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Introduction

Welcome to the SIGDIAL 2014 Conference, the 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue. The conference is held in Philadelphia, PA, USA on June 18-20th, jointly with
the 8th International Natural Language Generation (INLG) conference and immediately preceding the
52nd Annual Meeting of the Association for Computational Linguistics (ACL).

SIGDIAL continues to serve as a publication venue for research that spans many aspects of discourse
and dialogue. This year, the program included oral presentation and poster sessions on discourse,
semantics, generation, situated and multi-modal dialogue, dialogue system control and evaluation,
models of dialogue and spoken discourse and speech processing technology in dialogue. SIGDIAL
2014 also hosted a special session on the Dialogue State Tracking Challenge (DSTC), organized by Matt
Henderson, Blaise Thomson and Jason Williams. The papers related to the challenge that appear in the
proceedings were submitted and reviewed as regular SIGDIAL papers. Papers not accepted through the
regular review process are not included in the proceedings, but were still invited to present posters in the
special session. This is the first year SIGDIAL has issued a general call for special sessions.

We received 67 submissions—43 long papers, 20 short papers and 4 demo descriptions—from all around
the world. All papers received 3 reviews. The members of the Program Committee did a superb job in
reviewing the submitted papers. We thank them for their advice in selecting the accepted papers and for
helping to maintain the high quality of the program. In line with the SIGDIAL tradition, our aim has
been to create a balanced program that could accommodate as many favorably rated papers as possible.

Of the 43 long paper submissions: 13 were accepted as long papers for oral presentation, 9 were accepted
as long papers for poster presentation. Of the 20 short paper submissions, 8 were accepted for poster
presentation, for a total of 17 posters. There were 4 demonstration papers accepted. 9 papers were
accepted for publication to appear in the DSTC Special Session (7 long and 2 short). This year’s
SIGDIAL conference runs 2.5 days as it did in 2013 with the special session being on the final half
day.

We particularly thank the two keynote speakers, Lillian Lee (Cornell University) and Steve Young
(Cambridge University) and for their contributions to research on discourse and dialogue systems.

We thank Svetlana Stoyanchev, Mentoring Chair for SIGDIAL 2014, for her dedicated work on
coordinating the mentoring process. The goal of mentoring is to assist authors of papers that contain
important ideas but lack clarity. Mentors work with the authors to improve English language usage or
paper organization. This year, 9 of the accepted papers were mentored. We thank the Program Committee
members who served as mentors: Timo Baumann, Giuseppe Di Fabbrizio, Jens Edlund, Annie Louis,
Vincent Ng, Antoine Raux, Kristina Striegnitz, Nigel Ward and Jason Williams.

We extend special thanks to Keelan Evanini, the local arrangements chair, and his team Heather
Blackman (administrative support) and Denise Maurer (event planning). SIGDIAL 2014 would not
have been possible without Keelan and his team, who invested much effort in arranging the hotel venue
and accommodation, handling registration, making banquet arrangements and handling numerous other
preparations for the conference. We also thank the student volunteers for on-site assistance.

We thank Giuseppe Di Fabbrizio, Sponsorships Chair, for recruiting and liaising with our conference
sponsors. The sponsorship program enables valuable aspects of the program, such as the invited speakers,
conference reception and dinner. We gratefully acknowledge the support of our sponsors: Educational
Testing Service, Microsoft Research, Amazon.com, Yahoo! Labs, Honda Research Institute, Linguistic
Data Consortium, Mitsubishi Electric Research Laboratories, University of Pennsylvania Linguistics
Department, AT&T Labs Research, PARLANCE project and SENSEI project. We also thank Priscilla
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Rasmussen at the ACL for handling the financial aspects of sponsorship for SIGDIAL 2014.

We would also like to thank the INLG organizing committee, in particular Aoife Cahill and Margaret
Mitchell, for the smooth running of the joint INLG/SIGDIAL session.

We also thank the SIGdial board, especially officers Kristiina Jokinen, Amanda Stent and Jason Williams,
for their advice and support. Amanda’s guidance and direct help in all aspects of organization have been
most valuable. We thank Jason Williams and Barbara Di Eugenio for providing continuity and passing
on advice derived from their experience as program chairs for SIGDIAL 2013. We appreciate Jason’s
prompt and patient replies to all our questions.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Kallirroi Georgila and Matthew Stone
General Co-Chairs

Helen Hastie and Ani Nenkova
Technical Program Co-Chairs
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In contrast to traditional rule-based approaches to building spoken
dialogue systems, recent research has shown that it is possible to imple-
ment all of the required functionality using statistical models trained
using a combination of supervised learning and reinforcement learning.
This approach to spoken dialogue is based on the mathematics of par-
tially observable Markov decision processes (POMDPs) in which user
inputs are treated as observations of some underlying belief state, and
system responses are determined by a policy which maps belief states
into actions.

Virtually all current spoken dialogue systems are designed to op-
erate in either a specific carefully defined domain such as restaurant
information and appointment booking, or they have very limited con-
versational ability such as in Siri and Google Now. However, if voice is
to become a significant input modality for accessing web-based infor-
mation and services, then techniques will be needed to enable conver-
sational spoken dialogue systems to operate within open domains.

This talk will discuss methods by which current statistical approaches
to spoken dialogue can be extended to cover much wider domains. It
will be argued that unlike many other areas of machine learning, spoken
dialogue systems always have a user on-hand to provide supervision.
Hence spoken dialogue systems provide a unique opportunity to auto-
matically adapt on large quantities of speech data without the need for
costly annotation.

1



Proceedings of the SIGDIAL 2014 Conference, pages 2–11,
Philadelphia, U.S.A., 18-20 June 2014. c©2014 Association for Computational Linguistics

Crowdsourcing Street-level Geographic Information Using a 

Spoken Dialogue System 

 

 

 Raveesh Meena Johan Boye Gabriel Skantze Joakim Gustafson 

KTH Royal Institute of Technology 

School of Computer Science and Communication  

Stockholm, Sweden 

{raveesh, jboye}@csc.kth.se, {gabriel, jocke}@speech.kth.se 

 

  

 

Abstract 

We present a technique for crowd-

sourcing street-level geographic infor-

mation using spoken natural language. In 

particular, we are interested in obtaining 

first-person-view information about what 

can be seen from different positions in 

the city. This information can then for 

example be used for pedestrian routing 

services. The approach has been tested in 

the lab using a fully implemented spoken 

dialogue system, and has shown promis-

ing results. 

1 Introduction 

Crowdsourcing is increasingly being used in 

speech processing for tasks such as speech data 

acquisition, transcription/labeling, and assess-

ment of speech technology, e.g. spoken dialogue 

systems (Parent & Eskenazi, 2011). However, 

we are not aware of any attempts where a dia-

logue system is the vehicle for crowdsourcing 

rather than the object of study, that is, where a 

spoken dialogue system is used to collect infor-

mation from a large body of users.  A task where 

such crowdsourcing dialogue systems would be 

useful is to populate geographic databases. While 

there are now open databases with geographic 

information, such as OpenStreetMap (Haklay & 

Weber, 2008), these are typically intended for 

map drawing, and therefore lack detailed street-

level information about city landmarks, such as 

colors and height of buildings, ornamentations, 

facade materials, balconies, conspicuous signs, 

etc. Such information could for example be very 

useful for pedestrian navigation (Tom & Denis, 

2003; Ross et al., 2004). With the current grow-

ing usage of smartphones, we might envisage a 

community of users using their phones to con-

tribute information to geographic databases, an-

notating cities to a great level of detail, using 

multi-modal method including speech. The key 

reason for using speech for map annotation is 

convenience; it is easy to talk into a mobile 

phone while walking down the street, so a user 

with a little experience will not be slowed down 

by the activity of interacting with a database. 

This way, useful information could be obtained 

that is really hard to add offline, sitting in front 

of one’s PC using a map interface, things like: 

Can you see X from this point? Is there a big 

sign over the entrance of the restaurant? What 

color is the building on your right? 

Another advantage of using a spoken dialogue 

system is that the users could be asked to freely 

describe objects they consider important in their 

current view. In this way, the system could learn 

new objects not anticipated by the system de-

signers, and their associated properties.   

In this paper we present a proof-of-concept 

study of how a spoken dialogue system could be 

used to enrich geographic databases by 

crowdsourcing. To our knowledge, this is the 

first attempt at using spoken dialogue systems 

for crowdsourcing in this way. In Section 2, we 

elaborate on the need of spoken dialogue systems 

for crowdsourcing geographic information. In 

Section 3 we describe the dialogue system im-

plementation. Section 4 presents our in-lab 

crowdsourcing experiment. We present an analy-

sis of crowd-sourced data in Section 5, and dis-

cuss directions for future work in Section 6. 

2 The pedestrian routing domain 

Routing systems have been around quite some 

time for car navigation, but systems for pedestri-
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an routing are relatively new and are still in their 

nascent stage (Bartie & Mackaness, 2006; Krug 

et al., 2003; Janarthanam et al., 2012; Boye et al., 

2014). In the case of pedestrian navigation, it is 

preferable for way-finding systems to base their 

instructions on landmarks, by which we under-

stand distinctive objects in the city environment. 

Studies have shown that the inclusion of land-

marks into system-generated instructions for a 

pedestrian raises the user’s confidence in the sys-

tem, compared to only left-right instructions 

(Tom & Denis, 2003; Ross et al., 2004).  

Basing routing instructions on landmarks 

means that the routing system would, for exam-

ple, generate an instruction “Go towards the red 

brick building” (where, in this case, “the red 

brick building” is the landmark), rather than 

“Turn slightly left here” or “Go north 200 me-

ters”. This strategy for providing instructions 

places certain requirements on the geographic 

database: It has to include many landmarks and 

many details about them as well, so that the sys-

tem can generate clear and un-ambiguous in-

structions. However, the information contained 

in current databases is still both sparse and 

coarse-grained in many cases.  

Our starting point is a pedestrian routing sys-

tem we designed and implemented, using the 

landmark-based approach to instruction-giving 

(Boye et al., 2014). The system performs visibil-

ity calculations whenever the pedestrian ap-

proaches a waypoint, in order to compute the set 

of landmarks that are visible for the user from his 

current position. OpenStreetMap (Haklay & We-

ber, 2008) is used as the data source. Figure 1 

shows a typical situation in pedestrian routing 

session. The blue dot indicates the user’s position 

and the blue arrow her direction. Figure 2 shows 

the same situation in a first-person perspective. 

The system can now compute the set of visible 

landmarks, such as buildings and traffic lights, 

along with distances and angles to those land-

marks. The angle to a building is given as an in-

terval in degrees relative to the direction of the 

user (e.g. 90° left to 30° left). This is exemplified 

in Figure 1, where four different buildings are in 

view (with field of view marked with numbers 

1–4). Landmarks that are not buildings are con-

sidered to be a single point, and hence the rela-

tive angle can be given as a single number. 

When comparing the map with the street view 

picture, it becomes obvious that the “SEB” bank 

office is very hard to see and probably not very 

suitable to use as a landmark in route descrip-

tions. On the other hand, the database does not 

contain the fact that the building has six stories 

and a façade made of yellow bricks, something 

that would be easily recognizable for the pedes-

trian. This is not due to any shortcoming of the 

OpenStreetMap database; it just goes to show 

that the database has been constructed with map 

drawing in mind, rather than pedestrian routing. 

There are also some other notable omissions in 

the database; e.g. the shop on the corner, visible 

right in front of the user, is not present in the da-

tabase. Since OpenStreetMap is crowd-sourced, 

there is no guarantee as to which information 

will be present in the database, and which will 

not. This also highlights the limitation of existing 

approaches to crowd-sourcing geographic infor-

mation: Some useful information is difficult to 

add off-line, using a map interface on a PC. On 

the other hand, it would be a straightforward 

matter given the kind of crowd-sourcing spoken 

dialogue system we present next. 

 

 
 

Figure 1: A pedestrian routing scenario 

  

 
 

Figure 2: The visual scene corresponding to the 

pedestrian routing scenario in Figure 1 

3 A dialogue system for crowd-sourcing 

To verify the potential of the ideas discussed 

above, we implemented a spoken dialogue sys-

tem that can engage in spoken conversation with 
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users and learn details about landmarks in visual 

scenes (such as Figure 2). To identify the kind of 

details in a visual scene that the system could 

potentially ask the users, we first conducted a 

preliminary informal crowd-sourcing dialogue: 

one person (the receiver), was instructed to seek 

information that could be useful for pedestrian 

navigation from the other person (the giver).  

The receiver only had access to information 

available in the maps from OpenStreetMap, as in 

Figure 1, but without any marking of field of 

views, whereas the giver only had access to the 

corresponding visual scene (as in Figure 2). In-

teraction data from eight such dialogues (from 

four participants, and four different visual 

scenes) suggested that in a city environment, 

buildings are prominent landmarks and much of 

the interaction involves their properties such as 

color, number of stories, color of roof, signs or 

ornamentations on buildings, whether it has 

shops, etc. Seeking further details on mentioned 

signs, shops, and entities (whether mapped or 

unmapped) proved to be a useful strategy to ob-

tain information. We also noted that asking for 

open-ended questions, such as “Is there anything 

else in this scene that I should be aware of?” 

towards the end has the potential of revealing 

unknown landmarks and details in the map.  

Obtaining specific details about known objects 

from the user corresponds to slot-filling in a dia-

logue system, where the dialogue system seeks a 

value for a certain slot (= attribute). By engaging 

in an open-ended interaction the system could 

also obtain general details to identify new slot-

value pairs. Although slots could be in some cas-

es be multi-valued (e.g., a building could have 

both color red and yellow), we have here made 

the simplifying assumption that they are single 

valued. Since users may not always be able to 

specify values for slots we treat no-value as a 

valid slot-value for all type of slots.  

We also wanted the system to automatically 

learn the most reliable values for the slots, over 

several interactions. As the system interacts with 

new users, it is likely that the system will obtain 

a range of values for certain slots. The variability 

of the answers could appear for various reasons: 

users may have differences in perception about 

slot-values such as colors, some users might 

misunderstand what building is being talked 

about, and errors in speech recognition might 

result in the wrong slot values. Some of these 

values may therefore be in agreement with those 

given by other users, while some may differ 

slightly or be in complete contradiction. Thus the 

system should be able to keep a record of all the 

various slot-values obtained (including the dis-

puted ones), identify slot-values that need to be 

clarified, and engage in a dialogue with users for 

clarification. 

In view of these requirements, we have de-

signed our crowd-sourcing dialogue system to be 

able to (1) take and retain initiative during the 

interactions for slot-filling, (2) behave as a re-

sponsive listener when engaging in open-ended 

dialogue, and (3) ask wh– and yes–no questions 

for seeking and clarifying slot-values, respective-

ly. Thus when performing the slot-filling task, 

the system mainly asks questions, acknowledges, 

or clarifies the concepts learned for the slot-

values. Apart from requesting repetitions, the 

user cannot ask any questions or by other means 

take the initiative. A summary of all the attrib-

utes and corresponding system prompts is pre-

sented in Appendix A. 

The top half of Figure 3 illustrates the key 

components of the dialogue system. The Dia-

logue Manager queries the Scene Manager (SM) 

for slots to be filled or slot-values to be clarified, 

engages in dialogue with users to learn/clarify 

slot-values, and informs the SM about the values 

obtained for these slots. The SM manages a list 

of scenes and the predefined slots – for each type 

of landmark in visual scenes – that need to be 

filled, maintains a record of slot-values obtained 

from all the users, and identifies slot-values with 

majority vote as the current reliable slot-value. 

To achieve these objectives, the scene manager 

uses an XML representation of visual scenes. In 

this representation, landmarks (e.g., buildings, 

junctions, etc.) – automatically acquired through 

the OpenStreetMap database and the visibility 

computations mentioned in Section 2  – are 

stored as scene-objects (cf. Figure 4). 

 

 
 

Figure 3: Dialogue system architecture 

 

The Dialogue Manager (DM) uses scene-

object attributes, such as type, angle or interval 

of a building, to generate referential expressions, 

such as “Do you see a building on the far left?” 
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or “Do you see a shop on the left?” to draw the 

users’ attention to the intended landmark in the 

scene. During the course of interaction, the Sce-

ne Manager (SM) extends scene-objects with a 

set of predefined attributes (= slots) that we iden-

tified in the preliminary study, along with their 

various slot-values (cf. Figure 5). For each slot, 

the SM keeps a record of slot-values obtained 

through wh– questions as well as the ones dis-

puted by the users in yes–no questions (cf. ob-

tained and disputed tags in the XML), and 

uses their tally to identify the slot-value in major-

ity. The system assumes this slot-value (or one of 

them in case of a tie) as its best estimate of a 

slot-value pair, which it could clarify with anoth-

er user using a yes–no query. During the slot-

filling mode the DM switches to open-ended in-

teraction mode to seek general details (using 

prompts such as “Could you describe it/them?”), 

if the user suggests/agrees that there are signs 

on/at a scene-object, or a building has shops or 

restaurants. Once all the slots for all the scene-

objects in a visual scene have been queried, the 

DM once again switches to the open-ended inter-

action mode and queries the users whether there 

are any other relevant signs or landmarks that the 

system may have missed and should be aware of. 

On completion of the open-ended queries the SM 

selects the next visual scene, and the DM engag-

es in a new dialogue.  

 
<scene xmlns="cityCS.scene" name=" view7.jpg" lat="59.34501" 

lon="18.0614" fovl="-60" fovr="60" bearing="320" dist="100"> 

    <scene-object> 

        <id>35274588</id> <type>building</type> 

        <from>-60</from> <end>-39</end> 

    </scene-object> 

    <scene-object> 

        <id>538907080</id> <type>shop</type> 

        <distance>34.82</distance> 

        <angle>-39</angle> <bearing>281</bearing> 

    </scene-object> 

    <scene-object> 

        <id>280604</id> <type>building</type> 

        <from>-38</from> <end>6</end> 

    </scene-object> 

    <scene-object> 

        <id>193906</id> <type>traffic_signals</type> 

        <distance>40.77</distance> 

        <angle>-14</angle> <bearing>306</bearing> 

    </scene-object> 

    ... 

</scene> 

Figure 4: XML representation of visual scenes 

 

For speech recognition and semantic interpre-

tation the system uses a context-free grammar 

with semantic tags (SRGS
1
), tailored for the do-

main. The output of semantic interpretation is a 

concept. If the concept type matches the type of 

the slot, the dialogue manager informs the scene 

manager about the obtained slot-value. If the 

                                                 
1
 http://www.w3.org/TR/speech-grammar/ 

concept type is inappropriate the DM queries the 

user once more (albeit using different utterance 

forms). If still no appropriate concept is learned 

the DM requests the SM for the next slot and 

proceeds with the dialogue. For speech synthesis, 

we use the CereVoice system developed by 

CereProc
2
. The dialogue system has been imple-

mented using the IrisTK framework (Skantze & 

Al Moubayed, 2012). 
 
<scene-object> 

    <id>35274588</id> <type>building</type> 

    <from>-60</from> <end>-39</end> 

    <slot slotName="VISIBLE">…    </slot> 

    <slot slotName="COLOR"> 

     <obtained> 

       <value slotValue="Green"> 

         <userlist> 

           <usrDtls uid="u01" asrCnf="0.06" qType="WH"/> 

         </userlist> 

       </value> 

       <value slotValue="no-value"> 

         <userlist> 

           <usrDtls uid="u02" asrCnf="0.46" qType ="WH"/> 

         </userlist> 

       </value> 

       <value slotValue="Gray"> 

         <userlist> 

           <usrDtls uid="u03" asrCnf="0.19" qType ="WH"/> 

         </userlist> 

       </value> 

     </obtained> 

     <disputed> 

       <value slotValue="Green"> 

         <userlist> 

           <usrDtls uid="u02" asrCnf="0.92" qType ="YN"/> 

         </userlist> 

       </value> 

     </disputed> 

    </slot> 

    <slot slotName="STORIES">…    </slot> 

    <slot slotName="ROOF_COLOR">…    </slot> 

    … 

</scene-object> 

 

Figure 5: Every slot-value is recorded  

 

In contrast to the slot-filling mode, when en-

gaging in an open-ended interaction, the system 

leaves the initiative to the user and behaves as a 

responsive listener. That is, the system only pro-

duces feedback responses, such as backchannels 

(e.g., okay, mh-hmm, uh-huh), repetition requests 

for longer speaker turns (e.g., could you repeat 

that?), or continuation prompts such as “any-

thing else?” until the user is finished speaking. 

Unless the system recognized an explicit closing 

statement from the user (e.g., “I can’t”), the sys-

tem encourages the user to continue the descrip-

tions for 2 to 4 turns (chosen randomly). 

To detect appropriate locations in users’ 

speech where the system should give feedback 

response, the system uses a trained data-driven 

model (Meena et al., 2013). When the voice ac-

tivity detector detects a silence of 200 ms in us-

ers’ speech, the model uses prosodic, contextual 

and lexico-syntactic features from the preceding 

speech segment to decide whether the system 

                                                 
2
 https://www.cereproc.com/ 
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should produce a feedback response. The lower 

half of Figure 3 shows the additional components 

of the dialogue system used in open-ended inter-

action mode. In this mode, the ASR system uses 

a language model that is trained on interactions 

from a related domain (verbal route descrip-

tions), in parallel to the SRGS grammar.  

4 In-lab crowd-sourcing experiment  

Nine visual scenes (wide-angle pictures in first-

person perspective and taken in Stockholm city, 

cf. Figure 2) were used for the task of 

crowdsourcing. Fifteen human participants (4 

females and 11 males) participated in the 

crowdsourcing exercise. All participants either 

studied or worked at the School of Computer 

Science and Communication, KTH, Stockholm. 

Participants were placed in front of a computer 

display and were told that the system will engage 

them in a spoken conversation to seek or clarify 

details about landmarks and other objects in vis-

ual scenes. They were told that the details would 

be used for pedestrian routing and therefore they 

are free to choose and specify details (in open-

ended questions) that they thought would be use-

ful when giving route instructions to another per-

son. 

Each participant did the nine visual scenes in 

the same order, with a 1 minute pause between 

each of them. The first visual scene was used as 

a trial in order to familiarize participants with the 

interaction scenario. For this reason, the trial in-

teraction was specifically designed to engage the 

participants in both wh– and yes–no type ques-

tions. We also wanted to investigate whether the 

use of wh– or yes–no questions alone has any 

impact on the interactions. For the remaining 

eight interactions, the dialogue system therefore 

alternatively used wh– and yes–no questions 

throughout the whole dialogue. The order of que-

ry types was switched for each successive partic-

ipant. Thus visual scenes presented with wh– 

queries to a participant pi were presented to par-

ticipant pi+1 with only yes–no queries, and vice-

versa. After each interaction participants were 

asked (1) whether the system appeared to be fa-

miliar with the visual scene; and (2) whether the 

interactions went smoothly. 

An example of a conversation with wh–type 

queries is presented in Table 1. The second col-

umn indicates the various types of utterances 

(dialogue acts) used by the system during this 

interaction. Note that during the slot-filling 

mode, the system has the initiative, whereas in 

the open-ended queries (cf. rows 15–22 in Table 

1) the system gives the initiative to the partici-

pant and only produces feedback responses. Ta-

ble 2 presents a conversation with yes–no queries 

following the conversation in Table 1. In a con-

versation with only yes–no  queries, a wh– query 

may be presented if a slot has been observed 

with no-value (cf. rows 9–10 in Table 1) or when 

the participant disputes the system’s current best 

estimate (cf. rows 6–9 in Table 2).  

 
S Introduction Could you help me with some de-

tails about this view? 

P  Yes 

S wh– query Do you see a building on the far 
left? 

P  Yes 

S Backchannel Mh-hmm 

S wh– query What color does the building have? 

P  Cream color [Green color] 

S Reprise Green 

S wh– query How many floors is this building? 

P  I don’t know [I do no] 

 …  

S wh– query Are there any important signs in 
this scene that I may have missed? 

P  No 

S Backchannel Uh-huh 

S wh– query Is there anything peculiar in this 
scene that I should be familiar with 

P  There is a bike painted on street 
just in front of me 
[ is the right pink university in front 
of may ] 

S Backchannel Anything else? 

P  Yeah its white paint [Yes light pink] 

S Backchannel Mh-hmm 

P  That’s it [that that] 

S Backchannel Ehm 

P  I am done [okay] 

S Ending Okay, thanks 

 

Table 1: An example interaction with wh– que-

ries for the visual scene in Figure 2. S: system, P: 

participant (here, u01 from Figure 5). ASR re-

sults are shown within square brackets. 
 

S Introduction Could you help me with some details 
about this view? 

P  Yes 

S yes–no  
query 

Is the building on the far left visible to 
you? 

P  Yes 

S Backchannel Mh-hmm 

S yes–no  
query 

Does this building have green color? 

P  No 

S Backchannel Uh-huh 

S wh– query But than what color is the building? 
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P  white [light] 

S Repeat Sorry, what color did you say? 

P  white [light] 

S wh– query How many stories is this building? 

P  I don’t know [I do rental] 

S Backchannel Ehm 

 …  

S wh– query Are there any important signs in this 
scene that I may have missed? 

P  Ehm no [nine no] 

S Backchannel Ehm 

S yes–no  
query 

I am informed that there are other 
important landmarks or structures in 
this scene that I should be aware of, 
is it true? 

P  No 

S Backchannel uh-huh 

S Ending Okay, thanks 

 

Table 2: An example interaction with yes–no 

queries corresponding to the visual scene in Fig-

ure 2. S: system, P: participant (here u02 from 

Figure 5). ASR results are shown within square 

brackets. 

5 Data analysis 

We analyzed the data (15 8 interactions) col-

lected from the experiment along the following 

tracks: first, we compare the majority value of 

the slots to the ground truth as given by a human 

annotator; second, we explore how the ground 

truth of slot-values could be estimated automati-

cally; third, we also analyzed the instances where 

the participants disputed the system’s current 

estimate of slot-values; and fourth, we examined 

the post-experimental questionnaires.  

5.1 Rate of learning slot-values 

A total of 197 slots were learned in the exper-

iment. We analyzed how many slot-values had 

been correctly retrieved after 1, 2… 15 users. In 

Figure 6, the curve “Majority” illustrates the 

fraction of slot-values correctly learned with 

each new user, under the assumption that the 

slot-values with majority votes – from all the 15 

users – constitute the ground truth. Thus after 

interacting with the first user the system had ob-

tained 67.0% of slot-values correctly (according 

to the majority) and 96.4% of slot-values after 

interacting with the first six users. Another eight 

users, or fourteen in total, were required to learn 

all the slot-values correctly. The progression 

curve thus provides an estimate of how many 

users are required to achieve a specific percent-

age of slot-values correctly if majority is to be 

considered the ground truth. The curve “Not-in-

Majority” indicates the number of slot with val-

ues that were not in the majority. Thus after in-

teracting with the first user 20.8% of slot-values 

the system had obtained were not in majority and 

could be treated as incorrect. Note that the curves 

Majority and Not-in-Majority do not sum up to 

100%, this is because we consider no-value as a 

valid slot-value, and treat the slot as unfilled. For 

example, 12.2% of the slots remained unfilled 

after interacting with the first user.  

 

 
 
Figure 6: Rate of learning slot-values with two differ-

ent estimates of ground truth 

 

We also investigated how close the majority is 

to the actual truth. A human annotator (one of the 

coauthors) labeled all the obtained slot-values as 

either sensible or insensible, based on the com-

bined knowledge from the corresponding maps, 

the visual scenes, and the set of obtained values. 

Thus a slot could have many sensible values. For 

example, various parts of a building could be 

painted in different colors. The progression 

curves “Sensible” and “Insensible” in Figure 6 

illustrate the fraction of total slots for which the 

learned values were actually correct and incor-

rect, respectively. While the curve for sensible 

values follows the same pattern as the progres-

sion curve for majority as the estimate of ground 

truth, the percent of slot-values that were actually 

correct is always lower than the majority as 

ground truth, and it never reached 100%. The 

constant gap between the two curves suggests 

that some slot-values learned by the majority 

were not actually the ground truth. What led the 

majority into giving incorrect slot-values is left 

as a topic for future work. 

As mentioned earlier, much of the slot-filling 

interaction involved buildings and their proper-

ties. Figure 7 illustrates that sensible values for 

most slots, pertaining to whether a building is 

visible, whether it is residential, whether it has 

shops, and the color of roof were obtained by 

interacting with only few participants. In con-

trast, properties such as color of the building and 
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number of stories required many more partici-

pants. This could be attributed to the fact that 

participants may have differences in perception 

about slot-values. As regards to whether there are 

signs on buildings, we observed that the recall is 

relatively low. This is largely due to lack of 

common ground among participants about what 

could be considered a sign. Our intentions with 

designing this prompt was to retrieve any peculi-

ar detail on the building that is easy to locate: for 

us a sign suggesting a name of restaurant is as 

useful as the knowledge that the building has 

blue sunshade on the windows. Some partici-

pants understood this while other didn’t. 

 

 
 

Figure 7: Learning rate of various slots for land-

mark type building  

5.2 Estimated ground truth of slot-values 

The 15 subjects in the in-lab experiment were all 

asked for the same information. In a real applica-

tion, however, we want the system to only ask 

for slots for which it has insufficient or conflict-

ing information. If the ground truth of a certain 

slot-value pair can be estimated with a certainty 

exceeding some threshold (given the quality re-

quirements of the database, say 0.8), the system 

can consider the matter settled, and need not ask 

about that slot again. We therefore want to esti-

mate the ground truth of slot-values along with a 

certainty measure. To this end, we use the 

CityCrowdSource Trust software package 

(Dickens & Lupu, 2014), which is based on the 

probabilistic approach for supervised learning 

when we have multiple annotators providing la-

bels (possibly noisy) but no absolute gold stand-

ard, presented in Raykar et al. (2009). 

Using this approach, a question concerning the 

color of a building, say with ID 24, (e.g. “What 

color is the building?”) would be translated into 

several binary predicates COLOR_Red(24), 

COLOR_Brown(24), COLOR_Orange(24), etc. 

The justification for this binary encoding is that 

the different color values are not mutually exclu-

sive: A building might of course have more than 

one color, and in many cases more than one color 

name might be appropriate even though the 

building has only one dominating color (e.g. to 

describe the color either as “brown” and “red” 

might be acceptable to most people). Figure 8 

shows the incremental estimates for different 

colors for a certain building (OpenStreetMap ID 

163966736) after 1, 2… 15 subjects had been 

asked. The answer from the first subject was er-

roneously recognized as “pink”. The next 9 sub-

jects all referred to the building as “brown”. 

Among the final subjects, 3 subjects referred to 

building as “red”, and 2 subjects as “brown”. The 

final truth estimates are 0.98 for “brown”, 0.002 

for “red”, and 0.00005 for “pink”. The diagram 

shows that if the certainty threshold is set to 0.8, 

the value “brown” would have been established 

already after 4 subjects. 

 

 
 

Figure 8: Probabilities of different estimated ground 

truth values for the color of a certain building 

5.3 Disputed slot-values 

We also examined all system questions of 

yes–no type that received negative answers, i.e. 

instances where the participants disputed the sys-

tem’s current best estimate (based on majority 

vote) of a slot-value. Among the 95 such in-

stances, the system’s current best estimate was 

actually insensible only on 43 occasions. In 30 of 

these instances the participants provided a recti-

fied slot-value that was sensible. For the remain-

ing 13 instances the new slot-values proposed by 

the participant were actually insensible. There 

were 52 instances of false disputations, i.e. the 

system’s current estimate of a slot-value was 

sensible, but the participants disputed it. 6 of the-

se occurrences were due to errors in speech 

recognition, but for the remaining 46 occasions, 

error in grounding the intended landmark (15), 

users’ perception of slot-values (3), and ambigui-

ty in what the annotator terms as sensible slot-

values (28), (e.g. whether there are signs on a 

building (as discussed in Section 5.1)) were iden-
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tified as the main reasons. This suggests that 

slots (i.e. attributes) that are often disputed may 

not be easily understood by users. 

5.4 Post-experimental questionnaire 

As described above, the participants filled in a 

questionnaire after each interaction. They were 

asked to rate the system’s familiarity with the 

visual scene based on the questions asked. A 

Mann–Whitney U test suggests that participants’ 

perception of the system’s familiarity with the 

visual scene was significantly higher for interac-

tions with yes–no queries than interactions with 

wh– queries (U=1769.5, p= 0.007). This result 

has implications for the design choice for sys-

tems that provide as well as ask for information 

from users. For example, a pedestrian routing 

system can already be used to offer routing in-

structions as well as crowdsourcing information. 

The system is more likely to give an impression 

of familiarity with the surrounding, to the user, 

by asking yes–no type questions than wh–

questions. This may influence a user’s confi-

dence or trust in using the routing system.  

Since yes–no questions expect a “yes” or 

“no” in response, we therefore hypothesized that 

interactions with yes–no questions would be per-

ceived smoother in comparison to interactions 

with wh– questions. However, a Mann–Whitney 

U test suggests that the participants perceived no 

significant difference between the two interac-

tion types (U=1529.0, p= 0.248). Feedback 

comments from participants suggest that abrupt 

ending of open-ended interactions by the system 

(due to the simplistic model of detecting whether 

the user has anything more to say) gave users an 

impression that the system is not allowing them 

to speak. 

6 Discussion and future work 

We have presented a proof-of-concept study on 

using a spoken dialogue system for crowd-

sourcing street-level geographic information. To 

our knowledge, this is the first attempt at using 

spoken dialogue systems for crowdsourcing in 

this way. The system is fully automatic, in the 

sense that it (i) starts with minimal details – ob-

tained from OpenStreetMap – about a visual sce-

ne, (ii) prompts users with wh– questions to ob-

tain values for a predefined set of attributes; and 

(iii) assumes attribute-values with majority vote 

as its beliefs, and engages in yes–no questions 

with new participants to confirm them. In a data 

collection experiment, we have observed that 

after interacting with only 6 human participants 

the system acquires more than 80% of the slots 

with actually sensible values. 

We have also shown that the majority vote (as 

perceived by the system) could also be incorrect. 

To mitigate this, we have explored the use of the 

CityCrowdSource Trust software package 

(Dickens & Lupu, 2014) for obtaining the proba-

bilistic estimate of the ground truth of slot-values 

in a real crowd-sourcing system. However, it is 

important not only to consider the ground truth 

probabilities per se, but also on how many con-

tributing users the estimate is based and the qual-

ity of information obtained. We will explore the-

se two issues in future work. 

We have observed that through open-ended 

prompts, the system could potentially collect a 

large amount of details about the visual scenes. 

Since we did not use any automatic interpretation 

of these answers, we transcribed key concepts in 

participants’ speech in order to obtain an esti-

mate of this. However, it is not obvious how to 

quantify the number of concepts. For example, 

we have learned that in Figure 2, at the junction 

ahead, there is: a traffic-sign, a speed-limit sign, 

a sign with yellow color, a sign with red color, a 

sign with red boarder, a sign that is round, a sign 

with some text, the text says 50. These are details 

obtained in pieces from various participants. 

Looking at Figure 2 one can see that these pieces 

when put together refer to the speed-limit sign 

mounted on the traffic-signal at the junction. 

How to assimilate these pieces together into a 

unified concept is a task that we have left for fu-

ture work. 
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Appendix A 

The table below lists slots (= landmark attributes) and the corresponding wh– and yes–no system questions. For 

attributes marked with * the dialogue manager switches to open-ended interaction mode. 

 

Slot (=attribute ) System wh– questions System yes–no questions 

Visible: whether a particular 

landmark is visible from this 

view. 

 Do you see a building on the far left? 

 Do you see another building in front of 

you? 

 Is there a junction on the right? 

 Do you see a traffic-signal ahead? 

 Is the building on the far right visible to 

you? 

 I think there is another building in front of 

you, do you see it? 

 Can you see the junction on the right? 

 Are you able to see the traffic-signal 

ahead? 

Color of the building 
 What color does the building have? 

 What color is the building? 

 I think this building is red in color, what do 

you think? 

 Does this building have red color? 

Size of the building (in num-

ber of stories) 

 How many floors do you think are 

there in this building 

 How many stories is this building 

 I think there are six floors in this building, 

what do you think? 

 Is this building six storied? 

Color of the building’s roof 

 What color does the roof of this build-

ing have? 

 What color is the roof of this building? 

 I think the roof of this building is orange in 

color, what do you think? 

 Do you think that the roof of this building 

is orange? 

Signs or ornamentation on the 

building 
 Do you see any signs or decorations 

on this building? 

 I think there is a sign or some decoration 

on this building, do you see it? 

 There may be a sign or a name on this 

building, do you see it? 

Shops or restaurants in the 

building 
 Are there any shops or restaurants in 

this building? 

 I am informed that there are some shops or 

restaurants in this building, is it true? 

 I think there are some shops or restaurants 

in this building, what do you think? 

Signs at landmarks 
 Are there any important signs at the 

junction/crossing? 

 I believe there is a sign at this junc-

tion/crossing, do you see it? 

 Do you see the sign at this junc-

tion/crossing? 

*Description of sign  

 Could you describe this sign? 

 What does this sign look like? 

 Does the sign say something? 

 Could you describe this sign? 

 What does this sign look like? 

 Does the sign say something? 

*Signs in the visual scene 

 

 Are there any important signs in this 

scene that I may have missed? 

 Have I missed any relevant signs in 

this scene? 

 There are some important signs in this 

scene that could be useful for my 

knowledge, am I right? 

 I am informed that there are some signs in 

this scene that are relevant for me, is it 

true? 

*Landmarks in the visual sce-

ne 

 

 Are there any other important build-

ings or relevant structures in this scene 

that I should be aware of? 

 Is there anything particular in this 

scene that I should be familiar with? 

 Have I missed any relevant buildings 

or landmarks in this scene? 

 I am informed that there are some im-

portant landmarks or structures in this sce-

ne that I should be aware of, is it true? 

 I have been told that there are some other 

things in this scene that I are relevant for 

me, is it true? 

 I believe I have missed some relevant 

landmarks in this scene, am I right? 
*Description of unknown 

landmarks e.g. shop, restau-

rant, building, etc. 

 Could you describe it? 

 Could you describe them? 

 How do they look like? 

 Could you describe it? 

 Could you describe them? 

 How do they look like? 

 

11



Proceedings of the SIGDIAL 2014 Conference, pages 12–21,
Philadelphia, U.S.A., 18-20 June 2014. c©2014 Association for Computational Linguistics

Out-of-Domain Spoken Dialogs in the Car: A WoZ Study

Sven Reichel, Jasmin Sohn,
Ute Ehrlich, André Berton
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Abstract

Mobile Internet access via smartphones
puts demands on in-car infotainment sys-
tems, as more and more drivers like to ac-
cess the Internet while driving. Spoken
dialog systems (SDS) distract drivers less
than visual/haptic-based dialog systems.
However, in conversational SDSs drivers
might speak utterances which are not in
the domain of the SDS and thus cannot
be understood. In a Wizard of Oz study,
we evaluate the effects of out-of-domain
utterances on cognitive load, driving per-
formance, and usability. The results show
that an SDS which reacts as expected by
the driver, is a good approach to control in-
car infotainment systems, whereas unex-
pected SDS reactions might cause severe
accidents. We evaluate how a dialog initia-
tive switch, which guides the user and en-
ables him to reach his task goal, performs.

1 Introduction

The acceptance of smartphones is a success story.
These devices allow people to access the Internet
nearly anywhere at anytime. While driving, using
a smartphone is prohibited in many countries as it
distracts the driver. Regardless of this prohibition,
people use their smartphone and cause severe in-
juries (National Highway Traffic Safety Adminis-
tration (NHTSA), 2013). In order to reduce driver
distraction, it is necessary to integrate the smart-
phones functionality safely into in-car infotain-
ment systems. Since hands and eyes are involved
in driving, a natural and intuitive speech-based in-
terface increases road safety (Maciej and Vollrath,
2009). There are already infotainment systems
with Internet applications like e.g. weather, music
streaming, gas prices, news, and restaurant search.

However, conversational spoken dialog sys-
tems (SDS) to control all these applications and

the car’s functionality, are still missing. Cur-
rent SDSs operate mostly in specific domains and
they understand user utterances which are related
to these domains. While using natural language,
users are not restricted to specific domains. Thus
one crucial problem for them is to know which ut-
terances the system is able to understand. Peo-
ple use different approaches to solve this prob-
lem, for example by reading the manual, using on-
screen help, or relying on their mental model of
the SDS. In multi-domain SDSs, utterances can be
quite complex and remembering all of them or dis-
playing them on screen would not be possible. As
a result, as long as conversational SDSs are not
able to operate in much wider domains, sooner
or later the user will speak an utterance which is
in his mental model of the SDS, but cannot be
processed. Such utterances can be divided into
out-of-domain and out-of-application-scope (Bo-
hus and Rudnicky, 2005). We induce errors in
domain switches and not within one domain, thus
only out-of-domain utterances are considered.

In this paper, we present results from a Wizard
of Oz (WoZ) study on multi-domain interaction
with an in-car SDS to evaluate the effects of out-
of-domain utterances on driver performance. We
considered four different system reactions: suc-
cessful domain switch, misunderstanding, non-
understanding, and a dialog initiative switch. By
analyzing them concerning driver distraction and
usability, we are able to evaluate whether a dia-
log initiative switch is an appropriate response to
an out-of-domain utterance or not. The results of-
fer valuable clues for the development of multi-
domain in-car SDSs.

The remainder is structured as follows: Section
2 provides an overview of studies in this context.
Section 3 describes the domain of the study which
is shown in Section 4. Data analysis methods are
defined in Section 5. We present and discuss the
results in Section 6 and conclude in Section 7.
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2 Related Work

Driver distractions, due to secondary tasks, are
evaluated in many studies (a good overview pro-
vides Ei-Wen Lo and Green (2013)). The driver’s
performance is generally better when using speech
interfaces than manual or visual interfaces, how-
ever, interacting with an SDS is often worse than
just driving (Barón and Green, 2006). Most stud-
ies consider specific domains and do not evalu-
ate how to handle domain switches. Kun et al.
(2013) evaluated multi-threaded dialogs between
humans while driving. By interrupting a dialog,
they observed an increase of cognitive load, which
affected the driving performance negatively. The
participants were prepared that an interruption will
be initiated at some time. This means they might
be surprised, however, it won’t be as unexpected as
system reactions in response to out-of-domain ut-
terances. In this work, we evaluate a dialog initia-
tive switch, as a possible reaction to out-of-domain
utterances.

In a driving simulator study, Kun et al. (2007)
showed that low SDS recognition accuracy affects
the steering wheel angle variance negatively. This
is first evidence that in-car SDSs need to han-
dle speech recognition or language understand-
ing errors intelligently. In preliminary work to
this study, we analyzed a dataset containing dia-
log errors in relation to driving performance, mea-
sured by the lane change task (Mattes, 2003). This
showed slight evidence that dialog errors, such as
responses to out-of-domain utterances, have an in-
fluence on driving performance. However, the lane
change task is not the right driving task for such
a fine granular analysis, as drivers are only occu-
pied during a lane change and thus not constantly
at the same level. Therefore, we analyze driving
performance with the Continuous Tracking and
Reaction (ConTRe) task (Mahr et al., 2012).

3 User Tasks

In a user experiment it is crucial to set real tasks
for users, since artificial tasks will be hard to re-
member and can reduce their attention. We ana-
lyzed current in-car infotainment systems with In-
ternet access and derived eight multi-domain tasks
from their functionality (see Table 1). Since only
few natural use cases involve more than three do-
mains, every user task is a story of three subtasks.
In task number 5 for example, a user has to start
a subtask, which navigates him to Berlin. Then

he would like to search an Italian restaurant at the
destination. Finally, he adds the selected restau-
rant to his address book.

No Domain 1 Domain 2 Domain 3
1 POI Search Restaurant Call
2 Knowledge Ski Weather Navigation
3 Weather Hotel Search Address book
4 Play Artist News Search Forward by eMail
5 Navigation Restaurant Save Address
6 News Search Play Artist Share on Facebook
7 News Search Knowledge Convert Currency
8 Navigation Gas Prices Status Gas Tank

Table 1: Multi-domain user tasks.

At the beginning of a task and during a sub-
task, the SDS always reacts as it is expected by
the users, which means it answers their requests.
This increases the stress when the system suddenly
starts to react unexpectedly. After presenting the
final answer of a subtask, the user has to initiate
a domain switch. In response to domain switch-
ing utterances four different system reactions were
used (see Section 4.2.2).

4 User Experiment

Developing an SDS includes specifying a gram-
mar or training statistical language models for
speech recognition. These steps precede any real
user test. In system-initiated dialogs, with a few
possible utterances, specifying a grammar is fea-
sible. However, in strictly user-initiative dialogs
covering multiple domains, this is rather compli-
cated. A WoZ study does not require to develop
speech recognition and language understanding as
this is performed by a human (Fraser and Gilbert,
1991). In addition, the system reaction is con-
trolled and not influenced by recognition errors.
Our study requires such a controlled environment,
as an unexpected system reaction, due to a recog-
nition error, would influence the results negatively.

Driver distraction and usability ratings vary
among people and depend on age, personality, ex-
perience, context, and many more. Therefore, it
is essential to conduct a user study with people
who might use the SDS later on. A study by
the NHTSA (National Highway Traffic Safety Ad-
ministration (NHTSA), 2013) showed that 73% of
the drivers involved in fatal crashes due to cell
phone use in 2011, were less than 40 years old. For
this reason, our study considers drivers between
18 and 40 years who are technically affine and are
likely to buy a car equipped with an infotainment
system with Internet access.
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4.1 Set-Up of the Experiment

When designing a user interaction experiment, it is
important that it takes place in a real environment.
As driving on a real road is dangerous, we used
a fixed-base driving simulator in a laboratory. A
screen in front of the car covers the driver’s field
of view (see Figure 1). Steering and pedal signals
are picked from the car’s CAN bus.

It is important that the user assumes he is in-
teracting with a computer as “human-human in-
teractions are not the same as human-computer in-
teractions” (Fraser and Gilbert, 1991). The wiz-
ard, a person in charge of the experiment, was lo-
cated behind the car and mouse clicks or any other
interaction of the wizard was not audible in the
car. To ensure a consistent behavior of the wiz-
ard, we used SUEDE (Klemmer et al., 2000) to
define the dialog, which also provides an interface
for the wizard. SUEDE defines a dialog in a state
machine, in which the system prompts are states
and user inputs are edges between them. The con-
tent of system prompts was synthesized with NU-
ANCE Vocalizer Expressive1 version 1.2.1 (Voice:
anna.full). During the experiment, the wizard
clicks the corresponding edge after each user in-
put and SUEDE plays the next prompt.

Figure 1: Set-up of the experiment

4.2 Design of the Experiment

Driving a car requires the driver to focus on the
road and react appropriately to sudden events.
However, if drivers are occupied with a secondary
task, such as controlling an infotainment system,
their attention to the road might suffer. This is due
to the fact that the human’s performance is reduced
when human resources overlap (Wickens, 2008).
In this experiment, a dual task scenario is used by
driving in a simulator and interacting with an SDS
at the same time. There is no visual display in

1http://www.nuance.com/for-business/mobile-
solutions/vocalizer-expressive/index.htm

the car, as this would require additional human re-
sources and it would increase the driver distraction
(Young and Regan, 2007).

4.2.1 Primary Task: Driving Simulator
One major requirement for the driving simulator is
to ensure a controlled and comparable driver dis-
traction measure over all interaction variants and
participants. The open-source driving simulator
OpenDS provides a driving environment and ex-
tensive logging facilities (Math et al., 2012). As
explained in Section 2, it is essential to keep the
driver occupied at a constant level all the time.
Therefore, we used the ConTRe task (Mahr et al.,
2012), which consists of a continuous steering task
and a reaction task.

Figure 2 shows the ConTRe task with steering
cylinders and a traffic light. The yellow steering
cylinder moves unpredictably right and left at a
constant distance from the driver. The driver has
to steer the blue cylinder to superpose it with the
middle section of the yellow one. This is similar
to driving on a curved road. Sometimes a driver
needs to react to sudden events to prevent an acci-
dent. A traffic light shows randomly red and green
and requires the driver to push the throttle or brake
pedal. As the car drives constantly at 50km/h, the
pedals are only pushed in response to the traffic
light. The movement of the yellow cylinder and
the appearance of the traffic light can be controlled
by manipulating OpenDS’ control variables. We
used the “hard driving” condition as described by
Mahr et al. (2012).

Figure 2: Continuous tracking and reaction task

4.2.2 Secondary Task: Responses to Domain
Switching Requests

A task in our experiment consists of three subtasks
and each subtask requires two to four semantic
concepts. For a user it is possible to insert mul-
tiple concepts at once:

U: “Search an Italian restaurant at my destination”
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or as single utterances in a dialog:
U: “Search an Italian restaurant”

S: “Where do you search an Italian restaurant?”

U: “At my destination”

Prompts were created for all possible combina-
tions. SUEDE provides a GUI for the wizard to
select which semantic concepts a user input con-
tains. Depending on the selection, either another
concept is requested or the answer is provided.
Within one subtask, the system always reacts as
expected by the user. An answer for the presented
example might look like:

S: “There is one Italian restaurant: Pizzeria San Marco.”

After this, the user has to initiate a domain
switch to save the pizzeria’s address into his
personal address book. Such user-initiated do-
main switches challenge current SDSs as lan-
guage models increase and thus speech recogni-
tion as well as language understanding is error
prone (Carstensen et al., 2010). Furthermore, the
user could request a functionality which is not sup-
ported by the system. In case of such a request,
SDSs react differently and could apply error re-
covery strategies if the error is recognized. To an-
alyze the impact of error recovery strategies in the
car, we use four different kinds of responses to do-
main switching requests.

Figure 3 shows the study’s conditions. Detailed
dialogs that corresponds to them can be found
in the Appendix. First of all, we consider the
Expected Reaction (ER) condition, in which the
SDS reacts as expected by the user and switches
the domain. As the speech is recognized by a wiz-
ard, this is an optimal system without any errors.

Miscommunication can be distinguished be-
tween misunderstanding and non-understanding
(Skantze, 2007). In the MisUnderstanding (MU)
condition, the SDS does not recognize the do-
main switch request and it responses in context
of the current domain. On the contrary, in the
Non-Understanding (NU) condition, it recognizes
an out-of-domain utterance and refuses the ac-
tion by apologizing and encouraging the user to
rephrase his utterance (a combination of Bohus
and Rudnicky (2005)’s Notify and AskRephrase
error handling strategies). The only way to pro-
ceed with a MU or NU task in our experiment is to
use an explicit domain switching command, such
as “start radio application”. As we have shown
in Reichel et al. (2014), participants do not use
such commands naturally in a speech-only info-

tainment system and only use them after trying
numerous unsuccessful utterances. Another ap-
proach is a Dialog Initiative Switch (DIS) to guide
the user after recognizing an out-of-domain utter-
ance (Notify and YouCanSay strategy (Bohus and
Rudnicky, 2005)). Therefore, the SDS proposes a
choice of four possible domains to interact with.
Users have to select the first option which was fol-
lowed by four possible actions within this domain.
By selecting the desired action, the SDS reads out
four examples of possible utterances. After that,
the dialog initiative is given back to the user.

Action   

(e.g. “add restaurant”) 

Execute Refuse 

Expected 

Reaction (ER) 

Misunder-

standing (MU) 

Non-Under-

standing (NU) 

Dialog Initiative 

Switch (DIS) 

Miscommunication 

Figure 3: Domain switching response conditions

4.3 Procedure of the experiment
The experiment starts with an initial questionnaire
to create a profile of the participant, concerning
age, experience with smartphones, infotainment
systems and SDSs. Then participants are intro-
duced to the driving task and they have time to
practice till being experienced. After completing
a baseline drive, they start to use the SDS. For
each spoken dialog task users get a story describ-
ing in prose what they like to achieve. To mini-
mize priming effects, they have to remember their
task and are not allowed to keep the description
during the interaction. There is no explanation
or example of the SDS, apart from a start com-
mand for activation. After the start command, the
system plays a beep and the user can say what-
ever he likes to achieve his task. The exploration
phase consists of four tasks, in which the system
reacts as it is expected by the user. This enables
the user to get used to the SDS while driving. In
the second part of the experiment, one task for
each condition was completed (ER, MU, NU, and
DIS). The conditions were assigned randomly to
a task and each one was rated by a Subjective
Assessment of Speech System Interfaces (SASSI)
(Hone and Graham, 2000) and Driver Activity
Load Index (DALI) (Pauzié et al., 2007) question-
naire. At end of the experiment, each participant
completed a second baseline drive without using
the SDS to analyze whether the driving perfor-
mance changed to the first baseline drive or not.
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After that, the four conditions were compared in a
questionnaire.

5 Evaluation Metrics and Hypotheses

The goal of this study is to evaluate four SDS
response conditions concerning driver distraction
and usability. Therefore, we used four kinds
of measurements (see Table 2): objective driv-
ing performance logged by OpenDS, subjective
driver distraction with DALI questionnaires, us-
ability scores measured by SASSI questionnaires,
and dialog performance. The steering deviation
value measures the driver’s performance to keep
the blue cylinder superposed to the yellow one in
the ConTRe task. Reaction times between the ap-
pearance of a traffic light and the pedal press are
logged as well as wrong and missed pedal presses.
The DALI questionnaire consists of 7 questions
which are assigned to 7 domains to evaluate the
driver’s cognitive load. We did not ask for visual
or haptic demand, as the system does not have vi-
sual output or haptic input. A 7-point Likert scale
was used: low cognitive load (-3) to high cognitive
load (+3). SASSI is widely used to measure the
usability of an SDS covering 6 dimensions with
34 questions. We used a 7-point Likert scale from
strong disagree (-3) to strong agree (+3). High
values mean good usability, except for annoyance
and cognitive demand ratings, which are opposed.

objective driving steering deviation
performance reaction time
(OpenDS) missed reaction

wrong reaction
cognitive load global attention
(DALI) auditory demand

interference
temporal demand

usability (SASSI) system response accuracy (SRA)
likeability (Like)
cognitive demand (Cog Dem)
annoyance (Ann)
habitability (Hab)
speed

dialog performance task success
user response delay
system turn duration
user turn duration

Table 2: Evaluation metrics

Obviously, we expect that drivers perform best
during the baseline drives without controlling the
SDS. As ER does not stress or frustrate drivers and
they do not need much cognitive power to think

what to say, there won’t be huge differences be-
tween ER and baseline drives. On the contrary,
if the system does not react as expected (MU and
NU), we expect a worse driving performance and
poor usability ratings. NU should be rated bet-
ter than MU, as the SDS explains the problem.
The interesting part is how a DIS will perform as
an error handling strategy to out-of-domain utter-
ances. We assume that it is rated better than MU
and NU and worse than ER. As the help dialogs in
DIS are long, DIS might tend towards MU and NU
in terms of driver distraction. However, it will be
rated better in terms of usability because the task
success is expected to be higher.

-3

-2

-1

0

1

2

3

SRA Like Cog Dem Ann Hab Speed

ER

MU_NU

DIS

Figure 4: Usability ratings, all of them are significant
(p<.001) except of: speed between DIS and MU NU

6 Results

In the following, evaluation results of the four do-
main switching responses are shown. We analyzed
data from 30 participants (16m/14f), with average
age of 26.65 (SD: 3.32). Their experience with
SDS is little (6-Likert Scale, avg: 3.06, SD: 1.48)
as well as the usage of SDSs (5-Likert Scale, avg:
2.04, SD: 1.16). We asked them how they usu-
ally approach a new system to learn its interaction
schema and scope of operation. All 30 of them
try a new application on their smartphone without
informing themselves how it is used. Concerning
infotainment systems, trying is also the most used
learning approach, even while driving (26 people).
This means, people do not read a manual, but the
system has to be naturally usable. In terms of driv-
ing experience, all participants have a driver li-
cense for average 8.6 (SD: 3.5) years and most of
them use their car daily. Considering the objective
driving performances of the two baseline drives,
there are no significant differences, which means
the participants performed at a constant level over
the entire experiment. Figure 4, 5 and 6 show a
detailed overview of the evaluation results, which
will be explained in this Section.
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Figure 5: Objective driving performance (OpenDS), significance levels: p<.05(*), p<.01(**), p<.001(***)
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Figure 6: Cognitive load: driver activity load index (DALI), significance levels: p<.05(*), p<.01(**), p<.001(***)

6.1 SDS which Reacts as Expected (ER)

First of all, results of an optimal SDS (ER), which
reacts as expected and does not make any mis-
takes, are presented. The objective driver perfor-
mance (see Figure 5) is slightly worse than the
baseline drives in terms of steering and pressing
the right pedals, but not significantly. However,
reaction times are worse than without interacting
with an SDS. This corresponds to the results from
Patten et al. (2004), who observed an increase in
reaction times when drivers talk to someone on the
phone. The cognitive load (see Figure 6) caused
by an optimal SDS is negative in all dimensions,
which means an optimal SDS does not put high
demands on the driver. In general, ER was rated

very good in terms of usability (see Figure 4) and
would most likely be accepted by young drivers.

6.2 Mis- and Non-Understanding (MU, NU)

The results of MU and NU do not show signifi-
cant differences in any dimension. Therefore, the
mean value of MU and NU is used. As shown in
Figure 6, the driver’s cognitive load is high in all
dimensions for MU NU. In terms of stress and at-
tention, it is significantly higher than during base-
line drives (other DALI dimensions are not as-
sessed for baseline drives). Due to the increased
cognitive load, the driver’s performance (see Fig-
ure 5) concerning steering, reaction times, and
pedal presses decreases significantly compared to
baseline drives. Especially the number of times
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drivers do not react to external events at all (missed
pedal), or they do not react appropriately (wrong
pedal), increases strongly. The usability ratings
provide evidence how users rate an SDS which is
not usable.

As expected, ER performs better than MU NU.
An unexpected system reaction causes higher cog-
nitive load in all dimensions. However, in contrast
to what one might expect, the driver’s steering per-
formance and reaction times are not better than for
ER (psteering=.083 and preaction=.215).

6.3 Dialog Initiative Switch as an Out-Of-
Domain Handling Strategy (DIS)

Previous Sections have shown that it is impor-
tant to minimize misunderstandings and non-
understandings in a safe and usable in-car infotain-
ment system. Comparing DIS with an optimal and
a worst-case SDS shows whether it is a reason-
able approach to handle out-of-domain utterances
or not. We use a single factor variance analysis
(ANOVA) with repeated measurements to identify
the best (Helmert contrast) and worst (difference
contrast) condition out of ER, DIS, and MU NU.
If DIS lays between ER and MU NU, we analyze
whether DIS tends towards ER or MU NU. There-
fore, we compare the differences of ER-DIS with
MU NU-DIS and use a one sample t-test.

6.3.1 Driving Performance
The ANOVA did not show any significant differ-
ences in drivers’ steering performances or reaction
times (see Figure 5). Using a Helmert contrast to
determine the best response, the ANOVA identi-
fied ER as the condition with significantly fewest
missed and wrong reactions. There is no differ-
ence between DIS and MU NU, thus DIS tends in
terms of objective driver distraction more towards
MU NU than to ER.

6.3.2 Cognitive Load
Analyzing the cognitive load of ER, DIS, and
MU NU (see Figure 6), the ANOVA identifies ER
as the significant best condition (p<.002). The
significant worst one in terms of attention, stress,
and interference is MU NU, which means DIS
lays in between for these dimensions. However,
no evidence is found for stress or interference
whether DIS tends towards ER or MU NU. In
global attention, DIS tends slightly (p<.031) to-
wards MU NU. Furthermore, the long prompts in
DIS put high auditive demands on the driver.

6.3.3 Usability
As task success of MU NU dialogs is poor (see
Section 6.4), it is obvious that ER is the best
(p<.001) and MU NU is the worst condition
(p<.001) in terms of usability (see Figure 4). All
DIS ratings, except of speed, are between ER and
MU NU (p<.001). Speed is basically identical
to the MU NU rating, which is due to the long
prompts. There is a slight tendency of DIS towards
ER in system response accuracy (p<.051) and in
habitability (p<.077), however, this is not signif-
icant. In annoyance DIS tends towards MU NU
(p<.002), which might be due to the three step
help dialog. For cognitive demand and likability,
DIS lays exactly between ER and MU NU.

6.4 Dialog Performance

The task success is pretty low in MU (29.03%) and
NU (19.35%) as the task was aborted by the wiz-
ard, if drivers did not use explicit domain switch-
ing commands after multiple attempts. On the
contrary, the task success for ER (96.8%) and DIS
(93.6%) is good, however, 3 tasks were aborted by
users. Figure 7 shows the average user response
delay, system turn duration, and user turn dura-
tion. The rectangular bars drawn in line patterns
show successful interactions during a subtask and
the ones drawn in checked pattern dialogs between
two subtasks.

When the system responds as expected, users
need between 2 and 3 seconds to respond. If the
system does not react as expected (between two
subtasks), drivers need significantly more time to
respond, as they need to think what to say. In DIS,
they only need to repeat the proposed term, thus
they respond faster. In MU NU, the system turns
in dialogs between subtasks are shorter, whereby
the user turns are longer (user turn duration does
not include the user’s response time). So either
drivers speak slower or provide longer sentences,
if the SDS does not react as expected. Due to the
four proposed utterances in DIS, system turn du-
rations are longer in dialogs between subtasks.

6.5 Summary and Discussion

In general, if an SDS reacts as expected by the
user, it will be a good approach to control the in-
car infotainment system. Except for the driver’s
reaction time, an optimal SDS does not influence
the driving performance. However, a delayed re-
action of 200ms might be better than glancing at a
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Figure 7: Dialog performance (light color: interaction during subtasks, dark color: dialog between two subtasks), significance
levels: p<.05(*), p<.01(**), p<.001(***)

display. For example, the Driver Focus-Telematics
Working Group (2006) states in their guidelines to
visual distraction: “single glance durations gener-
ally should not exceed 2 seconds”.

As long as conversational SDSs are not able to
operate in much wider domains, sooner or later the
user will provide an utterance the system is not
able to respond to. Comparing the MU and NU
conditions shows that an out-of-domain recogni-
tion with a simple rephrase error recovery strategy
does not work. This is understandable, as both
conditions increase the cognitive load, which in-
fluences the driving performance negatively. Es-
pecially the reaction to external events, such as
traffic lights, suffers. In our experiment, the traf-
fic light was in the middle of the screen. Accord-
ing to Victor et al. (2005), drivers concentrate their
gaze on the road center at the expense of periph-
eral glances during auditory or complex driving
tasks. Thus we would expect even worse results
if the traffic light occurs in the driver’s peripheral
vision. This means an intelligent handling strat-
egy for out-of-domain utterances needs to be es-
tablished, which informs drivers of the system’s
capabilities.

We evaluated a dialog initiative switch as a re-
sponse to out-of-domain utterances. Mostly, this
strategy performed somewhere between the opti-
mal and worst-case SDS. Due to long narrative
system prompts, the auditive demand is rated high
by drivers and thus the driving performance tends
towards the worst-case SDS. The dialog initiative
switch was rated as usable, but different variants
need to be developed and evaluated in the future.

After the experiment, the participants rated the
four conditions with two questions from ITU-T
P.851 (ITU, 2003) on a 7-point Likert scale from
strong disagree (-3) to strong agree (+3):

Q1: “Would you have expected more help from the sys-
tem?”

Q2: “You feel adequately informed about the system’s pos-

sibilities?”

ER (SD) MU (SD) NU (SD) DIS (SD)
Q1 -1.73(1.78) 1.47(1.81) 2.1(1.32) -1.1(1.58)
Q2 0.43(2.13) -1.53(1.36) -1.7(1.49) 0.73(1.66)

Table 3: Adequate system help

Table 3 shows the results, whereby DIS tends
towards ER in Q1 (p<.004) and is even better than
ER in Q2. This means the drivers felt informed
adequately of the SDS, however, further research
is necessary to evaluate how to present this infor-
mation. Shorter helping prompts might be better.
Furthermore, multimodal aspects needs to be con-
sidered. For example, head-up displays are able to
present information, such as possible utterances,
right in the driver’s view. This might reduce the
auditive demand.

7 Conclusions

In this paper, we showed results from a WoZ
study on user-initiated multi-domain SDSs in the
car. If an in-car SDS cannot fulfill a user’s re-
quest due to, for example, missing functionality,
the driver’s cognitive load and distraction will in-
crease. Therefore, out-of-domain utterances need
to be identified and handled adequately by in-car
SDSs. Switching the dialog initiative is a good ap-
proach to guide users to the task goal and reduce
their cognitive load. However, if drivers need to
process any information, some mental activity will
be required. Therefore, the design and implemen-
tation of a dialog initiative switch strategy need
further efforts to minimize the driver’s distraction
and to make it enjoyable for the user. Other modal-
ities than speech-only SDSs, such as head-up dis-
plays, need to be evaluated in future studies.
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Appendix

MU: 
U: Navigation to Berlin, Brandenburger Tor 
S: Brandenburger Tor in Berlin was set as your 
destination. 
U: Italian restaurant at the destination 
S: Italian restaurant could not be set as a 
destination 
U: Navigate to a restaurant in Berlin 
S: The address restaurant in Berlin was not 
found 
U: I would like  to search a restaurant 
S: Sorry? 
U: Start restaurant application 
S: Restaurant search, what do you want? 
U: An Italian restaurant in Berlin 
S: There is one Italian restaurant in Berlin: 
Pizzeria San Marco 
U: Add the address to my address book 
S: The address of Pizzeria San Marco is 
Mainstreet 1, Berlin 
U: Save that to my address book 
S: Sorry? 
U: Save Pizzeria  San Marco 
S: Pizzeria San Marco is famous for its delicious 
Italian dishes 
U: Address book 
S: Address book, what do you want? 
U: Save the address of San Marco 
S: Alright, the address was added 

NU: 
U: Drive me to the Brandenburger Tor in Berlin 
S: Brandenburger Tor in Berlin was set as your 
destination. 
U: Is there an Italian restaurant near 
Brandenburger Tor? 
S: Action unknown, please say something else 
U: Give me an Italian restaurant along the 
route 
S: Action unknown, please say something else 
U: Italian restaurant 
S: Action unknown, please say something else 
U: Restaurant in Berlin 
S: Action unknown, please say something else 
U: I’d like to search a restaurant 
S: Action unknown, please say something else 
<aborted by the wizard> 

ER: 
U: Navigation 
S: Navigation, what do you want? 
U: City Berlin 
S: To what address or place of interest do you 
want? 
U: Brandenburger Tor 
S: Brandenburger Tor in Berlin was set as your 
destination 
U: Italian restaurant near Brandenburger Tor? 
S: There is one Italian restaurant in Berlin: 
Pizzeria San Marco 
U: Save the address 
S: Alright, the address was added 

DIS: 
U: I would like to go to the Brandenburger Tor 
in Berlin 
S: Brandenburger Tor in Berlin was set as your 
destination. 
U: Italian restaurant nearby? 
S: Action unknown, you can say: restaurant, 
navigation, hotel, or radio 
U: Restaurant 
S: You can: search a restaurant, order a table, 
rate a restaurant, request opening times 
U: Search a restaurant 
S: Say for example: Search a restaurant at the 
destination, I search a Chinese restaurant, “Die 
Krone” in Stuttgart, or Mexican restaurant 
U: I search an Italian restaurant 
S: Where do you search an Italian restaurant 
U: Near Brandenburger Tor in Berlin 
S: There is one Italian restaurant in Berlin: 
Pizzeria San Marco 
U: Save the address 
S: Action unknown, you can say: address book, 
restaurant, navigation, or hotel 
U: address book 
S: You can: add a contact, remove a contact, 
access contact details, or delete address book 
U: Add a contact 
S: Say for example: I’d like to add a contact, 
add an address, add Paul to my address book, 
save the number 0165332 
U: Add San Marco to my address book 
S: Alright, the address was added 

Appendix 1: Detailed dialog examples of the four response conditions. Translated from German and based on real experiment
data. Red rectangles identify the domain switching dialogs between two subtasks.
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Abstract

In this paper, we address issues in situ-
ated language understanding in a rapidly
changing environment – a moving car.
Specifically, we propose methods for un-
derstanding user queries about specific tar-
get buildings in their surroundings. Unlike
previous studies on physically situated in-
teractions such as interaction with mobile
robots, the task is very sensitive to tim-
ing because the spatial relation between
the car and the target is changing while
the user is speaking. We collected situated
utterances from drivers using our research
system, Townsurfer, which is embedded
in a real vehicle. Based on this data, we
analyze the timing of user queries, spa-
tial relationships between the car and tar-
gets, head pose of the user, and linguis-
tic cues. Optimized on the data, our al-
gorithms improved the target identification
rate by 24.1% absolute.

1 Introduction

Recent advances in sensing technologies have en-
abled researchers to explore applications that re-
quire a clear awareness of the systems’ dynamic
context and physical surroundings. Such appli-
cations include multi-participant conversation sys-
tems (Bohus and Horvitz, 2009) and human-robot
interaction (Tellex et al., 2011; Sugiura et al.,
2011). The general problem of understanding and
interacting with human users in such environments
is referred to as situated interaction.

We address yet another environment, where sit-
uated interactions takes place – a moving car. In
the previous work, we collected over 60 hours of
in-car human-human interactions, where drivers
interact with an expert co-pilot sitting next to them
in the vehicle (Cohen et al., 2014). One of the

∗ Currently with Lenovo.

insights from the analysis on this corpus is that
drivers frequently use referring expressions about
their surroundings. (e.g. What is that big building
on the right?) Based on this insight, we have de-
veloped Townsurfer (Lane et al., 2012; Misu et
al., 2013), a situated in-car intelligent assistant.
Using geo-location information, the system can
answer user queries/questions that contain object
references about points-of-interest (POIs) in their
surroundings. We use driver (user) face orienta-
tion to understand their queries and provide the re-
quested information about the POI they are look-
ing at. We have previously demonstrated and eval-
uated the system in a simulated environment (Lane
et al., 2012). In this paper, we evaluate its utility
in real driving situations.

Compared to conventional situated dialog tasks,
query understanding in our task is expected to be
more time sensitive, due to the rapidly changing
environment while driving. Typically, a car will
move 10 meters in one second while driving at 25
mi/h. So timing can be a crucial factor. In addi-
tion, it is not well understood what kind of linguis-
tic cues are naturally provided by drivers, and their
contributions to situated language understanding
in such an environment. To the best of our knowl-
edge, this is the first study that tackles the issue of
situated language understanding in rapidly moving
vehicles.

In this paper, we first present an overview of the
Townsurfer in-car spoken dialog system (Section
2). Based on our data collection using the sys-
tem, we analyze user behavior while using the sys-
tem focusing on language understanding (Section
3). Specifically, we answer the following research
questions about the task and the system through
data collection and analysis:

1. Is timing an important factor of situated lan-
guage understanding?

2. Does head pose play an important role in lan-
guage understanding? Or is spatial distance
information enough?
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Figure 1: System overview of Townsurfer

Table 1: Example dialog with Townsurfer
U1: What is that place. (POI in gaze)
S1: This is Specialty Cafe, a mid-scale coffee

shop that serves sandwiches.
U2: What is its (POI in dialog history) rating.
S2: The rating of Specialty Cafe is above av-

erage.
U3: How about that one on the left.

(POI located on the left)
S3: This is Roger’s Deli, a low-priced restau-

rant that serves American food.

3. What is the role of linguistic cues in this task?
What kinds of linguistic cues do drivers nat-
urally provide?

Based on the hypothesis obtained from the analy-
sis for these questions, we propose methods to im-
prove situated language understanding (Section 4),
and analyze their contributions based on the col-
lected data (Sections 5 and 6). We then clarify our
research contributions through discussion (Section
7) and comparison with related studies (Section 8).

2 Architecture and Hardware of
Townsurfer

The system uses three main input modalities,
speech, geo-location, and head pose. Speech is
the main input modality of the system. It is used to
trigger interactions with the system. User speech
is recognized, then requested concepts/values are
extracted. Geo-location and head pose informa-
tion are used to understand the target POI of the
user query. An overview of the system with a pro-
cess flow is illustrated in Figure 1 and an exam-
ple dialog with the system is shown in Table 1. A
video of an example dialog is also attached.

In this paper, we address issues in identify-
ing user intended POI, which is a form of ref-
erence resolution using multi-modal information
sources1. The POI identification process consists
of the following three steps (cf. Figure 1). This
is similar to but different from our previous work
on landmark-based destination setting (Ma et al.,
2012).

1) The system lists candidate POIs based on geo-
location at the timing of a driver query. Rela-
tive positions of POIs to the car are also cal-
culated based on geo-location and the head-
ing of the car.

2). Based on spatial linguistic cues in the user
utterance (e.g. to my right, on the left), a
2D scoring function is selected to identify ar-
eas where the target POI is likely to be. This
function takes into account the position of the
POI relative to the car, as well as driver head
pose. Scores for all candidate POIs are cal-
culated.

3) Posterior probabilities of each POI are cal-
culated using the score of step 2 as prior,
and non-spatial linguistic information (e.g.
POI categories, building properties) as obser-
vations. This posterior calculation is com-
puted using our Bayesian belief tracker called
DPOT (Raux and Ma, 2011).

The details are explained in Section 4.
System hardware consists of a 3D depth sen-

sor (Primesense Carmine 1.09), a USB GPS (BU-
353S4), an IMU sensor (3DM-GX3-25) and a
close talk microphone (plantronics Voyage Leg-

1We do not deal with issues in language understanding
related to dialog history and query type. (e.g. General infor-
mation request such as U1 vs request about specific property
of POI such as U2 in Table 1)
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end UC). These consumer grade sensors are in-
stalled in our Honda Pilot experiment car. We
use Point Cloud Library (PCL) for the face direc-
tion estimation. Geo-location is estimated based
on Extended Kalman filter-based algorithm using
GPS and gyro information as input at 1.5 Hz. The
system is implemented based on the Robot Oper-
ating System ROS (Quigley et al., 2009). Each
component is implemented as a node of ROS, and
communications between the nodes are performed
using the standard message passing mechanisms
in ROS.

3 Data Collection and Analysis

3.1 Collection Setting

We collected data using a test route. The route
passes through downtown Mountain View2 and
residential area around Honda Research Institute.
We manually constructed our database containing
250 POIs (businesses such as restaurants, compa-
nies) in this area. Each database entry (POI) has
name, geo-location, category and property infor-
mation explained in Section 3.4. POI geo-location
is represented as a latitude-longitude pair (e.g.
37.4010,-122.0539). Size and shape of buildings
are not taken into account. It takes about 30 min-
utes to drive the route. The major difference be-
tween residential area and downtown is the POI
density. While each POI in downtown has on aver-
age 7.2 other POIs within 50 meters, in residential
area POIs have only 1.9 neighbors. Speed limits
also differ between the two (35 mi/h vs 25 mi/h).

We collected data from 14 subjects. They were
asked to drive the test route and make queries
about surrounding businesses. We showed a demo
video3 of the system to the users before starting the
data collection. We also told them that the objec-
tive is a data collection for a situated spoken dia-
log system, rather than the evaluation of the whole
system. We asked subjects to include the full de-
scription of the target POI within a single utterance
to avoid queries whose understanding requires di-
alog history information4. Although the system
answered based on the baseline strategy explained
in Section 4.1, we asked subjects to ignore the sys-
tem responses.

As a result, we collected 399 queries with a
valid target POI. Queries about businesses that do

2We assumed that a POI is in downtown when it is located
within the rectangle by geo-location coordinates (37.3902, -
122.0827) and (37.3954, -122.0760).

3not the attached one.
4Understanding including dialog history information is

our future work.

POI

x

y θ

face direction

target 

direction

Heading 

direction

Figure 2: Parameters used to calculate POI score
(prior)

•  :   right

X:   left

+:   no cue

Distance (m)
y

RightLeft
Distance (m)

x

Figure 3: Target POI positions

not exist on our database (typically a vacant store)
were excluded. The data contains 171 queries in
downtown and 228 in residential area. The queries
were transcribed and the user-intended POIs were
manually annotated by confirming the intended
target POI with the subjects after the data collec-
tion based on a video taken during the drive.

3.2 Analysis of Spatial Relation of POI and
Head Pose

We first analyze the spatial relation between posi-
tion cues (right/left) and the position of the user-
intended target POIs Out of the collected 399
queries, 237 (59.4%) of them contain either right
or left position cue (e.g. What is that on the left?).
The relation between the position cues (cf. Figure
2) and POI positions at start-of-speech timing 5 is
plotted in Figure 3. The X-axis is a lateral distance
(a distance in the direction orthogonal to the head-
ing; a positive value means the right direction) and
the Y-axis is an axial distance (a distance in the
heading direction; a negative value means the POI
is in back of the car. ). The most obvious finding
from the scatter plot is that right and left are pow-

5Specifically, the latest GPS and face direction informa-
tion at that timing is used.
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Table 2: Comparison of average and standard deviation of distance (in meter) of POI form the car
ASR result timing Start-of-speech timing

Position cue Site Ave dist. Std dist. Ave dist. Std dist.
Right/left Downtown 17.5 31.0 31.9 28.3

Residential 22.0 36.3 45.2 36.5
No right/left Downtown 17.4 27.8 31.1 26.5
cue Residential 38.3 45.9 52.3 43.4

Distance (m)
y

θangular difference (degree)

Figure 4: Relation between POI positions and
head pose

erful cues for the system to identify target POIs.
We can also see that the POI position distribution
has a large standard deviation. This is partly be-
cause the route has multiple sites from downtown
and residential area. Interestingly, while the aver-
age distance to the target POI in downtown is 37.0
meters, that of residential area is 57.4 meters.

We also analyze the relation between face di-
rection and POI positions. Figure 4 plots the re-
lation between the axial distance and the angular
difference θ (between the user face direction and
the target POI direction) (cf. Figure 2). The scat-
ter plot suggests that the angular differences for
distant target POIs is often small. For close target
POIs the angular differences are larger and have a
large variance6.

3.3 Analysis of Timing

Referring expressions such as “the building on the
right” must be resolved with respect to the context
in which the user intended. However, in a moving
car, such a context (i.e. the position of the car and
the situation in the surroundings) can be very dif-
ferent between the time when the user starts speak-
ing the sentence and the time they finish speaking
it. Therefore, situated understanding must be very
time sensitive.

To confirm and investigate this issue, we ana-
lyze the difference in the POI positions between
the time the ASR result is output vs the time the
user actually started speaking. The hypothesis is

6We will discuss the reason for this in Section 6.2.

Table 3: User-provided linguistic cues
Category of linguistic cue Percentage

used (%)
Relative position to the car (right/left) 59.4
Business category (e.g. restaurant, cafe) 31.8
Color of the POI (e.g. green, yellow) 12.8
Cuisine (e.g. Chinese, Japanese, Mexican) 8.3
Equipments (e.g. awning, outside seating) 7.2
Relative position to the road (e.g. corner) 6.5

that the latter yields a more accurate context in
which to interpret the user sentence. In contrast,
our baseline system uses the more straightforward
approach of resolving expressions using the con-
text at the time of resolution, i.e. whenever the
ASR/NLU has finished processing an utterance
(hereafter “ASR results timing”).

Specifically, we compare the average axial dis-
tance to the target POIs and its standard deviation
between these two timings. Table 2 lists these fig-
ures broken down by position cue types and sites.
The average axial distance from the car to the tar-
get POIs is often small at the ASR result timing,
but the standard deviation is generally small at the
start-of-speech timing. This indicates that the tar-
get POI positions at the start-of-speech timing is
more consistent across users and sentence lengths
than that at the ASR result timing. This result indi-
cates the presence of a better POI likelihood func-
tion using the context (i.e. car position and orien-
tation) at the start-of-speech timing than using the
ASR result timing.

3.4 Analysis of Linguistic Cues
We then analyze the linguistic cues provided by
the users. Here, we focus on objective and sta-
ble cues. We exclude subjective cues (e.g. big,
beautiful, colorful) and cues that might change in
a short period of time (e.g. with a woman dressed
in green in front). We have categorized the linguis-
tic cues used to describe the target POIs. Table 3
lists the cue types and the percentage of user utter-
ances containing each cue type.

The cues that the users most often provided con-
cern POI position related to the car (right and left).
Nearly 60% of queries included this type of cue
and every subject provided it at least once. The
second most frequent cue is category of business,
especially in downtown. Users also provided col-

25



ors of POIs. Other cues include cuisine, equip-
ments, relative position to the road (e.g. on the
corner).

Another interesting finding from the analysis is
that the users provided more linguistic cues with
increasing candidate POIs in their field of view.
Actually, the users provided 1.51 categories in av-
erage per query in downtown, while they provided
1.03 categories in residential area. (cf. POI den-
sity in Section 3.2: 7.2 vs 1.9) This indicates that
users provide cues considering environment com-
plexity.

4 Methods for Situated Language
Understanding

4.1 Baseline Strategy
We use our previous version (Misu et al., 2013)
as the baseline system for situated language un-
derstanding. The baseline strategy consists of the
following three paragraphs, which correspond to
the process 1)-3) in Section 2 and Figure 1.

The system makes a POI look-up based on the
geo-location information at the time ASR result
is obtained. The search range of candidate POIs
is within the range (relative geo-location of POIs
against the car location) of -50 to 200 meters in
the travelling direction and 100 meters to the left
and 100 meters to the right in the lateral direction.
The ASR result timing is also used to measure the
distances to the candidate POIs.

POI priors are calculated based on the distance
from the car (= axial distance) based on “the closer
to the car the likely” principle. We use a likelihood
function inversely proportional to the distance. We
use position cues simply to remove POIs from a
list of candidates. For example “right” position
cue is used to remove candidate POIs that are lo-
cated on < 0 position in the lateral distance. When
no right/left cue is provided, POIs outside of 45
degrees from the face direction are removed from
the list of candidates.

No linguistic cues except right/left are used to
calculate POI posterior probabilities. So, the sys-
tem selects the POI with the highest prior (POI
score) as the language understanding result.

4.2 Strategies Toward Better Situated
Language Understanding

To achieve better situated language understanding
(POI identification) based on the findings of the
analysis in Section 3, we modify steps 1)-3) as fol-
lows:

1. Using start-of-speech timing for the POI
prior calculation

Distance (m)y
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X:   left

RightLeft Distance (m)

x

Figure 5: Example GMM fitting

2. Gaussian mixture model (GMM)-based POI
probability (prior) calculation

3. Linguistic cues for the posterior calculation.

We use the start-of-speech timing instead of the
time ASR result is output. Because the standard
deviations of the POI distances are small (cf. Sec-
tion 3.2), we expect that a better POI probability
score estimation with the POI positions at this tim-
ing in the subsequent processes than the positions
at the ASR result timing. The POI look-up range
is the same as the baseline.

We apply Gaussian mixture model (GMM) with
diagonal covariance matrices over the input pa-
rameter space. The POI probability (prior) is cal-
culated based on these Gaussians. We use two in-
put parameters of the lateral and axial distances for
queries with right/left cue, and three parameters of
the lateral and axial distances and the difference
in degree between the target and head pose direc-
tions for queries without right/left cue. (The effect
of the parameters is discussed later in Section 6.2.)
We empirically set the number of Gaussian com-
ponents to 2. An example GMM fitting to the POI
positions for queries with right and left cues is il-
lustrated in Figures 5. The center of ellipse is the
mean of the Gaussian.

We use the five linguistic cue categories of Sec-
tion 3.4 for the posterior calculation by the belief
tracker. In the following experiments, we use ei-
ther 1 or 0 as a likelihood of natural language un-
derstanding (NLU) observation. The likelihood
for the category value is 1 if a user query (NLU
result) contains the target value, otherwise 0. This
corresponds to a strategy of simply removing can-
didate POIs that do not have the category values
specified by the user. Here, we assume a clean POI
database with all their properties annotated manu-
ally.
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Table 4: Comparison of POI identification rate

Method Success
rate (%)

right/left linguistic cues,
the-closer-the-likely likelihood, 43.1
ASR result timing) (Baseline)
1) Start-of-speech timing 42.9
2) GMM-based likelihood 47.9
3) Linguistic cues 54.6
1) + 2) 50.6
1) + 3) 54.4
2) + 3) 62.2
1) + 2) + 3) 67.2

5 Experiments

We use manual transcriptions and natural language
understanding results of the user queries to focus
our evaluations on the issues listed in Section 1.
We evaluate the situated language understanding
(POI identification) performance based on cross
validation. We use the data from 13 users to train
GMM parameters and to define a set of possible
linguistic values, and the data from the remaining
user for evaluation. We train the model parameters
of the GMM using the EM algorithm. Knowledge
about the sites (downtown or residential area) is
not used in the training7.

We do not set a threshold for the presentation.
We judge the system successfully understands a
user query when the posterior of the target (user-
intended) POI is the highest. The chance rate,
given by the average of the inverse number of can-
didate POIs in the POI look-up is 10.0%.

6 Analysis of the Results

We first analyze the effect of our three methods
described in Section 4.2. The results are listed in
Table 4.

Simply using the POI positions at the start-of-
speech timing instead of those of the ASR result
timing did not lead to an improvement. This re-
sult is reasonable because the distances to target
POIs are often smaller at the ASR result timing
as we showed in Table 2. However, we achieved
a better improvement (7.5% over the baseline) by
combining it with the GMM-based likelihood cal-
culation. The results supports our Section 3.3 hy-
pothesis that the POI position is less dependent
on users/scenes at the start-of-speech timing. The
linguistic cues were the most powerful informa-

7The performance was better when the knowledge was not
used.
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Figure 6: Breakdown of error causes

tion for this task. The improvement over the base-
line was 11.5%. By using these three methods to-
gether, we obtained more than additive improve-
ment of 24.1% in the POI identification rate over
the baseline8. The success rates per site were
60.8% in downtown and 71.9% in residential area.

6.1 Error Analysis
To analyze the causes of the remaining errors, we
have categorized the errors into the following four
categories:

1. Ambiguous references: There were multi-
ple POIs that matched the user query. (e.g.
another yellow building sat next to the target)

2. Linguistic cue: The driver used undefined
linguistic cues such subjective expressions or
dynamic references objects (e.g. optometrist,
across the street, colorful)

3. Localization error: Errors in estimating
geo-location or heading of the car.

4. User error: There were errors in the user
descriptions (e.g. user misunderstood the
neighbor POI’s outside seating as the tar-
get’s)

The distribution of error causes is illustrated in
Figure 6. More than half of the errors are due
to reference ambiguity. These errors are expected
to be resolved through clarification dialogs. (e.g.
asking user “Did you mean the one in front or
back?”) Linguistic errors might be partly resolved
by using a better database with detailed category
information. For dynamic references and subjec-
tive cues, use of image processing techniques will
help. Localization errors can be solved by using
high-quality GPS and IMU sensors. User errors
were rare and only made in downtown.

6.2 Breakdown of Effect of the Spatial
Distance and Head Pose

We then evaluate the features used for the POI
prior calculation to investigate the effect of the in-
put parameters of the lateral and axial distances

8For reference, the performances of “1) + 2) + 3)” were
62.9%, 67.2%, 66.1%, 67.2%, and 66.2% when the number
of Gaussian components were 1, 2, 3, 4, and 5.
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Table 5: Relation between the parameters used for
the POI identification and success rates (%)

query type
parameters used right/left no cue
lateral (x) distance 58.6 51.2
axial (y) distance 59.5 53.7
face direction 43.3 44.4
lateral + axial (x + y) 73.8 54.3
lateral (x) + face direction 57.8 48.1
axial (y) + face direction 59.1 54.9
lateral + axial + face 68.4 57.4

and the difference in degree between the target
and user face direction angles. Table 5 lists the
relationship between the parameters used for the
GMM-based likelihood calculation and the POI
identification performances9.

