog post at nttp://mikepultz.com/2013/07/

google-speech-api-full-duplex-php-version/.
2 .
http://www.nuancemobiledeveloper.com/
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language models and for on-line decoding (Aki-
nobu, 2014). However, OpenlJulius suffers from
software instability when producing lattices and
confusion networks; therefore, it is not suitable
for practical use. The RWTH decoder is not a free
software and a license must be purchased for com-
mercial applications (Rybach et al., 2011).

As a result, we implemented a lightweight
modification of the LatticeFasterDecoder from
the Kaldi toolkit and created an on-line recogniser
with an interface that is suitable for statistical dia-
logue systems. The Kaldi toolkit as well as the on-
line recogniser is distributed under the Apache
2.0 license’. Our on-line recogniser may use
acoustic models trained using the state-of-the-art
techniques, such as Linear Discriminant Analysis
(LDA), Maximum Likelihood Linear Transform
(MLLT), Boosted Maximum Mutual Information
(BMMI), Minimum Phone Error (MPE). It pro-
duces word posterior lattices which can be easily
converted into high quality n-best lists. The recog-
niser’s speed and latency can be effectively con-
trolled off-line by optimising a language model
and during decoding by beam thresholds.

In the next section, the Kaldi recognition
toolkit is briefly described. Section 3 describes
the implementation of the OnlineLatgenRecog-
niser. Section 4 evaluates the accuracy and speed
of the recogniser. Finally, Section 5 concludes this
work.

2 The Kaldi toolkit

The Kaldi toolkit* is a speech recognition toolkit
distributed under a free license (Povey et al.,
2011). The toolkit is based on Finite State Trans-
ducers, implements state-of-the-art acoustic mod-
elling techniques, is computationally efficient, and
is already widely adapted among research groups.

‘http://www.apache.org/licenses/
LICENSE-2.0
*http://sourceforge.net/projects/kaldi
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Its only major drawback was the lack of on-line
recognition support. Therefore, it could not be
used directly in applications such as spoken dia-
logue systems. Kaldi includes an on-line recogni-
tion application; however, hard-wired timeout ex-
ceptions, audio source fixed to a sound card, and a
specialised 1-best decoder limit its use to demon-
stration of Kaldi recognition capabilities only.

3 OnlineLatgenRecogniser

The standard Kaldi interface between the compo-
nents of the toolkit is based on a batch process-
ing paradigm, where the components assume that
the whole audio signal is available when recog-
nition starts. However, when performing on-line
recognition, one would like to take advantage of
the fact that the signal appears in small chunks and
can be processed incrementally. When properly
implemented, this significantly reduces recogniser
output latency.

3.1 C++ implementation

To achieve this, we implemented Kaldi’s Decod-
ablelnterface supporting incremental speech pre-
processing, which includes speech parameterisa-
tion, feature transformations, and likelihood esti-
mation. In addition, we subclassed LatticeFaster-
Decoder and split the original batch processing in-
terface.

The newly implemented OnlineLatgenRecog-
niser makes use of our incremental speech pre-
processing and modified LatticeFasterDecoder. It
implements the following interface:

e Audioln — queueing new audio for pre-
processing,

e Decode — decoding a fixed number of audio
frames,

e PruneFinal — preparing internal data struc-
tures for lattice extraction,

o GetLattice — extracting a word posterior lat-
tice and returning log likelihood of processed
audio,

® Reset — preparing the recogniser for a new ut-
terance,

The C++ example in Listing 1 shows a typi-
cal use of the OnlineLatgenRecogniser interface.
When audio data becomes available, it is queued

into the recogniser’s buffer (line 11) and imme-
diately decoded (lines 12-14). If the audio data
is supplied in small enough chunks, the decod-
ing of queued data is finished before new data ar-
rives. When the recognition is finished, the recog-
niser prepares for lattice extraction (line 16). Line
20 shows how to obtain word posterior lattice as
an OpenFST object. The getAudio() function rep-
resents a separate process supplying speech data.
Please note that the recogniser’s latency is mainly
determined by the time spent in the GetLattice
function.

Please note that we do not present here the func-
tions controlling the input stream of audio chunks
passed to the decoder and processing the output
because these differ according to use case. An
example of a nontrivial use case is in a dialogue
system through a thin Python wrapper (see Sec-
tion 3.2).

OnlinelLatgenRecogniser rec;

1

2 rec.Setup(...);

3

4 size_t decoded_now = 0;

5 size_t max_decoded = 10;

6 char raudio_array = NULL;

7

8 |while (recognitionOn())

9 |1

10 size_t audio_len = getAudio (audio_array);
11 rec.AudiolIn (audio_array, audio_len);

12 do {

13 decoded_now = rec.Decode (max_decoded) ;
14 } while (decoded_now > 0);

15 }
16 | rec.PruneFinal();

18 | double tot_lik;
19 | fst::VectorFst<fst::LogArc> word_post_lat;
20 rec.GetLattice (&word_post_lat, s&tot_1lik);

22 rec.Reset () ;

Listing 1: Example of the decoder API

The source code of the OnlineLatgenRecog-
niser is available in Kaldi repository".

3.2 Python extension

In addition, we developed a Python extension ex-
porting the OnlineLatgenRecogniser C++ inter-
face. This can be used as an example of bringing
Kaldi’s on-line speech recognition functionality to
higher-level programming languages. This Python
extension is used in the Alex Dialogue Systems
Framework (ADSF, 2014), an open-source lan-
guage and domain independent framework for
developing spoken dialogue systems. The On-
lineLatgenRecogniser is deployed in an appli-
cation which provides information about public

Shttps://sourceforge.net/p/kaldi/code/
HEAD/tree/sandbox/oplatek2/src/dec—wrap/
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transport and weather in the Czech republic and is
available on a public toll-free telephone number.

4 Evaluation

4.1 Acoustic and language model training

The OnlineLatgenRecogniser is evaluated on
a corpus of audio data from the Public Transport
Information (PTT) domain. In PTI, users can inter-
act in Czech with a telephone-based dialogue sys-
tem to find public transport connections (UFAL-
DSG, 2014). The PTI corpus consist of approx-
imately 12k user utterances with a length vary-
ing between 0.4 s and 18 s with median around
3 s. The data were divided into training, develop-
ment, and test data where the corresponding data
sizes were 9496, 1188, 1188 respectively. For
evaluation, a domain specific the class-based lan-
guage model with a vocabulary size of approxi-
mately 52k and 559k n-grams was estimated from
the training data. Named entities e.g., cities or bus
stops, in class-based language model are expanded
before building a decoding graph.

Since the PTI acoustic data amounts to less then
5 hours, the acoustic training data was extended
by an additional 15 hours of telephone out-of-
domain data from the VYSTADIAL 2013 - Czech
corpus (Korvas et al., 2014). The acoustic mod-
els were obtained by BMMI discriminative train-
ing with LDA and MLLT feature transformations.
The scripts used to train the acoustic models are
publicly available in ASDF (2014) as well as in
Kaldi® and a detailed description of the training
procedure is given in Korvas et al. (2014).

4.2 Experiments

We focus on evaluating the speed of the On-
lineLatgenRecogniser and its relationship with the
accuracy of the decoder, namely:

e Real Time Factor (RTF) of decoding — the ra-
tio of the recognition time to the duration of
the audio input,

e Latency — the delay between utterance end
and the availability of the recognition results,

e Word Error Rate (WER).

Accuracy and speed of the OnlineLatgenRecog-
niser are controlled by the max-active-states,

*http://sourceforge.net/p/kaldi/code/
HEAD/tree/trunk/egs/vystadial_en/
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beam, and lattice-beam parameters (Povey et al.,
2011). Max-active-states limits the maximum
number of active tokens during decoding. Beam is
used during graph search to prune ASR hypothe-
ses at the state level. Lattice-beam is used when
producing word level lattices after the decoding is
finished. It is crucial to tune these parameters op-
timally to obtain good results.

In general, one aims for a setting RTF smaller
than 1.0. However, in practice, it is useful if
the RTF is even smaller because other processes
running on the machine can influence the amount
of available computational resources. Therefore,
we target the RTF of 0.6 in our setup.

We used grid search on the development set to
identify optimal parameters. Figure 1 (a) shows
the impact of the beam on the WER and RTF
measures. In this case, we set max-active-states
to 2000 in order to limit the worst case RTF to
0.6. Observing Figure 1 (a), we set beam to 13
as this setting balances the WER, 95th RTF per-
centile, and the average RTF. Figure 1 (b) shows
the impact of the lattice-beam on WER and la-
tency when beam is fixed to 13. We set lattice-
beam to 5 based on Figure 1 (b) to obtain the 95th
latency percentile of 200 ms, which is consid-
ered natural in a dialogue (Skantze and Schlangen,
2009). Lattice-beam does not affect WER, but
larger lattice-beam improves the oracle WER of
generated lattices (Povey et al., 2012).

Figure 2 shows the percentile graph of the RTF
and latency measures over the development set.
For example, the 95th percentile is the value of
a measure such that 95% of the data has the mea-
sure below that value. One can see from Fig-
ure 2 that 95% of development utterances is de-
coded with RTF under 0.6 and latency under 200
ms. The extreme values are typically caused by
decoding long noisy utterances where uncertainty
in decoding slows down the recogniser. Using this
setting, OnlineLatgenRecogniser decodes the ut-
terances with a WER of about 21%.

Please note that OnlineLatgenRecogniser only
extends the batch Kaldi decoder for incremental
speech processing interface. It uses the same code
as the batch Kaldi decoder to compute speech
parametrisation, frame likelihoods, and state-level
lattices. Therefore, the accuracy of OnlineLatgen-
Recogniser is equal to that of the batch Kaldi de-
coder given the same parameters.
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In addition, we have also experimented with
Google ASR service on the same domain.
The Google ASR service decodes 95% of test ut-
terances with latency under 1900 ms and WER is
about 48%. The high latency is presumably caused
by the batch processing of audio data and net-
work latency, and the high WER is likely caused
by a mismatch between Google’s acoustic and lan-
guage models and the test data.

5 Conclusion

This work presented the OnlineLatgenRecogniser,
an extension of the Kaldi automatic speech recog-
nition toolkit. The OnlineLatgenRecogniser is dis-
tributed under the Apache 2.0 license, and there-
fore it is freely available for both research and
commercial applications. The recogniser and its
Python extension is stable and intensively used
in a publicly available spoken dialogue system
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of utterances were decoded with the latency

(UFAL-DSG, 2014). Thanks to the use of a stan-
dard Kaldi lattice decoder, the recogniser produces
high quality word posterior lattices. The training
scripts for the acoustic model and the OnlineLat-
genRecogniser code are currently being integrated
in the Kaldi toolkit. Future planned improvements
include implementing more sophisticated speech
parameterisation interface and feature transforma-
tions.
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Abstract

Unsupervised machine learning ap-
proaches hold great promise for recog-
nizing dialogue acts, but the performance
of these models tends to be much lower
than the accuracies reached by supervised
models. However, some dialogues, such
as task-oriented dialogues with parallel
task streams, hold rich information that
has not yet been leveraged within unsu-
pervised dialogue act models. This paper
investigates incorporating task features
into an unsupervised dialogue act model
trained on a corpus of human tutoring in
introductory computer science. Exper-
imental results show that incorporating
task features and dialogue history fea-
tures significantly improve unsupervised
dialogue act classification, particularly
within a hierarchical framework that gives
prominence to dialogue history.  This
work constitutes a step toward building
high-performing unsupervised dialogue
act models that will be used in the next
generation of task-oriented dialogue
systems.

1 Introduction

Dialogue acts represent the underlying intent of ut-
terances (Austin, 1975; Searle, 1969), and consti-
tute a crucial level of representation for dialogue
systems (Sridhar et al., 2009). The task of auto-
matic dialogue act classification has been exten-
sively studied for decades within several domains
including train fares and timetables (Allen et al.,
1995; Core and Allen, 1997; Crook et al., 2009;
Traum, 1999), virtual personal assistants (Chen
and Di Eugenio, 2013), conversational telephone
speech (Stolcke et al., 2000), Wikipedia talk pages
(Ferschke et al., 2012) and as in the case of this
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paper, tutorial dialogue (Serafin and Di Eugenio,
2004; Forbes-Riley and Litman, 2005; Boyer et
al., 2011; Dzikovska et al., 2013).