The results indicate that the axial distance is
the most important parameter. We got a slight
improvement by using the face direction informa-
tion for the queries without right/left cue, but the
improvement was not significant. On the other
hand, use of face direction information for the
right/left queries clearly degraded the POI iden-
tification performance. We think this is because
the users finished looking at the POI and returned
the face to the front when they started speaking,
thus they explicitly provided right/left information
to the system. However, we believe that using a
long-term trajectory of the user face direction will
contribute to an improve in the POI identification
performance.

6.3 Breakdown of the Effect of Linguistic
Cues

We then evaluate the effect of the linguistic cues
per category. Table 6 lists the relationship between
the categories used for the posterior calculation
and the success rates. There is a strong correlation
between the frequency of the cues used (cf. Table
3) and their contributions to the improvement in
success rate. For example, business category in-
formation contributed the most, boosting the per-
formance by 8.5%.

Another point we note is that the contribution of
business category and cuisine categories is large.
Because other categories (e.g. color) are not read-
ily available in a public POI database (e.g. Google
Places API, Yelp API), we can obtain reasonable
performance without using a special database or

9Note that, we first determine the function to calculate
POI scores (priors) based on the position cues, then calculate
scores with the selected function.

Table 6: Effect of linguistic cues

linguistic cue Success
category used rate (%)
No linguistic cues (*) 50.6
(*) + Business category (e.g. cafe) 59.1
(*) + Color of the POI (e.g. green) 57.6
(*) + Cuisine (e.g. Chinese) 54.1
(*) + Equipments (e.g. awning) 53.9
(*) + Relative position (e.g. corner) 51.4

image processing.
We also found that linguistic cues were espe-

cially effective in downtown. Actually, while the
improvement10 was 20.0% in downtown that for
residential area was 14.4%. This mainly would be
because the users provided more linguistic cues in
downtown considering the difficulty of the task.

6.4 Using Speech Recognition Results
We evaluate the degradation by using automatic
speech recognition (ASR) results. We use Google
ASR11 and Julius (Kawahara et al., 2004) speech
recognition system with a language model trained
from 38K example sentences generated from a
grammar. An acoustic model trained from the
WSJ speech corpus is used. Note that they are
not necessarily the best system for this domain.
Google ASR uses a general language model for
dictation and Julius uses a mismatched acoustic
model in terms of the noise condition.

The query success rate was 56.3% for Julius and
60.3% for Google ASR. We got ASR accuracies
of 77.9% and 80.4% respectively. We believe the
performance will improve when N-best hypothe-
ses with confidence scores are used in the posterior
calculating using the belief tracker.

7 Discussion

The main limitation of this work comes from the
small amount of data that we were able to collect.
It is not clear how the results obtained here would
generalize to other sites, POI density, velocities
and sensor performances. Also, results might de-
pend on experimental conditions, such as weather,
hour, season. Hyper-parameters such as the opti-
mal number of Gaussian components might have
to be adapted to different situations. We there-
fore acknowledge that the scenes we experimented
are only a limited cases of daily driving activities.

101) + 2) vs 1) + 2) + 3).
11Although it is not realistic to use cloud-based speech

recognition system considering the current latency, we use
this as a reference system.
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However, the methods we propose are general and
our findings should be verifiable without loss of
generality by collecting more data and using more
input parameters (e.g. velocity) for the POI prior
calculation.

In addition, much future work remains to realize
a natural interaction with the system, such as tak-
ing into account dialog history and selecting opti-
mal system responses. On the other hand, we be-
lieve this is one of the best platform to investigate
situated interactions. The major topics that we are
going to tackle are:

1. Dialog strategy: Dialog strategy and system
prompt generation for situated environments
are important research topics, especially to
clarify the target when there is ambiguity as
mentioned in Section 6.1. The topic will in-
clude an adaptation of system utterances (en-
trainment) to the user (Hu et al., 2014).

2. Eye tracker: Although we believe head pose
is good enough to estimate user intentions be-
cause we are trained to move the head in driv-
ing schools to look around to confirm safety,
we would like to confirm the difference in
this task between face direction and eye-gaze.

3. POI identification using face direction trajec-
tory: Our analysis showed that the use of face
direction sometimes degrades the POI identi-
fication performance. However, we believe
that using a trajectory of face direction will
change the result.

4. Database: We assumed a clean and perfect
database but we are going to evaluate the per-
formance when noisy database is used. (e.g.
A database based on image recognition re-
sults or user dialog log.)

5. Feedback: Koller et al. (2012) demonstrated
referential resolution is enhanced by giving
gaze information feedback to the user. We
would like to analyze the effect of feedback
with an automotive augmented reality envi-
ronment using our 3D head-up display (Ng-
Thow-Hing et al., 2013).

8 Related Work

The related studies include a landmark-based nav-
igation that handles landmarks as information for
a dialog. Similar system concepts have been
provided for pedestrian navigation situations (Ja-
narthanam et al., 2013; Hu et al., 2014), they do
not handle a rapidly changing environment.

Several works have used timing to enhance
natural interaction with systems. Rose and

Horvitz (2003) and Raux and Eskenazi (2009)
used timing information to detect user barge-ins.
Studies on incremental speech understanding and
generation (Skantze and Hjalmarsson, 2010; Deth-
lefs et al., 2012) have proved that real-time feed-
back actions have potential benefits for users.
Komatani et al. (2012) used user speech timing
against user’s previous and system’s utterances
to understand the intentions of user utterances.
While the above studies have handled timing fo-
cusing on (para-)linguistic aspect, our work han-
dles timing issues in relation to the user’s physical
surroundings.

Recent advancements in gaze and face direction
estimation have led to better user behavior under-
standing. There are a number of studies that have
analyzed relationship between gaze and user in-
tention, such as user focus (Yonetani et al., 2010),
preference (Kayama et al., 2010), and reference
expression understanding (Koller et al., 2012), be-
tween gaze and turn-taking (Jokinen et al., 2010;
Kawahara, 2012). Nakano et al. (2013) used face
direction for addressee identification. The previ-
ous studies most related to ours are reference res-
olution methods by Chai and Prasov (2010), Iida
et al. (2011) and Kennington et al. (2013). They
confirmed that the system’s reference resolution
performance is enhanced by taking the user’s eye
fixation into account. However, their results are
not directly applied to an interaction in a rapidly
changing environment while driving, where eye
fixations are unusual activities.

Marge and Rudnicky (2010) analyzed the effect
of space and distance for spatial language under-
standing for a human-robot communication. Our
task differs with this because we handle a rapidly
changing environment. We believe we can im-
prove our understanding performance based on
their findings.

9 Conclusion

We addressed situated language understanding in
a moving car. We focused on issues in understand-
ing user language of timing, spatial distance, and
linguistic cues. Based on the analysis of the col-
lected user utterances, we proposed methods of us-
ing start-of-speech timing for the POI prior calcu-
lation, GMM-based POI probability (prior) calcu-
lation, and linguistic cues for the posterior calcula-
tion to improve the accuracy of situated language
understanding. The effectiveness of the proposed
methods was confirmed by achieving a significant
improvement in a POI identification task.
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Table 7: Example user utterances
- What is that blue restaurant on the right?
- How about this building to my right with outside seating?
- What is that Chinese restaurant on the left?
- Orange building to my right.
- What kind of the restaurant is that on the corner?
- The building on my right at the corner of the street.
- What about the building on my right with woman with a jacket in front
- Do you know how good is this restaurant to the left?
- Townsurfer, there is an interesting bakery what is that?
- Is this restaurant on the right any good?
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11 Appendix

Test route:
https://www.google.com/maps/
preview/dir/Honda+Research+
Institute,+425+National+Ave+
%23100,+Mountain+View,+CA+
94043/37.4009909,-122.0518957/
37.4052337,-122.0565795/37.
3973374,-122.0595982/37.4004787,
-122.0730021/Wells+Fargo/37.
4001639,-122.0729708/37.3959193,
-122.0539449/37.4009821,-122.
0540093/@37.3999836,-122.
0792529,14z/data=!4m21!4m20!
1m5!1m1!1s0x808fb713c225003d:
0xcf989a0bb230e5c0!2m2!
1d-122.054006!2d37.401016!
1m0!1m0!1m0!1m0!1m5!1m1!1s0x0:
0x86ca9ba8a2f15150!2m2!1d-122.
082546!2d37.388722!1m0!1m0!1m0!
3e0
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Abstract

We present a spoken dialogue system for
navigating information (such as news ar-
ticles), and which can engage in small
talk. At the core is a partially observ-
able Markov decision process (POMDP),
which tracks user’s state and focus of at-
tention. The input to the POMDP is pro-
vided by a spoken language understanding
(SLU) component implemented with lo-
gistic regression (LR) and conditional ran-
dom fields (CRFs). The POMDP selects
one of six action classes; each action class
is implemented with its own module.

1 Introduction

A large number of spoken dialogue systems have
been investigated and many systems are deployed
in the real world. Spoken dialogue applications
that interact with a diversity of users are avail-
able on smart-phones. However, current appli-
cations are based on simple question answering
and the system requires a clear query or a def-
inite task goal. Therefore, next-generation dia-
logue systems should engage in casual interactions
with users who do not have a clear intention or a
task goal. Such systems include a sightseeing nav-
igation system that uses tour guide books or doc-
uments in Wikipedia (Misu and Kawahara, 2010),
and a news navigation system that introduces news
articles updated day-by-day (Yoshino et al., 2011;
Pan et al., 2012). In this paper, we develop an in-
formation navigation system that provides infor-
mation even if the user request is not necessarily
clear and there is not a matching document in the
knowledge base. The user and the system converse
on the current topic and the system provides po-
tentially useful information for the user.

Dialogue management of this kind of systems
was usually made in a heuristic manner and based

on simple rules (Dahl et al., 1994; Bohus and Rud-
nicky, 2003). There is not a clear principle nor
established methodology to design and implement
casual conversation systems. In the past years, ma-
chine learning, particularly reinforcement learn-
ing, have been investigated for dialogue manage-
ment. MDPs and POMDPs are now widely used
to model and train dialogue managers (Levin et
al., 2000; Williams and Young, 2007; Young et
al., 2010; Yoshino et al., 2013b). However, the
conventional scheme assumes that the task and di-
alogue goal can be clearly stated and readily en-
coded in the RL reward function. This is not true
in casual conversation or when browsing informa-
tion.

Some previous work has tackled with this prob-
lem. In a conversational chatting system (Shibata
et al., 2014), users were asked to make evalua-
tion at the end of each dialogue session, to define
rewards for reinforcement learning. In a listen-
ing dialogue system (Meguro et al., 2010), levels
of satisfaction were annotated in logs of dialogue
sessions to train a discriminative model. These
approaches require costly input from users or de-
velopers, who provide labels and evaluative judg-
ments.

In this work, we present a framework in which
reward is defined for the quality of system actions
and also for encouraging long interactions, in con-
trast to the conventional framework. Moreover,
user focus is tracked to make appropriate actions,
which are more rewarded.

2 Conversational Information
Navigation System

In natural human-human conversation, partici-
pants have topics they plan to talk about, and they
progress through the dialogue in accordance with
the topics (Schegloff and Sacks, 1973). We call
this dialogue style “information navigation.” An
example is shown in Figure 1. First, the speaker
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Dialogue states

Speaker (system) Listener (user)

Offer a topic
Be interested in the 

topic
Present the detail

Make a question
Answer the 

question
Be silent

Offer a new topic 

(topic 2)
Not be interested in

Offer a new topic 

(topic 3)

・・・

Make a questionTopic 3

Topic 2

・
・
・

Topic 1

Figure 1: An example of information navigation.

Story Telling

(ST)

System-

initiative

Modules of related topics

Question Answering

(QA)

User-initiative

Proactive 

initiative

Proactive 

Presentation

(PP)

System-

initiative

Draw new topic

Related topics

Topic

Topic

Topic

Topic

Topic

Topic Topic

・
・
・

・
・
・

・・・

Selected 

topic

Modules of current topic

Topic 

Presentation 

(TP)

Topic N

Topic 3

Topic 2

・
・
・

Topic 1

Other modules

Greeting

(GR)

Keep silence

(KS)

Figure 2: Overview of the information navigation
system.

offers a new topic and probes the interest of the
listener. If the listener shows interest, the speaker
describes details of the topic. If the listener asks
a specific question, the speaker answers the ques-
tion. On the other hand, if the listener is not inter-
ested in the topic, the speaker avoids the details of
that topic, and changes the topic. Topics are often
taken from current news.

In our past work, we have developed a news
navigation system (Yoshino et al., 2011) based on
this dialogue structure. The system provides top-
ics collected from Web news texts, and the user
gets information according to his interests and
queries.

2.1 System overview

An overview of the proposed system is depicted
in Figure 2. The system has six modules, each of
which implements a class of actions. Each module
takes as input a recognized user utterance, an an-
alyzed predicate-argument (P-A) structure and the
detected user focus.

The system begins dialogues by selecting the
“topic presentation (TP)” module, which presents
a new topic selected from a news article. The sys-
tem chooses the next module based on the user’s
response. In our task, the system assumes that
each news article corresponds to a single topic,
and the system presents a headline of news in the
TP module. If the user shows interest (positive
response) in the topic without any specific ques-
tions, the system selects the “story telling (ST)”
module to give details of the news. In the ST mod-
ule, the system provides a summary of the news
article by using lead sentences. The system can
also provide related topics with the “proactive pre-
sentation (PP)” module. This module is invoked
by system initiative; this module is not invoked by
any user request. If the user makes a specific ques-
tion regarding the topic, the system switches to the
“question answering (QA)” module to answer the
question. This module answers questions on the
presented topic and related topics.

The modules of PP and QA are based on a di-
alogue framework which uses the similarity of P-
A structures (Yoshino et al., 2011). This frame-
work defines the similarity of P-A structures be-
tween user queries and news articles, and retrieves
or recommends the appropriate sentence from the
news articles. This method searches for appropri-
ate information from automatically parsed docu-
ments by referring to domain knowledge that is
automatically extracted from domain corpus.

Transitions between the modules are allowed as
shown in Figure 2. The modules “greeting (GR)”
and “keep silence (KS)” are also implemented.
GR module generates fixed greeting patterns by
using regular expression matching. In terms of
dialogue flow, these modules can be used at any
time.

2.2 User focus in information navigation

“Focus” in discourse is “attentional state (that)
contains information about the objects, properties,
relations, and discourse intentions that are most
salient at any given point.” (Grosz and Sidner,
1986). The user has specific attention to an ob-
ject if the user utterance contains the focus. In
this work, we define the user focus as “the main
piece of information of interest to the user.” It
makes a central component when making a reply
or selecting relevant topics at the current dialogue
state. For example, given “Did Ichiro perform bril-
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SYS, tp, “Matsui, a part-time coach for the Giants, demonstrated 5 homeruns. The Giants president
told him "Come back as a player!”

USR, st, 0, ” Give me the detail?”, ”Give:me/0 the:detail/0”
SYS, st, ”Matsui joined the extra batting training in the Giants' camp, and demonstrated his batting

to young players.”
USR, qa, 1, “Will Matsui become the Giants' manager in the future?”, ”Matsui/0 will:become/0

the Giants' manager/1 in the future/0”
SYS, qa, ”The director of Giants told him "Come back as a player!””
USR, tp, 0, ”Next news, please.”, ”Next:news/0 please/0”
SYS, tp, ” To be a ace pitcher, has Fujinami improved from the rookie year?
…

Figure 3: An example of annotation for collected dialogue. System utterances have a tuple of three
elements separated by a comma: speaker, called module and utterance. User utterances have a tuple of
four elements: speaker, the module the user request falls in, binary information of user focus, utterance
and user focus annotation on each phrase or P-A element. (This example is translated from Japanese)

liantly?,” user focus is “Ichiro” because the sys-
tem reply should include information on Ichiro.
This information is annotated on content words or
named entities in a user utterance. In the POMDP,
decisions are made based on whether any user fo-
cus was detected in the user’s utterance.

3 Spoken Language Understanding
(SLU)

In this section, we present the spoken language un-
derstanding components of our system. It detects
the user’s focus and intention and provides these
to the dialogue manager. These spoken language
understanding modules are formulated with a sta-
tistical model to give likelihoods which are used
in POMDP.

3.1 Dialogue data
We collected 606 utterances (from 10 users) with a
rule-based dialogue system (Yoshino et al., 2011).
We annotated two kinds of tags: user intention (6
tags defined in Section 3.3), and focus information
defined in Section 2.2. An example of annotation
is shown in Figure 3. We highlighted annotation
points in the bold font.

To prepare the training data, each utterance was
labeled with one of the six modules, indicating the
best module to respond. In addition, each phrase
or P-A elements is labeled to indicated whether it
is the user’s focus or not. The user focus is deter-
mined by the attributes (=specifications of words
in the domain) and preference order of phrases to
identify the most appropriate information that the
user wants to know. For example, in the second
user utterance in Figure 3, the user’s focus is the
phrase “the Giants’ manager”. These tags are an-
notated by one person.

3.2 User focus detection based on CRF
To detect the user focus, we use a conditional
random field (CRF) 1. The problem is defined as
a sequential labeling of the focus labels to a se-
quence of the phrases of the user utterance. Fea-
tures used are shown in the Table 1. ORDER fea-
tures are the order of the phrase in the sequence
and in the P-A structure. We incorporate these
features because the user focus often appears in
the first phrase of the user utterance. POS fea-
tures are part-of-speech (POS) tags and their pairs
in the phrase. P-A features are semantic role of the
P-A structure. We also incorporate the domain-
dependent predicate-argument (P-A) scores that
are defined with an unsupervised method (Yoshino
et al., 2011). The score is discretized to 0.01, 0.02,
0.05, 0.1, 0.2, 0.5.

Table 2 shows the accuracy of user focus de-
tection, which was conducted via five-fold cross-
validation. “Phrase” is phrase-base accuracy and
“sentence” indicates whether the presence of any
user focus phrase was correctly detected (or not),
regardless of whether the correct phrase was iden-
tified. This table indicates that WORD features
are effective for detecting the user focus, but they
are not essential for in the sentence-level accuracy.
In this paper, we aim for portability across do-
mains; therefore the dialogue manager only uses
the sentence-level feature, so in our system we do
not user the WORD features.

3.3 User intention analysis based on LR
The module classifies the user intention from the
user utterance. We define six intentions as below.

• TP: request to the TP module.
1CRFsuite (Okazaki, 2007).

34



Table 1: Features of user focus detection.
feature type feature

ORDER Rank in a sequence of phrases
Rank in a sequence of elements of P-A

POS POS tags in the phrase
POS tag sequence

POSORDER Pair of POS tag and its order in the
phrase

P-A Which semantic role the phrase has
Which semantic roles exist on the
utterance

P-AORDER Pair of semantic role and its order in
the utterance

P-A score P-A templates score

WORD Words in the phrase
Pair of words in the phrase
Pair of word and its order in the phrase

Table 2: Accuracy of user focus detection.
Accuracy

phrase 86.7%
phrase + (WORD) 90.3%
sentence (focus exist or not) 99.8%
sentence (focus exist or not) + (WORD) 99.8%

• ST: request to the ST module.

• QA: request to the QA module.

• GR: greeting to the GR module.

• NR: silence longer than a threshold.

• II: irrelevant input due to ASR errors or noise.

We adopt logistic regression (LR)-based dia-
logue act tagging approach (Tur et al., 2006). The
probability of user intention o given an ASR result
of the user utterance h is defined as,

P (o|h) =
exp(ω · ϕ(h, o))

Σoexp(ω · ϕ(h, o))
. (1)

Here, ω is a vector of feature weights and ϕ(h, o)
is a feature vector. We use POS, P-A and P-A tem-
plates score as a feature set. In addition, we add a
typical expression feature (TYPICAL) to classify
TP, ST or GR tags. For example, typical expres-
sions in conversation are “Hello” or “Go on,” and
those in information navigation are “News of the
day” or “Tell me in detail.” Features for the clas-
sifier are shown in the Table 3.

The accuracy of the classification in five-fold
cross-validation is shown in Table 4. The TYP-

Table 3: Features of user intention analysis.
feature type feature

POS Bag of POS tags
Bag of POS bi-gram

P-A Bag of semantic role labels
Bag of semantic role labels bi-gram
Pair of semantic role label and its rank

P-A score P-A templates score
TYPICAL Occurrence of typical expressions

Table 4: Accuracy of user intention analysis.
All features without TYPICAL

TP 100% 100%
ST 75.3% 64.2%
QA 94.1% 93.5%
GR 100% 100%
II 16.7% 16.7%
All 92.1% 90.2%

ICAL feature improves the classification accuracy
while keeping the domain portability.

3.4 SLU for ASR output
ASR and intention analysis involves errors. Here,
s is a true user intention and o is an observed in-
tention. The observation model P (o|s) is given
by the likelihood of ASR result P (h|u) (Komatani
and Kawahara, 2000) and the likelihood of the in-
tention analysis P (o|h),

P (o|s) =
∑

h

P (o, h|s) (2)

≈
∑

h

P (o|h)P (h|u). (3)

Here, u is an utterance of the user. We combine
the N-best (N = 5) hypotheses of the ASR result
h.

4 Dialogue Management for Information
Navigation

The conventional dialogue management for task-
oriented dialogue systems is designed to reach a
task goal as soon as possible (Williams and Young,
2007). In contrast, information navigation does
not always have a clear goal, and the aim of infor-
mation navigation is to provide as much relevant
information as the user is interested in. Therefore,
our dialogue manager refers user involvement or
engagement (=level of interest) and the user focus
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(=object of interest). This section describes the
general dialogue management based on POMDP,
and then gives an explanation of the proposed dia-
logue management using the user focus.

4.1 Dialogue management based on POMDP
The POMDP-based statistical dialogue manage-
ment is formulated as below. The random vari-
ables involved at a dialogue turn t are as follows:

• s ∈ Is: user state
User intention.

• a ∈ K: system action
Module that the system selects.

• o ∈ Is: observation
Observed user state, including ASR and in-
tention analysis errors.

• bsi = P (si|o1:t): belief
Stochastic variable of the user state.

• π: policy function
This function determines a system action a
given a belief of user b. π∗ is the optimal pol-
icy function that is acquired by the training.

• r: reward function
This function gives a reward to a pair of the
user state s and the system action a.

The aim of the statistical dialogue management is
to output an optimal system action ât given a se-
quence of observation o1:t from 1 to t time-steps.

Next, we give the belief update that includes the
observation and state transition function. The be-
lief update of user state si in time-step t is defined
as,

bt+1
s′
j
∝ P (ot+1|s′j)︸ ︷︷ ︸

Obs.

∑
si

P (s′j |si, âk)︸ ︷︷ ︸
Trans.

bt
si

. (4)

Obs. is an observation function which is defined
in Equation (3) and Trans. is a state transition
probability of the user state. Once the system es-
timates the belief bt

si
, the policy function outputs

the optimal action â as follows:

â = π∗(bt). (5)

4.2 Training of POMDP
We applied Q-learning (Monahan, 1982; Watkins
and Dayan, 1992) to acquire the optimal policy
π∗. Q-learning relies on the estimation of a Q-
function, which maximizes the discounted sum of
future rewards of the system action at at a dialogue

turn t given the current belief bt. Q-learning is
performed by iterative updates on the training dia-
logue data:

Q(bt, at) ⇐ (1− ε)Q(bt, at)

+ ε[R(st, at) + γ max
at+1

Q(bt+1, at+1)], (6)

where ε is a learning rate, γ is a discount factor of
a future reward. We experimentally decided ε =
0.01 and γ = 0.9. The optimal policy given by the
Q-function is determined as,

π∗(bt) = argmax
at

Q(bt, at). (7)

However, it is impossible to calculate the Q-
function for all possible real values of belief b.
Thus, we train a limited Q-function given by a
Grid-based Value Iteration (Bonet, 2002). The be-
lief is given by a function,

bsi =

{
η if s = i
1−η
|Is| if s ̸= i

. (8)

Here, η is a likelihood of s = i that is output
of the intention analyzer, and we selected 11 dis-
crete points from 0.0 to 1.0 by 0.1. We also added
the case of uniform distribution. The observation
function of the belief update is also given in a sim-
ilar manner.

4.3 Dialogue management using user focus
Our POMDP-based dialogue management
chooses actions based on its belief in: the user
intention s and the user focus f (0 or 1 ∈ Jf ).
The observation o is controlled by hidden states
f and s that are decided by the state transition
probabilities,

P (f t+1|f t, st, at), (9)

P (st+1|f t+1, f t, st, at). (10)

We constructed a user simulator by using the an-
notated data described in Section 3.1.

Equation (10) is also used for the state transition
probability of the belief update. The equation of
the belief update (4) is extended by introducing the
previous user focus fl and current user focus f ′

m

information,

bt+1
s′
j

= P (ot+1|s′j)︸ ︷︷ ︸
Obs.

×
∑

i

P (s′j |f ′
m, fl, si, âk)︸ ︷︷ ︸
Trans.

bt
si,fl

. (11)
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Table 5: Rewards in each turn.
state focus action a

s f TP ST QA PP GR KS

TP 0 +10 -10 -10 -10 -10 -101

ST 0 -10 +10 -10 0 -10 -101

QA 0 -10 +10 +10 -10 -10 -101 -10 +30 +10

GR 0 -10 -10 -10 -10 +10 -101

NR 0 +10 -10 -10 -10 -10 01 -10 +10

II 0 -10 -10 -10 -10 -10 +101

The resultant optimal policy is,

â = π∗(bt, fl). (12)

4.4 Definition of rewards

Table 5 defines a reward list at the end of a each
turn. The reward of +10 is given to appropriate
actions, 0 to acceptable actions, and -10 to inap-
propriate actions.

In Table 5, pairs of a state and its apparently
corresponding action, TP and TP, ST and ST, QA
and QA, GR and GR, and II and KS, have posi-
tive rewards. Rewards in bold fonts (+10) are de-
fined for the following reasons. If the user asks a
question (QA) without a focus (e.g. “What hap-
pened on the game?”), the system can continue by
story telling (ST). But when the question has a fo-
cus, the system should answer the question (QA),
which is highly rewarded (+30). If the system can-
not find an answer, it can present relevant informa-
tion (PP). When the user says nothing (NR), the
system action should be decided by considering
the user focus; present a new topic if the user is
not interested in the current topic (f=0) or present
an article related to the dialogue history (f=1).

Reward of +200 is given if 20 turns are passed,
to reward a long continued dialogue. The user sim-
ulator terminates the dialogue if the system selects
an inappropriate action (action of r = −10) five
times, and a large penalty -200 is given to the sys-
tem.

5 Evaluations of Dialogue

We evaluated the proposed system with two exper-
iments; dialogue state tracking with real users and
average reward with a user simulator. For the eval-
uation, we collected an additional 312 utterances
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Figure 4: Effect of introduction of the user focus
in simulation.

(8 users, 24 dialogues) with the proposed dialogue
system.

5.1 Evaluation of dialogue manager with
user simulator

First, we evaluated the dialogue manager with
user simulation that is constructed from the train-
ing corpus (Section 3.1). In this evaluation, the
system calculated average reward of 100,000 di-
alogue sessions between the system and the user
simulator given a fixed noise rate. Figure 4 shows
the effect of the user focus. By introducing the
user focus, the system receives higher rewards
than the model without the user focus. Especially,
the proposed model is more robust with a noise
level of 10–30% that spoken dialogue systems of-
ten encounter (Yoshino et al., 2013a).

5.2 Evaluation of dialogue state tracking
with real users

Dialogue state tracking (DST) is a task of track-
ing the correct user state with a noisy input (e.g.
ASR and NLU errors) (Williams et al., 2013).
It tries to maximize the probability of the belief
of the correct states, but we evaluated the accu-
racy of the 1-best result of the belief update. We
also evaluated the average reward of each dia-
logue. The baseline system is a rule-based dia-
logue manager which we previously implemented.
The baseline system is operated by a score of
the question-answering module using predicate-
argument structures (Yoshino et al., 2011) and reg-
ular expressions for TP and GR modules.

The DST accuracy and average reward are
shown in Table 6. This result shows that the pro-
posed method tracks the dialogue state of the user
with a high accuracy. Our statistical framework
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Sys: Hello.
Usr: Hello. Tell me today's news.
Sys: Tanaka showed a crazy split. His colleague 

Sabathia was stunned.
Usr: What is the crazy split?
Sys: His split comes just like a four-seam, but it 

drops quickly in front of the home plate.
Usr: Where was he training?
Sys: Tanaka practiced at the bullpen in the New 

York Yankees' camp on Feb. 20th.
Usr: (pause)
Sys: By the way, he also practiced a drop 

two-seam on Feb. 18.
Usr: Does his two-seam drop?
Sys: The catcher said "Tanaka's two-seam not

only slides, but also drops."
Usr: OK, any other news?
Sys: Yankees' Ichiro is training strenuously!
Usr: Tell me more.
Sys: Ichiro came to the field an hour earlier than 
usual and trained strenuously.
…

�=TP, � � � =0.8, �(�=TP)=0.800, �=0

�=TP, �(�=TP �=0)=0.8

�=QA, � � � =0.4, �(�=QA)=0.934, �=1

�=QA, �(�=QA, �=1)=0.9

�=QA, � � � =0.8, �(�=QA)=0.973, �=1

�=QA, �(�=QA, �=1)=1.0

�=NR, � � � =1.0, �(�=NR)=1.00, �=1

�=PP, �(�=NR, �=1)=1.0

�=QA, � � � =0.6, �(�=QA)=0.867, �=1

�=QA, �(�=QA, �=1)=0.9

�=TP, � � � =0.8, �(�=TP)=0.984, �=0

�=TP, �(�=TP, �=0)=1.0

�=ST, � � � =0.9, �(�=ST)=0.871, �=0

�=ST, �(�=ST, �=0)=0.9

Dialogue 1

Sys: Hello.
Usr: Hello. Tell me today's news?
Sys: Matsui, a part-time coach for the Giants, 

demonstrated 5 homeruns. The Giants
president told him "Come back as a player!"

Usr: What happened?
Sys: The godzilla cannon came back to the Giants‘

spring camp in Miyazaki.
Usr: What is the Godzilla cannon?
Sys: The Godzilla coach demonstrated his 

home-run batting to young players.
Usr: Next please.
Sys: To be a ace pitcher, has Fujinami improved 

from the rookie year?
…

�=TP, � � � =0.8, �(�=TP)=0.800, �=0

�=TP, �(�=TP �=0)=0.8

�=QA, � � � =0.8, �(�=QA)=0.532, �=0

�=ST, �(�=QA, �=0)=0.5

�=QA, � � � =0.8, �(�=QA)=0.806, �=1

�=QA, �(�=QA, �=1)=0.8

�=TP, � � � =0.8, �(�=TP)=0.986, �=0

�=TP, �(�=TP, �=0)=1.0

Dialogue 2

Figure 5: A dialogue example. (This example is translated from Japanese)

Table 6: Accuracy of dialogue state tracking.
rule focus POMDP

Accuracy of tracking 0.561 0.869
(1-best) (=175/312) (=271/312)
Average reward -22.9 188.6

improved SLU accuracy and robustness against
ASR errors, especially reducing confusions be-
tween question answering (QA) and topic presen-
tation (TP). Moreover, belief update can detect the
TP state even if the SLU incorrectly predicts QA
or ST.

5.3 Discussion of trained policy

An example dialogue is shown in Figure 5. In
the example, the system selects appropriate ac-

tions even if the observation likelihood is low. At
the 4th turn of Dialogue 1 in this example, the sys-
tem with the user focus responds with an action of
proactive presentation a=PP, but the system with-
out the user focus responds with an action of topic
presentation a=TP. At the 2nd turn of Dialogue 2,
the user asks a question without a focus. The con-
fidence of s=QA is lowered by the belief update,
and the system selects the story telling module
a=ST. These examples show that the training re-
sult (=learned policy) reflects our design described
in Section 4.4: It is better to make a proactive pre-
sentation when the user is interested in the topic.

6 Conclusions

We constructed a spoken dialogue system for in-
formation navigation of Web news articles updated
day-by-day. The system presents relevant infor-
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mation according to the user’s interest, by track-
ing the user focus. We introduce the user focus
detection model, and developed a POMDP frame-
work which tracks user focus to select the appro-
priate action class (module) of the dialogue sys-
tem. In experimental evaluations, the proposed di-
alogue management approach determines the state
of the user more accurately than the existing sys-
tem based on rules. An evaluation with a user sim-
ulator shows that including user focus in the dia-
logue manager’s belief state improves robustness
to ASR/SLU errors.

In future work, we plan to evaluate the system
with a large number of real users on a variety of
domains, and optimize the reward function for the
information navigation task.
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Abstract

This paper explores dialogue adaptation
over repeated interactions within a task-
oriented human tutorial dialogue corpus.
We hypothesize that over the course of
four tutorial dialogue sessions, tutors
adapt their strategies based on the person-
ality of the student, and in particular to
student introversion or extraversion. We
model changes in strategy over time and
use them to predict how effectively the
tutorial interactions support student learn-
ing. The results suggest that students lean-
ing toward introversion learn more effec-
tively with a minimal amount of inter-
ruption during task activity, but occasion-
ally require a tutor prompt before voicing
uncertainty; on the other hand, students
tending toward extraversion benefit signif-
icantly from increased interaction, partic-
ularly through tutor prompts for reflection
on task activity. This line of investiga-
tion will inform the development of future
user-adaptive dialogue systems.

1 Introduction

Throughout dialogue interactions, humans adapt
to each other in a variety of ways (Cohen et al.,
1981; Power, 1974; Wahlster and Kobsa, 1989).
Some recent studies suggest that dialogue systems
that mirror these adaptations to the user, e.g., by
adopting the user’s vocabulary (Niederhoffer and
Pennebaker, 2002) or linguistically aligning to the
user’s context (Pickering and Garrod, 2004), may
be more effective than those that do not. For sup-
porting human dialogue, it has been demonstrated
that tutorial dialogue systems improve in effective-
ness when they adapt to user uncertainty (Forbes-
Riley and Litman, 2007) or perform ‘small talk’
to increase the user’s trust in the system (Cassell

and Bickmore, 2003). Some studies have provided
evidence that adapting to the user at the person-
ality level also increases effectiveness; for exam-
ple, users may become more agreeable when sys-
tems mirror their personality (Reeves and Nass,
1997), and varying levels of encouragement may
help users of extraverted or introverted personali-
ties accomplish a task more effectively (Tapus and
Mataric, 2008).

With this substantial evidence that adapting to
user personality may improve the effectiveness of
a dialogue system, there is little investigation of
how personality affects repeated interactions. For
supporting human learning in particular, we hy-
pothesize that taking personality into account may
enhance outcomes by providing a more tailored
experience. To explore this hypothesis, this paper
presents an analysis that uses the change in human
tutorial dialogue policies over repeated interaction
with introverted and extraverted students to pre-
dict the effectiveness of the tutoring. We utilize a
widely-used and validated questionnaire, the Big
Five Inventory, to determine a personality profile
for each student. We hypothesize that introverted
and extraverted students learn more effectively un-
der different dialogue policies. The results sug-
gest dialogue policy progressions that could aid in
the future development of personality-based user-
adaptive tutorial dialogue systems.

2 Related Work

Humans adapt to their dialogue partner in a va-
riety of ways: for example, using knowledge ac-
quired through the dialogue to inform subsequent
utterances (Carberry, 1989), maintaining a set of
subdialogues (Litman and Allen, 1987), and struc-
turing dialogue to achieve a common goal (Power,
1974), including asking particular sorts of ques-
tions (Cohen et al., 1981), reaching dialogue con-
vergence (Mitchell et al., 2012), and understand-
ing context-specific vocabulary (Grosz, 1983). It
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has been strongly suggested by a number of stud-
ies that dialogue systems would benefit greatly
from mirroring this sort of adaptation, e.g., by
adopting the user’s syntax (Niederhoffer and Pen-
nebaker, 2002), goal-oriented language (Brennan,
1996), and dialogue structure (Levelt and Kelter,
1982).

Some of these factors have been successfully
applied to task-oriented dialogue systems. For
example, ‘entrainment’ (the alignment between
partners at various linguistic levels) has been
shown to be predictive of task success in tele-
phone conversation (Nenkova et al., 2008) and
of less misunderstanding in personality-matching
systems (Mairesse and Walker, 2010).

In order to gauge user personality, we utilize
the Big Five Factor model, which was developed
to objectively measure five particular aspects of a
person’s personality (Goldberg, 1993). This per-
sonality model has been widely implemented in a
number of studies of personality in dialogue sys-
tems, including recommender systems (Dunn et
al., 2009) and conversational systems (Mairesse
and Walker, 2010). The investigation of person-
ality as it pertains to tutorial dialogue systems is a
natural step for user-adaptive dialogue systems.

3 Tutorial Dialogue Corpus

The corpus under examination in this study con-
sists of computer-mediated human-human textual
dialogue (Mitchell et al., 2013; Ha et al., 2013).
For each dialogue session, participants included
one tutor and one student who cooperated with
the goal of creating a working software artifact,
a text-based adventure game, by the end of the re-
peated interactions. Students were first-year uni-
versity students from an introductory engineering
course who volunteered in exchange for course
credit. No previous computer science knowledge
was assumed or required. The tutors were primar-
ily graduate students with previous experience in
tutoring or teaching Java programming.

The tutorial sessions were conducted within a
web-based textual dialogue interface for introduc-
tory programming in Java. The tutorial dialogue
interface, displayed in Figure 1, consists of four
panes in which the student interacts: the task de-
scription, the compilation and execution output,
the student’s Java source code, and the textual di-
alogue messages between the tutor and the stu-
dent. The student could modify, compile, and ex-

Figure 1: The task-oriented tutorial dialogue inter-
face.

ecute Java code from within the interface, in ad-
dition to conversing with the tutor via the textual
dialogue pane. The content of the interface was
synchronized in real time between the student and
the tutor; however, the tutor’s interactions with the
environment were constrained to the textual di-
alogue with the student and the progression be-
tween tasks.

The corpus was collected during two university
semesters in Fall 2011 and Spring 2012. A total
of N = 67 students interacted with one of seven
tutors to complete the series of interactions during
this time frame. The tutoring curriculum was com-
posed of six task-based lessons completed over
four weeks, each constrained to forty minutes in
duration. Each lesson consisted of multiple sub-
tasks, with each lesson concluding at a milestone.
This paper considers only the first four of the six
lessons, because the fifth lesson suffered from sig-
nificant data loss due to a database connectivity
error, and the sixth lesson consisted of an unstruc-
tured review of the previous five lessons, and is
therefore a different type of dialogue than the prior
lessons. The structure of the corpus is illustrated
in Table 1.

The sessions under consideration contained
67 students, with a total of 45, 904 utterances:
13, 732 student utterances and 32, 172 tutor utter-
ances. There were an average of 117 utterances
per session: 82 tutor utterances (652 words) and
35 student utterances (184 words). Introverted stu-
dents averaged 36 utterances and 172 words per
session, while extraverted students averaged 34 ut-
terances and 187 words per session. There was
no statistically significant difference between in-
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Tutor Student Lessons
1 1 L1 L2 L3 L4 L5 L6
1 2 L1 L2 L3 L4 L5 L6

...
2 15 L1 L2 L3 L4 L5 L6

...
3 18 L1 L2 L3 L4 L5 L6
3 19 L1 L2 L3 L4 L5 L6

...

Table 1: A diagram of the structure of the corpus.
Gray cells indicate dialogue sessions that were not
considered in the present analysis.

troverts and extraverts on these counts. The possi-
ble extraversion score on the questionnaire ranges
from −10 (highly introverted) to 25 (highly ex-
traverted), and the mean extraversion score of the
students in our corpus was 6.40 (standard devia-
tion 6.42). The distribution of scores across the
sample was comparable to a normal distribution,
as demonstrated by the histogram in Figure 2.

Figure 2: Histogram of extraversion scores across
students in the corpus. Lighter bars indicate fe-
male students, while darker bars indicate male stu-
dents.

3.1 Learning Gain

Students completed an identical pretest and
posttest for each lesson. The average pretest and
posttest scores for students scoring above and be-
low the median extraversion score in the four
lessons are detailed in Table 3 (determination of
extraversion is detailed in Section 3.2). There
was no statistically significant difference between
the scores of extraverted and introverted students.

The tutoring was statistically significantly effec-
tive overall and within each student group (p �
0.0001, on all accounts).

Lesson
Pretest Posttest

Introvert Extravert Introvert Extravert
L1 50.69% 47.42% 71.63% 68.18%
L2 43.70% 38.96% 71.01% 73.59%
L3 55.88% 54.55% 67.65% 64.85%
L4 68.79% 65.66% 80.56% 79.97%

Table 3: Average pretest and posttest scores for
each lesson.

This equation adjusts for negative learning gain
in the rare cases that posttest score is less than
pretest score (Marx and Cummings, 2007).

norm gain =

{post−pre
1−pre post > pre

post−pre
pre post ≤ pre (1)

Since pretest and posttest scores for introverts and
extraverts were not identical, normalized learning
gain was standardized within each group before
developing models to predict learning (Section 4).

3.2 Extraversion vs. Introversion

One of the standard frameworks for identifying
personality traits is the Big Five Factor model
of personality (Goldberg, 1993). The standard
method of testing for the Big Five personality
traits is by questionnaire (John and Srivastava,
1999; Gosling et al., 2003). The students un-
der consideration in this study were adminis-
tered a Big Five Inventory survey, a type of self-
assessment of personality, prior to any interac-
tion with the tutorial dialogue system. The Big
Five Inventory consists of 44 items to measure
an individual on the Big Five Factors of per-
sonality: Openness, Conscientiousness, Extraver-
sion, Agreeableness, and Neuroticism (Goldberg,
1993). This study focuses on a student’s responses
to the items reflective of extraversion and introver-
sion. These items are identified in Table 4. Ex-
traversion is defined as the part of the Big Five
Factors that identifies gregariousness, assertive-
ness, activity, excitement-seeking, positive emo-
tions, and warmth (John and Srivastava, 1999).

3.3 Dialogue Act Annotation

As described in the previous section, the corpus
being considered consists of 268 dialogues, four
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Extraverted Student Dialogue Excerpt
STUDENT: So do we need an else statement for each
one? [QI]
TUTOR: That wouldn’t actually work. [AWH]
STUDENT: Really? [FNU]
TUTOR: See, because it’s testing them each independently.
[E]
TUTOR: So when it gets to 2 and 4, any other combination
goes to its else. [E]

Pause for 29 seconds.
TUTOR: If we added an else clause for each statement,
we’d end up with 3 of them printing out for every valid
input. [E]
STUDENT: Oh. [ACK]

Pause for 44 seconds.
TUTOR: What else do you think we could try? [QP]

Pause for 49 seconds.
STUDENT: Well the first one worked last time be-
cause it was checking only playerChoice . . . maybe
currentChoice has something to do with this case.
[AWH]

Introverted Student Dialogue Excerpt
STUDENT: The else applies no matter what because it
doesn’t have an else if to combine with? [QI]
TUTOR: Well, it’s a little different than that. [AWH]
TUTOR: Each if statement applies no matter what. [I]
TUTOR: So, instead of checking the values as mutually
exclusive conditions, each if is checked in sequence. [I]

Pause for 22 seconds.
TUTOR: Your else occurs only with the final if, regard-
less of what happened with the previous if statements!
[E]

Pause for 31 seconds.
TUTOR: Let’s fix it by doing the change that you started
much earlier. [D]

Pause for 50 seconds.
TUTOR: Much better. :) [FP]
STUDENT: Thanks! [ACK]

Pause for 22 seconds.
TUTOR: Do you have any issues with the input checking
as it is now? [QP]

Pause for 46 seconds.
STUDENT: I do not! [AYN]

Table 2: Excerpts of similar dialogue between an extraverted and an introverted student.

I see myself as someone who . . .

. . . is talkative.

. . . is reserved.*

. . . is full of energy.

. . . generates a lot of enthusiasm.

. . . tends to be quiet.*

. . . has an assertive personality.

. . . is sometimes shy, inhibited.*

. . . is outgoing, sociable.

Table 4: Items of the Big Five Inventory reflective
of a student’s extraversion traits. Asterisks repre-
sent items negatively associated with extraversion.

for each of 67 students, with 45, 904 utterances to-
tal. As described in this section, a portion of these
dialogues were manually annotated, and then a
supervised dialogue act classifier was trained on
them and was used to tag the remaining dialogues.

The annotation scheme applied to the corpus
consisted of 31 dialogue act tags grouped into
four high-level categories (Statement, Question,
Answer, Feedback) (Vail and Boyer, In press).
This tagset represents a refinement of previous di-
alogue act tagsets developed for task-oriented tu-
toring (Ha et al., 2013). During this refinement,

emphasis was placed on decomposing frequent
tags that tended to be broad, such as STATEMENT

and QUESTION, in order to capture more fine-
grained pedagogical and social phenomena in the
dialogues. The annotation scheme is detailed in
Table 5.

A total of 30 sessions (4, 035 utterances) were
manually annotated by a single annotator. Of
those 30 sessions, 37% were annotated by a sec-
ond independent annotator. Inter-annotator agree-
ment on this subset reached a Cohen’s kappa of
κ=0.87 (agreement of 89.6%). These manually
annotated sessions form the basis for developing
an automated classifier.

The automated classifier was trained using the
WEKA machine learning software (Hall et al.,
2009). We used a J48 decision tree classifier,
which has a low running time (Verbree et al.,
2006) and as we will see, performed very well for
this task. The classifier was provided the features
listed in Table 6.

Before the construction of the classifier, the 30
sessions of the manually annotated corpus were
systematically split into a training and a test set,
consisting of 24 and 6 sessions, respectively; the
test set contained the first three sessions with stu-
dents identified as introverts and the first three ses-
sions with students identified as extraverts. Ut-
terances were defined as single textual messages.
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Tag Example
Session Type

κ
Introvert Extravert

ACKNOWLEDGE (ACK) Okay. 10.46% 10.36% 0.872

EXTRA-DOMAIN ANSWER (AEX) I’m doing great. 1.33% 1.42% 0.813

READY ANSWER (AR) I’m ready. 2.75% 3.08% 0.963

WH-QUESTION ANSWER (AWH) Line 9. 8.14% 8.10% 0.819

YES/NO ANSWER (AYN) No, sir. 2.99% 3.73% 0.839

CORRECTION (CO) *exclamation 0.43% 0.41% 0.700

DIRECTIVE (D) Test what you have. 6.01% 5.97% 0.888

EXPLANATION (E) Your code stops on line 2. 31.48% 26.70% 0.822

NEGATIVE FEEDBACK (FN) No, that’s wrong. 0.02% 0.02% 0.615

ELABORATED NEGATIVE FEEDBACK (FNE) You’re using the wrong function. 0.21% 0.14% 0.689

NOT UNDERSTANDING FEEDBACK (FNU) I’m not sure. 0.05% 0.04% 0.749

OTHER FEEDBACK (FO) That’s okay. 0.17% 0.16% 0.614

ELABORATED OTHER FEEDBACK (FOE) What you had was fine. 0.29% 0.27% 0.665

POSITIVE FEEDBACK (FP) Very good! 6.78% 5.45% 0.927

ELABORATED POSITIVE FEEDBACK (FPE) That’s a very good approach. 0.05% 0.12% 0.705

UNDERSTANDING FEEDBACK (FU) Ohh, I see! 0.76% 0.92% 0.804

GREETING (GRE) Hello! 2.59% 3.03% 0.941

INFORMATION (I) Variable names must be one word. 4.55% 5.33% 0.859

OBSERVATION (O) As you see, we have a bug. 0.25% 0.31% 0.760

EXTRA-DOMAIN OTHER (OEX) Calculus is difficult. 1.49% 2.22% 0.789

CONFIRMATION QUESTION (QC) Does that work? 0.16% 0.16% 0.857

DIRECTION QUESTION (QD) What do I do now? 0.68% 0.58% 0.758

EVALUATIVE QUESTION (QE) Does that make sense? 0.87% 0.83% 0.763

EXTRA-DOMAIN QUESTION (QEX) How are you today? 0.42% 0.45% 0.781

FACTUAL QUESTION (QF) What line is it waiting on? 4.10% 5.12% 0.832

INFORMATION QUESTION (QI) How do you add spaces? 4.06% 4.91% 0.820

OPEN QUESTION (QO) How can you fix it? 0.15% 0.14% 0.725

PROBING QUESTION (QP) Do you think that looks correct? 4.99% 4.76% 0.731

QUESTION PROMPT (QQ) Any questions? 2.49% 2.24% 0.978

READY QUESTION (QR) Are you ready to move on? 2.47% 2.75% 0.989

REASSURANCE (R) We have plenty of time left. 0.12% 0.15% 0.763

Table 5: Dialogue act tags comprising the annotation scheme, the average composition of a Lesson 4
session with introverted and extraverted students, and the Cohen’s kappa achieved by the automated
classifier.

Feature Description
Number of Features
Initial Selected

TUTOR or STUDENT 1 1
Two-step tag history 2 2
Two-step category history 2 2
Number of tokens in the utterance 1 1
Existence of a question mark 1 1
Existence of word unigrams 1459 160
Existence of word bigrams 8959 150
Existence of POS unigrams 50 31
Existence of POS bigrams 928 152

Table 6: Features provided to the J48 automatic
dialogue act classifier.

Feature selection was performed on the features
occurring more than three times in the training
set using the WEKA machine learning software:
various top-N cut-offs were examined for perfor-
mance on tenfold cross-validation after ranking
the features by information gain. A peak in per-
formance during cross-validation on the training
set was observed at N=500 features.

The final dialogue act classifier includes the fol-
lowing features: speaker role, two-step dialogue
act history (category and tag), utterance length, ex-
istence of the ‘?’ token, existence of 160 unigrams
and 150 bigrams, and existence of 31 part-of-
speech unigrams and 152 part-of-speech bigrams.

45



The part-of-speech tagger used in this analysis was
an n-gram tagger within the Natural Language
Tool Kit for Python, trained on the NPS chat cor-
pus (Bird et al., 2009; Forsyth and Martell, 2007).
The classifier performance on the held-out test set
consisting of 714 utterances was 80.11% accuracy,
Cohen’s kappa of 0.786. This classifier was then
used to tag dialogue acts in the remaining 41, 869
utterances.

4 Extraversion and Dialogue Policy

With the annotated corpus in hand, the goal is to
examine how dialogue policy progression, as rep-
resented by tutors’ contextualized dialogue acts,
occurs over time with students tending toward ex-
traversion or introversion. We hypothesize that
tutors adapt differently to introverted and ex-
traverted students, and that students of different
extraverted or introverted tendencies learn more
effectively from different dialogue policies.

Students were binned into two groups, the ‘in-
troverts’, consisting of the students scoring below
or equal to the median extraversion score of 7, and
the ‘extraverts’, consisting of the students scoring
above the median score1. These groups included
34 and 33 students, respectively.

We describe tutor dialogue policy by identify-
ing the conditional probabilities of a tutor move
following a student move (i.e., the probabilities
Pr(Tn|Sn−1)) during each session. In other
words, we compute bigram probabilities over di-
alogue acts, where the second dialogue act of the
bigram is a tutor move. Because the task-oriented
nature of the dialogue allows for extended periods
of dialogue silence while the student is working
on the task, a WAIT tag was added to the corpus
when there was a pause in the dialogue for more
than twenty seconds. This threshold was chosen
based upon qualitative inspection of the corpus. To
identify the changes in this policy over time, we
calculated the difference in the probability of each
dialogue act bigram between the first and fourth
lessons of each student-tutor pair. Finally, in or-
der to allow for directly comparing parameter val-
ues across models, each column of predictors was
standardized by subtracting the mean and dividing

1We split on the median introversion/extraversion score
as observed in our student sample rather than splitting on a
larger population median because the range of personality
traits differs significantly based on the sample. To date, no
large study has examined university students in order to es-
tablish personality norms.

by the standard deviation.
After all of the bigram probabilities were stan-

dardized, we split the students into two groups
based on median extraversion score: those tend-
ing toward extraversion and those tending toward
introversion. A feature selection algorithm was
then applied to each of these sets in order to iden-
tify the most relevant dialogue act bigram fea-
tures for predicting learning. Any feature that
provided non-positive information gain was elim-
inated from consideration. A stepwise linear re-
gression model was then applied using the SAS
statistical modeling software, resulting in the mod-
els displayed in Tables 7 and 8. Subscripts indicate
the speaker of the dialogue act, student or tutor.
Note that in each of these tables, the predictors are
not just bigram probabilities, but change in that
particular bigram probability from the first to the
fourth dialogue within repeated-interactions tutor-
ing.

Students Tending Toward Extraversion
Normalized Learning Gain = Partial R2 p

1.244 * OEXS → FPT 0.228 < 0.001

−0.445 * AYNS → RT 0.169 < 0.001

0.440 * ES → QET 0.139 0.001

0.359 * QIS → QFT 0.092 0.002

−0.298 * AWHS → QOT 0.081 0.013

0.207 * WAIT→ QPT 0.050 0.037

−0.226 * QIS → IT 0.038 0.041

0.000 (intercept) 1.000

RSME = 50.97% of range in Normalized Learning Gain

Table 7: Stepwise linear regression model for stan-
dardized Normalized Learning Gain in students
scoring above the median in extraversion.

Students Tending Toward Introversion
Normalized Learning Gain = Partial R2 p

−0.447 * QIS → RT 0.262 0.003

0.371 * QIS → QPT 0.125 0.007

−0.331 * QIS → QQT 0.092 0.015

−0.278 * WAIT→ FPET 0.083 0.018

0.384 * AYNS → QQT 0.067 0.010

0.288 * ACKS → ET 0.067 0.022

0.000 (intercept) 1.000

RSME = 60.89% of range in Normalized Learning Gain

Table 8: Stepwise linear regression model for stan-
dardized Normalized Learning Gain in students
scoring below the median in extraversion.
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Several tutorial dialogue policy progressions
were identified as statistically significantly asso-
ciated with learning gain in both extraverted and
introverted students. An increase in factual ques-
tions following extra-domain statements was asso-
ciated with increased learning in students scoring
above the median in extraversion, as was an in-
crease in evaluative questions after explanations,
an increase in the number of factual questions fol-
lowing information questions, and an increase in
probing questions initiated after the conclusion of
a sub-dialogue. On the other hand, extraverted
students achieved a lower learning gain when tu-
tors offered increasing reassurance after yes/no an-
swers, asked more open questions after answers to
WH-questions, or gave increasing instruction after
an information question.

A similar number of tutorial dialogue policy
progressions were identified as statistically signif-
icantly correlated with learning gain in introverted
students. For these students, a higher learning gain
was achieved when tutors followed more infor-
mation questions with a probing question, more
yes/no answers with a prompt for questions, or
offered increasing explanation after acknowledge-
ments. Students scoring below the median in ex-
traversion achieved a lower learning gain when
tutors offered more reassurance after information
questions, more prompts for questions after infor-
mation questions, or increasing elaborated positive
feedback after pauses in the dialogue.

5 Discussion

This section examines the tutorial dialogue pol-
icy progressions that were identified as statisti-
cally significant to learning gain in these groups
of students; recall that each feature represents a
change over time in the probability that the second
dialogue act follows the first. First we examine
the extraverted student model, and then we exam-
ine the introverted student model. Dialogue ex-
cerpts illustrating these dialogue interactions are
displayed in Appendix 1.

5.1 Extraverted Students

Students scoring higher in extraversion tend to
be assertive, outgoing, and energetic (Goldberg,
1993). As the models show, these characteris-
tics likely influence the extent to which particu-
lar dialogue policies are effective for supporting
learning for extraverted students. For example,

the high energy nature of the extraversion per-
sonality trait may influence how dialogues tran-
sition. The model shows that students learned
more when tutors progressed over time toward
more positive feedback following extra-domain
statements (Extra-Domain StatementS → Positive
FeedbackT ) and toward more probing questions
following pauses (Wait → Probing QuestionT ).
Both of these bigrams indicate important transi-
tion points within dialogue. For the former, extra-
domain statements represent off-topic utterances,
whereas tutor positive feedback can only be task-
related (if it were a positive response to an extra-
domain statement, the response would also have
been tagged extra-domain). For tutor probing
questions following pauses, it is likely that ex-
traverted students benefited from this adaptation
over time because in being asked to reflect and
explain their current understanding or goals, they
may have been re-engaged. It should be noted that
in general, asking students to self-explain can sup-
port learning (VanLehn et al., 1992).

Another example of a dialogue policy progres-
sion that emerged in the model and illustrates a
widely known fact about tutoring is reflected in the
Information QuestionS → InformationT bigram,
which when tutors progressed more toward this
approach, is associated with decreased learning.
Our prior work has shown that directing students
what to do, even if they have just asked for such
direction, is strongly associated with decreased
learning (Mitchell et al., 2013).

Extraverted students tend to be assertive, and
this characteristic influences how they make and
interpret particular dialogue moves. An example
of this can be seen within the model: when tutors
progressed toward providing more reassurance af-
ter student yes/no answers, students learned less.
This Yes/No AnswerS → ReassuranceT policy is
likely a form of indirect feedback or politeness,
both of which have been shown to be unhelpful,
and sometimes harmful, to learning (Johnson and
Rizzo, 2004), and this seems to be a particularly
marked effect for extraverted students who may
benefit more from direct evaluations of their an-
swers. Another example of this indirect approach
may be within the WH-Question AnswerS→Open
QuestionT tutor policy, whose increasing use over
time was associated with lower student learning.
Like reassurance, a follow-up question may be in-
terpreted by extraverted students as an indirect in-
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dication that the previous answer was incorrect,
and a more direct approach may have been more
helpful.

Finally, extraverted students tend to be talkative.
This tendency is consistent with two of the
model’s findings regarding the helpfulness of par-
ticular types of tutor questions. Students tended
to learn more when tutors progressed toward fol-
lowing student explanations with evaluative ques-
tions (ExplanationS → Evaluative QuestionT ).
Although students’ responses to evaluative ques-
tions (e.g., ‘Do you understand?’) are frequently
considered to be inherently inaccurate, especially
when students are first introduced to material, it
may be the case that as students work on a task for
an extended period of time, evaluative questions
may become increasingly helpful. Another tutor
questioning policy was also positively associated
with learning gain for extraverted students: Infor-
mation QuestionS → Factual QuestionT involves
the tutor answering a question with a question,
potentially a very helpful strategy for talkative or
highly social students.

5.2 Introverted Students

Students scoring lower in extraversion tend to be
less talkative, more reserved, and more shy (Gold-
berg, 1993). This may result in introverted stu-
dents being less outspoken about their understand-
ing, and less likely to ask questions about misun-
derstandings. These characteristics affect the way
that tutor choices impact student learning during
tutoring. For example, when less talkative stu-
dents ask information questions and tutors tend to
provide more reassurance as time goes on, this In-
formation QuestionS → ReassuranceT pair is as-
sociated with decreased student learning. It is pos-
sible that since introverts are less likely to speak
up with a question, the “stakes” or importance of
providing a direct answer may be higher for these
students. Another dialogue policy progression that
is not helpful for student learning is to provide
elaborated positive feedback after a pause in di-
alogue (Wait → Elaborated Positive FeedbackT ).
Because pauses in the dialogue typically corre-
spond to student task actions, it is possible that in-
troverted students who are on the right track would
benefit more from the tutor allowing them to con-
tinue working.

Introverted students also tend to describe them-
selves as shy or inhibited, which may be influential

in the apparent helpfulness of tutors’ increasing
their question prompts following student answers
(Answer Yes/NoS → Question PromptT ). This
could be due to the fact that introverted students
are prone to giving terse responses, and may need
extra encouragement to ask questions if they are
uncertain. Increasing the number of these prompts
could increase the likelihood that more of the stu-
dent’s questions are voiced. Another helpful type
of question for introverted students seems to be
probing questions, even when they follow a stu-
dent question (Question InformationS → Probing
QuestionT ). A probing question is an indirect re-
quest for reflection, prompting the student to re-
consider her approach; this has previously been
shown to have a positive effect on learning gain
(VanLehn et al., 1992).

6 Conclusion and Future Work

Adapting to personality during dialogue may
substantially improve the effectiveness of both
human-human interactions as well as interactions
with dialogue systems. We have investigated the
ways in which human tutorial dialogue policy pro-
gressions are associated with learning within a
repeated-interactions dialogue study. The models
indicate that depending on a student’s tendencies
toward introversion or extraversion, different di-
alogue policy progressions support higher learn-
ing. In particular, introverts may benefit from ad-
ditional prompting and encouragement to speak
their mind, while extraverts may benefit from be-
ing given opportunities to discuss their thoughts
with a tutor.

While this study has focused on the extraversion
facet of personality, future work may benefit from
examining the other facets of the Big Five Fac-
tors: Neuroticism, Openness, Conscientiousness,
and Agreeableness. How we may best design a tu-
torial dialogue policy around a more fully-featured
model of the student’s personality is an important
research area. It will also be important to examine
task actions closely in future analyses, as this may
have significant effects on task-oriented dialogue
system design in particular. Additionally, analyz-
ing the intermediate sessions in order to capture
a fuller picture of the interaction over time is a
promising direction. Finally, examining tutor per-
sonality may also reveal important insight for the
design of tutorial systems. It is hoped that these
lines of investigation will lead to a next generation
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of user-adaptive dialogue systems with increased
effectiveness facilitated by their adaptation to per-
sonality traits.
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Extraverted Student Dialogue Excerpt

Extra-Domain Other→ Positive Feedback
STUDENT: I haven’t really done this before.

TUTOR: You’re doing well!

Yes/No Answer→ Reassurance
STUDENT: Yes.

TUTOR: Actually, I was wording the question incor-
rectly. . .

Explanation→ Evaluative Question
STUDENT: But it still prompts for 3 or 4. . .

TUTOR: Yes; does that make sense from what you
learned about sequential program flow?

Information Question→ Factual Question
STUDENT: What did I do wrong?

TUTOR: What is your Scanner’s name?

WH-Question Answer→ Open Question
STUDENT: Previous.

TUTOR: Why did previousChoice get assigned
a value?

Wait→ Probing Question TUTOR: What do you think about your program’s
behavior?

Information Question→ Instruction
STUDENT: There wouldn’t have been any output?

TUTOR: Yeah, but more than that, the program
would report an error.

Introverted Student Dialogue Excerpt

Information Question→ Reassurance
STUDENT: So the previous answer needs to be
stored as a part of PlayerInput2?

TUTOR: That would work fine.

Information Question→ Probing Question
STUDENT: That’s not what I want?

TUTOR: Do you really want ‘or’?

Information Question→ Question Prompt
STUDENT: So I need an else if for every if
statement?

TUTOR: Do you have any questions?

Wait→ Elaborated Positive Feedback TUTOR: Nice, you compiled the code.

Yes/No Answer→ Question Prompt
STUDENT: No, I got it.

TUTOR: Any questions so far?

Acknowledgement→ Explanation
STUDENT: Okay.

TUTOR: When Java gets to the nextLine(), it
will stop.

Appendix 1: Dialogue excerpts illustrating the dialogue interactions emergent as significant in the anal-
ysis. All excerpts originate from Lesson 4, at the end of the series of dialogue sessions.
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Abstract

Human-computer trust has shown to be a
critical factor in influencing the complex-
ity and frequency of interaction in techni-
cal systems. Particularly incomprehensi-
ble situations in human-computer interac-
tion may lead to a reduced users trust in the
system and by that influence the style of
interaction. Analogous to human-human
interaction, explaining these situations can
help to remedy negative effects. In this pa-
per we present our approach of augment-
ing task-oriented dialogs with selected ex-
planation dialogs to foster the human-
computer trust relationship in those kinds
of situations. We have conducted a web-
based study testing the effects of different
goals of explanations on the components
of human-computer trust. Subsequently,
we show how these results can be used in
our probabilistic trust handling architec-
ture to augment pre-defined task-oriented
dialogs.

1 Introduction

Human-computer interaction (HCI) has evolved in
the past decades from classic stationary interaction
paradigms featuring only human and computer to-
wards intelligent agent-based paradigms featuring
multiple devices and sensors in intelligent envi-
ronments. For example, ubiquitous computing no
longer seems to be a vision of future HCI, but has
become reality, at least in research labs and pro-
totypical environments. Additionally, the tasks a
technical system has to solve cooperatively with
the user have become increasingly complex. How-
ever, this change from simple task solver to intel-
ligent assistant requires the acceptance of and the
trust in the technical system as dialogue partner
and not only as ordinary service device.

Especially trust has shown to be a crucial part in
the interaction between human and technical sys-
tem. If the user does not trust the system and its
actions, advices or instructions the way of interac-
tion may change up to complete abortion of future
interaction (Parasuraman and Riley, 1997). Espe-
cially those situations in which the user does not
understand the system or does not expect the way
how the system acts are critical to have a negative
impact on the human-computer trust (HCT) rela-
tionship (Muir, 1992). Those situations do occur
usually due to incongruent models of the system:
During interaction the user builds a mental model
of the system and its underlying processes deter-
mining system actions and output. However, if
this perceived mental model and the actual system
model do not match the HCT relationship may be
influenced negatively (Muir, 1992). This may, for
example, be due to a mismatch in the expected and
the actual system action and output.

For example, if a technical system would assist
the user in having his day scheduled in a time ef-
fective manner, the user would be in a vulnerable
situation of relying on the reasoning capabilities of
the system. However, when the user-expected time
schedule does not match the system-generated, the
question arises if the user will trust the system, de-
spite lacking the knowledge if the schedule is cor-
rect. If the user trusts the automated day schedul-
ing capability of the system, he will probably at-
tend the appointments exactly as scheduled. How-
ever, if he does not trust this automated outcome
he won’t rely on it and will question the plan.

Therefore, the goal should be to detect those
critical situations in HCI and to react appropri-
ately. If we take a look at how humans detect
and handle critical situations, we can conclude that
they use contextual information combined with in-
terpreted multimodal body analysis (e.g., facial
expression, body posture, speech prosody) for de-
tection and usually some sort of explanation to
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Goals Details
Transparency How was the systems answer reached?
Justification Explain the motives of the answer?
Relevance Why is the answer a relevant answer?

Conceptualization Clarify the meaning of concepts
Learning Learn something about the domain

Table 1: Goals of explanation after (Sørmo and
Cassens, 2004). These goals subsume different
kinds of explanation as e.g., why, why-not, what-
if, how-to explanations

clarify the process of reasoning (i.e. increasing
transparency and understandability). As even hu-
mans are sometimes insecure about judging the di-
alog partner and to decide whether and which type
of reaction would be appropriate, it seems valid
that a technical system will not overcome this is-
sue of uncertainty. Therefore, we assume that the
transfer of this problem to a technical system can
only be handled effectively by incorporating un-
certainty and thus using a probabilistic model. In
the remainder of this paper, we will first elaborate
how to react to not understandable situations and
secondly present how to incorporate these findings
into a multimodal dialogue system using a proba-
bilistic model.

2 Coping with Incomprehensible
Situations

Analogous to human-human interaction provid-
ing explanations in not understandable situations
in HCI can reduce the loss of trust (Glass et al.,
2008). However, HCT is not a one-dimensional
simple concept. It may be devided into several
components, which all have to be well-functioning
to have the user trust a technical system. Exis-
tent studies concentrated on showing that explana-
tions or different kinds of explanations can influ-
ence HCT in general (Lim et al., 2009). So, what
is lacking currently is which explanations do influ-
ence which bases of human-computer trust.

2.1 Explanations
In general, explanations are given to clarify,
change or impart knowledge. Usually the implicit
idea consists of aligning the mental models of the
participating parties. The mental model is the per-
ceived representation of the real world, or in our
case of the technical system and its underlying
processes. In this context explanations try to es-
tablish a common ground between the parties in
the sense that the technical system tries to clar-
ify its actual model to the user. This is the at-

tempt of aligning the user’s mental model to the
actual system. However, explanations do not al-
ways have the goal of aligning mental models, but
can be used for other purposes as well. Analogous
to human-human interaction, in human-computer
interaction the sender of the explanation pursues a
certain goal, with respect to the addressee, which
should be achieved. The question remains, how
these different goals of explanation (see table 1)
map to HCT, meaning, how they influence HCT
or components of it.

2.2 Human-Computer Trust

Mayer et al. (1995) define trust in human-human
interaction to be ”the extent to which one party is
willing to depend on somebody or something, in
a given situation with a feeling of relative secu-
rity, even though negative consequences are pos-
sible”. For HCI trust can be defined as ”the atti-
tude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty
and vulnerability” (Lee and See, 2004). Techni-
cal Systems which serve as intelligent assistants
with the purpose of helping the user in complex as
well as in critical situations seem to be very de-
pendent on an intact HCT relationship. However,
trust is multi-dimensional and consists of several
bases. For human relationships, Mayer et al. de-
fined three levels that build the bases of trust: abil-
ity, integrity and benevolence. The same holds for
HCI, where HCT is a composite of several bases.
For human-computer trust Madsen and Gregor
(2000) constructed a hierarchical model (see fig-
ure 1) resulting in five basic constructs or so-called
bases of trust, which can be divided in two general
components, namely cognitive-based and affect-
based bases. In short-term human-computer in-
teraction, cognitive-based HCT components seem
to be more important, because it will be easier to
influence those. Perceived understandability can
be seen in the sense that the human supervisor
or observer can form a mental model and predict
future system behavior. The perceived reliabil-
ity of the system, in the usual sense of repeated,
consistent functioning. And technical competence
means that the system is perceived to perform the
tasks accurately and correctly based on the input
information. In this context it is important to men-
tion, that as Mayer already stated, the bases of
trust are separable, yet related to one another. All
bases must be perceived highly for the trustee to be
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Figure 1: Human-computer trust model: Personal
attachment and faith build the bases for affect-
based trust. Rerceived understandability, techni-
cal competence and reliability for cognition-based
trust.

deemed trustworthy. If any of the bases does not
fulfill this requirement, the overall trustworthiness
can suffer (Madsen and Gregor, 2000).

3 Related Work

Previous work on handling trust in technical sys-
tems was done for example by Glass et al. (2008).
They investigated factors that may change the
level of trust users are willing to place in adaptive
agents. Among these verified findings were state-
ments like “provide the user with the information
provenance for sources used by the system”, “in-
telligently modulating the granularity of feedback
based on context- and user-modeling” or “supply
the user with access to information about the in-
ternal workings of the system”. However, what is
missing in Glass et al.’s work is the idea of rat-
ing the different methods to uphold HCT in gen-
eral and the use of a complex HCT model. Other
related work was for example done by Lim et al.
(2009) on how different kinds of explanations can
improve the intelligibility of context-aware intel-
ligent systems. They concentrate on the effect of
Why, Why-not, How-to and What-if explanations
on trust and understanding system’s actions or re-
actions. The results showed that Why and Why-
not explanations were the best kind of explanation
to increase the user’s understanding of the sys-
tem, though trust was only increase by providing
Why explanations. Drawbacks of this study were
that they did only concentrate on understanding
the system and trusting the system in general and
did not consider that HCT is on the one hand not
only influenced by the user’s understanding of the
system and on the other hand that if one base of

trust is flawed, the HCT in general will be dam-
aged (Mayer et al., 1995).

Regarding the issue of trusting a technical sys-
tem or its actions and reactions related work ex-
ists for example on “credibility” (Fogg and Tseng,
1999). However, this term developed in the web
community focusing on the believability of exter-
nal sources. The term trust is used in the web
research community as well as in work on “trust
in automation”. However, as Fogg stated himself
later (Tseng and Fogg, 1999) credibility should be
called believability and trust-in-automation should
be called dependability to reduce the missunder-
standings. In this work we use the term human-
computer trust and its model by Madsen and Gre-
gor (2000) subsuming both terms.

4 Experiment on Explanation
Effectiveness

The insight that human-computer trust is not a
simple but complex construct and the lack of di-
rected methods to influence components of HCT
motivated us to conduct an experiment which tried
to overcome some of these issues. The use of ex-
planations to influence HCT bases in a directed
and not arbitrary way, depends on whether an
effective mapping of explanation goals to HCT
bases can be found. This means, that we have
to identify which goal of explanation influences
which base of trust in the most effective way.
Therefore, the goal was to change undirected
strategies to handle HCT issues into directed and
well-founded ones, substantiating the choice and
goal of explanation.

For that we conducted a web-based study in-
ducing events to create not understandable or not
expected situations and then compared the effects
of the different goals of explanations on the HCT-
bases. For our experiment we concentrated on jus-
tification and transparency explanations. Justifica-
tions are the most obvious goal an explanation can
pursue. The main idea of this goal is to provide
support for and increase confidence in given sys-
tem advices or actions. The goal of transparency
is to increase the users understanding in how the
system works and reasons. This can help the user
to change his perception of the system from a
black-box to a system the user can comprehend.
Thereby, the user can build a mental model of the
system and its underlying reasoning processes.

The participants in the experiment where ac-
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quired by using flyers in the university as well as
through facebook. The age of the participants was
in a range from 14 to 61, with the mean being 24,1.
Gender wise, the distribution was 59% (male) to
41% (female), with most of the participants be-
ing students. For the participation the students did
receive a five euro voucher for a famous online
store. However, this was only granted when fin-
ishing the complete experiment. Therefore, partic-
ipants dropping out of the experiment would waive
the right on the voucher.

4.1 Set-Up

The main objective of the participants to organize
four parties for friends or relatives in a web-based
environment. This means that they had to use the
browser at home or the university to organize for
example, the music, select the type and amount of
food or order drinks. Each party was described
by an initial screen depicting the key data for the
party. This included which tasks had to be accom-
plished and how many people were expected to
join (see figure 2). Each task was implemented
as a single web-page, with the goal to organize
one part of the party (i.e., dinner, drinks, or cham-
pagne reception). The user had to choose from
several drop-down menus which item should be
ordered for the party and in what number. For ex-
ample, the user had to order the components of
the dinner (see figure 3). When an entry inside
a drop-down menu was chosen, the system gave
an advice on how much of this would be needed
to satisfy the needs of one guest. Additionally, be-
fore the participant could move on to the next task,
the orders were checked by the system. The sys-
tem would output whether the user had selected
too much, too little or the right amount and only if
everything was alright could proceed to the next
task. The experiment consisted in total of four
rounds. The first two rounds were meant to go
smoothly and were supposed to get the subject
used to the system and by that building a men-
tal model of it. After the first two rounds a HCT
questionnaire was presented to the user. As ex-
pected the user has built a relationship with the
system by gaining an understanding of the systems
processes. The next two rounds were meant to
influence the HCT-relationship negative with un-
expected external events. These unexpected, and
incongruent to the user’s mental model, system
events were influencing pro-actively the decisions

Figure 2: General information on the party. How
many people plan to attend the event and what type
of tasks have to be accomplished.

and solutions the user made to solve the task. This
means, without warning, the user was overruled
by the system and either simply informed by this
change, or was presented an additional justifica-
tion or transparency explanation as seen in figure
3. In this figure we can see that the user’s order
(’Bestellungsliste’) was changed pro-actively be-
cause of an external event. Here the attendance of
some participants was cancelled in the reservation
system, thus the system did intervene. This pro-
active change was explained at the bottom of the
web-page by, in this case, providing a justification
(’The order was changed by the system, because
the number of attending persons decreased’). The
matching transparency explanation would not only
provide a reason, but explain how the system an-
swer was reached (’Due to recent events the or-
der was changed by the system. The order vol-
ume has been reduced, because several persons
canceled their attendance in the registration sys-
tem.’). Events like this occurred several times in
the rounds 3 and 4 of the party planning.

4.2 Results

139 starting participants were distributed among
the three test groups (no explanation, transparency,
justifications). 98 accomplished round 2, reach-
ing the point until the external events were in-
duced and 59 participants completed the experi-
ment. The first main result was that 47% from
the group receiving no explanations quit during
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Figure 3: This screenshot shows one of the tasks the user has to accomplish. In this case dinner (’Haupt-
gerichte’) including entree (’Vorspeisen’) and desserts has to be ordered.

the critical rounds 3 and 4. However, if expla-
nations were presented only 33% (justifications)
and 35% (transparency) did quit. This means that
eventhough the participants would encounter neg-
ative consequences of losing the reward money,
they did drop out of the experiment. Therefore,
we can state that the use of explanations in incom-
prehensible and not expected situations can help
to keep the human-computer interaction running.
The main results from the HCT-questionnaires can
be seen in figure 4. The data states that providing
no explanations in rounds three and four resulted
in a decrease in several bases of trust. Therefore,
we can conclude that the external events did in-
deed result in our planned negative change in trust.
Perceived understandability diminished on aver-
age over the people questioned by 1.2 on a Lik-
ert scale with a range from 1 to 5 when providing
no explanation at all compared to only 0.4 when
providing transparency explanations (no explana-
tion vs. transparency t(34)=-3.557 p<0.001), and
on average by 0.5 with justifications (no expla-
nation vs. justifications t(36)=-2.023 p<0.045).
Omitting explanations resulted in an average de-
crease of 0.9 for the perceived reliability, with
transparency explanations in a decrease of 0.4 and
for justifications in a decrease of 0.6 (no explana-
tion vs. transparency t(34)=-2.55 p<0.015).

These results support our hypotheses that trans-
parency explanations can help to reduce the neg-
ative effects of trust loss regarding the user’s per-
ceived understandability and reliability of the sys-

tem in incomprehensible and unexpected situa-
tions. Especially for the base of understandability,
meaning the prediction of future outcomes, trans-
parency explanations fulfill their purpose in a good
way. Additionally, they seem to help with the per-
ception of a reliable, consistent system. The re-
sults show that it is worthwhile to augment ongo-
ing dialogs with explanations to maintain HCT.

While analyzing the data we did not find any
statistically significant differences between pro-
viding transparency and justification explanations.
However, this could be due to limited differences
in the goals of explanation. Usually, the trans-
parency explanations in the experiment were in-
cluding more information on what happened in-
side the system, and how the system did recognize
the external event (e.g., the reduction of attend-
ing persons). In future experiments we will try to
distinguish those two goals of explanations more
from each other. For example, the justification for
reduce attendance to an event can be changed to
something like ’The order was changed by the sys-
tem, because otherwise you would have too much
food’ instead of ’The order was changed by the
system, because the number of attending persons
decreased’ and by that making it more different
from the transparency explanation (’Due to recent
events the order was changed by the system. The
order volume has been reduced, because several
persons canceled their attendance in the registra-
tion system.’). In the following, we will describe
how this is used in our developed explanation aug-

55



Figure 4: This figure shows the changes of HCT bases from round 2 to round 4. The scale was a 5 point
likert scale with e. g., 1 the system being not understandable at all and 5 the opposite.

mentation architecture (see figure 5).

5 Implementation

The augmentation of the dialog is done using two
different kinds of dialog models. On the one hand
we are using a classic dialog model based on a
finite-state machine approach for the task-oriented
part of the dialog. On the other hand a planner
(Müller et al., 2012) is used to generate from a
POMDP a decision tree. This POMDP is used
only for the augmentation of the task-oriented part
of the dialog with explanations. The communi-
cation between each module of the architecture
is controlled by a XML-based message-oriented
middleware (Schröder, 2010), using a publish-
subscribe system to distribute the XML-messages.
In order to decide when to induce additional ex-
planations, on one hand critical situations in HCI
have to be recognized and on the other hand, if
necessary the appropriate type of explanation has
to be given. Obviously, recognizing those situa-
tions cannot be done solely by using information
coming from interaction and its history. Multi-
modal input as speech recognition accuracy, fa-
cial expressions or any other sensor information
can help to improve the accuracy of recognizing
critical moments in HCI. However, mapping sen-
sor input to semantic information is usually done
by classifiers and those classifiers convey a certain
amount of probabilistic inaccuracy which has to
be handled. Therefore, a decision model has to be
able to handle probabilistic information in a suit-
able manner.

5.1 Probabilistic Decision Model

For the problem representation when and how to
react, a so-called partially observable Markov de-

cision process (POMDP) was chosen and formal-
ized in the Relational Dynamic Influence Dia-
gram Language (RDDL) (Sanner, 2010). RDDL
is a uniform language which allows an efficient
description of POMDPs by representing its con-
stituents (actions, observations, belief state) with
variables. Formally, a POMDP consists of a set
S of world states, a set A of system actions, and
a set O of possible observations the system can
make. Further, transition probabilities P (s′|s, a)
describe the dynamics of the environment, i.e., the
probability of the successor world state being s′

when action a is executed in state s. The obser-
vation probabilities P (o|s′, a) represent the sen-
sors of the system in terms of the probability of
making observation o when executing a resulted
in successor world state s′. Each time the system
executes an action a, it receives a reward R(s, a)
which depends on the world state s the action was
executed in. The overall goal of the system is to
maximize the accumulated reward it receives over
a fixed number of time steps. (For more informa-
tion on POMDPs, see Kaelbling et al. (1998).)

A POMDP is then used by a planner (Silver and
Veness, 2010; Müller et al., 2012) to search for a
policy that determines the system’s behavior. This
policy is, e.g., represented as a decision tree that
recommends the most suitable action based on the
system’s previous actions and observations. For
example, a policy for a POMDP that models HCI
with respect to HCT, can thus represent a decision
tree which represents a guideline for a dialog flow
which ensures an intact HCT-relationship.

The RDDL model is a probabilistic representa-
tion of the domain, which determines when and
how to augment the dialog with explanations at
run-time. Each observation o consists of the du-
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Figure 5: The architecture consists of two dialog models, a fission and fusion engine, sensors as well as
the multimodal interface representation to interact with the user. The dialog models can be seperated in
a task-oriented FSM-dialog model and into a POMDP-based decision tree for explanation augmentation.
This decision tree is generated from a POMDP-model by a planner.

ration of interaction for each dialog step as well as
the semantic information of the input (i.e., which
action in the interface was triggered by speech,
touch or point-and-click interaction). Those types
of interaction can bring along uncertainty (e.g.,
speech recognition rate). The state s in terms of
HCT is modeled by its respective bases, namely
understandability, technical-competence, reliabil-
ity, faith and personal attachment. The system
actions A are the dialogs presented to the user.
These are the different goals of explanations (jus-
tification, transparency, conceptualization, rele-
vance and learning) as well as the task-oriented
part of the dialog represented by a so-called com-
municative function(c) with c from set C (e.g.,
question, inform, answer, offer, request, instruct).
This means, that in the POMDP only the com-
municative function of the task-oriented dialogs is
represented without the specific content.

The transition probabilities are defined as con-
ditional probability functions (CPFs) and model
user behavior dependent on the system’s actions
and the user’s current HCT values. Basically, con-
ditional functions are defined using if else for all
wanted cases. For example, we defined that the
user’s understanding in s′ will probably be high
if a transparency explanation was the last system
action. When the user’s understanding is indeed
high in s′, the observation will probably be that
the user clicked okay, and the time he took for the
interaction was around his usual amount taken for

explanations. From this observation, a planner can
infer that the transparency explanation indeed in-
creased the user’s understanding.

Now, the quest is to define the reward func-
tion R(s, a) in a way that it leads to an optimal
flow of actions. I.e., the system should receive a
penalty when the bases of trust do not remain in-
tact, and actions should incur a cost so that the sys-
tem only executes them when trust is endangered.
However, because POMDPs tend to be become
very quick very complex, we chose to seperate
the task-oriented dialog from the additional dialog
augmentation with explanations when needed.

5.2 Dialog Augmentation Process

The task-oriented dialog is modeled as a classic
finite-state machine (FSM). Each dialog action has
several interaction possibilities, each leading to
another specified dialog action. Each of those di-
alog action is represented as POMDP action a as
part of C (communicative function(c)). As already
mentioned, only the communicative function is
modeled to reduce the complexity in the POMDP.

The HCI is started using the FSM-based di-
alog model approach and uses the POMDP to
check whether the user’s trust or components of
the user’s trust are endangered. At run-time the
next action in the FSM is compared to the one
determined by the POMDP (see figure 6). This
means, that if the next action in the FSM is not the
same as the one planned by the POMDP, the dia-
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Figure 6: This figure shows the comparison of
FSM to Decision Tree. The next action m3 in the
FSM does not correspond to the one endorsed by
the POMDP Decision Tree. Therefore, the dialog
will be augmented by explanation action mE .

log flow is interrupted, and the ongoing dialog is
augmented by the proposed explanation. For ex-
ample, if the user is presented currently a commu-
nicative function of type inform and the decision
tree recommends to provide a transparency expla-
nation, because the understanding and reliability
are probably false, the originally next step in the
FSM is postponed and first the explanation is pre-
sented. The other way around, if the next action in
the FSM is subsumed by the one scheduled by the
POMDP, the system does not need to intervene.
For example, if the next FSM-action is to instruct
the user about how to connect amplifier and re-
ceiver and the POMDP would recommend an ac-
tion of type communicative function instruct, no
dialog augmentation is needed.

6 Dialog Interface

Each dialog action in the FSM as well as the ex-
planation dialogs are represented by a so-called di-
alog goal, which is allocated on the one hand a
type of communicative function c. On the other
hand the dialog content is composed of multiple
information objects referencing so-called informa-

Figure 7: A typical output presentation of the fis-
sion component of a dialog goal. Here the user
gets instruction on how to connect the BluRay-
Player with an HDMI cable.

tion IDs in the information model. Each informa-
tion object can consist of different types (e.g., text,
audio, and pictures). For interface presentation
the dialog goal is passed to the fission which se-
lects and combines the information objects at run-
time by a fission sub-component to compose the
user interface in a user- and situation-adaptive way
(Honold et al., 2012). In figure 7 we can see a typi-
cal interface for a transmitted dialog goal in which
the user can interact via speech, touch or GUI.

7 Conclusion and Future Work

In this paper we showed the necessity to deal with
critical situations in HCI in a probabilistic ap-
proach. The advantage of our approach is that
the designer still can define a FSM-based task-
oriented dialog. Usually most commercial sys-
tems are still based on such approaches. However,
expanding the dialog by a probabilistic decision
model seems to be a valuable choice. Our experi-
ment on the influence of explanations on HCT has
clearly shown, that it is worthwhile to augment the
ongoing dialog by transparency or justification ex-
planations for an intact HCT relationship. In the
future we will run experiments on how effective
the hybrid FSM-POMDP approach is compared to
classic as well as POMDP dialog systems.
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Abstract

Non-cooperative dialogue behaviour has
been identified as important in a vari-
ety of application areas, including educa-
tion, military operations, video games and
healthcare. However, it has not been ad-
dressed using statistical approaches to di-
alogue management, which have always
been trained for co-operative dialogue.
We develop and evaluate a statistical dia-
logue agent which learns to perform non-
cooperative dialogue moves in order to
complete its own objectives in a stochas-
tic trading game. We show that, when
given the ability to perform both coopera-
tive and non-cooperative dialogue moves,
such an agent can learn to bluff and to lie
so as to win games more often – against
a variety of adversaries, and under var-
ious conditions such as risking penalties
for being caught in deception. For exam-
ple, we show that a non-cooperative dia-
logue agent can learn to win an additional
15.47% of games against a strong rule-
based adversary, when compared to an op-
timised agent which cannot perform non-
cooperative moves. This work is the first
to show how an agent can learn to use non-
cooperative dialogue to effectively meet
its own goals.

1 Introduction

Research in automated conversational systems has
almost exclusively focused on the case of coopera-
tive dialogue, where a dialogue system’s core goal
is to assist humans in particular tasks, such as buy-
ing airline tickets (Walker et al., 2001) or finding
a place to eat (Young et al., 2010). Gricean co-
operative principles have been shown to emerge
from multi-agent decision theory, in a language

task modelled using Decentralised Partially Ob-
servable Markov Decision Processes (Vogel et al.,
2013a), and in related work conversational impli-
cature was argued to be a by-product of agents
who maximise joint utility (Vogel et al., 2013b).

However, non-cooperative dialogues, where an
agent may act to satisfy its own goals rather than
those of other participants, are also of practi-
cal and theoretical interest (Georgila and Traum,
2011), and the game-theoretic underpinnings of
non-Gricean behaviour are actively being investi-
gated (Asher and Lascarides, 2008). For example,
it may be advantageous for an automated agent not
to be fully cooperative when trying to gather in-
formation from a human, and when trying to per-
suade, argue, or debate, when trying to sell them
something, when trying to detect illegal activity
(for example on internet chat sites), or in the area
of believable characters in video games and edu-
cational simulations (Georgila and Traum, 2011;
Shim and Arkin, 2013). Another arena in which
non-cooperative dialogue behaviour is desirable is
in negotiation (Traum, 2008), where hiding infor-
mation (and even outright lying) can be advanta-
geous. Furthermore, deception is considered to be
an essential part of successful military operations.
According to Sun Tzu “All warfare is based on de-
ception” and Machiavelli clearly states in The Dis-
courses that “Although deceit is detestable in all
other things, yet in the conduct of war it is laud-
able and honorable”(Arkin, 2010). Indeed, Den-
nett argues that deception capability is required for
higher-order intentionality in AI (Dennett, 1997).

A complementary research direction in recent
years has been the use of machine learning meth-
ods to automatically optimise cooperative dia-
logue management - i.e. the decision of what di-
alogue move to make next in a conversation, in
order to maximise an agent’s overall long-term ex-
pected utility, which is usually defined in terms of
meeting a user’s goals (Young et al., 2010; Rieser
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and Lemon, 2011). This research has shown how
robust and efficient dialogue management strate-
gies can be learned from data, but has only ad-
dressed the case of cooperative dialogue. These
approaches use Reinforcement Learning with a re-
ward function that gives positive feedback to the
agent only when it meets the user’s goals.

An example of the type of non-cooperative dia-
logue behaviour which we are generating in this
work is given by agent B in the following dia-
logue:
A: “I will give you a sheep if you give me a wheat”
B: “No”
B: “I really need rock” [B actually needs wheat]
A: “OK... I’ll give you a wheat if you give me
rock”
B: “OK”

Here, A is deceived into providing the wheat
that B actually needs, because A believes that B
needs rock rather than wheat. Similar behaviour
can be observed in trading games such as Settlers
of Catan (Afantenos et al., 2012).

1.1 Non-cooperative dialogue and
implicature

Our trading dialogues are linguistically coop-
erative (according to the Cooperative Principle
(Grice, 1975)) since their linguistic meaning is
clear from both sides and successful information
exchange occurs. Non-linguistically though they
are non-cooperative, since they they aim for per-
sonal goals. Hence they violate Attardo’s Per-
locutionary Cooperative Principle (PCP) (Attardo,
1997). In our non-cooperative environment, the
manipulative utterances such as “I really need
sheep” can imply that “I don’t really need any of
the other two resources”, as both of the players are
fully aware that three different resources exist in
total and more than one is needed to win the game,
so therefore they serve as scalar implicatures (Vo-
gel et al., 2013b). Hence we will show that the
LA learns how to include scalar implicatures in
its dialogue to successfully deceive its adversary
by being cooperative on the locutionary level and
non-cooperative on the perlocutionary level.

1.2 Structure of the paper

In this paper we investigate whether a learn-
ing agent endowed with non-cooperative dialogue
moves and a ‘personal’ reward function can learn
how to perform non-cooperative dialogue. Note

that the reward will not be given for perform-
ing non-cooperative moves themselves, but only
for winning trading games. We therefore explore
whether the agent can learn the advantages of be-
ing non-cooperative in dialogue, in a variety of
settings. This is similar to (Vogel et al., 2013a)
who show how cooperativity emerges from multi-
agent decision making, though in our case we
show the emergence of non-cooperative dialogue
behaviours.

We begin with the case of a simple but challeng-
ing 2-player trading game, which is stochastic and
involves hidden information.

In section 2 we describe and motivate the trad-
ing game used in this work, and in section 3 we
describe the Learning Agent. In section 4 we ex-
plain the different adversaries for experimentation,
in section 5 we provide results, and in section 6 we
conclude and discuss areas for future work.

2 The Trading Game

To investigate non-cooperative dialogues in a con-
trolled setting we created a 2-player, sequential,
non-zero-sum game with imperfect information
called “Taikun”. Motivated by the principle of
Occam’s razor we shaped this game as simply as
possible, while including the key features of a re-
source trading game. The precise goal was also to
implement mechanics that are not restrictive for
the future of this research and therefore can be
flexibly extended to capture different aspects of
trading and negotiation. We call the 2 players the
“adversary” and the “learning agent” (LA).

The two players can trade three kinds of re-
sources with each other sequentially, in a 1-for-1
manner, in order to reach a specific number of re-
sources that is their individual goal. The player
who first attains their goal resources wins. Both
players start the game with one resource of each
type (wheat, rock, and sheep). At the beginning
of each round the game updates the number of re-
sources of both players by either removing one of
them or adding two of them, thereby making the
opponent’s state (i.e. the cards that they hold) un-
observable. In the long run, someone will eventu-
ally win even if no player ever trades. However,
effective trading can provide a faster victory.

2.1 “Taikun” game characteristics

Taikun is a sequential, non-cooperative, non-zero-
sum game, with imperfect information, where:
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• The goal is to reach either 4 or 5 of two
specific resources (4 wheat and 5 rocks
for the learning agent and 4 wheat and
5 sheep for the adversary). The players
share a goal resource (wheat).

• Each round consists of an update of re-
sources turn, the learning agent’s trad-
ing proposal turn (and adversary’s ac-
ceptance or rejection), and finally the
adversary’s trading proposal turn (and
LA’s acceptance or rejection).

• The update turn, which is a hidden ac-
tion, changes one of the resources of
each player at random by +2 or -1.

• When a resource is “capped”, that is if
its number is 5 or more, then no update
rule can be applied to it. Trading can
still change its quantity though.

2.2 Actions (Trading Proposals)

Trade occurs through trading proposals that may
lead to acceptance from the other player. In an
agent’s turn only one ‘1-for-1’ trading proposal
may occur, or nothing (7 actions in total):

1. I will do nothing

2. I will give you a wheat if you give me a rock

3. I will give you a wheat if you give me a sheep

4. I will give you a rock if you give me a wheat

5. I will give you a rock if you give me a sheep

6. I will give you a sheep if you give me a wheat

7. I will give you a sheep if you give me a rock

Agents respond by either saying “No” or “OK”
in order to reject or accept the other agent’s pro-
posal.

2.3 Non-cooperative dialogue moves

In our second experiment three manipulative ac-
tions are added to the learning agent’s set of ac-
tions:

1. “I really need wheat”

2. “I really need rock”

3. “I really need sheep”

The adversary believes these statements, result-
ing in modifying their probabilities of making cer-
tain trades.

Note that in the current model we assume that
only these 3 manipulative actions potentially have
an effect on the adversary’s reasoning about the
game. An alternative would be to allow all
the trading utterances to have some manipulative
power. For example the LA’s uttering “I will give
you a wheat if you give me a rock” could lead the
adversary to believe that the LA currently needs
rock. For the present work, we prefer to sepa-
rate out the manipulative actions explicitly, so as
to first study their effects in the presence of non-
manipulative dialogue actions. In future work, we
will consider the case where all trading proposals
can cause adversaries to change their game strat-
egy.

3 The Learning Agent (LA)

The game state can be represented by the learning
agent’s set of resources, its adversary’s set of re-
sources, and a trading proposal (if any) currently
under consideration. We track up to 19 of each
type of resource, and have a binary variable repre-
senting whose turn it is. Therefore there are 20 x
20 x 20 x 2 = 16,000 states.

The learning agent (LA) plays the game and
learns while perceiving only its own set of re-
sources. This initial state space can later be ex-
tended with elements of history (previous dialogue
moves) and estimates of the other agent’s state
(e.g. beliefs about what the adversary needs).

The LA is aware of its winning condition (to ob-
tain 4 wheat and 5 rocks) in as much as it experi-
ences a large final reward when reaching this state.
It learns how to achieve the goal state through
trial-and-error exploration while playing repeated
games.

The LA is modelled as a Markov Decision Pro-
cess (Sutton and Barto, 1998): it observes states,
selects actions according to a policy, transitions to
a new state (due to the adversary’s move and/or a
update of resources), and receives rewards at the
end of each game. This reward is then used to up-
date the policy followed by the agent.

The rewards that were used in these experi-
ments were 1,000 for the winning case, 500 for
a draw and -100 when losing a game. The win-
ning and draw cases have the same goal states and
that would initially suggest the same reward but
they can be achieved through different strategies.
Experiments that we have conducted using either
the above rewards or the same rewards for win and
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draw have verified this. The learning agent’s per-
formance is slightly better when the reward for a
win is 1000 and 500 for a draw.

The LA was trained using a custom SARSA(λ)
learning method (Sutton and Barto, 1998) with an
initial exploration rate of 0.2 that gradually decays
to 0 at the end of the training games. After exper-
imenting with the learning parameters we found
that with λ equal to 0.4 and γ equal to 0.9 we ob-
tain the best results for our problem and therefore
these values have been used in all of the experi-
ments that follow.

4 Adversaries

We investigated performance with several differ-
ent adversaries. As a baseline, we first need
to know how well a LA which does not have
non-cooperative moves at its disposal can per-
form against a rational rule-based adversary. Our
hypothesis is then that a LA with additional
non-cooperative moves can outperform this base-
line case when the adversary becomes somewhat
gullible.

A ‘gullible’ adversary is one who believes state-
ments such as “I really need rock” and then acts so
as to restrict the relevant resource(s) from the LA.
Our experiments (see experiments 3.1-3.3) show
that this gullible behaviour may originate from
sound reasoning. The adversary confronts in this
case a very important dilemma. It suddenly does
not know if it should stay with its goal-oriented
strategy (baseline) or instead it should boycott the
LA’s stated needed resources. A priori, both of
these strategies might be equally successful, and
we will show that their performances are indeed
very close to each other.

4.1 Rule-based adversary: experiment 1

This strategy was designed to form a challenging
rational adversary for measuring baseline perfor-
mance. It cannot be manipulated at all, and non-
cooperative dialogue moves will have no effect on
it – it simply ignores statements like “I really need
wheat”.

The strict rule-based strategy of the adversary
will never ask for a resource that it does not need
(in this case rocks). Furthermore, if it has an avail-
able non-goal resource to give then it will offer it.
It only asks for resources that it needs (goal re-
sources: wheat and sheep). In the case where it
does not have a non-goal resource (rocks) to offer

then it offers a goal resource only if its quantity
is more than it needs, and it asks for another goal
resource if it is needed.

Following the same reasoning, when replying
to the LA’s trading proposals, the adversary will
never agree to receive a non-goal resource (rock).
It only gives a non-goal resource (rock) for another
one that it needs (wheat or sheep). It also agrees to
make a trade in the special case where it will give
a goal resource of which it has more than it needs
for another one that it still needs. This is a strong
strategy that wins a significant number of games.
In fact, it takes about 100,000 training games be-
fore the LA is able to start winning more games
than this adversary, and a random LA policy loses
66% of games against this adversary (See Table 1,
LA policy ‘Random’).

4.2 Gullible adversary: experiment 2
The adversary in this case retains the above strict
base-line policy but it is also susceptible to the
non-cooperative moves of the LA, as explained
above. For example, if the LA utters “I really need
rock”, weights of actions which transfer rock from
the adversary will decrease, and the adversary will
then be less likely to give rock to the LA. Con-
versely, the adversary is then more likely to give
the other two resources to the LA. In this way the
LA has the potential to mislead the adversary into
trading resources that it really needs.

4.3 The restrictive adversaries: experiments
3.1, 3.2, 3.3

Here we investigate performance against adver-
saries who cannot be manipulated, but their strat-
egy is to always restrict the LA from gaining a spe-
cific type of resource. We need to explore how
well a manipulated adversary (for example one
who will no longer give rocks that only its op-
ponent needs) performs. This will show us the
potential advantage to be gained by manipulation
and most important, it will generalise our prob-
lem by showing that the restriction (boycott) of a
resource that only the opponent needs, or of a re-
source that both of the players need, are actually
reasonably good strategies compared to the base-
line case (Experiment 1). Hence, the manipulated
adversary has indeed a reason for choosing to re-
strict resources (Experiment 2) rather than staying
with its rule-based strategy. In other words it has
a rational reason to become gullible and fall in the
learning agent’s trap.
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4.4 Gullible-based adversary with risk of
exposure: experiments 4.1, 4.2

Here we extend the problem to include possi-
ble negative consequences of manipulative LA ac-
tions. The adversary begins each game with a
probability of detecting manipulation, that expo-
nentially increases after every one of the LA’s ma-
nipulative actions. In more detail, every time the
LA performs a manipulation, there is an additional
chance that the adversary notices this (starts at 1-
in-10 and increases after every manipulative move,
up to 100% in the case of the 10th manipulative
attempt). The consequence of being detected is
that the adversary will refuse to trade with the LA
any further in that game (experiment 4.1), or that
the adversary automatically wins the game (exper-
iment 4.2). In these two cases there is always a
risk associated with attempting to manipulate, and
the LA has to learn how to balance the potential
rewards with this risk.

5 Results

The LA was trained over 1.5 million games against
each adversary for the cases of the rule-based (ex-
periment 1), gullible (experiment 2) and restrictive
adversaries (experiments 3.1, 3.2, 3.3). The result-
ing policies were tested in 20 thousand games.

For reasons of time, the LA was trained for only
35 thousand games for the case of the gullible
adversary who stops trading when the LA be-
comes exposed (experiment 4.1), and 350 thou-
sand games for the gullible adversary who wins
the game when the LA becomes exposed (experi-
ment 4.2). In the former case we used 2 thousand
testing games and in the latter 20 thousand.

5.1 Baseline performance: Experiment 1

The LA scored a winning performance of 49.5%
against 45.555% for the adversary, with 4.945%
draws (Table 1), in the 20 thousand test games,
see Figure 1. This represents the baseline perfor-
mance that the LA is able to achieve against an
adversary who cannot be manipulated at all. This
shows that the game is ‘solvable’ as an MDP prob-
lem, and that a reinforcement learning agent can
outperform a strict hand-coded adversary.

Here, the learning agent’s strategy mainly fo-
cuses on offering the sheep resource that it does
not need for the rocks that does need (for example
action7 > action2 > action6 > action3 Ta-
ble 2). It is also interesting to notice that the LA

learnt not to use action 3 at all (gives 1 wheat that
they both need for 1 sheep that only the adversary
needs). Hence its frequency is 0. The actions 4 and
5 are never accepted by the adversary so their role
in both of the experiments is similar to that of the
action 1 (do nothing). The rejections of the adver-
sary’s trades dominate the acceptances with a ratio
of 94 to 1 as our learning agent learns to become
negative towards the adversarial trading proposals
and therefore to prohibit its strategy.

Figure 1: Learning Agent’s reward-victory graph
over 1.5 million training games of Experiment 1.

5.2 Non-cooperative actions: Experiment 2
In Experiment 2 the learning agent scored a
winning performance of 59.17% against only
39.755% of its adversary, having 1.075% draws
(Table 1), in the 20 thousand test games, see Fig-
ure 2.

Similarly to the previous experiment, the LA’s
strategy focuses again mainly on action 7, by of-
fering the sheep resource that it does not need for
rocks that it needs (Table 2). However in this case
we also notice that the LA has learnt to use ac-
tion 2 very often, exploiting cases where it will
win by giving the wheat resource that they both
need for a rock that only it needs. This is a result
of its current manipulation capabilities. The high
frequency manipulative actions 8 (“I really need
wheat”) and 9 (“I really need rock”) assist in de-
ceiving its adversary by hiding information, there-
fore significantly reinforcing its strategy as they
both indirectly result in gaining sheep that only the
adversary needs (experiment 3.2).

Rejections to adversarial trading offers over the
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acceptances were again the majority in this exper-
iment. However in this case they are significantly
fewer than before, with a ratio of only 2.5 to 1,
as our learning agent is now more eager to accept
some trades because it has triggered them itself by
appropriately manipulating its adversary.

Figure 2: Learning Agent’s reward-victory graph
in 1.5 million training games of Experiment 2.

In Experiment 1 the LA’s dominating strategy
(mainly based on requiring the rocks resource
from its adversary) provides it with a difference
in winning performance of +3.945%. In Experi-
ment 2 the adversary, further being deceived by the
learning agent’s hiding information actions, loses
19.415% more often than the learning agent.

Action Exp. 1 Exp. 2
number frequency frequency
1. Do nothing 81969 144727
2. Give wheat for rock 8077 46028
3. Give wheat for sheep 0 10358
4. Give rock for wheat 80578 62874
5. Give rock for sheep 78542 55627
6. Give sheep for wheat 6429 24687
7. Give sheep for rock 23888 31132
8. I really need wheat - 68974
9. I really need rock - 87123
10. I really need sheep - 18

Table 2: Frequencies of LA actions.

Table 2 shows that the LA’s strategy in Experi-
ment 1 mainly focuses on requiring rocks from the
adversary by offering sheep (for example action 7

> action 2 or 6). In Experiment 2 the agent’s strat-
egy is similar. However, it is now enhanced by the
frequent use of the manipulative actions 8 and 9
(both hide information). The LA gathers mainly
sheep (8 and 9) through its manipulation and then
wheat (9 > 8) that the adversary needs to win. It
also offers them ‘selectively’ back (2 and 7) for
rock that only it needs in order to win.

5.3 Restrictive adversaries: Experiment 3
In experiment 3 the LA uses no manipulative ac-
tions. It is the same LA as that of Experiment 1. It
is trained and then tested against 3 different types
of restrictive adversaries. The first one (Experi-
ment 3.1) never gives wheat, the second one (Ex-
periment 3.2) never gives rocks, and the third one
never gives sheep (Experiment 3.3). They all act
randomly regarding the other 2 resources which
are not restricted. In the first case (adversary re-
stricts wheat that they both need), the LA scored
a winning performance of 50.015% against 47.9%
of its adversary, having 2.085% draws in the 20
thousand test games. In the second case (adver-
sary restricts rocks that the LA only needs), the LA
scored a winning performance of 53.375% against
44.525% of its adversary, having 2.1% draws in
the 20 thousand test games. In the third case
(adversary restricts sheep that only itself needs),
the LA scored a winning performance of 62.21%
against 35.13% of its adversary, having 2.66%
draws in the 20 thousand test games. These re-
sults show that restricting the resource that only
the opponent needs (i.e. LA only needs rocks) and
especially the resource that they both need (i.e.
wheat) can be as effective as the strategy followed
by the rule-based adversary (see Table 1). The dif-
ference in the performances for the former case
(rock) is +8.85% and for the latter (wheat) only
+2.115%. That means the adversary has indeed
a reason to believe that boycotting its opponent’s
resources could be a winning opposing strategy,
motivating its gullibility in experiment 2 (section
5.2).1

5.4 Non-cooperative actions and risk of
exposure: Experiment 4.1 (adversary
stops trading)

In this case when the LA is exposed by the adver-
sary then the latter does not trade for the rest of the

1Further experiments showed that having the same num-
ber of goal resources (i.e. both need 4 of their own goal re-
sources, rather than 5) still produces similar results.
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Exp. Learning Agent policy Adversary policy LA wins Adversary wins Draws
Random Baseline 32% 66% 2%

1 SARSA Baseline 49.5% 45.555% 4.945%
2 SARSA + Manipulation Baseline + Gullible 59.17%* 39.755% 1.075%
3.1 SARSA Restrict wheat 50.015%* 47.9% 2.085%
3.2 SARSA Restrict rock 53.375%* 44.525% 2.1%
3.3 SARSA Restrict sheep 62.21%* 35.13% 2.66%
4.1 SARSA + Manipulation Basel. + Gull. + Expos.(no trade) 53.2%* 45.15% 1.65%
4.2 SARSA + Manipulation Basel. + Gull. + Expos.(win game) 36.125% 61.15% 2.725%

Table 1: Performance (% wins) in testing games, after training. (*= significant improvement over base-
line, p < 0.05)

game. The LA scored a winning performance of
53.2% against 45.15% for this adversary, having
1.65% draws in the 2 thousand test games, see Fig-
ure 3. This shows that the LA managed to locate a
successful strategy that balances the use of the ma-
nipulative actions and the normal trading actions
with the risk of exposure (Table 3). In more de-
tail, the strategy that the LA uses here makes fre-
quent use of the manipulative actions 8 (“I really
need wheat”) and 9 (“I really need rock”) again
which mainly result in the collection of sheep that
only its adversary needs to win. Restriction of a
resource that the opponent only needs is a good
strategy (as our experiment 3.2 suggests) and the
LA managed to locate that and exploit it. The next
highest frequency action (excluding actions 4 and
5 that mostly lead to rejection from the adversary
as it also follows its rule-based strategy) is 7 (“I
will give you a sheep if you give me a rock”) that is
exclusively based on the LA’s goal and along with
6 they ‘selectively’ give back the sheep for goal re-
sources. Rejections to adversary’s proposals over
the acceptances were in a ratio of approximately
4 to 1. The LA is quite eager (in contrast to the
baseline case of experiment 1) to accept the adver-
sary’s proposals as it has already triggered them
by itself through deception.

5.5 Non-cooperative actions and risk of
exposure: Experiment 4.2 (adversary
wins the game)

In this case if the LA becomes exposed by the ad-
versary then the latter wins the game. The LA
scored a winning performance of 36.125% against
61.15% of its adversary, having 2.725% draws in
20 thousand test games, see Figure 4. It is the
only case where the LA so far has not yet found
a strategy that wins more often than its adversary,

and therefore in future work a larger set of training
games will be used. Note that this was only trained
for 350 thousand games – we expect better perfor-
mance with more training. In fact, here we would
expect a good policy to perform at least as well as
experiment 1, which would be the case of learning
never to use manipulative actions, since they are
so dangerous. Indeed, a good policy could be to
lie (action 10) only once, at the start of a dialogue,
and then to follow the policy of experiment 2. This
would lead to a winning percentage of about 49%
(the 59% of experiment 2 minus a 10% loss for the
chance of being detected after 1 manipulation).

The LA has so far managed to locate a strat-
egy that again balances the use of the manipula-
tive actions and that of the normal ones with the
risk of losing the game as a result of exposure
(Table 3). According to Figure 4 we notice that
the LA gradually learns how to do that. How-
ever its performance is not yet desirable, as it is
still only slightly better than that of the Random
case against the Baseline (Table 1). It is interest-
ing though to see that the strategy that the LA uses
here makes frequent use of the action 10 (“I really
need sheep”) that lies. On the other hand, the ac-
tions 8 and 9 are almost non-existent. That results
in accepting wheat that they both need and rocks
that it only needs, showing that the main focus of
the manipulation is on the personal goal. The LA
has learned so far in this case that by lying it can
get closer to its personal goal. Rejections to adver-
sary’s proposals over the acceptances resulted in a
ratio of approximately 1.7 to 1, meaning that the
LA is again quite eager to accept the adversarial
trading proposals that it has triggered already by
itself through lying.

We report further results on this scenario in
an updated version of this paper (Efstathiou and

66



Lemon, 2014).

Action Exp. 4.1 Exp. 4.2
number frequency frequency
1 Do nothing 8254 74145
2 Give wheat for rock 2314 3537
3 Give wheat for sheep 1915 4633
4 Give rock for wheat 5564 46120
5 Give rock for sheep 4603 57031
6 Give sheep for wheat 2639 2737
7 Give sheep for rock 3132 3105
8 I really need wheat 7200 4
9 I really need rock 7577 7
10 I really need sheep 548 19435

Table 3: Frequencies of LA actions.

Figure 3: Learning Agent’s reward-victory graph
in 35 thousand training games of Experiment 4.1.

6 Conclusion & Future Work

We showed that a statistical dialogue agent can
learn to perform non-cooperative dialogue moves
in order to enhance its performance in trad-
ing negotiations. This demonstrates that non-
cooperative dialogue strategies can emerge from
statistical approaches to dialogue management,
similarly to the emergence of cooperative be-
haviour from multi-agent decision theory (Vogel
et al., 2013a).

In future work we will investigate more com-
plex non-cooperative situations. For example a
real dialogue example of this kind is taken from

Figure 4: Learning Agent’s reward-victory graph
in 350 thousand training games of Experiment 4.2.

the “Settlers of Catan” game corpus (Afantenos et
al., 2012):

• A: Do you have rock?
• B: I’ve got lots of wheat [in fact, B has

a rock]
• A: I’ll give you 2 clay for a rock
• B: How about 2 clay for a wheat?
• A: I’ll give 1 clay for 3 wheat
• B: Ok, it’s a deal.
In future more adversarial strategies will also be

applied, and the learning problem will be made
more complex (e.g. studying ‘when’ and ‘how
often’ an agent should try to manipulate its ad-
versary). Alternative methods will also be con-
sidered such as adversarial belief modelling with
the application of interactive POMDPs (Partially
Observable Markov Decision Processes) (Gmy-
trasiewicz and Doshi, 2005). The long-term goal
of this work is to develop intelligent agents that
will be able to assist (or even replace) users in in-
teraction with other human or artificial agents in
various non-cooperative settings (Shim and Arkin,
2013), such as education, military operations, vir-
tual worlds and healthcare.
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Abstract

Although data-driven techniques are com-
monly used for Natural Language Under-
standing in dialogue systems, their effi-
cacy is often hampered by the lack of ap-
propriate annotated training data in suffi-
cient amounts. We present an approach
for rapid and cost-effective annotation of
training data for classification-based lan-
guage understanding in conversational di-
alogue systems. Experiments using a web-
accessible conversational character that in-
teracts with a varied user population show
that a dramatic improvement in natural
language understanding and a substantial
reduction in expert annotation effort can
be achieved by leveraging non-expert an-
notation.

1 Introduction

Robust Natural Language Understanding (NLU)
remains a challenge in conversational dialogue
systems that allow arbitrary natural language input
from users. Although data-driven approaches are
now commonly used to address the NLU problem
as one of classification, e.g. (Heintze et al., 2010;
Leuski and Traum, 2010; Moreira et al., 2011),
where input utterances are mapped automatically
into system-specific categories, the dependence of
such approaches on training data annotated with
semantic classes or dialogue acts creates a chicken
and egg problem: user utterances are needed to
create the annotated training data necessary for
NLU by classification, but these cannot be col-
lected without a working system that users can in-
teract with.

Common solutions to this problem include the
use of Wizard-of-Oz data collection, where a hu-
man expert manually provides the functionality of
data-driven modules while data is collected from
users, or the use of scenario authors who attempt
to anticipate user input to create an initial set of

training data. While these options offer practical
ways around the training data acquisition prob-
lem, they typically require substantial work from
system experts and provide suboptimal solutions:
data-driven approaches work best when utterances
in the training data are drawn from the same distri-
bution as those encountered in actual system use,
but the conditions under which training data is col-
lected (a human expert filling in for systems mod-
ules, or a human expert generating possible user
utterances) are quite different from those where
users interact with the final system. High qual-
ity results are often obtained through an iterative
process where an initial training set is authored
by a scenario designer, but NLU resources are
gradually updated based on real user data over
time (Gandhe et al., 2011). Although this can ulti-
mately produce training data composed primarily
of real user utterances, and therefore result in bet-
ter performance from data-driven models, an ex-
pert annotator is required to perform manual clas-
sification of user utterances. This is a laborious
process that assumes availability and willingness
of the annotator for as long as it takes to collect
enough user utterances, which may range from
weeks to months or even years, depending on the
size of the domain and the number and type of ut-
terance categories.

The main question we address is whether an-
notation by non-experts can be leveraged to speed
up utterance classification and lower its cost. We
present a technique that frames the annotation of
training data as a human intelligence task suit-
able for crowdsourcing. Although there are sim-
ilarities between our technique and active learning
(e.g. see (Gambck et al., 2011)), an important dif-
ference is that our technique does not reduce the
annotation effort by reducing the size of the data
to be labeled, but by casting the annotation task
into a simpler problem. This allows us to take ad-
vantage of the entire data generated by the users.
Through an experiment with a conversational dia-
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logue system deployed on the web, we show that a
dramatic improvement in the quality of NLU can
be achieved with non-expert data annotation, re-
ducing the time required of an expert annotator by
70%.

2 Improving understanding with data

Our approach for creating accurate utterance clas-
sifiers for NLU in conversational dialogue systems
is based on a simple strategy, which we describe
next in general terms. NLU is assumed to be per-
formed through multiclass classification.

The first step is to create a small initial train-
ing dataset T0 either through Wizard-of-Oz data
collection or by generation of utterances by a sys-
tem developer or content author. This training set
is used to train a NLU model M0. Although this
model is likely to be inadequate, it allows users
to interact with an initial version of the system.
As input utterances are collected from real users,
these utterances are annotated with their desired
NLU output labels. Periodically, at time i, we add
to the initial training dataset T0 the annotated user
utterances accumulated up to that point. We train
a new NLU model Mi using this augmented train-
ing set, Ti.1 We also keep aside a small fraction
of utterances to test the performance of the NLU
models, that is, at each time iwe also have an eval-
uation set Ei and the union of Ei and Ti is the en-
tire set of user utterances collected up to time i. As
more utterances are added and annotated, an NLU
model Mi is expected to surpass the initial model
M0. In general, we replace the running NLU
model Mr whenever we have a better perform-
ing Mi model. This straightforward process can
be used to obtain increasingly more accurate lan-
guage understanding, at the cost of data annotation
in the form of labelling utterances with categories
that are defined according to the needs of the spe-
cific system and the specific domain. The cate-
gories may be based on dialogue acts, e.g. (Core
and Allen, 1997; Bunt et al., 2010), user informa-
tion needs, e.g. (Moreira et al., 2011), or stand
in for entire semantic frames, e.g. (DeVault and
Traum, 2013). The technical nature of the task of
categorizing utterances in schemes such as these
usually means that substantial time is required of
an expert annotator.

2.1 Annotation as a human intelligence task
Although the task of annotating NLU training data
involves assigning categories with technical defi-

1For every time i and j with i < j it holds that Ti ⊆ Tj .

nitions to utterances, and therefore would appear
to require knowledge of these technical defini-
tions, in fact the task requires primarily the type
of language understanding that is common to all
native speakers of a given language. Our main hy-
pothesis is that this annotation can be structured
as a trivial task that requires no specific exper-
tise, and that annotations performed this way can
have a substantial impact on the quality of utter-
ance classification. We define the NLU annotation
task as follows.

Before annotation begins, each utterance cate-
gory in the system is associated with one or more
canonical utterance(s) that capture the meaning
and communicative intent of that category. These
canonical utterances allow for trivial generation
of surface text from NLU categories by simple
lookup.

Given a set of dialogues between the system
and individual users, each dialogue is split into
segments. Segments are typically composed of
a user utterance and the preceding system utter-
ance. In cases where users produce multiple utter-
ances without intervening system utterances, seg-
ments may consist of a system utterance followed
by consecutive user utterances, so that there is ex-
actly one segment corresponding to each user ut-
terance u in the dialogue and each segment starts
with a system utterance and ends with u.

Annotators work on one dialogue at a time, and
within a dialogue they are presented with one seg-
ment at a time, following the order in which the
utterances appear in the dialogue. Assignment
of a system category to the utterance targeted in
a segment is a multiple choice task, involving n
choices, one of which is none of the above. The re-
maining n−1 choices are generated automatically
by running the current NLU utterance classifier on
the target utterance, and generating the canonical
surface realizations of each of the n − 1 highest
scoring categories. The annotator is then asked to
choose the option containing language that means
the same as the targeted utterance in the segment.
The choice of n depends on the quality of the cur-
rent NLU model, and must be made to balance the
length of the list of options with the expected num-
ber of times the appropriate choice is not in the list
of options. The more none of the above annota-
tions are performed, the less effective the annota-
tion exercise will be in reducing the effort required
by an annotation expert.

The utterances annotated as none of the above
are given to an expert for annotation. The impact
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System Hello and welcome.
...

User Are you married?
System Yeah, forty-four years this September. I can’t be-

lieve Linda’s stuck with me this long.
System Okay, let’s get to it. Why are you here today?
User I’ve been having trouble sleeping lately.
System This must be hard for you.
System Are you feeling stressed at all?
User Yes, quite a bit
System So, I’ve got some questions I need to ask you, to get

to know you better.
System Just double checking, you haven’t been sleeping

good. Is that right?
User That’s right
System Have you been having any nightmares?
User Every once in a while, but mostly I can’t stay asleep

...

Figure 1: Excerpt of a sample interaction with a
Simcoach character over the web. User input is
typed into a text box on a web page.

of this procedure on how quickly user utterances
are annotated as training examples for the NLU
and how much expert time is saved depends on
the quality of the initial classification model and
the choice of n. These are practical factors that are
expected to vary greatly from one dialogue system
to another. In the next section, we present one ap-
plication of this procedure to an existing conversa-
tional dialogue system deployed on the web, and
show examples of dialogue segments and annota-
tion options.

3 Experiment

To test our hypothesis that language understand-
ing can be improved with much reduced expert ef-
fort, we applied the framework described above to
a system that implements a conversational char-
acter that talks with users about issues relating
to mental and behavioral disorders and presents
health care options. The system is publicly ac-
cessible at http://www.simcoach.org, and receives
traffic on the order of one hundred users per week.
Of these, about one quarter engage the system in
a meaningful dialogue with multiple turns, with
the dialogues containing on average 16 user utter-
ances. Because our process depends crucially on
user traffic to generate data for annotation, a web-
accessible system is ideally suited for it. An ex-
cerpt from a typical interaction with the system is
shown in Figure 1. The system and the NLU clas-
sifier based on Maximum Entropy models (Berger
et al., 1996) are described respectively in (Rizzo et
al., 2011) and (Sagae et al., 2009).

3.1 Data collection
Starting with an initial system deployed with an
NLU model trained with data generated by an au-
thor attempting to anticipate user behavior, we ap-
plied the approach described in section 2 to im-
prove NLU accuracy over a period of approxi-
mately five months. The initial accuracy of the
NLU classifier was 62%, measured as the number
of utterances classified correctly divided by the to-
tal number of user utterances. This accuracy fig-
ure was obtained only after the five months of data
annotation, using the heldout set of manually an-
notated dialogues.

Although the data annotation procedure as de-
scribed in section 2 could in principle be per-
formed continuously as user data come in, we
instead performed all of our annotation in three
rounds, the first consisting of approximately 2,000
user utterances, the second one month later, con-
sisting of an additional 1,000 utterances. The last
round, collected about two months later, contained
about 2,000 utterances. We used five annotators2

working in parallel, and the average speed of each
annotator exceeded 500 utterances per hour.

The total number of NLU utterance classes in
the system is 378, although only 120 classes were
used by annotators in all rounds of annotation to
cover all of the utterances collected3. In our an-
notation exercise we set the number of multiple
choice items at n = 6, including 5 choices gener-
ated from categories chosen by the NLU classifier,
and one none of the above choice. Figure 2 shows
a sample dialogue segment with the corresponding
multiple choice items. During annotation, clicking
on a multiple choice item advances the annotation
by presenting the next segment containing a user
utterance to be annotated.

3.2 Results
Of the utterances in the three rounds of data col-
lection, respectively 29%, 34% and 17% were
marked by annotators as none of the above. These
were given to a developer of the NLU system who
assigned a category to each of them. In this ex-
pert annotation step the choice is not restricted to
a small set of options, and may be any of the cat-
egories in the system. Given this rate of use of

2The non-expert annotators belonged to the same team
that developed the system but did not participate in the de-
velopment of the NLU module and the NLU classes used in
the particular dialogue system used.

3This difference is a further evidence of the difficulty of
correctly anticipating how the end users will interact with the
dialogue system.
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System Okay, let’s get to it. Why are you here today?

User I’ve been having trouble sleeping lately.
Which of the following options correspond most
closely to the last user utterance? If none of them have
the same general meaning as the user utterance, select
”none of the above.”

(a) I have been in a bad mood lately
(b) I have nightmares often
(c) I haven’t been sleeping well
(d) My family is worried about me
(e) I eat too much
(f) None of the above

Figure 2: Example of a dialogue segment with cor-
responding multiple choice items. The annotation
task consists of choosing the item that has approx-
imately the same meaning and communicative in-
tent as the targeted utterance (the user utterance).

the none of the above category, the need for ex-
pert annotation is not eliminated, but the amount
of expert effort necessary is reduced by over 70%.

The NLU classification accuracy figures ob-
tained after each round of annotation are shown in
Table 1. In the table, Our Approach represents the
results obtained by the technique described here.
A large improvement is observed after the first
round of annotation, with a more modest improve-
ment observed after the other two rounds. The ini-
tial jump in accuracy after round 1 is explained
by the fact that the initial model based on a sys-
tem author’s expectation of what users may say to
the system (approximately 3,000 utterances) is im-
proved using utterances that users did in fact pro-
duce in real interactions with the system. Clearly,
a more well-matched distribution of utterances in
the training data produces higher accuracy.

To assess the value of our approach, we com-
pare it with two other reasonable experimental
conditions: a baseline where only expert annota-
tion is used (Expert Only), and a condition where
no expert annotation is used (No Expert). The Ex-
pert Only condition is meant to represent what can
be achieved with the same workload for the expert
used in Our Approach. This is achieved by random
selection of user utterances to create a set with
the same number of utterances set aside for ex-
pert annotation in Our Approach. The expert then
annotates each of these utterances to create train-
ing data. For the No Expert condition, we used
only utterances annotated by non-experts, leaving
out completely utterances labeled as none of the

NLU accuracy after
each annotation round [%]

Base 1st 2nd 3rd
round round round

Our Approach 62 70 73 78
Expert Only 62 64 68 70
No Expert 62 64 65 71

Table 1: NLU accuracy obtained using the initial
training dataset T0, after one round of annotation
with T1 (2,013 utterances), after two rounds of an-
notation with T2 (additional 948 utterances), and
after three rounds with T3 (additional 1806 utter-
ances). Accuracy is estimated on the same heldout
set of dialogues E3 for all conditions, accounting
for roughly 10% of the annotated data.

above. Both Expert Only and No Expert condi-
tions achieve significantly lower performance than
the approach described here. This indicates that
expert annotation is important, but also that cheap
and fast non-expert annotation can provide sub-
stantial improvements to NLU.

4 Conclusion

We described a framework for annotation of train-
ing data by non-experts that can provide dramatic
improvements to natural language understanding
in dialogue systems that perform NLU through ut-
terance classification. Our approach transforms
the annotation NLU training data into a task that
can be performed by anyone with language profi-
ciency. Annotation is structured as a simple mul-
tiple choice task, easily delivered over the web.

Using our approach with a conversational char-
acter on the web, we improved NLU accuracy
from 62% to 78% using only less than 30% of the
effort it would be required of an expert to annotate
data without non-expert annotation.
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Abstract

When using spoken dialog systems in ac-
tual environments, users sometimes aban-
don the dialog without making any in-
put utterance. To help these users before
they give up, the system should know why
they could not make an utterance. Thus,
we have examined a method to estimate
the state of a dialog user by capturing the
user’s non-verbal behavior even when the
user’s utterance is not observed. The pro-
posed method is based on vector quan-
tization of multi-modal features such as
non-verbal speech, feature points of the
face, and gaze. The histogram of the VQ
code is used as a feature for determining
the state. We call this feature “the Bag-
of-Behaviors.” According to the experi-
mental results, we prove that the proposed
method surpassed the results of conven-
tional approaches and discriminated the
target user’s states with an accuracy of
more than 70%.

1 Introduction

Spoken dialog systems have an advantage of be-
ing a natural interface since speech commands are
less subject to the physical constraints imposed by
devices. On the other hand, if the system accepts
only a limited expression, the user need to learn
how to use the system. If the user is not familiar
with the system, he/she cannot even make an in-
put utterance. Not all users are motivated to con-
verse with the system in actual environments, and
sometimes a user will abandon the dialog with-
out making any input utterance. When the user
has difficulty to make the utterance, conventional
systems just repeat the prompt at fixed interval
(Yankelovich, 1996) or taking the initiative in the
dialog to complete the task (Chung, 2004; Bo-
hus and Rudnicky, 2009). However, we think that
the system has to cope with the user’s implicit re-
quests to help the user more adequately. To solve
this problem, Chiba and Ito (2012) proposed a

method to estimate two “user’s states” by captur-
ing their non-verbal cues. Here, the state A is
when the user does not know what to input, and
the state B is when the user is considering how to
answer the system’s prompt. These states have not
been distinguished by the conventional dialog sys-
tems so far, but should be handled differently.

The researchers of spoken dialog systems have
focused on the various internal states of users
such as emotion (Forbes-Riley and Litman, 2011a;
Metallinou et al., 2012), preference (Pargellis et
al., 2004) and familiarity with the system (Jokinen
and Kanto, 2004; Rosis et al., 2006) to build natu-
ral dialog system. In particular, the user’s “uncer-
tainty” is assumed to be the nearest user’s states
that we wish to study. Forbes-Riley and Litman
(2011b) and Pon-Barry et al. (2005) introduced a
framework for estimating the user’s uncertainty to
a tutor system.

The above-mentioned researches have a cer-
tain result by employing linguistic information
for the estimation, but it remains difficult to as-
sist a user who does not make any input utter-
ance. By contrast, the method by Chiba and Ito
(2012) estimated the target user’s state by only
using the user’s non-verbal information. In their
work, the user’s multi-modal behaviors were de-
fined empirically, and the labels of the behaviors
were annotated manually. Based on this result, the
present paper proposes the method that does not
use manually-defined labels nor manual annota-
tion. The multi-modal behaviors are determined
automatically using the vector quantization, and
the frequency distribution of the VQ code is used
for estimation of the user’s state. Because this ap-
proach expects to construct clusters of the speech
events or behaviors of the user, we called it as Bag-
of-Behaviors approach.

2 Data collection

The experimental data (video clips) were the same
as those used in the experiment by Chiba et al.
(Chiba and Ito, 2012; Chiba et al., 2012). The
video clips contained the frontal image of the user
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and their speech, which were recorded with a web
camera and a lapel microphone, respectively. The
task of the dialog was a question-and-answer task
to ask users to answer common knowledge or
a number they remembered in advance, such as
“Please input your ID.” 16 users (14 males and 2
females) participated in the dialog collection.

Recorded clips were divided into sessions,
where one session included one interchange of the
system’s prompt and the user’s response. The total
number of sessions was 792. Then we employed
evaluators to label each video clip as either state A,
B or C, where state A and B were that described in
the previous section, and state C is the state where
the user had no problem answering the system. We
took the majority vote of the evaluators’ decisions
to determine the final label of a clip. Fleiss’ κ
among the evaluators was 0.22 (fair agreement).
Finally, we obtained 59, 195 and 538 sessions of
state A, B and C, respectively.

3 Discrimination method by using
Bag-of-Behaviors

In the work of Chiba et al. (2013), the user’s
state was determined using the labels of the multi-
modal events such as fillers or face orientation,
which were estimated from the low-level acoustic
and visual features.

Here, inventory of multi-modal events was de-
termined empirically. There were, however, two
problems with this method. The first one was that
the optimality of the inventory was not guaran-
teed. The second one is that it was difficult to esti-
mate the events from the low-level features, which
made the final decision more difficult. Therefore,
we propose a new method for discriminating the
user’s state using automatically-determined events
obtained by the vector quantization.

First, a codebook of the low-level features
(which will be described in detail in the next
section) is created using k-means++ algorithm
(Arthur and Vassilvitskii, 2007). Let a low-level
feature vector at time t of session s of the training
data be x

(s)
t . Then we perform the clustering of

the low-level feature vectors for all of t and s, and
create a codebook C = {c1, . . . , cK}, where ck

denotes the k-th centroid of the codebook.
Then the input feature vectors are quantized

frame-by-frame using the codebook. When a ses-
sion for evaluation sE is given, we quantize the in-
put low-level feature vectors x

(sE)
1 , . . . , x

(sE)
T into

q1, . . . , qT , where

qt = arg min
q

||x(sE)
t − cq||. (1)

Then we calculate the histogram Q0(sE) =
(Q1, . . . , QK) where

Qk =
T∑

t=1

δ(k, qt) (2)

δ(x, y) =
{

1 x = y
0 x ̸= y

(3)

Then Q(sE) = Q0(sE)/||Q0(sE)|| is used as
the feature of the discrimination. The similar fea-
tures based on the vector quantization were used
for image detection and scene analysis (Csurka
et al., 2004; Jiang et al., 2007; Natarajan et al.,
2012) and called “Bag-of-Features” or “Bag-of-
Keypoints.” In our research, each cluster of the
low-level features is expected to represent some
kind of user’s behavior. Therefore, we call the pro-
posed method the “Bag-of-Behaviors” approach.

After calculating the Bag-of-Behaviors, we em-
ploy an appropriate classifier to determine the
user’s state in the given session. In this research,
the support vector machine (SVM) is used as a
classifier.

4 The low-level features

In this section, we describe the acoustic and visual
features employed as the low-level features.

The target user’s states are assumed to have sim-
ilar aspects to emotion. Collignon et al. (2008)
suggested that emotion has a multi-modality na-
ture. For example, Wöllmer et al. (2013) showed
that the acoustic and visual features contributed to
discriminate arousal and expectation, respectively.
Several other researches also have reported that
recognition accuracy of emotion was improved by
combining multi-modal information (Lin et al.,
2012; Wang and Venetsanopoulos, 2012; Paul-
mann and Pell, 2011; Metallinou et al., 2012).
Therefore, we employed similar features as those
used in these previous works, such as the spectral
features and intonation of the speech, and facial
feature points, etc.

4.1 Audio features
To represent spectral characteristics of the speech,
MFCC was employed as an acoustic feature. We
used a 39-dimension MFCC including the veloc-
ity and acceleration of the lower 12th-order coef-
ficients and log power. In addition, a differential
component of log F0 was used to represent the
prosodic feature of the speech, and zero cross (ZC)
was used to distinguish voiced and unvoiced seg-
ments. Therefore, total number of audio features
was 3. The basic conditions for extracting each
feature are shown in Table 1. Here, five frames
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(the current frame, the two previous frames and
two following frames) were used to calculate the
∆ and ∆∆ components of MFCC and ∆ compo-
nent of log F0.

4.2 Face feature

Face feature (Chiba et al., 2013) was extracted by
the Constraint Local Model (CLM) (Saragih et al.,
2011) frame by frame. The coordinates of the
points relative to the center of the face were used
as the face features. The scale of the feature points
was normalized by the size of the facial region.
The number of feature points was 66 and the di-
mension of the feature was 132.

4.3 Gaze feature

The evaluators of the dialogs declared that move-
ment of the user’s eyes seems to express their in-
ternal state. The present paper used the Haar-
like feature which has a fast calculation algo-
rithm using the integral image to represent the
brightness of the user’s eye regions. This feature
was extracted by applying filters comprehensively
changed the size and location to the image (eye
regions in our case). The eye regions were de-
tected by the facial feature points. Because this
feature had large dimensions, the principal com-
ponent analysis (PCA) was conducted to reduce
the dimensionality. Finally, gaze feature had 34 di-
mensions and the cumulative contribution rate was
about 95%.

4.4 Feature synchronization

The audio features were calculated every 10 ms
(see Table 1) while the visual features were ex-
tracted every 33 ms. Therefore, the features were
synchronized by copying the visual features of the
previous frame in every 10 ms.

5 Discrimination examination

5.1 Conditions of the Bag-of-Behaviors
construction

We built the Bag-of-Behaviors under two condi-
tions described below.

Let x
(s)
at , x

(s)
ft and x

(s)
et represent the audio fea-

ture, face feature and gaze feature of the session s
at time t, respectively.

Table 1: Conditions of audio feature extraction
MFCC log F0 ZC

Frame width 25.0 ms 17.0 ms 10.0 ms
Frame shift 10.0 ms 10.0 ms 10.0 ms

Table 2: Experimental conditions
# of sessions State A(59), State B(195)

Codebook size K 4, 8, 16, 32, 64
Ka 4, 8, 16, 32, 64
Kf 4, 8, 16, 32, 64
Ke 4, 8, 16, 32, 64

In Condition (1), the three features are com-
bined to single feature vector x

(s)
t :

x
(s)
t = (x(s)

at , x
(s)
ft , x

(s)
et ) (4)

Then, the low-level feature vectors x
(s)
t are clus-

tered to construct one codebook C with size K.
When an input session sE is given, we calculate
the combined feature vector x

(sE)
t , and generate

the Bag-of-Behaviors Q(sE). This method is a
kind of the feature-level fusion method.

In Condition (2), the three features are used sep-
arately. First, we generate three codebooks Ca, Cf

and Ce using the audio, face and gaze features, re-
spectively. Size of those codebooks were Ka,Kf

and Ke. When an input session sE is given,
we generate three Bag-of-Behaviors feature vec-
tors Qa(sE), Qf (sE) and Qe(sE) using the three
codebooks. Finally, we combine those features as

Q(sE) = (Qa(sE), Qf (sE), Qe(sE)). (5)

5.2 Experimental condition

We employed the SVM with RBF-kernel as a clas-
sifier. The experimental conditions are summa-
rized in Table 2. The hyperparameters of the clas-
sifier were decided by grid-searching. Since the
session of state C and the other states (state A and
state B) were clearly distinguished by the duration
of the session, we used only the session of state
A and state B for the experiments. Hence, each
experiment was a two-class discrimination task.

As explained, the experimental data were un-
balanced. Since it is desirable that the system can
discriminate the user’s state without deviation, the
harmonic mean H of the accuracy of the two states
was used for measuring the performance. This is
calculated by

H =
2CACB

CA + CB
, (6)

where CA and CB represent the discrimination ac-
curacy of state A and state B, respectively. The ex-
periments were conducted based on a 5-fold cross
validation.
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Figure 1: Discrimination results of condition (1)
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Figure 2: Discrimination results of condition (2)
arranged in descending order

5.3 Experimental results

The results of condition (1) are shown in Figure
1. The figure shows the best H of each num-
ber of clusters. In condition (1), the best result
(H = 70.0%) was obtained when the number of
clusters K was 64. Figure 2 shows the results of
condition (2). In this figure, the results are shown
in descending order of the harmonic mean for all
combination of codebook size of the three code-
books (there were 53 = 125 conditions). The best
H = 70.7% was obtained when Ka = 8,Kf = 8
and Ke = 64.

The best results of the tested methods are sum-
marized in Table 3. Here, “Baseline + NN” in
the table denotes the result in Chiba et al. (2013),
where the visual events and acoustic events were
annotated manually, and the manual labels were

Table 3: Comparison of estimation methods
State A State B Harm.

Baseline + NN 52.5 65.1 58.2
Baseline + Gaze + NN 64.5 59.5 61.9
Condition (1) + RBF-SVM 67.9 72.3 70.0
Condition (2) + RBF-SVM 67.7 73.8 70.7
Condition (2) + MKL-SVM 68.0 76.4 72.0

used as input for a neural network for the classi-
fication. The gaze feature was not used in “Base-
line + NN.” We added the result when including
the gaze feature, shown as “Baseline + Gaze +
NN.” As shown in Table 3, the performance of the
method proposed in this paper surpassed the base-
line methods. Therefore, the proposed method
could not only automatically determine the inven-
tory of the audio-visual events, but also achieved
better discrimination accuracy. One of the reasons
of the improvement is VQ can construct the clus-
ters in proper quantities.

Comparing the two conditions of feature combi-
nation, H of condition (2) (denoted as “Condition
(2) + RBF-SVM”) was slightly higher than that of
condition (1) (denoted as “Condition (1) + RBF-
SVM”). This result was similar to Split-VQ (Pari-
wal and Atal, 1991) where a single feature vec-
tor split into subvectors and the input vector was
quantized subvector by subvector.

We conducted additional experiments for con-
dition (2) by using SVM with combined kernel
trained by Multiple Kernel Learning (MKL) (Son-
nenburg et al., 2006). The combined kernel is rep-
resented as a linear combination of several sub-
kernels. The distinct kernel was employed for
the speech, face feature and gaze feature, respec-
tively. This paper used the RBF-kernel having the
same width as the sub-kernels．The best result was
shown as “Condition (2) + MKL-SVM” in Table 3.
As shown in the table, the MKL-SVM showed the
highest performance of 72.0 %. The weights of the
audio, face and gaze feature were 0.246, 0.005 and
0.749, respectively. This result suggested that the
contribution of the face feature was weaker than
the other features.

6 Conclusion
In this paper, we proposed a method to estimate
the state of the user of the dialog system by us-
ing non-verbal features. We proposed the Bag-
of-Behaviors approach, in which the user’s mult-
modal behavior was first classified by vector quan-
tization, and then the histogram of the VQ code
was used as a feature of the discrimination. We
verified that the method could discriminate the tar-
get user’s state with an accuracy of 70% or more.

One of the disadvantages of the current frame-
work is that it requires to observe the session until
just before the user’s input utterance. This prob-
lem makes it difficult to apply this method to an
actual system, because the system has to be able
to evaluate the user’s state successively in order to
help the user at an appropriate timing. Therefore,
we will examine a sequential estimation method
by using the Bag-of-Behaviors in a future work.
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Ondřej Dušek, Ondřej Plátek, Lukáš Žilka, and Filip Jurčíček
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Abstract

When deploying a spoken dialogue sys-
tem in a new domain, one faces a situation
where little to no data is available to train
domain-specific statistical models. We de-
scribe our experience with bootstrapping
a dialogue system for public transit and
weather information in real-word deploy-
ment under public use. We proceeded in-
crementally, starting from a minimal sys-
tem put on a toll-free telephone number to
collect speech data. We were able to incor-
porate statistical modules trained on col-
lected data – in-domain speech recogni-
tion language models and spoken language
understanding – while simultaneously ex-
tending the domain, making use of auto-
matically generated semantic annotation.
Our approach shows that a successful sys-
tem can be built with minimal effort and
no in-domain data at hand.

1 Introduction

The Alex Public Transit Information System is an
experimental Czech spoken dialogue system pro-
viding information about all kinds of public tran-
sit in the Czech Republic, publicly available at a
toll-free 800 telephone number.1 It was launched
for public use as soon as a first minimal working
version was developed, using no in-domain speech
data. We chose an incremental approach to sys-
tem development in order to collect call data and
use them to bootstrap statistical modules. Nearly

∗This work was funded by the Ministry of Education,
Youth and Sports of the Czech Republic under the grant
agreement LK11221 and core research funding, SVV project
260 104, and grants GAUK 2058214 and 2076214 of Charles
University in Prague. It used language resources stored and
distributed by the LINDAT/CLARIN project of the Min-
istry of Education, Youth and Sports of the Czech Republic
(project LM2010013).

1Call 800-899-998 from the Czech Republic.

a year after launch, we have collected over 1,300
calls from the general public, which enabled us
to train and deploy an in-domain language model
for Automatic Speech Recognition (ASR) and a
statistical Spoken Language Understanding (SLU)
module. The domain supported by the system has
extended from transit information in one city to ca.
5,000 towns and cities in the whole country, plus
weather and time information. This shows that a
even a very basic system is useful in collecting in-
domain data and that the incremental approach is
viable.

Spoken dialogue systems have been a topic of
research for the past several decades, and many
experimental systems were developed and tested
with users (Walker et al., 2001; Gašić et al., 2013;
Janarthanam et al., 2013). However, few experi-
mental systems became available to general public
use. Let’s Go (Raux et al., 2005; Raux et al., 2006)
is a notable example in the public transportation
domain. Using interaction with users from the
public to bootstrap data-driven methods and im-
prove the system is also not a common practice.
Both Let’s Go and the GOOG-411 business finder
system (Bacchiani et al., 2008) collected speech
data, but applied data-driven methods only to im-
prove statistical ASR. We use the call data for sta-
tistical SLU as well and plan to further introduce
statistical modules for dialogue management and
natural language generation.

Our spoken dialogue system framework is
freely available on GitHub2 and designed for easy
adaptation to new domains and languages. An En-
glish version of our system is in preparation.

We first present the overall structure of the Alex
SDS framework and then describe the minimal
system that has been put to public use, as well as
our incremental extensions. Finally, we provide
an evaluation of our system based on the recorded
calls.

2http://github.com/UFAL-DSG/alex
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2 Overall Alex SDS System Structure

The basic architecture of Alex is modular and con-
sists of the traditional SDS components: automatic
speech recognizer (ASR), spoken language under-
standing (SLU), dialogue manager (DM), natural
language generator (NLG), and a text-to-speech
(TTS) module.

We designed the system to allow for easy re-
placement of the individual components: There is
a defined interface for each of them. As the in-
terfaces are domain-independent, changing the do-
main is facilitated as well by this approach.

3 Baseline Transit Information System

We decided to create a minimal working system
that would not require any in-domain data and
open it to general public to collect call data as soon
as possible. We believe that this is a viable al-
ternative to Wizard-of-Oz experiments (Rieser and
Lemon, 2008), allowing for incremental develop-
ment and producing data that correspond to real
usage scenarios (see Section 4).

3.1 Baseline Implementation of the
Components

Having no in-domain data available, we resorted
to very basic implementations using hand-written
rules or external services:

• ASR used a neural network based voice activity
detector trained on small out-of-domain data.
Recordings classified as speech were fed to the
the web-based Google ASR service.

• SLU was handcrafted for our domain using sim-
ple keyword-spotting rules.

• In DM, the dialogue tracker held only one value
per dialogue slot, and the dialogue policy was
handcrafted for the basic tasks in our domain.

• NLG is a simple template-based module.

• We use a web-based Czech TTS service pro-
vided to us by SpeechTech.3

3.2 Baseline Domain

At baseline, our domain only consisted of a very
basic public transport information for the city of
Prague. Our ontology contained ca. 2,500 public
transit stops. The system was able to present the
next connection between two stops requested by
the user, repeat the information, or return several

3http://www.speechtech.cz/
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Figure 1: ASR word error rate depending on the
size of in-domain language model training data
The full training set amounts to 9,495 utterances (30,126 to-
kens). The test set contains 1,187 utterances (4,392 tokens).

following connections. Connection search was
based on Google Directions API.4

4 Collecting Data and Extending the
System in Real Usage

We launched our system at a public toll-free 800
number and advertised the service at our univer-
sity, among friends, and via Facebook. We also
cooperate with the Czech Blind United associa-
tion,5 promoting our system among its members
and receiving comments about its use. We adver-
tised our extensions and improvements using the
same channels.

We record and collect all calls to the system,
including our own testing calls, to obtain training
data and build statistical models into our system.

4.1 Speech Recognition: Building In-Domain
Models

The Google on-line ASR service, while reach-
ing state-of-the-art performance in some tasks
(Morbini et al., 2013), showed very high word er-
ror rate in our specific domain (see Figure 1). We
replaced it with the Kaldi ASR engine (Povey et
al., 2011) trained on general-domain Czech acous-
tic data (Korvas et al., 2014) with an in-domain
class-based language model built using collected
call data and lists of all available cities and stops.

We describe our modifications to Kaldi for on-
line decoding in Plátek and Jurčíček (2014). A
performance comparison of Google ASR with

4https://developers.google.com/maps/
documentation/directions/

5http://www.sons.cz
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Figure 2: SLU performance (F-measure on dia-
logue act items) depending on training data size
The same data sets as in Figure 1 are used, with semantic
annotations from handcrafted SLU running on manual tran-
scriptions.

Kaldi trained on our data is shown in Figure 1.
One can see that the in-domain language model
brings a substantial improvement, even with very
small data sizes.

4.2 Spoken Language Understanding

To increase system robustness, we built a statisti-
cal SLU based on a set of logistic regression clas-
sifiers and word n-gram features (Jurčíček et al.,
2014). We train it on the output of our handcrafted
SLU applied to manual transcriptions. We chose
this approach over obtaining manual semantic an-
notation due to two main reasons:
1. Obtaining semantic annotation for Czech data is

relatively slow and complicated; using crowd-
sourcing is not a possibility due to lack of
speakers of Czech on the platforms.

2. As we intended to gradually extend our domain,
semantic annotation changed over time as well.

This approach still allows the statistical SLU to
improve on a handcrafted one by compensating
for errors made by the ASR. Figure 2 shows that
the performance of the statistical SLU module in-
creases with more training data and with the in-
domain ASR models.

4.3 Dialogue Manager

We have replaced the initial simplistic dialogue
state tracker (see Section 3.1) by the probabilis-
tic discriminative tracker of Žilka et al. (2013),
which achieves near state-of-the-art performance
while remaining completely parameter-free. This
property allowed us to employ the tracker without
any training data; our gradual domain extensions

also required no further adjustments.
The dialogue policy is handcrafted, though it

takes advantage of uncertainty estimated by the
belief tracker. Its main logic is similar to that of
Jurčíček et al. (2012). First, it implements a set of
domain-independent actions, such as:
• dialogue opening, closing, and restart,
• implicit confirmation of changed slots with high

probability of the most probable value,
• explicit confirmation for slots with a lower

probability of the most probable value,
• a choice among two similarly probable values.

Second, domain-specific actions are imple-
mented for the domain(s) described in Section 4.4.

4.4 Extending the Domain
We have expanded our public transit information
domain with the following tasks:
• The user may specify departure or arrival time

in absolute or relative terms (“in ten minutes”,
“tomorrow morning”, “at 6 pm.”, “at 8:35” etc.).

• The user may request more details about the
connection: number of transfers, journey dura-
tion, departure and arrival time.

• The user may travel not only among public
transport stops within one city, but also among
multiple cities or towns.
The expansion to multiple cities has lead to an

ontology improvement: The system is able to find
the corresponding city in the database based on a
stop name, and can use a default stop for a given
city. We initially supported three Czech major
cities covered by the Google Directions service,
then extended the coverage to the whole country
(ca. 44,000 stops in 5,000 cities and towns) using
Czech national public transport database provided
by CHAPS.6

We now also include weather information for all
Czech cities in the system. The user may ask for
weather at the given time or on the whole day. We
use OpenWeatherMap as our data source.7

Furthermore, the user may ask about the current
time at any point in the dialogue.

5 System Evaluation from Recorded
Calls

We have used the recorded call data for an eval-
uation of our system. Figure 3 presents the num-

6http://www.idos.cz
7http://openweathermap.org/
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Figure 3: Number of calls per week
The dashed line shows all recorded calls, including those
made by the authors. The full line shows calls from the public
only.
Spikes: A – initial testing, B – first advertising, C – system
partially offline due to a bug, D – testing statistical SLU mod-
ule, E – larger advertising with Czech Blind United, F – test-
ing domain enhancements, G – no advertising and limited
system performance, H – deploying Kaldi ASR and nation-
wide coverage, I – no further advertising.
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Figure 4: System success rates by month
Percentage of calls where the system provided information
(or apology for not having one) and percentage of rather pos-
itive responses to the final question, both shown with standard
error bars.

ber of calls to our system per week and reflects
the testing and advertising phases, as well as some
of our extensions and improvements described in
Section 4. A steeper usage increase is visible in
recent weeks after the introduction of Kaldi ASR
engine and nationwide coverage (see Sections 4.1
and 4.4). The number of calls and unique users
(caller phone numbers) grows steadily; so far,
more than 300 users from the public have made
over 1,300 calls to the system (cf. Figure 5 and
Table 1 in the appendix).8

Figure 4 (and Table 1 in the appendix) give a de-
tailed view of the success of our system. Informa-

8We only count calls with at least one valid user utterance,
disregarding calls where users hang up immediately.

tion is provided in the vast majority of calls. Upon
manual inspection of call transcripts, we discov-
ered that about half of the cases where no infor-
mation is provided can be attributed to the system
failing to react properly; the rest is off-topic calls
or users hanging up too early.

We have also introduced a “final question“ as
an additional success metric. After the user says
good-bye, the system asks them if they received
the information they were looking for. By looking
at the transcriptions of responses to this question,
we recognize a majority of them as rather positive
(“Yes”, “Nearly” etc.); the proportion of positive
reactions seems to remain stable. However, the fi-
nal question is not an accurate measure as most
users seem to hang up directly after receiving in-
formation from the system.

6 Conclusions and Further Work

We use an iterative approach to build a complex
dialogue system within the public transit informa-
tion domain. The system is publicly available on a
toll-free phone number. Our extensible dialogue
system framework as well as the system imple-
mentation for our domain can be downloaded from
GitHub under the Apache 2.0 license.

We have shown that even very limited work-
ing version can be used to collect calls from
the public, gathering training data for statistical
system components. Our experiments with the
Kaldi speech recognizer show that already a small
amount of in-domain data for the language model
brings a substantial improvement. Generating au-
tomatic semantic annotation from recording tran-
scripts allows us to maintain a statistical spoken
language understanding unit with changing do-
main and growing data.

The analysis of our call logs shows that our sys-
tem is able to provide information in the vast ma-
jority of cases. Success rating provided by the
users themselves is mostly positive, yet the con-
clusiveness of this metric is limited as users tend
to hang up directly after receiving information.

In future, we plan to add an English version
of the system and further expand the domain, al-
lowing more specific connection options. As we
gather more training data, we plan to introduce sta-
tistical modules into the remaining system compo-
nents.
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A System Evaluation Data

In the following, we include additional data from
call logs evaluation presented in Section 5.
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Figure 5: Cumulative number of calls and unique
callers from the public by weeks
The growth rates of the number of unique users and the total
number of calls both correspond to the testing and advertising
periods shown in Figure 3.

Total calls 1,359
Unique users (caller phone numbers) 304
System informed (or apologized) 1,124
System informed about directions 990
System informed about weather 88
System informed about current time 41
Apologized for not having information 223
System asked the final question 229
Final question answered by the user 199
Rather positive user’s answer 146
Rather negative user’s answer 23

Table 1: Detailed call statistics
Total absolute numbers of calls from general public users
over the period of nearly one year are shown.
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Abstract

In order to process incremental situated
dialogue, it is necessary to accept infor-
mation from various sensors, each track-
ing, in real-time, different aspects of the
physical situation. We present extensions
of the incremental processing toolkit IN-
PROTK which make it possible to plug in
such multimodal sensors and to achieve
situated, real-time dialogue. We also de-
scribe a new module which enables the use
in INPROTK of the Google Web Speech
API, which offers speech recognition with
a very large vocabulary and a wide choice
of languages. We illustrate the use of these
extensions with a description of two sys-
tems handling different situated settings.

1 Introduction

Realising incremental processing of speech in-
and output – a prerequisite to interpretation and
possibly production of speech concurrently with
the other dialogue participant – requires some fun-
damental changes in the way that components
of dialogue systems operate and communicate
with each other (Schlangen and Skantze, 2011;
Schlangen and Skantze, 2009). Processing situ-
ated communication, that is, communication that
requires reference to the physical setting in which
it occurs, makes it necessary to accept (and fuse)
information from various different sensors, each
tracking different aspects of the physical situation,
making the system multimodal (Atrey et al., 2010;
Dumas et al., 2009; Waibel et al., 1996).

Incremental situated processing brings together
these requirements. In this paper, we present a col-
lection of extensions to the incremental process-
ing toolkit INPROTK (Baumann and Schlangen,
2012) that make it capable of processing situ-
ated communication in an incremental fashion:

we have developed a general architecture for
plugging in multimodal sensors whith we denote
INPROTKS, which includes instantiations for mo-
tion capture (via e.g. via Microsoft Kinect and
Leap Motion) and eye tracking (Seeingmachines
FaceLAB). We also describe a new module we
built that makes it possible to perform (large vo-
cabulary, open domain) speech recognition via the
Google Web Speech API. We describe these com-
ponents individually and give as use-cases in a
driving simulation setup, as well as real-time gaze
and gesture recognition.

In the next section, we will give some back-
ground on incremental processing, then describe
the new methods of plugging in multimodal sen-
sors, specifically using XML-RPC, the Robotics
Service Bus, and the InstantReality framework.
We then explain how we incorporated the Google
Web Speech API into InproTK, offer some use
cases for these new modules, and conclude.

2 Background: The IU model, INPROTK

As described in (Baumann and Schlangen, 2012),
INPROTK realizes the IU-model of incremen-
tal processing (Schlangen and Skantze, 2011;
Schlangen and Skantze, 2009), where incremental
systems consist of a network of processing mod-
ules. A typical module takes input from its left
buffer, performs some kind of processing on that
data, and places the processed result onto its right
buffer. The data are packaged as the payload of
incremental units (IUs) which are passed between
modules.

The IUs themselves are also interconnected via
so-called same level links (SLL) and grounded-in
links (GRIN), the former allowing the linking of
IUs as a growing sequence, the latter allowing that
sequence to convey what IUs directly affect it (see
Figure 1 for an example). A complication partic-
ular to incremental processing is that modules can
“change their mind” about what the best hypothe-
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Figure 1: Example of IU network; part-of-speech
tags are grounded into words, tags and words have
same level links with left IU; four is revoked and
replaced with forty.

sis is, in light of later information, thus IUs can be
added, revoked, or committed to a network of IUs.

INPROTK determines how a module network is
“connected” via an XML-formatted configuration
file, which states module instantiations, includ-
ing the connections between left buffers and right
buffers of the various modules. Also part of the
toolkit is a selection of “incremental processing-
ready” modules, and so makes it possible to realise
responsive speech-based systems.

3 InproTK and new I/O: InproTKS

The new additions introduced here are realised as
INPROTKS modules. The new modules that input
information to an INPROTKS module network are
called listeners in that they “listen” to their respec-
tive message passing systems, and modules that
output information from the network are called
informers. Listeners are specific to their method
of receiving information, explained in each sec-
tion below. Data received from listeners are pack-
aged into an IU and put onto the module’s right
buffer. Listener module left buffers are not used
in the standard way; left buffers receive data from
their respective message passing protocols. An in-
former takes all IUs from its left buffer, and sends
their payload via that module’s specific output
method, serving as a kind of right buffer. Figure
2 gives an example of how such listeners and in-
formers can be used. At the moment, only strings
can be read by listeners and sent by informers; fu-
ture extensions could allow for more complicated
data types.

Listener modules add new IUs to the network;
correspondingly, further modules have to be de-
signed in instatiated systems then can make use
of these information types. These IUs created by

the listeners are linked to each other via SLLs.
As with audio inputs in previous version of IN-
PROTK, these IUs are considered basedata and not
explictly linked via GRINs in the sensor data. The
modules defined so far also simply add IUs and do
not revoke.

We will now explain the three new methods of
getting data into and out of INPROTKS.

3.1 XML-RPC
XML-RPC is a remote procedure call protocol
which uses XML to encode its calls, and HTTP as a
transport mechanism. This requires a server/client
relationship where the listener is implemented as
the server on a specified port.1 Remote sensors
(e.g., an eye tracker) are realised as clients and can
send data (encoded as a string) to the server using
a specific procedural call. The informer is also re-
alised as an XML-RPC client, which sends data to a
defined server. XML-RPC was introduced in 1998
and is widely implemented in many programming
languages.

Mic

Motion !
Sensor

ASR

Listener

NLU

Speaker DMNLG

Informer

InproTKs

Logger

Gesture 
Classifier

Figure 2: Example architecture using new mod-
ules: motion is captured and processed externally
and class labels are sent to a listener, which adds
them to the IU network. Arrows denote connec-
tions from right buffers to left buffers. Information
from the DM is sent via an Informer to an external
logger. External gray modules denote input, white
modules denote output.

3.2 Robotics Service Bus
The Robotics Service Bus (RSB) is a middleware
environment originally designed for message-
passing in robotics systems (Wienke and Wrede,
2011).2 As opposed to XML-RPC which requires

1The specification can be found at http://xmlrpc.
scripting.com/spec.html

2https://code.cor-lab.de/projects/rsb
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point-to-point connections, RSB serves as a bus
across specified transport mechanisms. Simply,
a network of communication nodes can either in-
form by sending events (with a payload), or lis-
ten, i.e., receive events. Informers can send in-
formation on a specific scope which establishes
a visibility for listeners (e.g., a listener that re-
ceives events on scope /one/ will receive all events
that fall under the /one/ scope, whereas a listener
with added constants on the scope, e.g., /one/two/
will not receive events from different added con-
stants /one/three/, but the scope /one/ can listen
on all three of these scopes). A listener mod-
ule is realised in INPROTKS by setting the de-
sired scope in the configuration file, allowing IN-
PROTKS seamless interconnectivity with commu-
nication on RSB.

There is no theoretical limit to the number of in-
formers or listeners; events from a single informer
can be received by multiple listeners. Events are
typed and any new types can be added to the avail-
able set. RSB is under active development and is
becoming more widely used. Java, Python, and
C++ programming languages are currently sup-
ported. In our experience, RSB makes it particu-
larly convenient for setting distributed sensor pro-
cessing networks.

3.3 InstantReality

In (Kousidis et al., 2013), the InstantReality
framework, a virtual reality environment, was
used for monitoring and recording data in a real-
time multimodal interaction.3 Each information
source (sensor) runs on its own dedicated work-
station and transmits the sensor data across a net-
work using the InstantIO interface. The data can
be received by different components such as In-
stantPlayer (3D visualization engine; invaluable
for monitoring of data integrity when recording
experimental sessions) or a logger that saves all
data to disk. Network communication is achieved
via multicast, which makes it possible to have any
number of listeners for a server and vice-versa.

The InstantIO API is currently available in C++
and Java. It comes with a non-extensible set of
types (primitives, 2D and 3D vectors, rotations,
images, sounds) which is however adequate for
most tracking applications. InstantIO listeners and
informers are easily configured in INPROTKS con-
figuration file.

3http://www.instantreality.org/

3.4 Venice: Bridging the Interfaces

To make these different components/interfaces
compatible with each other, we have developed a
collection of bridging tools named Venice. Venice
serves two distinct functions. First, Venice.HUB,
which pushes data to/from any of the following
interfaces: disk (logger/replayer), InstantIO, and
RSB. This allows seamless setup of networks for
logging, playback, real-time processing (or com-
binations; e.g, for simulations), minimizing the
need for adaptations to handle different situations.
Second, Venice.IPC allows interprocess communi-
cation and mainly serves as a quick and efficient
way to create network components for new types
of sensors, regardless of the platform or language.
Venice.IPC acts as a server to which TCP clients
(a common interface for sensors) can connect. It
is highly configurable, readily accepting various
sensor data outputs, and sends data in real-time to
the InstantIO network.

Both Venice components operate on all three
major platforms (Linux, Windows, Mac OS X),
allowing great flexibility in software and sensors
that can be plugged in the architecture, regardless
of the vendor’s native API programming language
or supported platform. We discuss some use cases
in section 5.

4 Google Web Speech

One barrier to dialogue system development is
handling ASR. Open source toolkits are available,
each supporting a handful of languages, with each
language having a varying vocabulary size. A step
in overcoming this barrier is “outsourcing” the
problem by making use of the Google Web Speech
API.4 This interface supports many languages, in
most cases with a large, open domain of vocabu-
lary. We have been able to access the API directly
using INPROTKS, similar to (Henderson, 2014).5

INPROTKS already supports an incremental vari-
ant of Sphinx4; a system designer can now choose
from these two alternatives.

At the moment, only the Google Chrome
browser implements the Web Speech API. When
the INPROTKS Web Speech module is invoked,
it creates a service which can be reached from

4The Web Speech API Specificiation: https:
//dvcs.w3.org/hg/speech-api/raw-file/
tip/speechapi.html

5Indeed, we used Matthew Henderson’s webdial project
as a basis: https://bitbucket.org/matthen/
webdialog
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the Chrome browser via an URL (and hence, mi-
crophone client, dialogue processor and speech
recogniser can run on different machines). Navi-
gating to that URL shows a simple web page where
one can control the microphone. Figure 3 shows
how the components fit together.

While this setup improves recognition as com-
pared to the Sphinx4-based recognition previously
only available in INPROTK, there are some ar-
eas of concern. First, there is a delay caused by
the remote processing (on Google’s servers), re-
quiring alignment with data from other sensors.
Second, the returned transcription results are only
‘semi-incremental’; sometimes chunks of words
are treated as single increments. Third, n-best lists
can only be obtained when the API detects the end
of the utterance (incrementally, only the top hy-
pothesis is returned). Fourth, the results have a
crude timestamp which signifies the end of the au-
dio segment. We use this timestamp in our con-
struction of word IUs, which in informal tests have
been found to be acceptable for our needs; we de-
fer more systematic testing to future work.

Figure 3: Data flow of Google Web Speech API:
Chrome browser controls the microphone, sends
audio to API and receives incremental hypotheses,
which are directly sent to InproTKS.

5 INPROTKS in Use

We exemplify the utility of INPROTKS in two ex-
periments recently performed in our lab.

In-car situated communication We have tested
a “pause and resume” strategy for adaptive in-
formation presentation in a driving simulation
scenario (see Figure 4), using INPROTKS and
OpenDS (Math et al., 2013). Our dialogue man-
ager – implemented using OpenDial (Lison, 2012)
– receives trigger events from OpenDS in order to
update its state, while it verbalises calendar events
and presents them via speech. This is achieved
by means of InstantIO servers we integrated into
OpenDS and respective listeners in INPROTKS. In
turn, InstantIO informers send data that is logged

Figure 4: Participant performing driving test while
listening to iNLG speech delivered by InProTKS.

by Venice.HUB. The results of this study are pub-
lished in (Kousidis et al., 2014). Having available
the modules described here made it surprisingly
straightforward to implement the interaction with
the driving simulator (treated as a kind of sensor).

Real-time gaze fixation and pointing gesture
detection Using the tools described here, we
have recently tested a real-time situated commu-
nication environment that uses speech, gaze, and
gesture simultaneously. Data from a Microsoft
Kinect and a Seeingmachines Facelab eye tracker
are logged in realtime to the InstantIO network.
A Venice.HUB component receives this data and
sends it over RSB to external components that
perform detection of gaze fixation and pointing
gestures, as described in (Kousidis et al., 2013).
These class labels are sent in turn over RSB to
INPROTKS listeners, aggregating these modalities
with the ASR in a language understanding module.
Again, this was only enabled by the framework de-
scribed here.

6 Conclusion

We have developed methods of providing mul-
timodal information to the incremental dialogue
middleware INPROTK. We have tested these
methods in real-time interaction and have found
them to work well, simplifying the process of
connecting external sensors necessary for multi-
modal, situated dialogue. We have further ex-
tended its options for ASR, connecting the Google
Web Speech API. We have also discussed Venice,
a tool for bridging RSB and InstantIO interfaces,
which can log real-time data in a time-aligned
manner, and replay that data. We also offered
some use-cases for our extensions.

INPROTKS is freely available and accessible.6

6https://bitbucket.org/inpro/inprotk
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Abstract

This paper describes an approach for a
robotic arm to learn new actions through
dialogue in a simplified blocks world. In
particular, we have developed a three-
tier action knowledge representation that
on one hand, supports the connection be-
tween symbolic representations of lan-
guage and continuous sensorimotor repre-
sentations of the robot; and on the other
hand, supports the application of existing
planning algorithms to address novel situ-
ations. Our empirical studies have shown
that, based on this representation the robot
was able to learn and execute basic actions
in the blocks world. When a human is
engaged in a dialogue to teach the robot
new actions, step-by-step instructions lead
to better learning performance compared
to one-shot instructions.

1 Introduction

When a new generation of robots start to work
side-by-side with their human partners in joint
tasks (Christensen et al., 2010), they will often
encounter new objects or are required to perform
new actions. It is important for the robots to au-
tomatically learn new knowledge about the en-
vironment and the tasks from their human part-
ners. To address this issue, this paper describes
our recent work on action learning through dia-
logue. As a first step, we limit our investigation to
a simple blocks world motivated by Terry Wino-
grad’s early work (Winograd, 1972). By using
an industrial robotic arm (SCHUNK) in this small
world, we are interested in addressing the follow-

ing questions. First, human language has a dis-
crete and symbolic representation, but the robot
arm has a continuous representation for its move-
ments. Where should the connections between the
symbolic representation and the continuous repre-
sentation take place so that human language can
be used to direct the robot’s movements? Second,
when the robot learns new tasks from its human
partner, how to represent the acquired knowledge
effectively so that it can be applied in novel situa-
tions? Third, during human-robot dialogue, when
the robot fails to perform the expected actions due
to the lack of knowledge, how should the human
teach the robot new actions? through step-by-step
instructions or one-shot instructions?

With these questions in mind, we have devel-
oped a three-tier action knowledge representation
for the robotic arm. The lower level connects to
the physical arm and defines the trajectories of
executing three atomic actions supported by the
arm (i.e., open gripper, close gripper, move). The
middle level defines primitive operators such as
Open Grip, Close Grip and MoveTo in the fash-
ion of the traditional AI planner (Fikes and Nils-
son, 1971) and directly links to the lower level.
The upper-level captures the high-level actions ac-
quired by learning from the human. These high-
level actions are represented as the desired goal
states of the environment as a result of these ac-
tions. This three-tier representation allows the
robot to automatically come up with a sequence of
lower-level actions by applying existing planning
algorithms.

Based on this representation, we implemented
a dialogue system for action learning and further
conducted an empirical study with human sub-
jects. In particular, we compared the dialogue
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Figure 1: An example setup and dialogue. Objects
are marked with labels only for the illustration pur-
pose.

based on the step-by-step instructions (i.e., one
step at a time and wait for the robot’s response
at each step before going to the next step) with
the one-shot instructions (i.e., give the instruction
with all steps at once). Our empirical results have
shown that the three-tier knowledge representation
can capture the learned new action and apply it
to novel situations. Although the step-by-step in-
structions resulted in a lengthier teaching process
compared to the one-shot instructions, they led to
better learning performance for the robot.

2 Related Work

Over forty years ago, Terry Winograd developed
SHRDLU (Winograd, 1972) to demonstrate nat-
ural language understanding using a simulated
block-moving arm. One aspect he did not address,
but mentioned in his thesis (Winograd, 1972) as
an important aspect, was learning new actions
through natural language. Motivated by Wino-
grad’s early work, we start our initial investigation
on action learning in a physical blocks world and
with a physical robotic arm. The blocks world is
the most famous domain used for planning in ar-
tificial intelligence. Thus it allows us to focus on
mechanisms that, on one hand, connect symbolic
representations of language with lower-level con-
tinuous sensorimotor representations of the robot;
and on the other hand, support the use of the plan-
ning algorithms to address novel situations.

Most previous work on following human in-
structions are based on supervised learning (Kol-
lar et al., 2010; Tellex et al., 2011; Chen et al.,
2010) or reinforcement learning (Branavan et al.,
2012; Branavan et al., 2010). These types of learn-

ing may not be adequate in time-critical situations
where only resources available to the robot is its
human partners. Thus it is desirable that humans
can engage in a natural language dialogue to teach
robots new skills. Using natural language dialogue
to learn new skills have been explored previously
by (Allen et al., 2007) where an artificial agent was
developed to acquire skills through natural lan-
guage instructions (i.e., find restaurant). But this
work only grounds language to symbolic interface
widgets on web pages.

In the robotics community, previous work has
applied learning by demonstration to teach robots
new skills (Cakmak et al., 2010). To potentially
allow natural language instructions, previous work
has also explored connecting language with lower-
level control systems (Kress-Gazit et al., 2008;
Siskind, 1999; Matuszek et al., 2012). Different
from these previous works, here we investigate the
use of natural language dialogue for learning ac-
tions. Previous work described in (Cantrell et al.,
2012; Mohan et al., 2013) is most similar to our
work. Here we focus on both grounded learning
and the use of planning for action learning.

3 Dialogue System

Figure 2: System Architecture

We developed a dialogue system to support
learning new actions. An example setup is shown
in Figure 1, in which a SCHUNK arm is used to
manipulate blocks placed on a surface. In H1,
the human starts to ask the robot to stack the blue
block (i.e., B1) on top of the red block (i.e., R1).
The robot does not understand the action “stack”,
so it asks the human for instructions. Then the hu-
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Figure 3: Example semantic representation and
action frame for the human utterance “stack the
blue block on the red block on your right.”

man provides detailed steps to accomplish this ac-
tion (i.e., H2 to H8) and also observes the robot’s
response in each step. Note that during this pro-
cess, another unknown action (i.e., “grab” as in
H2) is encountered. The robot thus needs to learn
this action first. The robot is able to keep track
of the dialogue structure so that actions and sub-
actions can be learned accordingly. Once the robot
receives a confirmation from the human that the
corresponding action is successfully performed
(i.e., H6 and H9), it acquires the new action and
explicitly represents it in its knowledge base for
future use. Instead of representing the acquired
knowledge as specific steps as illustrated by the
human, the acquired action is represented by the
expected final state, which represents the changes
of environment as a result of the action. The new
action can be directly applied to novel situations
by applying planning algorithms. Figure 2 shows
the system structure. Next we explain main system
modules in detail.

Natural Languge Processing: Natural language
processing modules capture semantic information
from human language inputs. In particular, the
Intention Recognizer is used to recognize
human intent (e.g., Command and Confirmation).
The Semantic Processor, implemented as
Combinatory Categorial Grammar (CCG) 1, is
used to generate semantic representation. Current
semantic information includes the actions (e.g.,
stack) and their roles (e.g., Theme and Destina-
tion). The roles are further represented by objects’
properties (Color, Location and Spatial Relation).
An example semantic representation of “H1: Stack
the blue block on the red block on your right.” is
shown in Figure 3.

1We utilized OpenCCG, which could be found at:
http://openccg.sourceforge.net/

Perception Modules: Besides interpreting human
language, the robot also continuously perceives
the shared environment with its camera. Ob-
jects in video frames are recognized through vi-
sion system (Collet et al., 2011), and further repre-
sented as a Vision Graph (computed by Vision
Graph Builder), which captures objects and
their properties (in the numerical form). The robot
can also access to its own internal status, such as
the location of the gripper and whether it’s open
or closed. Combining the robot’s state and en-
vironment information, the Discrete State
Builder can represent the entire environment as
a conjunction of predicates, which will be later
used for action planning.

Referential Grounding: To make the semantic
representation meaningful, it must be grounded to
the robot’s representation of perception. We use
the graph-based approach for referential ground-
ing as described in (Liu et al., 2012)(Liu et al.,
2013). Once the references are grounded, the se-
mantic representation becomes a Grounded Action
Frame. For example, as shown in Figure 3, “the
blue block” refers to B1 and “the red block on your
right” refers to R1.

Dialogue Manager: The Dialogue Manager
is used to decide what dialog acts the system
should perform give a situation. It is composed by:
a representation of dialogue state, a space of sys-
tem activity and a dialogue policy. The dialogue
status is computed based on the human intention a
dialogue state captures (from semantic representa-
tion) and the Grounded Action Frame. The
current space of system activities includes asking
for instructions, confirming, executing actions and
updating its action knowledge base with new ac-
tions. The dialogue policy stores the (dialogue
state, system activities) pairs. During interaction,
the Dialogue Manager will first identify the
current dialogue state and then apply the dialogue
acts associated with that state as specified in the
dialogue policy.

Action Modules: The Action Modules are
used to realize a high-level action from the
Grounded Action Frame with the physi-
cal arm and to learn new actions. For re-
alizing high-level actions, if the action in the
Grounded Action Frame has a record in
the Action Knowledge, which keeps track
of all the knowledge about various actions, the
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Discrete Planner will do planning to find a
sequence of primitive actions to achieve the high-
level action. Then these primitive actions will se-
quentially go through Continuous Planner
and be translated to the trajectories of arm motors.
By following these trajectories, the arm can per-
form the high-level action. For learning new ac-
tions, these modules will calculate state changes
before and after applying the action on the focus
object. Such changes of the state are generalized
and stored as knowledge representation of the new
action.