Most of the prior work on dialogue act classi-
fication has depended on manually applying dia-
logue act tags and then leveraging supervised ma-
chine learning (Di Eugenio et al., 2010; Keizer
et al., 2002; Reithinger and Klesen, 1997; Ser-
afin and Di Eugenio, 2004). This process involves
engineering a dialogue act taxonomy (or using an
existing one, though domain-specific phenomena
can be difficult to capture within multi-purpose di-
alogue act taxonomies) and manually annotating
each utterance in the corpus. Then, the tagged
utterances are provided to a supervised machine
learner. This supervised approach can achieve
strong performance, in excess of 75% accuracy
on manual tags, approaching the agreement level
that is sometimes observed between human anno-
tators (Sridhar et al., 2009; Serafin and Di Euge-
nio, 2004; Chen and Di Eugenio, 2013).

However, the supervised approach has several
major drawbacks, including the fact that hand-
crafting dialogue act tagsets and applying them
manually tend to be bottlenecks within the re-
search and design process. To overcome these
drawbacks, the field has recently seen growing
momentum surrounding unsupervised approaches,
which do not require any manual labels during
model training (Crook et al., 2009; Joty et al.,
2011; Lee et al., 2013). A variety of unsupervised
machine learning techniques have been investi-
gated for dialogue act classification, and each line
of investigation has explored which features best
support this goal. However, to date the best per-
forming unsupervised models achieve in the range
of 40% (Rus et al., 2012) to 60% (Joty et al., 2011)
training set accuracy on manual tags, substantially
lower than the mid-70% accuracy (Sridhar et al.,
2009) often achieved on testing sets with super-
vised models.

Proceedings of the SIGDIAL 2014 Conference, pages 113-122,
Philadelphia, U.S.A., 18-20 June 2014. (©2014 Association for Computational Linguistics



In order to close this performance gap between
unsupervised and supervised techniques, we sug-
gest that it is crucial to enrich the features available
to unsupervised models. In particular, when a di-
alogue is task-oriented and includes a rich source
of information within a parallel task stream, these
features may substantially boost the ability of an
unsupervised model to distinguish dialogue acts.
For example, in situated dialogue, features rep-
resenting the state of the physical world may
be highly influential for dialogue act modeling
(Grosz and Sidner, 1986).

Human tutorial dialogue, which is the domain
being considered in the current work, often ex-
hibits this structure: the task artifact is external to
the dialogue utterances themselves (in the case of
our work, this artifact is a computer program that
the student is constructing). Task features have
already been shown beneficial for supervised di-
alogue act classification in our domain (Ha et al.,
2012). We hypothesize that including these task
features within an unsupervised model will signif-
icantly improve its performance. In addition, we
hypothesize that including dialogue history as a
prominent feature within an unsupervised model
will provide significant improvement.

This paper represents the first investigation into
combining task and dialogue features within an
unsupervised dialogue act classification model.
First, we discuss representation of these task fea-
tures and dialogue structure features, and compare
these representations within both flat and hierar-
chical clustering approaches. Second, we report
on experiments that demonstrate that the inclusion
of task features significantly improves dialogue
act classification, and that a hierarchical cluster
structure which explicitly captures dialogue his-
tory performs best. Finally, we break down the
model’s performance by dialogue act and investi-
gate which features are most beneficial for distin-
guishing particular acts. These contributions con-
stitute a step toward building high-performing un-
supervised dialogue act models that can be used in
the next generation of task-oriented dialogue sys-
tems.

2 Related Work

There is a rich body of work on dialogue act clas-
sification. Supervised approaches for dialogue act
classification aimed at improving performance by
using several features such as dialogue structure

114

including position of the turn (Ferschke et al.,
2012), speaker of an utterance (Tavafi et al., 2013),
previous dialogue acts (Kim et al., 2010), lexical
features such as words (Stolcke et al., 2000), syn-
tactic features including part-of-speech tags (Ban-
galore et al., 2008; Marineau et al., 2000), task-
subtask structure (Boyer et al., 2010) acoustic and
prosodic cues (Sridhar et al., 2009; Jurafsky et al.,
1998), and body posture (Ha et al., 2012).

For the growing body of work in unsupervised
dialogue act classification a subset of these fea-
tures have been utilized. The words (Crook et
al., 2009), topic words (Ritter et al., 2010), func-
tion words (Ezen-Can and Boyer, 2013b), begin-
ning portions of utterances (Rus et al., 2012), part-
of-speech tags and dependency trees (Joty et al.,
2011), and state transition probabilities in Markov
models (Lee et al., 2013) are among the list of
features investigated for unsupervised modeling of
dialogue acts. However, the accuracies achieved
by the best of these models are well below the ac-
curacies achieved by supervised techniques. To
improve performance of unsupervised models for
task-oriented dialogue, utilizing a combination of
task and dialogue features is a promising direction.

3 Corpus

The task-oriented dialogue corpus used in this
work was collected in a computer-mediated hu-
man tutorial dialogue study. Students (n
42) and tutors interacted through textual dialogue
within an online learning environment for intro-
ductory Java programming (Ha et al., 2012). The
students were novices, never having programmed
in Java previously. The tutorial dialogue inter-
face consisted of four windows, one describing the
learning task, another where students wrote pro-
gramming code, beneath that the output of either
compiling or executing the program, and finally
the textual dialogue window (Figure 1).

As students and tutors interacted through this
interface, all dialogue messages and keystroke-
level task events were logged to a database. Only
students could compose, compile, and execute the
code, so task actions represent student actions
while dialogue messages were composed by both
participants. The corpus contains six lessons for
each student-tutor pair, of which only the first les-
son was annotated with dialogue act tags (x=0.80).

This annotated set contains 5,705 utterances
(4,065 tutor and 1,640 student). The average num-
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TASK
ASSIGNMENT

- (00:13:16)
Let's say that teh player chose 1 first | |

(00:13:36)
They stil either choose 3 or 4 in the
second choice

Restore Code from Latest Compile

oooooooooo -]+

Student Dialogue Act | Distribution

Answer (A) 39.85
Acknowledgement (ACK) 21.31
Statement (S) 21.20
Question (Q) 15.15
Request for Feedback (RF) 0.98
Clarification (C) 0.79
Other (O) 0.61

Table 1: Student dialogue act tags and their fre-
quencies.

Figure 1: The tutorial dialogue interface with four
windows.

ber of utterances (both tutor and student) per tutor-
ing session was 116 (min = 70, max = 211). The
average number of tutor utterances per session is
96 (min=44, max=156) whereas for students it is
39 (min=18, max=69) for the annotated set. The
average number of words per utterance for stu-
dents is 4.4 and for tutors it is 5.4. This annotated
set is used in the current analysis for both training
and testing where cross-validation is applied. As
described later, a separate set containing 462 un-
annotated utterances is used as a development set
for determining the number of clusters.

The dialogue stream of this corpus was manu-
ally annotated as part of previous work on super-
vised dialogue act modeling which achieved 69%
accuracy with Conditional Random Fields (Ha et
al., 2012). A brief description of the student di-
alogue act tags, which are the focus of the mod-
els reported in this paper, is shown in Table 1.
The most frequent dialogue act (A) constitutes the
baseline chance (39.85%). In the current work, the
manually applied dialogue act labels are not uti-
lized during model training, but are only used for
evaluation purposes as our models’ accuracies are
reported for manual tags on a held-out test set.

An excerpt from the corpus is shown in Table 2.
Note that the current work focuses on classifying
student dialogue act tags, since in an automated di-
alogue system the tutor moves would be generated
by the system and their dialogue acts tags would
therefore be known.

4 Features

A key issue for dialogue act classification in task-
oriented dialogue involves how to represent dia-
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Tutor: ready? [Q]
Student: yep [A]
Tutor moves on to next task
Student: cool [S]
Student compiles and runs the code.
Program output: ‘Hello World’
Tutor: excellent [PF]
Tutor: add a space to make the output look
prettier [DIR]
Student. why doesnt it stop on the next line
in this case? [Q]
Program halts
Tutor: it did [A]
Student runs the program successfully.
Tutor: good. [PF]

Table 2: Excerpt of dialogue from the corpus and
the task action that follows utterances.

logue and task events. This section describes how
features were extracted from the corpus of human
tutorial dialogue.

We use three sets of features: lexical features,
dialogue context features, and task features. The
lexical and dialogue context features are extracted
from the textual dialogue utterances within the
corpus. The task features are extracted from the
interaction traces within the computer-mediated
learning environment and represent a keystroke-
level log of events as students worked toward solv-
ing the computer programming problems.

4.1 Lexical Features

Because one of the main goals of our work in the
longer term is to perform automatic dialogue act
classification in real time, we took as a primary
consideration the ability to quickly extract lexical
features. The features utilized in the current in-
vestigation consist only of word unigrams. In ad-



dition to their ease of extraction, our prior work
has shown that addition of part-of-speech tags and
and syntax features did not significantly improve
the accuracy of supervised dialogue act classifiers
in this domain (Boyer et al., 2010), and these fea-
tures can be time-consuming to extract in real time
(Haet al., 2012).

The choice to use word unigrams rather than
higher order n-grams is further facilitated by the
fact that our clustering technique leverages the
longest common sub-sequence (LCS) metric to
measure distances between utterances. This met-
ric counts shared sub-sequences of not-necessarily
contiguous words (Hirschberg, 1975). In this way,
the LCS metric provides a flexible way for n-
grams and skip-n-grams to be treated as impor-
tant units within the clustering, while the raw fea-
tures themselves consist only of word unigrams.
(We report on a comparison between LCS and bi-
grams later in the discussion section.) Ultilizing
LCS, there exists a distance (1-similarity) value
from each utterance to every other utterance.

4.2 Dialogue Context Features

Based on previous work on a similar human tuto-
rial dialogue corpus (Ha et al., 2012), we utilize
four features that provide information about the di-
alogue structure. These features are depicted in
Table 3. Note that our goal within this work is to
classify student dialogue moves, not tutor moves,
because in a dialogue system the tutor’s moves are
system-generated with associated known dialogue
acts.

Feature Description
The relative position of an
Utterance o
.. utterance from the beginning of
position .
the dialogue.
The number of tokens in the
Utterance . .
utterance, including words and
length .
punctuation.
. Author of the previous dialogue
Previous
message (tutor or student) at the
author .
time message sent.
Previous . .
Dialogue act of the previous
tutor
. tutor utterance.
dialogue act

Table 3: Dialogue context features and their de-
scriptions.
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4.3 Task Features

As described previously, the corpus contains two
channels of information: the dialogue utterances,
from which the lexical and dialogue context fea-
tures were extracted, and in addition, the task
stream consisting of student problem-solving ac-
tivities such as authoring code, compiling, and ex-
ecuting the program. The programming activities
of students were logged to a database along with
all of the dialogue events during tutoring.

A set of task features was found to be impor-
tant for dialogue act classification in this domain
in prior work, including most recent programming
action, status of the most recent task activity and
task activity flag representing whether the utter-
ance was preceded by a student’s task activity (Ha
et al.,, 2012). We expand this set of features as
shown in Table 4.

5 Experiments

The goal of this work is to investigate the im-
pact of including task and dialogue context fea-
tures on unsupervised dialogue act models. We
hypothesize that incorporating task features will
significantly improve the performance of an un-
supervised model, and we also hypothesize that
properly incorporating dialogue context features,
which are at a different granularity than the lex-
ical features extracted from utterances, will sub-
stantially improve model accuracy.

5.1 Dialogue Act Modeling With k-medoids
Clustering

The unsupervised models investigated here use k-
medoids clustering, which is a well-known clus-
tering technique that takes actual data points as
the center of each cluster (Ng and Han, 1994),
in contrast to k-means which may have synthetic
points as centroids. In k-medoids, the centroids
are initially selected and then the algorithm iter-
ates, reassigning data points in each iteration, un-
til the clusters converge. In standard k-medoids
clustering the initial seeds are selected randomly
and then a correct distribution of data points is
identified through the iteration and convergence
process. For dialogue act classification, the in-
fluence of the initial seeds is substantial because
the frequencies across dialogue tags are typically
unbalanced. To overcome this challenge, we use
a greedy seed selection approach similar to the
one used in k-means+-+ (Arthur and Vassilvitskii,



Feature Description

Most recent action of the
student (composing a dialogue
utterance, constructing code,
compiling or executing code).

prev_action

Whether the student utterance is

task_begin the first utterance since the
beginning of the subtask.
Whether the student utterance
task_stu

was preceded by a task event.