Response Generator: Currently, the Response
Generator is responsible for language genera-
tion to realize the detail sentence. In our current
investigation, the speech feedback is simple, so we
just used a set of pre-defined templates to do lan-
guage generation. And the parameters in the tem-
plates will be realized during run time.

4 Action Learning through Dialogue

To realize the action learning functionality we
have developed a set of action related processes
including an action knowledge base, action execu-
tion processes and action learning processes. Next
we give detailed explanations.

4.1 Action Modules

Figure 4: Execution example for “Pick up the blue
block”.

As shown in Figure 4, the action knowledge
base is a three-level structure, which consists of
High-level action Knowledge, Discrete Planner
and Continuous Planner.

4.1.1 Continuous Planner
This lowest level planner defines three primitive
actions: open (i.e., open gripper), close (i.e., close
gripper) and move (i.e., move to the destination).
Each primitive action is defined as a trajectory
computing function, implemented as inverse kine-
matics. The outputs of these functions are control
commands sendt to each arm motor to keep the
arm following the trajectory.

4.1.2 Discrete Planner
The Discrete Planner is used to decompose a
high-level action into a sequence of primitive ac-
tions. In our system, it is implemented as a
STRIPS (Fikes and Nilsson, 1971) planner, which
is defined as a quadruple 〈P,O, I,G〉:
• P: Set of predicates describing a domain.

• O: Set of operators. Each is specified by a set
of preconditions and effects. An operator is
applicable only when its preconditions could
be entailed in a state.

• I: Initial state, the starting point of a problem.

• G: Goal state, which should be achieved if the
problem is solved.

In our system, O set includes Open Gripper,
Close Gripper and 8 different kinds of
MoveTo (She et al., 2014). And the P set
consists of two dimensions of the environment:

• Arm States: G Open/Close (i.e., whether the
gripper is open or closed), G Full/Empty
(i.e., whether the gripper has an object in it)
and G At(x) (i.e, location of the arm).

• Object States: Top Uclr/Clr(o) (i.e., whether
the block o has another block on its top),
In/Out G(o) (i.e., whether o is within the
gripper fingers or not) and On(o,x) (i.e., o is
supported by x).

The I and G are captured real-time during the
dialogue interaction.

4.1.3 High-level action Knowledge
The high-level actions represent actions specified
by the human partner. They are modeled as de-
sired goal states rather than the action sequence
taught by human. For example, the “Stack(x,y)”
could be represented as “On(x,y)∧G Open”. If the
human specifies a high-level action out of the ac-
tion knowledge base, the dialogue manager will
verbally request for instructions to learn the action.
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Figure 5: Learning process illustration. After hearing the stack action, the robot cannot perform. So the
human gives step by step instruction. When the instruction is completed, new knowledge of Grab(x) and
Stack(x,y) are learned in the high-level action knowledge base as the combination of the goal state of the
robotic arm and the changes of the state for the involved objects.

4.2 Action Execution

Given a Grounded Action Frame, it is
firstly checked with the high-level action knowl-
edge base. If the knowledge base has its record
(e.g., the Pickup and ClearTop in Figure 4.), a goal
state describing the action effect will be retrieved.
This goal state, together with the initial state cap-
tured from the current environment, will be sent
to the Discrete Planner. And, through au-
tomated planning, a sequence of primitive actions
will be generated to complete the task, which can
be immediately executed by the arm.

Take the “Pick up” action frame in Figure 4
as an example. By checking the grounded ac-
tion frame with the high-level action knowledge,
a related goal state (i.e., “G Close∧Top Clr(B1)
∧In G(B1)∧On(B1,air)”) can be retrieved. At
the same time, the Discrete Evn Builder
translates the real world environment as a con-
junction of predicates, which serves as the ini-
tial state. Given the combination of initial state
and goal state, the STRIPS planner can search for
a path of primitive actions to solve the problem.
For example, the PickUp(B1) in Figure 4 can be
solved by Open Grip, MoveTo(B1), Close Grip
and MoveTo(air).

The primitive actions are executed by the con-
tinuous planner and control process in the lower
robotic system. For the “open” and “close”, they
are executed by controlling the position of the
gripper fingers. For the “move”, a task-space tra-
jectory is first planned based on the minimum-time
motion planning algorithm to move the robot end-

effector from the current position to the final posi-
tion. A kinematic controller with redundancy res-
olution (Zhang et al., 2012) is then used to gener-
ate the joint movements for the robot to track the
planned trajectory. Achieving the end of the tra-
jectory indicates the action completion.

4.3 Action Learning

Figure 5 illustrates the system internal process of
acquiring action knowledge from the dialogue in
Figure 1.

At the beginning of the dialogue, the grounded
action frame Stack(B1, R1) captured from the first
human utterance is not in the action knowledge,
so it will be pushed to the top of the unknown ac-
tion stack as a new action waiting to be learned.
The environment state at this point is calculated as
shown in the figure. Then the robot will verbally
request instructions. During the instruction, it’s
possible that another unknown action Grab(B1) is
referred. The same as the Stack action, it will be
pushed to the top of unknown action stack waiting
to be learned.

In the next instruction, the human says “Open
your gripper”. This sentence can be translated as
action frame Open and the goal state “G Open”
can be retrieved from the action knowledge base.
After executing the action sequence, the grip-
per state will be changed from “G Close” to
“G Open”, as shown in Figure 5. In the follow-
ing two instructions, the human says “Move to the
blue block” and “Close gripper”. Similarly, these
two instructions are translated as action frames
Move(B1) and Close, then are executed accord-
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ingly. After executing these two steps, the state of
B1 is changed from “Out G(B1)” to “In G(B1)”.

At this point, the previous unknown action
Grab(B1) is achieved, so the human says “Now
you achieve the grab action” as a signal of teach-
ing completion. After acknowledging the teach-
ing completion, the action learning module will
learn the new action representation by combining
the arm state with the state changes of the argu-
ment objects in the unknown action frame. For
example, the argument object of unknown action
Grab(B1) is B1. By comparing the original state
of B1, [(Out G B1)∧(Top Clr B1)∧(On B1 table)]
with the final state, [(In G B1)∧(Top Clr B1)∧(On
B1 table)], B1 is changed from (Out G B1) to
(In G B1). So, the learning module will gener-
alize such state changes and acquire the knowl-
edge representation of the new action Grab(x) as
G Close∧In G(x).

5 Empirical Studies

The objectives of our empirical studies are two
folds. First, we aim to exam whether the current
representation can support planning algorithms
and execute the learned actions in novel situations.
Second, we aim to evaluate how extra effort from
the human partner through step-by-step instruc-
tions may affect the robot’s learning performance.

5.1 Instruction Effort
Previous work on mediating perceptual differ-
ences between humans and robots have shown that
a high collaborative effort from the robot leads to
better referential grounding (Chai et al., 2014).
Motivated by this previous work, we are inter-
ested in examining how different levels of effort
from human partners may affect the robot’s learn-
ing performance. More specifically, we model two
levels of variations:

• Collaborative Interaction: In this setting, a
human partner provides step-by-step instruc-
tions. At each step, the human will observe
the the robot’s response (i.e., arm movement)
before moving to the next step. For exam-
ple, to teach “stack”, the human would is-
sue “pick up the blue block”, observe the
robot’s movement, then issue “put it on the
red block” and observe the robot movement.
By this fashion, the human makes extra effort
to make sure the robot follows every step cor-
rectly before moving on. The human partner

can detect potential problems and respond to
immediate feedback from the robot.

• Non-Collaborative Interaction: In this set-
ting, the human only provides a one-shot in-
struction. For example, to teach “stack”,
the human first issues a complete instruction
“pick up the blue block and put it on top of
the red block” and then observes the robot’s
responses. Compared to the collaborative set-
ting, the non-collaborative setting is poten-
tially more efficient.

5.2 Experimental Tasks
Similar to the setup shown in Figure 1, in the
study, we have multiple blocks with different col-
ors and sizes placed on a flat surface, with a
SCHUNK arm positioned on one side of the sur-
face and the human subject seated on the opposite
side. The video stream of the environment is sent
to the vision system (Collet et al., 2011). With the
pre-trained object model of each block, the vision
system could capture blocks’ 3D positions from
each frame. Five human subjects participated in
our experiments 2. During the study, each sub-
ject was informed about the basic actions the robot
can perform (i.e., open gripper, close gripper, and
move to) and was instructed to teach the robot sev-
eral new actions through dialogue. Each subject
would go through the following two phases:

5.2.1 Teaching/Learning Phase
Each subject was asked to teach the following five
new actions under the two strategies (i.e., step-
by-step instructions vs. one-shot instructions):
{Pickup, Grab, Drop, ClearTop, Stack} Each time,
the subject can choose any blocks they think are
useful to teach the action. After finishing teaching
one action (either under step-by-step instructions
or under one-shot instructions), we would survey
the subject whether he/she thinks the teaching is
completed and the corresponding action is suc-
cessfully performed by the robot. We record the
teaching duration and then re-arrange the table top
setting to move to the next action.

For the teaching/learning phase, we use two
metrics for evaluation: 1) Teaching Completion
Rate(Rt) which stands for the number of actions
successfully taught and performed by the robot;
2)Teaching Completion Duration (Dt which mea-
sures the amount of time taken to teach an action.

2More human subjects will be recruited to participate in
our studies.
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5.2.2 Execution Phase
The goal of learning is to be able to apply the
learned knowledge in novel situations. To evalu-
ate such capability, for each action, we designed
10 additional setups of the environment which
are different from the environment where the ac-
tion was learned. For example, as illustrated in
Figure 6, the human teaches the pick Up action
by instructing the robot how to perform “pick up
the blue block(i.e., B1)” under the environment
in 6(a). Once the knowledge is acquired about the
action “pick up”, we will test the acquired knowl-
edge in a novel situation by instructing the robot to
execute “pick up the green block(i.e., G1)” in the
environment shown in 6(b).

(a) Learning: the human
teaches the robot how to
“pick up the blue block
(i.e., B1)” during the learn-
ing phase

(b) Execution: the human
asks the robot to “pick up
the green block (i.e., G1)”
after the robot acquires the
knowledge about “pick up”

Figure 6: Examples of a learning and an execution
setup.

For the execution phase, we also used
two factors to evaluate: 1) Action Sequence
Generation(Rg) which measures how many high-
level actions among the 10 execution scenarios
where the corresponding lower-level action se-
quences are correctly generated; 2) Action Se-
quence Execution(Rge) which measures the num-
ber of high level actions that are correctly executed
based on the lower level action sequences.

5.3 Empirical Results
Our experiments resulted in a total of 50 action
teaching dialogues. Half of these are under the
step-by-step instructions (i.e., collaborative inter-
action) and half are under one-shot instructions
(i.e., non-collaborative). As shown in Figure 7,
5 out of the 50 teaching dialogues were consid-
ered as incomplete by the human subjects and all
of them are from the Non-Collaborative setting.
For each of the 45 successful dialogues, an action
would be learned and acquired. For each of these
acquired actions, we further tested its execution
under 10 different setups.

Figure 7: The teaching completion result of the
50 teaching dialogues. “1” stands for the dialogue
where the subject considers the teaching/learning
as complete since the robot performs the corre-
sponding action correctly; and “0” indicates a fail-
ure in learning. The total numbers of teaching
completion are listed in the bottom row.

Figure 8: The teaching completion duration re-
sults. The durations under the non-collaborative
strategy are smaller than the collaborative strategy
in most cases.

5.3.1 Teaching Performance

The result of teaching completion is shown in Fig-
ure 7. Each subject contributes two columns: the
“Non” stands for the Non-Collaborative strategy
and the “Col” column refers to the Collaborative
strategy. As the table shows, all the 5 uncom-
pleted teaching are from the Non-Collaborative
strategy. In most of these 5 cases, the subjects
thought the actual performed actions were differ-
ent from their expectations. For example, in one of
the “stack” failures, the human one-shot instruc-
tion was “move the blue block to the red block on
the left.”. She thought the arm would put the blue
block on the top of red block, open gripper and
then move away. However, based on the robot’s
knowledge, it just moved the blue block above
the red block and stopped there. So the subject
considered this teaching as incomplete. On the
other hand, in the Collaborative interactions, the
robot’s actual actions could also be different from
the subject’s expectation. But, as the instruction
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Figure 9: Each bar represents the number of suc-
cessfully generated action sequences during test-
ing. The solid portion of each bar represents the
number of successfully executed action sequences.
The number of successfully execution is always
smaller than or equal to the generation. This is be-
cause we are dealing with dynamic environment,
and the inaccurate real-time localization will make
some correct action sequence fail to be executed.

was given step-by-step, the instructors could no-
tice the difference from the immediate feedback
and adjust their follow-up steps, which contributed
to a higher completion rate.

The duration of each teaching task is shown in
Figure 8. Bar heights represent average teaching
duration, the ranges stand for standard error of
the mean (SEM). The 5 actions are represented
by different groups. As shown in the figure, the
teaching duration under the Collaborative strategy
tends to take more time. Because in the Collab-
orative case, the human needs to plan next step
after observing the robot’s response to a previous
step. If an exception happens, a sub-dialogue is
often arranged to do correction. But in the Non-
Collaborative case, the human comes up with an
entire instruction at the beginning, which appears
more efficient.

5.3.2 Execution Performance

Figure 9 illustrates the action sequence generation
and execution results in the execution phase.

As shown in Figure 9, testing results of actions
learned under the Collaborative strategy are higher
than the ones using Non-Collaborative, this is be-
cause teaching under the Collaborative strategy is
more likely to be successful. One exception is the
Clear Top action, which has lower generation rate
under the Col setting. By examining the collected
data, we noticed that our system failed to learn the
knowledge of Clear Top in one of the 5 teaching

phases using Col setting, although the human sub-
ject labeled it as successful. Another phenomenon
shown in Figure 9 is that the generation results are
always larger than or equal with the correspond-
ing execution results. This is caused by inaccurate
localization and camera calibration, which intro-
duced exceptions during executing the action se-
quence.

6 Conclusion

This paper describes an approach to robot action
learning in a simplified blocks world. The sim-
plifications of the environment and the tasks allow
us to explore connections between symbolic repre-
sentations of natural language and continuous sen-
sorimotor representations of the robot which can
support automated planning for novel situations.
This investigation is only our first step. Many is-
sues have not been addressed. For example, the
world is full of uncertainties. Our current ap-
proach can only either succeed or fail executing
an action based on the acquired knowledge. There
is no approximation or reasoning of the uncertain
states which may affect potential execution. Also,
when the robot fails to execute an action, there is
no explanation why it fails. If the robot can artic-
ulate its internal representations regarding where
the problem occurs, the human can provide better
help or targeted teaching. These are the directions
we will pursue in our future work.
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Abstract

Incrementality as a way of managing the
interactions between a dialogue system
and its users has been shown to have
concrete advantages over the traditional
turn-taking frame. Incremental systems
are more reactive, more human-like, of-
fer a better user experience and allow the
user to correct errors faster, hence avoid-
ing desynchronisations. Several incremen-
tal models have been proposed, however,
their core underlying architecture is dif-
ferent from the classical dialogue systems.
As a result, they have to be implemented
from scratch. In this paper, we propose a
method to transform traditional dialogue
systems into incremental ones. A new
module, called the Scheduler is inserted
between the client and the service so that
from the client’s point of view, the sys-
tem behaves incrementally, even though
the service does not.

1 Introduction

An incremental compiler (Lock, 1965) processes
each instruction irrespectively from the others so
that local modifications of the source code do not
affect the global result. This idea of incrementality
has been adapted to the field of natural language
analysis (Wirén, 1992): instead of feeding mod-
ules with full utterances, the input signal is deliv-
ered and processed chunk by chunk (word by word
for example) and each new piece engenders a new
output hypothesis.

Human beings behave similarly when interact-
ing with each other (Levelt, 1989; Clark, 1996).
They understand each other gradually when they
speak, they can interrupt each other and the lis-
tener is able to predict the end of an utterance be-
fore it is fully pronounced by the speaker (Tanen-
haus et al., 1995; Brown-Schmidt and Hanna,

2011; DeVault et al., 2011). Reading is also a task
that we perform incrementally (Ilkin and Sturt,
2011).

Traditional dialogue systems1 work in a turn-
taking manner. The user pronounces his request
and after a silence is detected, the systems starts
processing the utterance and planning an answer.
Some systems can even allow the user to barge in
on them, however, they do not take the timing of
the interruption into account nor try to link it with
the system’s utterance. On the other hand, incre-
mental dialogue systems process the user’s request
chunk by chunk as the latter is divided in several
incremental units (IU) (Schlangen and Skantze,
2011). They keep a hypothetical user request that
evolves as new IUs arrive as input. The response
to this hypothesis can be used to make live feed-
back to the user using voice or other modalities if
available. As opposed to traditional systems, when
the user interrupts the system, the content and the
timing of its utterance are taken into account (Mat-
suyama et al., 2009; Selfridge et al., 2013) to de-
termine how to act on it. Therefore, incremental
systems have been shown to be more reactive, to
offer a more human-like experience (Edlund et al.,
2008) and to correct errors faster hence achieving
better results in terms of user experience (Skantze
and Schlangen, 2009; Baumann and Schlangen,
2013; El Asri et al., 2014) and task completion
(Matthias, 2008; El Asri et al., 2014).

Many incremental architectures have already
been proposed. Nevertheless, designing systems
based on them requires an implementation from
scratch as they are fundamentally different from
traditional dialogue systems. The objective of this
paper is to propose a method of transforming a tra-
ditional system into an incremental one at minimal
cost. A new module called the Scheduler is in-
serted between the client and the service so that

1We will use the expression traditional dialogue systems
to talk about non incremental ones.
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from the client’s point of view, the system behaves
incrementally, even though the service works in a
traditional way.

Section 2 draws a state-of-the-art concerning in-
cremental dialogue systems. The architecture pro-
posed here and the role of the Scheduler are pre-
sented in Section 3. In Section 4, two implemen-
tations of our method are presented: CFAsT and
DictaNum. Then, a discussion is held in Section
5 before concluding the paper and presenting our
next objectives in Section 6.

2 Related work

Dialogue systems can be split into four groups
according to how they integrate incrementality
in their behaviour. Traditional dialogue systems
(Laroche et al., 2011) form the first category
whereas the second one refers to systems that
propose some incremental strategies among tra-
ditional others (El Asri et al., 2014). The ar-
chitecture presented in this paper belongs to the
third group which contains incremental systems
based on a traditional inner behaviour (Hastie et
al., 2013; Selfridge et al., 2012). The fourth cate-
gory contains incremental systems where internal
modules work incrementally (Dohsaka and Shi-
mazu, 1997; Allen et al., 2001; Schlangen and
Skantze, 2011). Figure 1 discussed later provides
a list of the features that are available in each cat-
egory.

Several dialogue strategies have been imple-
mented in NASTIA (El Asri et al., 2014), a dia-
logue system helping the user to find a date and
a time for an appointment with a technician (com-
pleting the work made during the European project
CLASSiC (Laroche and Putois, 2010)). Among
them, List of Availabilities is an incremental strat-
egy where the system enumerates a list of alterna-
tives for the appointment. The user is supposed to
interrupt this enumeration when he hears an op-
tion that is convenient for him. An experiment
showed that List of Availabilities produced better
results than other traditional strategies in terms of
task completion and user satisfaction.

PARLANCE (Hastie et al., 2013) is an exam-
ple of a third category system (it was developed
in the European project PARLANCE). Its archi-
tecture is similar to the traditional ones but it inte-
grates a new module, called MIM (Micro-turn In-
teraction Manager), which decides when the sys-
tem should speak, listen to the user and when it

should generate back-channels. The closest ap-
proach to the method introduced in this paper is
presented in (Selfridge et al., 2012) : the IIM (In-
cremental Interaction Manager) is an intermediate
module between an incremental ASR and a TTS
on the one hand and the service on the other hand.
Instead of replicating the dialogue context as it is
suggested in this paper, different instances of the
service are run. Moreover, the IIM is introduced as
preliminary work in order to simulate incremen-
tal dialogue whereas in this paper, the Scheduler
approach is fully studied and placed into the con-
text of the current state-of-the-art concerning in-
cremental dialogue. It is also viewed as a new
layer that can be extended later on, into a smart
turn-taking manager.

The architecture proposed in (Dohsaka and Shi-
mazu, 1997) contains eight modules that work in
parallel: the Speech Recognizer, the Response
Analyzer, the Dialogue Controller, the Problem
Solver, the Utterance Planner, the Utterance Con-
troller, the Speech Synthesizer and the Pause Mon-
itor. The user asks the system to solve a problem.
Then, his request is submitted incrementally to the
Speech Recognizer which sends its output text to
the Response Analyzer that figures out concepts to
be sent to the Dialogue Controller. The latter in-
teracts with the Problem Solver and the Utterance
Planner in order to compute a solution that is com-
municated to the user through the Utterance Con-
troller then the Speech Synthesizer. This system
belongs to the fourth category as all its modules
behave incrementally in order to start suggesting
a solution to the user’s problem before it is to-
tally computed. In the same category, (Allen et al.,
2001) proposes another architectures split in three
main modules: the Interpretation Manager, the Be-
havioral Agent and the Generation Manager. The
first module catches the user’s request and broad-
casts it incrementally inside the system. The sec-
ond one manages the system’s action plan and the
third is in charge of the response delivery.

A general and abstract model is introduced in
(Schlangen and Skantze, 2011). A dialogue sys-
tem can be viewed as a chain of modules. Each
module has a Left Buffer (LB) where its inputs are
pushed, an Internal State (IS) and a Right Buffer
(RB) where it makes its outputs available. Data
(audio, text, concepts...) flows through these mod-
ules in the form of Incremental Units (IU). When
an IU is put in the LB of a module, it can be pro-
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cessed immediately hence modifying its RB. For
example, every 500 ms, a new IU in the form of
a chunk of audio signal can be put into the LB
of the ASR which can modify its output accord-
ing to what the user said during this time window.
All dialogue systems from the four categories can
be viewed as instances of this general model: we
can now see that a non-incremental system can be
characterised as a special case of an incremental
system, namely one where IUs are always maxi-
mally complete [...] and where all modules update
in one go.

In this paper, we introduce an architecture that
belongs to the third category. In comparison with
the first two categories, these systems behave in-
crementally during the whole dialogue. On the
other hand, they can be built at a lower cost than
the systems from the fourth category.

3 Architecture

Traditional dialogue systems are generally com-
posed of a client on the user’s terminal and a ser-
vice that is deployed on a remote machine. They
work in a turn-taking manner as when the user
speaks, the system waits until the end of his re-
quest before processing it and vice versa (except
for some systems where the user can interrupt the
system). To make such a system incremental, we
suggest inserting a new module between the client
and the service: the Scheduler (this denomination
is taken from (Laroche, 2010)). This new archi-
tecture can be cast as an instance of the general
abstract model of (Schlangen and Skantze, 2011).
The client, the Scheduler and the service are the
three modules that compose the system. The first
two ones are incremental but the last one is not.
We will not use the notions of LB and RB and
will consider that these modules interact with each
other through some channel (network in the case
of our implementation, see Section 4).

3.1 The traditional architecture

In a traditional architecture, the client receives a
stream of data (audio signal, string...). If it is not
the case (a web interface where each button rep-
resents a request for example), it does not make
sense to transform such a system in an incremen-
tal one, so they are out of the scope of this paper.
The end of a request is determined by a condition
EndTurnCond. It can be a long enough silence
(Raux and Eskenazi, 2008; Wlodarczak and Wag-

ner, 2013) in the case of vocal services or a car-
riage return for text systems. A dialogue turn is
the time interval during which the user sends a re-
quest to the system and gets a response. These
turns will be called T 1, T 2, ..., T k... and each one
of them can be split into a user turn T k,U and a
system turn T k,S : T k = T k,U ∪ T k,S . During the
user turn, a request Reqk is sent and during the
system turn, the corresponding response Respk is
received. The instant when a condition goes from
false to true will be called its activation time. As
a consequence, T k,U ends at the activation time
of EndTurnCond and T k,S is finished when the
system gives the floor to the user.

The service is made up of three parts: the inter-
nal interface, the internal context and the external
interface. The internal interface manages the inter-
actions between the service and the client. The in-
ternal context handles the way the client’s requests
should be acted on and the external interface is in
charge of the interactions with the external world
(database, remote device...).

3.2 Incrementality integration

The way the client sends the user’s request to the
service should be modified in order to make the
system incremental. A new sending condition is
defined: EndMicroTurnCond and it is less re-
strictive than EndTurnCond (which makes the
latter imply the former). Therefore, the new client
sends requests more frequently than the traditional
one. A user micro-turn is the time interval between
two activation times of EndMicroTurnCond so
the user turn T k,U can be divided into nk,U user
micro-turns µT k,Ui : T k,U =

⋃nk,U

i=1 µT k,Ui . We
also define the pth sub-turn of the user turn T k,U

as: T k,Up =
⋃p
i=1 µT

k,U
i . The union symbol is

used as we concatenate time intervals. In gen-
eral, EndMicroTurnCond can be activated at
a constant frequency or at each new input made
by the user. Moreover, when EndTurnCond is
activated, the Scheduler is informed by the client
thanks to a dedicated signal: signal_ETC. At each
T k,S , the user makes a new request but at the
micro-turn µT k,Si with i < nk,U , the complete re-
quest is not available yet. Consequently, a tempo-
rary request which we will call sub-request (Reqki )
is sent. Sending the whole request from the begin-
ning of the turn at each micro-turn is called restart
incremental processing (Schlangen and Skantze,
2011). Let us notice that if i1 < i2 then Reqki1
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is not necessarily a prefix of Reqki2 (in spoken di-
alogue, a new input in the ASR can modify the
whole or a big part of the output).

The Scheduler is an intermediate module be-
tween the client and the service whose aim is to
make the combination {Scheduler + Service} be-
have incrementally from the client’s point of view.
We define ServiceReqCond as the condition con-
straining the Scheduler to send a request to the sys-
tem or not. At each user micro-turn µT k,Si , it re-
ceives a sub-request Reqki . If ServiceReqCond
is true, the latter is sent to the system and the
corresponding response Respki is stored so that
the client can ask for it later. For example,
ServiceReqCond can be constantly true which
makes the Scheduler send all the sub-requests that
it receives or it can be activated only if the new
sub-request is different from the previous one (if
the client already behaves the same way through
EndMicroTurnCond it is redundant to do so in
ServiceReqCond too).

The end of a turn is determined by the Sched-
uler. This module decides when to validate the
current sub-request and to no longer wait for new
information to complete it. It engages the di-
alogue in the direction of this hypothesis as it
is considered as the user’s intent. The Sched-
uler is said to commit the sub-request (Schlangen
and Skantze, 2011) (this notion is described in
Section 3.3). We define CommitCond as the
condition for the Scheduler to commit a hy-
pothesis. For example, in the case of a sys-
tem that asks for a 10 digits phone number,
CommitCond = (length(num) == 10) where
length(num) is the number of digits in each sub-
request. Hence, a user turn ends at the activa-
tion time of CommitCond and not when a sig-
nal_ETC is received. However, EndTurnCond
implies CommitCond.

The client is made of two threads: the send-
ing thread and the recuperation thread. The first
one is in charge of sending sub-requests at each
micro-turn and the second one gets the last re-
sponse hypothesis available in the Scheduler. The
recuperation thread is activated at the same fre-
quency as micro-turns so that the client is always
up to date. In the case of vocal services, it is the
Scheduler’s task to decide which intermediate re-
sponses should be pronounced by the system and
which ones should be ignored. Therefore, a flag
in the message must be set by this module to de-

clare whether it has to be outputted or not. When
the recuperation thread gets new messages from
the Scheduler, it decides whether to send it to the
Text-To-Speech module or not based on the value
of this flag.

The service in our architecture is kept un-
changed (apart from some changes at the ap-
plicative level, see Section 4.2). The only func-
tional modification is that the context is dupli-
cated: the simulation context (see Section 3.3) is
added. When a new sub-request is received by
the Scheduler and ServiceReqCond is true, an
incomplete request (sub-request) is sent to the ser-
vice. Therefore, the system knows what would be
the response of a sub-request if it has to be com-
mitted. As the service is not incremental and can-
not process the request chunk by chunk, all the in-
crements from the beginning of the turn have to
be sent and that is what justifies the choice of the
restart incremental mode.

The service can also order the Scheduler
to commit. This behaviour is described in
(Schlangen and Skantze, 2011) where the IUs in
the RB of a module are grounded in the ones in
the LB that generated them. Consequently, when
a module decides to commit to an output IU, all
the IUs that it is grounded in must be committed.
In our architecture, when the service commits to
the result of a request (if it already started deliv-
ering the response to the user for example), this
request has to be committed by the Scheduler.

On the other hand, as we defined the user
micro-turn, we can introduce the system micro-
turn. In traditional systems, the service’s re-
sponse is played by the TTS during the system turn
T k,S . In incremental dialogue, this turn can be di-
vided into nkS system micro-turns µT k,Si : T k,S =⋃nk

S
i=1 µT

k,S
i . Their duration depends on the way

the service decides to chunk its response (for ex-
ample, every item in an enumeration can be con-
sidered as a chunk). When the user interrupts the
system, the timing of his interruption is given by
the micro-turn during which he reacted. Moreover,
when the user barges in, a new tour is started. Only
vocal systems are concerned with this behaviour as
textual systems cannot be interrupted (the whole
service response is displayed instantly).

3.3 Commit, rollback and double context

The request hypothesis fluctuates as long as new
increments are taken into account. However, at

101



some point, the system has to take an action that
is based on the last hypothesis and visible by the
user. For example, a response may be sent to the
TTS or a database can be modified. At that point,
the system is said to commit to its last hypothe-
sis which means that it engages the dialogue ac-
cording to its understanding of the request at that
moment. It no longer waits for other incremental
units to complete the request as it can no longer
change it. On the contrary, the system can decide
to forget its last hypothesis and come back to the
state it was in at the moment of the last commit.
This operation is called rollback (both terms are
taken from the database terminology).

Most of the requests sent by the Scheduler to the
service are aimed to know what would the latter
respond if the current hypothesis contains all the
information about the user’s intent. Consequently,
these requests should not modify the current con-
text of the dialogue. We suggest that the service
maintains two contexts: the real context and the
simulation context. The first one plays the same
role as the classical context whereas the second
one is a buffer that can be modified by partial re-
quests.

In our architecture, committing to a hypothesis
will be made by copying the content of the sim-
ulation context (generated by the current request
hypothesis) into the real context. On the opposite,
a rollback is performed by copying the real con-
text into the simulation one, hence going back to
the state the system was in right after the last com-
mit.

Every user micro-turn, the client sends to the
Scheduler the whole user’s sub-request since the
last commit. This incomplete request is then
sent to the service and the answer is stored in
the Scheduler. If during the next micro-turn, the
Scheduler does not ask for a commit but needs to
send a new sub-request instead, a rollback signal is
sent first as the system works in a restart incremen-
tal way (in this paper, rollbacks are only performed
in this case). Figures A.1 and A.2 represent the
way our three modules interact and how the dou-
ble context is handled. In Figure A.1, the con-
ditions EndTurnCond, EndMicroTurnCond,
ServiceReqCond and CommitCond are written
on the left of the streams they generate. On the left
of the figure, the times where the sending thread of
the client is active and inactive are represented and
dashed arrows represent streams that are received

by the recuperation thread. They are not synchro-
nized with the rest of the streams, even though
they are in this figure (for more clarity). Also, the
commit decision has been taken by the Scheduler
after it received a signal_ETC which is not always
the case.

We call ctxt(T k) the real context at the end of
T k (ctxt(T 0) being the initial context at the begin-
ning of the dialogue). The context is not modified
during the system turn, hence, we may notice that
ctxt(T k,U ) = ctxt(T k). During the commit at the
end of T k,U , the simulated context is copied into
the real context: ctxt(T k) = ctxt(T k−1 +T k,U

nk,U ).

4 Implementations

We implemented our method in the case of two
dialogue systems developed at Orange Labs. The
first one is a text service where the client is a web
interface and the second one is a vocal service de-
signed to record numbers. With only a few modifi-
cations, these two systems have been made incre-
mental, showing that our solution is easy to im-
plement, and demonstrating the incremental be-
haviour of the transformed systems, in the limit
of the implemented strategies and according to
the modalities that have been used (text and vocal
modes).

4.1 CFAsT: Content Finder AssitanT

CFAsT is an application developed at Orange Labs
and which can be used to generate textual dialogue
systems and whose objective is to help the user
search for some specific content in a database.

The client is a web page with a text-box where
the user can type a request using natural language
(validated by a carriage return or by clicking on
the validate button). This page also contains
buttons representing keywords or content sugges-
tions. In this implementation, the content base
chosen is the list of accepted papers at the NIPS
2013 conference. A list of keywords is maintained
through the interaction. It is initially empty and for
each new request, if new keywords are detected,
they are added to the list. The interaction ends
when the user selects a unique content.

In our implementation2, the client is made of
two screens. The first one contains the same
view as the classical system and the second
one fluctuates incrementally. When the user is
typing a request, the second view is updated

2http://dialogue.orange-labs.fr/CFAsTIncrEng/
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each time the space button is hit: it shows
the answer that the service would have given
in case of a carriage return at that moment.
When a request is validated, a commit is per-
formed and the two views are identical. In this
case: EndMicroTurnCond is activated when
the space button is hit (ServiceReqCond does
not filtrate any sub-request) and EndTurnCond
is true if a carriage return is detected. In addition,
CommitCond = EndTurnCond.

4.2 DictaNum

The second implementation is a vocal system
called DictaNum and inspired by NUMBERS di-
alogue system (Skantze and Schlangen, 2009). It
asks the user to dictate a number and then gives
a feedback to confirm that it has been well un-
derstood. The client is an HTML web page that
interacts with the Scheduler using AJAX3. It uses
the Google web API for both the ASR and TTS
tasks. Other existing systems ask the user to dic-
tate a number (telephone, credit card...) such as
How may I help you? (Langkilde et al., 1999).
Here is an example of an interaction with the tra-
ditional version of DictaNum:

System: Welcome to the DictaNum service. Please dictate

your number.

User: 01 45 65 79 98.

System: The dictated number is: 01 45 67 79 98. Is that

correct?

User: No.

System: Sorry. Let us try again. Please dictate your number.

User: 01 45 65 79 98.

System: The dictated number is: 01 47 65 79 98. Is that

correct?

User: No.

System: Sorry. Let us try again. Please dictate your number.

[...]

System: The dictated number is: 01 45 65 79 98. Is that

correct?

User: Yes.

System: Thank you for using DictaNum. Bye.

If the user’s request has not been understood
correctly in one shot, he has to dictate it again.
This is not an optimal strategy. DictaNum has
been modified to support chunk by chunk dicta-
tion as in the following example:

3http://dialogue.orange-labs.fr/DictaNumEng/

System: Welcome to the DictaNum service. Please dictate

your number.

User: 01 45

System: 01 45

User: 65 79

System: 67 79

User: No, 65 79

System: Sorry, 65 79

User: 98

System: 98

User: ...

System: The dictated number is: 01 45 65 79 98. Is that

correct?

User: Yes.

System: Thank you for using DictaNum. Bye.

In order to generate feedbacks, the service has
been modified at the applicative level. It maintains
a string that is supposed to contain the complete
number at the end of the interaction. Initially, this
string is empty. When a silence is detected af-
ter a chunk is dictated, the system repeats the lat-
ter as a feedback to the user and concatenates it
at the end of the number string. If the user be-
gins a new chunk with No, the system understands
that it has to correct the last one (starting the next
feedback with Sorry...), otherwise, it keeps it and
moves forward in the dictation. Finally, if after
a feedback a silence is detected with nothing dic-
tated, the system understands that the dictation is
over and makes a general feedback over the whole
number.

These modifications are not enough for the sys-
tem to be used in an incremental way. It is not
optimal for the user to insert silences in his dic-
tation. Of course, he can, but it is not convenient
nor natural. The client has been modified so that it
no longer waits for a silence to send the user’s re-
quest, instead, it sends a partial request every 500
ms (EndMicroTurnCond). The partial request
is sent on a restart incremental mode.

Also, DictaNum can detect silences in a micro-
turn level. We call ∆s the silence threshold used
to determine the end of a request in the tradi-
tional system and we introduce a new threshold
δs such as δs ≤ ∆s. A silence whose duration is
greater than δs is called micro-silence. The sys-
tem has been modified in order to detect these
shorter silences during the dictation, to commit
(EndTurnCond = CommitCond) and deliver
a feedback right after. Additionally, our system’s
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response time is very short, the feedback message
is available before the end of the micro-silence, so
it is fed to the TTS without any delay. If δs = ∆s,
it is more convenient to dictate the number in one
shot. Therefore, moving δs between zero and ∆s

creates a continuum between traditional systems
and incremental ones. One may argue that these
modifications are enough and no incremental be-
haviour is required, but the response delay will be
higher, hence, the user will not wait for any feed-
back and will try to dictate his number in one shot.

If the user manifests a silence that is longer than
∆s right after a feedback, the dictation ends and
a general feedback is made to confirm the whole
number. In our system, silences are determined by
the number micro-turns during which there is no
new input from the ASR but we could have used
the VAD (Voice Activity Detection) (Breslin et al.,
2013).

We set EndMicroTurnCond to be activated
by a 2 Hz clock and at every micro-turn, the
Scheduler checks whether the new request is dif-
ferent from the previous one (ServiceReqCond).
If that is the case, a rollback signal is sent followed
by all the digits in the current number fragment.
When a micro-silence is detected, a string silence
is sent to the Scheduler (as signal_ETC) and that is
when the Scheduler decides to commit. The recu-
peration thread requests the last message from the
service with the same frequency as micro-turns, so
when CommitCond is activated, the feedback is
already available and is delivered instantly to the
TTS.

Finally, it is also possible for the user to in-
terrupt the system during the final feedback. To
do so, the service sends a feedback message in
the following format: The dictated number is: 01
<sep> 45 <sep> 65 <sep> 79 <sep> 98. Is that
correct?. The <sep> is a separator that is used to
delimit the system micro-turns µT k,Si . They are
pronounced one after another by the TTS. As a re-
sult, a dictation may end like this:

System: The dictated number is: 01 45 67 ...

User: No, 65.

System: Sorry. The dictated number is: 01 45 65 79 98. Is

that correct?

User: Yes.

System: Thank you for using DictaNum. Bye.

After the interruption, a message sent to the ser-

vice under the following format: {part of the re-
quest that has been pronounced so far | barge-in
content}. In our example, this message is {The
dictated number is: 01 45 67 | No, 65} which
makes the service know how to perform the cor-
rection (or not, if the interruption is just a confir-
mation for example).

5 Discussion

Incremental dialogue systems present new fea-
tures compared to traditional ones. In this section,
we analyse the abilities of these systems given the
way they integrate incrementality. To do so, we
classify them as suggested in Section 2. Figure
1 summarizes the features discussed. These fea-
tures are specific to incremental dialogue systems,
so they do not exist in the first category. On the
contrary, they have all been implemented in sys-
tems from the fourth category.

To interact with the NASTIA service, the user
has to call a vocal platform which handles the ASR
and TTS tasks. It has been configured in order to
interrupt the TTS when activity is detected in the
ASR. When using the List of Availabilities strat-
egy, each item during an enumeration is a dialogue
turn where the timeout duration is set to a low
value (time to declare that the user did not answer)
so that if he does not barge-in, the system moves to
the next item of the list. If the user speaks, the TTS
is stopped by the vocal platform and the user’s ut-
terance and its timing are communicated to the ser-
vice. The latter can ignore the barge-in (if the user
says No for example) or select an item in the list
according to this input. Some traditional systems
allow the user to interrupt them but they do not
take the content of the utterance into account nor
its timing (in order to make the link with the utter-
ance of the TTS). Hence, these two features can be
implemented in a dialogue system provided that
it is permanently listening to the user and that it
catches his utterance and its timing. These condi-
tions are true for systems from the third category
which make it possible for them to integrate these
features.

Incremental dialogue systems can sometimes
detect desynchronisations before the user has fin-
ished his utterance. Therefore, the dialogue would
take less time if the system can interrupt the user
asking him to repeat his request. Feedbacks are
also a form of interrupt as it is the case for Dic-
taNum because they are uttered after a short si-
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Features Category 1 Category 2 Category 3 Category 4
TTS interruption after input analysis - + + +

Link interruption time with TTS - + + +
User interruption by the system - - + +

Better reactivity - - + +
Optimal processing cost - - - +

Figure 1: Available features for dialogue systems given the way they integrate incrementality

lence (micro-silence). These features can only be
implemented in systems from the third and the
fourth group, as for the the first two ones, the sys-
tem is only requested at the end of a user’s utter-
ance.

As far as reactivity is concerned, systems from
the third and the fourth category process the user’s
request every time that a new increment is pushed
into the system. Therefore, when the end of the
request is detected (long enough silence), the ser-
vice’s response is already ready and can be de-
livered immediately. On the other hand, systems
from group 1 and 2 wait until the end of the user’s
utterance to send the request to the service, hence,
being less reactive. However, systems from the
third group work on a restart incremental, repro-
cessing the whole request at each new increment.
On the contrary, systems from the fourth cate-
gory can process the request increment by incre-
ment hence optimizing the processing cost. Some-
times, a new increment can modify the whole re-
quest (or a part of it) and those systems are de-
signed to handle this too by canceling some pre-
vious processing (revoke mechanism (Schlangen
and Skantze, 2011)). While integrating incremen-
tality in CFAsT and DictaNum, we noticed that
the system responded so quickly that no efforts are
necessary to optimise the processing time. How-
ever, systems from the fourth group can make the
difference if the system needs to process tasks that
create a delay (slow access to a remote database
for example).

In our method, the service is not modified in a
functional level (except from the double context
management). However, as it is the case for Dic-
taNum, some modifications at the applicative level
might be compulsory. The Scheduler is not sup-
posed to generate messages by himself or to per-
form traditional dialogue management tasks. As
a consequence, when one needs to add some new
feedback messages at the micro-turn level or the
possibility to correct an utterance, these features

must be implemented in the service.
Finally, in order for the Scheduler to decide

when to commit and when to take the floor in
an optimal way, it might need information com-
ing from the back-end modules. Once again, this
should be handled in the applicative level. A fu-
ture paper, focused on how to implement systems
using the Scheduler, will cover the ideas briefly
described in the last two paragraphs.

6 Conclusion and future work

This paper describes a method for transforming
a traditional dialogue system into an incremen-
tal one. The Scheduler is an intermediate mod-
ule that is inserted between the client and the ser-
vice. From the client’s point of view, the system’s
behaviour is incremental despite the fact that the
service works in a traditional turn-taking manner.
Most requests that are sent by the Scheduler to the
service are aimed to see what would be the answer
if the current request hypothesis is the final one.
In this case, the service’s context should not be
modified. Therefore, two context have to be main-
tained: the real context and the simulated one.

This solution has been implemented in the case
of a textual dialogue system generated by the
CFAsT application. It helps the user navigate
through the NIPS 2013 proceedings titles. It has
also been used to make a vocal system incremen-
tal: DictaNum. This service asks the users to dic-
tate a number and confirms that it has been well
understood.

In the future, we will explore how to make the
Scheduler learn when to commit the current re-
quest hypothesis and when to take the floor. We
will use reinforcement learning to figure out the
optimal strategies.
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Abstract

This paper presents an extension of
the Kaldi automatic speech recognition
toolkit to support on-line recognition.
The resulting recogniser supports acous-
tic models trained using state-of-the-
art acoustic modelling techniques. As
the recogniser produces word posterior lat-
tices, it is particularly useful in statisti-
cal dialogue systems, which try to ex-
ploit uncertainty in the recogniser’s out-
put. Our experiments show that the on-
line recogniser performs significantly bet-
ter in terms of latency when compared to
a cloud-based recogniser.

1 Introduction

There are many choices of speech recognisers, but
we find no alternative with both a permissive li-
cense and on-line recognition suitable for a spo-
ken dialogue system. The Google speech recog-
nition service1 provides state-of-the-art quality for
many tasks (Morbini et al., 2013) and may be used
for free; however, the licensing conditions are not
clear, adaptation of acoustic and language models
to a task at hand is not possible and the service is
not officially supported.

Another option is Nuance cloud based recogni-
tion2; however, again adjustments to the system
are not possible. Moreover, it is a paid service.

When considering local ASR systems, we
found no viable alternatives either. The HTK
toolkit does not provide on-line large vocabulary
decoders suitable for real-time decoding. Open-
Julius can be used with custom-built acoustic and

1The API is available at https://www.google.

com/speech-api/v1/recognize, and its use described
in a blog post at http://mikepultz.com/2013/07/

google-speech-api-full-duplex-php-version/.
2http://www.nuancemobiledeveloper.com/

language models and for on-line decoding (Aki-
nobu, 2014). However, OpenJulius suffers from
software instability when producing lattices and
confusion networks; therefore, it is not suitable
for practical use. The RWTH decoder is not a free
software and a license must be purchased for com-
mercial applications (Rybach et al., 2011).

As a result, we implemented a lightweight
modification of the LatticeFasterDecoder from
the Kaldi toolkit and created an on-line recogniser
with an interface that is suitable for statistical dia-
logue systems. The Kaldi toolkit as well as the on-
line recogniser is distributed under the Apache
2.0 license3. Our on-line recogniser may use
acoustic models trained using the state-of-the-art
techniques, such as Linear Discriminant Analysis
(LDA), Maximum Likelihood Linear Transform
(MLLT), Boosted Maximum Mutual Information
(BMMI), Minimum Phone Error (MPE). It pro-
duces word posterior lattices which can be easily
converted into high quality n-best lists. The recog-
niser’s speed and latency can be effectively con-
trolled off-line by optimising a language model
and during decoding by beam thresholds.

In the next section, the Kaldi recognition
toolkit is briefly described. Section 3 describes
the implementation of the OnlineLatgenRecog-
niser. Section 4 evaluates the accuracy and speed
of the recogniser. Finally, Section 5 concludes this
work.

2 The Kaldi toolkit

The Kaldi toolkit4 is a speech recognition toolkit
distributed under a free license (Povey et al.,
2011). The toolkit is based on Finite State Trans-
ducers, implements state-of-the-art acoustic mod-
elling techniques, is computationally efficient, and
is already widely adapted among research groups.

3http://www.apache.org/licenses/
LICENSE-2.0

4http://sourceforge.net/projects/kaldi

108



Its only major drawback was the lack of on-line
recognition support. Therefore, it could not be
used directly in applications such as spoken dia-
logue systems. Kaldi includes an on-line recogni-
tion application; however, hard-wired timeout ex-
ceptions, audio source fixed to a sound card, and a
specialised 1-best decoder limit its use to demon-
stration of Kaldi recognition capabilities only.

3 OnlineLatgenRecogniser

The standard Kaldi interface between the compo-
nents of the toolkit is based on a batch process-
ing paradigm, where the components assume that
the whole audio signal is available when recog-
nition starts. However, when performing on-line
recognition, one would like to take advantage of
the fact that the signal appears in small chunks and
can be processed incrementally. When properly
implemented, this significantly reduces recogniser
output latency.

3.1 C++ implementation

To achieve this, we implemented Kaldi’s Decod-
ableInterface supporting incremental speech pre-
processing, which includes speech parameterisa-
tion, feature transformations, and likelihood esti-
mation. In addition, we subclassed LatticeFaster-
Decoder and split the original batch processing in-
terface.

The newly implemented OnlineLatgenRecog-
niser makes use of our incremental speech pre-
processing and modified LatticeFasterDecoder. It
implements the following interface:

• AudioIn – queueing new audio for pre-
processing,

• Decode – decoding a fixed number of audio
frames,

• PruneFinal – preparing internal data struc-
tures for lattice extraction,

• GetLattice – extracting a word posterior lat-
tice and returning log likelihood of processed
audio,

• Reset – preparing the recogniser for a new ut-
terance,

The C++ example in Listing 1 shows a typi-
cal use of the OnlineLatgenRecogniser interface.
When audio data becomes available, it is queued

into the recogniser’s buffer (line 11) and imme-
diately decoded (lines 12-14). If the audio data
is supplied in small enough chunks, the decod-
ing of queued data is finished before new data ar-
rives. When the recognition is finished, the recog-
niser prepares for lattice extraction (line 16). Line
20 shows how to obtain word posterior lattice as
an OpenFST object. The getAudio() function rep-
resents a separate process supplying speech data.
Please note that the recogniser’s latency is mainly
determined by the time spent in the GetLattice
function.

Please note that we do not present here the func-
tions controlling the input stream of audio chunks
passed to the decoder and processing the output
because these differ according to use case. An
example of a nontrivial use case is in a dialogue
system through a thin Python wrapper (see Sec-
tion 3.2).
1 OnlineLatgenRecogniser rec;
2 rec.Setup(...);
3
4 size_t decoded_now = 0;
5 size_t max_decoded = 10;
6 char *audio_array = NULL;
7
8 while (recognitionOn())
9 {

10 size_t audio_len = getAudio(audio_array);
11 rec.AudioIn(audio_array, audio_len);
12 do {
13 decoded_now = rec.Decode(max_decoded);
14 } while(decoded_now > 0);
15 }
16 rec.PruneFinal();
17
18 double tot_lik;
19 fst::VectorFst<fst::LogArc> word_post_lat;
20 rec.GetLattice(&word_post_lat, &tot_lik);
21
22 rec.Reset();

Listing 1: Example of the decoder API

The source code of the OnlineLatgenRecog-
niser is available in Kaldi repository5.

3.2 Python extension

In addition, we developed a Python extension ex-
porting the OnlineLatgenRecogniser C++ inter-
face. This can be used as an example of bringing
Kaldi’s on-line speech recognition functionality to
higher-level programming languages. This Python
extension is used in the Alex Dialogue Systems
Framework (ADSF, 2014), an open-source lan-
guage and domain independent framework for
developing spoken dialogue systems. The On-
lineLatgenRecogniser is deployed in an appli-
cation which provides information about public

5https://sourceforge.net/p/kaldi/code/
HEAD/tree/sandbox/oplatek2/src/dec-wrap/

109



transport and weather in the Czech republic and is
available on a public toll-free telephone number.

4 Evaluation

4.1 Acoustic and language model training

The OnlineLatgenRecogniser is evaluated on
a corpus of audio data from the Public Transport
Information (PTI) domain. In PTI, users can inter-
act in Czech with a telephone-based dialogue sys-
tem to find public transport connections (UFAL-
DSG, 2014). The PTI corpus consist of approx-
imately 12k user utterances with a length vary-
ing between 0.4 s and 18 s with median around
3 s. The data were divided into training, develop-
ment, and test data where the corresponding data
sizes were 9496, 1188, 1188 respectively. For
evaluation, a domain specific the class-based lan-
guage model with a vocabulary size of approxi-
mately 52k and 559k n-grams was estimated from
the training data. Named entities e.g., cities or bus
stops, in class-based language model are expanded
before building a decoding graph.

Since the PTI acoustic data amounts to less then
5 hours, the acoustic training data was extended
by an additional 15 hours of telephone out-of-
domain data from the VYSTADIAL 2013 - Czech
corpus (Korvas et al., 2014). The acoustic mod-
els were obtained by BMMI discriminative train-
ing with LDA and MLLT feature transformations.
The scripts used to train the acoustic models are
publicly available in ASDF (2014) as well as in
Kaldi6 and a detailed description of the training
procedure is given in Korvas et al. (2014).

4.2 Experiments

We focus on evaluating the speed of the On-
lineLatgenRecogniser and its relationship with the
accuracy of the decoder, namely:

• Real Time Factor (RTF) of decoding – the ra-
tio of the recognition time to the duration of
the audio input,

• Latency – the delay between utterance end
and the availability of the recognition results,

• Word Error Rate (WER).

Accuracy and speed of the OnlineLatgenRecog-
niser are controlled by the max-active-states,

6http://sourceforge.net/p/kaldi/code/
HEAD/tree/trunk/egs/vystadial_en/

beam, and lattice-beam parameters (Povey et al.,
2011). Max-active-states limits the maximum
number of active tokens during decoding. Beam is
used during graph search to prune ASR hypothe-
ses at the state level. Lattice-beam is used when
producing word level lattices after the decoding is
finished. It is crucial to tune these parameters op-
timally to obtain good results.

In general, one aims for a setting RTF smaller
than 1.0. However, in practice, it is useful if
the RTF is even smaller because other processes
running on the machine can influence the amount
of available computational resources. Therefore,
we target the RTF of 0.6 in our setup.

We used grid search on the development set to
identify optimal parameters. Figure 1 (a) shows
the impact of the beam on the WER and RTF
measures. In this case, we set max-active-states
to 2000 in order to limit the worst case RTF to
0.6. Observing Figure 1 (a), we set beam to 13
as this setting balances the WER, 95th RTF per-
centile, and the average RTF. Figure 1 (b) shows
the impact of the lattice-beam on WER and la-
tency when beam is fixed to 13. We set lattice-
beam to 5 based on Figure 1 (b) to obtain the 95th
latency percentile of 200 ms, which is consid-
ered natural in a dialogue (Skantze and Schlangen,
2009). Lattice-beam does not affect WER, but
larger lattice-beam improves the oracle WER of
generated lattices (Povey et al., 2012).

Figure 2 shows the percentile graph of the RTF
and latency measures over the development set.
For example, the 95th percentile is the value of
a measure such that 95% of the data has the mea-
sure below that value. One can see from Fig-
ure 2 that 95% of development utterances is de-
coded with RTF under 0.6 and latency under 200
ms. The extreme values are typically caused by
decoding long noisy utterances where uncertainty
in decoding slows down the recogniser. Using this
setting, OnlineLatgenRecogniser decodes the ut-
terances with a WER of about 21%.

Please note that OnlineLatgenRecogniser only
extends the batch Kaldi decoder for incremental
speech processing interface. It uses the same code
as the batch Kaldi decoder to compute speech
parametrisation, frame likelihoods, and state-level
lattices. Therefore, the accuracy of OnlineLatgen-
Recogniser is equal to that of the batch Kaldi de-
coder given the same parameters.
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Figure 2: The percentile graphs show RTF and Latency scores for development data for max-active-
sates=2000, beam=13, lattice-beam=5. Note that 95 % of utterances were decoded with the latency
lower that 200ms.

In addition, we have also experimented with
Google ASR service on the same domain.
The Google ASR service decodes 95% of test ut-
terances with latency under 1900 ms and WER is
about 48%. The high latency is presumably caused
by the batch processing of audio data and net-
work latency, and the high WER is likely caused
by a mismatch between Google’s acoustic and lan-
guage models and the test data.

5 Conclusion

This work presented the OnlineLatgenRecogniser,
an extension of the Kaldi automatic speech recog-
nition toolkit. The OnlineLatgenRecogniser is dis-
tributed under the Apache 2.0 license, and there-
fore it is freely available for both research and
commercial applications. The recogniser and its
Python extension is stable and intensively used
in a publicly available spoken dialogue system

(UFAL-DSG, 2014). Thanks to the use of a stan-
dard Kaldi lattice decoder, the recogniser produces
high quality word posterior lattices. The training
scripts for the acoustic model and the OnlineLat-
genRecogniser code are currently being integrated
in the Kaldi toolkit. Future planned improvements
include implementing more sophisticated speech
parameterisation interface and feature transforma-
tions.
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Abstract

Unsupervised machine learning ap-
proaches hold great promise for recog-
nizing dialogue acts, but the performance
of these models tends to be much lower
than the accuracies reached by supervised
models. However, some dialogues, such
as task-oriented dialogues with parallel
task streams, hold rich information that
has not yet been leveraged within unsu-
pervised dialogue act models. This paper
investigates incorporating task features
into an unsupervised dialogue act model
trained on a corpus of human tutoring in
introductory computer science. Exper-
imental results show that incorporating
task features and dialogue history fea-
tures significantly improve unsupervised
dialogue act classification, particularly
within a hierarchical framework that gives
prominence to dialogue history. This
work constitutes a step toward building
high-performing unsupervised dialogue
act models that will be used in the next
generation of task-oriented dialogue
systems.

1 Introduction

Dialogue acts represent the underlying intent of ut-
terances (Austin, 1975; Searle, 1969), and consti-
tute a crucial level of representation for dialogue
systems (Sridhar et al., 2009). The task of auto-
matic dialogue act classification has been exten-
sively studied for decades within several domains
including train fares and timetables (Allen et al.,
1995; Core and Allen, 1997; Crook et al., 2009;
Traum, 1999), virtual personal assistants (Chen
and Di Eugenio, 2013), conversational telephone
speech (Stolcke et al., 2000), Wikipedia talk pages
(Ferschke et al., 2012) and as in the case of this

paper, tutorial dialogue (Serafin and Di Eugenio,
2004; Forbes-Riley and Litman, 2005; Boyer et
al., 2011; Dzikovska et al., 2013).

Most of the prior work on dialogue act classi-
fication has depended on manually applying dia-
logue act tags and then leveraging supervised ma-
chine learning (Di Eugenio et al., 2010; Keizer
et al., 2002; Reithinger and Klesen, 1997; Ser-
afin and Di Eugenio, 2004). This process involves
engineering a dialogue act taxonomy (or using an
existing one, though domain-specific phenomena
can be difficult to capture within multi-purpose di-
alogue act taxonomies) and manually annotating
each utterance in the corpus. Then, the tagged
utterances are provided to a supervised machine
learner. This supervised approach can achieve
strong performance, in excess of 75% accuracy
on manual tags, approaching the agreement level
that is sometimes observed between human anno-
tators (Sridhar et al., 2009; Serafin and Di Euge-
nio, 2004; Chen and Di Eugenio, 2013).

However, the supervised approach has several
major drawbacks, including the fact that hand-
crafting dialogue act tagsets and applying them
manually tend to be bottlenecks within the re-
search and design process. To overcome these
drawbacks, the field has recently seen growing
momentum surrounding unsupervised approaches,
which do not require any manual labels during
model training (Crook et al., 2009; Joty et al.,
2011; Lee et al., 2013). A variety of unsupervised
machine learning techniques have been investi-
gated for dialogue act classification, and each line
of investigation has explored which features best
support this goal. However, to date the best per-
forming unsupervised models achieve in the range
of 40% (Rus et al., 2012) to 60% (Joty et al., 2011)
training set accuracy on manual tags, substantially
lower than the mid-70% accuracy (Sridhar et al.,
2009) often achieved on testing sets with super-
vised models.
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In order to close this performance gap between
unsupervised and supervised techniques, we sug-
gest that it is crucial to enrich the features available
to unsupervised models. In particular, when a di-
alogue is task-oriented and includes a rich source
of information within a parallel task stream, these
features may substantially boost the ability of an
unsupervised model to distinguish dialogue acts.
For example, in situated dialogue, features rep-
resenting the state of the physical world may
be highly influential for dialogue act modeling
(Grosz and Sidner, 1986).

Human tutorial dialogue, which is the domain
being considered in the current work, often ex-
hibits this structure: the task artifact is external to
the dialogue utterances themselves (in the case of
our work, this artifact is a computer program that
the student is constructing). Task features have
already been shown beneficial for supervised di-
alogue act classification in our domain (Ha et al.,
2012). We hypothesize that including these task
features within an unsupervised model will signif-
icantly improve its performance. In addition, we
hypothesize that including dialogue history as a
prominent feature within an unsupervised model
will provide significant improvement.

This paper represents the first investigation into
combining task and dialogue features within an
unsupervised dialogue act classification model.
First, we discuss representation of these task fea-
tures and dialogue structure features, and compare
these representations within both flat and hierar-
chical clustering approaches. Second, we report
on experiments that demonstrate that the inclusion
of task features significantly improves dialogue
act classification, and that a hierarchical cluster
structure which explicitly captures dialogue his-
tory performs best. Finally, we break down the
model’s performance by dialogue act and investi-
gate which features are most beneficial for distin-
guishing particular acts. These contributions con-
stitute a step toward building high-performing un-
supervised dialogue act models that can be used in
the next generation of task-oriented dialogue sys-
tems.

2 Related Work

There is a rich body of work on dialogue act clas-
sification. Supervised approaches for dialogue act
classification aimed at improving performance by
using several features such as dialogue structure

including position of the turn (Ferschke et al.,
2012), speaker of an utterance (Tavafi et al., 2013),
previous dialogue acts (Kim et al., 2010), lexical
features such as words (Stolcke et al., 2000), syn-
tactic features including part-of-speech tags (Ban-
galore et al., 2008; Marineau et al., 2000), task-
subtask structure (Boyer et al., 2010) acoustic and
prosodic cues (Sridhar et al., 2009; Jurafsky et al.,
1998), and body posture (Ha et al., 2012).

For the growing body of work in unsupervised
dialogue act classification a subset of these fea-
tures have been utilized. The words (Crook et
al., 2009), topic words (Ritter et al., 2010), func-
tion words (Ezen-Can and Boyer, 2013b), begin-
ning portions of utterances (Rus et al., 2012), part-
of-speech tags and dependency trees (Joty et al.,
2011), and state transition probabilities in Markov
models (Lee et al., 2013) are among the list of
features investigated for unsupervised modeling of
dialogue acts. However, the accuracies achieved
by the best of these models are well below the ac-
curacies achieved by supervised techniques. To
improve performance of unsupervised models for
task-oriented dialogue, utilizing a combination of
task and dialogue features is a promising direction.

3 Corpus

The task-oriented dialogue corpus used in this
work was collected in a computer-mediated hu-
man tutorial dialogue study. Students (n =
42) and tutors interacted through textual dialogue
within an online learning environment for intro-
ductory Java programming (Ha et al., 2012). The
students were novices, never having programmed
in Java previously. The tutorial dialogue inter-
face consisted of four windows, one describing the
learning task, another where students wrote pro-
gramming code, beneath that the output of either
compiling or executing the program, and finally
the textual dialogue window (Figure 1).

As students and tutors interacted through this
interface, all dialogue messages and keystroke-
level task events were logged to a database. Only
students could compose, compile, and execute the
code, so task actions represent student actions
while dialogue messages were composed by both
participants. The corpus contains six lessons for
each student-tutor pair, of which only the first les-
son was annotated with dialogue act tags (κ=0.80).

This annotated set contains 5,705 utterances
(4,065 tutor and 1,640 student). The average num-
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Figure 1: The tutorial dialogue interface with four
windows.

ber of utterances (both tutor and student) per tutor-
ing session was 116 (min = 70, max = 211). The
average number of tutor utterances per session is
96 (min=44, max=156) whereas for students it is
39 (min=18, max=69) for the annotated set. The
average number of words per utterance for stu-
dents is 4.4 and for tutors it is 5.4. This annotated
set is used in the current analysis for both training
and testing where cross-validation is applied. As
described later, a separate set containing 462 un-
annotated utterances is used as a development set
for determining the number of clusters.

The dialogue stream of this corpus was manu-
ally annotated as part of previous work on super-
vised dialogue act modeling which achieved 69%
accuracy with Conditional Random Fields (Ha et
al., 2012). A brief description of the student di-
alogue act tags, which are the focus of the mod-
els reported in this paper, is shown in Table 1.
The most frequent dialogue act (A) constitutes the
baseline chance (39.85%). In the current work, the
manually applied dialogue act labels are not uti-
lized during model training, but are only used for
evaluation purposes as our models’ accuracies are
reported for manual tags on a held-out test set.

An excerpt from the corpus is shown in Table 2.
Note that the current work focuses on classifying
student dialogue act tags, since in an automated di-
alogue system the tutor moves would be generated
by the system and their dialogue acts tags would
therefore be known.

4 Features

A key issue for dialogue act classification in task-
oriented dialogue involves how to represent dia-

Student Dialogue Act Distribution
Answer (A) 39.85

Acknowledgement (ACK) 21.31
Statement (S) 21.20
Question (Q) 15.15

Request for Feedback (RF) 0.98
Clarification (C) 0.79

Other (O) 0.61

Table 1: Student dialogue act tags and their fre-
quencies.

Tutor: ready? [Q]
Student: yep [A]

Tutor moves on to next task
Student: cool [S]

Student compiles and runs the code.
Program output: ‘Hello World’

Tutor: excellent [PF]
Tutor: add a space to make the output look
prettier [DIR]
Student: why doesnt it stop on the next line
in this case? [Q]

Program halts
Tutor: it did [A]

Student runs the program successfully.
Tutor: good. [PF]

Table 2: Excerpt of dialogue from the corpus and
the task action that follows utterances.

logue and task events. This section describes how
features were extracted from the corpus of human
tutorial dialogue.

We use three sets of features: lexical features,
dialogue context features, and task features. The
lexical and dialogue context features are extracted
from the textual dialogue utterances within the
corpus. The task features are extracted from the
interaction traces within the computer-mediated
learning environment and represent a keystroke-
level log of events as students worked toward solv-
ing the computer programming problems.

4.1 Lexical Features

Because one of the main goals of our work in the
longer term is to perform automatic dialogue act
classification in real time, we took as a primary
consideration the ability to quickly extract lexical
features. The features utilized in the current in-
vestigation consist only of word unigrams. In ad-
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dition to their ease of extraction, our prior work
has shown that addition of part-of-speech tags and
and syntax features did not significantly improve
the accuracy of supervised dialogue act classifiers
in this domain (Boyer et al., 2010), and these fea-
tures can be time-consuming to extract in real time
(Ha et al., 2012).

The choice to use word unigrams rather than
higher order n-grams is further facilitated by the
fact that our clustering technique leverages the
longest common sub-sequence (LCS) metric to
measure distances between utterances. This met-
ric counts shared sub-sequences of not-necessarily
contiguous words (Hirschberg, 1975). In this way,
the LCS metric provides a flexible way for n-
grams and skip-n-grams to be treated as impor-
tant units within the clustering, while the raw fea-
tures themselves consist only of word unigrams.
(We report on a comparison between LCS and bi-
grams later in the discussion section.) Utilizing
LCS, there exists a distance (1-similarity) value
from each utterance to every other utterance.

4.2 Dialogue Context Features

Based on previous work on a similar human tuto-
rial dialogue corpus (Ha et al., 2012), we utilize
four features that provide information about the di-
alogue structure. These features are depicted in
Table 3. Note that our goal within this work is to
classify student dialogue moves, not tutor moves,
because in a dialogue system the tutor’s moves are
system-generated with associated known dialogue
acts.

Feature Description

Utterance
position

The relative position of an
utterance from the beginning of

the dialogue.

Utterance
length

The number of tokens in the
utterance, including words and

punctuation.

Previous
author

Author of the previous dialogue
message (tutor or student) at the

time message sent.
Previous

tutor
dialogue act

Dialogue act of the previous
tutor utterance.

Table 3: Dialogue context features and their de-
scriptions.

4.3 Task Features

As described previously, the corpus contains two
channels of information: the dialogue utterances,
from which the lexical and dialogue context fea-
tures were extracted, and in addition, the task
stream consisting of student problem-solving ac-
tivities such as authoring code, compiling, and ex-
ecuting the program. The programming activities
of students were logged to a database along with
all of the dialogue events during tutoring.

A set of task features was found to be impor-
tant for dialogue act classification in this domain
in prior work, including most recent programming
action, status of the most recent task activity and
task activity flag representing whether the utter-
ance was preceded by a student’s task activity (Ha
et al., 2012). We expand this set of features as
shown in Table 4.

5 Experiments

The goal of this work is to investigate the im-
pact of including task and dialogue context fea-
tures on unsupervised dialogue act models. We
hypothesize that incorporating task features will
significantly improve the performance of an un-
supervised model, and we also hypothesize that
properly incorporating dialogue context features,
which are at a different granularity than the lex-
ical features extracted from utterances, will sub-
stantially improve model accuracy.

5.1 Dialogue Act Modeling With k-medoids
Clustering

The unsupervised models investigated here use k-
medoids clustering, which is a well-known clus-
tering technique that takes actual data points as
the center of each cluster (Ng and Han, 1994),
in contrast to k-means which may have synthetic
points as centroids. In k-medoids, the centroids
are initially selected and then the algorithm iter-
ates, reassigning data points in each iteration, un-
til the clusters converge. In standard k-medoids
clustering the initial seeds are selected randomly
and then a correct distribution of data points is
identified through the iteration and convergence
process. For dialogue act classification, the in-
fluence of the initial seeds is substantial because
the frequencies across dialogue tags are typically
unbalanced. To overcome this challenge, we use
a greedy seed selection approach similar to the
one used in k-means++ (Arthur and Vassilvitskii,
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Feature Description

prev action

Most recent action of the
student (composing a dialogue
utterance, constructing code,
compiling or executing code).

task begin
Whether the student utterance is

the first utterance since the
beginning of the subtask.

task stu
Whether the student utterance
was preceded by a task event.

task prev tut

Task activity flag indicating
whether the closest tutor

utterance in this subtask was
preceded by a task activity.

task status
The status of the most recent
coding action (begin, stop,

success, error and input sent).

time elapsed
Time elapsed between the

previous tutor message and the
current student utterance.

errors
Number of errors in the

student’s latest code.

delta errors
Difference in the number of

errors in the task between two
utterances in the same dialogue.

stu # task
Number of student dialogue

messages sent within the current
task.

stu # dial
Number of student dialogue

messages sent within the current
dialogue.

tut # task
Number of tutor dialogue

messages sent within the current
subtask.

tut # dial
Number of tutor dialogue

messages sent within the current
dialogue.

Table 4: Task features extracted from student com-
puter programming activities.

2007) which selects the first seed randomly and
then greedily chooses seeds that are farthest from
the chosen seeds. The goal of using this approach
in our application is to choose seeds from different
dialogue acts so that the final model achieves good
coverage. Our preliminary experiments demon-
strated that this greedy seed selection combined
with k-medoids outperforms other clustering ap-
proaches including those utilized in our prior work

(Ezen-Can and Boyer, 2013a).
In order to select the number of clusters k,

a subset of the corpus, constituting 25% of the
full corpus (that were not tagged) composed of
462 utterances, was separated as a development
set. First, we examined the coherence of clus-
ters at different values of k using intra-cluster dis-
tances. This technique involves identifying an ‘el-
bow’ where the decrease in intra-cluster distance
becomes less rapid (since adding more clusters can
continue to decrease intra-cluster distance to the
point of overfitting) (Figure 2). The graph sug-
gests an elbow at k=5. Because there may be mul-
tiple elbows in the intra-cluster distance, a sec-
ond method utilizing Bayesian Information Crite-
rion (BIC) was used which penalizes models as
the number of parameters increases. The lower the
BIC value, the better the model is, achieved at k=5
as well.

Figure 2: Intra-cluster distances with varying
number of clusters.

Unlike many other investigations into unsuper-
vised dialogue act classification, the current ap-
proach reports accuracy on held-out test data, not
on the data on which the model was trained. Even
though the model training process does not utilize
available manual tags, requiring the learned unsu-
pervised model to perform well on held-out test
data more closely mimics the broader goal of our
work which is to utilize these unsupervised mod-
els within deployed dialogue systems, where most
utterances to be classified have never been encoun-
tered by the model before.

The procedure for model training and test-
ing uses leave-one-student-out cross-validation.
Rather than other forms of leave-one-out or strat-
ified cross-validation, leave-one-student-out en-
sures that each student’s set of dialogue utterances
are treated as the testing set while the model is
trained on all other students’ utterances. This
process is repeated until each student’s utterances
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have served as a held-out test set (in our case, this
results in n=42 folds). Within each fold, the clus-
ters are learned during training and then for each
utterance in the test set, its closest cluster is com-
puted by taking the average distance of the test ut-
terance to the elements in the cluster. The majority
label of the closest cluster is assigned as the dia-
logue act tag for the test utterance. If the assigned
dialogue act tag matches the manual label of the
test utterance, the utterance is counted as correct
classification. The average accuracy is computed
as the number of correct classifications divided by
the total number of classifications.

5.2 Experimental Results

We conducted experiments with seven different
feature combinations: L, lexical features only,
T , task features only, D, dialogue context fea-
tures only, and then the combinations of these fea-
tures, T + D, T + L, D + L, and T + D + L.
We hypothesized that the addition of task features
would significantly improve the models’ accuracy.
As shown in Table 5, adding task features to di-
alogue context features significantly outperforms
dialogue context features alone (T + D > D).
Similarly, adding task features to lexical features
provides significant improvement (T + L > L).
However, adding task features to the dialogue con-
text plus lexical features model does not provide
benefit, and in fact slightly (not significantly) de-
grades performance (T + D + L 6> D + L). As
reflected by the Kappa scores, the test set perfor-
mance attained by these models is hardly better
than would be expected by chance.

Features Accuracy
(%) Kappa

Fl
at

C
lu

st
er

in
g

L 33 0.02
T 37.7 0.07
D 37.6 0.07

T+D 39.1* 0.07
T+L 38* 0.06
D+L 38.3 0.07

T+D+L 37.3 0.05

Table 5: Test set accuracies and Kappa for the flat
clustering model (L: Lexical features, D: Dialogue
context features, T: Task features) *indicates sta-
tistically significant compared to the similar model
without task features (p < 0.05).

5.3 Utilizing Dialogue History

The importance of dialogue history, particularly
the influence of the most recent turn on an upcom-
ing turn, is widely recognized within dialogue re-
search, notably by work on adjacency pairs (Sche-
gloff and Sacks, 1973; Forbes-Riley et al., 2007;
Midgley et al., 2009). Based on these findings, we
hypothesized that dialogue history would be sub-
stantially beneficial for unsupervised dialogue act
models as it has been observed to be in numer-
ous studies on supervised classification. However,
as seen in the previous section, adding these di-
alogue context features with equal weight to the
model using Cosine distance only improved its
performance slightly though statistically signifi-
cantly (for example, T+D > T ), while the overall
performance is still barely above random chance.

In an attempt to substantially boost the perfor-
mance of the unsupervised dialogue act classi-
fier, we experimented with a hierarchical cluster-
ing structure in which the model first branches on
the previous tutor move, and then the clustering
models are learned as described previously at the
leaves of the tree (Figure 3).

This branching approach results in some
branches with too few utterances to train a multi-
cluster model. To deal with this situation we set a
threshold of n=10 utterances. For those subgroups
with fewer than 10 utterances, we take a simple
majority vote to classify test cases, and for those
subgroups with 10 or larger utterances we train a
cluster model and use it to classify test cases. For
the entire corpus, the number of utterances in each
branch is presented in Table 6.

Tutor’s Previous Dialogue Act

Q S PF A

do
clustering

...
do

clustering
do

clustering
do

clustering

Figure 3: Branching student utterances according
to previous tutor dialogue act.

As the results in Table 7 show, the performance
of the model with hierarchical structure is signif-
icantly better than the flat clustering model. Note
that each feature in this table leverages previous
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Tutor Dialogue
Act

# of student
utterances

Q 818
S 464
H 125
PF 91
A 61

ACK 11
C 8
O 8

RACK 6

Table 6: The number of student utterances after
branching on the previous tutor dialogue act.

tutor dialogue act while branching. Branching
on previous tutor move boosted the model’s accu-
racy for student move dialogue act classification
by approximately 30% accuracy across all feature
sets, a difference that is statistically significant in
every case. With the hierarchical model struc-
ture, the best performance is achieved by includ-
ing all three types of features: lexical, dialogue
context and task. However, our hypothesis that
task features would significantly improve the ac-
curacy does not hold within the hierarchical clus-
tering model (T +D 6> D and T + L 6> L).

Features Accuracy
(%) Kappa

H
ie

ra
rc

hi
ca

l

T 64.2† 0.45
D 63.2† 0.46
L 60.7† 0.41

T+D 62.1† 0.44
T+L 63.3*† 0.45
D+L 63.6† 0.46

T+D+L 65*† 0.48

Table 7: Test set accuracies and Kappa for branch-
ing on previous tutor dialogue act (L: Lexical fea-
tures, D: Dialogue context features, T: Task fea-
tures) *indicates statistically significant compared
to the similar model without task features and † in-
dicates hierarchical clustering performing signifi-
cantly better than flat with same features. (p <
0.05).

6 Discussion

The experimental results provide compelling ev-
idence that an inclusive approach to features for

unsupervised dialogue act modeling holds great
promise. However, we observed a stark difference
in model performance when the tutor’s previous
move was simply included as one of many features
within a flat clustering model compared to when
the previous tutor move was treated as a branch-
ing feature. In this section we take a closer look
and discuss the features that help distinguish par-
ticular dialogue acts from each other.

Using the hierarchical T +D+L model which
performed best within the experiments, we exam-
ine the confusion matrix (Figure 4). Statements
and acknowledgments prove challenging for the
model, 51.3% and 61.5% accuracy overall. More-
over, these two tags are easily confused with each
other: 29.7% of statements were misclassified
as acknowledgments, while 21.2% of acknowl-
edgments were misclassified as statements. The
worst overall classification accuracy was for ques-
tions (6%) and the best was achieved for answers
(95.3%).

Figure 4: Confusion matrix for hierarchical model
utilizing all features: T+D+L.

When we analyze the performance of different
sets of features with respect to individual dialogue
acts, some interesting results emerge. The anal-
ysis shows that task features are especially good
for classifying statements. Using only task fea-
tures, the model correctly classified 61.8% state-
ments, compared to the lower 51.3% accuracy that
the overall best model (T + D + L) achieved on
statements. When we consider the nature of the
statement dialogue act within this corpus, we note
that it is a large category that encompasses a vari-
ety of utterances, some of which have lexical fea-
tures in common with acknowledgments. In this
case, task features are particularly helpful.

For acknowledgments, a combination of task
and lexical features performed best (63.6% ac-
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curacy) compared to the overall best performing
model which achieved a slightly lower 61.5% ac-
curacy on acknowledgments. Acknowledgments
are another example of an act that may take am-
biguous surface form; for example, in our cor-
pus an utterance ‘yes’ appears as both an answer
and an acknowledgment depending on its context.
Therefore, higher level features such as the ones
provided by task may be more helpful.

For questions, the highest performing feature
set is L. However, as shown in Table 8, the model
performed poorly on questions. Inspection of the
models reveals that questions are varied in terms
of structure throughout the corpus and it is hard to
distinguish them from other dialogue acts. For in-
stance there are two consequent utterances “i need
a write statement” and “don’t i”, both of which are
manually labeled as questions. However, in terms
of the structure, the first utterance looks very sim-
ilar to a statement and therefore the model has dif-
ficulty grouping it with questions. Due to the large
variety of question forms in the corpus, it is pos-
sible that the clustering performed poorly on this
dialogue act. In future work it will be promising to
investigate the dialogue structures which produce
questions and to weight them more in the feature
set in order to increase performance of clustering
for questions.

We performed one additional experiment to
compare the performance of the LCS metric with
bigrams. For bigrams, the average leave-one-
student-out test accuracy was 25% with flat clus-
tering compared to the lexical-only case using
LCS (L) which reached 33%.

Features S A Q ACK
L 21.5 41.3 14.2 20.4
T 61.76 95.27 7.30 40.90
D 48.16 95.27 3.00 60.30

T+D 52.69 94.68 3.43 51.64
T+L 42.78 95.13 6.01 63.58
D+L 43.63 94.98 8.58 62.09

T+D+L 51.27 95.27 6.01 61.49

Table 8: Accuracies for individual dialogue acts.
Acts with fewer than 10 utterances after branching
are omitted from the table.

7 Conclusion and Future Work

Dialogue act classification is crucial for dialogue
management, and unsupervised modeling ap-

proaches hold great promise for automatically ex-
tracting classification models from corpora. This
paper has focused on unsupervised dialogue act
classification for task-oriented dialogue, investi-
gating the impact of task features and dialogue
context features on model accuracy within both
flat and hierarchical clusterings. Experimental
results confirm that utilizing a combination of
task and dialogue features improves accuracy and
that incorporating one previous tutor move as a
high-level branching feature a provides particu-
larly marked benefit. Moreover, it was found that
task features are particularly important for iden-
tifying particular dialogue moves such as state-
ments, for which the model with task features only
outperformed the model with all features.

In addition to the task stream, future work
should consider other sources of nonverbal cues
such as posture, gesture and facial expressions to
investigate the extent to which these can be suc-
cessfully incorporated in unsupervised dialogue
act models. Second, models that are built in spe-
cialized ways to different user groups (e.g., by
gender or by incoming skill level) should be inves-
tigated. Finally, the performance of unsupervised
dialogue act classification models must ultimately
move toward evaluation within implemented dia-
logue systems (Ezen-Can and Boyer, 2013a). The
overarching goal of these investigations is to cre-
ate unsupervised dialogue act models that perform
well enough to be used within deployed dialogue
systems and enable the system to respond success-
fully. It is hoped that in the future, dialogue act
classification models for many domains can be ex-
tracted automatically from corpora of human dia-
logue in those domains without the need for any
manual annotation.
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Abstract

Speech-enabled dialogue systems have the
potential to enhance the ease with which
blind individuals can interact with the Web
beyond what is possible with screen read-
ers - the currently available assistive tech-
nology which narrates the textual content
on the screen and provides shortcuts to
navigate the content. In this paper, we
present a dialogue act model towards de-
veloping a speech enabled browsing sys-
tem. The model is based on the corpus
data that was collected in a wizard-of-oz
study with 24 blind individuals who were
assigned a gamut of browsing tasks. The
development of the model included exten-
sive experiments with assorted feature sets
and classifiers; the outcomes of the exper-
iments and the analysis of the results are
presented.

1 Introduction

The Web is the “go-to” computing infrastructure
for participating in our fast-paced digital society.
It has the potential to provide an even greater ben-
efit to blind people who once required human as-
sistance with many of their activities. According
to the American Federation for the Blind, there
are 21.5 million Americans who have vision loss,
of whom 1.5 million are computer users (AFB,
2013).

Blind users employ screen readers as the as-
sistive technology to interact with digital con-
tent (e.g.., JAWS (Freedom-Scientific, 2014) and
VoiceOver (Apple-Inc., 2013)). Screen readers se-
rially narrate the content of the screen using text-
to-speech engines and enable users to navigate in
the content using keyboard shortcuts and touch-
screen gestures.

Navigating content-rich web pages and con-
ducting online transactions spanning multiple

pages requires using shortcuts and this can get
quite cumbersome and tedious. Specifically, in
online shopping a user typically browses through
product categories, searches for products, adds
products to cart, logs into his/her account, and fi-
nally makes a payment. All these steps require
screen-reader users listen through a lot of content,
fill forms, and find links and buttons that have to be
selected to get through these steps. If users do not
want to go through all content on the page, they
have to remember and use a number of different
shortcuts. Beginner users often use the “Down”
key to go through the page line by line, listening
to all content on the way (Borodin et al., 2010).

Now suppose that blind users were to tell the
web browser what they wanted to accomplish and
let the browsing application automatically deter-
mine what has to be clicked, fill out forms, help
find products, answer questions, breeze through
checkout, and wherever possible, relieve the user
from doing all the mundane and tedious low-level
operations such as clicking, typing, etc. The abil-
ity to carry out a dialogue with the web browser at
a higher level has the potential to overcome the
limitations of shortcut-based screen reading and
thus offers a richer and more productive user ex-
perience for blind people.

The first step toward building a dialogue-based
system is the understanding of what users could
say and dialogue act modeling. Although di-
alogue act modeling is a well-researched topic
(with details provided in related work - Section
2), it has remained unexplored in the context of
web accessibility for blind people. The commer-
cial speech-based applications have been around
for a while and new ones continue to emerge at a
rapid pace; however, these are mainly stand-alone
(e.g.., Apple’s Siri) domain specific systems that
are not connected to web browsers, which pre-
cludes dialogue-based interaction with the Web.
Current spoken input modules integrated with web
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browsers are limited to certain specific functional-
ities such as search (e.g.., Google’s voice search)
or are used as a measure of last resort (e.g.., Siri
searching for terms online).

In this paper, we made a principal step towards
building a dialogue-based assistive web browsing
system for blind people; specifically, we built a
dialogue act model for non-visual access to the
Web. The contributions of this paper include:
1) a unique dialogue corpus for non-visual web ac-
cess, collected during the wizard-of-oz user study
conducted with 24 blind participants (Section 3);
2) the design of a suitable dialogue act scheme
(Section 3); 3) experimentation with classifiers ca-
pable of identifying the dialogue acts associated
with utterances based on combinations of lexi-
cal/syntactic, contextual, and task-related feature
sets (Section 4); 4) investigation of the impor-
tance of each feature set with respect to classifi-
cation performance to assess whether simple lex-
ical/syntactic features are sufficient for obtaining
an acceptable performance (Section 5).

2 Related Work

While previous research addressed spoken dia-
logue interfaces for a domain-specific websites,
such as news or movie search (Ferreras and
Cardeñoso-Payo, 2005; Wang et al., 2014), dia-
logue interface to generic web sites is a novel task.
Spoken dialogue systems (SDS) can be classified
by the type of initiative: system, user, or mixed
initiative (Lee et al., 2010). In a system-initiative
SDS, a system guides a user through a series of
information gathering and information presenting
prompts. In a user-initiative system, a user can
initiate and steer the interaction. Mixed-initiative
systems allow both system and user-initiated ac-
tions.

Dialogue systems also differ in the types of di-
alogue manager: finite state based, form based,
or agent based (Lee et al., 2010), (Chotimongkol,
2008). Finite state and form filling systems are
usually system-initiative. These systems have a
fixed set of dialogue states and finite set of possi-
ble user commands that map to system actions. In
contrast, a speech-enabled browsing system pro-
posed in this work is an agent-based system. The
set of actions of this system correspond to user ac-
tions during web browsing. The domain of possi-
ble user commands at each point of the dialogue
depends on the current web page that is viewed by

a user. The dialogue state in a voice browsing sys-
tem is compiled at run-time as the user can visit
any web page.

While a users dialogue acts in a form-based
or finite state system depends primarily on a di-
alogue state, in an agent-based system with user-
initiative, the space of users dialogue acts at each
dialogue state is open. To determine dialogue
manager action, it is essential for the system to
identify users intent or dialogue act. In this
work, we address dialogue act modelling for open-
domain voice web browsing as a proof of concept
for the system.

Dialogue act (DA) annotation schemes for spo-
ken dialogue systems follow theories on speech
acts originally developed by Searle (1975). A
number of DA annotation schemes have been de-
veloped previously (Core and Allen, 1997), (Car-
letta et al., 1997). Several of dialogue tagging
schemes strive to provide domain-independence
(Core and Allen, 1997), (Bunt, 2011).

Bunt (2011) developed a NIST standardized
domain-independent annotation scheme which in-
corporates elements from the previously devel-
oped annotation schemes. It is a hierarchical
multi-dimensional annotation scheme. Each func-
tional segment (part of an utterance correspond-
ing to a DA) can have a general purpose function,
such as Inform, Propositional Question, Yes/No
Question, and a dimension-specific function in any
number of 10 defined dimensions, such as Task,
Feedback, or Time management.

In the analysis of human-computer dialogues, it
is common to adopt DA annotation schemes to suit
specific domains. Generic domain-independent
schemes are geared towards the analysis of nat-
ural human-human dialogue and provide rich an-
notation structure that can cover complexity of
natural dialogue. Domain-specific dialogues use
a subset of the generic dialogue structure. For
example, Ohtake et al. (2009) developed a DA
scheme for tourist-guide domain motivated by a
generic annotation scheme (Ohtake et al., 2010),
and Bangalore and Stent (2009) created a dialogue
scheme for a catalogue product ordering dialogue
system. In our work we design DA scheme for
Web-Browsing domain motivated by the DAMSL
(Core and Allen, 1997) schema for task-oriented
dialogue.

We used a Wizard-of-Oz (WOZ) approach to
collect an initial dataset of spoken voice com-
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Task τu τd

Shopping 121 16
Email 92 16
Flight 180 16
Hotel 179 16
Job 76 16
Admission 144 16
Overall 792 96

Table 1: Corpus details. τu - number of utterances,
τd - number of dialogs.

mands by both blind and sighted users. WOZ is
commonly used before building a dialogue system
(Chotimongkol, 2008), (Ohtake et al., 2009), (Es-
kenazi et al., 1999).

In previous work on dialogue modelling, Stol-
cke et al. (2000) used HMM approach to predict
dialogue acts in a switchboard human-human di-
alogue corpus achieving 65% accuracy. Rangara-
jan Sridhar et al. (2009) applied a maximum en-
tropy classifier on the Switchbord corpus. Using
a combination of lexical, syntactic, and prosodic
features, the authors achieve accuracy of 72%
on that corpus. Following the work of Rangara-
jan Sridhar et al. (2009), we use supervised classi-
fication approach to determine dialogue act on the
annotated corpus of human-wizard web-browsing
dialogues.

3 Corpus and Annotation

In this section, we describe the corpus and the
associated dialogue act scheme. The corpus was
collected using a WOZ user study with 24 blind
participants. Exactly 50% of the participants indi-
cated that they were very comfortable with screen
readers, while the remaining 50% said they were
not comfortable with computers. We will refer to
them as “experts” and “beginners” respectively.

The study required each participant to complete
a set of typical web browsing tasks (shopping,
sending an email, booking a flight, reserving a ho-
tel room, searching for a job and applying for uni-
versity admission) using unrestricted speech com-
mands ranging from simple commands such as
“click the search button”, to complex commands
such as “buy this product”. Unknown to the partic-
ipants, these commands were executed by a wiz-
ard and appropriate responses were narrated using
a screen reader. The dialogs were effective; al-
most every participant was able to complete each
assigned task by engaging in a dialogue with the
wizarded interface.

As shown in Table 1, the corpus consists of a
total of 96 dialogs collected during the execution
of 6 tasks and captures approximately 22 hours of
speech with a total of 792 user utterances and 774
system utterances. There is exactly 1 dialogue per
task for any given participant. Each user turn con-
sists of a single command that is usually a sim-
ple sentence or phrase. Each system turn is either
narration of webpage content or information re-
quest for the purpose of either form filling or dis-
ambiguation. Therefore, each dialogue turn was
treated as a single utterance and every utterance
was identified with a single associated dialogue
act.

The corpus was manually annotated with dia-
logue act labels and the labeling scheme was ver-
ified by measuring the inter-annotator agreement.
The rest of this section describes the annotation
scheme.

3.1 Dialogue Act Annotation

The dialogue act annotation scheme was inspired
by the DAMSL scheme (Core and Allen, 1997)
for task oriented dialogue. The proposed scheme
was also influenced by extended DAMSL tagset
(Stolcke et al., 2000) and the DIT++ annotation
scheme (Bunt, 2011). We customized the annota-
tion scheme to suit the non-visual web access do-
main, thereby making it more relevant to our cor-
pus and tasks.

Table 2 lists the dialogue acts for both user
and system utterances. The user dialogue act
tagset consists of labels representing task related
requests (Command-Intention, Command-Task,
Command-Multiple, Command-Navigation), in-
quiries (Question-Task, Help-Task) and informa-
tion input (Information-Task), whereas the system
DA tagset contains labels representing informa-
tion requests (Prompt), answers to user inquiries
(Question-Answer, Help-Response) and other sys-
tem responses (Short-Response, Long-Response,
etc.) to user commands.

Inter-rater agreement values for different tasks
in the corpus are presented in Table 3. The κ val-
ues for all tasks are above 0.80, which according
to Fleiss’ guidelines (Fleiss, 1973), indicates ex-
cellent inter-rater reliability on the DA annotation.
Therefore, the DA tagset is generic enough to be
applicable for a wide varity of tasks that can be
performed on the web. Note that the dialogue act
scheme was specially designed for non-visual web
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User dialogue Acts
Dialogue Act Description Frequency
Command-Intention Indication of user’s intention or end goal, e.g. I wish to buy a Bluetooth speaker 0.117
Command-Task Basic action commands like click, select, enter, etc. 0.072
Command-Multiple Complex commands requiring an execution plan comprising a sequence of basic

commands, e.g. buy this product, book this room, etc.
0.162

Command-Navigation Commands directing the movement of cursor like go to, stop, next etc. 0.136
Information-Task Information required for completing a task, e.g. departure date/return date in-

formation for flight booking task, first name, phone number, etc.
0.442

Question-Task Task specific questions like What is the cheapest flight?, What is the basic
salary?, etc.

0.041

Self-Talk Utterances not directed towards the system, e.g. hmmm, what should I do next? 0.002
Help-Task Request for help when the user wishes to speak with the experimenter, e.g. Help,

what does that mean?
0.024

System dialogue Acts
dialogue Act Description Frequency
Prompt Request for information from user to complete a task, e.g. First Name, text box

blank
0.460

Short-Response A short response to a user command, e.g. description of product, brief details of
flight, acknowledgements, etc.

0.198

Long-Response A lengthy response to a user command, e.g. Narration of entire page, list of
search results, etc.

0.120

Keyboard-Response Response to user keyboard actions 0.072
Article-Response Narration of an article 0.034
Question-Answer Response to a user question regarding task (non-help) 0.044
No-Response No response for some navigation commands like Stop 0.041
Help-Response Response to a help request from the user 0.026

Table 2: dialogue acts for non-visual Web access

access. Insofar as sighted people are concerned,
a more elaborate scheme would be required since
their utterances are dominated by visual cues, a
fact that was confirmed by a parallel user study
with sighted participants on the same set of web
tasks that were used in the wizard-of-oz study.

4 Features

This section describes the different feature sets
that we experimented with for our classification
tasks. The vector representation for training the
DA classifiers integrates several types of features
(Table 4): unigrams (U ) and syntactic features
(S), context related features (C), task related fea-
tures (T ), presence of words anywhere in an
utterance(P) and presence of words at the begin-
ning of an utterance(B). The last two feature sets
are similar to the ones used in Boyer et al. (2010).

Task κ
Shopping 0.865
Email 0.829
Flight 0.894
Hotel 0.848
Job 0.824
Admission 0.800

Table 3: Inter-rater agreement measured in terms
of Cohen’s κ for all tasks in the corpus.

The feature sets C, P , B and S are specific to
the domain of non-visual web access and were
hand-crafted based on the following three factors:
knowledge of the browsing behavior of blind users
reported in previous studies, e.g. (Borodin et al.,
2010); manual analysis of the corpus; mitigate the
effect of noise that is usually present in standard
lexical/syntactic feature sets such as n-grams and
parse tree rules. Each of the features in C, P , B
and S were crafted to have a close correspondence
to some dialogue act. For example, pnav is closely
tied to the Command-Navigation dialogue act.

4.1 Unigrams

Unigrams (U in Table 4) are one of the commonly
used lexical features for training dialogue act clas-
sifiers (e.g. (Boyer et al., 2010), (Stolcke et al.,
2000), (Rangarajan Sridhar et al., 2009)). Encod-
ing unigrams as features is based on the obser-
vation that some words appear more frequently
in certain dialogue acts compared to other di-
alogue acts. For example, approximately 73%
of “want” occur in the Command-Intention DA,
100% of “skip” occur in the Command-Navigation
DA and approximately 92% of “select” occur
in the Command-Task DA. Word-DA corrections
can also be automatically identified using SVM
classifers trained on unigram features. Table 5
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Overall Feature Set
UNIGRAMS (U )

Feature Description Binary
u Unigrams N

PRESENCE OF WORDS IN COMMANDS (P )
piyou The utterance contains either I or you Y
phelp The utterance contains the word help Y
phelpq The utterance contains words usually associated with help requests. E.g., how, am I, etc. Y
pprev The immediately preceding system DA is Prompt and the utterance contains words also

present in this immediately preceding system utterance
Y

pintent The utterance contains words , need, desire, prefer, like and their synonyms Y
pbrowser The utterance contains words also present in the web browser tab title. E.g., email, job Y
phtml The utterance contains references to HTML elements. E.g., form, box, link, page, etc. Y
pbasic The utterance contains a verb representing basic operations on a web page. E.g., click, edit. Y
pnbasic The utterance contains a verb not related to basic web page operations; a verb usually

associated with task or domain related actions. E.g. send, open, compose, etc.
Y

pnav The utterance contains words related to cursor movement. E.g., go to, continue, next, etc. Y
pquestion The utterance contains words usually associated with questions. E.g., what, when, why Y

SYNTACTIC STRUCTURE OF COMMANDS (S)
snp The utterance is a noun phrase with atleast two words Y
snoun The utterance consists of a single noun Y
sbasic The utterance consists of a single verb representing basic web page operations. E.g., click,

edit, erase, select, etc.
Y

snbasic The utterance consists of a single verb representing task or domain related actions. e.g.
send, open, compose, order, etc.

Y

CONTEXT RELATED FEATURES (C)
cfirst The utterance is the first command to be issued when a new website is loaded in the browser Y
cprevious dialogue act of the immediately preceding system utterance N

POSITION OF WORDS IN COMMANDS (B)
bnav The utterance begins with word(s) related to cursor movement. e.g. go to, continue, etc. Y
bquestion The utterance begins with a word that is usually associated with a question. E.g., what,

when, where, why, etc.
Y

bi The utterance begins with the personal pronoun I. Y
bhelpq The utterance begins with word(s) usually associated with help requests. E.g., how, am I Y

TASK RELATED FEATURES (T )
tname Name of the task associated with the utterance N

Table 4: Feature set for user dialogue act classification. The complete list of words associated with each
feature in P and B is provided in Appendix A.

presents few such correlations. Note that some of
the words in Table 5 are task-specific (noise); a
consequence of using a small dataset.

4.2 Presence of Words in Commands

In constract to unigram features that take into
account all possible word-DA correlations, the
presence-of-word features (P in Table 4) are lim-
ited to certain specific words that have strong cor-
relations with the DA types. For each feature
p ∈ P , if the presence of certain specific words
associated with p occur in an utterance, then p is
set to true. The set of words for every p that cor-
responds to some dialogue act d was contructed
by determining the discriminatory words for d us-
ing simple statistical analysis of the corpus (e.g.
relative frequencies of words) as well as by an ex-

amination of the weights of different words learnt
by the SVM classifier trained on a development
dataset using unigram features alone. e.g.., the
words continue and skip occur much more fre-
quently in Command-Navigation than in other di-
alogue acts (see Table 5) and hence are included
in pnav. Note however that not all discrimina-
tory words in Table 5 were used. Only generic
words, independent of any specific task, were se-
lected (see Appendix A for details).

4.3 Syntactic Structure of Commands

The binary syntactic features (S in Table 4) were
automatically extracted using the Stanford parser
(Klein and Manning, 2003). As in word-DA
correlations, some of the syntactic structure-DA
correlations were also identified by a manual in-
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Dialogue Act Discriminatory Words
Command-Intention want, compose, book, for, look, email, find, an, ac-

counting, Stanford, a, airplane, message, I, music,
get, ticket, positions, need, bluetooth, jobs, new

Command-Task repeat, choose, delete, select, link, edit, enter,
erase, clear, fill, in, click, third, at, body, box,
again, blue, that

Command-Multiple play, read, senior, send, reviews, Harlem, artists,
study, submit, details, law, description, Kitaro,
mornings, availability, apply, construction, pay,
reservations, proceed, it, this, available

Comand-Navigation skip, next, previous, go, page, finish, stop, item,
continue, back, line, before, box, first, second, to,
top, home, part, would

Information-Task JFK, customer, no, August, July, USA, October,
Kahalui, October30th, anytime, coach, today, non-
stop, movies, York

Question-Task price, time, fare, layover, times, is, what’s, any-
thing, cheaper, best, flight, airline, complete, one-
stop, departure, cards, price, much, cost, weekly.

Help-Task help, do, mean, does, say, can, supposed, some-
thing, how, use, voice, have, apply, reservation, by,
address, give, get

Table 5: Top discriminative unigrams based on
weights from SVM classifier.

vestigation of the corpus. For example, 82.1%
of single noun-only utterrances (snoun) have the
DA Information-Task, 76.2% of “basic” verb-only
utterances (sbasic) have the DA Command-Task
and 83.3% of “non-basic” verb-only utterances
(snbasic) have the DA Command-Multiple.

4.4 Context Related Features

The local context (C in Table 4) provides valuable
cues to identify the dialogue act associated with
a user utterance. It was observed during the study
that user utterance is influenced to a large extent by
the immediately preceding system utterance. For
example, 89.95% of all user utterances immedi-
ately following the system Prompt were observed
to be Information-Task. In addition, most of the
time (probability 87.5%), the first utterance issued
for a task was Command-Intention.

4.5 Position-of-Word in Commands

Design of feature set B in Table 4 was inspired by
an analysis of the corpus which revealed that cer-
tain dialogue acts are characterized by the pres-
ence of certain words at the beginning of the cor-
responding utterances. For example, 93.4% of
all Command-Navigation utterances begin with a
cursor-movement related word (e.g. next, previ-
ous, etc. see Appendix A for the complete list).

4.6 Task Related Features

Since it is possible for different tasks to exhibit dif-
ferent feature vector patterns for the same dialogue
act, incorporating task name (T in Table 4) as an
additional feature may therefore improve classifi-

Group Composition
G1 U
G2 P ∪ B ∪ S
G3 C ∪ B ∪ S
G4 C ∪ P ∪ S
G5 C ∪ P ∪ B
G6 C ∪ P ∪ B ∪ S
G7 C ∪ P ∪ B ∪ S ∪ T
G8 C ∪ P ∪ B ∪ S ∪ U

Table 6: Feature groups.

cation performance by exploiting these variations
(if any) between tasks.

5 Classification Results

All classification tasks were performed using the
WEKA toolkit (Hall et al., 2009). The classifica-
tion experiments were done using Support Vector
Machine (frequently used for benchmarking), J48
Decision Tree (appropriate for a small size mostly
binary feature set) and Random Forest classifiers.
The model parameters for all classifiers were opti-
mized for maximum performance.

In addition, experiments were also performed
to assess the utility of each feature set (Table 4).
Specifically, the performance of classifiers with
different combinations (Groups 1-8 in Table 6) of
feature sets was evaluated to assess the importance
of each individual feature set. We primarily fo-
cussed on domain-specific feature sets (P , B, C
and S). Observe that group G6 differs from any
of G2 − G5 by exactly one feature set. This lets
us to assess the individual utility of P , B, C and
S . In addition, we also extended G6 by including
U (G7) and T (G8) to determine if there was any
noticeable improvement in performance. G1 with
only unigram features serves as a baseline. All re-
ported results (Table 7) are based on 5-fold cross
validation: 632 instances for training and 158 in-
stances for testing. Table 7 presents the classifica-
tion results for different feature groups. The DA
Self-Talk was excluded from classification due to
insufficient number (2) of data points.

5.1 Classification Performance
Overall Performance: As seen in Table 7, the
tree-based classifiers (J48 and RF) performed bet-
ter than SVM in a majority of the feature groups
(6 out of 8). The random forest classifier yielded
the best performance (91% Precision, 90% Recall)
for feature group G6, whereas the G3-SVM com-
bination had the lowest performance (69% Preci-
sion, 67% Recall). However, all groups includ-
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Performance of Feature Groups
G1 G2 G3 G4 G5 G6 G7 G8

DA MODEL P R P R P R P R P R P R P R P R

CI
SVM .83 .80 .84 .95 .71 .95 .91 .96 .82 .90 .91 .95 .89 .96 .89 .94
J48 .74 .74 .83 .90 .80 .93 .84 .95 .81 .93 .83 .95 .85 .93 .91 .95
RF .76 .74 .81 .90 .85 .94 .88 .90 .80 .87 .84 .93 .88 .89 .87 .95

CT
SVM .87 .73 .86 .81 .93 .30 .89 .87 .84 .81 .89 .83 .89 .81 .92 .88
J48 .80 .64 .80 .70 1.0 .28 .88 .79 .80 .70 .85 .75 .83 .87 .86 .67
RF .72 .58 .84 .89 .81 .26 .88 .89 .85 .85 .79 .93 .77 .78 .88 .80

CM
SVM .73 .65 .77 .58 .36 .30 .78 .64 .78 .59 .78 .64 .80 .62 .79 .78
J48 .74 .36 .78 .79 .68 .87 .83 .59 .81 .78 .76 .83 .81 .80 .76 .87
RF .79 .56 .80 .81 .68 .83 .80 .59 .82 .79 .81 .83 .80 .82 .76 .89

CN
SVM .89 .84 .93 .87 .96 .82 .67 .96 .94 .87 .96 .89 .94 .87 .90 .92
J48 .89 .65 .95 .95 .96 .92 .65 .93 .95 .95 .95 .92 .92 .93 .87 .90
RF .82 .86 .94 .94 .95 .92 .66 .95 .95 .95 .95 .95 .94 .93 .91 .88

IT
SVM .70 .89 .82 .93 .70 .81 .81 .79 .82 .93 .82 .93 .82 .94 .85 .90
J48 .54 .93 .96 .97 .94 .97 .80 .82 .96 .97 .97 .96 .96 .97 .94 .94
RF .65 .93 .98 .98 .95 .97 .81 .82 .97 .98 .98 .97 .98 .98 .97 .92

QT
SVM .66 .46 .87 .27 .90 .30 .80 .30 .62 .31 .80 .31 .70 .33 .85 .49
J48 .44 .36 .62 .33 .80 .23 .90 .30 .53 .34 .62 .31 .56 .47 .93 .32
RF .63 .36 .65 .31 .61 .39 .78 .27 .54 .35 .83 .39 .68 .51 .87 .33

HT
SVM .77 .71 .73 .65 .80 .45 .79 .63 .63 .67 .78 .63 .72 .64 .92 .76
J48 .86 .79 .80 .57 .80 .33 .81 .60 .70 .50 .81 .55 .55 .52 .93 .91
RF .85 .70 .79 .65 .78 .33 .75 .60 .74 .67 .90 .48 .67 .67 .90 .80

Overall
SVM .77 .76 .83 .82 .69 .67 .80 .79 .82 .82 .84 .83 .84 .83 .85 .85
J48 .70 .66 .88 .88 .87 .85 .80 .78 .88 .88 .89 .88 .88 .89 .87 .86
RF .74 .73 .90 .90 .86 .85 .80 .79 .89 .89 .91 .90 .90 .89 .88 .87

Table 7: Classification Results. The overall performance is the weighted average over all dialogue acts.
Notation: J48-Decision Tree, RF-Random Forest, SVM-Support Vector Machine, P-Precision, R-Recall,
CI-Command-Intention, CT-Command-Task, CM-Command-Multiple, CN-Command-Navigation, IT-
Information-Task, QT-Question-Task, HT-Help-Task. The best performances for each DA are high-
lighted in bold.

ing G3 did better than G1 with tree-based clas-
sifiers. G1 was consistently outperformed by the
other groups.

Performance on dialogue acts: In 6/8 feature
groups, the performance of SVM with respect to
IT dialogue act was significantly worse than that
of tree-based classifiers. However, SVM produced
consistently good results (> 80% in most cases)
for the CI and CT dialogue acts. All classifiers
performed very well in case of CN dialogue act
(> 80% for 7/8 groups). However, none of the
classifiers performed well in case of QT.

5.2 Importance of feature sets

From Table 7, it can be inferred that contextual
features (C) do not contribute to improving overall
classification performance. In particular, for each
classifier, the difference in overall performance
between groups G2 (excluding C) and G6 (includ-
ing C) is very small (worst case: 1% difference
in both P and R). However, inclusion of C signifi-
cantly improved the classification performance of
RF for QT and CI dialogue acts (18% improve-
ment in P, 8% improvement in R for QT, 3% im-

provement in both P and R for CI). Even in case of
J48, where group G6 yields the best performance,

Dialogue Act Discriminatory Rules

Command-Intention
• cfirst ∧ ¬bnav ∧ ¬phtml ∧ ¬snoun

• cfirst ∧ ¬bnav ∧ phtml ∧ piyou

• ¬cfirst∧¬bnav ∧pintent∧¬pnav ∧¬pquestion

Command-Task • ¬cfirst∧¬bnav ∧¬pintent∧¬phelpq ∧pbasic∧
¬pnbasic

• ¬cfirst∧¬bnav ∧¬pintent∧¬phelpq ∧pbasic∧
pnbasic ∧ phtml

Command-Multiple • ¬cfirst∧¬bnav∧¬pintent∧¬phelpq∧¬pbasic∧
¬pnbasic ∧ cprevious = [h|k|l|n] ∧ ¬phtml ∧
¬pquestion

• ¬cfirst∧¬bnav∧¬pintent∧¬phelpq∧¬pbasic∧
pnbasic ∧ cprevious = [∧p]

Comand-Navigation

• cfirst ∧ bnav

• cfirst ∧ ¬bnav ∧ phtml ∧ ¬piyou

• ¬cfirst ∧ bnav ∧ ¬snp

• ¬cfirst ∧ bnav ∧ snp ∧ cprevious = [s|a]

Information-Task • ¬cfirst∧¬bnav∧¬pintent∧¬phelpq∧¬pbasic∧
¬pnbasic ∧ cprevious = [p]
• ¬cfirst∧¬bnav∧¬pintent∧¬phelpq∧¬pbasic∧
pnbasic ∧ cprevious = [p] ∧ ¬piyou

Question-Task • ¬cfirst∧¬bnav∧¬pintent∧¬phelpq∧¬pbasic∧
¬pnbasic ∧ cprevious = [h|k|l|n] ∧ ¬phtml ∧
pquestion

• ¬cfirst∧¬bnav∧¬pintent∧¬phelpq∧¬pbasic∧
¬pnbasic∧cprevious = [q|s|a]∧¬pnav∧¬phtml∧
¬snoun

Help-Task • ¬cfirst∧¬bnav∧¬pintent∧phelpq∧piyou∧¬bi

Table 8: A select sample of J48 rules (conf ≥
0.75 and descending order of support) for group
G6. Notation: ¬cfirst stands for cfirst = false
and cfirst stands for cfirst = true.
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Utterance Actual DA Predicted DA Comments

“Continue to booking it” Command-Multiple Command-Navigation

This utterance was issued while performing the book a hotel room task. This
command essentially is the same as “book it”. The presence of a navigation
related verb continue at the beginning caused the classifiers to incorrectly classify
it as Command-Navigation.

“I am looking to check in
on July 23rd” Information-Task Command-Intention

This utterance was in response to a system prompt for check-in date while per-
forming the book a hotel room task. The presence of first person nominative
pronoun “I” caused the classifiers to categorize it as Command-Intention.

“What does that mean?” Help-Task Question-Task

This utterance was directed towards the experimenter and therefore it was anno-
tated as Help-Task. However, the absence of the keyword help and the presence
of a Wh-word what at the beginning of the command caused the classifiers to
incorrectly classify this command as Question-Task.

“Best available price?”
“Ok, return time?”

“Price?”
“Layover?”

Question-Task Command-Multiple
Information

The absence of Question related words like Wh-words, is, etc. at the beginning
coupled with the fact that these commands are noun phrases caused the classifiers
to incorrectly classify them as either Command-Multiple or Information.

Table 9: A few incorrectly classified utterances.

contextual features were found to be a component
of some of the high-confidence, high-support J48
rules (Table 8) for CI and QT. Similar claims can
also be made for syntactic features(S), where al-
though there is not much difference in overall per-
formance between groups G5 and G6 (Worst Case:
2% drop in P, 1% drop in R), improvements were
observed in case of RF for QT and CI dialogue
acts (29% improvement in P, 4% improvement in
R for QT, 4% improvement in P, 6% improvement
in R for CI).

Excluding either word-existential features (P)
or word-position related features (B), however,
caused a significant drop in overall performance
(Worst case: 15% drop in P, 16% drop in R with-
out P , 11% drop in both P and R without B). Ta-
ble 8 further highlights the importance of feature
set P , since over 50% of the high performing J48
rules (Table 8) have at least one feature of type P
with true as their truth values.

It can be seen in Table 7 that adding either un-
igrams or task-name to the existing feature set of
G6 does not affect the overall performance. How-
ever, the use of unigram features improved re-
sults of all the classifiers for the HT DA. No such
DA specific improvements were seen with task-
name as an added feature to G6. This suggests
that the feature values of G6 for all DAs are task-
independent.

5.3 Prediction Errors

It is clear from Table 7 that the prediction accu-
racies of CM, QT and HT are not nearly as good
as those of other dialogue acts. Table 9 provides
some insights into this issue via illustrative exam-
ples from the corpus.

Notice that the errors in case of CI, CM and HT
are mostly related to choice of words used in the
utterances, whereas mistakes in the prediction of

QT are mainly due to inadequate information or
the incompleteness of the utterances. Therefore, it
is recommended that the speech enabled web dia-
logue systems enforce a constraint requiring users
to express their complete thoughts in each of their
corresponding utterances.

6 Conclusion

Experiments with the dialogue act model de-
scribed in the paper indicate that with a small set
of simple lexical/syntactic features it is possible
to achieve a high overall dialogue act recogni-
tion accuracy (over 90% precision and recall) us-
ing simple and well-known tree-based classifiers
such as decision trees and random forests. It is
hence possible to build speech-enabled dialogue-
based assistive web browsing systems with low
computational overhead that, inturn, can result in
low latency response times - a critical requirement
from a usability perspective for blind users. Fi-
nally, a dialogue model for non-visual web access,
such as the one described in this paper, can be the
key driver of goal-oriented web browsing - a next
generation assistive technology that will empower
blind users to stay focused on high-level browsing
tasks, while the system does all of the low-level
operations such as clicking on links, filling forms,
etc., necessary to accomplish the tasks.
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César González Ferreras and Valentı́n Cardeñoso-Payo.
2005. Development and evaluation of a spoken di-
alog system to access a newspaper web site. In IN-
TERSPEECH, pages 857–860.

J.L. Fleiss. 1973. Statistical methods for rates and
proportions Rates and proportions. Wiley.

Freedom-Scientific. 2014. Screen read-
ing software from freedom scientific.
http://www.freedomscientific.com/
products/fs/jaws-product-page.asp.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten.
2009. The weka data mining software: an update.
ACM SIGKDD explorations newsletter, 11(1):10–
18.

Dan Klein and Christopher D Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430. Asso-
ciation for Computational Linguistics.

Cheongjae Lee, Sangkeun Jung, Kyungduk Kim,
Donghyeon Lee, and Gary Geunbae Lee. 2010. Re-
cent approaches to dialog management for spoken
dialog systems. JCSE, 4(1):1–22.

George A Miller. 1995. Wordnet: a lexical
database for english. Communications of the ACM,
38(11):39–41.

Kiyonori Ohtake, Teruhisa Misu, Chiori Hori, Hideki
Kashioka, and Satoshi Nakamura. 2009. Annotat-
ing dialogue acts to construct dialogue systems for
consulting. In Proceedings of the 7th Workshop on
Asian Language Resources, pages 32–39. Associa-
tion for Computational Linguistics.

Kiyonori Ohtake, Teruhisa Misu, Chiori Hori, Hideki
Kashioka, and Satoshi Nakamura. 2010. Dialogue
acts annotation for nict kyoto tour dialogue corpus
to construct statistical dialogue systems. In LREC.

Yury Puzis, Yevgen Borodin, Rami Puzis, and IV Ra-
makrishnan. 2013. Predictive web automation as-
sistant for people with vision impairments. In Pro-
ceedings of the 22nd international conference on
World Wide Web, pages 1031–1040. International
World Wide Web Conferences Steering Committee.

Vivek Kumar Rangarajan Sridhar, Srinivas Bangalore,
and Shrikanth Narayanan. 2009. Combining lexi-
cal, syntactic and prosodic cues for improved online
dialog act tagging. Computer Speech & Language,
23(4):407–422.

John R Searle. 1975. Indirect speech acts. Syntax and
semantics, 3:59–82.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for
automatic tagging and recognition of conversational
speech. Computational linguistics, 26(3):339–373.

Lu Wang, Larry Heck, and Dilek Hakkani-Tur. 2014.
Leveraging semantic web search and browse ses-
sions for multi-turn spoken dialog systems.

131



A List of Words Predictive of Dialogue
Acts

Table 10 lists all the words associated with
presence-of-word (P) and position-of-word (B)
related features (Table 4) used in this work. No-
tice that all words specified in Table 10 are task-
independent. This ensures that the proposed fea-
ture set is generic enough to be applicable for a
wide variety of tasks on the web. The proposed
list of words can be easily extended by adding syn-
onyms, which can be obtained automatically from
publicly available sources like WordNet (Miller,
1995).

Features Predictive Words
piyou I, you
phelp help
phelpq , bhelpq how, can, do, am I
pprev dynamically determined at runtime
pintent want, like, would, need, prefer
pbrowser dynamically determined at runtime
phtml body, page, form, box, field, search, link, button,

list, dropdown
pbasic clear, select, fill, delete, click, edit, erase, submit,

repeat, choose, enter, check
pnbasic any verb not in the pbasic list above
pnav , bnav skip, go to, next, first, last, back, continue, previ-

ous, stop, go back, finish, home page
pquestion, bquestion what, where, why, when, how

Table 10: Complete list of predictive words for
features in P and B of Table 4.

As explained earlier, the words in Table 10 were
selected by performing simple statistical analysis
of corpus and also by examining the word-weights
produced by the SVM classifier trained on uni-
gram features alone. In other words, some of the
words in Table 10 were borrowed from Table 5
that lists discriminatory unigrams for different di-
alogue acts. Note that the task-dependent words
(e.g. “Stanford”, “airplane”, etc.) in Table 5 were
ignored while constructing Table 10.

B Sample Dialogue in the Corpus

Table 11 presents an example of a dialogue that
was collected during the execution of the Shop-
ping task by a participant in the Wizard-Of-Oz
study. For deeper understanding, the wizard ac-
tions for every user utterance are also listed.

Subject: “I want to buy CD”
Wizard: [enter ‘CDs’ in the search box, clicks ‘Go’, and

narrate search results one by one]
Screen reader: Verbatim 97458 700 MB 80 Minute . . . Disc CD-R

by Verbatim link . . .
Subject: “Search for new age items”
Wizard: [searches for ‘new age items’, clicks on results]

Screen reader: Age of Wushu - Free Amazon . . . Game Connect
link by Snail Games USA . . .

Subject: “stop”
Wizard: [presses pause shortcut]
Subject: “new age music CDs”
Wizard: [searches for ‘new music CDs’]

Screen reader: The ultimate Most Relaxing New Age . . . .
Subject: “new age music CDs by Kitaro”
Wizard: [Searches for ‘new music cds by Kitaro’]

Screen reader: Most Relaxing New Age Music link by Kitaro,
List 8 items, $10.87 link, order in the next 3 hours
. . . Tenku link by Kitaro . . .

Subject: “sample recordings”
Wizard: [follows the current link]

Screen reader: Page loading
Wizard: [plays the first sample track]

Screen reader: [audio sample]
Subject: “next”
Wizard: [plays the next sample track]

Screen reader: [audio sample]
Subject: “next”
Wizard: [plays the next sample track]

Screen reader: [audio sample]
Subject: “go back”
Wizard: [presses back button]

Screen reader: page loading, [repeats the visited link]
Subject: “next CD”
Wizard: [clicks the title of the next item in search result]

Screen Reader: Ancient link by Kitaro . . . $14.98 link . . .
Subject: “listen to audio”
Wizard: [follows link]

Screen Reader: Page loading
Wizard: [plays the next sample track]

Screen reader: [audio sample]
Subject: “next”
Wizard: [plays the next sample track]

Screen reader: [audio sample]
Subject: “buy this cd”
Wizard: [clicks ‘Add to cart’ button, then clicks ‘Proceed

to Checkout’ button]
Screen reader: [reads out all captions]

Table 11: An example dialogue from corpus along
with associated wizard actions.
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Abstract 

In this paper, we present a novel supervised 

approach to the problem of summarizing 

email conversations and modeling dialogue 

acts. We assume that there is a relationship 

between dialogue acts and important sen-

tences. Based on this assumption, we intro-

duce a sequential graphical model approach 

which simultaneously summarizes email 

conversation and models dialogue acts. We 

compare our model with sequential and 

non-sequential models, which independent-

ly conduct the tasks of extractive summari-

zation and dialogue act modeling. An 

empirical evaluation shows that our ap-

proach significantly outperforms all base-

lines in classifying correct summary 

sentences without losing performance on 

dialogue act modeling task.  

1 Introduction 

Nowadays, an overwhelming amount of text in-

formation can be found on the web. Most of this 

information is redundant and thus the task of 

document summarization has attracted much at-

tention. Since emails in particular are used for a 

wide variety of purposes, the process of automat-

ically summarizing emails might be of great 

benefit in dealing with this excessive amount of 

information. Much work has already been con-

ducted on email summarization. The first re-

search on this topic was conducted by Rambow 

et al. (2004), who took a supervised learning ap-

proach to extracting important sentences. A 

study on the supervised summarization of email 

threads was also performed by Ulrich et al. 

(2009). This study used the regression-based 

method for classification. There have been stud-

ies on unsupervised summarization of email 

threads as well. Zhou et al. (2007, 2008) pro-

posed a graph-based unsupervised approach to 

email conversation summarization using clue 

words, i.e., recurring words contained in replies. 

In addition, the task of labeling sentences 

with dialogue acts has become important and has 

been employed in many conversation analysis 

systems. For example, applications such as meet-

ing summarization and collaborative task learn-

ing agents use dialogue acts as their underlying 

structure (Allen et al., 2007; Murray et al., 

2010). In a previous work, Cohen et al. (2004) 

defined a set of “email acts” and employed text 

classification methods to detect these acts in 

emails. Later, Carvalho et al. (2006) employed a 

combination of n-gram sequences as features and 

then used a supervised machine learning method 

to improve the accuracy of this email act classifi-

cation. In addition, Shafiq et al. (2011) presented 

unsupervised dialogue act labeling methods. In 

their work, they introduced a graph-based meth-

od and two probabilistic sequence-labeling 

methods for modeling dialogue acts. 

However, little work has been done on dis-

covering the relationship between dialogue acts 

and extractive summaries. If there is a relation-

ship between them, combining these approaches 

so as to model both simultaneously will yield 

better results. In this paper, we investigate this 

hypothesis by introducing a new sequential 

graphical model approach that performs dialogue 

act modeling and extractive summarization joint-

ly on email threads.   

2 Related Work 

While email summarization and dialogue act 

modeling have been effectively studied, in most 

previous work, these tasks were studied inde-

pendently. This section provides related work for 

each task separately. 
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2.1 Extractive Summarization 

Rambow et al. (2004) introduced sentence ex-

traction techniques that work for email threads. 

In their work, they introduced email-specific fea-

tures and used a machine learning method to 

classify whether or not a sentence should be in-

corporated into a summary. Their experiments 

demonstrated that their features were highly ef-

fective for email summarization. 

Ulrich et al. (2009) proposed a regression-

based machine learning approaches to email 

thread summarization. They compared regres-

sion-based classifiers to binary classifiers and 

showed that their approach significantly im-

proves the summarization accuracy. They em-

ployed the feature set introduced by Rambow et 

al. (2004) as their baseline and introduced new 

features that are also effective for email summa-

rization. Some of their features refer to dialogue 

acts but the assumption is that they are computed 

before the summarization task is performed. Our 

work is aimed at a much closer integration of the 

two tasks by modeling them simultaneously. 

Carenini et al. (2007) developed a fragment 

quotation graph that can capture a fine-grain 

conversation structure in email threads, which 

we will describe in detail in Section 3. They then 

introduced a ClueWordSummarizer (CWS), a 

graph-based unsupervised summarization ap-

proach based on the concept of clue words, 

which are recurring words found in email replies. 

Their experiment showed that the CWS performs 

better than the email summarization approach in 

Rambow et al. (2004).  

Extractive summarization using a sequential 

labeling technique has also been studied. While 

this is not an email summarization, Shen et al. 

(2007) proposed a linear-chain Conditional Ran-

dom Field (CRF) based approach for extractive 

document summarization. In their work, they 

treated the summarization task as a sequence la-

beling problem to take advantage of interaction 

relationships between sentences; their approach 

showed significant improvement when compared 

with non-sequential classifiers. 

2.2 Dialogue Act Modeling 

The first studies on the dialogue act modeling in 

emails were performed by Cohen et al. (2004). 

They defined “email speech acts” (e.g., Request, 

Deliver, Propose, and Commit) and used ma-

chine learning methods to classify emails accord-

ing to the intent of the sender.  

Carvalho et al. (2006) further developed this 

initial proposal by using contextual information 

such as combinations of n-gram sequences in 

emails as their features for a supervised learning 

approach. The experiment showed that their ap-

proach reduced classification error rates by 

26.4%. Shafiq et al. (2011) proposed unsuper-

vised dialogue act modeling in email threads and 

on forums.  They introduced a graph-based and 

two probabilistic unsupervised approaches for 

modeling dialogue acts. By comparing those ap-

proaches, they demonstrated that the probabilis-

tic approaches were quite effective and 

performed better than the graph-based one. 

While the following work is not done on the 

email domain, Kim et al. (2010) introduced a 

dialogue act classification on one-on-one online 

chat forums. To be able to capture sequential 

dialogue act dependency on chats, they applied a 

CRF model. They demonstrated that, compared 

with other classifiers, their CRF model per-

formed the best. In their later work (Kim et al., 

2012), they extended the domain to multi-party 

live chats and proposed new features for that 

domain. 

3 Capturing Conversation Structure in 

Email Threads  

In this section, we describe how to build a frag-

ment quotation graph which captures the conver-

sation structure of any email thread at finer 

granularity. This graph was developed and 

shown to be effective by Carenini et al. (2011). 

A key assumption of this approach is that in or-

der to effectively perform summarization and 

dialogue act modeling, a fine graph representa-

tion of the underlying conversation structure is 

needed. 

Here, we start with the sample email conver-

sation shown in Figure 1 (a).  For convenience, 

the content of the emails is represented as a se-

quence of fragments.  

First, we identify all new and quoted frag-

ments. For example, email E1 is composed of 

one new fragment, ‘b’, and one quoted fragment, 

‘a’.  As for email E3, since we do not yet know 

whether or not ‘d’ and ‘e’ are different frag-

ments, we consider E3 as being composed of one 

new fragment, ‘de’ and one quoted fragment, ‘b’.  

Second, we identify distinct fragments. To do 

this, we first identify overlaps by comparing 

fragments with each other. If necessary, we split 

the fragments and remove any duplicates from 

them.  For example, a fragment, ‘de’, in E3 is 
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split into ‘d’ and ‘e’ after being compared with 

fragments in E4 and the duplicates are removed. 

By applying this process to all of the emails, 

seven distinct fragments, a, b ..., and, g remain in 

this example. 

In the third step, edges which represent the 

replying relationships among the fragments are 

created. These edges are determined based on the 

assumption that any fragment is a reply to neigh-

boring quotations (the quoted fragments immedi-

ately preceding or following the current one). For 

example, the neighboring nodes of ‘f’ in E4 are 

‘d’ and ‘e’. Thus, we create two edges from node 

‘f’ in E4 to node ‘d’ and ‘e’ in E3.  In the same 

way, we see that the neighboring node of ‘g’ in 

E4 is ‘e’. Hence, there is one edge from node ‘g’ 

to ‘e’.  If no quotation is contained in a reply 

email, we connect the fragments in the email to 

fragments in emails to which it reply.   

In email threads, there are cases in which the 

original email with its quotations is missing from 

the user’s folder, as in the case of ‘a’ in Figure 1 

(a). These types of emails are called hidden 

emails. Carenini et al. (2005) studied in detail 

how these email types might be treated and their 

influence on email summarization. 

Figure 1 (b) shows the completed fragment 

quotation graph of the email thread shown in 

Figure 1 (a). In the fragment quotation graph 

structure, all paths (e.g., a-b-c, a-b-d-f, a-b-e-f, 

and a-b-e-g in Figure 1 (b)) capture the adjacent 

relationships between email fragments. Hence, 

we use every path that can be derived from the 

graph as our dataset. However, in this case, when 

we run the labeling task on these paths, we ob-

tain multiple labels for some of the sentences 

because the sentences in fragments such as ‘a’, 

‘b’, and ‘f’ in Figure 1 (b) are shared among 

multiple paths. Therefore, to assign a label to one 

of these sentences, we take the label more fre-

quently assigned to that sentence when all its 

paths are considered (i.e., the majority vote). 

4 Features 

For both dialogue act modeling and extractive 

summarization, many effective sentence features 

have been discovered so far. Interestingly, some 

common features are shown to be effective in 

both tasks. This section explains the features 

used in our model. We begin with the features 

for extractive summarization and then describe 

how we derive the features for dialogue act mod-

eling. All the features explained in this section, 

whether they belong to extractive summarization 

or dialogue act modeling, are included in our 

model. 

 
(a) A possible configuration of an email conversation 

(E2 and E3 reply to E1, and E4 replies to E3) 

 
(b) An example of a fragment quotation graph 

Figure 1: A fragment quotation graph derived from a 

possible configuration of an email conversation 

4.1 Extractive Summarization Features  

The features we use for extractive summarization 

are mostly from Carenini et al. (2008) and Ram-

bow et al. (2004) and have proven to be effective 

on conversational data. Details of these features 

are described below. Note that all sentences in an 

email thread are ordered based on paths derived 

from a fragment quotation graph. 
 

Length Feature: The number of words in 

each sentence. 

Relative Position Feature: The number of 

sentences preceding the current divided by 

the total number of sentences in one path. 

Thread Name Overlaps Feature: The num-

ber of overlaps of the content words between 

the email thread title and a sentence. 

Subject Name Overlaps Feature: The num-

ber of overlaps of the content words between 

the subject of the email and a sentence. 

Question Feature: A binary feature that in-

dicates whether or not a sentence has a ques-

tion mark. 

CC Feature: A binary feature that indicates 

whether or not an email contains CC. 
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Participation Dominance Feature: The 

number of utterances each person makes in 

one path. 

 

Finally, we also include a simplified version of 

the ClueWordScore (CWS) developed by 

Carenini et al. (2007), which is listed below.   
 

Simplified CWS Feature: The number of 

overlaps of the content words that occur in 

both the current and adjacent sentences in the 

path, ignoring stopwords. 

4.2 Dialogue Act Features  

The relative positions and length features have 

proven to be beneficial to both tasks (Jeong et al., 

2009; Carenini et al., 2008). Hence, these are 

categorized as both dialogue acts and extractive 

summarization features. In addition, we use word 

and POS n-grams as our features for dialogue act 

modeling. These features are extracted by the 

following process explained in Carvalho et al. 

(2006).  However, we extend the original ap-

proach in order to further abstract n-gram fea-

tures to avoid making them too sparse to be 

effective. In this section, we describe the deriva-

tion process in detail. 

A multi-step approach is used to generate 

word n-gram features. First, all words are tagged 

with the named entity using the Stanford Named 

Entity Recognizer (Finkel et al., 2005), and are 

then replaced with these tags. Second, a se-

quence of word-replacement tasks is applied to 

all email messages. Initially, some types of punc-

tuation marks (e.g., <>()[];:. and ,) and extra 

spaces are removed. Then, shortened phrases 

such as “I’m” and “We’ll” are substituted for 

more formal versions such as “I am” and “We 

will”. Next, other replacement tasks are per-

formed. Some of them are described in Table1. 

In the third step, unigrams and bigrams are ex-

tracted. In this paper, unigrams and bigrams refer 

to all possible sequences of length one and two 

terms. After extracting all unigrams and bigrams 

for each dialogue act, we then compute Infor-

mation Gain Score (Forman, 2003) and select the 

n-grams whose scores are in the top five greatest 

on the training set. In this way, we can automati-

cally detect features that represent the character-

istics of each dialogue act. In addition to word n-

grams, we also include POS n-grams in our fea-

tures. In a similar way, we first tag each word in 

sentences with POS using the Stanford POS tag-

ger (Toutanova et al., 2003). Then, for each dia-

logue act, we extract bigrams and trigrams, all of 

which are scored by the Information Gain. Based 

on their scores, we select the POS bigram and 

trigram features whose scores are within the top 

five greatest. One example of word n-gram fea-

tures for a Question dialogue act selected by this 

derivation method is shown in Table 2. 

 

Pattern Replacement 

‘why’,  ‘where’,  ‘who’,  ‘what’ ‘when’ [WWHH] 

nominative pronouns [I] 

objective pronouns [ME] 

'it',  'those',  'these',  'this',  'that' [IT] 

'will',  ‘would',  'shall',  'should', 'must' [MODAL_STRONG] 

‘can',  'could',  'may',  'might' [MODAL_WEAK] 

'do',  'does',  'did',  ‘done' [DO] 

'is',  'was',  'were',  'are',  'been' 'be',  'am' [BE] 

 'after' , 'before',  'during' [AAAFTER] 

‘Jack”, “Wendy” [Personal_PRONOUN] 

“New York” [LOCATION] 

“Acme Corp.” [ORGANIZATION] 

Table 1: Some Preprocessing Replacement Pattern 

Word Unigram Word Bigram 

? [MODAL_STRONG] [I] 

anyone [IT] ? 

WWHH [DO] anyone 

deny [WWHH] [BE] 

[Personal _PRONOUN] [BE] [IT] 

Table 2: Sample word n-grams selected as the fea-

tures for Question dialogue act 

5 The Sequential Labeling Task 

We use a Dynamic Conditional Random Field 

(DCRF) (Sutton et al., 2004) for labeling tasks. 

A DCRF is a generalization of a linear-chain 

CRF which allows us to represent complex inter-

action between labels. To be more precise, it is a 

conditionally-trained undirected graphical model 

whose structure and parameters are repeated over 

a sequence. Hence, it is the most appropriate 

method for performing multiple labeling tasks on 

the same sequence. 
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Our DCRF uses the graph structure shown in 

Figure 2 with one chain (the top X nodes) model-

ing extractive summary and the other (the middle 

Y nodes) modeling dialogue acts.  Each node in 

the observation sequence (the bottom Z nodes) 

corresponds to each sentence in a path of the 

fragment quotation graph of the email thread. As 

shown in Figure 2, the graph structure captures 

the relationship between extractive summaries 

and dialogue acts by connecting their nodes.  

We use Mallet
1
 (McCallum, 2002) to implement 

our DCRF model.  It uses l2-based regularization 

to avoid overfitting, and a limited BFGS fitting 

algorithm to learn the DCRF model parameters. 

Also, it uses tree-based reparameterization 

(Wainwright et al., 2002) to compute the poste-

rior marginal, or inference. 

 

Figure 2: The DCRF model used to create extractive 

summaries and model dialogue acts 

6 Empirical Evaluations 

6.1 Dataset Setup  

In our experiment, the publically available BC3 

corpus
2
 (Ulrich et al., 2008) is used for training 

and evaluation purposes. The corpus contains 

email threads from the World Wide Web Con-

sortium (W3C) mailing list.  It consists of 40 

threads with an average of five emails per thread. 

The corpus provides extractive summaries of 

each email thread, all of which were annotated 

by three annotators. Hence, we use sentences that 

are selected by more than one annotator as the 

gold standard summary for each conversation. 

In addition, all sentences in the 39 out of 40 

threads are annotated for dialogue act tags. The 

tagset consists of five general and 12 specific 

tags. All of these tags are based on Jeong et al. 

(2009). For our experiment, considering that our 

data is relatively small, we decide to use the 

coarser five tag set. The details are shown in Ta-

ble 3. 

                                                           
1 http://mallet.cs.umass.edu 
2 http://www.cs.ubc.ca/nest/lci/bc3.html 

Tag Description Relative Frequency (%) 

S Statement 73.8 

Q Question 7.92 

R Reply 5.23 

Su Suggestion 5.62 

M Miscellaneous 7.46 

Table 3: Dialogue act tag categories and their relative 

frequency in the BC3 corpus 

After removing quoted sentences and redundant 

information such as senders and addresses, 1300 

distinct sentences remain in the 39 email threads. 

The detailed content of the corpus is summarized 

in Table 4. 
 

 Total 

Dataset 

No. of Threads 39 

No. of Sentences 1300 

No. of Extractive Summary Sentences 521 

No. of S Sentences 959 

No. of Q Sentences 103 

No. of R Sentences 68 

No. of Su Sentences 73 

No. of M Sentences  97 

Table 4: Detailed content of the BC3 corpus 

6.2 Evaluation Metrics  

Here, we introduce evaluation metrics for our 

joint model of extractive summarization and dia-

logue act recognition.  

The CRF model has been shown to be the ef-

fective one in both dialogue act modeling and 

extractive summarization (Shen et al., 2007; Kim 

et al., 2010; Kim et al., 2012). Hence, for com-

parison, we implement two different CRFs, one 

for extractive summarization and the other for 

dialogue act modeling. When classifying extrac-

tive summaries using the CRF, we only use its 

extractive summarization features. Similarly, 

when modeling dialogue acts, we only use its 

dialogue act features. In addition, we also com-
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pare our system with a non-sequential classifier, 

a support vector machine (SVM), with the same 

settings as those described above. For these im-

plementations, we use Mallet and SVM-light 

package
3
 (Joachims, 1999).  

In our experiment, we first measure separate-

ly the performance of extractive summarization 

and dialogue act modeling. The performance of 

extractive summarization is measured by its av-

eraged precision, recall, and F-measure. For dia-

logue acts, we report the averaged-micro and 

macro accuracies as well as the averaged accura-

cies of each dialogue act. 

Second, we evaluate the combined perfor-

mance of extractive summarization and dialogue 

act modeling tasks. In general, we are interested 

in the dialogue acts in summary sentences be-

cause they can be later used as input for other 

natural language processing applications such as 

automatic abstractive summarization (Murray et 

al., 2010). Therefore, we measure the perfor-

mance of our model with the following modified 

precision (Pre’), recall (Rec’), and F-measure 

(F’): 

 

     
{                                         }

{                                              }
 (1) 

 

     
{                                        }

{                            }
                       (2)  

 

   
           

         
                                                               (3) 

 

where a correctly classified sentence refers to a 

true summary sentence that is classified as such 

and whose dialogue acts are also correctly classi-

fied. 

6.3 Experiment Procedure  

For all cases, we run five sets of 10-fold cross 

validation to train and test the classifiers on a 

shuffled dataset and calculate the average of the 

results. For each cross validation run, we extract 

all features following the process described in 

Section 4 on the training set. When comparing 

these two baselines with our model, we report p-

values obtained from a student paired t-test on 

the results to determine their significance.   

 

 

 

 

                                                           
3 http://www.cs.cornell.edu/people/tj/svm_light 

6.4 Results 

The performances of extractive summarization 

and dialogue act modeling using the three meth-

ods are summarized in Table 5 and 6, respective-

ly. 

 

 DCRF CRF SVM 

F-measure 0.485 0.428 0.397 

t-test’s  p-value   0.00046 2.5E-07 

Precision 0.562 0.591 0.675 

Recall 0.457 0.370 0.308 

Table 5: A comparison of the extractive summariza-

tion performance of our DCRF model and the two 

baselines based on precision, recall, and F-measure 

 DCRF CRF SVM 

Micro Accuracy 0.785 0.779 0.775 

t-test’s p-value   0.116 0.036 

Macro Accuracy 0.516 0.516 0.304 

t-test’s p-value   0.950 5.2E-32 

S Accuracy 0.901 0.892 0.999 

Q Accuracy 0.832 0.809 0.465 

R Accuracy 0.580 0.575 0.05 

Su Accuracy 0.139 0.108 0.00 

M Accuracy 0.126 0.198 0.00 

Table 6: A comparison of the dialogue act modeling 

performance of our DCRF model and the two base-

lines based on averaged accuracies 

From Table 5, we observe that, in terms of 

extractive summarization results, our DCRF 

model significantly outperforms the two base-

lines. Noticeable improvements can be seen for 

the recall and F-measure. In terms of F-measure, 

compared with the CRF and SVM, our model 

improves by 5.7% and 8.8% respectively. The p-

values obtained from the t-test indicate that our 

results are statistically significantly different (p < 

0.05) from those of the two baselines.  

Regarding dialogue act modeling, the results 

are summarized in Table 6. While no improve-

ment is shown for the micro-averaged accuracy, 

our model and the CRF significantly outperform 

the SVM in terms of the macro-averaged accura-
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cy. Both our model and the CRF consider the 

sequential structure of the conversation, which is 

not captured in the SVM model. Clearly, this 

indicates that the sequential models are effective 

in modeling dialogue acts due to their ability to 

capture the inter-utterance relations of conversa-

tions.  

Compared with the CRF, our DCRF model 

outperforms it in most cases except in classifying 

the ‘M’ dialogue act. However these improve-

ments are not significant as t-test of both macro 

and micro-averaged accuracies indicate that the 

differences are not statistically significant (p > 

0.05).   

Another item to be mentioned here is that the 

accuracies of classifying ‘R’, ‘Su’ and ‘M’ dia-

logue acts are relatively low. This issue applies 

to all classifiers and is plausibly due to the small 

dataset. There are only 68, 73 and 97 sentences, 

respectively, out of 1300 that are labeled as ‘R’, 

‘Su’ and ‘M’ in the BC3 corpus. Since our dia-

logue act classifiers rely heavily on n-gram fea-

tures, were the data small, these features would 

be too sparse to effectively represent the charac-

teristics of the dialogue acts. However, compared 

with the SVM results, our joint model and the 

CRF perform significantly better in classifying 

these dialogue acts. This also explains why the 

sequential model is preferable in dialogue act 

modeling. 

Note that despite the small dataset, all the 

classifiers are relatively accurate in classifying 

‘Q’. This is because n-gram features selected for 

‘Q’ such as ‘?’ and ‘WWHH’ are very specific to 

this dialogue act, which makes the task of ‘Q’ 

classification easier compared to those of others.   

Next, we discuss the result of the com-

bined performance. The performances of our 

model and the two baselines are summarized in 

Table 7. 

 

 DCRF CRF SVM 

F-measure’ 0.352 0.324 0.292 

t-test’s  p-value  0.015 3.3E-05 

Precision’ 0.407 0.450 0.501 

Recall’ 0.335 0.280 0.227 

Table 7: A comparison of the overall performance of 

our DCRF model and the two baselines based on 

modified precision, recall and F-measure 

 

We see that our DCRF model significantly 

outperforms the two baselines. While our model 

yields the lowest Pre’ of all, its Rec’ is much 

greater than the other two baselines and this 

leads to its achieving the highest F’. Compared 

with the CRF and SVM, the F’ obtained from 

our system improves by 2.8% and 6% respec-

tively. In addition, the p-values show that the 

results of our model are statistically significant 

(p < 0.05) compared with those of the two base-

lines. 

Overall, these experiments clearly indicate 

that our model is effective in classifying both 

dialogue acts and summary sentences. 

7 Conclusions and Future Work 

In this work, we have explored a new automated 

approach for extractive summarization and dia-

logue act modeling on email threads. In particu-

lar, we have presented a statistical approach for 

jointly modeling dialogue acts and extractive 

summarization in a single DCRF. The empirical 

results demonstrate that our approach outper-

forms the two baselines on the summarization 

task without loss of performance on the dialogue 

act modeling one. In the future, we would like to 

extend our approach by exploiting more effective 

features. We also plan to apply our approach to 

different domains possessing large dataset. 

Acknowledgements 

We are grateful to Yashar Mehdad, Raimond Ng, 

Maryam Tavafi and Shafiq Joty for their com-

ments and UBC LCI group and ICICS for finan-

cial support. 

References  

J. Allen, N. Chambers, G. Ferguson, L. Galescu, H. 

Jung, and W. Taysom. Plow: A collaborative task 

learning agent. In AAAI-07, pages 22–26, 2007. 

Giuseppe Carenini, Gabriel Murray, and Raymond 

Ng. 2011. Methods for Mining and Summarizing 

Text Conversations. Morgan Claypool. 

Giuseppe Carenini, Raymond Ng, and Xiaodong 

Zhou. 2005. Scalable discovery of hidden emails 

from large folders. In ACM SIGKDD’05, pages 

544–549. 

Giuseppe Carenini, Raymond Ng, and Xiaodong 

Zhou. 2008. Summarizing Emails with Conversa-

tional Cohesion and Subjectivity In proceeding 

46th Annual Meetint Assoc.for Computational Lin-

guistics, page 353-361. 

139



Giuseppe Carenini, Raymond Ng, and Xiaodong 

Zhou. 2007. Summarizing email conversations 

with clue words. 16th International World Wide 

Web Conference (ACM WWW’07). 

Vitor R. Carvalho and William W. Cohen. 2006. Im-

proving ”email speech acts” analysis via n-gram 

selection. In Proceedings of the HLT-NAACL 2006 

Workshop on Analyzing Conversations in Text and 

Speech, ACTS ’09, pages 35–41, Stroudsburg, PA, 

USA. Association for Computational Linguistics. 

William W. Cohen, Vitor R. Carvalho, and Tom M. 

Mitchell. 2004. Learning to classify email into 

“speech acts”. In Proceedings of Empirical Meth-

ods in Natural Language Processing, pages 309–

316, Barcelona, Spain, July. 

Jenny Rose Finkel, Trond Grenager, and Christopher 

Manning. 2005. Incorporating Non-local Infor-

mation into Information Extraction Systems by 

Gibbs Sampling. In Proceedings of the 43nd An-

nual Meeting of the Association for Computational 

Linguistics (ACL 2005), pp. 363-370. 

George Forman. 2003. An extensive empirical study 

of feature selection metrics for text classification. 

The Journal of Machine Learning Research, 

3:1289–1305. 

Minwoo Jeong, Chin-Yew Lin, and Gary Geunbae 

Lee. 2009. Semi-supervised speech act recognition 

in emails and forums. In Proceedings of the 2009 

Conference on Empirical Methods in Natural Lan-

guage Processing. 

Thorsten Joachims. 1999 Making large-Scale SVM 

Learning Practical. Advances in Kernel Methods - 

Support Vector Learning, B. Schölkopf and C. 

Burges and A. Smola (ed.), MIT-Press, 1999.  

Shafiq Joty, Giuseppe Carenini, and Lin, Chin-Yew 

Lin. 2011. Unsupervised Modeling of Dialog Acts 

in Asynchronous Conversations. In Proceedings of 

the twenty second International Joint Conference 

on Artificial Intelligence (IJCAI) 2011. Barcelona, 

Spain. 

Shafiq Joty, Giuseppe Carenini, Gabriel Murray, and 

Raymond Ng. 2009 Finding Topics in Emails: Is 

LDA enough? NIPS-2009 workshop on applica-

tions for topic models: text and beyond. Whistler, 

Canada. 

McCallum, A. Kachites, 2002. MALLET: A Machine 

Learning for Language Toolkit. 

http://mallet.cs.umass.edu. 

Su Nam Kim, Lawrence Cavedon, and Timothy 

Baldwin. 2010a. Classifying dialogue acts in 1-to-1 

live chats. In Proceedings of the 2010 Conference 

on Empirical Methods in Natural Language Pro-

cessing (EMNLP 2010), pages 862–871, Boston, 

USA. 

Su Nam Kim, Lawrence Cavedon and Timothy Bald-

win (2012) Classifying Dialogue Acts in Multi-

party Live Chats, In Proceedings of the 26th Pacif-

ic Asia Conference on Language, Information and 

Computation (PACLIC 26), Bali, Indonesia, pp. 

463—472. 

Gabriel Murray and Giuseppe Carenini. 2008. Sum-

marizing Spoken and Written Conversations. Em-

pirical Methods in NLP (EMNLP 2008), Waikiki, 

Hawaii, 2008. 

Gabriel Murray and Giuseppe Carenini. 2010. Sum-

marizing Spoken and Written Conversations. Gen-

erating and Validating Abstracts of Meeting 

Conversations: a User study (INLG 2010), Dublin, 

Ireland, 2010. 

Gabriel Murray, Renals Steve, and Carletta Jean. 

2005a. Extrative summarization of meeting record-

ings. In Proceeding of Interspeech 2005, Lisbon, 

Portugal, pages 593-596. 

Owen Rambow, Lokesh Shrestha, John Chen, and 

Chirsty Lauridsen. 2004. Summarizing email 

threads. In Proceedings of HLTNAACL 2004. 

Dou Shen, Jian-Tao Sun, Hua Li, Qiang Yang, and 

Zheng Chen. 2007. Document summarization us-

ing conditional random fields. In Proc. of IJCAI, 

volume 7, 2862–2867. 

Charles Sutton, Khashayar Rohanimanesh, and An-

drew McCallum. 2004.  Dynamic conditional 

random fields: Factorized probabilistic models for 

labeling and segmenting sequence data. In Proc. 

ICML. 

Maryam Tavafi, Yashar Mehdad, Shafiq Joty, 

Giuseppe Carenini and Raymond Ng. 2013. Dia-

logue Act Recognition in Synchronous and Asyn-

chronous Conversations. In Proceedings of the 

SIGDIAL 2013 Conference, pages 117–121, Metz, 

France. Association for Computational Linguistics. 

Kristina Toutanova, Dan Klein, Christopher Manning, 

and Yoram Singer. 2003. Feature-Rich Part-of-

Speech Tagging with a Cyclic Dependency Net-

work. In Proceedings of HLT-NAACL 2003, pp. 

252-259.  

Jan Ulrich, Giuseppe Carenini, Gabriel Murray, 

and Raymond T. Ng: Regression-Based Summari-

zation of Email Conversations. ICWSM 2009 

Jan Ulrich, Gabriel Murray, and Giuseppe Carenini. 

2008. A publicly available annotated corpus for 

supervised email summarization. AAAI-2008 

EMAIL Workshop. 

Martin J. Wainwright, Tommi Jaakkola, and Alan S. 

Willsky. 2002. Treebased Reparameterization for 

Approximate Inference on Loopy Graphs. In Ad-

vances in Neural Information Processing Systems 

14, pages 1001 1008. MIT Press. 

140



Proceedings of the SIGDIAL 2014 Conference, page 141,
Philadelphia, U.S.A., 18-20 June 2014. c©2014 Association for Computational Linguistics

Keynote: Language Adaptation

Lillian Lee
Cornell University, U.S.A.
llee@cs.cornell.edu

As we all know, more and more of life is now manifested online,
and many of the digital traces that are left by human activity are in-
creasingly recorded in natural-language format. This availability offers
us the opportunity to glean user-modeling information from individual
users’ linguistic behaviors. This talk will discuss the particular phe-
nomenon of individual language adaptation, both in the short term
and in the longer term. We’ll look at connections between how people
adapt their language to particular conversational partners or groups,
on the one hand, and on the other hand, those people’s relative power
relationships, quality of relationship with the conversational partner,
and propensity to remain a part of the group.
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Abstract

In this paper we address the problem of
skewed class distribution in implicit dis-
course relation recognition. We examine
the performance of classifiers for both bi-
nary classification predicting if a particu-
lar relation holds or not and for multi-class
prediction. We review prior work to point
out that the problem has been addressed
differently for the binary and multi-class
problems. We demonstrate that adopting
a unified approach can significantly im-
prove the performance of multi-class pre-
diction. We also propose an approach that
makes better use of the full annotations
in the training set when downsampling is
used. We report significant absolute im-
provements in performance in multi-class
prediction, as well as significant improve-
ment of binary classifiers for detecting the
presence of implicit Temporal, Compari-
son and Contingency relations.

1 Introduction

Discourse relations holding between adjacent sen-
tences in text play an essential role in establishing
local coherence and contribute to the semantic in-
terpretation of the text. For example, the causal re-
lationship is helpful for textual entailment or ques-
tion answering while restatement and exemplifica-
tion are important for automatic summarization.

Predicting the type of implicit relations, which
are not signaled by any of the common explicit
discourse connectives such as because, however,
has proven to be a most challenging task in dis-
course analysis. The Penn Discourse Treebank
(PDTB) (Prasad et al., 2008) provided valuable
annotations of implicit relations. Most research to
date has focused on developing and refining lex-
ical and linguistically rich features for the task

(Pitler et al., 2009; Lin et al., 2009; Park and
Cardie, 2012). Mostly ignored remains the prob-
lem of addressing the highly skewed distribution
of implicit discourse relations. Only about 35% of
pairs of adjacent sentences in the PDTB are con-
nected by three of the four top level discourse re-
lation: 5% participate in Temporal relation, 10%
in Comparison (contrast) and 20% in Contingency
(causal) relations. The remaining pairs are con-
nected by the catch-all Expansion relation (40%)
or by some other linguistic devices (24%). Finer
grained relations of interest to particular applica-
tions account for increasingly smaller percentage
of the PDTB data.

Class imbalance is particularly problematic for
training a binary classifier to distinguish one rela-
tion from the rest. As we will show later, it also
impacts the performance of multi-class prediction
in which each pair of sentences is labeled with one
of the five possible relations.

All prior work has resorted to downsampling
the training data for binary classifiers to distin-
guish a particular relation and use the full train-
ing set for multi-class prediction. In this pa-
per we compare several methods for address-
ing the skewed class distribution during training:
downsampling, upsampling and computing fea-
ture weights and performing feature selection on
the unaltered full training data. A major motiva-
tion for our work is to establish if any of the alter-
natives to downsampling would prove beneficial,
because in downsampling most of the expensively
annotated data is not used in the model. In addi-
tion, we seek to align the treatment of data imbal-
ance for the binary and multi-class tasks. We show
that downsampling in general leads to the best pre-
diction accuracy but that the alternative models
provide complementary information and signifi-
cant improvement can be obtained by combining
both types of models. We also report significant
improvement of multi-class prediction accuracy,
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achieved by using the alternative binary classifiers
to perform the task.

2 The Penn Discourse Treebank

In the PDTB, discourse relations are viewed as a
predicate with two arguments. The predicate is
the relation, the arguments correspond to the min-
imum spans of text whose interpretations are the
abstract objects between which the relation holds.
Consider the following example of a contrast rela-
tion. The italic and bold fonts mark the arguments
of the relation.
Commonwealth Edison said the ruling could force it to slash
its 1989 earnings by $1.55 a share. [Implicit = BY COM-
PARISON] For 1988, Commonwealth Edison reported
earnings of $737.5 million, or $3.01 a share.

For explicit relations, the predicate is marked by
a discourse connective that occurs in the text, i.e.
because, however, for example.

Implicit relations are marked between adjacent
sentences in the same paragraph. They are inferred
by the reader but are not lexically marked. Alter-
native lexicalizations (AltLex) are the ones where
there is a phrase in the sentence implying the rela-
tion but the phrase itself was not one of the explicit
discourse connectives. There are 16,224 and 624
examples of implicit and AltLex relations, respec-
tively, in the PDTB.

The sense of discourse relations in the PDTB
is organized in a three-tiered hierarchy. The four
top level relations are: Temporal (the two argu-
ments are related temporally), Comparison (con-
trast), Contingency (causal) and Expansion (one
argument is the expansion of the other and contin-
ues the context) (Miltsakaki et al., 2008). These
are the classes we focus on in our work.

Finally, 5,210 pairs of adjacent sentences were
marked as related by an entity relation (EntRel),
by virtue of the repetition of the same entity or
topic. EntRels were marked only if no other rela-
tion could be identified and they are not considered
a discourse relation, rather an alternative discourse
phenomena related to entity coherence (Grosz et
al., 1995). There are 254 pairs of sentences where
no discourse relation was identified (NoRel).

Pitler et al. (2008) has shown that performance
as high as 93% in accuracy can be easily achieved
for the explicit relations, because the connective it-
self is a highly informative feature. Efforts in iden-
tifying the argument spans have also yielded high
accuracies (Lin et al., 2014; Elwell and Baldridge,
2008; Ghosh et al., 2011).

However, in the absence of a connective, recog-
nizing non-explicit relations, which includes im-
plicit relations, alternative lexicalizations, entity
relation and no relation present, has proven to be a
real challenge. Prior work on supervised implicit
discourse recognition studied a wide range of fea-
tures including lexical, syntactic, verb classes, se-
mantic groups via General Inquirer and polarity
(Pitler et al., 2009; Lin et al., 2009). Park and
Cardie (2012) studied the combination of features
and achieved better performance with a different
combination for each individual relation. Meth-
ods for improving the sparsity of lexical represen-
tations have been proposed (Hernault et al., 2010;
Biran and McKeown, 2013), as well as web-driven
approaches which reduce the problem to explicit
relation recognition (Hong et al., 2012).

Remarkably, no prior work has discussed the
highly skewed class distribution of discourse re-
lation types. The tacitly adopted solution has been
to downsample the negative examples for one-vs-
all binary classification aimed at discovering if a
particular relation holds and keeping the full train-
ing set for multi-class prediction.

To highlight the problem, in Table 1 we show
the distribution of implicit relation classes in the
entire PDTB. In our work, we aim to develop clas-
sifiers to identify the four top-level relations listed
in the table1.

# of samples Percentage
Temporal 1038 4.3%

Comparison 2550 11.3%
Contingency 4532 20%
Expansion 9082 40%

Table 1: Distribution of implicit relations in the
PDTB.

3 Experimental settings

In our experiments, we used all non-explicit in-
stances in the PDTB sections 2-19 for training and
those in sections 20-24 for testing. Like most stud-
ies, we kept sections 0-1 as development set. In
order to ensure we have a large enough test set to
properly perform tests for statistical significance
over F scores and balanced accuracies, we did not
follow previous work (Lin et al., 2014; Park and
Cardie, 2012) that used only section 23 or sec-
tions 23-24 for testing. Also, the traditional rule
of thumb is to split the available data into training

1The rest of the data are EntRel/NoRel.
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and testing sets with 80%/20% ratio. Our choice
ensures that this is the case for all of the relations.

The only features that we use in our experiments
are production rules. We exclude features that oc-
cur fewer than five times in the training set. Pro-
duction rules are the state-of-the-art representation
for discourse relation recognition. This represen-
tation leads to only slightly lower results than a
system including a much larger variety of features
in the first end-to-end PDTB style discourse parser
(Lin et al., 2014) .

The production rule representation is based on
the constituency parse of the arguments and in-
cludes both syntactic and lexical information. A
production rule is the parent with an left-to-right
ordered list of all of its children in the parse tree
(for example, S→NP VP). All non-terminal nodes
are included as a parent, from the sentence head
to the part-of-speech of a terminal. Thus words
that occur in each sentence augmented with their
part of speech are part of the representation (for
example, NN→company), along with more gen-
eral structures of the sentence corresponding to
production rules with only non-terminals on the
right-hand side.

There are three features corresponding to a pro-
duction rule, tracking if the rule occurs in the parse
of first argument of the relation, in the second, or
in both.

Adopting this representation allows us to fo-
cus on the issue of class imbalance and how
the choices of tackling this problem affect even-
tual prediction performance. Our findings are
representation-independent and will most likely
extend to other representations.

We train and evaluate a binary classifier with
linear kernel using SVMLight2 (Joachims, 1999)
for each of the four top level classes of relations:
Temporal, Comparison, Contingency and Expan-
sion. We used SVM-Multiclass3 for standard mul-
tiway classification. We also develop and evaluate
two approaches for multiway classification for the
four classes plus the additional class of entity rela-
tion and no relation.

Due to the uneven distribution of classes, we use
precision, recall and f-measure to measure binary
prediction performance. For multiway classifica-

2http://svmlight.joachims.org/
3http://svmlight.joachims.org/svm multiclass.html

tion, we use the balanced accuracy (BAC):

BAC =
1
k

k∑
i=1

ci
ni
, (1)

where k is the number of relations to predict, ci is
the number of instances of relation i that are cor-
rectly predicted, ni is the total number of instances
of relation i.

Balanced accuracy (or averaged accuracy) has
a more intuitive interpretation than F-measure. It
is not dominated by the majority class as much as
standard accuracy is. For example for two classes,
in a dataset where one class makes up 90% of the
data, predicting the majority class has accuracy of
90% but balanced accuracy of 45%.

In testing, we keep the original distribution in-
tact and make predictions for all pairs of adjacent
sentences in the same paragraph that do not have
an explicit discourse relation 4. In order to per-
form tests for statistical significance over F scores,
precision, recall and balanced accuracies, we ran-
domly partitioned the testing data into 10 groups.
We kept the data distribution in each group as
close as possible to the overall testing set. To com-
pare the performance of two different systems, a
paired t-test is performed over these 10 groups.

4 Why downsampling?

Binary classification As mentioned in the pre-
vious sections, in all prior work of supervised im-
plicit relation classification, the technique to cope
with highly skewed distribution for binary classi-
fication is to downsample the negative training in-
stances so that the sizes of positive and negative
classes are equal. The reason for doing so is that
the classifier can achieve high accuracy just by ig-
noring the small class, learning nothing and aways
predicting the larger class. We illustrate this ef-
fect in Table 2. Without downsampling, the only
reasonable F measure is achieved for Expansion
where the smaller class accounts for 40% of the
data. Note that with downsampling, the recogni-
tion of Expansion is also improved considerably.

Multiway classification In prior work multiway
classifiers are trained on all available training data.
As we just saw, however, this approach leads

4Note the contrast with prior work where in some cases
EntRels are part of Expansion, or in some cases the perfor-
mance of methods is evaluated only on pairs of sentences
where a discourse relation holds, excluding EntRels, NoRels
or AltLexs.
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All data Downsample
Temp. 0 (nan/0.0) 15.52 (8.8/65.4)
Comp. 2.17 (71.4/1.1) 27.65 (17.3/69.2)
Cont. 0.96 (100.0/0.5) 47.14 (34.5/74.5)
Exp. 44.27 (54.9/37.1) 55.42 (49.3/63.3)

Table 2: F measure (precision/recall) of binary
classification: including all of the data vs down-
sampling.

to poor results in identifying the core Temporal,
Comparison and Contingency discourse relations.
We propose an alternative approach to multi-class
prediction, based on binary one-against-all classi-
fiers for each of the four discourse relations, in-
cluding Expansion, trained using downsampling.

The intuition is that an instance of adjacent sen-
tences Si is assigned to a discourse relation Rj
if the binary classifier for Rj recognizes Si as a
positive instance with confidence higher than that
of the classifiers for other relations. If none of
the binary classifiers recognizes the instance as a
positive example, the instance is assigned to class
EntRel/NoRel. This approach modifies the way
multi-class classifiers are normally constructed by
including downsampling and having special treat-
ment of the EntRel/NoRel class.

Specifically, we first use the four binary classi-
fiers Cj for each relation j to get the confidence pj
of instance i belonging to class j. We approximate
the confidence by the distance to the hyperplane
separating the two classes, which SVMLight pro-
vides. If at least one pj is greater than zero, assign
instance i the class k where the classifier confi-
dence is the highest. If none of the pj’s is greater
than zero, assign i to be the EntRel/NoRel class.

We show balanced accuracies of these two mul-
tiway classification methods in Table 3.

Multiway SVM One-Against-All
5-way 32.58 37.15

Table 3: Balanced accuracies for SVM-Multiclass
and one-against-all 5-way classification.

The one-against-all approach leads to 5% abso-
lute improvement in performance. A t-test anal-
ysis confirms that the difference is significant at
p < 0.05. Note that the improvement comes en-
tirely from acknowledging that skewed class dis-
tribution poses a problem for the task and by ad-
dressing the problem in the same way for binary
and multi-class prediction.

5 Using more data

Although downsampling gives much better per-
formance than simply including all of the origi-
nal data, it still appears to be an undesirable so-
lution because in essence it throws away much of
the annotated data. This means that for the small-
est relations, as much as 90% of the data will
not be used. Feature selection and feature val-
ues are computed only based on this much smaller
dataset and do not properly reflect the information
about discourse relations encoded in the PDTB. In
this section we first discuss some of the widely
used methods for handling skewed data distribu-
tion, that is, weighted cost and upsampling. First,
we show that with highly skewed distributions, the
two methods result in almost identical classifiers.
Then we introduce a method for feature selection
and shaping which computes feature weights on
the full dataset and thus captures much of the in-
formation lost in downsampling.

5.1 Weighted cost and upsampling

A number of methods have been developed for
the skewed distribution problem (Morik et al.,
1999; Veropoulos et al., 1999; Akbani et al., 2004;
Batista et al., 2004; Chawla et al., 2002). Here we
highlight weighted cost and random upsampling,
which are known to work well and widely used.

The idea behind weighted cost (Morik et al.,
1999; Veropoulos et al., 1999) is to use weights
to adjust the penalties for false positives and false
negatives in the objective function. As in Morik
et al. (1999), we specify the cost factor to be the
ratio of the size of the negative class vs. that of the
positive class.

In the case of upsampling, instead of ran-
domly downsampling negative instances, positive
instances are randomly upsampled. In our exper-
iments we randomly replicate positive instances
with replacement until the numbers of positive and
negative instances are equal to each other.

The binary and multiway classification results
for these two methods are shown in Table 4 and
Table 5. For binary classification, we can see sig-
nificantly higher F score for the smallest Temporal
class. Weighted cost is also able to achieve signif-
icantly better F-score for Expansion. For Compar-
ison and Contingency, the F-scores are similar to
that of plain downsampling. The balanced accura-
cies of multi-class classification with either meth-
ods are lower, or significantly lower in the case of
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weighted cost, than using downsampling in one-
against-all manner.

Upsample WeightCost
Temp. 20.35* (16.8/25.9) 20.61* (16.9/26.3)
Comp. 28.11 (20.6/44.5) 28.38 (19.9/49.6)
Cont. 46.46 (37.4/61.3) 46.36 (34.6/70.1)
Exp. 54.93 (50.3/60.5) 57.43* (43.9/83.1)

Table 4: F-measure (precision/recall) of binary
classification: upsampling vs. weighted cost.

For Temporal and Comparison relations listed
in Table 4, we noticed an interesting similarity
between the F and precision values of upsam-
pling and weighted cost. To quantify this simi-
larity, we calculated the Q-statistic (Kuncheva and
Whitaker, 2003) between the two classifiers. The
Q-statistic is a measurement of classifier agree-
ment raging between -1 and 1, defined as:

Qw,u =
N11N00 −N01N10

N11N00 +N01N10
(2)

Where w denotes the system using weighted cost,
u denotes the upsampling system. N11 means both
systems make a correct prediction, N00 means
both systems are incorrect, N10 means w is incor-
rect but u is correct, and N01 means w is correct
but u is incorrect.

We have the following Q statistics: Tempo-
ral: 0.999, Comparison: 0.9938, Contingency:
0.9746, Expansion: 0.7762. These are good in-
dicators that for highly skewed relations, the two
methods give classifiers that behave almost identi-
cally on the test data. In the discussions that fol-
low, we discuss only weighted cost to avoid redun-
dancy.

5.2 Feature selection and shaping
While weighted cost or upsampling can give bet-
ter performance over downsampling for some rela-
tions, their disadvantages towards multi-class clas-
sification and the obvious favor towards the major-
ity class give rise to the following question: is it
possible to inform the classifier of the information
encoded in the annotation of all of the data while
still using downsampling to handle the skewed
class distribution? Our proposal is feature value
augmentation. Here we introduce a relational ma-
trix in which we calculate augmented feature val-
ues via feature shaping. We first compute the val-
ues of features on the entire training set, then use
the downsampled set for training with these val-
ues. In this way we pass on to the classifiers infor-

mation about the relative importance of features
gleaned from the entire training data.

5.2.1 Feature shaping
The idea of feature shaping was introduced in the
context of improving the performance of linear
SVMs (Forman et al., 2009). In linear SVMs
the prediction is based on a linear combination of
weight×feature values. The sign of weight indi-
cates the preference for a class (positive or nega-
tive), the value of the feature should correspond to
how strongly it indicates that class. Thus, features
that are strongly discriminative should have high
values so that they can contribute more to the final
class decision. Here we augment feature values
for a relation according to the following criteria:
1. Features are considered “good” if they strongly
indicate the presence of the relation; 2. Features
are considered “good” if they strongly indicate the
absence of the relation; 3. features are considered
“bad” if their presence give no information about
either the presence or the absence of the relation.

To capture this information, we first construct a
relation matrix M with each entry Mij defined as
the conditional probability of relationRj given the
feature Fi computed as the maximum likelihood
estimate from the full training set:

Mij = P (Rj |Fi)
Each column of the relation matrix captures the

predictive power of each feature to a certain re-
lation. A feature with value Mij higher than the
column mean indicates that it is predictive for the
presence of relation j, while a feature with Mij

lower than the mean is predictive for its absence;
the strength of such indication depends on how far
away Mij is from the mean: the further away it is,
the more valuable this feature should be for rela-
tion j. With this idea we give the following aug-
mented value for each feature:

M ′
ij =

{
Mij , if Mij ≥ µj .
µj + (µj −Mij), if Mij < µj .

(3)

where µj is the mean of the jth column corre-
sponding to the jth relation.

Given a feature Fi, very small and very high
probabilities of a certain relation j, i.e., P (Rj |Fi),
are both useful information. However, in linear
SVMs, lower values of a feature would mean that
it contributes less to the decision of the class. By
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feature shaping, we allow features that strongly in-
dicate the absence of a class to influence the deci-
sion and rely on the classifier to identify the nega-
tive association and reflect it by assigning a nega-
tive weight to these features.

When constructing the relation matrix, we used
the top four relation classes along with an En-
tRel/NoRel class. We computed the matrix before
downsampling to preserve the natural data distri-
bution and features that strongly indicate the ab-
sence of a class, then downsample the negative
data just like the previous downsampling setting.

5.2.2 Feature selection
The relation matrix also provides information for
feature selection using a binomial test for signifi-
cance, B(n,N, p), which gives the probability of
observing a feature n times in N instances of a
relation if the probability of any feature occurring
with the relation is p. For each relation, we use the
binomial test to pick the features that occur signif-
icantly more or less often than expected with the
relation. In the binomial test, p is set to be equal to
the probability of that relation in the PDTB train-
ing set. We select only the features which result in
a low p-value for the binomial test for at least some
relation. We used 9-fold cross validation on the
training data to pick the best p-values for each re-
lation individually; all best p-values were between
0.1 and 0.2.

Result listing Table 5 and Table 6 show the mul-
tiway and binary classification performance using
feature shaping and feature selection. We also
show the precision and recall for binary classifiers.

Multiway SVM One-Against-All
AllData 32.58 NA

Downsample NA 37.15
Upsample NA 36.63

Weighted Cost NA 34.23
Selection 32.52 38.42*
Shaping NA 38.81**

Shape+Sel NA 39.13**

Table 5: Balanced accuracy for multiway
SVM and one-against-all for 5-way classification.
One asterisk (*) means significantly better than
weighted cost and upsampling, and two means sig-
nificantly better than downsampling, at p < 0.05.

For multi-way classification, performing feature
shaping leads to significant improvements over
downsampling, upsampling and weighted cost.
The binomial method for feature selection that

relies on the full training data distribution has a
similar effect. Combined feature shaping and se-
lection leads to 2% absolute improvement in dis-
course relation recognition. For binary classifica-
tion, though, the improvement is significant only
for Temporal.

6 Classifier analysis and combination

6.1 Discussion of precision and recall

A careful examination of Tables 5 and 6 leads
to some intriguing observations. For the most
skewed relations, if we consider not only the F
measure, but also the precision and recall, there
is an interesting difference between the systems.
While downsampling has the lowest precision, it
gives the highest recall. The case for weighted cost
is another story. For highly skewed relations such
as Temporal and Comparison, it gives the highest
precision and the lowest recall; but as the data set
balances out in downsampling, the classifier shifts
towards high recall and low precision.

We can also rank the three feature augmentation
techniques in terms of how much they reflect dis-
tributional information in the training data. Fea-
ture selection reflects the training data least among
the three, because it uses information from all of
the data to select the features, but the feature val-
ues are still either 1 or 0. Feature shaping engages
more data because the value of a feature encodes
its relative “effectiveness” for a relation. We can
see that feature selection gives slightly higher pre-
cision than just downsampling; feature shaping,
on the other hand, gives precision and recall val-
ues between these two. This is most obvious in
smaller relations, i.e. Temporal and Comparison.

To see if this trend is statistically significant, we
did a paired t-test over the precision and recall for
each system and each relation. For the Temporal
relation, all systems that use more data have sig-
nificantly higher (p < 0.05) precision than that
for downsampling. For Comparison, the changes
in precision are either significant or tend towards
significance for three methods: feature shaping
(p < 0.1), feature shaping+election (p < 0.1)
and weighted cost (p < 0.05). For Contingency,
feature shaping gives an improvement in precision
that tends toward significance (p < 0.1). The
drops in recall using feature shaping or weighted
cost for the above three relations are significant
(p < 0.05). For the Expansion relation, being the
largest class with 40% positive data, changes in
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Downsample WeightCost Selection Shaping Shape+Sel
Temp. 15.52 (8.8/65.4) 20.61* (16.9/26.3) 18.47* (10.7/65.9) 20.37* (12.6/53.2) 21.30* (13.7/47.8)
Comp. 27.65 (17.3/69.2) 28.38 (19.9/49.6) 26.98 (17.4/60.1) 27.79 (18.3/58.2) 26.92 (18.7/48.2)
Cont. 47.14 (34.5/74.5) 46.36 (34.6/70.1) 47.45 (34.7/75.2) 47.62 (35.4/72.9) 46.93 (35.2/70.5)
Exp. 55.42 (49.3/63.3) 57.43* (43.9/83.1) 55.52 (49.3/63.5) 55.13 (49.3/62.5) 54.90 (49.2/62.1)

Table 6: F score (precision/recall) of classifiers with feature augmentation. Asterisk(*) means F score or
BAC is significantly greater than plain downsampling at p < 0.05.

precision and recall with downsampling systems
are not significant; yet weighted cost shifted to-
wards predicting more of the positive instances,
i.e., giving a significantly higher recall by trading
with a significantly lower precision (p < 0.05).

6.2 Discussion of classifier similarity

To better understand the differences of classi-
fier behaviors under the weighted cost and each
downsampling technique (plain downsampling,
feature selection, feature shaping, feature shap-
ing+selection), in Table 7 we show the percentage
of test instances that the weighted cost system and
each downsample system agree or do not agree. In
particular, we study the following situations:

1. The downsample system predicts correctly
but the weighted cost system does not (“D+C-”);

2. The weighted cost system predicts correctly
but the downsample system does not (“D-C+”);

3. Both systems are correct (“D+C+”).
At a glance of the Q statistic, it seems that the

systems are not behaving very differently. How-
ever, as only the sum of disagreements is reflected
in the Q statistic, we look more closely at where
the systems do not agree in each situation. If we
focus on the rarer Temporal and Comparison re-
lations, first note that in the plain downsampling
vs. weighted cost, the percentage of test instances
in the “D+C-” column is much smaller than that
in the “D-C+” column. This aligns with the above
observation that plain downsampling gives much
lower precision for these relations than weighted
cost. Now, as more data is engaged from first
using feature selection, then using feature shap-
ing, then using both, the percentage of instances
where both systems predict correctly increase. At
the same time, there is a drop in the percentage of
test instances in the “D-C+” column. This trend is
also a reflection of the observation that as more
data is engaged, the precision got higher as the
recall drops lower. As the data gets more evenly
distributed, this phenomenon fades away. The ta-
ble also reveals a subtle difference between fea-
ture shaping and feature selection. Compared to

D+C- D-C+ D+C+ Q
(%) (%) (%) Stat

Temporal
Downsamp 2.56 28.27 61.47 0.73
Selection 2.91 22.04 67.71 0.77
Shaping 2.61 13.36 76.39 0.89

Sel+Shape 2.83 10.42 79.32 0.90
Comparison
Downsamp 5.74 18.24 53.76 0.84
Selection 7.72 16.14 55.85 0.80
Shaping 6.14 11.95 60.04 0.89

Sel+Shape 9.69 10.99 61.01 0.83
Contingency
Downsamp 6.88 7.89 58.74 0.93
Selection 8.01 8.92 57.70 0.91
Shaping 7.07 6.73 59.90 0.94

Sel+Shape 8.68 8.13 58.49 0.91
Expansion
Downsamp 16.39 8.23 44.66 0.82
Selection 17.87 9.71 43.18 0.76
Shaping 16.64 8.45 44.44 0.81

Sel+Shape 18.36 10.30 42.59 0.73

Table 7: Q statistics and agreements (in percent-
ages) of each downsampling system vs. weighted
cost. “D” denotes the respective downsample sys-
tem in the left most column; “C” denotes the
weighted cost system. A “+” means that a system
makes a correct prediction; a “-” means a system
makes an incorrect prediction.

downsampling, feature selection introduces an in-
crease in the column “D+C-” (i.e. the weighted
cost system makes a mistake but the downsample
system is correct). Feature shaping, on the other
hand, do not necessarily increase this new kind of
difference between classifiers.