Task activity flag indicating
whether the closest tutor
utterance in this subtask was
preceded by a task activity.

task_prev_tut

The status of the most recent
coding action (begin, stop,
success, error and input_sent).

task_status

Time elapsed between the
previous tutor message and the
current student utterance.

time_elapsed

Number of errors in the

errors
student’s latest code.

Difference in the number of
errors in the task between two
utterances in the same dialogue.

delta_errors

Number of student dialogue
messages sent within the current
task.

stu_#_task

Number of student dialogue
messages sent within the current
dialogue.

stu_#_dial

Number of tutor dialogue
messages sent within the current
subtask.

tut _#_task

Number of tutor dialogue
messages sent within the current
dialogue.

tut #_dial

Table 4: Task features extracted from student com-
puter programming activities.

2007) which selects the first seed randomly and
then greedily chooses seeds that are farthest from
the chosen seeds. The goal of using this approach
in our application is to choose seeds from different
dialogue acts so that the final model achieves good
coverage. Our preliminary experiments demon-
strated that this greedy seed selection combined
with k-medoids outperforms other clustering ap-
proaches including those utilized in our prior work
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(Ezen-Can and Boyer, 2013a).

In order to select the number of clusters k,
a subset of the corpus, constituting 25% of the
full corpus (that were not tagged) composed of
462 utterances, was separated as a development
set. First, we examined the coherence of clus-
ters at different values of k using intra-cluster dis-
tances. This technique involves identifying an ‘el-
bow’ where the decrease in intra-cluster distance
becomes less rapid (since adding more clusters can
continue to decrease intra-cluster distance to the
point of overfitting) (Figure 2). The graph sug-
gests an elbow at k=5. Because there may be mul-
tiple elbows in the intra-cluster distance, a sec-
ond method utilizing Bayesian Information Crite-
rion (BIC) was used which penalizes models as
the number of parameters increases. The lower the
BIC value, the better the model is, achieved at k=5
as well.

Tuning number of clusters on the development set

0.33
0.32
031

03
029
0.28
027
0.26
023

Intra-cluster distance

2 4 6 7 8 0 10 11 12 13 14 15 16 17

Number of clusters

3 3 18 19

Figure 2: Intra-cluster distances with varying
number of clusters.

Unlike many other investigations into unsuper-
vised dialogue act classification, the current ap-
proach reports accuracy on held-out test data, not
on the data on which the model was trained. Even
though the model training process does not utilize
available manual tags, requiring the learned unsu-
pervised model to perform well on held-out test
data more closely mimics the broader goal of our
work which is to utilize these unsupervised mod-
els within deployed dialogue systems, where most
utterances to be classified have never been encoun-
tered by the model before.

The procedure for model training and test-
ing uses leave-one-student-out cross-validation.
Rather than other forms of leave-one-out or strat-
ified cross-validation, leave-one-student-out en-
sures that each student’s set of dialogue utterances
are treated as the testing set while the model is
trained on all other students’ utterances. This
process is repeated until each student’s utterances



have served as a held-out test set (in our case, this
results in n=42 folds). Within each fold, the clus-
ters are learned during training and then for each
utterance in the test set, its closest cluster is com-
puted by taking the average distance of the test ut-
terance to the elements in the cluster. The majority
label of the closest cluster is assigned as the dia-
logue act tag for the test utterance. If the assigned
dialogue act tag matches the manual label of the
test utterance, the utterance is counted as correct
classification. The average accuracy is computed
as the number of correct classifications divided by
the total number of classifications.

5.2 Experimental Results

We conducted experiments with seven different
feature combinations: L, lexical features only,
T, task features only, D, dialogue context fea-
tures only, and then the combinations of these fea-
tares, '+ D, T+ L, D+ L,and T+ D + L.
We hypothesized that the addition of task features
would significantly improve the models’ accuracy.
As shown in Table 5, adding task features to di-
alogue context features significantly outperforms
dialogue context features alone (" + D > D).
Similarly, adding task features to lexical features
provides significant improvement (7" + L > L).
However, adding task features to the dialogue con-
text plus lexical features model does not provide
benefit, and in fact slightly (not significantly) de-
grades performance (T'+ D + L # D + L). As
reflected by the Kappa scores, the test set perfor-
mance attained by these models is hardly better
than would be expected by chance.

Features Accuracy Kappa
(%)

L 33 0.02
= T 37.7 0.07
o) D 37.6 0.07
3 T+D 39.1% 0.07
2 T+L 38 0.06
= D+L 38.3 0.07
T+D+L 37.3 0.05

Table 5: Test set accuracies and Kappa for the flat
clustering model (L: Lexical features, D: Dialogue
context features, T: Task features) *indicates sta-
tistically significant compared to the similar model
without task features (p < 0.05).
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5.3 Utilizing Dialogue History

The importance of dialogue history, particularly
the influence of the most recent turn on an upcom-
ing turn, is widely recognized within dialogue re-
search, notably by work on adjacency pairs (Sche-
gloff and Sacks, 1973; Forbes-Riley et al., 2007;
Midgley et al., 2009). Based on these findings, we
hypothesized that dialogue history would be sub-
stantially beneficial for unsupervised dialogue act
models as it has been observed to be in numer-
ous studies on supervised classification. However,
as seen in the previous section, adding these di-
alogue context features with equal weight to the
model using Cosine distance only improved its
performance slightly though statistically signifi-
cantly (for example, T'+D > T'), while the overall
performance is still barely above random chance.

In an attempt to substantially boost the perfor-
mance of the unsupervised dialogue act classi-
fier, we experimented with a hierarchical cluster-
ing structure in which the model first branches on
the previous tutor move, and then the clustering
models are learned as described previously at the
leaves of the tree (Figure 3).

This branching approach results in some
branches with too few utterances to train a multi-
cluster model. To deal with this situation we set a
threshold of n=10 utterances. For those subgroups
with fewer than 10 utterances, we take a simple
majority vote to classify test cases, and for those
subgroups with 10 or larger utterances we train a
cluster model and use it to classify test cases. For
the entire corpus, the number of utterances in each
branch is presented in Table 6.

Tutor’s Previous Dialogue Act

Q S PF A
do do do " do
clustering clustering clustering clustering

Figure 3: Branching student utterances according
to previous tutor dialogue act.

As the results in Table 7 show, the performance
of the model with hierarchical structure is signif-
icantly better than the flat clustering model. Note
that each feature in this table leverages previous



Tutor Dialogue # of student
Act utterances

Q 818

S 464

H 125
PF 91
A 61
ACK 11
C 8
(0] 8
RACK 6

Table 6: The number of student utterances after
branching on the previous tutor dialogue act.

tutor dialogue act while branching. Branching
on previous tutor move boosted the model’s accu-
racy for student move dialogue act classification
by approximately 30% accuracy across all feature
sets, a difference that is statistically significant in
every case. With the hierarchical model struc-
ture, the best performance is achieved by includ-
ing all three types of features: lexical, dialogue
context and task. However, our hypothesis that
task features would significantly improve the ac-
curacy does not hold within the hierarchical clus-
tering model (I’ 4+ D # Dand T + L # L).

Features Accuracy Kappa
(%)

T 64.2f 0.45
= D 63.21 0.46
= L 60.7f 0.41
= T+D 62.1 0.44
S T+L 63.3%1 0.45
= D+L 63.6" 0.46
T+D+L 65%T 0.48

Table 7: Test set accuracies and Kappa for branch-
ing on previous tutor dialogue act (L: Lexical fea-
tures, D: Dialogue context features, T: Task fea-
tures) *indicates statistically significant compared
to the similar model without task features and t in-
dicates hierarchical clustering performing signifi-
cantly better than flat with same features. (p <
0.05).

6 Discussion

The experimental results provide compelling ev-
idence that an inclusive approach to features for
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unsupervised dialogue act modeling holds great
promise. However, we observed a stark difference
in model performance when the tutor’s previous
move was simply included as one of many features
within a flat clustering model compared to when
the previous tutor move was treated as a branch-
ing feature. In this section we take a closer look
and discuss the features that help distinguish par-
ticular dialogue acts from each other.

Using the hierarchical 7'+ D + L model which
performed best within the experiments, we exam-
ine the confusion matrix (Figure 4). Statements
and acknowledgments prove challenging for the
model, 51.3% and 61.5% accuracy overall. More-
over, these two tags are easily confused with each
other: 29.7% of statements were misclassified
as acknowledgments, while 21.2% of acknowl-
edgments were misclassified as statements. The
worst overall classification accuracy was for ques-
tions (6%) and the best was achieved for answers
(95.3%).

Predicted

S A Q | ACK C RF o]

s |181| 48 |17 |105| 2 [ 0 | ©

A |15|645| 6 |11/ 0| 0 | 0O

o Q |83 |78|14[5s58| 0|0 ] 0
= AcK | 74 | 44 | 14 [206]| 0 | 0 | ©
cl sl a1 ol olo

RE| 6 | 5|2 ololo
ols|s]o ololo

Figure 4: Confusion matrix for hierarchical model
utilizing all features: T+D+L.

When we analyze the performance of different
sets of features with respect to individual dialogue
acts, some interesting results emerge. The anal-
ysis shows that task features are especially good
for classifying statements. Using only task fea-
tures, the model correctly classified 61.8% state-
ments, compared to the lower 51.3% accuracy that
the overall best model (7' + D + L) achieved on
statements. When we consider the nature of the
statement dialogue act within this corpus, we note
that it is a large category that encompasses a vari-
ety of utterances, some of which have lexical fea-
tures in common with acknowledgments. In this
case, task features are particularly helpful.

For acknowledgments, a combination of task
and lexical features performed best (63.6% ac-



curacy) compared to the overall best performing
model which achieved a slightly lower 61.5% ac-
curacy on acknowledgments. Acknowledgments
are another example of an act that may take am-
biguous surface form; for example, in our cor-
pus an utterance ‘yes’ appears as both an answer
and an acknowledgment depending on its context.
Therefore, higher level features such as the ones
provided by task may be more helpful.

For questions, the highest performing feature
set is L. However, as shown in Table 8, the model
performed poorly on questions. Inspection of the
models reveals that questions are varied in terms
of structure throughout the corpus and it is hard to
distinguish them from other dialogue acts. For in-
stance there are two consequent utterances “i need
a write statement” and “don’ti”, both of which are
manually labeled as questions. However, in terms
of the structure, the first utterance looks very sim-
ilar to a statement and therefore the model has dif-
ficulty grouping it with questions. Due to the large
variety of question forms in the corpus, it is pos-
sible that the clustering performed poorly on this
dialogue act. In future work it will be promising to
investigate the dialogue structures which produce
questions and to weight them more in the feature
set in order to increase performance of clustering
for questions.

We performed one additional experiment to
compare the performance of the LCS metric with
bigrams. For bigrams, the average leave-one-
student-out test accuracy was 25% with flat clus-
tering compared to the lexical-only case using
LCS (L) which reached 33%.

Features \ S \ A \ Q \ ACK
L 21.5 41.3 14.2 20.4
T 61.76 | 9527 | 7.30 | 40.90
D 48.16 | 95.27 | 3.00 | 60.30
T+D 52.69 | 94.68 | 3.43 | 51.64
T+L 4278 | 95.13 6.01 63.58
D+L 43.63 | 94.98 8.58 | 62.09
T+D+L | 51.27 | 9527 | 6.01 61.49

Table 8: Accuracies for individual dialogue acts.
Acts with fewer than 10 utterances after branching
are omitted from the table.

7 Conclusion and Future Work

Dialogue act classification is crucial for dialogue
management, and unsupervised modeling ap-

proaches hold great promise for automatically ex-
tracting classification models from corpora. This
paper has focused on unsupervised dialogue act
classification for task-oriented dialogue, investi-
gating the impact of task features and dialogue
context features on model accuracy within both
flat and hierarchical clusterings. Experimental
results confirm that utilizing a combination of
task and dialogue features improves accuracy and
that incorporating one previous tutor move as a
high-level branching feature a provides particu-
larly marked benefit. Moreover, it was found that
task features are particularly important for iden-
tifying particular dialogue moves such as state-
ments, for which the model with task features only
outperformed the model with all features.

In addition to the task stream, future work
should consider other sources of nonverbal cues
such as posture, gesture and facial expressions to
investigate the extent to which these can be suc-
cessfully incorporated in unsupervised dialogue
act models. Second, models that are built in spe-
cialized ways to different user groups (e.g., by
gender or by incoming skill level) should be inves-
tigated. Finally, the performance of unsupervised
dialogue act classification models must ultimately
move toward evaluation within implemented dia-
logue systems (Ezen-Can and Boyer, 2013a). The
overarching goal of these investigations is to cre-
ate unsupervised dialogue act models that perform
well enough to be used within deployed dialogue
systems and enable the system to respond success-
fully. It is hoped that in the future, dialogue act
classification models for many domains can be ex-
tracted automatically from corpora of human dia-
logue in those domains without the need for any
manual annotation.
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Abstract

Speech-enabled dialogue systems have the
potential to enhance the ease with which
blind individuals can interact with the Web
beyond what is possible with screen read-
ers - the currently available assistive tech-
nology which narrates the textual content
on the screen and provides shortcuts to
navigate the content. In this paper, we
present a dialogue act model towards de-
veloping a speech enabled browsing sys-
tem. The model is based on the corpus
data that was collected in a wizard-of-oz
study with 24 blind individuals who were
assigned a gamut of browsing tasks. The
development of the model included exten-
sive experiments with assorted feature sets
and classifiers; the outcomes of the exper-
iments and the analysis of the results are
presented.

1 Introduction

The Web is the “go-to” computing infrastructure
for participating in our fast-paced digital society.
It has the potential to provide an even greater ben-
efit to blind people who once required human as-
sistance with many of their activities. According
to the American Federation for the Blind, there
are 21.5 million Americans who have vision loss,
of whom 1.5 million are computer users (AFB,
2013).

Blind users employ screen readers as the as-
sistive technology to interact with digital con-
tent (e.g.., JAWS (Freedom-Scientific, 2014) and
VoiceOver (Apple-Inc., 2013)). Screen readers se-
rially narrate the content of the screen using text-
to-speech engines and enable users to navigate in
the content using keyboard shortcuts and touch-
screen gestures.

Navigating content-rich web pages and con-
ducting online transactions spanning multiple
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pages requires using shortcuts and this can get
quite cumbersome and tedious. Specifically, in
online shopping a user typically browses through
product categories, searches for products, adds
products to cart, logs into his/her account, and fi-
nally makes a payment. All these steps require
screen-reader users listen through a lot of content,
fill forms, and find links and buttons that have to be
selected to get through these steps. If users do not
want to go through all content on the page, they
have to remember and use a number of different
shortcuts. Beginner users often use the “Down”
key to go through the page line by line, listening
to all content on the way (Borodin et al., 2010).

Now suppose that blind users were to tell the
web browser what they wanted to accomplish and
let the browsing application automatically deter-
mine what has to be clicked, fill out forms, help
find products, answer questions, breeze through
checkout, and wherever possible, relieve the user
from doing all the mundane and tedious low-level
operations such as clicking, typing, etc. The abil-
ity to carry out a dialogue with the web browser at
a higher level has the potential to overcome the
limitations of shortcut-based screen reading and
thus offers a richer and more productive user ex-
perience for blind people.

The first step toward building a dialogue-based
system is the understanding of what users could
say and dialogue act modeling. Although di-
alogue act modeling is a well-researched topic
(with details provided in related work - Section
2), it has remained unexplored in the context of
web accessibility for blind people. The commer-
cial speech-based applications have been around
for a while and new ones continue to emerge at a
rapid pace; however, these are mainly stand-alone
(e.g.., Apple’s Siri) domain specific systems that
are not connected to web browsers, which pre-
cludes dialogue-based interaction with the Web.
Current spoken input modules integrated with web
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browsers are limited to certain specific functional-
ities such as search (e.g.., Google’s voice search)
or are used as a measure of last resort (e.g.., Siri
searching for terms online).

In this paper, we made a principal step towards
building a dialogue-based assistive web browsing
system for blind people; specifically, we built a
dialogue act model for non-visual access to the
Web. The contributions of this paper include:
1) a unique dialogue corpus for non-visual web ac-
cess, collected during the wizard-of-oz user study
conducted with 24 blind participants (Section 3);
2) the design of a suitable dialogue act scheme
(Section 3); 3) experimentation with classifiers ca-
pable of identifying the dialogue acts associated
with utterances based on combinations of lexi-
cal/syntactic, contextual, and task-related feature
sets (Section 4); 4) investigation of the impor-
tance of each feature set with respect to classifi-
cation performance to assess whether simple lex-
ical/syntactic features are sufficient for obtaining
an acceptable performance (Section 5).

2 Related Work

While previous research addressed spoken dia-
logue interfaces for a domain-specific websites,
such as news or movie search (Ferreras and
Cardefioso-Payo, 2005; Wang et al., 2014), dia-
logue interface to generic web sites is a novel task.
Spoken dialogue systems (SDS) can be classified
by the type of initiative: system, user, or mixed
initiative (Lee et al., 2010). In a system-initiative
SDS, a system guides a user through a series of
information gathering and information presenting
prompts. In a user-initiative system, a user can
initiate and steer the interaction. Mixed-initiative
systems allow both system and user-initiated ac-
tions.

Dialogue systems also differ in the types of di-
alogue manager: finite state based, form based,
or agent based (Lee et al., 2010), (Chotimongkol,
2008). Finite state and form filling systems are
usually system-initiative. These systems have a
fixed set of dialogue states and finite set of possi-
ble user commands that map to system actions. In
contrast, a speech-enabled browsing system pro-
posed in this work is an agent-based system. The
set of actions of this system correspond to user ac-
tions during web browsing. The domain of possi-
ble user commands at each point of the dialogue
depends on the current web page that is viewed by
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a user. The dialogue state in a voice browsing sys-
tem is compiled at run-time as the user can visit
any web page.

While a users dialogue acts in a form-based
or finite state system depends primarily on a di-
alogue state, in an agent-based system with user-
initiative, the space of users dialogue acts at each
dialogue state is open. To determine dialogue
manager action, it is essential for the system to
identify users intent or dialogue act. In this
work, we address dialogue act modelling for open-
domain voice web browsing as a proof of concept
for the system.

Dialogue act (DA) annotation schemes for spo-
ken dialogue systems follow theories on speech
acts originally developed by Searle (1975). A
number of DA annotation schemes have been de-
veloped previously (Core and Allen, 1997), (Car-
letta et al., 1997). Several of dialogue tagging
schemes strive to provide domain-independence
(Core and Allen, 1997), (Bunt, 2011).

Bunt (2011) developed a NIST standardized
domain-independent annotation scheme which in-
corporates elements from the previously devel-
oped annotation schemes. It is a hierarchical
multi-dimensional annotation scheme. Each func-
tional segment (part of an utterance correspond-
ing to a DA) can have a general purpose function,
such as Inform, Propositional Question, Yes/No
Question, and a dimension-specific function in any
number of 10 defined dimensions, such as Task,
Feedback, or Time management.

In the analysis of human-computer dialogues, it
is common to adopt DA annotation schemes to suit
specific domains. Generic domain-independent
schemes are geared towards the analysis of nat-
ural human-human dialogue and provide rich an-
notation structure that can cover complexity of
natural dialogue. Domain-specific dialogues use
a subset of the generic dialogue structure. For
example, Ohtake et al. (2009) developed a DA
scheme for tourist-guide domain motivated by a
generic annotation scheme (Ohtake et al., 2010),
and Bangalore and Stent (2009) created a dialogue
scheme for a catalogue product ordering dialogue
system. In our work we design DA scheme for
Web-Browsing domain motivated by the DAMSL
(Core and Allen, 1997) schema for task-oriented
dialogue.

We used a Wizard-of-Oz (WOZ) approach to
collect an initial dataset of spoken voice com-



Task Tu Td
Shopping 121 16
Email 92 16
Flight 180 16
Hotel 179 16
Job 76 16
Admission 144 16
Overall 792 96

Table 1: Corpus details. 7, - number of utterances,
T4 - number of dialogs.

mands by both blind and sighted users. WOZ is
commonly used before building a dialogue system
(Chotimongkol, 2008), (Ohtake et al., 2009), (Es-
kenazi et al., 1999).

In previous work on dialogue modelling, Stol-
cke et al. (2000) used HMM approach to predict
dialogue acts in a switchboard human-human di-
alogue corpus achieving 65% accuracy. Rangara-
jan Sridhar et al. (2009) applied a maximum en-
tropy classifier on the Switchbord corpus. Using
a combination of lexical, syntactic, and prosodic
features, the authors achieve accuracy of 72%
on that corpus. Following the work of Rangara-
jan Sridhar et al. (2009), we use supervised classi-
fication approach to determine dialogue act on the
annotated corpus of human-wizard web-browsing
dialogues.

3 Corpus and Annotation

In this section, we describe the corpus and the
associated dialogue act scheme. The corpus was
collected using a WOZ user study with 24 blind
participants. Exactly 50% of the participants indi-
cated that they were very comfortable with screen
readers, while the remaining 50% said they were
not comfortable with computers. We will refer to
them as “experts” and “beginners” respectively.

The study required each participant to complete
a set of typical web browsing tasks (shopping,
sending an email, booking a flight, reserving a ho-
tel room, searching for a job and applying for uni-
versity admission) using unrestricted speech com-
mands ranging from simple commands such as
“click the search button”, to complex commands
such as “buy this product”. Unknown to the partic-
ipants, these commands were executed by a wiz-
ard and appropriate responses were narrated using
a screen reader. The dialogs were effective; al-
most every participant was able to complete each
assigned task by engaging in a dialogue with the
wizarded interface.
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As shown in Table 1, the corpus consists of a
total of 96 dialogs collected during the execution
of 6 tasks and captures approximately 22 hours of
speech with a total of 792 user utterances and 774
system utterances. There is exactly 1 dialogue per
task for any given participant. Each user turn con-
sists of a single command that is usually a sim-
ple sentence or phrase. Each system turn is either
narration of webpage content or information re-
quest for the purpose of either form filling or dis-
ambiguation. Therefore, each dialogue turn was
treated as a single utterance and every utterance
was identified with a single associated dialogue
act.

The corpus was manually annotated with dia-
logue act labels and the labeling scheme was ver-
ified by measuring the inter-annotator agreement.
The rest of this section describes the annotation
scheme.

3.1 Dialogue Act Annotation

The dialogue act annotation scheme was inspired
by the DAMSL scheme (Core and Allen, 1997)
for task oriented dialogue. The proposed scheme
was also influenced by extended DAMSL tagset
(Stolcke et al., 2000) and the DIT++ annotation
scheme (Bunt, 2011). We customized the annota-
tion scheme to suit the non-visual web access do-
main, thereby making it more relevant to our cor-
pus and tasks.

Table 2 lists the dialogue acts for both user
and system utterances. The user dialogue act
tagset consists of labels representing task related
requests (Command-Intention, Command-Task,
Command-Multiple, Command-Navigation), in-
quiries (Question-Task, Help-Task) and informa-
tion input (Information-Task), whereas the system
DA tagset contains labels representing informa-
tion requests (Prompt), answers to user inquiries
(Question-Answer, Help-Response) and other sys-
tem responses (Short-Response, Long-Response,
etc.) to user commands.

Inter-rater agreement values for different tasks
in the corpus are presented in Table 3. The ~ val-
ues for all tasks are above 0.80, which according
to Fleiss’ guidelines (Fleiss, 1973), indicates ex-
cellent inter-rater reliability on the DA annotation.
Therefore, the DA tagset is generic enough to be
applicable for a wide varity of tasks that can be
performed on the web. Note that the dialogue act
scheme was specially designed for non-visual web



User dialogue Acts

Dialogue Act Description Frequency

Command-Intention Indication of user’s intention or end goal, e.g. [ wish to buy a Bluetooth speaker 0.117

Command-Task Basic action commands like click, select, enter, etc. 0.072

Command-Multiple Complex commands requiring an execution plan comprising a sequence of basic 0.162
commands, e.g. buy this product, book this room, etc.