6.3 Classifier combination

Our classifier comparisons revealed that for highly
skewed distributions, there are consistent differ-
ences in the performance of classifiers obtained by
using the training data in different ways. It stands
to reason that a combination of these classifiers
with different strengths will result in an overall im-
proved classifier. This idea is explored here.

Suppose on a sample i, the downsampling clas-
sifier predicts the target class with confidence pid,
and the weighted cost classifier predicts the target
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class with confidence pic. Here again we approx-
imate the confidence of the class by the distance
from the hyperplane dividing the two classes. We
weight the two predictions and get a new predic-
tion confidence by:

p′
i =

αdpid + αupic
αd + αc

. (4)

where the αs are parameters we want to encode
how much we trust each classifier. To get these
values, we train the classifiers and get the accura-
cies from each of them on the development set.
Since we are using linear SVMs in our experi-
ments, we mark the sample as positive if pi > 0,
and negative otherwise.

The results for the combination are shown in Ta-
ble 8. We include the original performances of the
classifiers by themselves for reference.

F measure For Temporal, the combined classi-
fier performs better than the original classifiers.
We see significant (p < 0.05) improvements over
the corresponding downsampling system and the
weighted cost system. If feature shaping is in-
volved in the combination, it is also having bet-
ter performance that tend toward significance (p <
0.1) over the weighted cost classifier. For Compar-
ison, the benefits of a combined system is also ob-
vious for feature shaping and/or selection. Feature
shaping combined with weighted cost gives sig-
nificantly (p < 0.05) better performance than ei-
ther of them individually, and feature selection and
shaping+selection combined with weighted cost is
better than themselves alone. For Contingency,
though weighted cost do not give better results, the
improvement tends toward significance (p < 0.1)
when combined with plain downsampling. For Ex-
pansion where weighted cost gives the lowest pre-
cision, combination with other classifiers do not
give significant improvements over F scores.

Precision and recall We can also compare the
precision and recall for each system before and af-
ter combination. In all but one cases for Temporal
and Comparison, we observe significantly higher
precision and much lower recall after the combi-
nation. The case for Expansion is just the opposite
as expected.

7 Conclusion

In this paper, we studied the effect of the use of an-
notated data for binary and multiway classification

Original Combined
Classifier Classifier

Temporal
WeightCost 20.61 (16.9/26.3)
Downsamp 15.52 (8.8/65.4) 21.78* (14.9/40.5)
Selection 18.47 (10.7/65.9) 22.99* (15.8/42.0)
Shaping 20.37 (12.6/53.2) 23.88* (17.5/37.6)

Sel+Shape 21.30 (13.7/47.8) 23.72* (17.7/36.1)
Comparison
WeightCost 28.38 (19.9/49.6)
Downsamp 27.65 (17.3/69.2) 28.72 (19.3/56.4)
Selection 26.98 (17.4/60.1) 29.25∗ (20.1/54.0)
Shaping 27.79 (18.3/58.2) 29.89*+ (20.5/54.9)

Sel+Shape 26.92 (18.7/48.2) 29.83* (21.3/50.0)
Contingency
WeightCost 46.36 (34.6/70.1)
Downsamp 47.14 (34.5/74.5) 48.38+ (35.9/74.4)
Selection 47.45 (34.7/75.2) 47.76+ (35.5/72.9)
Shaping 47.62 (35.4/72.9) 48.16+ (36.0/72.9)

Sel+Shape 46.93 (35.2/70.5) 47.37 (35.6/70.7)
Expansion
WeightCost 57.43 (43.9/83.1)
Downsamp 55.42 (49.3/63.3) 56.61* (46.4/72.7)
Selection 55.52 (49.3/63.5) 57.10* (46.5/73.0)
Shaping 55.13 (49.3/62.5) 56.74* (46.4/73.0)

Sel+Shape 54.90 (49.2/62.1) 57.06* (46.4/74.0)

Table 8: Classifier combination results for binary
classification. An asterisk(*) means significantly
better than the corresponding downsampling sys-
tem at, and a plus(+) means significantly better
than weighted cost, at p < 0.05. Improvements
that tend toward significance (p < 0.1) are not
shown here but are discussed in the text.

in supervised implicit discourse relation recogni-
tion. The starting point of our work was to estab-
lish the effectiveness of downsampling negative
examples, which was practiced but not experimen-
tally investigated in prior work. We also evalu-
ated alternative solutions to the skewed data prob-
lem, as downsampling throws away most of the
data. We examined the effect of upsampling and
weighted cost. In addition, we introduced the rela-
tion matrix to give more emphasis on informative
features through augmenting the feature value via
feature shaping. We found that as we summarize
more detailed information about the data in the full
training set, performance for multiway classifica-
tion gets better. We also observed through preci-
sion and recall that there are fundamental differ-
ences between downsampling and weighted cost,
and this difference can be beneficially exploited
by combining the two classifiers. We showed that
our way of doing such combination gives signifi-
cantly higher performance results for binary clas-
sification in the case of rarer relations.
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Abstract

We study the role that logical polarity
plays in determining the rejection or ac-
ceptance function of an utterance in dia-
logue. We develop a model inspired by re-
cent work on the semantics of negation
and polarity particles and test it on annota-
ted data from two spoken dialogue corpo-
ra: the Switchboard Corpus and the AMI
Meeting Corpus. Our experiments show
that taking into account the relative pola-
rity of a proposal under discussion and of
its response greatly helps to distinguish re-
jections from acceptances in both corpora.

1 Introduction

In order to establish and maintain coherence, dia-
logue participants need to keep track of the infor-
mation they jointly take for granted—their com-
mon ground (Stalnaker, 1978). As a dialogue
progresses, the common ground typically evolves.
New information becomes shared as the interlocu-
tors exchange moves (such as assertions, ques-
tions, acceptances, and rejections) through the col-
laborative process of grounding (Clark and Schae-
fer, 1989; Clark, 1996). To keep track of the com-
mon ground, speakers must identify which infor-
mation is accepted or rejected by their addressees.
The basic idea is simple: If a proposal is rejected,
its content does not enter the common ground,
while if it is accepted, its content does become
common belief.

Yet, determining whether a response to a move
counts as an acceptance or a rejection is far from
trivial. In many cases, the surface form of an
utterance is not explicit enough to determine its
acceptance or rejection force and inference is re-
quired (Horn, 1989; Lascarides and Asher, 2009;
Walker, 1996). For instance, B’s utterance in (1),
extracted from the AMI Meeting Corpus (Carletta,

2007), exemplifies what Walker (1996) calls im-
plicature rejection (the rejection arises from an
inferred scalar implicature: “normal” implicates
“not interesting”; see also Hirschberg (1985)).

(1) A: This is a very interesting design.
B: It’s just the same as normal.

The goal of this paper is to investigate the role of
logical polarity in distinguishing rejections from
acceptances. Consider the following dialogue ex-
cerpts, again from AMI, where the same utterance
form (“Yes it is”) acts as an acceptance in (2) and
as a rejection in (3):

(2) A: But it’s uh yeah it’s uh original idea.
B: Yes it is.

(3) A: the shape of a banana is not it’s not really
handy .

B: Yes it is.

To determine whether B’s utterance in either case
above functions as an acceptance or a rejection,
it is critical to not only look beyond the utterance
itself and take into account the proposal under dis-
cussion (A’s utterance), but also to specify (a) the
polarity (positive vs. negative) of both the proposal
and the response, and (b) how these polarities in-
teract to give rise to a particular interpretation. Our
aim in this paper is to develop a model of how
logical polarity influences acceptance/rejection in-
terpretation, inspired by recent work on the se-
mantics of negation and polarity particles (Cooper
and Ginzburg, 2011; Cooper and Ginzburg, 2012;
Farkas and Roelofsen, 2013), and to test it on an-
notated data from two spoken dialogue corpora:
the Switchboard Corpus (Godfrey et al., 1992) and
the AMI Meeting Corpus (Carletta, 2007).

In the next section, we give an overview of re-
lated computational work on acceptance/rejection
detection. In Section 3, we first briefly review re-
cent formal semantics approaches to polarity and
then present our model of logical polarity in ac-
ceptance and rejection moves. Section 4 describes
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our experiments: We derive machine learning fea-
tures from our polarity theory and test them in
Switchboard and AMI datasets, achieving compet-
itive F -scores of around 60 on the task of retriev-
ing rejections. We conclude in Section 5 with a
discussion of our results.

2 Related Computational Work

The first attempts to automatically identify accep-
tances and rejections (often referred to as agree-
ments and disagreements) were carried out in the
context of multiparty meetings for the purpose
of dialogue summarisation tasks. Hillard et al.
(2003) and Hahn et al. (2006) used the ICSI Meet-
ing Corpus (Janin et al., 2003) to develop sys-
tems that would classify utterances into agree-
ments, disagreements, backchannels, and ‘other’.
While these authors only leveraged lexical and
prosodic features of the utterance to be classified
(i.e., local features), Galley et al. (2004) showed
that accuracy could be improved by taking into ac-
count contextual dependencies, in particular pre-
vious (dis)agreements between the dialogue par-
ticipants, achieving an overall accuracy of 86.9%.
Subsequent work built on Galley et al.’s approach
showed that detecting agreement acts helped to
identify public commitments to tasks (Purver et
al., 2007) and other decisions made in a meeting
(Fernández et al., 2008).

A difficulty shared by all approaches mentioned
above is the skewness of the data, not only regard-
ing (dis)agreement vs. other types of acts, but also
agreement vs. disagreement. In the dialogue set-
tings considered, acceptance/agreement is much
more common than rejection/disagreement (e.g.,
11.9% vs. 6.7% in the portion of the ICSI Meet-
ing Corpus used by Galley et al. (2004) and 3.6%
vs. 0.4% in the section of the AMI Meeting Cor-
pus used by Germesin and Wilson (2009)). This
can lead to reasonable overall accuracy but poor
results on recognising rejections. Indeed, Ger-
mesin and Wilson (2009), who apply an approach
based on Galley et al. (2004) to the AMI Meet-
ing Corpus, achieve 98.1% accuracy, but report
0% recall for rejections/disagreements. Wang et
al. (2011), who also work with AMI data, use dif-
ferent resampling methods to balance their dataset
and then apply Conditional Random Fields (using
therefore contextual information from sequences
of utterances), achieving 56.9% recall and 55.9 F1
for disagreement detection.

Some recent work has moved away from spoken
dialogue to address similar tasks in online discus-
sion forums. An advantage of this kind of sce-
narios is that they seem to offer more opportu-
nity for disagreement/rejection, thereby yielding
more inherently balanced datasets. Abbott et al.
(2011) and Misra and Walker (2013) use the In-
ternet Argument Corpus (Walker et al., 2012), an
annotated collection of posts in discussion forums
with a balanced distribution of agreeing and dis-
agreeing posts. They address a 2-way classifica-
tion task—determining whether each response to
a post (or to a quoted portion of a post in the case
of Abbott et al. (2011)) is either an agreement or
a disagreement—using a collection of features in-
spired by previous computational and theoretical
approaches. The system developed by Misra and
Walker (2013) uses only local features of the to-
be-classified post, achieving an accuracy of 66%
(over a 50% baseline). Abbott et al. (2011)’s best
system uses features from both the quoted post and
the response post, achieving an accuracy of 68.2%.
However adding this contextual information does
not significantly outperform a system based only
on local features of the response, which yields
66.6% accuracy. Using both features from the post
and the post response, Yin et al. (2012) obtain sim-
ilar results: 68% accuracy on a different online
corpus (the Political Forum), where the datasets
are not balanced (they report a ratio of about 2 to
1 for agreement vs. disagreement).

All in all, this body of work has identified
several linguistic features that are useful for in-
ferring acceptances and rejections, often build-
ing on observations made by conversational an-
alysts (Pomerantz, 1984; Brown and Levinson,
1987). Furthermore, recent work by Bousmalis
et al. (2013) suggests that there are specific non-
verbal behaviours associated with agreement and
disagreement, such as different types of head, lip,
and hand movements. However, to our knowl-
edge, the role of logical polarity has not been
investigated in any detail by computational ap-
proaches. Several systems make use of subjective
polarity, i.e., sentiment. For instance, Galley et al.
(2004) use the list of subjective adjectives com-
piled by Hatzivassiloglou and McKeown (1997)
to assign a positive and a negative polarity value
to an utterance given the number of subjective
positive/negative adjectives it contains. Similarly,
Misra and Walker (2013) use the MPQA Subjec-
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tivity Lexicon (Wilson et al., 2005) to capture the
local sentiment of an online post response given
the number of words in the response with strongly
subjective positive/negative polarity according to
the subjectivity lexicon. Yin et al. (2012) assign a
positive and a negative score to a post by aggregat-
ing the sentiment scores of those words that can be
found in SentiWordNet (Baccianella et al., 2010).

Although subjective polarity may be helpful
(e.g., utterances with a high positive sentiment
score may be more likely to be acceptances), this
is not the kind of polarity that concerns us in this
paper. Note, furthermore, that local sentiment in-
formation may be superseded by logical polarity.
(4) A: But then it wouldn’t sit as comfortably in

your hand.
B: It would still be comfortable.

Despite the fact that B’s utterance in (4)—
extracted from the AMI corpus—would be as-
signed a positive sentiment score (given the pres-
ence of the word “comfortable”, classified as pos-
itive in the MPQA Subjectivity Lexicon, and the
absence of negative subjective words), the utter-
ance acts as a rejection due to logical polarity con-
straints, as we shall make clear in the next section.

3 Polarity in Acceptances and Rejections

In this section, we first give a brief overview of
some of the main ideas put forward in recent theo-
retical approaches to polarity. Afterwards, we in-
troduce our approach to logical polarity in the con-
text of acceptance and rejection moves.

3.1 Formal Semantics Approaches
Polarity and in particular negation are central con-
cepts in formal semantics and pragmatics (Horn,
1989). Recent work independently put forward
within the frameworks of Type Theory with
Records (Cooper and Ginzburg, 2011; 2012) and
of Inquisitive Semantics (Farkas and Roelofsen,
2013) has proposed to semantically distinguish be-
tween positive and negative propositions. Such a
proposal departs from the traditional view in for-
mal semantics where propositions are taken to de-
note sets of possible worlds (see Partee (1989) for
a survey). According to this traditional view, the
meaning of (5a) would be indistinguishable from
that of (5b), given that the two propositions are
true in exactly the same possible worlds:
(5) a. Sue failed the exam.

b. Sue didn’t pass the exam.

These utterances, however, license different types
of responses. For instance, responding “no” to
(5a) would assert that Sue did pass the exam,
while the same response to (5b) would typically
be understood as asserting the opposite. Leaving
aside many details that distinguish the two theo-
ries, Cooper/Ginzburg and Farkas/Roelofsen pro-
pose that polarity particles—words like “yes” and
“no”—are sensitive to the polarity of their an-
tecedent: “yes” presupposes that a positive propo-
sition is under discussion, while “no” presupposes
a negative proposition. If the presupposition is
met, both “yes” and “no” assert the proposition
under discussion (i.e., in our terms, they act as ac-
ceptances); if the presupposition fails, they assert
the negation of the proposition under discussion
(i.e., they act as rejections).

This characterises the standard behaviour of po-
larity particles. However, the picture is slightly
more complicated since, when the proposition un-
der discussion is negative, in English “yes” and
“no” can also be used to agree or disagree, respec-
tively (contrary to the standard case):

(6) Sue didn’t pass the exam.

a. No (she didn’t). ; standard acceptance
Yes, she didn’t.

b. Yes, she did. / #Yes. ; standard rejection
No, she did.

According to Farkas and Roelofsen (2013), this
ambiguity of use makes bare forms of “yes”/“no”
less likely in the non-standard cases exemplified
in (6) and favours more explicit sentential forms
where the presence of the verb disambiguates the
intended interpretation. In this respect, however,
the standard rejection in (6b) constitutes a spe-
cial case: While in standard acceptances the sen-
tential form is not required, in standard rejections
it seems needed. According to these authors, in
English the positive polarity particle “yes” has a
strong preference for realising an agreement move
and therefore its use as a rejection is marked.1

This makes the explicit sentential form “Yes, she
did” in (6b) more felicitous than the bare form
“Yes”. Thus, the two types of rejections to a neg-
ative proposition we see in (6b)—with “yes” and

1The special status of English “yes” for rejection seems
to be supported by cross-linguistic evidence. For instance,
German has a special positive polarity particle “doch” for
rejecting a negative proposition: in response to the assertion
in (6), “doch” would be used to disagree (“yes, she did”)
while “ja” would be used to agree (“yes, she didn’t”).
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Polarity of P -R Type Example from AMI Meeting Corpus

positive – positive default relative acceptance A: And then you can buy the covers. B: Yes
negative– negative reverse relative acceptance A: It’s not very well advertised. B: No, it’s not.
positive – negative default relative rejection A: It’s a frog. B: No, it’s a turtle.
negative– positive reverse relative rejection A: TVs aren’t capable of sending. B: Yes, they are.

Table 1: Relative response types.

“no”—are expected to contain an explicit verbal
constituent. We refer to this as the markedness ex-
pectation.

3.2 Our Model

Our aim is to exploit insights from the theo-
ries sketched above to develop a model that can
be operationalised in a computational setting to
test whether information regarding logical polarity
can contribute to automatically distinguish accep-
tances from rejections.

We focus on proposal-response pairs (P -R),
where R either accepts or rejects P . We pro-
pose to assign both the proposal and the response
a logical polarity: either positive or negative. Fur-
thermore, we differentiate absolute (polarity inde-
pendent) from relative (polarity independent) re-
sponses. A response type R is absolute if its ac-
ceptance/rejection function does not depend on the
polarity of P , and it is relative if it does. Formally,
we say that a proposal P is rejected by a response
R if P ^ R is inconsistent. This gives us the fol-
lowing four possible responses to P :

• R ⌘ > : absolute acceptance

• R ⌘ ? : absolute rejection

• R ⌘ P : relative acceptance

• R ⌘¬P : relative rejection

Our focus of attention is on relative responses.
Given a P -R pair with a relative response, we infer
an acceptance if the polarities of P and R align,
and a rejection if the polarities differ. This gives
us four possible relative responses, shown in Ta-
ble 1. In the default cases, where P is positive,
positive responses act as acceptances and nega-
tive responses as rejections—exactly as absolute
response types would act. When P is negative
(i.e., P ⌘ ¬P 0), we are faced with what we call
reverse relative responses: Negative polarity re-
sponses act as acceptances and positive polarity
responses as rejections. An acceptance can have
the form R ⌘ P ⌘ ¬P 0 while a rejection can have
the form R ⌘ ¬P ⌘ P 0 (with R being positive,
i.e., with the double negation ¬¬P 0 eliminated).

We call these cases reverse responses because their
polarity signature is precisely the negation of the
respective default cases (cf. Table 1).

The next obvious question to address is how the
polarity of proposals and responses can be deter-
mined. Clearly, this will differ across languages.
For the case of English, we shall assume that po-
larity is linked to the presence of particular par-
ticles and grammatical indicators. In particular,
we consider the words in Table 2 to be positive
and negative polarity markers.2 Amongst negative
polarity markers, we distinguish between negative
polarity particles and negation indicators.

positive particles: yes, yeah, yep
negative particles: no, nope, nah

negation: not, -n’t, never,
nothing, nobody, nowhere

Table 2: Polarity markers.

All markers in Table 2 are key cues of polar-
ity. However, they do not straightforwardly deter-
mine the polarity of a contribution. Firstly, there
are cases where the presence of a marker does not
have the expected effect on polarity. For instance,
a negative tag question (“isn’t it?”) at the end of
an utterance does not mark that utterance as neg-
ative. Also, the polarity effect of a marker can be
invalidated if it is followed by the contrast con-
nective “but”. For instance, in the following AMI
examples, “but” cancels out the effect of the neg-
ative polarity particle “no” in (7), making B’s ut-
terance positive, and the effect of the positive po-
larity particle “yeah” in (8), making B’s utterance
negative (in conjunction with the verbal negation
in this case):
(7) Reverse rejection: negative–positive

A: Yes, but some televisions don’t support it.
B: No, but then they would also support that

button, because it’s the same thing.
(8) Default rejection: positive–negative

A: Yeah, uh materials like wood that
B: Yeah, but wood is not a not a material you

which you build a a remote control of .
2We do not claim that this list is exhaustive.
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Secondly, it is important to take into account that
a large amount of acceptances and rejections do
not include any marker of polarity at all. For in-
stance, in our datasets extracted from the AMI and
Switchboard (SWB) corpora (which we will de-
scribe in detail in Section 4.1), 49% and 70% of
acceptances in AMI and SWB, respectively, do not
contain any explicit polarity marker; and similarly
for 40% (AMI) and 15% (SWB) of rejections.
In part this is due to the fact that in English (as
in most languages) there is no morphologically-
realised positive counterpart of verbal negation.

Given the observations above, we adopt the heu-
ristics in Figure 1 to assign a polarity to P and R.
Since this heuristics is intended to be applicable
to dialogue corpora, we forgo the use of deep se-
mantic analysis, which is difficult to achieve when
dealing with naturally occurring spoken language.3

P -polarity: A proposal P has negative polarity if it con-
tains a negation indicator (excluding tag questions); oth-
erwise, P has positive polarity.

R-polarity: We define a precedence order on polarity
markers: negative polarity particles take precedence over
positive polarity particles, which in turn take precedence
over negation indicators.

• If a response R contains a negative polarity particle
(not followed by “but”), its polarity is negative.

• Else, if R contains a positive polarity marker (not fol-
lowed by “but”), its polarity is positive.

• Else, if R contains a negation indicator, its polarity is
negative.

• Otherwise, R has positive polarity.

Figure 1: Heuristics for polarity determination.

Drawing on the notion of markedness expecta-
tion we introduced at the end of Section 3.1, we
hypothesise that the lack of explicit positive polar-
ity markers will be compensated for by the pres-
ence of sentential similarity patterns between pro-
posals and responses. It follows from our descrip-
tion of relative responses (see Table 1) that they
will either semantically mirror the proposal (ac-
ceptances) or negate it (rejections). In the absence
of an explicit positive polarity marker in the pro-
posal or the response, therefore, we expect to find
some form of sentential parallelism, potentially in
both cases—when P -R polarities align, as in (9),
and when they differ, as in (10):4

3Amongst other things, this means we do not account for
the scope of negation.

4Both examples are extracted from the AMI corpus.

(9) A: It’s still it’s still working,
B: It is.

(10) A: It’s a fat cat.
B: It is not a fat cat.

According to the markedness expectation, this
type of parallelism is expected in reverse relative
responses even when polarity particles are present
as in (11) from Switchboard and in the reverse re-
sponse examples in Table 1. Hence, we conjec-
ture that parallelism will be present with higher
frequency in the reverse cases.

(11) A: They wouldn’t be able to own a house.
B: Yes, they would.

4 Experiments

In order to automatically test the extent to which
logical polarity plays a role in determining the
function of naturally occurring acceptances and
rejections, we conduct machine learning experi-
ments on dialogue corpus data. We first explain
how we create our dataset, then describe how we
devise features that encode polarity information,
and finally report the results obtained.

4.1 Datasets

We test our model on two different corpora: The
Switchboard Corpus (SWB) (Godfrey et al., 1992)
and the AMI Meeting Corpus (Carletta, 2007).
SWD is a collection of around 2400 recorded and
transcribed telephone conversations between two
dialogue participants. The speakers are provided
with a topic and then converse freely. In con-
trast, AMI contains transcriptions from around
100 hours of recorded multiparty conversations
amongst four dialogue participants who interact
face-to-face in a meeting setting. The speakers
converse freely, but they play roles (such as in-
dustrial designer or project manager) in a ficti-
tious design team whose goal is to design a re-
mote control. Therefore the dialogue is mildly
task-oriented. Both corpora have been annotated
with dialogue acts (DAs), albeit with slightly dif-
ferent DA annotation schemes: SWD is annotated
with the SWBD-DAMSL tagset (Jurafsky et al.,
1997), while AMI uses a coarser-grained tagset
but includes relations between some DAs (loosely
called adjacency pair annotations).5

5The AMI DA annotation manual is available at
http://mmm.idiap.ch/private/ami/annotation/dialogue_

acts_manual_1.0.pdf
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acceptances rejections total P -R

SWB 4534 (97%) 145 (3%) 4679
AMI 7405 (91%) 697 (9%) 8102

Table 3: Class distribution in our datasets.

We use the DA annotations to extract a
dataset of proposal-response (P -R) pairs for
each corpus as follows. To construct the SWB
dataset, we extract all utterances u annotated
as Agree/Accept or Reject that are turn-
initial and that are immediately preceded by
a turn whose last utterance u0 is annotated
as Statement-non-opinion, Statement-
opinion or Summarize/Reformulate. To
construct the AMI dataset, we extract all ut-
terances u annotated as Assessment that are
turn initial and that are linked with the re-
lations Support/Positive Assessment or
Objection/Negative Assessment to an
earlier utterance u0 that is not annotated as
Elicit Inform or Elicit Assessment (i.e.,
that is not a question). In both cases, P cor-
responds to u0 and R to the first five words
of u. We consider R an acceptance if u is
annotated as Agree/Accept in SWB or as
Support/Positive Assessment in AMI, and a
rejection if it is annotated as Reject in SWB or
as Objection/Negative Assessment in AMI.

We take the first five words of a turn-initial ut-
terance to be the most relevant ones for convey-
ing acceptance or rejection. This is motivated by
the fact that dialogue participants typically provide
evidence of understanding—and, by extension, of
agreement or disagreement—at the earliest oppor-
tunity in order to avoid misunderstandings on what
they take to be common ground (Pomerantz, 1984;
Clark, 1996). However, when extracting our P -R
pairs we retain the entire utterance u (of which R
is a prefix) in order to be able to take its length into
account in the automatic classification experiment,
as explained in the next section.

Finally, we observe that in the two corpora all
the P -R pairs where R is just a single “yeah” are
acceptances. Thus, in the terminology we intro-
duced in Section 3.2, bare “yeah” seems to be an
absolute response type, whose acceptance func-
tion is independent of the polarity of P (in contrast
to the relative response types in Table 1). Since
identification of these acceptances is trivial, we
discard them from our datasets. The final distri-
bution of acceptances and rejections in each of the

datasets is shown in Table 3. As can be seen, the
data is highly skewed, with less than 10% of P -R
pairs corresponding to rejections.

4.2 Features

We derive different types of features to test our
model. We are not interested in using large
amounts of unmotivated features, but rather in ex-
ploiting a small set of meaningful domain- and
setting-independent features that can help us to in-
vestigate the impact of logical polarity. The fea-
ture we use are summarised in Figure 2. We con-
sider several local features of the response. Most
of these features are inspired by earlier approaches
reviewed in Section 2, such as those by Galley et
al. (2004) and Misra and Walker (2013). We use
several lexical features that act as cues for accep-
tance or rejection. For instance, the presence of
“yeah” is a good cue for acceptance, while the
presence of “but” is a strong cue for rejection.
The bigram “yeah, but” is in turn a good indica-
tor for rejection—the “yeah” in such cases seems
to be an attempt at politeness (Brown and Levin-
son, 1987; Bousfield, 2008). Since rejections are
dispreferred moves, they are frequently initiated
with a hedging such as “well” or with hesitation
or stalling (Byron and Heeman, 1997). These
utterance-initial cues are aggregated into one fea-
ture. Rejections also tend to be longer than ac-
ceptances since the speaker feels the need to jus-
tify the unexpected move (Pomerantz, 1984). We
take into account the length of the entire utter-
ance containing R with three binary features.6 We
also consider less frequent semantic indicators for
acceptance and rejection, respectively, which we
group into two aggregate features that record the
presence of agreement words such as “okay” or
“correct” and contrast words such as “however”
or “although”. Given our observations regard-
ing polarity and polarity particles in Section 3, in
contrast to previous approaches we don’t include
“yes” and “no” as local lexical cues. Instead,
we add a new local feature encoding the polarity
of the response as determined by the R-polarity
heuristics in Figure 1.7

6The use of Boolean features here is motivated by our
choice of classifier, as we point out in the next subsection.
The length thresholds have been set up manually after quali-
tative examination of several examples.

7We have tested other theoretically motivated local fea-
tures, such as turn-length and number of disfluencies. The
local R features in Fig. 2 combined with the local R polarity
feature correspond to the best performing local feature set.
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Local features cannot capture the most interes-
ting aspects of logical polarity, which originate
from the interaction between the polarities of the
proposal and the response in relative response
types. To account for this, we introduce four rela-
tive P -R polarity features corresponding to the re-
sponse types described in Table 1. Finally, we in-
troduce a feature that records the presence of some
form of parallelism between P and R. As we men-
tioned at the end of Section 3.2, the markedness
expectation predicts that sentential parallelism
will occur more frequently in reverse relative re-
sponses, i.e., responses to negative proposals. The
parallelism feature targets such cases. We restrict
ourselves to strict identity between P and R of
a pronominal subject and a verb (in negative vs.
positive form).8 The feature therefore is only able
to capture examples such as (12a) but not (12b),
where anaphora resolution would be required.9

(12) a. A: But it wouldn’t be very attractive.
B: No, it would.

b. A: TVs aren’t capable of sending.
B: Yes, they are.

4.3 Results
We conducted the machine learning experiment
using BernoulliNB, the Bernoulli-distributed
Naive Bayesian classifier from scikit-learn (Pe-
dregosa et al., 2011), which outperformed sev-
eral other classifiers, including Random Forests
and a Support Vector Machine. We chose this
classifier because our main features—the relative
polarities—are Boolean and our data is highly im-
balanced.10 Given the high relative frequency of
acceptances over rejections in our datasets (see
Table 3), measuring accuracy or retrieving accep-
tances would yield very good results. Hence, as
discussed in section 2, we believe that the most
discerning task is the retrieval of rejections. Pre-
cision, recall and F -scores for this task, with the
classifier trained on different combinations of fea-
ture sets, are shown in Table 4. We developed the
classifier on the whole AMI dataset, as the small
number of rejections makes splitting up the cor-
pus into a development and a test set infeasible.
The SWB corpus was exclusively used for testing.
In the AMI dataset we tested the classifier with

8We use the NLTK POS tagger to implement this feature
(Bird et al., 2009).

9Given the high frequency of pronominal forms in spoken
dialogue, pronoun identity turns out to be reasonably useful.

10The scikit-learn documentation indicates that this classi-
fier is particularly suited for sparse data and Boolean features.

LOCAL R FEATURES

Length of utterance containing R in number of words:

• Three features: l>2, l>12, l>24

Acceptance Indicators:
• R contains yeah
• R contains any of absolutely, okay, accept, agree, cor-

rect, either, true, sure, not preceded by not

Rejection Indicators:
• R contains but
• R contains the bigram ‘yeah, but’
• R starts with any of well, oh, uh, mm
• R contains any of actually, however, though, although

LOCAL R POLARITY FEATURE

• positive or negative, according to R-polarity in Fig. 1

RELATIVE P -R POLARITY FEATURES (cf. Fig. 1)
• positive–positive
• positive–negative
• negative–negative
• negative–positive

RELATIVE P -R PARALLELISM FEATURE

One of the following patterns appears in P -R, where a
pronoun p, an auxiliary verb aux and a main verb v are
identical in P and R:
• ‘p aux not’ – ‘p aux’ not followed by {n’t| not}
• ‘p (aux) not v’ – ‘p v’
• ‘I do{n’t| not} {think|know} {that|if} p aux’ –

‘p aux’ not followed by {n’t| not}

Figure 2: Feature types (all features are Boolean).

10-fold cross-validation and in the SWB dataset
with 5-fold cross-validation, due to the more lim-
ited amount of rejections in this corpus. Also, due
to the lack of training data, the more specific Rel-
ative P -R Parallelism feature could not be applied
to the SWB corpus.

For comparison we report the results of a sim-
ple unigram baseline: Each content word that oc-
curs at least 5 times in the dataset is used as a
Boolean feature (occurrence vs. non-occurrence).
This achieves F -scores of 31.66 in AMI and 16.63
in SWB. As a more substantial baseline we con-
sider a system that uses only local features of the
response, including local polarity. This feature-
set is expected to capture relatively well the ac-
cepting/rejecting function of absolute responses
and default relative responses, since their function
aligns with their local polarity. This yields an F -
score of 52.24 in AMI and of 33 in SWB. The Rel-
ative Polarity features were conceived to reduce
classification confusion grounded in reverse polar-
ity: If only local features are considered, a reverse
polarity acceptance would appear to be a rejection,
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AMI SWB
Feature sets Precision Recall F1 Precision Recall F1

Unigrams 35.61% 28.97% 31.66 24.20% 12.93% 16.63
Local + Local Polarity 44.13% 64.12% 52.24 20.80% 82.46% 33.00
Local + Relative Polarity 58.08% 61.63% 59.75 49.12% 72.93% 58.49
Local + Relative Pol. + Parallelism 58.23% 64.04% 60.96 n/a n/a n/a

Table 4: Precision, Recall, and F -scores for rejection identification.

while a reverse polarity rejection would seem to
be an acceptance. Moving from local to relative
polarity features should therefore reduce this con-
fusion. Indeed, in both corpora the precision is in-
creased substantially (from 44.13% to 58.08% in
AMI and from 20.8% to 49.12% in SWB), caus-
ing a great increase in F -scores: 59.75 in AMI
and 58.49 in SWB (paired t-tests show all these
increases are significant, with p < 0.001).

However, in both datasets we observe a reduc-
tion in recall when moving from local to relative
polarity. We believe that this is in part due to the
relative polarity features ignoring some absolute
uses of polarity particles, which may have been
captured by Local Polarity.11 The Relative Paral-
lelism feature should be able to help in such cases.
For instance, in example (12a) B’s utterance would
be assigned negative polarity and therefore the rel-
ative polarity features would contribute to clas-
sify it as an acceptance (since in the large major-
ity of cases negative-negative P -R pairs do cor-
respond to acceptances). In this case, however,
“no” is used absolutely, i.e., as a rejection. Due to
the markedness expectation, this is likely to show
up in the form of contrastive parallelism, which
we can—at least in part—capture with our sim-
ple feature. Indeed, adding this feature to the AMI
dataset raises recall back to baseline level: 64.04%
vs. 61.63% (p < 0.005). This, in turn, increase the
AMI F -score from 59.75 to 60.96 (p < 0.05).

5 Conclusions
The overall aim of this paper has been to investi-
gate the influence of logical polarity in interpret-
ing utterances as acceptance or rejection moves
in dialogue. We have built on recent work on
the semantics of negation and polarity particles by
Cooper and Ginzburg (2011; 2012) and Farkas and
Roelofsen (2013) to develop an approach to polar-
ity that is theoretically motivated and that can be
computationally tested on corpus data. Although

11We note that the featureset Local + Local Polarity + Rel-
ative Polarity does not outperform Local + Local Polarity in
the classification experiments. We believe this indicates that
polarity is indeed mostly a contextual phenomenon.

there is a substantial amount of previous work on
automatically detecting agreement and disagree-
ment in dialogue corpora, to our knowledge the
role of logical polarity had not been explicitly in-
vestigated before.

Our focus has been on relative responses, i.e.,
responses where simply taking into account clues
from the utterance to be classified is insufficient—
or can even be misleading—to infer acceptance or
rejection. We have argued that relative responses
require taking into account how the polarities of
the response and of the current proposal under dis-
cussion interact, and have put forward a model that
captures such interaction. Our experiments show
that the use of information on relative polarity sub-
stantially helps to distinguish acceptances from re-
jections. This indicates, on the one hand, that our
model does a reasonably good job at capturing this
phenomenon, and on the other hand, that relative
polarity responses are not merely a theoretically
interesting phenomenon but are in fact widespread
in actual dialogue.

There is certainly room for improving the im-
plementation of our heuristics, for instance by
using finer-grained semantic and syntactic infor-
mation: e.g., we cannot currently capture accep-
tance/rejection of a subclause, implicature rejec-
tions, rhetorical questions, nor sarcasm—all of
which affect the recall of our system. Interestingly,
the classification experiments yield very similar
results in the two corpora with the Local + Relative
Polarity feature set—F -scores of 59.75 in AMI
and 58.49 in SWB. This indicates that our theo-
retical observations are applicable independently
of setting, domain and number of speakers. There
seem to be some differences across the two cor-
pora, however, since the impact of relative polarity
information is much higher in SWB than in AMI
(the F -score goes up around 7 in AMI when mov-
ing from local to relative polarity, while in SWB it
increases by 25). A deeper investigation into the
shortcomings of our implemented model and of
where these shortcomings affect AMI differently
than SWB are issues we leave for future work.
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Abstract

Recognition of causality is important to
achieve natural language discourse under-
standing. Previous approaches rely on
shallow linguistic features. In this work,
we propose to identify causality in verb-
noun pairs by exploiting deeper seman-
tics of nouns and verbs. Particularly, we
acquire and employ three novel types of
knowledge: (1) semantic classes of nouns
with a high and low tendency to encode
causality along with information regard-
ing metonymies, (2) data-driven seman-
tic classes of verbal events with the least
tendency to encode causality, and (3) ten-
dencies of verb frames to encode causal-
ity. Using these knowledge sources, we
achieve around 15% improvement in F-
score over a supervised classifier trained
using linguistic features.

1 Introduction

The identification of cause-effect relations is crit-
ical to achieve natural language discourse under-
standing. Causal relations are encoded in text us-
ing various linguistic constructions e.g., between
two verbs, a verb and a noun, two discourse seg-
ments, etc. In this research, we focus on identify-
ing causality encoded between a verb and a noun
(or noun phrase). For example, consider the fol-
lowing example:
1. At least 1,833 people died in the hurricane.

In example (1), the verb-noun phrase pair
“died”-“the hurricane” encodes causality where
event “died” is the effect of “hurricane” event.

Previously several approaches have been pro-
posed to identify causality between two verbs
(Bethard and Martin, 2008; Riaz and Girju, 2010;
Do et al., 2011; Riaz and Girju, 2013) and dis-
course segments (Sporleder and Lascarides, 2008;

Pitler and Nenkova, 2009; Pitler et al., 2009).
However, the problem of identifying causality in
verb-noun pairs has not received a considerable
attention. For example, Do et al. (2011) have
studied this task but they worked only with a list
of predefined nouns representing events. In this
work, we focus on the linguistic construction of
verb-noun (or noun phrase) pairs where noun can
be of any semantic type.

Traditional approaches for identifying causal-
ity mainly employ linguistic features (e.g., lexical
items, part-of-speech tags of words, etc.) in the
framework of supervised learning (Girju, 2003;
Sporleder and Lascarides, 2008; Bethard and Mar-
tin, 2008; Pitler and Nenkova, 2009; Pitler et al.,
2009) and do not involve deeper semantics of lan-
guage. Analysis of such approaches by Sporleder
and Lascarides (2008) have revealed that the lin-
guistic features are not always sufficient to achieve
a good performance on the task of identifying se-
mantic relations including causality. In this work,
we propose a model that deeply processes and
acquires the specific semantic information about
the participants of a verb-noun phrase (v-np) pair
(i.e., noun and verb semantics) to identify causal-
ity with a better performance over the baseline
model depending merely on shallow linguistic fea-
tures.

The work in this paper builds on our recent work
reported in Riaz and Girju (2014). In that previ-
ous model, we identified the semantic classes of
nouns and verbs with a high and low tendency to
encode causation. For example, a named entity
such as LOCATION may have the least tendency
to encode causation. We leveraged such informa-
tion about nouns to filter false positives. Sim-
ilarly, we utilized the TimeBank’s (Pustejovsky
et al., 2006) classification of verbal events (i.e.,
Occurrence, Perception, Aspectual, State, I State,
I Action and Reporting) and their definitions to
claim that the reporting events (e.g., say, tell, etc.)
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just describe and narrate other events instead of
encoding causality with them. We proposed an In-
teger Linear Programming (ILP) model (Roth and
Yih, 2004; Do et al., 2011) to combine noun and
verb semantics with the decisions of a supervised
classifier which only relies on linguistic features.

In this paper, we extend our previous model by
acquiring and exploiting the following three novel
types of knowledge:
1. We learn the information about tendencies of

various verb frames to encode causation. For
example, our model identifies if the subject of
verb “destroy” (“occur”) has a high (low) ten-
dency to encode causation. Such information
helps gain performance by exploiting causal
semantics of each verb frame separately. We
also learn and incorporate information about
the verb frames in general e.g., how likely it is
for the subject of any verb to encode causation
with its verb.

2. In Riaz and Girju (2014), we utilized the Time-
Bank’s definition of reporting events to argue
that such events have the least tendency to en-
code causation. Instead of relying on human
judgment we now introduce a data intensive ap-
proach to identify the TimeBank’s classes of
events with the least tendency to encode cau-
sation.

3. Although, information about the nouns with
the least tendency to encode causation helps to
filter false positives it can lead to false nega-
tives when metonymic readings are associated
with such nouns. Therefore, we introduce a
metonymy resolver on top of our current model
to avoid false negatives.

We provide details of our previously proposed
model in section 3. We introduce new model and
discuss its performance in sections 4 and 5. Sec-
tion 6 concludes the current research.

2 Relevant Work

In Natural Language Processing (NLP), re-
searchers are showing lots of interest in the task
of identifying causality due to its various applica-
tions e.g., question answering (Girju, 2003), sum-
marization (Chklovski and Pantel, 2004), future
prediction (Radinsky and Horvitz, 2013), etc.

Several approaches have been proposed to iden-
tify causality in pairs of verbal events (Bethard
and Martin, 2008; Riaz and Girju, 2010; Do et
al., 2011; Riaz and Girju, 2013) and discourse

segments (Sporleder and Lascarides, 2008; Pitler
and Nenkova, 2009; Pitler et al., 2009). However
causality a pervasive relation of language can be
encoded via various linguistic constructions. For
example, verbs and nouns are the key components
of language to represent events. Therefore in this
work we focus on identifying causality in verb-
noun pairs.

Previously researchers have followed the path
of utilizing linguistic features in the framework
of supervised learning (Girju, 2003; Bethard and
Martin, 2008; Sporleder and Lascarides, 2008;
Pitler and Nenkova, 2009; Pitler et al., 2009).
Though linguistic features are important but other
sources of knowledge are also critically required
to achieve progress on the current task.

In recent years, researchers have proposed un-
supervised metrics to identify causality between
events (Riaz and Girju, 2010; Do et al., 2011).
For example, Riaz and Girju (2010) and Do et
al. (2011) introduced unsupervised metrics to
learn causal dependencies between events. These
metrics mainly depend on probabilities of co-
occurrences of events and do not distinguish well
causality from any other types of correlation (Riaz
and Girju, 2013). In order to overcome this prob-
lem Riaz and Girju (2013) proposed some ad-
vanced metrics which combine probabilities of co-
occurrences of events with the supervised esti-
mates of cause and non-cause relations.

Considering the importance of employing rich
sources of knowledge other than linguistic features
for the current task, we have recently proposed a
model that incorporates semantic classes of nouns
and verbs with a high and low tendency to encode
causation (Riaz and Girju, 2014). In this work, we
exploit information about verb frames, data-driven
verb semantics and metonymies to achieve more
progress on our recent work.

3 Model for Recognizing Causality

In this section we provide an overview of our pre-
vious model (Riaz and Girju, 2014) for identifying
causality in v-np pairs where v (np) stands for verb
(noun phrase). This model works in the following
two stages: (1) A supervised classifier is used to
make binary predictions (i.e., the label cause (C)
or non-cause (¬C)) employing linguistic features,
and (2) noun and verb semantics are then com-
bined with the predictions of supervised classifier
in the ILP framework to identify causality.
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3.1 Supervised Classifier

To the best of our knowledge, there is no data
set of v-np pairs with the labels C and ¬C avail-
able to us. For the current task we employ some
heuristics to extract a training corpus of v-np pairs
using FrameNet (Baker et al., 1998). FrameNet
provides frame elements for the verbs and hand
annotated examples (aka annotations) of these
frame elements. Consider the following annota-
tion from FrameNet “They died [Causefrom shot-
gun wounds]” where the frame element “Cause”
is given for the verb “died”. We remove the prepo-
sition “from” from the above annotation of frame
element to acquire an instance of v-np (i.e., died-
shotgun wounds) pair. We extract all annotations
for verbs from FrameNet in which a frame element
must contain at least one noun and no verb in it.
We found such annotations for 729 distinct frame
elements. We manually assigned the labels C and
¬C to these frame elements. Cause, Purpose, Rea-
son, Result, Explanation are some examples of the
frame elements to which we assigned the label C.
Using the above mentioned assignments of labels
C and ¬C to frame elements, we have acquired
a training corpus of 4, 141 (77, 119) C (¬C) in-
stances from FrameNet. In order to avoid class im-
balance while training we employ an equal num-
ber of instances of both labels.

Due to space constraints, we refer the reader to
Appendix A for the details of linguistic features
to build the supervised classifier. We employ both
Naive Bayes (NB) and Maximum Entropy (Max-
Ent) algorithms to acquire predictions and prob-
abilities of assignments of labels. We set up the
following ILP using these probabilities:

Z1 = max
∑

v-np∈I

∑
l∈L1

x1(v-np, l)P (v-np, l) (1)

∑
l∈L1

x1(v-np, l) = 1 ∀ v-np ∈ I (2)

x1(v-np, l) ∈ {0, 1} ∀ v-np ∈ I ∀l ∈ L1 (3)

Here, L1 = {C,¬C}, I is the set of all v-np pairs.
x1(v-np, l) is a binary decision variable set to 1
only if the label l ∈ L1 is assigned to a v-np pair
and only one label out of |L1| choices can be as-
signed to a v-np pair (see constraints 2 and 3). In
particular, we maximize the objective function Z1

(1) assigning the labels l ∈ {L1} to v-np pairs de-
pending on the probabilities of assignments (i.e.,
P (v-np, l)) obtained through the supervised clas-
sifier.

3.2 Noun and Verb Semantics
We automatically acquire and employ semantic
classes of nouns and verbs with a high and low
tendency to encode causation. Such information
helps to reduce errors in predictions of the super-
vised classifier.

We derive two semantic classes of nouns for our
purpose i.e., Cnp and ¬Cnp where the class Cnp

(¬Cnp) represents the noun phrases with a high
(low) tendency to encode causation. For exam-
ple, a noun phrase expression for a location has
the least tendency to encode causation unless a
metonymic reading is associated with it. In or-
der to acquire these classes, we extract annotations
of 936 distinct frame elements from FrameNet
in which a frame element must contain at least
one noun and no verb in it. These annotations
of frame elements roughly represent instances of
noun phrases (np). We manually assigned the la-
bels Cnp and ¬Cnp to the frame elements. For
example, we assign the label ¬Cnp to the frame
element “Place” which represents a location (see
Appendix B for some examples of the frame ele-
ments with labels Cnp and ¬Cnp). We also fol-
low the approach similar to Girju and Moldovan
(2002) to employ WordNet senses of nouns to ac-
quire more instances of the classes Cnp and ¬Cnp

(see Appendix B for the details). We have ac-
quired a total of 280, 212 instances of np (50%
for each of the two classes i.e., Cnp and ¬Cnp)
using both FrameNet and WordNet. Using these
instances, we build a supervised classifier to iden-
tify the semantic class of np (see Appendix B for
the details of features to build the classifier). We
incorporate the knowledge of semantic classes of
nouns by making the following additions to ILP:

Z2 = Z1 +
∑

v-np∈I−M

∑
l∈L2

x2(fnp(v-np), l)P (fnp(v-np), l)

(4)∑
l∈L2

x2(fnp(v-np), l) = 1 ∀ v-np ∈ I −M (5)

x2(fnp(v-np), l) ∈ {0, 1} ∀ v-np ∈ I −M (6)
∀l ∈ L2

x1(v-np,¬C)− x2(fnp(v-np),¬Cnp) ≥ 0 (7)
∀ v-np ∈ I −M

Here L2 = {Cnp,¬Cnp}. fnp(v-np) is a func-
tion which returns np of a v-np pair. M is the set
of v-np pairs with metonymic readings associated
with np. Currently, this set is empty and in sec-
tion 4.3 we introduce a metonymy resolver to pop-
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ulate this set. x2(fnp(v-np), l) is a binary decision
variable set to 1 only if the label l ∈ L2 is assigned
to np and only one label out of |L2| choices can
be assigned to np (see constraints 5 and 6). Con-
straint 7 enforces that if an np belongs to the class
¬Cnp then its corresponding v-np pair is assigned
the label ¬C. In particular, we maximize the ob-
jective function Z2 (4) subject to the constraints
introduced till now. For each v-np pair, we predict
the semantic class of np using our supervised clas-
sifier for the labels l ∈ L2 and set the probabilities
– i.e., P (fnp(v-np), l) = 1, P (fnp(v-np), {L2} −
{l}) = 0 if the label l ∈ L2 is assigned to np. Also
before running our supervised classifier, we run a
named entity recognizer (Finkel et al., 2005) and
assign the label ¬Cnp to all noun phrases identi-
fied as named entities. We also determine associa-
tion of metonymies with the noun phrases identi-
fied as named entities.

For the current task we also acquire two seman-
tic classes of verbs i.e., Cev and ¬Cev where the
class Cev (¬Cev ) contains the verbal events with a
high (low) tendency to encode causation. In order
to derive these two classes we exploit the Time-
Bank corpus (Pustejovsky et al., 2003) which pro-
vides seven semantic classes of verbal events – i.e.,
Occurrence, Perception, Aspectual, State, I State,
I Action and Reporting. According to the defini-
tions of these classes, we claim that the report-
ing events (e.g., say, tell, etc.) just describe and
narrate other events instead of encoding causality
with them. Using this claim, we consider that all
instances of reporting verbal events of TimeBank
belong to the class ¬Cev and the rest of instances
of verbal events lie in the class Cev . After ac-
quiring instances of the classes Cev and ¬Cev , we
build a supervised classifier for these two classes.
We use the features introduced by Bethard and
Martin (2006) to build this classifier (see Bethard
and Martin (2006) for the details). Employing pre-
dictions and probabilities of assignments of the la-
bels Cev and ¬Cev we add the following two con-
straints to ILP: (1) if the event represented by v
belongs to ¬Cev then the corresponding v-np pair
must be labeled with ¬C and (2) if a v-np pair is
a causal pair then the event represented by v must
be labeled with Cev .

4 Enriched Verb and Noun Semantics

This section describes the novel contributions of
this work i.e., identification of semantics of verb

frames, semantic classes of verbal events via a data
intensive approach and association of metonymic
readings with noun phrases to identify causality
with a better performance.

4.1 Verb Frames

We introduce a method to acquire tendencies of
various verb frames to encode causation. Consider
the following two examples to understand the ten-
dencies of verb frames of form {v, gr} to encode
causation where v is the verb and gr is the gram-
matical relation of np with the verb v.
1. The Great Storm of October 1987 almost totally de-

stroyed the eighty year old pinetum at Nymans Garden

in Sussex. (Cause (C))
2. The explosion occurred in the city’s main business area.

(Non-Cause (¬C))
In above two examples the nps “The Great

Storm of October 1987” and “The explosion” have
the grammatical relations of subject with the verbs
“destroyed” and “died”. In examples (1) and (2)
the verb frames {destroy, subject} and {occur,
subject} encode cause and non-cause relations.
These examples reveal that each verb frame has
its own tendency to encode causation. This type
of knowledge helps gain performance by exploit-
ing the semantics of each verb frame separately.

We leverage FrameNet annotations to acquire
such type of knowledge. We collect all annota-
tions of verbs from FrameNet and assign the la-
bels C and ¬C to the frame elements as discussed
in section 3.1. In FrameNet, example (1) is given
as follows:
3. [Cause The Great Storm of October 1987] [Degree almost

totally] destroyed [Undergoer the eighty year old pinetum

at Nymans Garden in Sussex].

According to our assignments of labels C and
¬C to the frame elements, example (1) is given
as “[C The Great Storm of October 1987] [¬C al-
most totally] destroyed [¬C the eighty year old
pinetum at Nymans Garden in Sussex].”. After ac-
quiring instances of the labels C and ¬C from ex-
ample (1), we populate the fields of a knowledge
base of verb frames (see Table 1). Fields of this
knowledge base are {v, gr}, count({v, gr},C) and
count({v, gr},¬C). gr is the dependency relation
of the frame element with the verb v. We use Stan-
ford’s dependency parser (Marneffe et al., 2006)
to collect dependency relations. count({v, gr},C)
(count({v, gr},¬C)) is the count of the label C
(¬C) of the frame {v, gr}. As shown in Table 1,
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for the frame element “The Great Storm of Octo-
ber 1987”, the word “Storm” has the dependency
relation of “nsubj” with the verb “destroy”. If
there exists more than one dependency relations
between the frame element and its verb then we
choose the very first relation in the text order. Ac-
cording to the counts given in Table 1, {destroy,
nsubj} has more tendency to encode a cause re-
lation than the non-cause one. We have acquired
7,156 and 114,898 instances of the labels C and
¬C from FrameNet for populating the knowledge
base of verb frames. We compute tendencies of
verb frames to encode causality using the follow-
ing scores:

S({v, gr}, l) = S1({v, gr}, l)× S2({*, gr}, l) (8)

S1({v, gr}, l) = count({v,gr},l)
count({v,gr},l)+count({v,gr},L1−{l})

S2({*, gr}, l) = count({*,gr},l)
count({*,gr},l)+count({*,gr},L1−{l})

Counts of first component (S1) can be taken
from the knowledge base of verb frames of form
{v, gr}. The second component (S2) with counts
count({*, gr}, l) and count({*, gr}, L1 − {l})
captures tendencies of verb frames in general.
For example, what is the tendency of any subject
to encode causality with its verb i.e., the score
S2({∗, nsubj},C). We populate the knowledge
base of Table 1 with equal number of C and ¬C
instances to calculate counts for S2. We make the
following additions to ILP to incorporate informa-
tion about verb frames:

Z3 = Z2 +
∑

v-np∈I∧
g(v-np)∈KB∧
fnp(v-np)∈Cnp

∑
l∈L1

x3(g(v-np), l)S(g(v-np), l)

(9)∑
l∈L1

x3(g(v-np), l) = 1 ∀
v-np∈I∧

g(v-np)∈KB∧
fnp(v-np)∈Cnp

(10)

x3(g(v-np), l) ∈ {0, 1} ∀l ∈ L1,∀
v-np∈I∧

g(v-np)∈KB∧
fnp(v-np)∈Cnp

(11)

x3(g(v-np), l) ≤ x1(v-np, l) ∀l ∈ L1, (12)

∀
v-np∈I

∧g(v-np)∈KB
∧ fnp(v-np)∈Cnp

x1(v-np, l) ≤ x3(g(v-np), l) ∀l ∈ L1, (13)

∀
v-np∈I∧

g(v-np)∈KB∧
fnp(v-np)∈Cnp

Here,KB is the knowledge base of verb frames
and g(v-np) is the function which returns the verb
frame i.e., {v, gr}. This function returns NULL
value if there is no grammatical relation between
v and np in an instance. The above changes in
ILP are only applicable for the v-np pairs with

{v, gr} count({v, gr},C) count({v, gr},¬C)
{destroy,nsubj} 1 0
{destroy,advmod} 0 1
{destroy,dobj} 0 1
[C The Great Storm of October 1987] [¬C almost totally] de-
stroyed [¬C the eighty year old pinetum at Nymans Garden in
Sussex].

Table 1: A knowledge base of verb frames. This
knowledge base is populated using the instances
of C and ¬C labels given in this table.

g(v-np) ∈ KB and np identified as of class Cnp

because we have already filtered the cases of np ∈
¬Cnp in section 3.2. x3(g(v-np), l) is a binary de-
cision variable set to 1 only if the label l ∈ L1

is assigned to g(v-np) and only one label out of
|L1| choices can be assigned to g(v-np) (see con-
straints 10 and 11). We add information about verb
frames using constraints 12 and 13. These con-
straints enforce the predictions of the supervised
classifier of causality (section 3.1) to be consis-
tent with the predictions using tendencies of verb
frames (i.e., score S({v, gr}, l)). We maximize
objective function (9) subject to the above con-
straints. We remove those {v, gr} from KB which
have count({v, gr},C)+count({v, gr},¬C) < 5
to avoid wrong predictions based on the small
counts of verb frames.

4.2 Data-driven Verb Semantics

In section 3.2 we considered that reporting events
belong to the class ¬Cev with the least tendency
to encode causation using the definition of these
events in the TimeBank corpus. Instead of re-
lying on definitions of events we now introduce
a data intensive approach to automatically iden-
tify the class ¬Cev of verbal events. In order
to identify this class we extract training instances
of verbal events encoding C and ¬C relations.
Verbal events encode cause-effect relations using
verb-verb (e.g., Five shoppers were killed when a
car blew up.) and verb-noun linguistic construc-
tions. Therefore for the current purpose we use
the following two types of training instances: (A)
a training corpus of 240K instances of verb-verb
(vi-vj) pairs encoding C and ¬C relations (named
as Trainingvi-vj) (we refer the reader to Riaz and
Girju (2013) for the details of this training corpus)
and (B) the training corpus v-np instances intro-
duced in section 3.1 (named as Trainingv-np).

Following is the procedure to derive V¬C ⊆
V where V={Occurrence, Perception, Aspectual,
State, I State, I Action, Reporting} and the set
V¬C contains the TimeBank’s semantic classes
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with the least tendency to encode a cause relation.
1. Input: Training corpus, V

2. Output: Set V¬C

3. For each training instance k employ the supervised clas-
sifier of Bethard and Martin (2006) to do the following:

(a) if k ∈ Trainingvi-vj then identify the semantic class
(sc) of both events represented by both verbs vi and
vj and add this information to a set i.e., T = T ∪
(kvi , scvi , l) ∪ (kvj , scvj , l) where scvi is the se-
mantic class of event of the verb vi of instance k
and l ∈ {C,¬C}.

(b) Else if k ∈ Trainingv-np then identify the semantic
class (sc) of event represented by the verb v and set
T = T ∪ (kv, scv, l).

4. Using results of step 3, calculate tendency of each se-
mantic class sc ∈ V to encode non-causality (i.e.,
score(sc,¬C)) as follows:

score(sc,¬C) = score1(sc,¬C)× score2(sc,¬C)

score1(sc,¬C) = (
count(sc,¬C)

count(sc)
− count(sc,C)

count(sc)
)

score2(sc,¬C) = (
count(sc,¬C)

count(¬C)
− count(sc,C)

count(C)
)

where count(m, n) is the number of instances of verbal
events with the labels m and n and count(m) is the number
of instances of verbal events with the label m.

5. Acquire a ranked list of semantic classes listsc = [sc1, sc2,
. . . scm] s.t. score(sci,¬C) ≥ score(sci+1,¬C). From
this list we remove the class sci if either score1(sci, ¬c)
< 0 or score2(sci, ¬c) < 0.

. The following steps are used to determine the cutoff
class sci ∈ listsc s.t. the semantic classes {sc1, sc2, . . .,
sci-1} have the least tendency to encode causation.

6. resultsc−1 = 0 and resultsc0 = 0.

7. Remove sci from the front of listsc and do the following:
(c) Predict the label (l) ¬C for all tuples of form

(m, sc, l) ∈ T if sc ∈ {sc1, sc2, . . ., sci} and pre-
dict C for the rest of the tuples.

(d) Using predictions from step (c), calculate the
resultsci = F1-score × accuracy for the label l ∈
{C,¬C}.

(e) If resultsci−resultsci-1 < resultsci-1−resultsci-2
then output {sc1, sc2, . . ., sci−1}

(f) Else go to step 7.

Using the above procedure, we obtain the
sets {Aspectual} and {Reporting, I State} with
Trainingvi-vj and Trainingv-np corpora. We con-
sider that the Aspectual, Reporting and I State
events of the TimeBank corpus belong to the class
¬Cev and rest of the events lie in Cev . Using these
semantic classes we apply the constraints intro-
duced in section 3.2.

4.3 Metonymy Resolution:
Metonymy resolution is the task to determine if a
literal or non-literal reading is associated with a

{v, gr} count({v, gr},Cnp) count({v, gr},¬Cnp)
{kill,nsubj} 1 0
{kill,dobj} 0 1
[CnpPissed off Angelus] just kills [¬Cnpme]

Table 2: A knowledge base of verb frames. This
knowledge base is populated using the instances
of Cnp and ¬Cnp labels given in this table.

natural language expression (Markert and Nissim,
2009). Consider the following example:
4. The United States has killed Osama bin Laden and has

custody of his body. (Cause (C))
In example (4) “The United States” refers to a

non-literal reading i.e., the event of “raid in Ab-
bottabad on May 2, 2011 by the United States”
rather than merely referring to a literal sense i.e.,
a country. The association of non-literal reading
with “The United States” results in killing event.
Previously, researchers have worked with hand-
annotated selectional restrictions violation for this
task (Markert and Nissim, 2009). In the exam-
ple (4) a country cannot “kill” someone and thus
a metonymic reading is associated with it. In this
work we identify association of metonymies with
noun phrases via verb frames and prepositions as
explained below in this section.

In the first part of our approach we employ
violations of tendencies of verb frames to iden-
tify if a non-literal reading is associated with a
noun phrases. Particularly, we build a knowledge
base of verb frames using Cnp and ¬Cnp classes
as discussed in section 4.1. Consider the knowl-
edge base given in Table 2 populated using the
following FrameNet annotations “[StimulusPissed
off Angelus] just kills [Experiencerme].” with as-
signments of labels Cnp and ¬Cnp to the frame
elements. We populate the knowledge base using
only those FrameNet annotations in which a frame
element does not contain a verb.

Now we introduce our method to identify the
association of non-literal reading with the “The
United States” in example (4). The supervised
classifier predicts the class ¬Cnp for the np “The
United States”. However, in the current state
of knowledge base (Table 2) P({destroy, nsubj},
Cnp) > P({destroy, nsubj}, ¬Cnp) where P is
the probability. The prediction of ¬Cnp for “The
United States” violates the above probabilities.
Considering this violation, we predict the associa-
tion of metonymy with np.

In the second part of our approach we iden-
tify tendencies of prepositions to encode causation
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and use violation of these tendencies to identify
metonymies. For this purpose, we use the training
corpus of v-np pairs with 4, 141 C and 77, 119 ¬C
training instances (see section 3.1). We employ
only those training instances in which a preposi-
tion appears between v and np and there appears
no verb between them. From these instances, we
acquire a set of prepositions that appear between
v and np. Using this set of prepositions (PR) as
input to the following procedure, we acquire a set
of prepositions (PRC) with the highest tendency
to encode causation:
1. Input: Training Corpus of v-np pairs, PR

2. Output: PRC

3. Calculate tendency of each preposition pr ∈ PR to en-
code causality (i.e., score(pr,C)) as follows:

score(pr,C) = score1(pr,C)× score2(pr,C)

score1(pr,C) = (
count(pr,C)

count(pr)
− count(pr,¬C)

count(pr)
)

score2(pr,C) = (
count(pr,C)

count(C)
− count(pr,¬C)

count(¬C)
)

4. Acquire a ranked list of prepositions listpr = [pr1, pr2, . . .
prm] s.t. score(pri,C) ≥ score(pri+1,C). From this
list we remove pri if either score1(pri, C) or score2(pri,
C) < 0.

5. resultpr−1 = 0, resultpr0 = 0

6. Remove pri from the front of the listpr and do the follow-
ing:

(a) Predict the label C for all v-np training instances
with pr ∈ {pr1, pr2, . . ., pri} and assign the label
¬C to the rest of the instances.

(b) Using predictions from step (a) calculate the
resultpri = F1-score × accuracy.

(c) If resultpri -resultpri-1 < resultpri-1 -resultpri-2 then
output {pr1, pr2, . . ., pri−1}.

(d) Else go to step 6.

The above procedure outputs the set PRC =
{for, by}. Now we introduce method to identify
association of non-literal reading for the example
“All weapon sites in Iraq were destroyed by the
United States” where “the United States” ∈ ¬Cnp

as identified by the supervised classifier. However,
the preposition “by” has a high tendency to en-
code causation and thus “the United States” may
encode causation. Therefore, there is a possibil-
ity that this noun phrase has a non-literal sense
attached to it which results in encoding causality.
Using this method, we predict metonymies only
for the v-np instances where preposition appears
between v and np and there appears no verb be-
tween them. If any of two methods of metonymy
resolution predicts the association of metonymy
with np then we add v-np to the set M used in
ILP (see section 3.2).

5 Evaluation and Discussion

In this section we present experiments and discus-
sion on the performance achieved for the current
task. In order to evaluate our model, we generated
a test set of instances of v-np pairs. For this pur-
pose, we collected three wiki articles on the topics
of Hurricane Katrina, Iraq War and Egyptian Rev-
olution of 2011. We apply a part-of-speech tagger
and a dependency parser on all sentences of these
three articles (Toutanova et al., 2003; Marneffe et
al., 2006). We extracted all v-np pairs from each
sentence of these articles. For each of the these
three articles, we selected first 500 instances of v-
np pairs. Two annotators were asked to provide the
labels C and ¬C to the instances of v-np pairs us-
ing the annotation guidelines from Riaz and Girju
(2010). We have achieved a 0.64 kappa score for
the human inter-annotator agreement on a total of
1,500 v-np instances. This results in a total of
1,365 instances of v-np pairs with 11.86% C pairs.

In this section, we present performance of the
following models (see Table 3):
1. Baseline: NB and MaxEnt (McCallum, 2002)

supervised classifiers using only the shallow
linguistic features (see section 3.1).

2. Basic noun and verb semantics: ILP with
the addition of semantic classes of nouns
without metonymy (denoted by +N!M) and
the addition of semantic classes of verbs
where ¬Cev={(R)eporting events} (denoted by
+N!M+V{R}). These models represent the
work proposed in Riaz and Girju (2014) (sec-
tion 3).

3. Noun semantics with metonymies: ILP
with the addition of noun semantics involv-
ing metonymies resolved via verb frames (de-
noted by +NM1), metonymies resolved via verb
frames {v, gr} where gr ∈ GR = {csubj, csub-
jpass, nsubj, nsubjpass, xsubj, dobj, iobj, pobj,
agent} a set of core dependency relations of
subjects and objects (denoted by +NM1GR

) and
metonymies resolved via both verb frames and
prepositions (denoted by +NM1GR

+M2).
4. Verb frames and data-driven verb seman-

tics: ILP with the addition of information about
verb frames (denoted by +NM+VF where M =
M1GR + M2), data-driven verb semantics i.e.,
¬Cev ={(A)spectual, (R)eporting, (I) (S)tate
events} (denoted by +NM+V{A,R,IS}) and both
verb frames and data-driven verb semantics
(denoted by +NM+VF+V{A,R,IS})
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S B +N! M +N! M+V{R} +NM1 +NM1GR
+NM1GR + M2 +NM+VF +NM+V{A,R,IS} +NM+VF +V{A,R,IS}

A 28.86 71.86 73.40 71.35 71.42 71.64 72.96 75.16 76.19
P 13.52 26.18 27.21 26.29 26.34 27.54 28.39 29.93 30.82
R 92.59 75.30 74.07 78.39 78.39 85.18 83.95 81.48 80.86
F 23.60 38.85 39.80 39.37 39.44 41.62 42.43 43.78 44.63
A 61.46 80.73 81.17 80.65 80.73 81.02 81.39 81.75 82.05
P 19.46 32.02 32.72 32.41 32.52 34.09 34.66 35.25 35.64
R 71.60 55.55 55.55 58.02 58.24 64.19 64.19 64.19 63.58
F 30.60 40.63 41.18 41.59 41.68 44.53 45.02 45.51 45.67

Table 3: Performance of (B)aseline, +N!M, +N!M+V{R}, +NM1 , +NM1GR
, +NM1GR

+M2 , +NM+VF,
+NM+V{A,R,IS} and +NM+VF+V{A,R,IS} (see text for details) in terms of (S)cores of (A)ccuracy,
(P)recision, (R)ecall, (F)-score. The row 1 (2) of this table presents results over NB (MaxEnt) base-
line supervised classifier, respectively.

Table 3 shows that MaxEnt gives a very high ac-
curacy and F-score as compared with NB. Model
+N!M+V{R} with basic noun and verb seman-
tics introduced in section 3.2 results in more than
10% improvement in F-score over NB and Max-
Ent classifiers relying only on shallow linguis-
tic features. Model +NM+VF+V{A,R,IS} with en-
riched verb and noun semantics brings more than
4% improvement in F-score over +N!M+V{R}
with MaxEnt as baseline. We perform statis-
tical significance test using bootstrap sampling
method given in Berg-Kirkpatrick et al. (2012)
(see Berg-Kirkpatrick et al. (2012) for the de-
tails). +NM+VF+V{A,R,IS} brings significant im-
provement in F-score over +N!M+V{R} with p-
value 0.0.

Though +N!M gives significantly better F-score
over baseline, it drops recall by more than 16%.
Metonymy resolution helps perform quite bet-
ter by recovering more than 8% recall with
+NM1GR

+M2 over +N!M. +NM1GR
+M2 also re-

sults in 3.9% improvement in F-score over +N!M

with MaxEnt as baseline model (significant im-
provement with p-value 0.0). Metonymies re-
solved via verb frames with all and core grammat-
ical relations (i.e., set GR) recover more than 2%
recall and slightly improve F-score.

Model with the addition of information of verb
frames (i.e.,+NM+VF) brings 0.49% improve-
ment in F-score over +NM1GR

+M2 using Max-
Ent as baseline model (significant improvement
with p-value 0.027). Model with the addition of
data-driven verb semantics (i.e., +NM+V{A,R,IS})
results in 0.98% improvement in F-score over
+NM1GR

+M2 using MaxEnt as baseline model
(significant improvement with p-value 0.0021).
Overall the model +NM+VF+V{A,R, IS} yields
more than 16% (20%) F-score (accuracy) over the
baseline models build via NB and MaxEnt.

5.1 Error Analysis

We performed error analysis for the model
+NM+VF+V{A,R,IS} by randomly selecting 50
False Positives (FP) and 50 False Negatives (FN).

For 32% FP instances information about verb
frames is not available in the knowledge base of
verb frames. To avoid this problem researchers
should exploit some abstractions e.g., {semantic
sense of v, gr} frames. Our model fails to iden-
tify the class ¬Cnp for noun phrases of 29% FP
instances due to the lack of enough training data
for the semantic classes of nouns. In 21% FP
instances v and np are not even relevant to each
other. Our model first needs to determine rele-
vance between v and np before identifying causal-
ity. Remaining 18% instances have v and np in
temporal only sense, comparison relation or both
represent parts of same event. There is need to ex-
tract more knowledge sources to better distinguish
causality from any other type of relation.

77% FN instances are classified as non-causal
due to the lack of enough v-np training data and
require more sources of knowledge e.g., back-
ground knowledge. On remaining 23% FN in-
stances our model fails to identify Cnp class due
to the lack of enough training data for the seman-
tic classes of nouns.

6 Conclusion

This work has revealed that enriched semantics
of nouns and verbs help gain significant improve-
ment in performance over a baseline relying only
on shallow linguistic features. Through empiri-
cal evaluation and error analysis of our model we
have highlighted strengths and weaknesses of our
model for the current task. Our work has provided
a novel direction to exploit semantics of partici-
pants of causal relations to solve the challenge of
identifying causality.
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Appendix A. Supervised Classifier

In this appendix, we provide a set of linguistic fea-
tures taken from Riaz and Girju (2014) to iden-
tify causality in v-np pairs employing a supervised
classifier (see section 3.1 for the details).
• Lexical Features: verb, lemma of verb,

noun phrase, lemmas of all words of
noun phrase, head noun of noun phrase,
lemmas of all words between verb and
noun phrase.
• Syntatic Features: part-of-speech tags of verb

and head noun of noun phrase.
• Semantic Features: We adopted this fea-

ture from Girju (2003) to capture semantics
of nouns. The 9 noun hierarchies of Word-
Net i.e., entity, psychological feature, abstrac-
tion, state, event, act, group, possession, phe-
nomenon are used as this feature. Each of these
hierarchies is set to 1 if any sense of head noun
of noun phrase lies in that hierarchy, otherwise
set to 0.
• Structural Features: This feature is applied

by considering both subject (i.e., sub in np)
and object (i.e., obj in np) of verb (v). For ex-
ample, for the pair v-np the variable sub in np
is set to 1 if the subject ∈ np, set to 0 if the
subject 6∈ np and set to -1 if the subject is not
available in an instance. The subject and object
of a verb are its core arguments and may some-
time be part of an event represented by a verb.
Therefore, these arguments may have high ten-
dency to encode non-causation with their verb.
• Pairs: The following pairs (verb, head noun

of noun phrase), (subjectverb, head noun of
noun phrase) and (objectverb, head noun of
noun phrase) are used to capture relations.

Appendix B. Noun Semantics

In this appendix, some examples of the frame ele-
ments of FrameNet and the WordNet senses be-
longing to the classes Cnp and ¬Cnp are given
in Tables 4 and 5 (see section 3.2 for the de-
tails). We employ training instances acquired us-
ing the FrameNet annotations and WordNet senses
for building a supervised classifier for the classes
Cnp and ¬Cnp. Following is the list of features we
use for this supervised classifier:
• Lexical Features: All words of noun phrase,

lemmas of all words of noun phrase, head noun
of noun phrase, first two (three) (four) letters

SC FrameNet Labels
cnp Event, Goal, Purpose, Cause, Internal cause, External

cause, Result, Means, Reason, Phenomena, Coordi-
nated event, Action, Activity, Circumstances, Desired
goal, Explanation

¬cnp Artist, Performer, Duration, Time, Place, Distributor,
Area, Path, Direction, Sub-region Frequency, Body
part, Area, Degree, Angle, Fixed location, Path shape,
Addressee, Interval

Table 4: Some examples of the frame elements of
FrameNet to which we assign the semantic classes
Cnp and ¬Cnp.

SC WordNet Senses
cnp {act, deed, human action, human activity},

{phenomenon}, {state}, {psychological feature},
{event}, {causal agent, cause, causal agency}

¬cnp {time period, period of time, period}, {measure,
quantity, amount}, {group, grouping}, {organization,
organisation}, {time unit, unit of time}, {clock time,
time}

Table 5: This table shows our selected Word-
Net senses of nouns belonging to classes Cnp and
¬Cnp. For example, using the information pro-
vided in this table we assume that any noun con-
cept whose all senses of WordNet lie in the seman-
tic hierarchy of the sense {time period, period of
time, period} is of class ¬Cnp. We use English
Gigaword corpus to collect instances of noun (or
noun phrases) and label them with Cnp and ¬Cnp

according to their senses in WordNet.

of head noun of noun phrase, last two, (three)
(four) letters of head noun of noun phrase.
• Word Class Features: part-of-speech tags of

all words of noun phrase and head noun of
noun phrase.
• Semantic Features: Frequent sense of head

noun of noun phrase.
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Abstract

This paper describes work on automatically
identifying categories of narrative clauses
in personal stories written by ordinary peo-
ple about their daily lives and experiences.
We base our approach on Labov & Walet-
zky’s theory of oral narrative which catego-
rizes narrative clauses into subtypes, such as
ORIENTATION, ACTION and EVALUATION.
We describe an experiment where we an-
notate 50 personal narratives from weblogs
and experiment with methods for achieving
higher annotation reliability. We use the re-
sulting annotated corpus to train a classi-
fier to automatically identify narrative cat-
egories, achieving a best average F-score of
.658, which rises to an F-score of .767 on
the cases with the highest annotator agree-
ment. We believe the identified narrative
structure will enable new types of compu-
tational analysis of narrative discourse.

1 Introduction

Sharing personal experiences by storytelling is
a fundamental aspect of human social behavior
(Fivush et al., 2005; Fivush and Nelson, 2004;
Habermas and Bluck, 2000; Bamberg, 2006;
Thorne, 2004; Bohanek et al., 2008; Thorne and
Nam, 2009; McLean and Thorne, 2003; Pratt and
Fiese, 2004). Humans appear to be wired to en-
gage with information that is narratively structured
(Gerrig, 1993; Bamberg, 2006; Bruner, 1991), and
telling stories provides a critical developmental and
societal function, by serving as a means to reinforce
community value systems and to define individual
identity (Thorne and Shapiro, 2011; Thorne et al.,

2007). This has led some theorists to claim that “the
stories they tell” is the defining aspect of both indi-
viduals and cultures.
Unlike any prior time in human history, personal

narratives about many life experiences are being
told online, and are widely available in social me-
dia sources such as weblogs. A personal narrative
about an arrest is shown in Fig. 1, and one about a
protest is in Fig. 4. Narratives such as these provide
a valuable resource for learning a wealth of com-
monsense knowledge about people, the types of ac-
tivities they engage in, and the attitudes they hold.
They are also well suited to learning about causal
and temporal relationships between events because
narrative interpretation explicitly depends on the co-
herence of these relationships (Graesser et al., 1994;
Elson, 2012; Gordon et al., 2011; Hu et al., 2013).
This paper applies and tests a narrative clause la-

beling scheme to personal narratives. Our scheme
is derived from Labov & Waletzky’s (henceforth
L&W) theory of oral narrative (Labov, 1997; Labov
and Waletzky, 1967). L&W’s theory distinguishes
(1) clauses that indicate causal relationships (AC-
TION), from (2) clauses that provide traits or prop-
erties of the setting or characters (ORIENTATION),
from (3) clauses describing the story characters’
emotional reactions to the events (EVALUATION).
We adopt L&W’s theory for three reasons. First,

we believe that the narrative structure of personal
narratives posted on weblogs will be more similar
to oral narrative than they are to classical stories.
Second, we believe that any narrative discourse ty-
pology must at least distinguish ACTION, from ORI-
ENTATION, and EVALUATION. Third, personal sto-
ries found on the web are often noisy and diffi-
cult to interpret; they do not always clearly follow
well defined narrative conventions. A deep analysis
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# Category Story Clause
1 Orientation Now, on with this week’s story...
2 Orientation The last month has been hectic.
3 Orientation Turbo charged.
4 Orientation Lot’s of work because I was learning from Tim, my partner in crime.
5 Orientation This hasn’t been helped by the intense pressure in town due to the political transition coming to an end.
6 Orientation This week things started alright and on schedule.
7 Action But I managed to get myself arrested by the traffic police (rouleage) early last Wednesday.
8 Action After yelling excessively at their outright corrupted methods
9 Action and asking incessently for what law I actually broke,
10 Action they managed to bring me in at the police HQ.
11 Action I was drawing too much of a curious crowd for the authorities.
12 Action In about half an hour at police HQ I had charmed every one around.
13 Action I had prepared my “gift” as they wished.
14 Evaluation Decision witheld, they decided that I neednt to bother,
15 Evaluation they liked me too much.
16 Evaluation I should go free.
17 Action I even managed to meet famous Raus, the big chief.
18 Evaluation He was too happy to let me go when he realized I was no one.
19 Action But then, a Major at his side noticed my Visa was expired.
20 Evaluation Damn!
21 Orientation My current Visa is being renewed in my other passport at Immigration’s.
22 Evaluation Fuck.
23 Evaluation In custody, for real.

Figure 1: An excerpt from an example story from our corpus annotated with the L&W categories.

and annotation scheme, such as the one employed
by DramaBank (Elson and McKeown, 2010; Elson,
2012) that extends theories of narrative structure and
plot units (Stein et al., 2000; Lehnert, 1981), offers
many advantages. However, acquiring this level of
analysis on user generated content, such as blog sto-
ries, is resource intensive.
Research on computational models of narrative

structure typically focus on inferring the causal and
temporal relationships between events (Goyal et al.,
2010; Chambers and Jurafsky, 2009; Riaz and Girju,
2010; Beamer and Girju, 2009; Do et al., 2011;
Manshadi et al., 2008; Gordon et al., 2011; Hu et al.,
2013). Yet L&W point out that stories are not just
about the events that occur. In fact, L&W say that
stories that are only about events are boring. Current
methods for inferring narrative structure, including
our own (Hu et al., 2013), do not distinguish event
clauses from other narrative clause types. But note
that actions only constitute about one third of the
clauses in the narratives in Fig. 1 and Fig. 4.
Sec. 2 provides more detail about L&W’s the-

ory. Sec. 3 describes the annotation experiments
and efforts to improve annotation reliability. Sec. 4
presents experiments on learning to automatically
classify L&W categories, where we examine the the
most predictive features, and the effect of annotator
agreement on classification accuracy. We achieve a
best average F-score of .658, which rises to an F-
score of .767 on the cases with the highest annotator
agreement. We analyze the types of errors the clas-

sifier makes in Sec. 5.1 and conclude in Sec. 6.

2 Labov & Waletzky’s Theory of
Narrative Discourse

L&W’s theory of oral narrative defines a story as
a series of ACTION clauses (events), of which at
least two must be temporally joined (e.g., clauses
7-13 in Fig. 1 and clauses 7-11 in Fig. 4) (Labov
and Waletzky, 1967; Labov, 1997) Stories also con-
tain ORIENTATIONS (setting the scene, describing
the characters), e.g. utterances 1-6 in Fig. 1. An
orientation clause introduces the time and place of
the events of the story, and identifies the participants
of the story and their initial behavior. To properly
understand narrative structure, orientations need to
be identified as a separate type of utterance distinct
from events. L&W define two other structural types
called ABSTRACT and CODA. The ABSTRACT is an
initial narrative clause summarizing the entire se-
quence of events. A CODA is final clause which
returns the narrative to the time of speaking, indi-
cating the end of the narrative. The CODA often pro-
vides the “moral” of the story.
The final element of a story according to L&W

is EVALUATION, which L&W identify as essen-
tial to every story. According to L&W, evaluation
gives the reason for telling the story, or the point of
the story: without EVALUATION there is no story,
merely a boring recitation of events. L&W state
that the EVALUATION clauses may also provide in-
formation on the consequences of the events as they
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relate to the goals and desires of the participants,
and can be used to describe the events that did not
occur, may have occurred, or could occur in the fu-
ture in the story. Clauses 14-16 and 18 in Fig. 1
provide the narrator’s evaluation of the transpiring
events as well as introducing possible but unreal-
ized alternative timelines. In theories of narrative
identity (McAdams, 2003; Thorne, 2004), evalua-
tion performs two additional functions: (1) it ex-
presses the tellers opinion and in doing so reflects
the value system of that person and their commu-
nity; (2) it constructs and maintains relations be-
tween the teller and the listener. Clauses 20 and 22
illustrate these functions where the narrator directly
reveals his affective response to the prior events.

3 Dataset

Corpus of Personal Stories. Previous work (Gor-
don and Swanson, 2009) showed that about 5% of
all weblog entries are personal stories describing an
event in the author’s daily life. They developed an
automatic classifier for identifying personal narra-
tives from a random sample of 5,000 posts from
a corpus of 44 million entries available as part of
the ICWSM 2010 dataset challenge (Burton et al.,
2009). 229 of these posts were manually labeled as
personal stories. Our experiments are based on 50
of these 229 stories.
Annotation Process. L&W’s theory applies to sub-
sentence discourse units in a narrative. It is an
open question what level of phrasal granularity is
appropriate to apply to written narratives. Here, we
treat each independent clause as the basic unit of
discourse and manually segment each story in our
dataset using this definition. This results in a collec-
tion of 1,602 independent clauses. We then divided
the 50 stories into 4 groups and annotated them in
batches among 3 annotators in order to refine our
annotation guidelines and process. This dataset is
freely available at https://nlds.soe.ucsc.edu/lw.
Previous work has applied L&W’s theory to Ae-

sop’s fables and achieved high levels of interanno-
tator agreement and extremely high machine learn-
ing accuracies (Rahimtoroghi et al., 2013). How-
ever personal narratives clearly provide a more chal-
lenging context for annotation. There was a high
level of disagreement after the initial round of an-
notation. We found at least 6 primary sources of
disagreements:

• Clauses of more than one category are common
with rising action and evaluation, e.g. a clause

containing elements of orientation, action, and
evaluation: After leaving the apartment at 6:45
AM, flying 2 hours, taking a cab to Seattle, and
then driving seven hours up to Whistler including
a border crossing, it’s safe to say that I felt pretty
much like a dick with legs.
• Actions that are implied but not explicitly stated

in the text.
• Stative descriptions of the world as a result of an

action that are not intuitively orientation.
• Stative descriptions of the world that are localized

to a specific place in the narrative, which is prob-
lematic to L&W’s definition of orientation.
• Subjective clauses in scene setting are usually ori-

entation, but are lexically similar to evaluation.
• Disambiguating the functional purpose of clauses

that describe actions, but may be intended to set
the scene as opposed to the rising action.
• Disambiguating the functional purpose of subjec-

tive language in the description of an event or
state, e.g., The gigantic tree outside my window,
The radiant blue of the sky.

After several rounds of annotation we stabilized
on a labeling scheme that hierarchically extends
the original L&W categories, along with annotation
guidelines that annotators could use to disambiguate
recurring problematic cases. The final set of ex-
tended category labels along with two reduced hi-
erarchical mappings are shown in Table 1.

STATIVE-LOCAL CONTEXT is a category for dis-
tinguishing stative descriptions of the world, that are
not intuitively orientation. For example:

• I saw the sign I expected to turn south on Hwy
138. The traffic sign pointed to Sutherlin and
Roseburg,

The clause in italics is a stative that describes the
sign seen in the previous action. It is clearly not an
action or evaluation, but is not intuitively an orien-
tation, because it is so locally dependent.

STATIVE-IMPLIED ACTIONS are clauses, which
do not explicitly mention an action or event, but im-
ply one that is necessary to maintain the causal or
temporal coherence of the remaining story. For ex-
ample: After that, we decided to walk some more.
In the context of the story it is necessary to know
that they actually did walk some more in order to
interpret the other actions described in the narrative.
Implied actions are often passive constructions that
describe a state of the world that could only be true
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Label Set κ Labels
Extended 0.582 ¬ Story Orient Action Eval Local Context Implied Action Consequence
Stative 0.597 ¬ Story Orient Action Eval Stative Stative Stative
L&W 0.630 ¬ Story Orient Action Eval Orient Action Eval

Table 1: The extended L&W label categories and two reduced hierarchical mappings.

if an action had taken place. For example: We were
at the convention center in about 10 minutes.