Command-Navigation | Commands directing the movement of cursor like go to, stop, next etc. 0.136

Information-Task Information required for completing a task, e.g. departure date/return date in- 0.442
formation for flight booking task, first name, phone number, etc.

Question-Task Task specific questions like What is the cheapest flight?, What is the basic 0.041
salary?, etc.

Self-Talk Utterances not directed towards the system, e.g. hmmm, what should I do next? 0.002

Help-Task Request for help when the user wishes to speak with the experimenter, e.g. Help, 0.024
what does that mean?

System dialogue Acts

dialogue Act Description Frequency

Prompt Request for information from user to complete a task, e.g. First Name, text box 0.460
blank

Short-Response A short response to a user command, e.g. description of product, brief details of 0.198
flight, acknowledgements, etc.

Long-Response A lengthy response to a user command, e.g. Narration of entire page, list of 0.120
search results, etc.

Keyboard-Response Response to user keyboard actions 0.072

Article-Response Narration of an article 0.034

Question-Answer Response to a user question regarding task (non-help) 0.044

No-Response No response for some navigation commands like Stop 0.041

Help-Response Response to a help request from the user 0.026

Table 2: dialogue acts for non-visual Web access

access. Insofar as sighted people are concerned,
a more elaborate scheme would be required since
their utterances are dominated by visual cues, a
fact that was confirmed by a parallel user study
with sighted participants on the same set of web
tasks that were used in the wizard-of-oz study.

4 Features

This section describes the different feature sets
that we experimented with for our classification
tasks. The vector representation for training the
DA classifiers integrates several types of features
(Table 4): unigrams (/) and syntactic features
(S), context related features (C), task related fea-
tures (7)), presence of words anywhere in an
utterance(P) and presence of words at the begin-
ning of an utterance(B). The last two feature sets
are similar to the ones used in Boyer et al. (2010).

Task K

Shopping 0.865
Email 0.829
Flight 0.894
Hotel 0.848
Job 0.824
Admission  0.800

Table 3: Inter-rater agreement measured in terms
of Cohen’s  for all tasks in the corpus.
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The feature sets C, P, B and S are specific to
the domain of non-visual web access and were
hand-crafted based on the following three factors:
knowledge of the browsing behavior of blind users
reported in previous studies, e.g. (Borodin et al.,
2010); manual analysis of the corpus; mitigate the
effect of noise that is usually present in standard
lexical/syntactic feature sets such as n-grams and
parse tree rules. Each of the features in C, P, B
and S were crafted to have a close correspondence
to some dialogue act. For example, pyq, 1S closely
tied to the Command-Navigation dialogue act.

4.1 Unigrams

Unigrams (I/ in Table 4) are one of the commonly
used lexical features for training dialogue act clas-
sifiers (e.g. (Boyer et al., 2010), (Stolcke et al.,
2000), (Rangarajan Sridhar et al., 2009)). Encod-
ing unigrams as features is based on the obser-
vation that some words appear more frequently
in certain dialogue acts compared to other di-
alogue acts. For example, approximately 73%
of “want” occur in the Command-Intention DA,
100% of “skip” occur in the Command-Navigation
DA and approximately 92% of “select” occur
in the Command-Task DA. Word-DA corrections
can also be automatically identified using SVM
classifers trained on unigram features. Table 5



Overall Feature Set

UNIGRAMS (UA)

Feature Description Binary
U Unigrams N
PRESENCE OF WORDS IN COMMANDS (P)

Diyou The utterance contains either / or you Y
Dhelp The utterance contains the word help Y
Dhelpq The utterance contains words usually associated with help requests. E.g., how, am I, etc. Y
Pprev The immediately preceding system DA is Prompt and the utterance contains words also | Y
present in this immediately preceding system utterance
Dintent The utterance contains words , need, desire, prefer, like and their synonyms Y
DPbrowser The utterance contains words also present in the web browser tab title. E.g., email, job Y
DPhtml The utterance contains references to HTML elements. E.g., form, box, link, page, etc. Y
Dbasic The utterance contains a verb representing basic operations on a web page. E.g., click, edit. Y
Prbasic The utterance contains a verb not related to basic web page operations; a verb usually Y
associated with task or domain related actions. E.g. send, open, compose, etc.

Prav The utterance contains words related to cursor movement. E.g., go to, continue, next, etc. Y
Pquestion | The utterance contains words usually associated with questions. E.g., what, when, why Y
SYNTACTIC STRUCTURE OF COMMANDS (S)

Snp The utterance is a noun phrase with atleast two words Y
Snoun The utterance consists of a single noun Y
Sbasic The utterance consists of a single verb representing basic web page operations. E.g., click, Y

edit, erase, select, etc.
Snbasic The utterance consists of a single verb representing task or domain related actions. e.g. Y
send, open, compose, order, etc.
CONTEXT RELATED FEATURES (C)

Cfirst The utterance is the first command to be issued when a new website is loaded in the browser | Y
Cprevious | dialogue act of the immediately preceding system utterance N
POSITION OF WORDS IN COMMANDS (B3)
bnav The utterance begins with word(s) related to cursor movement. e.g. go to, continue, etc. Y
bguestion | The utterance begins with a word that is usually associated with a question. E.g., what, Y

when, where, why, etc.

b; The utterance begins with the personal pronoun /. Y
bheipq The utterance begins with word(s) usually associated with help requests. E.g., how, am I Y
TASK RELATED FEATURES (7))
trame | Name of the task associated with the utterance | N

Table 4: Feature set for user dialogue act classification. The complete list of words associated with each

feature in P and B is provided in Appendix A.

presents few such correlations. Note that some of
the words in Table 5 are task-specific (noise); a
consequence of using a small dataset.

4.2 Presence of Words in Commands

In constract to unigram features that take into
account all possible word-DA correlations, the
presence-of-word features (P in Table 4) are lim-
ited to certain specific words that have strong cor-
relations with the DA types. For each feature
p € P, if the presence of certain specific words
associated with p occur in an utterance, then p is
set to true. The set of words for every p that cor-
responds to some dialogue act d was contructed
by determining the discriminatory words for d us-
ing simple statistical analysis of the corpus (e.g.
relative frequencies of words) as well as by an ex-
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amination of the weights of different words learnt
by the SVM classifier trained on a development
dataset using unigram features alone. e.g.., the
words continue and skip occur much more fre-
quently in Command-Navigation than in other di-
alogue acts (see Table 5) and hence are included
in ppqy. Note however that not all discrimina-
tory words in Table 5 were used. Only generic
words, independent of any specific task, were se-
lected (see Appendix A for details).

4.3 Syntactic Structure of Commands

The binary syntactic features (S in Table 4) were
automatically extracted using the Stanford parser
(Klein and Manning, 2003). As in word-DA
correlations, some of the syntactic structure-DA
correlations were also identified by a manual in-



Dialogue Act
Command-Intention

Discriminatory Words

want, compose, book, for, look, email, find, an, ac-
counting, Stanford, a, airplane, message, I, music,
get, ticket, positions, need, bluetooth, jobs, new
repeat, choose, delete, select, link, edit, enter,
erase, clear, fill, in, click, third, at, body, box,
again, blue, that

play, read, senior, send, reviews, Harlem, artists,
study, submit, details, law, description, Kitaro,
mornings, availability, apply, construction, pay,
reservations, proceed, it, this, available

skip, next, previous, go, page, finish, stop, item,
continue, back, line, before, box, first, second, to,
top, home, part, would

JFK, customer, no, August, July, USA, October,
Kahalui, October30th, anytime, coach, today, non-
stop, movies, York

price, time, fare, layover, times, is, what’s, any-
thing, cheaper, best, flight, airline, complete, one-
stop, departure, cards, price, much, cost, weekly.
help, do, mean, does, say, can, supposed, some-
thing, how, use, voice, have, apply, reservation, by,
address, give, get

Command-Task

Command-Multiple

Comand-Navigation

Information-Task

Question-Task

Help-Task

Table 5: Top discriminative unigrams based on
weights from SVM classifier.

vestigation of the corpus. For example, 82.1%
of single noun-only utterrances (Spoun) have the
DA Information-Task, 76.2% of “basic” verb-only
utterances (Spqsic) have the DA Command-Task
and 83.3% of “non-basic” verb-only utterances
(Snbasic) have the DA Command-Multiple.

4.4 Context Related Features

The local context (C in Table 4) provides valuable
cues to identify the dialogue act associated with
a user utterance. It was observed during the study
that user utterance is influenced to a large extent by
the immediately preceding system utterance. For
example, 89.95% of all user utterances immedi-
ately following the system Prompt were observed
to be Information-Task. In addition, most of the
time (probability 87.5%), the first utterance issued
for a task was Command-Intention.

4.5 Position-of-Word in Commands

Design of feature set 5 in Table 4 was inspired by
an analysis of the corpus which revealed that cer-
tain dialogue acts are characterized by the pres-
ence of certain words at the beginning of the cor-
responding utterances. For example, 93.4% of
all Command-Navigation utterances begin with a
cursor-movement related word (e.g. next, previ-
ous, etc. see Appendix A for the complete list).

4.6 Task Related Features

Since it is possible for different tasks to exhibit dif-
ferent feature vector patterns for the same dialogue
act, incorporating task name (7 in Table 4) as an
additional feature may therefore improve classifi-
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Group Composition

gl U

g2 PUBUS

g3 CUBUS

g4 CUPUS

g5 CUPUB

Ggo6 CUPUBUS

g7 CUPUBUSUT
g8 CuPUBUSUU

Table 6: Feature groups.

cation performance by exploiting these variations
(if any) between tasks.

5 Classification Results

All classification tasks were performed using the
WEKA toolkit (Hall et al., 2009). The classifica-
tion experiments were done using Support Vector
Machine (frequently used for benchmarking), J48
Decision Tree (appropriate for a small size mostly
binary feature set) and Random Forest classifiers.
The model parameters for all classifiers were opti-
mized for maximum performance.

In addition, experiments were also performed
to assess the utility of each feature set (Table 4).
Specifically, the performance of classifiers with
different combinations (Groups 1-8 in Table 6) of
feature sets was evaluated to assess the importance
of each individual feature set. We primarily fo-
cussed on domain-specific feature sets (P, B, C
and §). Observe that group G6 differs from any
of G2 — G5 by exactly one feature set. This lets
us to assess the individual utility of P, B, C and
S. In addition, we also extended G6 by including
U (G7) and T (G8) to determine if there was any
noticeable improvement in performance. G1 with
only unigram features serves as a baseline. All re-
ported results (Table 7) are based on 5-fold cross
validation: 632 instances for training and 158 in-
stances for testing. Table 7 presents the classifica-
tion results for different feature groups. The DA
Self-Talk was excluded from classification due to
insufficient number (2) of data points.