STATIVE-CONSEQUENCE is a category that de-
scribes the state of the world that has resulted as
a consequence of an action, but does not directly
evaluate the goals, intentions or desires of the par-
ticipants. For example, clause 23 in Fig. 1.
Using this extended label set we were able to

achieve an inter-annotator agreement between the
3 annotators of 0.582 using Fleiss’ κ on assign-
ing categories to clauses. We also mapped the full
set of labels to a smaller subsets to see if the finer
grained distinctions helped improve reliability on
more coarse grained labeling schemes. The ex-
tended labels we included were generally different
types of stative descriptions of the world, which
were all mapped to a single category for the Stative
label set. Finally, we mapped each extended label
to an original L&W category that we thought best
fit the original definitions. When mapping back to
these reduced label sets we were able to increase the
κ to 0.597 for the stative set and 0.630 for the orig-
inal L&W categories. This result indicates that we
can achieve higher reliability by ensuring that the
annotators think carefully about particular kinds of
distinctions between different stative clauses.
Gold standard labels were selected based on a sim-

ple majority of the annotator assignments. When no
annotators agreed on a label, one of the selected la-
bels was chosen at random. Once completed there
were 424 action clauses, 702 evaluations, 26 not sto-
ries, 306 orientation, 17 stative consequences, 12
implied actions and 115 local contexts. Note that
EVALUATION and ORIENTATION clauses that would
not be distinguished from ACTION by previous work
constitute two thirds of the clauses.

4 Experiments

The triply annotated dataset described above was
used as training and test data for experiments on
learning to automatically label narrative clauses. 40
narratives were randomly selected to be used as
training and development data and the remaining
10 narratives for test data. The average story in
the training data had 29.3 clauses with the shortest

Feature Set Description
Linguistic Parts of Speech, Number of Charac-

ters in post, Average Word Length,
Unigrams, Bigrams

Lexical and Senti-
ment Categories

LIWC counts and frequencies, nega-
tion

Story Position First Clause, Last Clause, Position in
the story binned into ten story regions

Table 2: Feature Sets for L&W Classification.

story consisting of 4 and the maximum consisting
of 100. The average story in the test data had 43
clauses with the shortest story consisting of 4 and
the maximum consisting of 114.
To derive feature representations of each type of

narrative clause we started with the features pre-
sented in (Rahimtoroghi et al., 2013). We refined
these by examining L&W’s descriptions of distin-
guishing features of each category. Table 2 summa-
rizes the features we automatically extracted from
all narrative clauses in the weblogs.
First, we used the Stanford Parser to distinguish

independent and dependent clauses and kept track
separately of features that occurred in both types
of clause. This is because L&W state that the
unit of analysis should be an independent clause
with its subordinate clauses, but we felt that these
were exactly the cases that often caused difficul-
ties during annotation. However distinguishing
between the features occurring in the two clause
types would allow us to determine if and when
the features of the subordinate clause were rele-
vant or more informative for automatic classifica-
tion. Then, within both dependent and independent
clauses, we distinguished the part-of-speech of the
main verb (POS), whether the clause contained a
negation (Negate), lexical semantic categories from
LIWC (Pennebaker et al., 2001), dependency rela-
tions (DEP), lexical unigrams (STEM), and whether
the verb was one of a class of verbs that are likely to
be stative.
We also developed a set of features describing the

relative position of the clause in the story (Bin-
Position, FirstClause, LastClause), because differ-
ent story regions are often associated with different
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Feature Gain Act Ori Eval ¬
POS:IND-VBD 0.128 0.084 0.002 0.031 0.011
BinPosition0 0.076 0.017 0.042 0.014 0.003
FirstClause 0.044 0.010 0.019 0.011 0.003
POS:IND-VBZ 0.042 0.029 0.008 0.002 0.003
IND-Negate 0.040 0.025 0.000 0.013 0.002
IND-Copula 0.039 0.030 0.004 0.005 0.001
POS:IND-: 0.036 0.001 0.000 0.002 0.033
IND-FirstPerson 0.035 0.017 0.004 0.002 0.013
IND-LIWC Motion 0.034 0.021 0.003 0.006 0.004
POS:IND-VBP 0.033 0.023 0.001 0.007 0.002

Table 3: The 10 most highly correlated features with
each label and cumulatively over all the labels using
mutual information and information gain.

clause types. For example, in Fig. 1 and Fig. 4, the
beginning of the story contains more ORIENTATION
clauses, while ACTION clauses are concentrated in
the middle of the story. The EVALUATION clauses
typically occur part-way through the story where
they provide the narrator’s reaction to story events.
See Table 2.
In total there were 3,510 unique binary valued fea-

tures extracted from our training dataset. We used
mutual information to find the features that had the
highest correlation with each category and the in-
formation gain over all the labels. The 10 highest
valued features are in Table 3, e.g. the top feature is
when the part-of-speech (POS) of the main verb in
the independent clause (IND) is past tense (VBD).
This feature encoding was used for machine learn-

ing experiments with classification algorithms from
Mallet (McCallum, 2002): Naive Bayes (NB) (Wit-
ten and Frank, 2005), Confidence Weighted Linear
Classifier (CWLC) (Dredze et al., 2008), Maximum
Entropy (ME)(Witten and Frank, 2005) and a se-
quential classifier (CRF) (Lafferty et al., 2001).

5 Evaluation and Results

We evaluate the performance of our classifiers with
experiments using the 50 annotated stories. Us-
ing the 40 stories in the training set we calculated
the information gain for each feature (see Table 3).
For each subset of the highest valued features (in
the range of 22-212), we performed a 10-fold cross-
validation on the training data and assessed the per-
formance of each classifier to find the right number
of features. Within each fold of the cross-validation
we also perform a simple grid search for the optimal
hyper-parameters of the model (e.g., the prior in the
ME and CRF models) using only the data within the
training fold.
The feature selection experimental results are

Extended Stative L&W
Classifier # F1 # F1 # F1

CRF 27 0.61 29 0.61 27 0.65
CWLC 211 0.67 211 0.68∗ 211 0.73∗

ME 211 0.67 210 0.68∗ 210 0.73∗

NB 29 0.68∗ 29 0.70∗ 210 0.76∗

Table 4: The optimal number of features found for
each model and the average F-score obtained using
a 10-fold cross-validation on the training data.

shown in Table 4. We report the optimal number
of features and the corresponding macro F-score,
weighted by the relative frequency of each category,
for each algorithm and label set. For all algorithms,
performance increases for label sets with higher lev-
els of abstraction. The Naive Bayes and CRF mod-
els perform better with a small subset of the fea-
tures, while the ME and CWLC algorithms use a
much larger subset. Surprisingly the sequential clas-
sifier has the lowest F-score and Naive Bayes per-
forms the best. A ∗ indicates a significant improve-
ment over CRF at p < 0.05 using a two-sided t-test.
No other differences were significant.
Using the optimal number of features obtained

from this search we trained a model for each algo-
rithm using the entire training dataset and selecting
the hyper-parameters as before. We applied these
models to the unseen test data and evaluated the per-
formance of each classifier as applied to the entire
set of clauses and to individual narratives.
We first computed the precision, recall and F-score

aggregated over all the clauses in the test set. Ta-
ble 5 summarizes the results for each classifier and
label set. The left hand side of the table shows the
macro precision, recall and F-score weighted by the
relative frequency of each label. The right hand
side of the table shows the F-score of each indi-
vidual label separately. On this evaluation, Naive
Bayes outperforms all other methods on all label
sets. Overall, precision and recall are relatively bal-
anced achieving a maximum F-score of 0.689 when
the labels are mapped back to the original L&W cat-
egories. The CRF does surprisingly well consider-
ing its poor performance during the feature selection
search. The classifiers perform the poorest on orien-
tation clauses and the best on evaluation clauses.
As mentioned above, the annotation task is highly

subjective, requiring interpreting the narrative and
the author’s intention, which prevents us from ob-
taining high levels of inter-rater agreement. Because
of the noise in the annotations, the standard evalua-
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Overall Per Label
L&W Stative

Label Set Model Prec Rec F1 κ Ori Eva Act ¬ Imp Loc Con

Extended
CRF 0.568 0.626 0.593 0.419 0.532 0.727 0.651 0.000 0.000 0.041 0.000
CWLC 0.567 0.616 0.582 0.398 0.377 0.763 0.612 0.000 0.000 0.087 0.000
ME 0.597 0.649 0.614 0.450 0.496 0.767 0.667 0.000 0.000 0.085 0.000
NB 0.625 0.656 0.623 0.459 0.478 0.781 0.650 0.000 0.000 0.174 0.000

Stative
CRF 0.563 0.591 0.574 0.370 0.412 0.695 0.628 0.000 0.235
CWLC 0.572 0.621 0.587 0.403 0.417 0.760 0.614 0.000 0.077
ME 0.610 0.644 0.611 0.441 0.464 0.759 0.673 0.000 0.118
NB 0.650 0.667 0.638 0.477 0.496 0.779 0.676 0.000 0.226

L&W
CRF 0.650 0.665 0.656 0.468 0.556 0.742 0.640 0.000
CWLC 0.624 0.647 0.632 0.424 0.480 0.747 0.609 0.000
ME 0.681 0.700 0.688 0.517 0.580 0.780 0.670 0.000
NB 0.687 0.705 0.689 0.514 0.565 0.780 0.687 0.000

Table 5: The performance of each of classifier on the test set when all clauses are aggregated together.

Agreement Total # Prec Rec F1 κ Ori Eva Act ¬
1 of 3 15 0.333 0.400 0.339 0.069 0.000 0.625 0.333 0.000
2 of 3 146 0.597 0.610 0.580 0.405 0.472 0.700 0.622 0.000
3 of 3 269 0.770 0.773 0.767 0.607 0.667 0.824 0.746 0.000

All 430 0.687 0.705 0.689 0.514 0.565 0.780 0.687 0.000

Adjusted 430 0.646 0.660 0.643 0.447 0.516 0.745 0.623 0.000

Table 6: Performance measures for different levels of agreement among the annotators.

tion metrics may hide information about the ability
of the classifiers to learn from our feature set. For
example, the best performing classifier (NB) incor-
rectly labeled 127 clauses out of 430 possible in the
test set. However, 44 of these errors agreed with
at least one annotator, but were counted as entirely
incorrect in the previous evaluations.

To address these concerns we also evaluated the
performance of the the best performing classifier
based on the level of agreement of each instance us-
ing two different approaches. See Table 6. The first
approach was inspired by the approach in (Louis
and Nenkova, 2011) where the clauses in the test
set are binned based on the number of annotators
who agreed with the gold standard label. The per-
formance is then calculated for each bin. The first
three rows of Table 6 show the performance for the
different levels of agreement in the dataset. There
were only 15 clauses in the test set where there was
no agreement at all. It is unsurprising that when
the annotators could not agree on a label the sys-
tem performed near chance levels. However, when
all three annotators agreed on the gold standard
label the F-score improved to 0.767. As a compar-
ison, the F-score of the entire test set was 0.689 as
shown in the row labeled All.

Our second approach is based on the proposal of
Tetreault et al. (Tetreault et al., 2013). They intro-

Label Set Model Min Max Mean ± CI

Extended
CRF 0.333 0.763 0.540 ± 0.080
CWLC 0.276 0.763 0.582 ± 0.099
ME 0.333 0.753 0.572 ± 0.088
NB 0.333 0.741 0.573 ± 0.093

Stative
CRF 0.298 0.762 0.521 ± 0.099
CWLC 0.345 0.758 0.591 ± 0.090
ME 0.333 0.753 0.562 ± 0.098
NB 0.333 0.758 0.582 ± 0.088

L&W
CRF 0.333 0.837 0.609 ± 0.097
CWLC 0.458 0.877 0.658 ± 0.081
ME 0.333 0.830 0.649 ± 0.095
NB 0.333 0.851 0.647 ± 0.096

Table 7: Summary statistics of the F-score, with
95% confidence intervals, when evaluating stories.

duce a modification to the standard precision, re-
call and F-scores that takes into account the level
of agreement of each instance, where the values of
true-positives and false-negatives are assigned frac-
tional counts based on the proportion of annotators
who assigned that label. The final row of Table 6
provides the results using these adjusted values.
We also investigated the performance of the classi-

fiers when evaluating each story separately. Table 7
summarizes these results. Each classifier was ap-
plied to the clauses of the 10 narratives in the test
set and the F-score was computed for each narrative
individually. The table shows the minimum, maxi-
mum and average F-score with 95% confidence in-
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Figure 2: Learning curves of the Naive Bayes clas-
sifier using the optimal number of features.

tervals over the 10 narratives.
The CWLC performed the best on this test and

the performance of all the algorithms generally im-
proved using the higher-level label sets. The results
also show that there is a high variance in perfor-
mance between stories, with a minimum F-score of
0.458 and a maximum of 0.877 for the CWLC on
the L&W label set. This indicates that some clauses
are ambiguous and difficult to label, but also that
some stories are more difficult to classify.
To assess whether more annotated data could im-

prove performance, we ran a series of learning
curves in Fig. 2. Only the training data was used
for these experiments. The curves were created by
randomly sampling 90% of the data for training and
10% for testing. A model was trained, using the
same process as above, on successively larger sub-
sets of the data and applied to the 10% held out
clauses. This process was repeated 10 times and the
mean F-Score is reported. In nearly all cases, the
performance of classifiers is still increasing when
all of the data is used indicating that we have not
exhausted the expressive power of our features and
more annotated data would be useful. However, we
also see we can reach about 93% of our maximum
performance with only a few hundred examples. We
plan to increase the size of our annotated data set in
future work.

5.1 Error Analysis
Our results to date indicate that we achieve an over-
all F-score of 0.689, and that our classifiers are most
accurate for the evaluation and action categories.
See Table 6. Fig. 3 presents a confusion matrix
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Figure 3: Confusion matrix for the best classifier.

showing the frequency of predicted labels against
the gold standard labels for the Naive Bayes classi-
fier on the L&W label set. With the exception of not
story there are cases of confusion between all cate-
gories. However, in the vast majority of cases both
action and orientation are confused with evaluation
and the classifier overpredicts evaluation.
We also categorized errors for the Naive Bayes

classifier into the the 4 sources of errors in the pre-
dictions shown in Table 8. The most common errors
involved clauses with lexical INDICATORS that are
highly correlated with one category, but in the con-
text and interpretation of the story actually function
as a different type. For example, unfortunately,
could and n’t are all strong indicators of evaluation,
but in this case the primary function of the clause
is to set the scene for the rest of the story, i.e., ori-
entation. The interpretation of these clauses is clear
to a human, despite the lexical items misleading the
classifier.
Another source of error is when the function of the

clause in the narrative is ambiguous (PURPOSE in
Table 8). While there may be some misleading lex-
ical indicators in these clauses, there were often no
strongly correlated words, such as the adjectives and
modal verbs in EVALUATIONS. The distinction in
these cases is that the primary function of the clause
within the story is unclear, even to a human reader.
Unsurprisingly, most of the examples in this cate-
gory had low inter-rater agreement.
Some of the clauses contain figurative language

or complex constructions that require a significant
amount of world knowledge and INFERENCE to in-
terpret. For example, understanding the INFERENCE
clause in Table 8 requires recognizing the metaphor
about rabbit food in order to identify the subjective
evaluation the narrator is making.
There are also cases of clauses that contain MULTI-

PLE categories, at least partially because of the gran-
ularity of our segmentation. In the example in Ta-
ble 8 a new character, Alejandrio, is introduced and
a rising action is described, trekking to the waterfall.

177



Error Type Freq Gold Pred Example

Indicators 57 Ori Eva So, unfortunately I couldn’t make the Gamesindustry.biz party tonight.

Purpose 20 Ori Eva I know it is a remarkable haircut because on the way home a handsome young Mo-
roccan man nearly died to tell me how beautiful I was.

Inference 6 Eva Ori That’s that rabbit food that all of those Northeastern Kerry voters...

Multiple 4 Act Ori We trekked to a waterfall in the park with the help of Alejandrio a 65 year old
Honduran guy who not only walked quicker than us but also carried all the water.

Unclear 39 Ori Eva We have diners out east,

Not Story 7 Not Act scroll down to the Hobbit post,

Table 8: Several common sources of errors with a prototypical example.

Our annotation guidelines instructed us to prefer ac-
tions in these types of clauses, however, both ORI-
ENTATION and ACTION are present in this situation.
There were also 39 clauses that were labeled in-

correctly that had no clear reason (UNCLEAR) for
being mislabelled. We also explicitly excluded the
7 clauses marked not part of the story.
The types of errors described above are not mutu-

ally exclusive and in some cases are causally related.
For example, the purpose of a clause may be am-
biguous because it contains conflicting lexical indi-
cators. Similarly, a clause containing multiple cate-
gories will likely have strong lexical indicators from
each of these categories so that the classification al-
gorithms cannot disambiguate among possible la-
bels. This might be improved by more data, more
sophisticated semantic features, or possibly an anal-
ysis focused on discourse relations, such as those in
the PDTB (Louis et al., 2010; Prasad et al., 2008),
or Elson’s STORY INTENTION GRAPH (Rishes et al.,
2013; Elson and McKeown, 2010; Elson, 2012).

6 Discussion

This paper describes work on categorization of nar-
rative clauses based on Labov & Waletzky’s theory
of oral narrative, applied to personal narratives writ-
ten by ordinary people. We show that we can auto-
matically classify narrative clauses with these cate-
gories achieving an overall F-score of 0.689, which
is substantially higher than a random (0.250) or ma-
jority class (0.437) baseline, which increases to an
F-score of .767 on the cases where all three annota-
tors agreed. The learning curves plotted in Fig. 2
clearly suggest that more training data would be
beneficial before we investigate more complex fea-
tures and learning algorithms.
We believe the ability to automatically perform this

type of simple narrative analysis will enable and
improve many other types of deeper narrative un-

derstanding (Rahimtoroghi et al., 2014; Hu et al.,
2013). For example, causal and temporal relation-
ship extraction methods that focus only on clauses in
the same action sequence be more accurate, because
they exclude disconnected events from the orienta-
tion or evaluation sections. This type of analysis
will also enable new methods for learning attitudes
and values of societal groups based on the different
affective evaluations that are provided in response
to action clauses.

Our results also highlight several properties of the
data. Performance is different for results by story
rather than over all clauses. This indicates that
some stories are more difficult to classify than oth-
ers and that ambiguous clauses are not uniformly
distributed but are likely to be correlated with par-
ticular authors or writing styles. In other work, we
have started to investigate whether we can automat-
ically rate the temporal coherence of personal narra-
tives (Ryan et al., 2014). We can use this to identify
stories with utterances that are likely to be difficult
to classify because of the poor quality of the narra-
tive input. These cases are unlikely to have usable
narrative structure.
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Appendix A
See Fig. 4 for an additional example labelled with
L&W Categories.
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# Category Story Clause
1 Abstract Today was a very eventful work day.
2 Orientation Today was the start of the G20 summit.
3 Orientation It happens every year
4 Orientation and it is where 20 of the leaders of the world come together to talk about how to run their

governments effectively and what not.
5 Orientation Since there are so many leaders coming together their are going to be a lot of people who

have different views on how to run the government they follow so they protest.
6 Orientation This week things started alright and on schedule.
7 Action There was a protest that happened along the street where I work
8 Action and at first it looked peaceful until a bunch of people started rebelling
9 Action and creating a riot.

10 Action Police cars were burned
11 Action and things were thrown at cops.
12 Orientation Police were in full riot gear to alleviate the violence.
13 Action As things got worse tear gas and bean bag bullets were fired at the rioters
14 Action while they smash windows of stores.
15 Evaluation And this all happened right in front of my store
16 Evaluation which was kind of scary
17 Evaluation but it was kind of interesting
18 Coda since I’ve never seen a riot before.

Figure 4: A personal narrative about a protest, with narrative categories of Labov & Waletzky, 1967.
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Abstract

We present an evaluation of a spoken
dialogue system that detects and adapts
to user disengagement and uncertainty in
real-time. We compare this version of our
system to a version that adapts to only user
disengagement, and to a version that ig-
nores user disengagement and uncertainty
entirely. We find a significant increase in
task success when comparing both affect-
adaptive versions of our system to our non-
adaptive baseline, but only for male users.

1 Introduction

There is increasing interest in building dialogue
systems that can detect and adapt to user affec-
tive states.1 However, while this line of research is
promising, there is still much work to be done. For
example, most research has focused on detecting
user affective states, rather than on developing di-
alogue strategies that adapt to such states once de-
tected. In addition, when affect-adaptive dialogue
systems have been developed, most systems detect
and adapt to only a single user state, and typically
assume that the same affect-adaptive strategy will
be equally effective for all users.

In this paper we take a step towards examin-
ing these issues, by presenting an evaluation of
three versions of an affect-adaptive spoken tuto-
rial dialogue system: one that detects and adapts
to both user disengagement and uncertainty, one
that adapts to only disengagement, and one that
doesn’t adapt to affect at all. Our evaluation exam-
ines the impact of adapting to differing numbers of
affective states on task success, and also examines
interactions with user gender. We target disen-
gagement and uncertainty because these were the

1We use the term affect to describe emotions and attitudes
that impact how people communicate. Other researchers also
combine concepts of emotion, arousal, and attitudes where
emotion is not full-blown (Cowie and Cornelius, 2003).

most frequent affective states in prior studies with
our system and their presence was negatively cor-
related with task success2 (Forbes-Riley and Lit-
man, 2011; Forbes-Riley and Litman, 2012). The
detection of these and similar states is also of in-
terest to the larger speech and language processing
communities, e.g. (Wang and Hirschberg, 2011;
Bohus and Horvitz, 2009; Pon-Barry and Shieber,
2011). Our results suggest that while adapting
to affect increases task success compared to not
adapting at all, the utility of our current methods
varies with user gender. Also, we find no differ-
ence between adapting to one or two states.

2 Related Work

2.1 Adapting to Multiple Affective States

While prior research has shown that users display
a range of affective states during spoken dialogue
(e.g. (Schuller et al., 2009)), only a few dialogue
systems have been developed that can adapt to
more than one user affective state (e.g., (D’Mello
et al., 2010; Acosta and Ward, 2011)). Further-
more, prior evaluations have compared adapting
to at least one affective state to not adapting to af-
fect at all, but have not examined the benefits of
adapting to one versus multiple affective states.

In a first evaluation comparing singly and mul-
tiply affect-adaptive dialogue systems, we com-
pared an existing system that adapted to uncer-
tainty to a new version that also adapted to disen-
gagement (Forbes-Riley and Litman, 2012). The
multiply-adaptive system increased motivation for
users with high disengagement, and reduced both
uncertainty and the likelihood of continued dis-
engagement. However, this evaluation was only
conducted in a “Wizard-of-Oz” scenario, where a
hidden human replaced the speech recognition, se-
mantic analysis, and affect detection components
of our dialogue system. We also conducted a post-

2Our success measure is learning gain (Section 4).
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hoc correlational (rather than causal) study, using
data from an earlier fully-automated version of the
uncertainty-adaptive system. Regressions demon-
strated that using both automatically labeled dis-
engagement and uncertainty to predict task suc-
cess significantly outperformed using only disen-
gagement (Forbes-Riley et al., 2012). However, if
manual labels were instead used, only disengage-
ment was predictive of learning, and adding un-
certainty didn’t help. This suggests that detecting
multiple affective states might compensate for the
noise that is introduced in a fully-automated sys-
tem. In this paper we further investigate this hy-
pothesis, by evaluating the utility of adapting to
zero, one, or two affective states in a controlled
experiment involving fully-automated systems.

2.2 Gender Effects in Dialogue

Differences in dialogue structure have been found
between male and female students talking to a hu-
man tutor (Boyer et al., 2007). Studies have also
shown gender differences in conversational en-
trainment patterns, for acoustic-prosodic features
in human-human dialogues (Levitan et al., 2012)
and articles in movie conversations (Danescu-
Niculescu-Mizil and Lee, 2011). For dialogue sys-
tems involving embodied conversational agents,
gender effects have been found for facial dis-
plays, with females preferring more expressive
agents (Foster and Oberlander, 2006). When used
for tutoring, females report more positive affect
when a learning companion is used, while males
are more negative (Woolf et al., 2010).

In our own prior work, we compared two
uncertainty-adaptive and one non-adaptive ver-
sions of a wizarded dialogue system. Our results
demonstrated that only one method of adapting to
user uncertainty increased task success, and only
for female users (Forbes-Riley and Litman, 2009).
In this paper we extend this line of research, by
adding an affective dialogue system that adapts
to two rather than just one user state to our eval-
uation, and by moving from wizarded to fully-
automated systems.

3 System, Experiment and Corpus

Our corpus consists of dialogues between
users and three different versions of ITSPOKE
(Intelligent Tutoring SPOKEn dialog sys-
tem) (Forbes-Riley and Litman, 2011; Forbes-
Riley and Litman, 2012). ITSPOKE is a

speech-enhanced and otherwise modified version
of the Why2-Atlas text-based qualitative physics
tutor (VanLehn et al., 2002) that interacts with
users using a system initiative dialogue strategy.
User speech is first digitized from head-mounted
microphone input and sent to the PocketSphinx
recognizer.3 The recognition output is then clas-
sified as (in)correct with respect to the anticipated
physics content via semantic analysis (Jordan
et al., 2007). Simultaneously, user uncertainty
(UNC) and disengagement (DISE) are classified
from prosodic, lexical and contextual features
using two binary classification models (Forbes-
Riley et al., 2012). All statistical components of
the speech recognizer, the semantic analyzer, and
the uncertainty and disengagement detectors were
trained using prior ITSPOKE corpora.4 Finally,
ITSPOKE’s response is determined based on the
answer’s automatically labeled (in)correctness,
(un)certainty, and (dis)engagement and then sent
to the Cepstral text-to-speech system,5 as well as
displayed on a web-based interface.

Our corpus was collected in an experiment con-
sisting of three conditions (CONTROL, DISE,
DISE+UNC), where ITSPOKE used a different
method of affect-adaptation in each condition.
The experiment was designed to compare the ef-
fectiveness of not adapting to user affect in IT-
SPOKE (CONTROL), adapting to user disengage-
ment (DISE), and adapting to user disengagement
as well as user uncertainty (DISE+UNC).6

In CONTROL, ITSPOKE’s responses to user
utterances were based on only the correctness of
user answers. This version of the system thus ig-
nored any automatically detected user disengage-
ment or uncertainty. In particular, after each cor-
rect answer, ITSPOKE provided positive feedback
then moved on to the next topic. After incor-
rect answers, ITSPOKE instead provided negative

3http://www.speech.cs.cmu.edu/pocketsphinx
4We have not yet performed the manual annotations

needed to evaluate our current versions of these components
in isolation. However, earlier versions of our affect detec-
tors yielded FMeasures of 69% and 68% for disengagement
and uncertainty, respectively, on par with the best perform-
ing affect detectors in the wider literature (Forbes-Riley and
Litman, 2011; Forbes-Riley et al., 2012).

5http://www.cepstral.com
6We did not include an uncertainty-only condition (UNC)

because in previous work we compared UNC versus CON-
TROL (Forbes-Riley and Litman, 2011) and DISE+UNC
versus UNC (Forbes-Riley and Litman, 2012). Further de-
tails and motivation for all experimental conditions can be
found in the description of our earlier Wizard-of-Oz experi-
ment (Forbes-Riley and Litman, 2012).
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feedback, then provided remediation tutoring be-
fore moving on to the next topic.

In DISE, two adaptive responses were devel-
oped to allow ITSPOKE’s responses to consider
user disengagement as well as the correctness of
the user’s answer;7 however, this system version
still ignored user uncertainty. In particular, af-
ter each disengaged+correct answer, ITSPOKE
provided correctness feedback, a progress chart
showing user correctness on prior problems and
the current problem, and a brief re-engagement
tip. After each disengaged+incorrect answer, IT-
SPOKE provided incorrectness feedback, a brief
re-engagement tip, and an easier supplemental ex-
ercise, which consisted of an easy fill-in-the-blank
type question to reengage the user, followed by re-
mediation targeting the material on which the user
disengaged and answered incorrectly. Examples
of both types of adaptive responses are shown in
A.1 and A.2 of Appendix A, respectively.

In DISE+UNC, ITSPOKE responded to dis-
engagement as just described, but also adapted
to uncertainty. In particular, after each uncer-
tain+correct answer, ITSPOKE provided positive
correctness feedback, but then added the remedia-
tion designed for incorrect answers with the goal
of reducing the user’s uncertainty. A dialogue ex-
cerpt illustrating this strategy is shown in A.3 of
Appendix A. Note that when a single utterance is
predicted to be both disengaged and uncertain, the
DISE and UNC adaptations are combined.

Finally, our experimental procedure was as fol-
lows. College students who were native English
speakers and who had no college-level physics
read a short physics text, took a pretest, worked
5 physics problems (one problem per dialogue)
with the version of ITSPOKE from their experi-
mental condition, and took a posttest isomorphic
to the pretest. The pretest and posttest were taken
from our Wizard-of-Oz experiment and each con-
tained 26 multiple choice physics questions. Our
experiment yielded a corpus of 335 dialogues (5
per user) from 67 users (39 female and 28 male).
Average pretest8 and posttest scores were 50.4%
and 74.7% (out of 100%), respectively.

4 Performance Analysis

Based on the prior research discussed in Section 2,
we had two experimental hypotheses:

7Engaged answers were treated as in CONTROL.
8Pretest did not differ across conditions (p = .92).

Condition Learning Gain N
Mean (%) Std Err

DISE+UNC 53.2 5.0 23
DISE 51.4 4.8 22
CONTROL 46.6 4.7 22
Gender Learning Gain N
Male 53.2 4.3 28
Female 47.6 3.6 39

Table 1: No effect of experimental condition
(p=.62) or gender (p=.32) on learning gain.

Gender Condition Learning Gain N
Mn (%) Std Err

Male DISE+UNC 58.8 8.4 7
DISE 62.2 7.0 10
CONTROL 38.7 6.7 11

Female DISE+UNC 47.5 5.6 16
DISE 40.6 6.4 12
CONTROL 54.6 6.7 11

Table 2: Significant interaction between the ef-
fects of gender and condition on learning (p=.02).

H1: Responding to multiple affective states will
yield greater task success than responding to only
a single state (DISE+UNC > DISE), which in
turn will outperform not responding to affect at all
(DISE > CONTROL).

H2: The effects of ITSPOKE’s affect-
adaptation method and of gender will interact.

A two-way analysis of variance (ANOVA) was
thus conducted to examine the effect of ex-
perimental condition (DISE+UNC, DISE, CON-
TROL) and user gender (Male, Female) on task
success. As is typical in the tutoring domain, task
success was computed as (normalized) learning
gain: posttest−pretest

100−pretest .
Table 1 shows that although our results pat-

terned as hypothesized when considering all users,
the differences in learning gains were not statisti-
cally different across experimental conditions, F
(2, 61) = .487, p = .617. There were also no main
effects of gender, F (1, 61) = 1.014, p = .318.

In contrast, as shown in Table 2, there was a
statistically significant interaction between the ef-
fects of user gender and experimental condition on
learning gains, F (2, 61) = 4.141, p = .021. We
thus tested the simple effects of condition within
each level of gender to yield further insights.

For males, simple main effects analysis showed

183



that there were statistically significant differences
in learning gains between experimental conditions
(p = .042). In particular, males in the DISE con-
dition had significantly higher learning gains than
males in the CONTROL condition (p = .019).
Males in the DISE+UNC condition also showed
a trend for higher learning gains than males in the
CONTROL condition (p = .066). However, males
in the DISE and DISE+UNC conditions showed
no difference in learning gains (p= .760).

For females, in contrast, simple main effects
analysis showed no statistically significant differ-
ences in learning gains between any experimental
conditions (p = .327).

In sum, hypothesis H1 regarding the utility of
affect adaptations was only partially supported by
our results, where (DISE+UNC = DISE) > CON-
TROL, and only for males. That is, adapting to
affect was indeed better than not adapting at all,
but only for males (supporting hypothesis H2).
Contrary to H1, adapting to uncertainty over and
above disengagement did not provide any bene-
fit compared to adapting to disengagement alone
(DISE+UNC = DISE), for both genders.

5 Discussion and Future Directions

Our results contribute to the increasing body
of literature demonstrating the utility of adding
fully-automated affect-adaptation to existing spo-
ken dialogue systems. In particular, males in
our two affect-adaptive conditions (DISE+UNC
and DISE) learned more than males in the
non-adaptive CONTROL. While our prior work
demonstrated the benefits of adapting to uncer-
tainty, the current results demonstrate the impor-
tance of adapting to disengagement either alone
or in conjunction with uncertainty. However, we
also predicted that DISE+UNC should outperform
DISE, which was not the case. In future work we
will examine other performance measures besides
learning, and will manually annotate true disen-
gagement and uncertainty in order to group stu-
dents by amount of disengagement. Furthermore,
since the motivating prior studies discussed in Sec-
tion 2 were based on older versions of our system,
annotation could identify problematic differences
in training and testing data. A final potential is-
sue is that the re-engagement tips do not convey
exactly the same information.

Second, our results contribute to the literature
suggesting that gender effects should be consid-

ered when designing dialogue systems. We see
similar results as in our prior work; namely our
current results continue to suggest that males don’t
benefit from adapting to their uncertainty as com-
pared to ignoring it, but our current results also
suggest that males do benefit from adapting to
their disengagement. On the other hand, our cur-
rent results suggest that females do not benefit
from our disengagement adaptation and moreover,
combining it with our uncertainty adaptation re-
duces the benefit of the uncertainty adaptation for
them. This suggests the possibility of a differ-
ing affective hierarchy, in terms of how affective
states may impact the learning process of the two
genders differently. Our results yield an empirical
basis for future investigations into whether adap-
tive system performance can improve by adapting
to affect differently based on gender. However,
further research is needed to determine more ef-
fective combinations of disengagement and uncer-
tainty adaptations for both males and females, and
to investigate whether gender differences might be
related to other types of measurable user factors.
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Appendix A. Affect-Adaptive Examples.

A.1 After a Predicted Disengaged+Correct
Turn

ITSPOKE: How does his velocity compare to
that of his keys?

USER: same same same
ITSPOKE: Right. [Feedback] Here’s a quick

progress update. [See Screenshot] It might help
to remember we will build on the topics we’re
discussing now. [Re-engagement Tip] Now let’s
see what happens after the man releases his keys.
[Next Topic]

A.2 After Predicting Disengaged+Incorrect
ITSPOKE: How does his velocity compare to

that of his keys?
USER: vertical
ITSPOKE: That doesn’t sound right. [Feed-

back] Let’s think about this a little more. [Re-
engagement Tip] Since the man is holding his
keys, they aren’t moving relative to each other.
So their velocities must be WHAT? [Supplemen-
tal Exercise].

A.3 After a Predicted Uncertain+Correct Turn
ITSPOKE: What are the forces exerted on the

man after he releases his keys?
USER: gravity???
ITSPOKE: Right. [Feedback] Gravity is the

only force acting on the man. This force is also
called the weight of the man. It’s always present
when an object is in earth’s gravitational field.
[Remediation]. So what’s the direction of the
force of gravity on the man ? [Next Topic]

185



Proceedings of the SIGDIAL 2014 Conference, pages 186–193,
Philadelphia, U.S.A., 18-20 June 2014. c©2014 Association for Computational Linguistics

Initiative Taking in Negotiation

Elnaz Nouri
University of Southern California

Los Angeles, CA, USA
nouri@ict.usc.edu

David Traum
USC Institute for Creative Technologies

12015 Waterfront Dr
Playa Vista, CA 90094, USA
traum@ict.usc.edu

Abstract

We examine the relationship between ini-
tiative behavior in negotiation dialogues
and the goals and outcomes of the ne-
gotiation. We propose a novel annota-
tion scheme for dialogue initiative, includ-
ing four labels for initiative and response
behavior in a dialogue turn. We anno-
tate an existing human-human negotiation
dataset, and use initiative-based features
to try to predict both negotiation goal and
outcome, comparing our results to prior
work using other (non-initiative) features
sets. Results show that combining initia-
tive features with other features leads to
improvements over either set and a major-
ity class baseline.

1 Introduction

Negotiation is a complex interaction in which two
or more parties confer with one another to arrive
at the settlement of some matter, for example re-
solving a conflict or to share common resources.
The parties involved in the negotiation often have
non-identical preferences and goals that they try to
reach. Sometimes the parties simply try to change
a situation to their favor by haggling over price. In
other cases, there can be a more complex trade-off
between issues. Investigating these rich and com-
plex interactions in a scientific manner has been
important to researchers in different fields due to
the significant implications and potential applica-
tions for business and profit making. Being a good
negotiator is not a skill that all humans naturally
have; therefore, this line of research can poten-
tially be used to help humans become better ne-
gotiators. Computer agents will also benefit from
the ability to understand human negotiators. There
has been a fair amount of previous work in un-
derstanding negotiation dialogs, e.g., (Walton and

McKersie, 1991; Baker, 1994); as well as agents
who can engage in negotiation, e.g. (Jameson et
al., 1994; Sidner, 1994; Kraus et al., 2008; Traum
et al., 2008). In this paper we investigate the role
that dialogue initiative plays in negotiation.

Negotiations can be characterized by both the
goals that each negotiator is trying to achieve, as
well as the outcomes. Even for negotiations that
attempt to partition a set of goods, the participants
may have differences in their valuation of items,
and the negotiations can be very different if peo-
ple are trying to maximize the total gain or their
individual gain, or gain a competitive advantage
over the other.

Negotiations between two people are usually
mixed-initiative (Walker and Whittaker, 1990),
with control of conversation being transferred
from one person to another. To our knowledge,
no previous studies have investigated the relation-
ship between verbal initiative taking patterns and
the goal or the outcome of the negotiation. We
suspected that both of the mentioned characteris-
tics of the negotiation (goal and outcome) might be
correlated with different initiative-taking patterns.
We used an existing negotiation dataset in order
to study the mixed initiative patterns between the
two parties in the negotiation. We describe this
data set in Section 2, as well as previous work that
attempted to predict outcome and goal, using other
features (Nouri et al., 2013).

This paper makes the following contributions:
a new annotation scheme for dialogue initiative is
introduced in Section 3 and used to annotate the
negotiation dataset. We then study the relation-
ship between initiative taking patterns and the goal
and outcome of the negotiation for the participants
(Section 4).

2 Data

We make use of a previously collected and ana-
lyzed dataset in order to examine the relative con-
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tribution of initiative to problems of goal and out-
come detection. We briefly describe the dataset
and relevant prior work on this dataset.

The Farmers Market dataset (Carnevale, 2013)
contains audio, video and transcription of 41
dyadic negotiation sessions. Participants were un-
dergraduate students majoring in business. Each
participant only took part in one negotiation ses-
sion.

Before each negotiation session, the experi-
menter told participants that they were randomly
assigned to represent one of two restaurants in the
task. The owners of the two restaurants had asked
the participants to go to the market and get some
apples, bananas, lemons, peppers and strawber-
ries. The payoff matrix for each restaurant and
type of item is shown in Table 1. There were mul-
tiple items of each type available. Each participant
was only given the pay-off matrix of his assigned
restaurant and the total score of the negotiation for
each participant was calculated by adding up the
points for each item they received in the negotia-
tion. The participants were told that they had 10
minutes to negotiate how to distribute the items on
the table and reach an agreement. As an incentive,
each participant could receive up to 50 dollars de-
pending on the final points earned by each partici-
pant for his/her restaurant.

R1 R2
Apples 1 3
Bananas 3 3
Lemons 0 0
Peppers 3 1
Strawberries 1 1

Table 1: The Payoff Matrix for each Restaurant

2.1 Goals

The study was originally designed to investigate
negotiators’ behavior when they have different
goals in the negotiation. There were three types
of instructions given to the participants. All the
details were the same except for their goal in the
negotiation.

• In “individualistic” instructions participants
were told that their goal was to get at as many
points as they could for themselves. An ex-
cerpt from an individualistic negotiation is
shown in Table 13 in the Appendix.

• in “cooperative” instructions they were told
that they should try to maximize the joint gain
with the other side of the negotiation. An ex-
cerpt from a cooperative negotiation is shown
in Table 11 in the Appendix.

• in “competitive” instructions they were told
to try to get more points than the other party.
An excerpt from a competitive negotiation is
shown in Table 12 in the Appendix.

Out of the 41 interactions in the dataset 15 were
competitive, 13 were individualistic and 13 were
cooperative sessions.

2.2 Outcomes

The outcome of the negotiation in this case is mea-
sured based on the calculation of the scores corre-
sponding to the items that each negotiator has re-
ceived by the end of the negotiation. In order to
make the prediction of outcome possible based on
our small dataset, we labeled the calculated score
for each participant with one of the three labels:
H,E or L, showing whether the participant had re-
ceived more, equal or fewer points than the other
person.

The goal of the “competitive” instructions was
to get a higher score. For cooperative negotiations,
the relative score did not matter. For the individu-
alistic goal, higher score is somewhat correlated
with the goal, but not absolutely (what matters
is only an individual high score, not the relation
to the other partner). 17 negotiations resulted in
equal final scores for the two parties and 24 with
one side scoring more than the other side. Ta-
ble 2 shows the average scores for each restaurant,
across the three types of goals. The scores are on
average higher in the cooperative negotiations than
in the other two conditions.

Average score R1 R2 Joint
Gain

Cooperative 24.9 25.1 50
Competitive 23.7 23.6 47.3
Individualistic 25.5 22.5 48

Table 2: Average Score by Restaurant and Goal

The average score for individuals who score
higher (labeled as H) than the other side of the ne-
gotiation was 26.46 whereas the average score for
their counterparts (labeled as L) was 21.65. The
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average score for individuals who ended up in a
tie (labeled as E) was 24.16.

2.3 Previous Work and Baseline System

This data set was previously used for various pur-
poses but (Nouri et al., 2013) was most similar
to our current work in that it also tried to pre-
dict the goal and outcome in the negotiation, us-
ing a different set of features, and a slightly dif-
ferent formulation of the problem. (Nouri et al.,
2013) used multimodal features (such as acoustic
features and sentiments of the turns) for this pur-
pose. We use initiative-features to build our pre-
diction models. In order to make a baseline classi-
fier, we used the following automatically derivable
features from (Nouri et al., 2013):

• The mean and standard deviation of acoustic
features automatically extracted;

• The amount of silence and speaking time for
each speaker;

• Sentiment (positive, negative) and subjectiv-
ity scores calculated for words and turns

• number of words, turns, words per turn and
words related to the negotiation objects

We used only features that were easily and au-
tomatically derivable, excluding features from
(Nouri et al., 2013) such as the number of offers
and the number of rejections or acceptances.

3 Initiative Labeling

A common way of structuring dialogue is with
Initiative-Response pairs, or IR units (Dahlbäck
and Jönsson, 1998), which are also similar to adja-
cency pairs (Levinson, 1983), or simple exchange
units (Sinclair and Coulthard, 1975). Several re-
searchers have also proposed multiple levels of
initiative. For example, (Whittaker and Stenton,
1988) had levels based on the type of utterance
(commands, questions, assertions, and prompts).
(Chu-Carroll and Brown, 1997) posit two levels
of initiative: discourse initiative, attained by pro-
viding reasons for responses, and critiques of pro-
posed plans, and task initiative, obtained by sug-
gesting new tasks or plans. Linell et al. exam-
ine several factors, such as initiative vs response,
strength of initiative, adequacy of response, scope
and focality of response (Linell et al., 1988). They
end up with an ordered set of six possible strengths

of initiative. Each of these schemes is somewhat
complicated by the fact that turns can consist of
multiple basic elements.

Analyzing previous work, we can see that initia-
tive breaks down into two distinct concepts. First
there is providing unsolicited, or optional, or ex-
tra material, that is not a required response to a
previous initiative. Second, there is the sense of
putting a new discourse obligation (Traum and
Allen, 1994) on a dialogue partner to respond.
These two concepts often come together, such as
for new questions or proposals that require some
sort of response: they are both unsolicited and im-
pose an obligation, which is why (Whittaker and
Stenton, 1988) indicate that control should belong
to the speaker of these utterances. However, it is
also possible to have each one without the other.
Statements can include new unsolicited material,
without imposing an obligation to respond (other
than the weak obligation to ground understand-
ing of any contribution). Likewise, clarification
questions impose new obligations on the other, but
often do not contribute new material or are not
optional, in that the responder can not reply ap-
propriately without the clarification. For (Whit-
taker and Stenton, 1988), the issue of whether
a question or assertion was a “response” would
determine whether control went to the speaker
or remained with a previous speaker. On the
other hand, (Narayanan et al., 2000) call a re-
sponse that includes unsolicited material “mixed-
initiative” rather than “system initiative” for user
responses that contain only prompted material.

Likewise, response can also be broken down
into two related concepts. One concerns fulfilling
obligations imposed by prior initiatives. To not do
so could be considered rude and a violation of con-
versational norms in some cases. This is only rel-
evant, if there is an existing initiative-related obli-
gation as part of the conversational state. Another
concept generalizes the notion of response to any-
thing that contributes to the same topic and makes
an effort to relate to prior utterances by the other
party, whether or not it fulfills an obligation or
whether there even is a pending obligation. This
is like relevance in the sense of Sperber and Wil-
son (Sperber and Wilson, 1986) and Lascarides
and Asher (Asher and Lascarides, 2003).

Our annotation scheme thus includes four la-
bels, as indicated in Table 4. Each of the labels
can either be present or absent from a dialogue
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Time/Speaker Example Utterance Labels
(R,F,I,N)

[1 : 58] Person 1: Do you want to do just like one grab at a time?
Or do you know how you want to divvy it up? (-,-,I,N)

[2 : 13] Person 2: Um, I’m just thinking. (R,F,-,-)
[3 : 38] Person 1: Do you want it? I’ll take it. Um, do you want to do any trading? (R,-,I,-)
[4 : 15] Person 2: Um, how much is a banana for you? (-,-,I,N)
[4 : 15] Person 1: For me? A point, or two points. How much is the pepper worth? (R,F,I,N)

Table 3: Sample Annotated Utterances

Label Description
R directly relates to prior utterance
F fulfills a pending discourse obligation
I imposes a discourse obligation
N provides new material that is optional

and not just fulfilling an obligation.

Table 4: Initiative Labels

segment. The annotation is done on each turn on
the conversation. In general, a turn can consist of
almost any combination of these four initiative la-
bels (I,R,F,N). We thus treat each of these as an
independent binary dimension, and code each turn
as to which set of these labels it contains. Table 3
shows an example from the corpus with initiative
annotations. More examples can be found in the
Appendix, Tables 11, 12, and 13.

3.1 Inter Annotator Reliability

To assess the reliability of our annotations, ap-
proximately 10% of the dialogs (4 dialogs) were
annotated by two annotators. The level of the
agreement was then assessed using the Kappa
statistic (Carletta, 1996; Siegel and Castellan,
1988). Table 5 shows the result of the assessment
of the reliability of the annotations for the four an-
notation labels.1 Based on this metric our results
indicate that the annotators have reasonable level
of agreement in labeling utterances with the I, F
,N labels, though there is less reliability for the
“related” label. Further work is needed to clar-
ify the degree of relation that should count and
also whether relation refers just to the immediately
prior turn or something further back. The remain-
der of the dialogues were annotated by one anno-
tator.

1Chance agreement is the probability of agreement using
the frequencies of each label, but applied randomly.

R F I N
kappa 0.36 0.64 0.66 0.73
actual agreement 0.76 0.83 0.83 0.86
chance agreement 0.62 0.52 0.49 0.50

Table 5: Inter-Annotator Reliability Assessment

3.2 Initiative Taking Patterns
Table 6 shows the average frequency of each ini-
tiative label for each negotiation goal. We can see
that competitive dialogues have more turns that
impose and fulfill obligations than the other con-
ditions, while individualistic dialogues include a
higher percentage of turns introducing new mate-
rial.

Label R F I N
Cooperative 0.79 0.35 0.40 0.33
Competitive 0.82 0.38 0.47 0.34
Individualistic 0.82 0.34 0.39 0.40

Table 6: Comparison of the Relative Frequency of
the Initiative Labels for Each Goal

Table 7 shows the relative frequency of initia-
tive labels for the different outcome conditions.
The higher scoring participants had a higher fre-
quency of initiative-related turns (labels I and N),
while their lower scoring partners had a higher fre-
quency of responsive turns (R,F). Equal scoring
participants tended to pattern closer to higher scor-
ing participants, concerning responses, but closer
to lower scoring participants, considering initia-
tive.

3.3 Initiative Features
After the Initiative annotation was done, the fol-
lowing features were automatically extracted:

• the count of each label (I,F,R,N) per negotia-
tion and per person
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Label R F I N
H 0.80 0.35 0.47 0.38
E 0.81 0.35 0.40 0.34
L 0.84 0.38 0.43 0.36

Table 7: Comparison of the Relative Frequency of
the Initiative Labels for Each Score Label

• the ratio, difference and absolute difference
of the number of labels for each person
against the number of labels for their nego-
tiation counterpart

• the above measures normalized by the num-
ber of turns in dialog

• Within-turn patterns the number of all pos-
sible combinations of labels for each utter-
ance. There are 16 possible combinations for
the 4 types of labels that can be shown as tu-
ples (R,F,I,N). Refer to Table 5 for examples.

• Across-turn Patterns the number of all pos-
sible sequences of labels across two adjacent
turns. There are also 16 possible combina-
tions capturing how often each label is fol-
lowed by labels. For example, the feature
(I,F) applies to all two-turn sequences where
the first turn contains label I and the second
contains label F, such as in the last two lines
of Figure 3. We count the these features for
the dialogue and for each speaker.

All of the above features were automatically ex-
tracted from the annotated dialogues. We exam-
ined four different spans of the dialogues, to inves-
tigate whether the most salient initiative informa-
tion comes early in the dialogue or requires the full
dialogue. We calculated features for the first quar-
ter (q1), first half (q2), first three quarters (q3), and
the whole negotiation (q4).

4 Prediction Models

We conducted experiments to recognize negotia-
tion goal and score for each of the 82 negotia-
tors. We made prediction models for recognizing
the goal and outcome for each individual.For the
prediction models, we compared the result of sup-
port vector machine (SVM- with the polynomial
kernel function) classifier, Naive Bayes and De-
cision Tree. None of the classifiers outperformed
the others on all cases, we are reporting the result

of SVM classifier here. Considering the size of
our dataset which consists of 82 samples (41 pairs
of individuals) and the distribution of the samples
in different classes, we decided to use the 10-fold
cross validation paradigm for our prediction tasks.
In splitting the dataset into the folds we controlled
so that the participants from the same negotiation
were not split across training and test sets. We
trained and tested at the end of the each quarter
of the negotiation.

We used three sets of features to make three pre-
diction models for each task:

1. Non-initiative features from (Nouri et al.,
2013), described in section 2.3. We refer to
these non-initiative features as IS2013’ from
this point on.

2. Initiative features

3. All features combined.

We compare the performance of these models with
two baseline prediction models: one that chooses
one of the outcomes at random, and one that pre-
dicts the majority class for all instances. In the
upcoming sections, we use q1, q2, q3 and q4 to
refer to the ends of the first, second, third and the
forth quarters of the negotiation (e.g. q3 includes
all data from the first three quarters, but not the
last).

4.1 Automatic Prediction of Goal

This task predicts whether the negotiators are fol-
lowing the cooperative, competitive or individual-
istic instructions. It is important to note that none
of the features used require understanding of the
content or a semantic analysis of the conversation.
However, using these basic features it’s possible
to make the classification into the mentioned three
classes with accuracy that is significantly higher
than chance. The average accuracy of prediction
at the four different points in the negotiation are
shown in Table 8.

q1 q2 q3 q4
Random 0.33 0.33 0.33♣ 0.33♣
Majority 0.37 0.37 0.37♣ 0.37
IS2013 0.41 0.34 0.40♣ 0.48 ∗†
Initiative 0.29♣ 0.52 ∗†♣ 0.48 ∗† 0.29♣
Combined 0.41 0.40 0.57 ∗† 0.44 ∗

Table 8: Accuracy of the Prediction of Goal
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We use the two-sided binomial test to measure
the significance of the differences of the prediction
models’ performances. Table 8 and the upcoming
Tables 9 and 10 use symbols to indicate the results
of these significance tests. Symbols (∗),(†) and
(♣) show which models’ performances are signif-
icantly different from the random baseline, major-
ity baseline or the “Combined” classifier respec-
tively (p < 0.05).

The combined classifier is always better than
both baselines, as well as the lower of classi-
fiers for the IS2013 and Initiative features. In
q3, where the two are close in performance, the
combined classifier significantly outperforms both
baselines and the IS2013 model. Note that ex-
cept for q3, these numbers are lower than those
reported by (Nouri et al., 2013). However the prior
work did not ensure that both individuals in a ne-
gotiation were in the same training/test partition,
and some features are the same for both partici-
pants. That work also made use of higher-level
features, such as the offers, and final distributions
of items.

4.2 Automatic Prediction of Outcome
In this task the goal is to predict how a partic-
ipant in the negotiation is going to do in terms
of the scores at the end of the negotiation. The
model predicts whether the negotiator would score
higher, lower or equal to the other player at the end
of the different quarters of the negotiation. Results
are shown in Table 9.

q1 q2 q3 q4
Random 0.33 0.33 0.33 0.33♣
Majority 0.41 0.41 0.41 0.41
IS2013 0.43 ∗ 0.34 0.23 ∗†♣ 0.39
Initiative 0.37 0.35 0.32 0.39
Combined 0.38 0.40 0.41 0.4 6∗

Table 9: Accuracy of the Prediction of Outcome

Except for the combined model in q4, these
models are not able to significantly outperform the
baseline of selecting the random class (with equal
likelihood). Results were also presented for out-
come in (Nouri et al., 2013), however only the fi-
nal quarter results are comparable, since that paper
predicted interim quarter-end results rather than fi-
nal results. Also, that work did not make sure that
both participants in a negotiation were in the same
training-test partitions, and used features related to

the final deal, that are directly related to outcome.
Because the relative score was not important for

cooperative negotiations, where both sides are just
trying to maximize their combined points, we next
examined outcome for the 28 pairs in individualis-
tic and competitive conditions. Results are shown
in table 10. The combined classifier outperforms
all the other classifiers, starting from quarter 2. At
the end of the negotiation(q4) the performance of
this classifier is significantly better than all other
models.

q1 q2 q3 q4
Random 0.33 0.33♣ 0.33♣ 0.33♣
Majority 0.38 0.38 0.38 0.38♣
IS2013 0.39 0.36♣ 0.36♣ 0.34♣
Initiative 0.27 0.41 0.36♣ 0.38♣
Combined 0.35 0.50 ∗ 0.50 ∗ 0.55 ∗†

Table 10: Accuracy of the Prediction of Outcome
for Negotiations that are not Cooperative

5 Conclusion

We demonstrated how discourse initiatives in ne-
gotiation dialog can be used for automatically
making predictions about other aspects of the ne-
gotiation such as the goals of the negotiators. Pre-
vious work has mostly focused on using non-
verbal cues for accomplishing similar tasks but
they have not used discourse features like initia-
tives. We also show that initiative features can
give clues about the final outcome for the negotia-
tors. Making such predictions are generally chal-
lenging tasks even for humans and require under-
standing of the content of the negotiations. From a
dialog system’s perspective our results show how
more information can be derived about the users
intentions and performance by analyzing their dis-
course behavior.

6 Future Work

The annotations of the initiative taking patterns
are done manually at this point. Automatic label-
ing of the utterances with the initiative tags is our
next step. We will use the labels in our dataset
for learning how to automatically label new nego-
tiation datasets. We think that HMM and HCRF
methods due to their ability to capture the sequen-
tial and temporal aspect of the negotiation might
be better methods for building the prediction mod-
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els. We are interested in further analysis of the re-
lationship between initiatives and other aspects of
negotiation such as intentions and the use of lan-
guage. We also want to measure the suitability of
our annotation scheme for initiatives for other di-
alogue genres.
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Nils Dahlbäck and Arne Jönsson. 1998. A coding
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Time Speaker: Utterance Labels
(R,F,I,N)

[2 : 18] 2: So what’s, so what’s everything worth to you? (-,-,I,N)
[2 : 20] 1: Um, so apples are three, bananas are three, strawberries are one, pep-

pers are one, and lemons are nothing.
(R,F,-,-)

[2 : 33] 2: Okay so for me peppers are three, bananas are three, and apples and
strawberries are one.

(R,-,-,-)

[2 : 39] 1: Lemons are zero. (R,-,-,-)
[2 : 40] 2: Yeah. (R,-,-,)

Table 11: Sample Annotated Cooperative Negotiation

Time Speaker: Utterance Labels
[1 : 40] 2: So, I think I need peppers and bananas for my restaurant. (-,-,-,N)
[1 : 46] 1: Okay. Um, well I really need. I want five apples and um, five bananas.

Five apples and five bananas.
(R,-,I,N)

[2 : 05] 2: Um, how about this: You take five apples, and I take five peppers and
we can share the bananas.

(R,F,I,N)

[2 : 13] 1: Okay. If I give you, if I give you five or if I give you, if we were to
share the bananas, if I take three bananas, I’ll give you three lemons.

(R,F,I,N)

[2 : 23] 2: But we don’t need lemons in our restaurant. We only use lemons for
our store.

(R,F,-,N)

[2 : 27] 1: Okay. So, um, I need bananas, like that’s gonna be my top. (R,-,-,N)

Table 12: Sample Annotated Competitive Negotiation

Time Speaker: Utterance Labels
[3 : 22] 2: How about we do this. You take two of these, I take one, and since we

have five here, I take three, you take two.
(-,F,I,N)

[3 : 37] 1: I’m not interested in lemons at all. But I can give you... (R,F,-,N)
[3 : 52] 2: At my restaurant, one of our dessert dishes is with strawberries, so

strawberries are very important to me.
(-,-,-,N)

[4 : 00] 1: Okay. I’m willing to give you all the strawberries if you give me a
banana and two apples. I’m also willing to give you these two.

(R,-,-,N)

[4 : 23] 2: So you’re going to give me those two? (R,-,I,-)
[4 : 24] 1: You can have everything on this side, I just want two apples and a

banana.
(R,F,-,-)

[4 : 30] 2: Two apples and a banana? Yeah, let’s go. (R,-,-,-)
[4 : 39] 1: We have a deal. (R,F,-,N)

Table 13: Sample Annotated Individualistic Negotiation
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Abstract

Many goal-oriented dialog agents are ex-
pected to identify slot-value pairs in a
spoken query, then perform lookup in
a knowledge base to complete the task.
When the agent encounters unknown slot-
values, it may ask the user to repeat or re-
formulate the query. But a robust agent
can proactively seek new knowledge from
a user, to help reduce subsequent task fail-
ures. In this paper, we propose knowledge
acquisition strategies for a dialog agent
and show their effectiveness. The acquired
knowledge can be shown to subsequently
contribute to task completion.

1 Introduction

Many spoken dialog agents are designed to per-
form specific tasks in a specified domain e.g., in-
formation about public events in a city. To carry
out its task, an agent parses an input utterance, fills
in slot-value pairs, then completes the task. Some-
times, information on these slot-value pairs may
not be available in its knowledge base. In such
cases, typically the agent categorizes utterances as
non-understanding errors. Ideally the incident is
recorded and the missing knowledge is incorpo-
rated into the system with a developer’s assistance
— a slow offline process.

There are other sources of knowledge: automat-
ically crawling the web, as done by NELL [Carl-
son et al., 2010], and community knowledge
bases such as Freebase [Bollacker et al., 2008].
These approaches provide globally popular slot-
values [Araki, 2012] and high-level semantic con-
texts [Pappu and Rudnicky, 2013]. Despite their
size, these knowledge bases may not contain in-
formation about the entities in a specific target
domain. However, users in the agent’s domain
can potentially provide specific information on

slot/values that are unavailable on the web, e.g.,
regarding a recent interest/hobby of the user’s
friend. Lasecki et al. [2013] have elicited natu-
ral language dialogs from humans to build NLU

models for the agent and Bigham et al. [2010]
have elicited answers to visual questions by in-
tegrating users into the system. One observation
from this work is that both users and non-users
can impart useful knowledge to system. In this
paper we propose spoken language strategies that
allow an agent to elicit new slot-value pairs from
its own user population to extend its knowledge
base. Open-domain knowledge may be elicited
through text-based questionnaires from non-users
of the system, but in a situated interaction scenario
spoken strategies may be more effective. We ad-
dress the following research questions:

1. Can an agent elicit reliable knowledge about
its domain from users? Particularly knowl-
edge it cannot locate elsewhere (e.g., on-line
knowledge bases). Is the collective knowl-
edge of the users sufficient to allow the agent
to augment its knowledge through interactive
means?

2. What strategies elicit useful knowledge from
users? Based on previous work in com-
mon sense knowledge acquisition [Von Ahn,
2006, Singh et al., 2002, Witbrock et al.,
2003], we devise spoken language strategies
that allow the system to solicit information by
presenting concrete situations and by asking
user-centric questions.

We address these questions in the context of the
EVENTSPEAK dialog system, an agent that provides
information about seminars and talks in an aca-
demic environment. This paper is organized as
follows. In Section 2, we discuss knowledge ac-
quisition strategies. In Section 3, we describe a
user study on these strategies. Then, we present
an evaluation on system acquired knowledge and
finally we make concluding remarks.
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Table 1: System initiated strategies used by the agent for knowledge acquisition in the EVENTSPEAK system.

StrategyType Strategy Example Prompt

QUERYDRIVEN
QUERYEVENT I know events on campus. What do you want to know?
QUERYPERSON I know some of the researchers on campus.Whom do you want to know about?

PERSONAL
BUZZWORDS What are some of the popular phrases in your research?
FAMOUSPEOPLE Tell me some well-known people in your research area

SHOW&ASK
TWEET How would you describe this talk in a sentence, say a tweet.
KEYWORDS Give keywords for this talk in your own words.
PEOPLE Do you know anyone who might be interested in this talk?

2 Knowledge Acquisition Strategies

We posit three different circumstances that can
trigger knowledge acquisition behavior: (1) initi-
ated by expert users of the system [Holzapfel et al.,
2008, Spexard et al., 2006, Lütkebohle et al., 2009,
Rudnicky et al., 2010], (2) triggered by “misun-
derstanding” of the user’s input [Chung et al.,
2003, Filisko and Seneff, 2005, Prasad et al., 2012,
Pappu et al., 2014], or (3) triggered by the system.
They are described below:

QUERYDRIVEN. The system prompts a user
with an open-ended question akin to “how-may-I-
help-you” to learn what “values” of a slot are of
interest to the user. This strategy does not ground
user about system’s knowledge limitations. How-
ever, it allows the system to acquire information
(slot-value pairs) from user’s input. The system
can choose to respond to the input or ignore the
input depending on its knowledge about the slot-
value pairs in the input. Table 1 shows strategies
of this kind i.e., QUERYEVENT and QUERYPERSON.

PERSONAL. The system asks a user about their
own interests and people who may share those in-
terests. This is an open-ended request as well, but
the system expects the response to be confined to
the user’s knowledge about specific entities in the
environment. BUZZWORDS and FAMOUSPEOPLE ex-
pects the user to provide values for the slots.

SHOW&ASK. The system provides a descrip-
tion of an event and asks questions to ground
user’s responses in relation to that event. E.g.,
given the title and abstract of a technical talk,
the system asks the user questions about the talk.
TWEET strategy is expected to elicit a concise de-
scription of the event, which eventually may help
the agent to both summarize events for other users
and identify keywords for an event. KEYWORDS

strategy expects the user to explicitly supply key-
words for an event. PEOPLE strategy expects the
user to provide names of likely event participants.

We hypothesized that these strategies may allow
the agent to learn new slot-value pairs that may

help towards better task performance.

3 Knowledge Acquisition Study

We conducted a user study to determine reliability
of the information acquired by the system. We per-
formed this study using the EVENTSPEAK1 dialog
system, which provides information about upcom-
ing talks and other events that might be of inter-
est, and about ongoing research on campus. The
system presents material on a screen and accepts
spoken input, in a context similar to a kiosk.

The study evaluated performance of the seven
strategies described above. For SHOW&ASK strate-
gies, we had users respond regarding a specific
event. We used descriptions of research talks col-
lected from the university’s website. We used a
web-based interface for data collection; the inter-
face presented the prompt material and recorded
the subject’s voice response. Testvox2 was used
to setup the experiments and Wami3 for audio
recording.

3.1 User Study Design

We recruited 40 researchers (graduate students)
from the School of Computer Science, at Carnegie
Mellon, representative of the user population for
the EVENTSPEAK dialog system. Each subject re-
sponded to prompts from the QUERYDRIVEN, PER-

SONAL and SHOW&ASK strategies.
In the QUERYDRIVEN tasks, the QUERYEVENT

strategy, the system responds to the user’s query
with a list of talks. The user’s response is
recorded, then sent to an open-vocabulary speech
recognizer; the result is used as a query to a
database of talks. The results are then displayed on
the screen. The system applies the QUERYPERSON

strategy in a similar way. In the PERSONAL tasks,
the system applies the BUZZWORDS strategy to ask
the user about popular keyphrases in their research

1http://www.speech.cs.cmu.edu/apappu/kacq
2https://bitbucket.org/happyalu/testvox/wiki/Home
3https://code.google.com/p/wami-recorder/
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Figure 1: Time per Task for all strategies
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Figure 2: Time per Task vs Expertise
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area. The system then asks about well-known re-
searchers (FAMOUSPEOPLE) in the user’s area.

In the SHOW&ASK tasks, we use two seminar
descriptions per subject (in our pilot study, we
found that people provide more diverse responses
(in term of entities) in the SHOW&ASK based on
the event abstract, compared to PERSONAL, QUERY-

DRIVEN). We used a set of 80 research talk an-
nouncements (consisting of a title, abstract and
other information). For each talk, the system used
all three strategies viz., TWEET, KEYWORDS and PEO-

PLE. For the TWEET tasks, subjects were asked to
provide a one sentence description. They were al-
lowed to give a non-technical/high-level descrip-
tion if they were unfamiliar with the topic. For
the PEOPLE task, subjects had to give names of col-
leagues who might be interested in the talk. For
the KEYWORDS task, subjects provided keywords,
either their own words or ones selected from the
abstract.

Since the material is highly technical, we were
interested whether the tasks are cognitively de-
manding for people who are less familiar with the
subject of a talk. Therefore, users were asked to
indicate their familiarity with a particular talk (re-
search area in general) using a scale of 1–4: 4 be-
ing more familiar and 1 being less familiar.

3.2 Corpus Description
This user study produced 64 minutes of audio data,
on average 1.6 minutes per subject. We tran-
scribed the speech then annotated the corpus for
people names, and for research interests. Table 2
shows the number of unique slot-values found in
the corpus. We observe that the number of unique
research interests produced during SHOW&ASK is
higher than for other strategies. This confirms

our initial observations that this strategy elicits
diverse responses. The PERSONAL task produced
a relatively higher number of researcher names
(FAMOUSPEOPLE strategy) than other tasks. One ex-
planation might be that people may find it easier
to recall names in their own research area, as com-
pared to other areas. Overall, we identified 139
unique researcher names and 485 interests.

Table 2: Corpus Statistics

StrategyType
Unique

Researcher
Names

Unique
Research
Interests

QUERYDRIVEN 21 30
PERSONAL 77 107
SHOW&ASK 76 390

Overall 139 485

3.3 Corpus Analysis
One of the objectives of this work is to determine
What strategies can the agent use to elicit knowl-
edge from users? Although, time-cost will vary
with task and domain, a usable strategy should, in
general, be less demanding. We analyzed the time-
per-task for each strategy, shown in Figure 1. We
found that the TWEET strategy is not only more de-
manding, it has higher variance than other tasks.
One explanation is that people would attempt to
summarize the entire abstract including technical
details, despite the instructions indicated that a
non-technical description was acceptable. We can
see a similar trend in Figure 2 that irrespective
of expertise-level, subjects take more time to give
one sentence descriptions. We also observe high
variance and higher time-per-task for QUERYPER-

SON; this is due to the system deliberately not re-
turning any results for this task. This was done to
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Table 3: Mean Precision for 200 researchers, broken down by the “source” strategy used to acquire their name
Note: Only 85 of 200 researchers had Google Scholar pages, GScholar Accuracy is computed for only those 85.

Metric Description Text SHOW&ASK PERSONAL QUERYDRIVEN mean
Mean Precision 89.5% 86.9% 93.6% 86.2% 90.5%
GScholar Acc. 78.3% 82.3% 86.1% 100% 80.0%

find out whether subjects would repeat the task on
failure. Ideally the system needs to only rarely use
this strategy to not lose user’s trust and solicit mul-
tiple values for a given slot (e.g., person name) as
opposed to requesting list of values as in FAMOUS-

PEOPLE and PEOPLE strategies. We find that PEOPLE,
KEYWORDS, FAMOUSPEOPLE and BUZZWORDS strate-
gies are efficient with a time-per-task of less than
one minute. As shown in Figure 2, subjects do not
take much time to speak a list of names or key-
words.

4 Evaluation of Acquired Knowledge

To answer Can an agent elicit reliable knowl-
edge about its domain from users? we analyzed
the relevance of acquired knowledge. We have
two disjoint list of entities, (a) researchers and
(b) research interests; in addition we have speaker
names from the talk descriptions. Our goal is
to implicitly infer a list of interests for each re-
searcher without soliciting the user for the inter-
ests of every researcher exhaustively. To each re-
searcher in the list, we attribute list of interests that
were mentioned in the same context as researcher
was mentioned. We tag list of names acquired
from the FAMOUSPEOPLE strategy with list of key-
words acquired from the BUZZWORDS strategy —
both lists acquired from same user. We repeat this
process for each name mentioned in relation to a
talk in the SHOW&ASK strategy. We tag keywords
mentioned in the KEYWORDS strategy to researchers
mentioned in the PEOPLE strategy.

4.1 Analysis

We produced 200 entries for researchers and their
set of interests. We then had two annotators (se-
nior graduate students) mark whether the system-
predicted interests were relevant/accurate. The an-
notators were allowed to use information found on
researchers’ home pages and Google Scholar4 to
evaluate the system-predicted interests.

This can be seen as an information retrieval (IR)
problem, where researcher is “query” and interests
are “documents”. So, we use Mean Precision, a

4scholar.google.com

common metric in IR, to evaluate retrieval. In our
case, the ground truth for relevant interests comes
from the annotators. The results are shown in Ta-
ble 3. Our approach has high precision, 90.5%,
for all 200 researchers. We see that irrespective
of the strategy used to acquire entities, precision
is good. We also compared our predicted inter-
ests with interests listed by researchers themselves
on Google Scholar. There are only 85 researchers
from our list with a Google Scholar page; for these
our accuracy is 80%, again good. Moreover, sig-
nificant knowledge is absent from the web (at least
in our domain) yet can be elicited from users fa-
miliar with the domain.

5 Conclusion

We describe a set of knowledge acquisition strate-
gies that allow a system to solicit novel informa-
tion from users in a situated environment. To in-
vestigate the usability of these strategies, we con-
ducted a user study in the domain of research talks.
We analyzed a corpus of system-acquired knowl-
edge and have made the material available5. Our
data show that users on average take less than a
minute to provide new information using the pro-
posed elicitation strategies. The reliability of ac-
quired knowledge in predicting relationships be-
tween researchers and interests is quite good, with
a mean precision of 90.5%. We note that the PER-

SONAL strategy, which tries to tap personal knowl-
edge, appears to be particularly effective. More
generally, automated elicitation appears to be a
promising technique for continuous learning in
spoken dialog systems.

6 Appendix

System Predicted Researcher-Interests 1
rich stern deep neural networks, speech recog-

nition, signal processing, neural networks, machine
learning, speech synthesis

5www.speech.cs.cmu.edu/apappu/pubdl/eventspeak corpus.zip
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System Predicted Researcher-Interests 2
kishore prahallad dialogue systems, prosody,

speech synthesis, text to speech, pronunciation mod-
eling, low resource languages

System Predicted Researcher-Interests 3
carolyn rose crowdsourcing, meta discourse clas-

sification, statistical analysis, presentation skills in-
struction, man made system, education models, human
learning

System Predicted Researcher-Interests 4
florian metze dialogue systems, speech recogni-

tion, nlp, prosody, speech synthesis, text to speech,
pronunciation modeling, low resource languages, au-
tomatic accent identification

System Predicted Researcher-Interests 5
madhavi ganapathiraju protein structure, contin-

uous graphical models, generative models, structural
biology, protein structure dynamics, molecular dy-
namics

System Predicted Researcher-Interests 6
alexander hauptmann discriminatively trained

models, deep learning, computer vision, big data

System Predicted Researcher-Interests 7
jamie callan learning to rank, search, large scale

search, web search, click prediction, information re-
trieval, web mining, user activity, recommendation,
relevance, machine learning, web crawling, distributed
systems, structural similarity

System Predicted Researcher-Interests 8
lori levin natural language understanding, knowl-

edge reasoning, construction grammar, knowledge
bases, natural language processing
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Abstract

The earliest work on automatic detec-
tion of implicit discourse relations relied
on lexical features. More recently, re-
searchers have demonstrated that syntactic
features are superior to lexical features for
the task. In this paper we re-examine the
two classes of state of the art representa-
tions: syntactic production rules and word
pair features. In particular, we focus on the
need to reduce sparsity in instance repre-
sentation, demonstrating that different rep-
resentation choices even for the same class
of features may exacerbate sparsity issues
and reduce performance. We present re-
sults that clearly reveal that lexicalization
of the syntactic features is necessary for
good performance. We introduce a novel,
less sparse, syntactic representation which
leads to improvement in discourse rela-
tion recognition. Finally, we demonstrate
that classifiers trained on different repre-
sentations, especially lexical ones, behave
rather differently and thus could likely be
combined in future systems.

1 Introduction

Implicit discourse relations hold between adjacent
sentences in the same paragraph, and are not sig-
naled by any of the common explicit discourse
connectives such as because, however, meanwhile,
etc. Consider the two examples below, drawn from
the Penn Discourse Treebank (PDTB) (Prasad et
al., 2008), of a causal and a contrast relation, re-
spectively. The italic and bold fonts mark the ar-
guments of the relation, i.e the portions of the text
connected by the discourse relation.
Ex1: Mrs Yeargin is lying. [Implicit = BECAUSE] They
found students in an advanced class a year earlier who
said she gave them similar help.

Ex2: Back downtown, the execs squeezed in a few meetings at
the hotel before boarding the buses again. [Implicit = BUT]
This time, it was for dinner and dancing - a block away.

The task is undisputedly hard, partly because it
is hard to come up with intuitive feature represen-
tations for the problem. Lexical and syntactic fea-
tures form the basis of the most successful stud-
ies on supervised prediction of implicit discourse
relations in the PDTB. Lexical features were the
focus of the earliest work in discourse recogni-
tion, when cross product of words (word pairs)
in the two spans connected via a discourse re-
lation was studied. Later, grammatical produc-
tions were found to be more effective. Features
of other classes such as verbs, inquirer tags, posi-
tions were also studied, but they only marginally
improve upon syntactic features.

In this study, we compare the most commonly
used lexical and syntactic features. We show that
representations that minimize sparsity issues are
superior to their sparse counterparts, i.e. the bet-
ter representations are those for which informative
features occur in larger portions of the data. Not
surprisingly, lexical features are more sparse (oc-
curring in fewer instances in the dataset) than syn-
tactic features; the superiority of syntactic repre-
sentations may thus be partially explained by this
property.

More surprising findings come from a closer ex-
amination of instance representation approaches
in prior work. We first discuss how choices in
prior work have in fact exacerbated the sparsity
problem of lexical features. Then, we introduce
a new syntactically informed feature class, which
is less sparse than prior lexical and syntactic fea-
tures, and improves significantly the classification
of implicit discourse relations.

Given these findings, we address the question
if any lexical information at all should be pre-
served in discourse parsers. We find that purely
syntactic representations show lower recognition
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for most relations, indicating that lexical features,
albeit sparse, are necessary for the task. Lexical
features also account for a high percentage of the
most predictive features.

We further quantify the agreement of predic-
tions produced from classifiers using different in-
stance representations. We find that our novel syn-
tactic representation is better for implicit discourse
relation prediction than prior syntactic feature be-
cause it has higher overall accuracy and makes
correct predictions for instances for which the al-
ternative representations are also correct. Differ-
ent representation of lexical features however ap-
pear complementary to each other, with markedly
higher fraction of instances recognized correctly
by only one of the models.

Our work advances the state of the art in implicit
discourse recognition by clarifying the extent to
which sparsity issues influence predictions, by in-
troducing a strong syntactic representation and by
documenting the need for further more complex
integration of lexical information.

2 The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) (Prasad et
al., 2008) contains annotations for five types of
discourse relations over the Penn Treebank corpus
(Marcus et al., 1993). Explicit relations are those
signaled by a discourse connective that occurs in
the text, such as “because”, “however”, “for ex-
ample”. Implicit relations are annotated between
adjacent sentences in the same paragraph. There
are no discourse connectives between the two sen-
tences, and the annotators were asked to insert a
connective while marking their senses. Some pairs
of sentences do not contain one of the explicit dis-
course connectives, but the insertion of a connec-
tive provides redundant information into the text.
For example, they may contain phrases such as
“the consequence of the act”. These are marked
Alternative Lexicalizations (AltLex). Entity rela-
tions (EntRel) are adjacent sentences that are only
related via the same entity or topic. Finally, sen-
tences where no discourse relations were identi-
fied were marked NoRel. In this work, we consider
AltLex to be part of the Implicit relations, and En-
tRel to be part of NoRel.

All connectives, either explicit or implicitly in-
serted, are associated with two arguments of the
minimal span of text conveying the semantic con-
tent between which the relation holds. This is il-

lustrated in the following example where the two
arguments are marked in bold and italic:

Ex: They stopped delivering junk mail. [Implicit = SO] Now
thousands of mailers go straight into the trash.

Relation senses in the PDTB are drawn from
a 3-level hierarchy. The top level relations are
Comparison (arg1 and arg2 holds a contrast rela-
tion), Contingency (arg1 and arg2 are causally re-
lated), Expansion (arg2 further describes arg1) and
Temporal (arg1 and arg2 are temporally related).
Some of the largest second-tier relations are under
Expansion, which include Conjunction (arg2 pro-
vides new information to arg1), Instantiation (arg2
exemplifies arg1) and Restatement (arg2 semanti-
cally repeats arg1).

In our experiments we use the four top level re-
lations as well as the above three subclasses of Ex-
pansion. All of these subclasses occur with fre-
quencies similar to those of the Contingency and
Comparison classes, with thousands of examples
in the PDTB.1 We show the distribution of the
classes below:

Temporal 1038 Comparison 2550
Contingency 4532 Instantiation 1483
Restatement 3271 Conjunction 3646
EntRel/NoRel 5464

3 Experimental settings

In our experiments we use only lexical and syntac-
tic features. This choice is motivated by the fact
that lexical features have been used most widely
for the task and that recent work has demon-
strated that syntactic features are the single best
type of representation. Adding additional features
only minimally improves performance (Lin et al.,
2009). By zeroing in only on these classes of fea-
tures we are able to discuss more clearly the im-
pact that different instance representation have on
sparsity and classifier performance.

We use gold-standard parses from the original
Penn Treebank for syntax features.

To ensure that our conclusions are based on
analysis of the most common relations, we train
binary SVM classifiers2 for the seven relations de-
scribed above. We adopt the standard practice in

1All other sub-classes of implicit relations are too small
for general practical applications. For example the Alterna-
tive class and Concession class have only 185 and 228 oc-
currences, respectively, in the 16,224 implicit relation anno-
tations of the PDTB.

2We use SVMLight (Joachims, 1999) with linear kernel.
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prior work and downsampled the negative class so
the number of positive and negative samples are
equal in the training set.3

Our training set consists of PDTB sections 2-
19. The testing set consists of sections 20-24. Like
most studies, we do not include sections 0-1 in the
training set. We expanded the test set (sections 23
or 23-24) used in previous work (Lin et al., 2014;
Park and Cardie, 2012) to ensure the number of
examples of the smaller relations, particularly of
Temporal or Instantiation, are suitable for carrying
out reliable tests for statistical significance.

Some of the discourse relations are much larger
than others, so we report our results in term of F-
measure for each relation and average unweighted
accuracy. Significance tests over F scores were
carried out using a paired t-test. To do this, the
test set is randomly partitioned into ten groups. In
each group, the relation distribution was kept as
close as possible to the overall test set.

4 Sparsity and pure lexical
representations

By far the most common features used for rep-
resenting implicit discourse relations are lexical
(Sporleder and Lascarides, 2008; Pitler et al.,
2009; Lin et al., 2009; Hernault et al., 2010;
Park and Cardie, 2012). Early studies have sug-
gested that lexical features, word pairs (cross-
product of the words in the first and second ar-
gument) in particular, will be powerful predictors
of discourse relations (Marcu and Echihabi, 2002;
Blair-Goldensohn et al., 2007). The intuition be-
hind word pairs was that semantic relations be-
tween the lexical items, such as drought–famine,
child–adult, may in turn signal causal or contrast
discourse relations. Later it has been shown that
word pair features do not appear to capture such
semantic relationship between words (Pitler et al.,
2009) and that syntactic features lead to higher ac-
curacies (Lin et al., 2009; Zhou et al., 2010; Park
and Cardie, 2012). Recently, Biran and McKeown
(2013) aggregated word pair features with explicit
connectives and reported improvements over the
original word pairs as features.

In this section, we show that the representation
of lexical features play a direct role in feature spar-
sity and ultimately affects prediction performance.

The first two studies that specifically addressed

3We also did not include features that occurred less than
5 times in the training set.

# Features Avg. F Avg. Accuracy
word-pairs 92128 29.46 57.22

binary-lexical 12116 31.79 60.42

Table 1: F-scores and average accuracies of paired
and binary representations of words.

the problem of predicting implicit discourse re-
lations in the PDTB made use of very different
instance representations. Pitler et al. (2009) rep-
resent instances of discourse relations in a vec-
tor space defined by word pairs, i.e. the cross-
product of the words that appear in the two argu-
ments of the relation. There, features are of the
form (w1, w2) where w1 ∈ arg1 and w2 ∈ arg2.
If there are N words in the entire vocabulary, the
size of each instance would be N ×N .

In contrast, Lin et al. (2009) represent instances
by tracking the occurrences of grammatical pro-
ductions in the syntactic parse of argument spans.
There are three indicator features associated with
each production: whether the production appears
in arg1, in arg2, and in both arguments. For a
grammar with N production rules, the size of the
vector representing an instance will be 3N . For
convenience we call this “binary representation”,
in contrast to the word-pair features in which the
cross product of words constitute the representa-
tion. Note that the cross-product approach has
been extended to a wide variety of features (Pitler
et al., 2009; Park and Cardie, 2012). In the ex-
periments that follow we will demonstrate that bi-
nary representations lead to less sparse features
and higher prediction accuracy.

Lin et al. (2009) found that their syntactic fea-
tures are more powerful than the word pair fea-
tures. Here we show that the advantage comes not
only from the inclusion of syntactic information
but also from the less sparse instance representa-
tion they used for syntactic features. In Table 1
we show the number of features for each repre-
sentation and the average F score and accuracy for
word pairs and words with binary representation
(binary-lexical). The results for each relation are
shown in Table 8 and discussed in Section 7.

Using binary representation for lexical informa-
tion outperforms word pairs. Thus, the difference
in how lexical information is represented accounts
for a considerable portion of the improvement re-
ported in Lin et al. (2009). Most notably, for the
Instantiation class, we see a 7.7% increase in F-
score. On average, the less sparse representation
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translates into 2.34% absolute improvement in F-
score and 3.2% absolute improvement in accuracy.
From this point on we adopt the binary represen-
tation for the features discussed.

5 Sparsity and syntactic features

Grammatical production rules were first used for
discourse relation representation in Lin et al.
(2009). They were identified as the most suitable
representation, that lead to highest performance in
a couple of independent studies (Lin et al., 2009;
Park and Cardie, 2012). The comparison repre-
sentations covered a number of semantic classes
related to sentiment, polarity and verb information
and dependency representations of syntax.

Production rules correspond to tree chunks in
the constituency parse of a sentence, i.e. a node
in the syntactic parse tree with all of its children,
which in turn correspond to grammar rules ap-
plied in the derivation of the tree, such as S→NP
VP. This syntactic representation subsumes lexi-
cal representations because of the production rules
with part-of-speech on the left-hand side and a lex-
ical item on the right-hand side.

We propose that the sparsity of production rules
can be reduced even further by introducing a new
representation of the parse tree. Specifically, in-
stead of having full production rules where a sin-
gle feature records the parent and all its children,
all (parent,child) pairs in the constituency parse
tree are used. For example, the rule S→NP VP
will now become two features, S→NP and S→VP.
Note that the leaves of the tree, i.e. the part-of-
speech→word features are not changed. For ease
of reference we call this new representation “pro-
duction sticks”. In this section we show that F
scores and accuracies for implicit discourse rela-
tion prediction based on production sticks is sig-
nificantly higher than using full production rules.

First, Table 2 illustrates the contrast in sparsity
among the lexical, production rule and stick repre-
sentations. The table gives the rate of occurrence
of each feature class, which is defined as the av-
erage fraction of features with non-zero values in
the representation of instances in the entire train-
ing set. Specifically, let N be the total number of
features, mi be the number of features triggered in
instance i, then the rate of occurrence is mi

N .
The table clearly shows that the number of fea-

tures in the three representations is comparable,
but they vary notably in their rate of occurrence.

# Features Rate of Occurrence
sticks 14,165 0.00623

prodrules 16,173 0.00374
binary-lexical 12,116 0.00276

word-pairs 92,128 0.00113

Table 2: Number of features and rate of occur-
rence for binary lexical representation, production
rules and sticks.

Avg. F Avg. Accuracy
sticks 34.73 64.89

prodrules 33.69 63.55
binary-lexical 31.79 60.42

word-pairs 29.46 57.22

Table 3: F-scores and average accuracies of pro-
duction rules and production sticks.

Sticks have almost twice the rate of occurrence of
that of full production rules. Both syntactic rep-
resentations have much larger rate of occurrence
than lexical features, and the rate of occurrence of
word pairs is more than twice smaller than that of
the binary lexical representation.

Next, in Table 3, we give binary classifica-
tion prediction results based on both full rules
and sticks. The first two rows of Table 3 com-
pare full production rules (prodrules) with produc-
tion sticks (sticks) using the binary representation.
They both outperform the binary lexical represen-
tation. Again our results confirm that the better
performance of production rule features is partly
because they are less sparse than lexical represen-
tations, with an average of 1.04% F-score increase.
Individually the F scores of 6 of the 7 relations are
improved as shown in Table 8.

6 How important are lexical features?

Production rules or sticks include lexical items
with their part-of-speech tags. These are the sub-
set of features that contribute most to sparsity is-
sues. In this section we test if these lexical fea-
tures contribute to the performance or if they can
be removed without noticeable degradation due to
its intrinsic sparsity. It turns out that it is not ad-
visable to remove the lexical features entirely, as
performance decreases substantially if we do so.

6.1 Classification without lexical items
We start our exploration of the influence of lexical
items on the accuracy of prediction by inspecting
the performances of the classifiers with production
rules and sticks, but without the lexical items and
their parts of speech. Table 4 lists the average F
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Avg. F Avg. Accuracy
prodrules 33.69 63.55

sticks 34.73 64.89
prodrules-nolex 32.30 62.03

sticks-nolex 33.86 63.99

Table 4: F-scores and average accuracies of pro-
duction rules and sticks, with (rows 1-2) and with-
out (rows 3-4) lexical items.