5.1 Classification Performance

Overall Performance: As seen in Table 7, the
tree-based classifiers (J48 and RF) performed bet-
ter than SVM in a majority of the feature groups
(6 out of 8). The random forest classifier yielded
the best performance (91% Precision, 90% Recall)
for feature group G6, whereas the G3-SVM com-
bination had the lowest performance (69% Preci-
sion, 67% Recall). However, all groups includ-



Performance of Feature Groups
[} G2 g3 g4 G5 g6 Ggr7 g8

DA MODEL P R P R P R P R P R P R P R P R
SVM | 83| 80| 84 | 95 | .71 | .95 | .91 | .96 | 82| 90 | 91 | 95 | .89 | .96 | .89 | .94

CIL J48 4074 83 ] 90 | 80 | 93 | 84 | 95 | 81| 93 | 83 | 95 | .85 | 93 | 91 | .95
RF 76 74| 81 ] 90 | 85 | .94 | 88 | 90 | 80 | 87 | 84 | 93 | .88 | .89 | .87 | .95

SVM | 87| .73 | 8 | .81 | .93 | .30 | .89 | 87 | .84 | 81 | .89 | .83 | .89 | .81 | .92 | .88

CT J48 80 64] 8 | .70 | 1.0 .28 88 | .79 | 80 | .70 | .8 | .75 | .83 | .87 | .86 | .67
RF 72158 84 | 89 | 81 .26 | 88 | 89 [ 8 | 8 [ .79 | 93 | .77 | .78 | .88 | .80

SVM | .73 | 65 | .77 | B8 | .36 | .30 | .78 | 64 | .78 | 59 | .78 | .64 | .80 | 62 | .79 | .T8

CM 148 741 36 78 ] .79 | 68 | 87 | .83 | 59 | 81| .78 | .76 | .83 | .81 | .80 | .76 | .87
RF 79 56| 80 | 81 | 68 | 83 | .80 | B9 | .82 | .79 | 81 | 83 | .80 | .82 | .76 | .89

SVM | 89 | 84 | 93 | .87 | .96 | .82 | .67 | .96 | 94 | 87 | 96 | .89 | .94 | .87 | .90 | .92

CN J48 891 65 95| 95| .96 | .92 | 65| 93| 95| 95| 95| .92 | .92 | 93 | .87 | .90
RF 821 8 | 94| 94| 95| .92 .66 | 95| 95| 95| 95 | 95 | .94 | 93 | 91 | .88

SVM | .70 | .89 | 82 | 93 | .70 | .81 | .81 | .79 | .82 | 93 | .82 | .93 | .82 | .94 | .85 | .90

IT J48 b4 193] 96 97 94 97| 80| 82 [ 96 97 [ 97 | .96 | .96 | 97 | 94 | .94
RF 651 .93 98] 98 | 95 [ 97 | 81 | 82 [ 97 .98 [ 98 | 97 | .98 | .98 | .97 | .92

SVM | 66 | 46 | .87 | .27 | .90 | .30 | .80 | .30 | .62 | .31 | .80 | .31 | .70 | .33 | .85 | .49

QT 148 441 36| 62 | 33 | 80 | .23 | 90 | .30 | B3 | .34 | 62 | .31 | .56 | 4T | .93 | .32
RF 63 ] 36| 65| 31| .61].39| .78 | 27| 54| 35| 83| .39 | .68 | .51 | .87 | .33

SVM | .77 | 71| .73 | .65 | .80 | 45 | .79 | 63 | 63 | .67 | .78 | .63 | .72 | .64 | 92 | .T6

HT J48 86 | .79 80 | 57 | 80 [ .33 | 81 ] 60 [ .70 ] .50 | .81 | .55 | .55 | .52 [ .93 | 91
RF B85 .70 .79 ] 65| .78 .33 .75 ] 60 | .74 ] 67 | 90 | .48 | .67 | .67 | .90 | .80

SVM | .77 | .76 | .83 | .82 | 69 | .67 | .80 | .79 | .82 | 82 | .84 | 83 | .84 | .83 | .85 | .85

Overall J48 701 66 88 | .88 | 87 | .85 | .80 | .78 | .88 | .88 [ .89 | .88 | .88 | .89 [ .87 | .86
RF 741731 90 90| 86 [ .85 | .80 | .79 [ .89 | 89 [ 91 | 90 | .90 | .89 | .88 | .87

Table 7: Classification Results. The overall performance is the weighted average over all dialogue acts.
Notation: J48-Decision Tree, RF-Random Forest, SVM-Support Vector Machine, P-Precision, R-Recall,
CI-Command-Intention, CT-Command-Task, CM-Command-Multiple, CN-Command-Navigation, IT-
Information-Task, QT-Question-Task, HT-Help-Task. The best performances for each DA are high-

lighted in bold.

ing G3 did better than G1 with tree-based clas-
sifiers. G1 was consistently outperformed by the
other groups.

Performance on dialogue acts: In 6/8 feature
groups, the performance of SVM with respect to
IT dialogue act was significantly worse than that
of tree-based classifiers. However, SVM produced
consistently good results (> 80% in most cases)
for the CI and CT dialogue acts. All classifiers
performed very well in case of CN dialogue act
(> 80% for 7/8 groups). However, none of the
classifiers performed well in case of QT.

5.2 Importance of feature sets

From Table 7, it can be inferred that contextual
features (C) do not contribute to improving overall
classification performance. In particular, for each
classifier, the difference in overall performance
between groups G2 (excluding C) and G6 (includ-
ing C) is very small (worst case: 1% difference
in both P and R). However, inclusion of C signifi-
cantly improved the classification performance of
RF for QT and CI dialogue acts (18% improve-
ment in P, 8% improvement in R for QT, 3% im-
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provement in both P and R for CI). Even in case of
J48, where group G6 yields the best performance,

Dialogue Act Discriminatory Rules

® Crirst A Tbnav A TPhimi A TSnoun

® Crirst A "bnav A Prtmi A Piyou

® Crirst A bnav APintent A Prav N "Pguestion
® Cyirst A bnav A Dintent AT Phelpg N Poasic N

“Pnbasic

Command-Intention

Command-Task

® Cyirst A bnav A Pintent N T Phelpg A\ Poasic N
Pnbasic N\ Phtml
. © —Cfirst Abrav A—Dintent ADhetpa A —Doasic/N
Command-Multiple first nav 'Pintent 'Phelpq Poasic
“Prbasic N Cprevious = [Hk|l|n] A —primi A
TPquestion

® —Crirst Ambnav A" Pintent AT Pheipg A" Prasic/\
Prbasic A Cprevious = ['P]

o Crirst A\ bnaw

® Cfirst A Tbnav A Primi A TPiyou

® Crirst A bnav A 28np

® Crirst A bnav A Snp A Cprevious = [5]a]

® Cfirst Abnaw A PDintent A Phelpg N Dbasic/\
“Pnbasic N\ Cprevious =

® Cfirst Abnaw A Pintent A Phelpg N Pbasic/\
[P] A =Piyou

® Cfirst Abnaw A PDintent A Phelpg N Dbasic/\
“Prbasic N Cprevious = [Hk|l|n] A —premi A
Pquestion

® Cfirst Abnav A PDintent A Dhelpg N Dbasic/\
“Prbasic ACprevious = [4]8|a] APrav A Prtmi A
“Snoun

® Cfirst A bnav A Pintent APhelpg \Piyou /A bi

Comand-Navigation

Information-Task

Pnbasic /\ Cprevious =

Question-Task

Help-Task

Table 8: A select sample of J48 rules (conf >
0.75 and descending order of support) for group
G6. Notation: —cy.s stands for cpirp = false
and c s stands for ¢y = true.



Utterance

Actual DA

Predicted DA

Comments

“Continue to booking it”

Command-Multiple

Command-Navigation

This utterance was issued while performing the book a hotel room task. This
command essentially is the same as “book it”. The presence of a navigation
related verb continue at the beginning caused the classifiers to incorrectly classify
it as Command-Navigation.

“I am looking to check in
on July 23rd”

Information-Task

Command-Intention

This utterance was in response to a system prompt for check-in date while per-
forming the book a hotel room task. The presence of first person nominative
pronoun “I” caused the classifiers to categorize it as Command-Intention.

“What does that mean?”

Help-Task

Question-Task

This utterance was directed towards the experimenter and therefore it was anno-
tated as Help-Task. However, the absence of the keyword help and the presence
of a Wh-word what at the beginning of the command caused the classifiers to
incorrectly classify this command as Question-Task.

“Best available price?”
“Ok, return time?”
“Price?”

Question-Task

Command-Multiple
Information

The absence of Question related words like Wh-words, is, etc. at the beginning
coupled with the fact that these commands are noun phrases caused the classifiers
to incorrectly classify them as either Command-Multiple or Information.

“Layover?”

Table 9: A few incorrectly classified utterances.

contextual features were found to be a component
of some of the high-confidence, high-support J48
rules (Table 8) for CI and QT. Similar claims can
also be made for syntactic features(S), where al-
though there is not much difference in overall per-
formance between groups G5 and G6 (Worst Case:
2% drop in P, 1% drop in R), improvements were
observed in case of RF for QT and CI dialogue
acts (29% improvement in P, 4% improvement in
R for QT, 4% improvement in P, 6% improvement
in R for CI).

Excluding either word-existential features (P)
or word-position related features (B), however,
caused a significant drop in overall performance
(Worst case: 15% drop in P, 16% drop in R with-
out P, 11% drop in both P and R without 3). Ta-
ble 8 further highlights the importance of feature
set P, since over 50% of the high performing J48
rules (Table 8) have at least one feature of type P
with true as their truth values.

It can be seen in Table 7 that adding either un-
igrams or task-name to the existing feature set of
G6 does not affect the overall performance. How-
ever, the use of unigram features improved re-
sults of all the classifiers for the HT DA. No such
DA specific improvements were seen with task-
name as an added feature to G6. This suggests
that the feature values of G6 for all DAs are task-
independent.

5.3 Prediction Errors

It is clear from Table 7 that the prediction accu-
racies of CM, QT and HT are not nearly as good
as those of other dialogue acts. Table 9 provides
some insights into this issue via illustrative exam-
ples from the corpus.

Notice that the errors in case of CI, CM and HT
are mostly related to choice of words used in the
utterances, whereas mistakes in the prediction of
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QT are mainly due to inadequate information or
the incompleteness of the utterances. Therefore, it
is recommended that the speech enabled web dia-
logue systems enforce a constraint requiring users
to express their complete thoughts in each of their
corresponding utterances.

6 Conclusion

Experiments with the dialogue act model de-
scribed in the paper indicate that with a small set
of simple lexical/syntactic features it is possible
to achieve a high overall dialogue act recogni-
tion accuracy (over 90% precision and recall) us-
ing simple and well-known tree-based classifiers
such as decision trees and random forests. It is
hence possible to build speech-enabled dialogue-
based assistive web browsing systems with low
computational overhead that, inturn, can result in
low latency response times - a critical requirement
from a usability perspective for blind users. Fi-
nally, a dialogue model for non-visual web access,
such as the one described in this paper, can be the
key driver of goal-oriented web browsing - a next
generation assistive technology that will empower
blind users to stay focused on high-level browsing
tasks, while the system does all of the low-level
operations such as clicking on links, filling forms,
etc., necessary to accomplish the tasks.
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A List of Words Predictive of Dialogue
Acts

Table 10 lists all the words associated with
presence-of-word (P) and position-of-word (I3)
related features (Table 4) used in this work. No-
tice that all words specified in Table 10 are task-
independent. This ensures that the proposed fea-
ture set is generic enough to be applicable for a
wide variety of tasks on the web. The proposed
list of words can be easily extended by adding syn-
onyms, which can be obtained automatically from
publicly available sources like WordNet (Miller,
1995).

Features Predictive Words

Diyou 1, you

Phelp help

Phelpgs Dhelpg how, can, do, am I

Dprev dynamically determined at runtime

want, like, would, need, prefer

Porowser dynamically determined at runtime

Phtml body, page, form, box, field, search, link, button,
list, dropdown

Pintent

DPhasic clear, select, fill, delete, click, edit, erase, submit,
repeat, choose, enter, check

Pnbasic any verb not in the pyqsic list above

Pravs Dnav skip, go to, next, first, last, back, continue, previ-

ous, stop, go back, finish, home page
what, where, why, when, how

Pquestion, Dguestion

Table 10: Complete list of predictive words for
features in P and B of Table 4.

As explained earlier, the words in Table 10 were
selected by performing simple statistical analysis
of corpus and also by examining the word-weights
produced by the SVM classifier trained on uni-
gram features alone. In other words, some of the
words in Table 10 were borrowed from Table 5
that lists discriminatory unigrams for different di-
alogue acts. Note that the task-dependent words
(e.g. “Stanford”, “airplane”, etc.) in Table 5 were
ignored while constructing Table 10.

B Sample Dialogue in the Corpus

Table 11 presents an example of a dialogue that
was collected during the execution of the Shop-
ping task by a participant in the Wizard-Of-Oz
study. For deeper understanding, the wizard ac-
tions for every user utterance are also listed.

Subject:
Wizard:

“T want to buy CD”

[enter ‘CDs’ in the search box, clicks ‘Go’, and
narrate search results one by one]

Verbatim 97458 700 MB 80 Minute . .. Disc CD-R
by Verbatim link ...

“Search for new age items”

[searches for ‘new age items’, clicks on results]
Age of Wushu - Free Amazon ...Game Connect
link by Snail Games USA ...

Screen reader:

Subject:
Wizard:
Screen reader:

Subject:  “stop”
Wizard:  [presses pause shortcut]
Subject:  “new age music CDs”
Wizard: [searches for ‘new music CDs’]
Screen reader:  The ultimate Most Relaxing New Age ....
Subject:  “new age music CDs by Kitaro”
Wizard: [Searches for ‘new music cds by Kitaro’]

Screen reader:  Most Relaxing New Age Music link by Kitaro,
List 8 items, $10.87 link, order in the next 3 hours

... Tenku link by Kitaro ...

Subject:  “sample recordings”
Wizard: [follows the current link]
Screen reader:  Page loading
Wizard: [plays the first sample track]
Screen reader:  [audio sample]
Subject:  “next”
Wizard: [plays the next sample track]
Screen reader:  [audio sample]
Subject:  “next”
Wizard: [plays the next sample track]
Screen reader:  [audio sample]
Subject:  “go back”
Wizard: [presses back button]
Screen reader:  page loading, [repeats the visited link]
Subject:  “next CD”
Wizard: [clicks the title of the next item in search result]
Screen Reader:  Ancient link by Kitaro ...$14.98 link ...
Subject:  “listen to audio”
Wizard: [follows link]
Screen Reader:  Page loading
Wizard: [plays the next sample track]
Screen reader:  [audio sample]
Subject:  “next”
Wizard: [plays the next sample track]
Screen reader:  [audio sample]
Subject:  “buy this cd”
Wizard: [clicks ‘Add to cart’ button, then clicks ‘Proceed

to Checkout’ button]

Screen reader: [reads out all captions]

Table 11: An example dialogue from corpus along
with associated wizard actions.
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Abstract

In this paper, we present a novel supervised
approach to the problem of summarizing
email conversations and modeling dialogue
acts. We assume that there is a relationship
between dialogue acts and important sen-
tences. Based on this assumption, we intro-
duce a sequential graphical model approach
which simultaneously summarizes email
conversation and models dialogue acts. We
compare our model with sequential and
non-sequential models, which independent-
ly conduct the tasks of extractive summari-
zation and dialogue act modeling. An
empirical evaluation shows that our ap-
proach significantly outperforms all base-
lines in classifying correct summary
sentences without losing performance on
dialogue act modeling task.

1 Introduction

Nowadays, an overwhelming amount of text in-
formation can be found on the web. Most of this
information is redundant and thus the task of
document summarization has attracted much at-
tention. Since emails in particular are used for a
wide variety of purposes, the process of automat-
ically summarizing emails might be of great
benefit in dealing with this excessive amount of
information. Much work has already been con-
ducted on email summarization. The first re-
search on this topic was conducted by Rambow
et al. (2004), who took a supervised learning ap-
proach to extracting important sentences. A
study on the supervised summarization of email
threads was also performed by Ulrich et al.
(2009). This study used the regression-based
method for classification. There have been stud-
ies on unsupervised summarization of email
threads as well. Zhou et al. (2007, 2008) pro-

posed a graph-based unsupervised approach to
email conversation summarization using clue
words, i.e., recurring words contained in replies.

In addition, the task of labeling sentences
with dialogue acts has become important and has
been employed in many conversation analysis
systems. For example, applications such as meet-
ing summarization and collaborative task learn-
ing agents use dialogue acts as their underlying
structure (Allen et al., 2007; Murray et al.,
2010). In a previous work, Cohen et al. (2004)
defined a set of “email acts” and employed text
classification methods to detect these acts in
emails. Later, Carvalho et al. (2006) employed a
combination of n-gram sequences as features and
then used a supervised machine learning method
to improve the accuracy of this email act classifi-
cation. In addition, Shafiq et al. (2011) presented
unsupervised dialogue act labeling methods. In
their work, they introduced a graph-based meth-
od and two probabilistic sequence-labeling
methods for modeling dialogue acts.

However, little work has been done on dis-
covering the relationship between dialogue acts
and extractive summaries. If there is a relation-
ship between them, combining these approaches
so as to model both simultaneously will yield
better results. In this paper, we investigate this
hypothesis by introducing a new sequential
graphical model approach that performs dialogue
act modeling and extractive summarization joint-
ly on email threads.

2 Related Work

While email summarization and dialogue act
modeling have been effectively studied, in most
previous work, these tasks were studied inde-
pendently. This section provides related work for
each task separately.
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2.1 Extractive Summarization

Rambow et al. (2004) introduced sentence ex-
traction techniques that work for email threads.
In their work, they introduced email-specific fea-
tures and used a machine learning method to
classify whether or not a sentence should be in-
corporated into a summary. Their experiments
demonstrated that their features were highly ef-
fective for email summarization.

Ulrich et al. (2009) proposed a regression-
based machine learning approaches to email
thread summarization. They compared regres-
sion-based classifiers to binary classifiers and
showed that their approach significantly im-
proves the summarization accuracy. They em-
ployed the feature set introduced by Rambow et
al. (2004) as their baseline and introduced new
features that are also effective for email summa-
rization. Some of their features refer to dialogue
acts but the assumption is that they are computed
before the summarization task is performed. Our
work is aimed at a much closer integration of the
two tasks by modeling them simultaneously.

Carenini et al. (2007) developed a fragment
guotation graph that can capture a fine-grain
conversation structure in email threads, which
we will describe in detail in Section 3. They then
introduced a ClueWordSummarizer (CWS), a
graph-based unsupervised summarization ap-
proach based on the concept of clue words,
which are recurring words found in email replies.
Their experiment showed that the CWS performs
better than the email summarization approach in
Rambow et al. (2004).

Extractive summarization using a sequential
labeling technique has also been studied. While
this is not an email summarization, Shen et al.
(2007) proposed a linear-chain Conditional Ran-
dom Field (CRF) based approach for extractive
document summarization. In their work, they
treated the summarization task as a sequence la-
beling problem to take advantage of interaction
relationships between sentences; their approach
showed significant improvement when compared
with non-sequential classifiers.

2.2 Dialogue Act Modeling

The first studies on the dialogue act modeling in
emails were performed by Cohen et al. (2004).
They defined “email speech acts” (e.g., Request,
Deliver, Propose, and Commit) and used ma-
chine learning methods to classify emails accord-
ing to the intent of the sender.

Carvalho et al. (2006) further developed this
initial proposal by using contextual information
such as combinations of n-gram sequences in
emails as their features for a supervised learning
approach. The experiment showed that their ap-
proach reduced classification error rates by
26.4%. Shafiq et al. (2011) proposed unsuper-
vised dialogue act modeling in email threads and
on forums. They introduced a graph-based and
two probabilistic unsupervised approaches for
modeling dialogue acts. By comparing those ap-
proaches, they demonstrated that the probabilis-
tic approaches were quite effective and
performed better than the graph-based one.

While the following work is not done on the
email domain, Kim et al. (2010) introduced a
dialogue act classification on one-on-one online
chat forums. To be able to capture sequential
dialogue act dependency on chats, they applied a
CRF model. They demonstrated that, compared
with other classifiers, their CRF model per-
formed the best. In their later work (Kim et al.,
2012), they extended the domain to multi-party
live chats and proposed new features for that
domain.

3 Capturing Conversation Structure in
Email Threads

In this section, we describe how to build a frag-
ment quotation graph which captures the conver-
sation structure of any email thread at finer
granularity. This graph was developed and
shown to be effective by Carenini et al. (2011).
A key assumption of this approach is that in or-
der to effectively perform summarization and
dialogue act modeling, a fine graph representa-
tion of the underlying conversation structure is
needed.

Here, we start with the sample email conver-
sation shown in Figure 1 (a). For convenience,
the content of the emails is represented as a se-
guence of fragments.

First, we identify all new and quoted frag-
ments. For example, email E1 is composed of
one new fragment, ‘b’, and one quoted fragment,
‘a’. As for email E3, since we do not yet know
whether or not ‘d’ and ‘e’ are different frag-
ments, we consider E3 as being composed of one
new fragment, ‘de’ and one quoted fragment, ‘b’.

Second, we identify distinct fragments. To do
this, we first identify overlaps by comparing
fragments with each other. If necessary, we split
the fragments and remove any duplicates from
them. For example, a fragment, ‘de’, in E3 is
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split into ‘d” and ‘e’ after being compared with
fragments in E4 and the duplicates are removed.
By applying this process to all of the emails,
seven distinct fragments, a, b ..., and, g remain in
this example.

In the third step, edges which represent the
replying relationships among the fragments are
created. These edges are determined based on the
assumption that any fragment is a reply to neigh-
boring quotations (the quoted fragments immedi-
ately preceding or following the current one). For
example, the neighboring nodes of ‘f* in E4 are
‘d’ and ‘e’. Thus, we create two edges from node
‘> in E4 to node ‘d’ and ‘e’ in E3. In the same
way, we see that the neighboring node of ‘g’ in
E4 is ‘e’. Hence, there is one edge from node ‘g’
to ‘e’. If no quotation is contained in a reply
email, we connect the fragments in the email to
fragments in emails to which it reply.

In email threads, there are cases in which the
original email with its quotations is missing from
the user’s folder, as in the case of ‘a’ in Figure 1
(a). These types of emails are called hidden
emails. Carenini et al. (2005) studied in detail
how these email types might be treated and their
influence on email summarization.

Figure 1 (b) shows the completed fragment
quotation graph of the email thread shown in
Figure 1 (a). In the fragment quotation graph
structure, all paths (e.g., a-b-c, a-b-d-f, a-b-e-f,
and a-b-e-g in Figure 1 (b)) capture the adjacent
relationships between email fragments. Hence,
we use every path that can be derived from the
graph as our dataset. However, in this case, when
we run the labeling task on these paths, we ob-
tain multiple labels for some of the sentences
because the sentences in fragments such as ‘a’,
‘b’, and ‘f* in Figure 1 (b) are shared among
multiple paths. Therefore, to assign a label to one
of these sentences, we take the label more fre-
quently assigned to that sentence when all its
paths are considered (i.e., the majority vote).

4  Features

For both dialogue act modeling and extractive
summarization, many effective sentence features
have been discovered so far. Interestingly, some
common features are shown to be effective in
both tasks. This section explains the features
used in our model. We begin with the features
for extractive summarization and then describe
how we derive the features for dialogue act mod-
eling. All the features explained in this section,
whether they belong to extractive summarization
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or dialogue act modeling, are included in our
model.

Reply Reply

El

>a

|

Reply
(a) A possible configuration of an email conversation
(E2 and E3 reply to E1, and E4 replies to E3)

(&)
(2 000
(&

(b) An example of a fragment quotation graph

Figure 1: A fragment quotation graph derived from a
possible configuration of an email conversation

4.1 Extractive Summarization Features

The features we use for extractive summarization
are mostly from Carenini et al. (2008) and Ram-
bow et al. (2004) and have proven to be effective
on conversational data. Details of these features
are described below. Note that all sentences in an
email thread are ordered based on paths derived
from a fragment quotation graph.

Length Feature: The number of words in
each sentence.

Relative Position Feature: The number of
sentences preceding the current divided by
the total number of sentences in one path.
Thread Name Overlaps Feature: The num-
ber of overlaps of the content words between
the email thread title and a sentence.

Subject Name Overlaps Feature: The num-
ber of overlaps of the content words between
the subject of the email and a sentence.
Question Feature: A binary feature that in-
dicates whether or not a sentence has a ques-
tion mark.

CC Feature: A binary feature that indicates
whether or not an email contains CC.



Participation Dominance Feature: The
number of utterances each person makes in
one path.

Finally, we also include a simplified version of
the ClueWordScore (CWS) developed by
Carenini et al. (2007), which is listed below.

Simplified CWS Feature: The number of
overlaps of the content words that occur in
both the current and adjacent sentences in the
path, ignoring stopwords.

4.2 Dialogue Act Features

The relative positions and length features have
proven to be beneficial to both tasks (Jeong et al.,
2009; Carenini et al., 2008). Hence, these are
categorized as both dialogue acts and extractive
summarization features. In addition, we use word
and POS n-grams as our features for dialogue act
modeling. These features are extracted by the
following process explained in Carvalho et al.
(2006). However, we extend the original ap-
proach in order to further abstract n-gram fea-
tures to avoid making them too sparse to be
effective. In this section, we describe the deriva-
tion process in detail.

A multi-step approach is used to generate
word n-gram features. First, all words are tagged
with the named entity using the Stanford Named
Entity Recognizer (Finkel et al., 2005), and are
then replaced with these tags. Second, a se-
guence of word-replacement tasks is applied to
all email messages. Initially, some types of punc-
tuation marks (e.g., <>([];:. and ,) and extra
spaces are removed. Then, shortened phrases
such as “I’'m” and “We’ll” are substituted for
more formal versions such as “I am” and “We
will”. Next, other replacement tasks are per-
formed. Some of them are described in Tablel.
In the third step, unigrams and bigrams are ex-
tracted. In this paper, unigrams and bigrams refer
to all possible sequences of length one and two
terms. After extracting all unigrams and bigrams
for each dialogue act, we then compute Infor-
mation Gain Score (Forman, 2003) and select the
n-grams whose scores are in the top five greatest
on the training set. In this way, we can automati-
cally detect features that represent the character-
istics of each dialogue act. In addition to word n-
grams, we also include POS n-grams in our fea-
tures. In a similar way, we first tag each word in
sentences with POS using the Stanford POS tag-
ger (Toutanova et al., 2003). Then, for each dia-
logue act, we extract bigrams and trigrams, all of

which are scored by the Information Gain. Based
on their scores, we select the POS bigram and
trigram features whose scores are within the top
five greatest. One example of word n-gram fea-
tures for a Question dialogue act selected by this
derivation method is shown in Table 2.

Pattern Replacement

‘why’, ‘where’, ‘who’, ‘what’ ‘when’ [WWHH]
nominative pronouns [n
objective pronouns [ME]

it’, 'those', 'these', 'this', 'that' [IT]

‘will'; ‘would', ‘shall', ‘should’, 'must' [MODAL_STRONG]

‘can', 'could’, 'may’, 'might' [MODAL_WEAK]

'do', 'does’, 'did’, ‘done' [DO]
is', 'was', ‘were', 'are', 'been' 'be’, 'am' [BE]
‘after', 'before’, 'during' [AAAFTER]

‘Jack”, “Wendy” [Personal_PRONOUN]
“New York” [LOCATION]
“Acme Corp.” [ORGANIZATION]

Table 1: Some Preprocessing Replacement Pattern

Word Unigram \Word Bigram

? [MODAL_STRONG] [I]
anyone [IT]?

WWHH [DO] anyone

deny [WWHH] [BE]

[Personal _PRONOUN] [BE] [IT]

Table 2: Sample word n-grams selected as the fea-
tures for Question dialogue act

5 The Sequential Labeling Task

We use a Dynamic Conditional Random Field
(DCRF) (Sutton et al., 2004) for labeling tasks.
A DCRF is a generalization of a linear-chain
CRF which allows us to represent complex inter-
action between labels. To be more precise, it is a
conditionally-trained undirected graphical model
whose structure and parameters are repeated over
a sequence. Hence, it is the most appropriate
method for performing multiple labeling tasks on
the same sequence.
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Our DCRF uses the graph structure shown in

Figure 2 with one chain (the top X nodes) model-
ing extractive summary and the other (the middle
Y nodes) modeling dialogue acts. Each node in
the observation sequence (the bottom Z nodes)
corresponds to each sentence in a path of the
fragment quotation graph of the email thread. As
shown in Figure 2, the graph structure captures
the relationship between extractive summaries
and dialogue acts by connecting their nodes.
We use Mallet' (McCallum, 2002) to implement
our DCRF model. It uses I2-based regularization
to avoid overfitting, and a limited BFGS fitting
algorithm to learn the DCRF model parameters.
Also, it wuses tree-based reparameterization
(Wainwright et al., 2002) to compute the poste-
rior marginal, or inference.

t-2 t-1 t t+1 t+2

Figure 2: The DCRF model used to create extractive
summaries and model dialogue acts

6 Empirical Evaluations
6.1 Dataset Setup

In our experiment, the publically available BC3
corpus? (Ulrich et al., 2008) is used for training
and evaluation purposes. The corpus contains
email threads from the World Wide Web Con-
sortium (W3C) mailing list. It consists of 40
threads with an average of five emails per thread.
The corpus provides extractive summaries of
each email thread, all of which were annotated
by three annotators. Hence, we use sentences that
are selected by more than one annotator as the
gold standard summary for each conversation.

In addition, all sentences in the 39 out of 40
threads are annotated for dialogue act tags. The
tagset consists of five general and 12 specific
tags. All of these tags are based on Jeong et al.
(2009). For our experiment, considering that our
data is relatively small, we decide to use the
coarser five tag set. The details are shown in Ta-
ble 3.

! http://mallet.cs.umass.edu
2 http://www.cs.ubc.ca/nest/Ici/bc3.html

Tag Description Relative Frequency (%0)
S Statement 73.8
Q Question 7.92
R Reply 5.23
Su Suggestion 5.62
M Miscellaneous 7.46

Table 3: Dialogue act tag categories and their relative
frequency in the BC3 corpus

After removing quoted sentences and redundant
information such as senders and addresses, 1300
distinct sentences remain in the 39 email threads.
The detailed content of the corpus is summarized
in Table 4.

Total

Dataset
No. of Threads 39
No. of Sentences 1300
No. of Extractive Summary Sentences 521
No. of S Sentences 959
No. of Q Sentences 103
No. of R Sentences 68
No. of Su Sentences 73
No. of M Sentences 97

Table 4: Detailed content of the BC3 corpus
6.2 Evaluation Metrics

Here, we introduce evaluation metrics for our
joint model of extractive summarization and dia-
logue act recognition.

The CRF model has been shown to be the ef-
fective one in both dialogue act modeling and
extractive summarization (Shen et al., 2007; Kim
et al., 2010; Kim et al., 2012). Hence, for com-
parison, we implement two different CRFs, one
for extractive summarization and the other for
dialogue act modeling. When classifying extrac-
tive summaries using the CRF, we only use its
extractive summarization features. Similarly,
when modeling dialogue acts, we only use its
dialogue act features. In addition, we also com-
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pare our system with a non-sequential classifier,
a support vector machine (SVM), with the same
settings as those described above. For these im-
plementations, we use Mallet and SVM-light
package® (Joachims, 1999).

In our experiment, we first measure separate-
ly the performance of extractive summarization
and dialogue act modeling. The performance of
extractive summarization is measured by its av-
eraged precision, recall, and F-measure. For dia-
logue acts, we report the averaged-micro and
macro accuracies as well as the averaged accura-
cies of each dialogue act.

Second, we evaluate the combined perfor-
mance of extractive summarization and dialogue
act modeling tasks. In general, we are interested
in the dialogue acts in summary sentences be-
cause they can be later used as input for other
natural language processing applications such as
automatic abstractive summarization (Murray et
al., 2010). Therefore, we measure the perfor-
mance of our model with the following modified
precision (Pre’), recall (Rec’), and F-measure

(F):

r_ {No. of correctly classified sentences }

Pre' = — (1)
{No.of sentences classified as summary setences}
No. of correctly classified sentences
Rec' = { f Yy f } (2)
{No.of true summary sentences}
2XPrerxRec!
F'==——r—— ®)

Prer+Rect

where a correctly classified sentence refers to a
true summary sentence that is classified as such
and whose dialogue acts are also correctly classi-
fied.

6.3 Experiment Procedure

For all cases, we run five sets of 10-fold cross
validation to train and test the classifiers on a
shuffled dataset and calculate the average of the
results. For each cross validation run, we extract
all features following the process described in
Section 4 on the training set. When comparing
these two baselines with our model, we report p-
values obtained from a student paired t-test on
the results to determine their significance.

% http:/Avww.cs.cornell.edu/peopleftj/svm_light

6.4 Results

The performances of extractive summarization
and dialogue act modeling using the three meth-
ods are summarized in Table 5 and 6, respective-

ly.

DCRF CRF SVM
F-measure 0.485 0.428 0.397
t-test’s p-value 0.00046 | 2.5E-07
Precision 0.562 0.591 0.675
Recall 0.457 0.370 0.308

Table 5: A comparison of the extractive summariza-
tion performance of our DCRF model and the two
baselines based on precision, recall, and F-measure

DCRF | CRF SVM
Micro Accuracy 0.785 0.779 | 0.775
t-test’s p-value 0.116 | 0.036
Macro Accuracy 0.516 0.516 | 0.304
t-test’s p-value 0.950 | 5.2E-32
S Accuracy 0.901 0.892 0.999
Q Accuracy 0.832 0.809 0.465
R Accuracy 0.580 0.575 0.05
Su Accuracy 0.139 0.108 0.00
M Accuracy 0.126 0.198 0.00

Table 6: A comparison of the dialogue act modeling
performance of our DCRF model and the two base-
lines based on averaged accuracies

From Table 5, we observe that, in terms of
extractive summarization results, our DCRF
model significantly outperforms the two base-
lines. Noticeable improvements can be seen for
the recall and F-measure. In terms of F-measure,
compared with the CRF and SVM, our model
improves by 5.7% and 8.8% respectively. The p-
values obtained from the t-test indicate that our
results are statistically significantly different (p <
0.05) from those of the two baselines.

Regarding dialogue act modeling, the results
are summarized in Table 6. While no improve-
ment is shown for the micro-averaged accuracy,
our model and the CRF significantly outperform
the SVM in terms of the macro-averaged accura-
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cy. Both our model and the CRF consider the
sequential structure of the conversation, which is
not captured in the SVM model. Clearly, this
indicates that the sequential models are effective
in modeling dialogue acts due to their ability to
capture the inter-utterance relations of conversa-
tions.

Compared with the CRF, our DCRF model
outperforms it in most cases except in classifying
the ‘M’ dialogue act. However these improve-
ments are not significant as t-test of both macro
and micro-averaged accuracies indicate that the
differences are not statistically significant (p >
0.05).

Another item to be mentioned here is that the
accuracies of classifying ‘R’, ‘Su’ and ‘M’ dia-
logue acts are relatively low. This issue applies
to all classifiers and is plausibly due to the small
dataset. There are only 68, 73 and 97 sentences,
respectively, out of 1300 that are labeled as ‘R’,
‘Su’ and ‘M’ in the BC3 corpus. Since our dia-
logue act classifiers rely heavily on n-gram fea-
tures, were the data small, these features would
be too sparse to effectively represent the charac-
teristics of the dialogue acts. However, compared
with the SVM results, our joint model and the
CRF perform significantly better in classifying
these dialogue acts. This also explains why the
sequential model is preferable in dialogue act
modeling.

Note that despite the small dataset, all the
classifiers are relatively accurate in classifying
‘Q’. This is because n-gram features selected for
‘Q’ such as “?” and “WWHH’ are very specific to
this dialogue act, which makes the task of ‘Q’
classification easier compared to those of others.

Next, we discuss the result of the com-
bined performance. The performances of our
model and the two baselines are summarized in
Table 7.

DCRF CRF SVM
F-measure’ 0.352 0.324 0.292
t-test’s p-value 0.015 3.3E-05
Precision’ 0.407 0.450 0.501
Recall’ 0.335 0.280 0.227

Table 7: A comparison of the overall performance of
our DCRF model and the two baselines based on
modified precision, recall and F-measure

We see that our DCRF model significantly
outperforms the two baselines. While our model
yields the lowest Pre’ of all, its Rec’ is much
greater than the other two baselines and this
leads to its achieving the highest F’. Compared
with the CRF and SVM, the F’ obtained from
our system improves by 2.8% and 6% respec-
tively. In addition, the p-values show that the
results of our model are statistically significant
(p < 0.05) compared with those of the two base-
lines.

Overall, these experiments clearly indicate
that our model is effective in classifying both
dialogue acts and summary sentences.

7 Conclusions and Future Work

In this work, we have explored a new automated
approach for extractive summarization and dia-
logue act modeling on email threads. In particu-
lar, we have presented a statistical approach for
jointly modeling dialogue acts and extractive
summarization in a single DCRF. The empirical
results demonstrate that our approach outper-
forms the two baselines on the summarization
task without loss of performance on the dialogue
act modeling one. In the future, we would like to
extend our approach by exploiting more effective
features. We also plan to apply our approach to
different domains possessing large dataset.
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As we all know, more and more of life is now manifested online,
and many of the digital traces that are left b