# Features Rate of Occurrence
prodrules 16,173 0.00374

sticks 14,165 0.00623
prodrules-nolex 3470 0.00902

sticks-nolex 922 0.0619

Table 5: Number of features and rate of occur-
rence for production rules and sticks, with (rows
1-2) and without (rows 3-4) lexical items.

scores and accuracies. Table 8 provides detailed
results for individual relations. Here prodrules-
nolex and sticks-nolex denote full production rules
without lexical items, and production sticks with-
out lexical items, respectively. In all but two re-
lations, lexical items contribute to better classifier
performance.

When lexical items are not included in the rep-
resentation, the number of features is reduced to
fewer than 30% of that in the original full produc-
tion rules. At the same time however, including
the lexical items in the representation improves
performance even more than introducing the less
sparse production stick representation. Production
sticks with lexical information also perform bet-
ter than the same representation without the POS-
word sticks.

The number of features and their rates of occur-
rences are listed in Table 5. It again confirms that
the less sparse stick representation leads to better
classifier performance. Not surprisingly, purely
syntactic features (without the lexical items) are
much less sparse than syntax features with lexical
items present. However the classifier performance
is worse without the lexical features. This contrast
highlights the importance of a reasonable tradeoff
between attempts to reduce sparsity and the need
to preserve lexical features.

6.2 Feature selection

So far our discussion was based on the behavior
of models trained on a complete set of relatively
frequent syntactic and lexical features (occurring
more than five times in the training data). Feature
selection is a way to reasonably prune out the set

Relation %-nonlex %-allfeats
Temporal 25.56 10.95

Comparison 25.40 15.51
Contingency 20.12 25.05
Conjunction 21.15 19.20
Instantiation 25.08 16.16
Restatement 22.16 17.35
Expansion 18.36 18.66

Table 6: Non-lexical features selected using fea-
ture selection. %-nonlex records the percentage of
non-lexical features among all features selected;
%-allfeats records the percentage of selected non-
lexical features among all non-lexical features.

and reduce sparsity issues in the model. In fact
feature selection has been used in the majority of
prior work (Pitler et al., 2009; Lin et al., 2009;
Park and Cardie, 2012).

Here we perform feature selection and exam-
ine the proportion of syntactic and lexical features
among the most informative features. We use the
χ2 test of independence, computed on the follow-
ing contingency table for each feature Fi and for
each relation Rj :

Fi ∧Rj |Fi ∧ ¬Rj
¬Fi ∧Rj |¬Fi ∧ ¬Rj

Each cell in the above table records the num-
ber of training instances in which Fi and Rj are
present or absent. We set our level of confidence
to p < 0.1.

Table 6 lists the proportions of non-lexical items
among the most informative features selected (col-
umn 2). It also lists the percentage of selected non-
lexical items among all the 922 purely syntactic
features from production rule and production stick
representations (column 3). For all relations, at
most about a quarter of the most informative fea-
tures are non-lexical and they only take up 10%-
25% of all possible non-lexical features. The pre-
diction results using only these features are either
higher than or comparable to that without feature
selection (sticks-χ2 in Table 8). These numbers
suggest that lexical terms play a significant role as
part of the syntactic representations.

In Table 8 we record the F scores and accura-
cies for each relation under each feature represen-
tation. The representations are sorted according to
descending F scores for each relation. Notice that
χ2 feature selection on sticks is the best represen-
tation for the three smallest relations: Compari-
son, Instantiation and Temporal.
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This finding led us to look into the selected lex-
ical features for these three classes. We found that
these most prominent features in fact capture some
semantic information. We list the top ten most pre-
dictive lexical features for these three relations be-
low, with examples. Somewhat disturbingly, many
of them are style or domain specific to the Wall
Street Journal that PDTB was built on.
Comparison a1a2 NN share a1a2 NNS cents a1a2 CC or
a1a2 CD million a1a2 QP $ a1a2 NP $ a2 RB n’t
a1a2 NN % a2 JJ year a2 IN of

For Comparison (contrast), the top lexical fea-
tures are words that occur in both argument 1 and
argument 2. Contrast within the financial domain,
such as “share”, “cents” and numbers between ar-
guments are captured by these features. Consider
the following example:
Ex. Analyst estimate the value of the BellSouth proposal at

about $115 to $125 a share. [Implicit=AND] They value
McCaw’s bid at $112 to $118 a share .

Here the contrast clearly happens with the value
estimation for two different parties.

Instantiation a2 SINV “ a2 SINV , a2 SINV ” a2 SINV .

a1 DT some a2 S a2 VBZ says a1 NP , a2 NP , a1 DT a

For Instantiation (arg2 gives an example of
arg1), besides words such as “some” or “a” that
sometimes mark a set of events, many attribution
features are selected. it turns out many Instanti-
ation instances in the PDTB involve argument 2
being an inverted declarative sentence that signals
a quote as illustrate by the following example:
Ex. Unease is widespread among exchange members. [Im-

plicit=FOR EXAMPLE] “ I can’t think of any reason to
join Lloyd’s now, ” says Keith Whitten, a British business-

man and a Lloyd’s member since 1979.

Temporal a1 VBD plunged a2 VBZ is a2 RB later

a1 VBD was a2 VBD responded a1a2 PRP he

a1 WRB when a1 PRP he a1 VBZ is a2 VBP are

For Temporal, verbs like plunge and responded
are selected. Words such as plunged are quite do-
main specific to stock markets, but words such as
later and responded are likely more general indi-
cators of the relation.

The presence of pronouns was also a predictive
feature. Consider the following example:
Ex. A Yale law school graduate , he began his career in cor-

porate law and then put in years at Metromedia Inc. and the

William Morris talent agency. [Implicit=THEN] In 1976, he
joined CBS Sports to head business affairs and, five years
later, became its president.

Overall, it is fairly easy to see that certain se-
mantic information was captured by these fea-
tures, such as similar structures in a pair of sen-
tences holding a contrast relation, the use of verbs
in a Temporal relation. However, it is rather unset-
tling to also see that some of these characteristics
are largely style or domain specific. For exam-
ple, for an Instantiation in an educational scenario
where the tutor provides an example for a concept,
it is highly unlikely that attribution features will be
helpful. Therefore, part of the question of finding
a general class of features that carry over to other
styles or domains of text still remain unanswered.

7 Per-relation evaluation

Table 8 lists the F-scores and accuracies of each
representation mentioned in this work for predict-
ing individual relation classes. For each relation,
the representations are ordered by decreasing F-
score. We tested the results for statistical signifi-
cance of the change in F-score. We compare all
the representations with the best and the worse
representations for the relation. A “Y” marks a
significance level of p ≤ 0.05 for the comparison
with the best or worst representation, a “T” marks
a significance level of p ≤ 0.1, which means a
tendency towards significance.

For all relations, production sticks, either with
or without feature selection, is the top represen-
tation. Sticks without lexical items also under-
perform those including the lexical items for 6 of
the 7 relations. Notably, production rules without
lexical items are among the three worst represen-
tations, outperforming only the pure lexical fea-
tures in some cases. This is a strong indication
that being both a sparse syntactic representation
and lacking lexical information, these features are
not favored in this task. Pure lexical features give
the worst or second to worst F scores, significantly
worse than the alternatives in most of the cases.

In Table 7 we list the binary classification re-
sults from prior work: feature selected word pairs
(Pitler et al., 2009), aggregated word pairs (Biran
and McKeown, 2013), production rules only (Park
and Cardie, 2012), and the best combination pos-
sible from a variety of features (Park and Cardie,
2012), all of which include production rules. We
aim to compare the relative gains in performance
with different representations. Note that the abso-
lute results from prior work are not exactly com-
parable to ours for two reasons — the training
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Sys. Pitler et al. Biran-McKeown
Feat. wordpair-implicit aggregated wp

Comp. 20.96 (42.55) 24.38 (61.72)
Cont. 43.79 (61.92) 44.03 (66.78)
Expa. 63.84 (60.28) 66.48 (60.93)
Temp. 16.21 (61.98) 19.54 (68.09)
Sys. Park-Cardie Park-Cardie
Feat. prodrules best combination

Comp. 30.04 (75.84) 31.32 (74.66)
Cont. 47.80 (71.90) 49.82 (72.09)
Expa. 77.64 (69.60) 79.22 (69.14)
Temp. 20.96 (63.36) 26.57 (79.32)

Table 7: F-score (accuracy) of prior systems. Note
that the absolute numbers are not exactly compa-
rable with ours because of the important reasons
explained in this section.

and testing sets are different; how Expansion, En-
tRel/NoRel and AltLex relations are treated differ-
ently in each work. The only meaningful indicator
here is the absolute size of improvement. The table
shows that our introduction of production sticks
led to improvements comparable to those reported
in prior work.

The aggregated word pair is a less sparse ver-
sion of the word pair features, where each pair
is converted into weights associated with an ex-
plicit connective. Just as the less sparse binary
lexical representation presented previously, the ag-
gregated word pairs also gave better performance.
None of the three lexical features, however, sur-
passes raw production rules, which again echoes
our finding that binary lexical features are not bet-
ter than the full production rules. Finally, we
note that a combination of features gives better F-
scores.

8 Discussion: are the features
complementary?

So far we have discussed how different represen-
tations for lexical and syntactic features can af-
fect the classifier performances. We focused on
the dilemma of how to reduce sparsity while still
preserving the useful lexical features. An impor-
tant question remains as whether these representa-
tions are complementary, that is, how different is
the classifier behaving under different feature sets
and if it makes sense to combine the features.

We compare the classifier output on the test data
with two methods in Table 9: the Q-statistic and
the percentage of data which the two classifiers
disagree (Kuncheva and Whitaker, 2003).

sig- sig-
Representation F (A) best worst

Comparison
sticks-χ2 27.78 (62.83) N/A Y
prodrules 27.65 (59.5) - Y

sticks 27.50 (60.73) - Y
sticks-nolex 27.01 (59.63) - Y

prodrules-nolex 26.40 (58.47) T Y
binary-lexical 24.73 (58.32) Y -

word-pairs 22.68 (45.03) Y N/A
Conjunction

sticks 27.55 (63.82) N/A T
sticks-χ2 27.53 (64.06) - T
prodrules 27.02 (63.91) - -

sticks-nolex 26.56 (61.03) T -
binary-lexical 25.90 (61.77) Y -

prodrules-nolex 25.20 (62.83) T N/A
word-pairs 25.18 (74.51) T -

Contingency
sticks 48.90 (67.49) N/A Y

sticks-χ2 48.55 (67.76) - Y
sticks-nolex 48.08 (67.69) - Y

prodrules 47.14 (65.61) T Y
prodrules-nolex 45.79 (63.99) Y Y
binary-lexical 44.17 (62.68) Y Y

word-pairs 40.57 (50.53) Y N/A
Expansion

sticks 56.48 (61.75) N/A Y
sticks-χ2 56.30 (62.26) - Y

sticks-nolex 55.43 (60.56) - Y
prodrules 55.42 (61.05) - Y

binary-lexical 54.20 (59.26) Y -
word-pairs 53.65 (56.64) Y -

prodrules-nolex 53.53 (58.79) Y N/A
Instantiation

sticks-χ2 30.34 (74.54) N/A Y
sticks 29.93 (73.80) - Y

prodrules 29.59 (72.20) - Y
sticks-nolex 28.22 (72.66) Y Y

prodrules-nolex 27.83 (70.72) Y Y
binary-lexical 27.29 (70.05) Y Y

word-pairs 20.22 (51.00) Y N/A
Restatement

sticks 35.74 (61.45) N/A Y
sticks-χ2 34.93 (61.42) - Y

sticks-nolex 34.62 (61.08) T Y
prodrules 33.52 (58.54) T Y

prodrules-nolex 32.05 (56.84) Y -
binary-lexical 31.27 (57.41) Y T

word-pairs 29.81 (47.42) Y N/A
Temporal

sticks-χ2 17.97 (66.67) N/A Y
sticks-nolex 17.08 (65.27) T Y

sticks 17.04 (65.22) T Y
prodrules 15.51 (64.04) Y -

prodrules-nolex 15.29 (62.56) Y -
binary-lexical 14.97 (61.92) Y -

word-pairs 14.10 (75.38) Y N/A

Table 8: F-score (accuracy) of each relation for
each feature representation. The representations
in each relation are sorted in descending order.
The column “sig-best” marks the significance test
result against the best representation, the col-
umn “sig-worst” marks the significance test re-
sult against the worst representation. “Y” denotes
p ≤ 0.05, “T” denotes p ≤ 0.1.
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Q-statistic is a measure of agreement between
two systems s1 and s2 formulated as follows:

Qs1,s2 =
N11N00 −N01N10

N11N00 +N01N10

Where N denotes the number of instances, a sub-
script 1 on the left means s1 is correct, and a sub-
script 1 on the right means s2 is correct.

There are several rather surprising findings.
Most notably, word pairs and binary lexical repre-
sentations give very different classification results
in each relation. Their predictions disagree on at
least 25% of the data. This finding drastically con-
trast the fact that they are both lexical features and
that they both make use of the argument annota-
tions in the PDTB. A comparison of the percent-
ages and their differences in F scores or accuracies
easily shows that it is not the case that binary lex-
ical models correctly predict instances word pairs
made mistakes on, but that they are disagreeing in
both ways. Thus, given the previous discussion
that lexical items are useful, it is possible the most
suitable representation would combine both views
of lexical distribution.

Even more surprisingly, the difference in classi-
fier behavior is not as big when we compare lex-
ical and syntactic representations. The disagree-
ment of production sticks with and without lexi-
cal features are the smallest, even though, as we
have shown previously, the majority of production
sticks are lexical features with part-of-speech tags.
If we compare binary lexical features with produc-
tion sticks, the disagreement becomes bigger, but
still not as big as word pairs vs. binary lexical.

Besides the differences in classification, the big-
ger picture of improving implicit discourse rela-
tion classification is finding a set of feature repre-
sentations that are able to complement each other
to improve the classification. A direct conclusion
here is that one should not limit the focus on fea-
tures in different categories (for example, lexical
or syntax), but also features in the same category
represented differently (for example, word pairs or
binary lexical).

9 Conclusion

In this work we study implicit discourse relation
classification from the perspective of the interplay
between lexical and syntactic feature representa-
tion. We are particularly interested in the trade-
off between reducing sparsity and preserving lex-
ical features. We first emphasize the important

Rel. Q-stat Disagreement
word-pairs vs. binary-lexical

Comparison 0.65 33.55
Conjunction 0.71 28.47
Contingency 0.81 26.35
Expansion 0.69 29.38

Instantiation 0.75 31.33
Restatement 0.76 28.42

Temporal 0.25 25.34
binary-lexical vs. sticks

Comparison 0.78 25.49
Conjunction 0.78 24.67
Contingency 0.86 20.68
Expansion 0.80 24.28

Instantiation 0.83 20.75
Restatement 0.76 26.72

Temporal 0.86 20.61
sticks vs. prodrules

Comparison 0.88 19.77
Conjunction 0.89 18.43
Contingency 0.94 14.00
Expansion 0.88 19.18

Instantiation 0.90 16.34
Restatement 0.89 18.88

Temporal 0.90 17.94
sticks vs. sticks-nolex

Comparison 0.94 14.61
Conjunction 0.92 16.63
Contingency 0.97 10.16
Expansion 0.91 17.35

Instantiation 0.97 9.51
Restatement 0.97 11.26

Temporal 0.98 8.42

Table 9: Q statistic and disagreement of different
classes of representations

role of sparsity for traditional word-pair represen-
tations and how a less sparse representation could
improve performance. Then we proposed a less
sparse feature representation for production rules,
the best feature category so far, that further im-
proves classification. We study the role of lexical
features and show the contrast between the spar-
sity problem they brought along and their domi-
nant presence in the highly ranked features. Also,
lexical features included in syntactic features that
are most informative to the classifiers are found to
be style or domain specific in certain relations. Fi-
nally, we compare the representations in terms of
classifier disagreement and showed that within the
same feature category different feature representa-
tion can also be complementary with each other.
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Abstract

Research trends on SDS evaluation are
recently focusing on objective assess-
ment methods. Most existing methods,
which derive quality for each system-
user-exchange, do not consider tempo-
ral dependencies on the quality of pre-
vious exchanges. In this work, we in-
vestigate an approach for determining In-
teraction Quality for human-machine dia-
logue based on methods modeling the se-
quential characteristics using HMM mod-
eling. Our approach significantly outper-
forms conventional approaches by up to
4.5% relative improvement based on Un-
weighted Average Recall metrics.

1 Introduction

Spoken Dialogue Systems (SDSs) play a key role
in achieving natural human-machine interaction.
One reason is that speech is one major chan-
nel of natural human communication. Assess-
ing the quality of such SDSs has been discussed
frequently in recent years. The basic principles
which all approaches underlie have been analyzed
by Möller et al. (2009) creating a taxonomy for
quality of human-machine interaction, i.e., Qual-
ity of Service (QoS) and Quality of Experience
(QoE). Quality of Service describes objective cri-
teria like total number of turns. The recent shift of
interest in dialogue assessment methods towards
subjective criteria is described as Quality of Expe-
rience, putting the user in the spotlight of dialogue
assessment. For QoE, Möller et al. (2009) iden-
tified several aspects contributing to a good user
experience, e.g., usability or acceptability. These
aspects can be combined under the term user sat-
isfaction, describing the degree by which the user
is satisfied with the system’s performance. By as-
sessing QoE, the hope of the research community

is to better measure the human-like quality of an
SDS. While this information may be used during
the design process, enabling automatically derived
user satisfaction within the dialogue management
allows for adaption of the ongoing dialogue (Ultes
et al., 2012b).

First work on deriving subjective metrics au-
tomatically has been performed by Walker et
al. (1997) resulting in the PARADISE framework,
which is the current quasi-standard in this field.
Briefly explained, a linear dependency is assumed
between dialogue parameters and user satisfaction
to estimate qualitative performance on the dia-
logue level.

Measuring the performance of complete dia-
logues does not allow for adapting to the user dur-
ing the dialogue (Ultes et al., 2012b). Hence,
performance measures which provide a measure-
ment for each system-user-exchange1 are of inter-
est. Approaches based on Hidden Markov Models
(HMMs) are widely used for sequence modeling.
Therefore, Engelbrecht et al. (2009) used these
models for predicting the dialogue quality on the
exchange level. Similar to this, we presented work
on estimating Interaction Quality using HMMs
and Conditioned HMMs (Ultes et al., 2012a). In
this contribution, we investigate an approach for
recognizing the dialogue quality using a hybrid
Markovian model. Here, hybrid means combin-
ing statistical approaches such as Support Vector
Machines with Hidden Markov Models by model-
ing the observation probability of the HMMs us-
ing classification. While this is the first time hy-
brid approaches are used for estimating Interaction
Quality, they are well-known and have been used
before for other classification tasks (e.g. (Valstar
and Pantic, 2007; Onaran et al., 2011)).

This paper is outlined as follows: Related work
on subjective quality measurement on the ex-

1A system-user-exchange consists of a system dialogue
turn followed by a user dialogue turn
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change level is presented in Section 2. All experi-
ments in this work are based on the Interaction
Quality metric of the LEGO corpus described in
Section 3. We motivate for introducing time de-
pendency and present our own approach on rec-
ognizing Interaction Quality using a Markovian
model presented in Section 4 and briefly present
the classification algorithms used for the experi-
ments in Section 5. Experiments are presented in
Section 6 and their results discussion in Section 7.

2 Significant Related Work

Much research on predicting subjective quality
measures on an exchange level has been per-
formed hitherto. However, most of this body of
work lacks of either taking account of the sequen-
tial structure of the dialogue or resulting in insuf-
ficient performance.

Engelbrecht et al. (2009) presented an approach
using Hidden Markov Models (HMMs) to model
the SDS as a process evolving over time. Perfor-
mance ratings on a 5 point scale (“bad”, “poor”,
“fair”, “good”, “excellent”) have been applied by
the users of the SDS during the dialogue. The in-
teraction was halted while the user rated. A HMM
was created consisting of 5 states (one for each
rating) and a 6-dimensional input vector. While
Engelbrecht et al. (2009) relied on only 6 input
variables, we will pursue an approach with 29 in-
put variables. Moreover, we will investigate dia-
logues of a real world dialogue system annotated
with quality labels by expert annotators.

Higashinaka et al. (2010) proposed a model for
predicting turn-wise ratings for human-human di-
alogues. Ratings ranging from 1 to 7 were applied
by two expert annotators labeling for smooth-
ness, closeness, and willingness. They achieved
an UAR2 of only 0.2-0.24 which is only slightly
above the random baseline of 0.14.

Hara et al. (2010) derived turn level ratings from
overall ratings of the dialogue which were applied
by the users after the interaction on a five point
scale within an online questionnaire. Using n-
grams to model the dialogue by calculating n-gram
occurrence frequencies for each satisfaction value
showed that results for distinguishing between six
classes at any point in the dialogue to be hardly
above chance.

A more robust measure for user satisfaction has
been presented by Schmitt et al. (2011) within

2Unweighted Average Recall, see Section 6

s u s u s u s u…s1 u1 s2 u2 s3 u3 sn un
…

e1 e2 e3 en

Figure 1: A dialogue may be separated into a se-
quence of system-user-exchanges where each ex-
change ei consists of a system turn si followed by
a user turn ui.

their work about Interaction Quality (IQ) for Spo-
ken Dialogue Systems. In contrast to user satis-
faction, the labels were applied by expert annota-
tors after the dialogue at the exchange level. Auto-
matically derived parameters were used as features
for creating a statistical model using static fea-
ture vectors. Schmitt et al. (2011) performed IQ
recognition on the LEGO corpus (see Section 3)
using linear SVMs. They achieved an UAR2 of
0.58 based on 10-fold cross-validation which is
clearly above the random baseline of 0.2. Ultes
et al. (2012a) put an emphasis on the sequential
character of the IQ measure by applying a Hid-
den Markov Models (HMMs) and a Conditioned
Hidden Markov Models (CHMMs). Both have
been applied using 6-fold cross validation and a
reduced feature set of the LEGO corpus achieving
an UAR2 of 0.44 for HMMs and 0.39 for CHMMs.
While Ultes et al. (2012a) used generic Gaussian
Mixture Models to model the observation proba-
bilities, we use confidence distributions of static
classification algorithms.

3 The LEGO Corpus

For Interaction Quality (IQ) estimation, we use the
LEGO corpus published by Schmitt et al. (2012).
Interaction Quality is defined similarly to user sat-
isfaction: While the latter represents the true dis-
position of the user, IQ is the disposition of the
user assumed by an expert annotator. Here, ex-
pert annotators are people who listen to recorded
dialogues after the interactions and rate them by
assuming the point of view of the actual person
performing the dialogue. These experts are sup-
posed to have some experience with dialogue sys-
tems. In this work, expert annotators were “ad-
vanced students of computer science and engineer-
ing” (Schmitt et al., 2011), i.e., grad students.

The LEGO corpus is based on 200 calls to
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s1 u1 s2 u2 s3 u3 sn un
…

e1 e2 e3 en

en… en-1en-2e1 e2 e3 en+1 … exchange level parameters

window level parameters: {#}, {Mean}, etc.

dialogue level parameters: #, Mean, etc.

Figure 2: The three different modeling levels representing the interaction at exchange en: The most
detailed exchange level, comprising parameters of the current exchange; the window level, capturing
important parameters from the previous n dialog steps (here n = 3); the dialog level, measuring overall
performance values from the entire previous interaction.

the “Let’s Go Bus Information System” of the
Carnegie Mellon University in Pittsburgh (Raux et
al., 2006) recorded in 2006. Labels for IQ have
been assigned by three expert annotators to 200
calls consisting of 4,885 system-user-exchanges
(see Figure 1) in total with an inter-annotator
agreement of κ = 0.54. This may be considered
as a moderate agreement (cf. Landis and Koch’s
Kappa Benchmark Scale (1977)) which is quite
good considering the difficulty of the task that re-
quired to rate each exchange. For instance, if one
annotator reduces the IQ value only one exchange
earlier than another annotator, both already dis-
agree on two exchanges. The final label was as-
signed to each exchange by using the median of
all three individual ratings.

IQ was labeled on a scale from 1 (extremely un-
satisfied) to 5 (satisfied) considering the complete
dialogue up to the current exchange. Thus, each
exchange has been rated without regarding any up-
coming user utterance. As the users are expected
to be satisfied at the beginning, each dialogue’s
initial rating is 5. In order to ensure consistent la-
beling, the expert annotators had to follow labeling
guidelines (Schmitt et al., 2012).

An example of an annotated dialogue is shown
in Table 5. It starts off with a good IQ until the
system provides some results and then falls drasti-
cally as the user input does not correspond to what
the system expects. Thus, the system remains in a
loop until the user reacts appropriately.

Parameters used as input variables for the IQ
model have been derived from the dialogue system
modules automatically for each exchange. Fur-
thermore, parameters on three levels have been
created: the exchange level, the dialogue level,
and the window level (see Figure 2). As parame-
ters like ASRCONFIDENCE (confidence of speech
recognition) or UTTERANCE (word sequence rec-
ognized by speech recognition) can directly be

acquired from the dialogue modules they consti-
tute the exchange level. Counts, sums, means,
and frequencies of exchange level parameters from
multiple exchanges are computed to constitute the
dialogue level (all exchanges up to the current
one) and the window level (the three previous ex-
changes).

4 Hybrid-HMM

As Schmitt et al. (2011) model the sequential
character of the data only indirectly by design-
ing special features, our approach applies Marko-
vian modeling to directly model temporal de-
pendencies. Temporal dependencies on previous
system-user-exchanges are not taken into account
by Schmitt et al.; only parameters derived from
the current exchange are used. However, we found
out that Interaction Quality is highly dependent on
the IQ value of the previous exchange. Adding
the parameter IQprev describing the previous IQ
value to the input vector to the IQ model consist-
ing of several parameters results in an extended in-
put vector. Calculating the Information Gain Ra-
tio (IGR) of each parameter of the extended input
vector shows that IQprev achieves the highest IGR
value of 1.0. In other words, IQprev represents the
parameter which contains the most information for
the classification task.

While performing IQ recognition on the ex-
tended features set using the annotated IQ values
results in an UAR of 0.82, rather using the esti-
mated IQ value results in an UAR of only 0.43.
Consequently, other configurations have to be in-
vestigated. Here, Markovian approaches offer a
self-contained concept of using these temporal de-
pendencies. However, Ultes et al. (2012a) showed
that applying neither a classical HMM nor a con-
ditioned HMM yields results outperforming static
approaches.

Therefore, in this Section we present a Hybrid-
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HMM approach, which is based on the classical
HMM and takes advantage of good performing
existing static classification approaches. The clas-
sical HMM, specifically used for time-sequential
data, consists of a set of states S with transition
probability matrix A and initial probability vec-
tor π over a set of observations B (also called vo-
cabulary) and an observation function bqt depen-
dent on the state qt. For calculating the proba-
bility p(qt|Ot, λ) of seeing observation sequence
Ot = (o1, o2, . . . , ot) while being in state qt at
time t given the HMM λ, the Forward Algorithm
is used:

p(qt = sj |Ot, λ) = αt(j)

=
|S|∑
i=1

αt−1(i)aijbj(ot) . (1)

Here, aij describes the transition probability of
transitioning from state si to state sj . To find
a suitable model λ, the HMM must be trained,
for example, by using the Baum-Welch algorithm.
Usually, the observation function bqt is modeled
with Gaussian mixture models (GMMs). For more
information on general HMMs, please refer to Ra-
biner et al. (1989).

For determining the most likely class ω̂t at time
t, where each state j ∈ S is associated with one
class ω, the following equation is used:

ω̂t = arg max
j

αt(j) . (2)

For applying an HMM while exploiting exist-
ing statistical classification approaches, the obser-
vation function bj(ot) is modeled by using con-
fidence score distributions of statistical classifiers,
e.g., a Support Vector Machine in accordance with
Schmitt et al. (2011) (see Section 5). Furthermore,
the transition function aij is computed by taking
the frequencies of the state transitions contained
in the given corpus. Therefore, an ergodic HMM
is used comprising five states with each represent-
ing one of the five IQ scores.

Moreover, in SDSs, a system action act is per-
formed at the end of each system turn. This can
be utilized by adding an additional dependency on
this action to the state transition function aij . By
augmenting Equation 1, this results in

αt(j) =
|S|∑
i=1

αt−1(i)aij,actbj(ot) . (3)

This refinement models differences in state tran-
sitions evoked by different system actions, e.g.,
a different transition probability is expected if a
WAIT action is performed compared to a CONFIR-
MATION. Equation 3 is equal to the belief up-
date equation known from the Partially Observ-
able Markov Decision Process formalism (Kael-
bling et al., 1998).

Therefore, two versions of the Hybrid-HMM
are evaluated: an action-independent version as in
Equation 1 and an action-dependent version as in
Equation 3.

5 Classifier Types

For modeling the observation probability bj(ot)of
the hybrid HMM, multiple classification schemes
have been applied to investigate the influence of
observation distributions with different character-
istics on the overall performance.

In general, classification means estimating a
class ω̂ to the given observation o by comparing
the class-wise probabilities p(ω|o). In this work,
this probability may be used to model the observa-
tion probability bj(o) of the HMM by the posterior
probability

p(ω|o) = bj(o) (4)

for j = ω.
As not all classification algorithms provide a

posterior probability, it may be replaced by the
confidence distribution. A general description of
the classification algorithms used in this work are
described in the following Section along with a
motivation for the feature subset of the LEGO cor-
pus used for estimating the Interaction Quality in
this work.

5.1 Support Vector Machine

For a two class problem, a Support Vector Ma-
chine (SVM) (Vapnik, 1995) is based on the con-
cept of linear discrimination with maximum mar-
gin by defining a hyperplane separating the two
classes. The estimated class ω̂ for observation vec-
tor ~o is based on the sign of the decision function

k(~o) =
N∑
i=1

αiziK(~mi, ~o) + b , (5)

where ~mi represent support vectors defining the
hyper plane (together with b), zi the known class
~mi belongs to, αi the weight of ~mi, and K(·, ·) a
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kernel function. The kernel function is defined as

K(~m, ~m′) = 〈ϕ(~m), ϕ(~m′)〉 , (6)

where ϕ(~m) represents a transformation function
mapping ~m into a space Φ of different dimension-
ality and 〈·, ·〉 defines a scalar product in Φ. By
using the kernel function, the linear discrimina-
tion may happen in a space of high dimensional-
ity without explicitly transforming the observation
vectors into said space.

The SVM implementation which is used in this
contribution is libSVM (Chang and Lin, 2011). As
this algorithm does not provide class probabilities
directly, the respective confidence scores are used.

5.2 Naive Bayes

For deriving the posterior probability, the Naive
Bayes classifier may be used. It calculates the pos-
terior probability P (ω|o) of having class ω when
seeing the n-dimensional observation vector ~o by
applying Bayes rule (Duda et al., 2001):

P (ω|~o) =
p(~o|ω) · P (ω)

p(~o)
. (7)

In general, observations, i.e., elements of the
observation vector, may be correlated with each
other and introducing independence assumptions
between these elements does usually not reflect
the true state of the world. However, correlations
are often not very high thus simplifying the Bayes
problem has proved to result in reasonable perfor-
mance. This is utilized by the Naive Bayes classi-
fier by assuming said independence thus calculat-
ing

p(~o|ω) =
n∏
i=1

p(oi|ω) . (8)

5.3 Rule Induction

The classification algorithm Rule Induction or
Rule Learner is based on the idea of defining rules
to assign classes ω̂ to observation vectors ~o. In this
work, the algorithm RIPPER (Repeated Incremen-
tal Pruning to Produce Error Reduction) (Cohen,
1995) is used where each rule consists of conjunc-
tions of An = v, where An is a nominal attribute,
or Ac ≥ θ,Ac ≤ θ, where Ac is a continuous at-
tribute. Each part of the observation vector ~o is re-
flected by one of the attributes. The basic process
of the algorithm for generating rules is divided into

three steps: First, rules are grown by adding at-
tributes to the rule. Second, the rules are pruned.
If the resulting rule set is not of sufficient perfor-
mance, all training examples which are covered by
the generated rules are removed from the example
set and a new rule is created.

5.4 Feature selection
As stated previously, all experiments are based on
the LEGO corpus presented in Section 3. In order
to keep the presented results comparable to pre-
vious work based on HMM and CHMM (Ultes et
al., 2012a), a reduced parameter set is used. Pa-
rameters with constant values for most exchanges
have been excluded. These would result in rows
of zeros during computation of the covariance ma-
trices of the feature vectors, which are needed for
HMM and CHMM classification. A row of ze-
ros in the covariance matrix will make it non-
invertible, which will cause errors during the com-
putation of the emission probabilities.

Therefore, a feature set consisting of 29 inter-
action parameters is used for both defining a base-
line and for evaluating the Hybrid-HMM. The set
consists of the following parameters (for an expla-
nation of the features, please refer to (Schmitt et
al., 2012)):

Exchange Level ASRRECOGNITIONSTATUS, ACTIVITY-
TYPE, ASRCONFIDENCE, ROLEINDEX, ROLENAME,
UTD, REPROMPT?, BARGED-IN?, DD, WPST,
WPUT

Dialogue Level MEANASRCONFIDENCE, #ASRREJEC-
TIONS, #TIMEOUTS ASRREJ, #BARGEINS, %ASR-
REJECTIONS, %TIMEOUTS ASRREJ, %BARGEINS,
#REPROMPTS,
%REPROMPTS, #SYSTEMQUESTIONS

Window Level #TIMEOUTS ASRREJ, #ASRREJEC-
TIONS, #BARGEINS, %BARGEINS, #SYSTEMQUES-
TIONS, MEANASRCONFIDENCE, #ASRSUCCESS,
#RE-PROMPT

For act in Equation 3, the exchange level pa-
rameter ACTIVITYTYPE is used which may take
one out of the four values “Announcement”, “Con-
firmation”, “Question”, or “wait”. Their distribu-
tion within the LEGO corpus is depicted in Fig-
ure 3.

6 Experiments and Results

All experiments are conducted using 6-fold cross-
validation3. This includes the baseline approach

3Six folds have been selected as a reasonable trade-off be-
tween validity and computation time.
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Figure 3: Distribution of the four values for act
in Equation 3 in the LEGO corpus. While “wait”
occurs rarely, the other three main actions occur at
roughly the same frequency.

(also producing the observation probabilities of
the Hybrid-HMM approach) and the evaluation of
the Hybrid-HMM. For the latter, two phases of
cross-validation were applied.

Interaction Quality estimation is done by
using three commonly used evaluation met-
rics: Unweighted Average Recall (UAR), Co-
hen’s Kappa (Cohen, 1960) and Spearman’s
Rho (Spearman, 1904). These are also selected
as the same metrics have been used in Schmitt et
al. (2011) as well.

Recall in general is defined as the rate of cor-
rectly classified samples belonging to one class.
The recall in UAR for multi-class classification
problems with N classes recalli is computed for
each class i and then averaged over all class-wise
recalls:

UAR =
1
N

N∑
i=1

recalli . (9)

Cohen’s Kappa measures the relative agree-
ment between two corresponding sets of ratings.
In our case, we compute the number of label
agreements corrected by the chance level of agree-
ment divided by the maximum proportion of times
the labelers could agree. However, Cohen’s
weighted Kappa is applied as ordinal scores are
compared (Cohen, 1968). A weighting factor w is
introduced reducing the discount of disagreements
the smaller the difference is between two ratings:

w =
|r1 − r2|

|rmax − rmin| . (10)

Here, r1 and r2 denote the rating pair and rmax
and rmin the maximum and minimum ratings pos-
sible.

Table 1: Results for IQ recognition of the statis-
tical classifiers: UAR, κ and ρ for linear SVM,
Bayes classification and Rule Induction. σ2 repre-
sents the variances of the confidence scores.

UAR κ ρ σ2

SVM (linear) .495 .611 .774 .020
Bayes .467 .541 .716 .127
Rule Induction .596 .678 .790 .131

Correlation between two variables describes the
degree by which one variable can be expressed by
the other. Spearman’s Rho is a non-parametric
method assuming a monotonic function between
the two variables (Spearman, 1904).

6.1 Baseline

As baseline, we adapted the approach of Schmitt
et al. (2011). While they focused only on an SVM
with linear kernel, we investigate three different
static classification approaches. Different clas-
sifiers will produce different confidence distribu-
tions. These distributions will have different char-
acteristics which is of special interest for evaluat-
ing the Hybrid-HMM as will be discussed in Sec-
tion 7. The confidence characteristics are repre-
sented by the variance of the confidence scores
σ2. This variance is used as indicator for how cer-
tain the classifier is about its results. If one IQ
value has a high confidence while all others have
low confidence, the classifier is considered to be
very certain. This also results in a high variance.
Vice versa, if all IQ values have almost equal con-
fidence indicates high uncertainty. This will result
in a low variance.

The classification algorithms, which have been
selected arbitrarily, are SVM with linear kernel,
Naive Bayes, and Rule Induction (see Section 5).
The results in Table 1 show that an SVM with lin-
ear kernel (as used by Schmitt et al. (2011)) per-
forms second best with an UAR of 0.495 after
Rule Induction with an UAR of 0.596. The re-
sults of the SVM differ from the results obtained
by Schmitt et al. (UAR of 0.58) as we used a re-
duced feature set while they used all available fea-
tures.

6.2 Hybrid-HMM

For evaluating the Hybrid-HMM on Interaction
Quality recognition, three aspects are of inter-
est. Most prominent is whether the presented ap-
proaches outperform the baseline, i.e., the clas-
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Figure 4: Relative difference of UAR in percent between the baseline performance and the Hybrid-
HMM for the action-independent (AI), action-dependent (AD) and handcrafted (HC) transition matrix.
Differences marked with an * are significant (Wilcoxon test (Wilcoxon, 1945), α < 0.05).

Table 2: Results for the Hybrid-HMM approach:
UAR, κ and ρ for the action-independent (AI) and
action-dependent (AD) versions.

UAR κ ρ
AI AD AI AD AI AD

SVM (linear) .477 .484 .599 .598 .770 .771
Bayes .486 .489 .563 .564 .737 .741
Rule Induction .608 .609 .712 .714 .826 .824

sifier which produces the observation probabili-
ties. Moreover, performance values of action-
dependent approaches and action-independent ap-
proaches are compared. In addition, the results are
analyzed with respect to the characteristic of the
confidence distribution.

For producing the confidence scores represent-
ing the observation probabilities, the statistical
classification algorithms presented in Section 6.1
are used. The initial distribution π for each HMM
was chosen in accordance with the annotation
guidelines of the LEGO corpus starting each di-
alogue with an IQ score of 5 resulting in

π5 = P (IQ = 5) = 1.0
π4 = π3 = π2 = π1 = P (IQ 6= 5) = 0.0 .

Results of the experiments with action-dependent
(AD) and action-independent (AI) transition func-
tion may be seen in Table 2. Again, Rule Induction
performed best with Naive Bayes on the second
and SVM on the third place.

7 Discussion

While previous work on applying the HMM and
CHMM for IQ recognition could not outperform
the baseline (Ultes et al., 2012a), Hybrid-HMM
experiments show a significant improvement in
UAR, Cohen’s κ and Spearman’s ρ for Naive
Bayes and Rule Induction. While performance
declines for the linear SVM, this difference has
shown to be not significant.

The relative difference of the Hybrid-HMM
compared to the respective baseline approaches
using an action-dependent and an action-
independent transition matrix is depicted in
Figure 4. Improvement for the Bayes method was
the highest significantly increasing UAR by up to
4.5% relative to the baseline. However, adding
action-dependency to the Hybrid-HMM does not
show any effect. This may be a result of using
ACTIVITYTYPE instead of the actual action.
However, using the actual action would result in
the need for more data as it contains 45 different
values. Significance for all results has been
calculated using the Wilcoxon test (Wilcoxon,
1945) by pair-wise comparison of the estimated
IQ values of all exchanges. All results except for
the decline in SVM performance are significant
with α < 0.05.

Correlating the confidence variances shown in
Table 1 with the improvements of the Hybrid-
HMM reveals that for methods with a high
variance—and therefore with a greater certainty
about the classification result—, an improvement
could be accomplished. However, the perfor-
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Table 3: Results of Hybrid-HMM with hand-
crafted transition matrix of the action-independent
version.

UAR κ ρ

SVM (linear) .506 .642 .797
Bayes .487 .563 .734
Rule Induction .608 .712 .825

Table 4: Handcrafted transition matrix based on
empirical data.

PPPPPPfrom
to

1 2 3 4 5
1 0.7 0.3 0 0 0
2 0.25 0.5 0.25 0 0
3 0 0.25 0.5 0.25 0
4 0 0 0.25 0.5 0.25
5 0 0 0 0.3 0.7

mance declined for classification approaches with
a low confidence variance, which can be seen as a
sign for uncertain classification results.

While the results for Hybrid-HMM are encour-
aging, creating a simple handcrafted transition
matrix for the action-independent version shown
in Table 4 achieved even more promising results
as performance for all classifier types could be im-
proved significantly compared to the baseline (see
Table 3). The handcrafted matrix was created in a
way to smooth the resulting estimates as only tran-
sitions from one IQ rating to its neighbors have a
probability greater than zero. Drastic changes in
the estimated IQ value compared to the previous
exchange are thus less likely. The exact values
have been derived empirically. By applying this
handcrafted transition matrix, even SVM perfor-
mance with linear kernel could be improved sig-
nificantly by 2.2% in UAR (see Figure 4) com-
pared to the baseline.

For creating the Interaction Quality scores, an-
notation guidelines were used resulting in certain
characteristics of IQ. Therefore, it may be as-
sumed that the effect of exploiting the dependency
on previous states is just a reflection of the guide-
lines. While this might be true, applying a Hy-
brid HMM for IQ recognition is reasonable as, de-
spite the guidelines, the IQ metric itself is strongly
related to user satisfaction, i.e., ratings applied
by users (without guidelines), achieving a Spear-
man’s ρ of 0.66 (α < 0.01) (Ultes et al., 2013).

8 Conclusions

As previously published, approaches for recogniz-
ing the Interaction Quality of Spoken Dialogue

Systems are based on static classification without
temporal dependency on previous values, a Hy-
brid Hidden Markov Model approach has been in-
vestigated based on three static classifiers. The
Hybrid-HMM achieved a relative improvement up
to 4.5% and a maximum of 0.61 UAR. Analyz-
ing the experiments revealed that, while an im-
provement could be achieved with the Hybrid-
HMM approach, handcrafting a transition model
achieved even better results as performance for all
analyzed classifier types could be improved signif-
icantly. Furthermore, applying the Hybrid-HMM
approach only yields improved performance if the
basic classifier itself has a high confidence about
its results.

Further research should be conducted investi-
gating the question how the presented approach as
well as the Interaction Quality paradigm in general
will generalize for different dialogue domains. As
IQ is designed to be domain independent, it may
be expected that the Hybrid-HMM will be appli-
cable for different dialogue domains as well.

Finally, it is notable that rule induction outper-
formed SVM approaches in the baseline by 10 per-
centage points. While this contribution does not
focus on this, analyzing the model may help in un-
derstanding the problem of estimating Interaction
Quality better, especially since rule-based recog-
nition methods allow easy interpretation.
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49–52, Montréal, Canada, June. ACL.

Stefan Ultes, Alexander Schmitt, and Wolfgang
Minker. 2013. On quality ratings for spoken dia-
logue systems – experts vs. users. In Proceedings of
the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 569–
578. ACL, June.

Michel F. Valstar and Maja Pantic. 2007. Combined
support vector machines and hidden markov mod-
els for modeling facial action temporal dynamics.
In Human-Computer Interaction, volume 4796 of
Lecture Notes in Computer Science, pages 118–127.
Springer Berlin Heidelberg.

Vladimir N. Vapnik. 1995. The nature of statistical
learning theory. Springer-Verlag New York, Inc.,
New York, NY, USA.

Marilyn Walker, Diane Litman, Candace A. Kamm,
and Alicia Abella. 1997. Paradise: a framework
for evaluating spoken dialogue agents. In Proceed-
ings of the eighth conference on European chap-
ter of the Association for Computational Linguistics,
pages 271–280, Morristown, NJ, USA. ACL.

Frank Wilcoxon. 1945. Individual comparisons by
ranking methods. Biometrics bulletin, 1(6):80–83.

216



Appendix

Table 5: Example of a dialogue annotated with Interaction Quality for each system-user-exchange. As
the system fails to interact properly with the user in the end, the IQ value drops down to one. Utterance
represents either the system utterance or the recognized user utterance. (CallID 2061123000 of the
LEGO corpus.)

Utterance IQ
S: Welcome to the CMU Let’s Go bus information system.
U: 5
S: To get help at any time, just say Help or press zero.
U: 5
S: What can I do for you?
U: PENN AT BUTLER TIME IS IT IS THE CENTRE AT HIGHLAND FROM RUNS THE 61A EIGHT THIRTY 61B CAN’T OAKLAND 5
S: Leaving from OAKLAND . Is this correct?
U: OAKLAND 4
S: Leaving from OAKLAND . Is this correct?
U: YES 4
S: Right
U: - 4
S: Where do you want to go?
U: SQUIRREL HILL OF FIFTH AVENUE 4
S: Going to FIFTH AVENUE . Is this correct?
U: YES 5
S: Alright
U: - 5
S: When do you wanna travel?
U: SUNDAY 4
S: At what time do you wanna travel?
U: AT FIVE FOUR VERY ABOUT ELEVEN O’CLOCK 4
S: Leaving at 11 a.m. . Is this correct?
U: YES 5
S: Right
U: - 5
S: Hold on. Let me check that for you.
U: - 5
S: OAKLAND and FIFTH AVENUE are both the same stop. Please provide a different start or end point.
U: - 3
S: To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: 61A 2
S: You can say start a new query, or goodbye.
U: FIVE DUQUESNE 1
S: To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: LAST THE NEXT 1
S: You can say start a new query, or goodbye.
U: START WH 1
S: To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: THE 1
S: You can say start a new query, or goodbye.
U: THANK YOU QUERY ELEVEN BACK 1
S: To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: GOODBYE 1
S: Thank you for using the cmu Let’s Go Bus Information System. Goodbye.
U: - 1
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Abstract

We study the design of an information re-
trieval (IR) system that assists customer
service agents while they interact with
end-users. The type of IR needed is
difficult because of the large lexical gap
between problems as described by cus-
tomers, and solutions. We describe an
approach that bridges this lexical gap by
learning semantic relatedness using tensor
representations. Queries that are short and
vague, which are common in practice, re-
sult in a large number of documents be-
ing retrieved, and a high cognitive load
for customer service agents. We show
how to reduce this burden by providing
suggestions that are selected based on the
learned measures of semantic relatedness.
Experiments show that the approach offers
substantial benefit compared to the use of
standard lexical similarity.

1 Introduction

Information retrieval systems help businesses and
individuals make decisions by automatically ex-
tracting actionable intelligence from large (un-
structured) data (Musen et al., 2006; Antonio
Palma-dos Reis, 1999). This paper focuses on the
application of retrieval systems in a contact cen-
ters where the system assists agents while they are
helping customers with problem resolution.

Currently, most contact center information re-
trieval use (web based) front-ends to search en-
gines indexed with knowledge sources (Holland,
2005). Agents enter queries to retrieve documents
related to the customer’s problem. These sources
are often incomplete as it is unlikely that all pos-
sible customer problems can be identified before
product release. This is particularly true for re-
cently released and frequently updated products.

One approach, which we build on here, is to mine
problems and resolutions from online discussion
forums Yahoo! Answers1 Ubuntu Forums2 and
Apple Support Communities3. While these often
provide useful solutions within hours or days of
a problem surfacing, they are semantically noisy
(Gangadharaiah and Narayanaswamy, 2013).

Most contact centers and agents are evaluated
based on the number of calls they handle over a
period (Pinedo et al., 2000). As a result, queries
entered by agents into the search engine are usu-
ally underspecified. This, together with noise in
the database, results in a large number of docu-
ments being retrieved as relevant documents. This
in turn, increases the cognitive load on agents, and
reduces the effectiveness of the search system and
the efficiency of the contact center. Our first task
in this paper is to automatically make candidate
suggestions that reduce the search space of rel-
evant documents in a contact center application.
The agent/user then interacts with the system by
selecting one of the suggestions. This is used to
expand the original query and the process can be
repeated. We show that even one round of inter-
action, with a small set of suggestions, can lead to
high quality solutions to user problems.

In query expansion, the classical approach is to
automatically find suggestions either in the form
of words, phrases or similar queries (Kelly et al.,
2009; Feuer et al., 2007; Leung et al., 2008).
These can be obtained either from query logs or
based on their representativeness of the initial re-
trieved documents (Guo et al., 2008; Baeza-yates
et al., 2004). The suggestions are then ranked ei-
ther based on their frequencies or based on their
similarity to the original query (Kelly et al., 2009;
Leung et al., 2008). For example, if suggestions
and queries are represented as term vectors (e.g.

1http://answers.yahoo.com/
2http://ubuntuforums.org/
3https://discussions.apple.com/
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term frequency-inverse document frequency or tf-
idf) their similarity may be determined using simi-
larity measures such as cosine similarity or inverse
of euclidean distance (Salton and McGill, 1983).

However, in question-answering and problem-
resolution domains, and in contrast to traditional
Information Retrieval, most often the query and
the suggestions do not have many overlapping
words. This leads to low similarity scores, even
when the suggestion is highly relevant. Consider
the representative example in Table 1, taken from
our crawled dataset. Although the suggestions,
“does not support file transfer”, “connection not
stable”, “pairing failed” are highly relevant for the
problem of “Bluetooth not working”, their lexi-
cal similarity score is zero. The second task that
this paper addresses is how to bridge this lexical
chasm between the query and the suggestions. For
this, we learn a measure of semantic-relatedness
between the query and the suggestions rather than
defining closeness based on lexical similarity.

Query Bluetooth not working .
Suggestions devices not discovered,

bluetooth greyed out,
bluetooth device did not respond,
does not support file transfer,
connection not stable,
pairing failed

Table 1: Suggestions for the Query or customer’s
problem, “Bluetooth not working”.

The primary contributions of this paper are that:

• We show how tensor methods can be used
to learn measures of question-answer or
problem-resolution similarity. In addition,
we show that these learned measures can
be used directly with well studied classifica-
tion techniques like Support Vector Machines
(SVMs) and Logistic Classifiers to classify
whether suggestions are relevant. This results
in substantially improved performance over
using conventional similarity metrics.

• We show that along with the learned similar-
ity metric, a data dependent Information Gain
(which incorporates knowledge about the set
of documents in the database) can be used as
a feature to further boost accuracy.

• We demonstrate the efficacy of our approach
on a complete end-to-end problem-resolution
system, which includes crawled data from

online forums and gold standard user inter-
action annotations.

2 System outline

As discussed in the Introduction, online discus-
sion forums form a rich source of problems and
their corresponding resolutions. Thread initiators
or users of a product facing problems with their
product post in these forums. Other users post
possible solutions to the problem. At the same
time, there is noise due to unstructured content,
off-topic replies and other factors. Our interac-
tion system has two phases, as shown in Figure
1. The offline phase attempts to reduce noise in
the database, while the online phase assists users
deal with the cognitive overload caused by a large
set of retrieved documents. In our paper, threads
form the documents indexed by the system.

The goals of the offline phase are two-fold.
First, to reduce the aforementioned noise in the
database, we succinctly represent each document
(i.e., a thread in online discussion forums) by its
signature, which is composed of units extracted
from the first post of the underlying thread that
best describe the problem discussed in the thread.
Second, the system makes use of click-through
data, where users clicked on relevant suggestions
for their queries to build a relevancy model. As
mentioned before, the primary challenge is to
build a model that can identify units that are se-
mantically similar to a given query.

In the online phase, the agent who acts as the
mediator between the user and the Search Engine
enters the user’s/customer’s query to retrieve rele-
vant documents. From these retrieved documents,
the system then obtains candidate suggestions and
ranks these suggestions using the relevancy model
built in the offline phase to further better under-
stand the query and thereby reduce the space of
documents retrieved. The user then selects the
suggestion that is most relevant to his query. The
retrieved documents are then filtered displaying
only those documents that contain the selected
suggestion in their signatures. The process con-
tinues until the user quits.

2.1 Signatures of documents

In the offline phase, every document (correspond-
ing to a thread in online discussion forums) is
represented by units that best describe a problem.
We adopt the approach suggested in (Gangadhara-
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iah and Narayanaswamy, 2013) to automatically
generate these signatures from each discussion
thread. We assume that the first post describes
the user’s problem, something we have found to
be true in practice. From the dependency parse
trees of the first posts, we extract three types of
units (i) phrases (e.g., sync server), (ii) attribute-
values (e.g., iOS, 4) and (iii) action-attribute tuples
(e.g., sync server: failed). Phrases form good base
problem descriptors. Attribute-value pairs provide
configurational contexts to the problem. Action-
attribute tuples, as suggested in (Gangadharaiah
and Narayanaswamy, 2013), capture segments of
the first post that indicate user wanting to perform
an action (“I cannot hear notifications on blue-
tooth”) or the problems caused by a user’s action
(“working great before I updated”). These make
them particularly valuable features for problem-
resolution and question-answering.

2.2 Representation of Queries and
Suggestions

Queries are represented as term vectors using the
term frequency-inverse document frequency (tf-
idf) representation forming the query space. The
term frequency is defined as the frequency with
which word appears in the query and the inverse
document frequency for a word is defined as the
frequency of queries in which the word appeared.
Similarly, units are represented as tf-idf term vec-
tors from the suggestion space. Term frequency in
the unit space is defined as the number of times
a word appears in the unit and its inverse docu-
ment frequency is defined in terms of the number
of units in which the word appeared. Since the
vocabulary used in the queries and documents are
different, the representations for queries and units
belong to different spaces of different dimensions.

For every query-unit pair, we learn a measure
of similarity as explained in Section 4. Addi-
tionally, we use similarity features based on co-
sine similarity between the query and the unit un-
der consideration. We also consider an additional
feature based on information gain (Gangadhara-
iah and Narayanaswamy, 2013). In particular, if
S represents the set all retrieved documents, S1 is
a subset of S (S1 ⊆ S) containing a unit uniti and
S2 is a subset of S that does not contain uniti,
information gain with uniti is,

Gain(S, uniti) = E(S)− |S1|
|S| E(S1)− |S2|

|S| E(S2) (1)

E(S) =
∑

k=1,...|S|
−p(dock)log2p(dock). (2)

The probability for each document is based on its
rank in the retrieved of results,

p(docj) =

1
rank(docj)∑

k=1,...|S|
1

rank(dock)

. (3)

We crawled posts and threads from online forums
for the products of interest, as detailed in Sec-
tion 5.1, and these form the documents. We used
trial interactions and retrievals to collect the click-
though data, which we used as labeled data for
similarity metric learning. In particular, labels in-
dicate which candidate units were selected as rel-
evant suggestions by a human annotator. We now
explain our training (offline) and testing (online)
phases that use this data in more detail.

2.3 Training

The labeled (click-through) data for training the
relevance model is collected as follows. Anno-
tators were given pairs of queries. Each pair is
composed of an underspecified query and a spe-
cific query (Section 5.1 provides more informa-
tion on the creation of these queries). An un-
derspecified query is a query that reflects what a
user/agent typically enters into the system, and the
corresponding specific query is full-specified ver-
sion of the underspecified query. Annotators were
first asked to query the search engine with each
underspecified query. We use the Lemur search
engine (Strohman et al., 2004). From the resulting
set of retrieved documents, the system uses the in-
formation gain criteria (as given in (1) below) to
rank and display to the annotators the candidate
suggestions (i.e., the units that appear in the signa-
tures of the retrieved documents). Thus, our sys-
tem is bootstrapped using the information gain cri-
terion. The annotators then selects the candidate
suggestion that is most relevant to the correspond-
ing specific query. The interaction with the system
continues until the annotators quit.

We then provide a class label for each unit based
on the collected click-through information. In par-
ticular, if a unit s ∈ S(x) was clicked by a user for
his query x, from the list S we provide a + la-
bel to indicate that the unit is relevant suggestion
for the query. Similarly, for all other units that are
never clicked by users for x are labeled as−. This
forms the training data for the system. Details on
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Figure 1: Outline of our interactive query refine-
ment system for problem resolution

the feature extraction and how the model is created
is given in Section 3.

2.4 Testing

In the online phase, the search engine retrieves
documents for the user’s query x′. Signatures for
the retrieved documents form the initial space of
candidate units. As done in training, for every pair
of x′ and unit the label is predicted using the model
built in the training phase. Units that are predicted
as + are shown to the user. When a user clicks
on his most relevant suggestion, the retrieved re-
sults are filtered to show only those documents that
contain the suggestion (i.e., in its signature). This
process continues until the user quits.

3 Model

We consider underspecified queries x ∈ Rxd and
units y ∈ Ryd . Given an underspecified query x
we pass it through a search engine, resulting in a
list of results S(x).

As explained in Section 2.3, our training data
consists of labels r(x, y) ∈ +1,−1 for each
under-specified query, y ∈ S(x). r(x, y) = +1
if the unit is labeled a relevant suggestion and
r(x, y) = −1 if it is not labeled relevant. Units
are relevant or not based on the final query, and
not just y, a distinction we expand upon below.

At each time step, our system proposes a list
Z(x) of possible query refinement suggestions z
to the user. The user can select one or none of
these suggestions. If the user selects z, only those
documents that contain the suggestion (i.e., in its
signature) are shown to the user, resulting in a fil-

tered set of results, S(x+ z).
This process can be repeated until a stopping

criterion is reached. Stopping criterion include the
size of the returned list is smaller than some num-
ber |S(x + z)| < N , in which case all remain-
ing documents are returned. Special cases include
when only one document is returned N = 1. We
will design query suggestions so that |S(x+z)| >
0. Another criterion we use is to return all remain-
ing documents after a certain maximum number of
interactions or until the user quits.

4 Our Approach

We specify our algorithm using a tensor notation.
We do this since tensors appear to subsume most
of the methods applied in practice, where different
algorithms use slightly different costs, losses and
constraints. These ideas are strongly motivated by,
but generalize to some extent, suggestions for this
problem presented in (Elkan, 2010).

For our purposes, we consider tensors as multi-
dimensional arrays, with the number of dimen-
sions defined as the order of the tensor. An M
order tensor X ∈ RI1×I2...IM . As such tensors
subsume vectors (1st order tensors) and matrices
(2nd order tensors). The vectorization of a ten-
sor of order M is obtained by stacking elements
from the M dimensions into a vector of length
I1 × I2 × . . .× IM in the natural way.

The inner product of two tensors is defined as

〈X,W〉 =
I1∑
i1

I2∑
i2

. . .

IM∑
iM

xi1wi1xi2wi2 . . . xiMwiM

(4)
Analogous to the definition for vectors, the

(Kharti-Rao) outer product A = X ⊗W of two
tensors X and W has Aij = XiWj where i and j
run over all elements of X and W . Thus, if X is
of order MX and W of order MW , A is of order
MA = MX +MW .

The particular tensor we are interested in is a
2-D tensor (matrix) X which is the outer product
of query and unit pairs (Feats). In particular, for a
query x and unit y, Xi,j = xiyj .

Given this representation, standard classifica-
tion and regression methods from the machine
learning literature can often be extended to deal
with tensors. In our work we consider two clas-
sifiers that have been successful in many applica-
tions, logistic regression and support vector ma-
chines (SVMs) (Bishop, 2006).
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In the case of logistic regression, the conditional
probability of a reward signal r(X) = r(x, y) is,

p(r(X) = +1) =
1

1 + exp(−〈X,W〉+ b)
(5)

The parameters W and b can be obtained by min-
imizing the log loss Lreg on the training data D

Lreg(W, b) = (6)∑
(X,r(X))∈D

log(1 + exp(−r(X)〈X,W〉+ b)

For SVMs with the hinge loss we select param-
eters to minimize Lhinge,

Lhinge(W, b) = ||X||2F + (7)

λ
∑

(X,r(X))∈D
max[0, 1− (r(X)〈X,W〉+ b)]

where ||X||F is the Frobenius norm of tensor X.
Given the number of parameters in our system

(W, b) to limit overfitting, we have to regularize
these parameters. We use regularizers of the form

Ω(W, b) = λW ||W||F (8)

such regularizes have been successful in many
large scale machine learning tasks including
learning of high dimensional graphical models
(Ravikumar et al., 2010) and link prediction
(Menon and Elkan, 2011).

Thus, the final optimization problem we are
faced with is of the form

min
W,b
L(W, b) + Ω(W, b) (9)

where L is Lreg or Lhinge as appropriate. Other
losses, classifiers and regularizers may be used.

The advantage of tensors over their vectorized
counterparts, that may be lost in the notation, is
that they do not lose the information that the dif-
ferent dimensions can (and in our case do) lie in
different spaces. In particular, in our case we use
different features to represent queries and units (as
discussed in Section 2.2) which are not of the same
length, and as a result trivially do not lie in the
same space.

Tensor methods also allow us to regularize the
components of queries and units separately in dif-
ferent ways. This can be done for example by,
i) forcing W = Q1Q2, where Q1 and Q2 are
constrained to be of fixed rank s ii) using trace or

Frobenius norms on Q1 and Q2 for separate regu-
larization as proxies for the rank iii) using different
sparsity promoting norms on the rows of Q1 and
Q2 iv) weighing these penalties differently for the
two matrices in the final loss function. Note that
by analogy to the vector case, we directly obtain
generalization error guarantees for our methods.

We also discuss the advantage of the tensor
representation above over a natural representation
X = [x; y] i.e. X is the column vector obtained
by stacking the query and unit representations.
Note that in this representation, for logistic regres-
sion, while a change in the query x can change
the probability for a unit P (r(X) = 1) it can-
not change the relative probability of two different
units. Thus, the ordering of all unit remains the
same for all queries. This flaw has been pointed
out in the literature in (Vert and Jacob, 2008) and
(Bai et al., 2009), but was brought to our attention
by (Elkan, 2010).

Finally, we note that by normalizing the query
and unit vectors (x and y), and selecting W = I
(the identity matrix) we can recover the cosine
similarity metric (Elkan, 2010). Thus, our rep-
resentation is atleast as accurate and we show
that learning the diagonal and off-diagonal com-
ponents of W can substantially improve accuracy.

Additionally, for every (query,unit) we also
compute information gain (IG) as given in (1), and
the lexical similarity (Sim) in terms of cosine sim-
ilarity between the query and the unit as additional
features in the feature vectors.

5 Results and Discussion

To evaluate our system, we built and simulated
a contact center information retrieval system for
iPhone problem resolution.

5.1 Description of the Dataset

We collected data by crawling forum discussion
threads from the Apple Discussion Forum, created
during the period 2007-2011, resulting in about
147,000 discussion threads. The underspecified
queries and specific queries were created as fol-
lows. Discussion threads were first clustered treat-
ing each discussion thread as a data point using a
tf-idf representation. The thread nearest the cen-
troid of the 60 largest clusters were marked as the
‘most common’ problems.

The first post is used as a proxy for the problem
description. An annotator was asked to then create
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Underspecified query “Safari not working”
1. safari:crashes
2. safari:cannot find:server
3. server:stopped responding
4. phone:freezes
5. update:failed

Table 2: Specific Queries generated with the un-
derspecified Query, ”Safari not working”.

a short query (underspecified) from the first post
of each of the 60 selected threads. These queries
were given to the Lemur search engine (Strohman
et al., 2004) to retrieve the 50 most similar threads
from an index built on the entire set of 147,000
threads. The annotator manually analyzed the first
posts of the retrieved threads to create contexts,
resulting in a total 200 specific queries.

We give an example to illustrate the data cre-
ation in Table 2. From an under-specified query
“Safari not working”, the annotator found 5 spe-
cific queries. Two other annotators, were given
these specific queries with the search engine’s
results from the corresponding under-specified
query. They were asked to choose the most rel-
evant results for the specific queries. The intersec-
tion of the choices of the annotators formed our
‘gold standard’ of relevant documents.

5.2 Results

We simulated a contact center retrieval systems (as
in Figure 1) to evaluate the approach proposed in
this paper. To evaluate the generality of our ap-
proach we conduct experiments with both SVMs
and Logistic Regression. Due to lack of space we
illustrate each result for only one kind of classifier.

5.2.1 Evaluating the Relevance Model
To measure the performance of the relevance
model for predicting the class labels or for finding
the most relevant units towards making the user’s
underspecified query more specific, we performed
the following experiment. 4000 random query-
unit pairs were picked from the training data, col-
lected as explained in Section 2. Since most units
are not relevant for a query, 90% of the pairs be-
longed to the − class. On average, every spe-
cific query gave rise to 2.4 suggestions. Hence,
predicting − for all pairs still achieves an error
rate of 10%. This data was then split into vary-
ing sizes of training and test sets. The relevancy
model was then built on the training half and the
classifiers were used to predict labels on the test
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Figure 2: Performance with Logistic Regression
using different features and various sizes of Train-
ing and Test sets. Feats-IG-Sim does not use co-
sine similarity (Sim) and information gain (IG).
Feats+IG+Sim considers Sim and IG.

set. Figure 2 shows error rate obtained with logis-
tic regression (a similar trend was observed with
SVMs) on various sizes of the training data and
test data. The plot shows that the model (Feats-
IG-Sim and Feats+IG+Sim) performs significantly
better at predicting the relevancy of units for un-
derspecified queries when compared to just us-
ing cosine similarity (Sim) as a feature. Feats-
IG-Sim does not make use of cosine similarity
as a feature or the information gain feature while
Feats+IG+Sim uses both these features for train-
ing the relevancy model and for predicting the rel-
evancy of units. As expected the performance of
the classifier improves as the size of the training
data is increased.

5.2.2 Evaluating the Interaction Engine
We evaluate a complete system with both the user
(the agent) and the search engine in the loop. We
measure the value of the interactions by an analy-
sis of which results ‘rise to the top’. Users were
given a specific query and its underspecified query
along with the results obtained when the under-
specified query was input to the search engine.
They were presented with suggestions that were
predicted + for the underspecified query using
SVMs. The user was asked to select the most ap-
propriate suggestion that made the underspecified
query more specific. This process continues until
the user quits either because he is satisfied with the
retrieved results or does not obtain relevant sug-
gestions from the system. For example, for the
underspecified query in Table 2, one of the pre-
dicted suggestions was, “server:stopped respond-

223



1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Size of retrieved list

M
ea

n 
Av

er
ag

e 
Pr

ec
is

io
n

 

 

Baseline
Feats−IG−Sim
Feats+IG+Sim

Figure 3: Comparison of the proposed approach
with respect to the Baseline that does not involve
interaction in terms of MAP at N.

ing”. If the user finds the suggestion relevant, he
clicks on it. The selected suggestion then reduces
the number of retrieved results. We then measured
the relevance of the reduced result, with respect
to the gold standard for that specific query, using
metrics used in IR - MRR, Mean Average Preci-
sion (MAP) and Success at rank N.

Figures 3, 4 and Table 3 evaluate the results ob-
tained with the interaction engine using Feats-IG-
Sim and Feats+IG+Sim. We compared the per-
formance of our algorithms with a Baseline that
does not perform any interaction and is evaluated
based on the retrieved results obtained with the un-
derspecified queries. The models for each of the
systems were trained using query-suggestion pairs
collected from 100 specific queries (data collected
as explained in Section 2). The remaining 100 spe-
cific queries were used for testing. We see that the
suggestions predicted by the classifiers using the
relevancy model indeed improves the performance
of the baseline. Also, adding the IG and Sim fea-
ture further boosts the performance of the system.

Systems MRR
Baseline 0.4218
Feats-IG-Sim 0.9449
Feats+IG+Sim 0.9968

Table 3: Comparison of the proposed approach
with respect to the Baseline that does not involve
interaction in terms of MRR.

5.3 Related Work

Learning affinities between queries an documents
is a well studied area. (Liu, 2009) provides an ex-
cellent survey of these approaches. In these meth-
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Figure 4: Comparison of the proposed approach
with respect to the Baseline that does not involve
interaction in terms of Success at N.

ods, there is a fixed feature function Φ(x, y) de-
fined between any query-document pair. These
features are then used, along with labeled train-
ing data, to learn the parameters of a model that
can then be used to predict the relevance r(x, y)
of a new query-document pair. The output of the
model can also be used to re-rank the results of a
search engine. In contrast to this class of methods,
we define and parameterize the Φ function and
jointly optimize the parameters of the feature map-
ping and the machine learning re-ranking model.

Latent tensor methods for regression and clas-
sification have recently become popular in the im-
age and signal processing domain. Most of these
methods solve an optimization problem similar to
our own (9), but add additional constraints limit-
ing the rank of the learned matrix W either ex-
plicitly or implicit by defining W = Q1Q

T
2 , and

defining Q1 ∈ Rdx×d and Q2 ∈ Rdy×d. This ap-
proach is used for example in (Pirsiavash et al.,
2009) and more recently in (Tan et al., 2013) (Guo
et al., 2012). While this reduces the number of pa-
rameters to be learned from dxdy to d(dx + dy) it
makes the problem non-convex and introduces an
additional parameter d that must be selected.

This approach of restricting the rank was re-
cently suggested for information retrieval in (Wu
et al., 2013). They look at a regression problem,
using click-through rates as the reward function
r(x, y). In addition, (Wu et al., 2013) does not
use an initial search engine and hence must learn
an affinity function between all query-document
pairs. In contrast to this, we learn a classification
function that discriminates between the true and
false positive documents that are deemed similar
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by the search engine. This has three beneficial ef-
fects : (i) it reduces the amount of labeled training
data required and the imbalance between the posi-
tive and negative classes which can make learning
difficult (He and Garcia, 2009) and (ii) allows us
to build on the strengths of fast and strong existing
search engines increasing accuracy and decreas-
ing retrieval time and (iii) allows the learnt model
to focus learning on the query-document pairs that
are most problematic for the search engine.

Bilinear forms of tensor models without the
rank restriction have recently been studied for link
prediction (Menon and Elkan, 2011) and image
processing (Kobayashi and Otsu, 2012). Since
the applications are different, there is no prelimi-
nary search engine which retrieves results, making
them ranking methods and ours a re-ranking ap-
proach. Related work in text IR includes (Beefer-
man and Berger, 2000), where two queries are
considered semantically similar if their clicks lead
to the same page. However, the probability that
different queries lead to common clicks of the
same URLs is very small, again increasing the
training data required. Approaches in the past
have also proposed techniques to automatically
find suggestions either in the form of words,
phrases (Kelly et al., 2009; Feuer et al., 2007;
Baeza-yates et al., 2004) or similar queries (Leung
et al., 2008) from query logs (Guo et al., 2008;
Baeza-yates et al., 2004) or based on their prob-
ability of representing the initial retrieved doc-
uments (Kelly et al., 2009; Feuer et al., 2007).
These suggestions are then ranked either based on
their frequencies or based on their closeness to the
query. Closeness is defined in terms of lexical sim-
ilarity to the query. However, most often the query
and the suggestions do not have any co-occurring
words leading to low similarity scores, even when
the suggestion is relevant.

(Gangadharaiah and Narayanaswamy, 2013)
use information gain to rank candidate sugges-
tions. However, the relevancy of the suggestions
highly depends on the relevancy of the initial re-
trieved documents. Our work here addresses the
question of how to bridge this lexical chasm be-
tween the query and the suggestions. For this, we
use semantic-relatedness between the query and
the suggestions as a measure of closeness rather
than defining closeness based on lexical similar-
ity. A related approach to handle this lexical gap
by applying alignment techniques from Statistical

Machine translation (Brown et al., 1993), in par-
ticular by building translation models for infor-
mation retrieval (Berger and Lafferty, 1999; Rie-
zler et al., 2007). These approaches require train-
ing data in the form of question-answer pairs, are
again limited to words or phrases and are not in-
tended for understanding the user’s problem better
through interaction, which is our focus.

6 Conclusions, Discussions and Future
Work

We studied the problem of designing Information
Retrieval systems for interactive problem resolu-
tion. We developed a system for bridging the
large lexical gap between short, incomplete prob-
lem queries and documents in a database of reso-
lutions. We showed that tensor representations are
a useful tool to learn measures of semantic relat-
edness, beyond the cosine similarity metric. Our
results show that with interaction, suggestions can
be effective in pruning large sets of retrieved doc-
uments. We showed that our approach offers sub-
stantial improvement over systems that only use
lexical similarities for retrieval and re-ranking, in
an end-to-end problem-resolution domain.

In addition to the classification losses consid-
ered in this paper, we can also use another loss
term based on ideas from recommender systems,
in particular (Menon and Elkan, 2011). Consider
the matrix T with all training queries as rows and
all units as the columns. If we view the query
refinement problem as a matrix completion prob-
lem, it is natural to assume that this matrix has low
rank, so that T can be written as T = UΛVT ,
where Λ is a diagonal matrix and parameter of our
optimization. These can then be incorporated into
the training process by appropriate changes to the
cost and regularization terms.

Another benefit of the tensor representation is
that it can easily be extended to incorporate other
meta-information that may be available. For ex-
ample, if context sensitive features, like the iden-
tity of the agent, are available these can be incor-
porated as another dimension in the tensor. While
optimization over these higher dimensional ten-
sors may be more computationally complex, the
problems are still convex and can be solved ef-
ficiently. This is a direction of future research
we are pursuing. Finally, exploring the power of
information gain type features in larger database
systems is of interest.
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Abstract

Segmentation of spoken discourse into
distinct conversational activities has been
applied to broadcast news, meetings,
monologs, and two-party dialogs. This
paper considers the aspectual properties
of discourse segments, meaning how they
transpire in time. Classifiers were con-
structed to distinguish between segment
boundaries and non-boundaries, where the
sizes of utterance spans to represent data
instances were varied, and the locations
of segment boundaries relative to these in-
stances. Classifier performance was better
for representations that included the end of
one discourse segment combined with the
beginning of the next. In addition, classi-
fication accuracy was better for segments
in which speakers accomplish goals with
distinctive start and end points.

1 Introduction

People engage in dialogue to address a wide range
of goals. It has long been observed that discourse
can be structured into units that correspond to dis-
tinct goals and activities (Grosz and Sidner, 1986;
Passonneau and Litman, 1997). This is concep-
tually distinct from structuring discourse into the
topical units addressed in (Hearst, 1997). The
ability to recognize where distinct activities oc-
cur in spoken discourse could support offline ap-
plications to spoken corpora such as search (Ward
and Werner, 2013), summarization (Murray et al.,
2005), and question answering. Further, a deeper
understanding of the relation of conversational
activities to observable features of utterance se-
quences could inform the design of interactive sys-
tems for online applications such as information
gathering, service requests, tutoring, and compan-
ionship. Automatic identification of such units,

however, has been difficult to achieve. This pa-
per considers the aspectual properties of speak-
ers’ conversational activities, meaning how they
transpire in time. We hypothesize that recognition
of a transition to a new conversational activity de-
pends on recognizing not only the start of a new
activity but also the end of the preceding one, on
the grounds that the relative contrast between end-
ings and beginnings might matter as much or more
than absolute characteristics consistent across all
beginnings or all endings. We further hypothesize
that transitions to certain kinds of conversational
activity may be easier to detect than others.

Following Austin’s view that speech constitutes
action of different kinds (Austin, 1962), we as-
sume that different kinds of communicative ac-
tion have different ways of transpiring in time,
just as other actions do. Conversational activities
that address objective goals, for example, can have
very well-demarcated beginnings and endings, as
when two people choose a restaurant to go to
for dinner. Conversational participants can, how-
ever, address goals that need not have a specific
resolution, such as shared complaints about the
lack of good Chinese restaurants. This distinction
between different kinds of actions that speakers
perform through their communicative behavior is
analogous to the distinction in linguistic semantics
pertaining to verbal aspect, between states, pro-
cesses and transition events (or accomplishments
and achievements) (Vendler, 1957) (Dowty, 1986).
States (e.g., being at a standstill) have no percep-
tible change from moment to moment; processes
(e.g., walking) have detectable differences in state
from moment to moment with no clearly demar-
cated change of state during the process; transition
events (e.g., starting to walk; walking to the end
of the block) involve a transition from one state or
process to another.

To investigate the aspectual properties of dis-
course segments, we constructed classifiers to de-
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tect discourse segment boundaries based on fea-
tures of utterances. We considered the aspec-
tual properties of discourse segments in two ways.
First, to investigate the relative contribution of
features from segment endings versus beginnings,
we experimented with different sizes of utter-
ance sequences, and different locations of seg-
ment boundaries relative to these sequences. Sec-
ond, we considered different categories of seg-
ments, based on the speculation that segment tran-
sitions that are easier to recognize would be as-
sociated with conversational activities that have
a well-demarcated event structure, in constrast to
activities that involve goals to maintain or sustain
aspects of interaction.

The following section describes related work in
this area, as well as the difficulties in achieving
good performance. Most work on identification of
discourse segments (or other forms of discourse
structure in spoken interaction) depends on a prior
phase of annotation (e.g., (Galley et al., 2003; Pas-
sonneau and Litman, 1997)). We studied a corpus
of eighty-two transcribed and annotated telephone
dialogues between library patrons and librarians
that had been annotated with units analogous to
speech acts, and subsequently annotated with dis-
course segments comprised of these units. The an-
notation yielded eight distinct kinds of discourse
segment, where a segment results from a linear
segmentation of a discourse into strictly sequential
units. (While the segmentation is sequential, the
units can have hierarchical relations.) We found
that classifiers to detect segment boundaries per-
formed best with boundaries represented by fea-
tures of sequences of utterances that spanned the
end of one segment and the beginning of the next.
Error analysis indicated that performance was bet-
ter for boundaries that initiate conversational ac-
tivities with clear beginnings and endings.

2 Related Work

Segmentation of spoken language interaction into
distinct discourse units has been applied to meet-
ings as well as to two-party discourse using acous-
tic features, lexical features, and very heteroge-
neous features. In our previous work, we used
a very heterogeneous set of features to segment
monologues into units that had been identified
by annotators as corresonding to distinct inten-
tional units (Passonneau and Litman, 1997). Text
tiling (Hearst, 1997) has been applied to segmen-

tation of meetings into distinct agenda segments
using both prior and following context (Baner-
jee and Rudnicky, 2006). Results had high pre-
cision and low recall. We also find that recall is
more challenging than precision. Topic modeling
methods have also been applied to the identifica-
tion of topical segments in speech (Purver et al.,
2006) (Eisenstein and Barzilay, 2008), with im-
provements over earlier work on the ICSI meeting
corpus (Galley et al., 2003) (Malioutov and Barzi-
lay, 2006).

An analog of text tiling that uses acoustic pat-
terns rather than lexical items has been applied to
the segmentation of speech into stories using seg-
mental dynamic time warping (SDTW) (Park and
Glass, 2008). The method is based on the intuition
of aligning utterances by similar acoustic patterns,
possibly representing common words and phrases.
Results on TDT2 Mandarin Broadcast News cor-
pus were moderately good for short episodes with
F=0.71 beating the baseline for lexical text tiling
of 0.66, but poor on long episodes.

An alternative method of relying solely on
acoustic information has been applied to impor-
tance prediction at a very fine granularity (Ward
and Richart-Ruiz, 2013). Four basic classes
of prosodic features derived from PCA were
used (Ward and Vega, 2012): volume, pitch
height, pitch range and speaking rate cross various
widths of time intervals. The data was labeled by
annotators using an importance scale of 1 to 5, and
linear regression was used to predict the label for
instances consisting of frames. The method per-
formed well with a correlation of 0.82 and mean
average error of 0.75 (5-fold cross validation).

The identification of different kinds of units in
discourse is somewhat related to the notion of
genre identification, e.g. (Obin et al., 2010) (Ries
et al., 2000). Results from this area have been ap-
plied to segmentation of conversation by a combi-
nation of topic and style (Ries, 2002).

3 Data and Annotations

The corpus consists of recordings, transcripts and
annotations on the transcripts of a set of 82 calls
recorded in 2005 between patrons of the Andrew
Heiskell Braille and Talking Book Library of New
York City.1 An annotation for dialog acts with a

1The audio files and transcripts are available for download
from the Columbia University Data Commons. The annota-
tions and raw features will be released in the near future.
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reduced set of dialog act types and adjacency pair
relations (Dialogue Function Units, DFUs) was
developed, originally for comparison of dialogues
across modalities (Hu et al., 2009). A subsequent
phase of annotation at the discourse level that
makes use of the dialog act annotation was later
applied. This later annotation, referred to as Task
Success and Cost Annotation (TSCA), was aimed
at identifying individual dialog tasks analogous to
those carried out by spoken dialog systems, to fa-
cilitate comparison of human-human dialog with
human-machine dialog. Interannotator reliability
of both annotations was measured using Krippen-
dorff’s alpha (Krippendorff, 1980) at levels of 0.66
and above for individual dialogues (Passonneau et
al., 2011). The corpus consists of 24,760 words,
or 302 words per dialog.

Briefly, the second phase of annotation involved
grouping DFUs into larger sequences in which
the participants continued to pursue a single co-
ordinated activity, and labeling the large discourse
units for their discourse function. The human an-
notation instructions avoided reference to overt
signals of dialog structure. Rather, annotators
were asked to judge the semantic and pragmatic
functions of utterances. The annotations have been
described in previous work (Hu et al., 2009; Pas-
sonneau et al., 2011); the annotation guidelines are
available online.2

The location of a transition between one con-
versational activity and the next is represented as
occurring between adjacent utterances. There are
9,340 utterance in the corpus, or 114 per dialog.
About 10.6 percent of the utterances (994) start a
new discourse unit. Within each unit, the speak-
ers establish a conversational goal explicitly or im-
plicitly, and continue to address the goal until it
is achieved, suspended, or abandoned. The dis-
course segments were of the following seven cate-
gories, with an additional Other category for none
of the above (examples from the corpus are shown
after each segment category description; words
in brackets represent overlapping talk of the two
speakers):

• Conventional: The participants engage in
conventionalized behavior, e.g., greetings (at
the beginning of the call) or goodbyes (at the
end of the call).

2See links at http://www1.ccls.columbia.
edu/˜Loqui/resources.html for transcription
guidelines, and annotation manuals.

Librarian: andrew heiskell library
Librarian: how are you
Patron: good morning
Librarian: good morning

• Book-Request: The participants address a pa-
tron’s request for a book, which can be a spe-
cific book that first needs to be identified,
or which can be a non-specific request for a
book fitting some criterion (e.g., a mystery
the patron has not read before).

Patron: do you have any fannie flagg stories
Librarian: flag
Patron: yeah
Patron: F L A <Pause>
Patron: A G G I think it is

• Inform: One of the participants provides the
other with general information that does not
support a Book Request, e.g., the patron pro-
vides identifying information so the librarian
can pull up the patron’s record.

Patron: well I’ll call him again then
Patron: and I’ll get the name [today]
Librarian [talk] to him and call me back
Patron: <pause> i- i’ll call him
Patron: and then i’ll call you okay
Librarian: okay

• Librarian-Proposal: The participants address
the librarian’s suggestion of a specific book
or a kind of book that might meet the patron’s
desires.

Librarian: I have ellis but not bret
Patron: ah wa wa what do you have by him
Librarian: by cose
Librarian: C O S E
Librarian: I have the rage of a privileged class
Patron: that’s all right

• Request-Action: One of the participants asks
the other to perform an action, e.g., the pa-
tron asks that certain authors be added to the
patron’s list of preferences

Patron: also <pause> uh
Patron: <pause> of the favorite author list
Librarian: mmhm
Patron: would you um
Patron: remove t jefferson parker
Librarian: okay
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• Information-Request: One of the participants
seeks information from the other, e.g., the pa-
tron wants to know if

Patron: this is the talking books right
Librarian: yes
Librarian: this is the library for the blind

• Sidebar: The librarian temporarily takes a
call from another Patron only long enough to
place the new caller on hold

Librarian: hold on one second
Librarian: Andrew Heiskell Library
Librarian: please hold

• Other

Of these seven kinds of discourse units, Book-
Requests and Librarian-Proposals are the most
clearly delimited by beginning and ending points.
At the beginning of a Book-Request, the patron
establishes that she wants a book, and the end is
identified by the mutual achievement of the librar-
ian and patron of either a successful resolution,
meaning the identification of a particular book in
the library’s collection that the patron will accept,
or a failure of the current attempt, which often
leads to a new revised book request. Librarian-
Proposals are very parallel to Book-Requests; the
difference is that the librarian makes a suggestion
of a specific book or kind of book which must be
identified for the patron, and which the patron then
accepts or rejects.

4 Experiments

The experiments to automatically identify the lo-
cations of the annotated discourse units apply ma-
chine learning to instances consisting of utterance
sequences that represent the two classes, presence
versus absence of a boundary. We hyothesize
that the enormous challenges for identifying dis-
course structure in human-machine dialogue can
be better addressed through complementary re-
liance on semantics and interaction structure (be-
havioral cues), and each can reinforce the other.
The main focus of the experiments reported here
is on data representation to address the questions,
what features of the context support the ability
to segment a dialogue into conversational activity
units, and how much context is necessary?

A disadvantage of the dataset is its relatively
small size, especially given the extreme skew with
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Figure 1: Schematic representation of instance
spans and labels. Bars on the left show the num-
ber of utterances (size) and position of segment
boundary (position) for five of the fourteen types
of instances. Positive and negative labels are
shown on the descriptions at the right.

the positive class consisting of only 10% of the in-
stances. On the other hand, the small size made
detailed annotation feasible, and the corpus is
well-suited to our research question in that it rep-
resents naturally occurring, spontaneous human-
human telephone discourse. Therefore. the man-
ner in which the dialogs evolve over time is en-
tirely natural. Our major question of interest is
how much of the time-course of the discourse is
required for a machine learner to identify the start
of a new discourse unit. To examine this question,
we vary two dimensions of the representation of
the instances for learning. The first is the number
of utterances around the location of the start of a
new discourse unit. The second is the set of fea-
tures to represent each instance, which as we will
see below, affects to some degree how many utter-
ances to include before and after the start of a new
discourse unit.

Four machine learning methods were tested us-
ing the Weka toolkit (Hall et al., 2009): Naive
Bayes, J48 Decision Trees, Logistic Regression
and Multilayer Perceptron. Of these, J48 had the
best and most consistent performance, which we
speculate is due to a combination of the small size
of the dataset, and non-linearity of the data. Be-
cause J48 is doing feature selection while building
the tree, it can identify different threshholds for
the same features, depending on the location in the
tree. All results reported here are for J48.

4.1 Labels and Instance Spans

We refer to a sequence of utterances, and a poten-
tial location of the onset of a discourse unit relative
to that sequence, as a span. We varied the num-
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ber of utterances for each span from 1 to 4, and
the location of the start of a new unit to be at the
beginning of the first utterance, at the end of the
last utterance, or between any pair of utterances in
the span. For a single utterance, there will be two
types of instances, as shown in Figure 1. Each in-
stance type is represented as S<N>P<M> where
N is the number of utterances in the span and M is
how many utterances there are before the bound-
ary. S1P0 denotes size 1 spans with the boundary
at position 0; positively labeled instances repre-
sent the first utterance of a segment. S1P1 denotes
size 1 spans with the boundary at position 1; posi-
tively labeled instances represent the last utterance
of a segment. The experiments used all labelings
for spans from size 1 to 4, yielding 14 types of
instances. For multi-utterance spans that occur at
the beginning or end of a discourse, dummy utter-
ances are used to fill out the spans.

4.2 Features
We use three sets of features. A set we refer to
as discourse features consists of a mixed set of
acoustic features and lexicogrammatical features
that have been associated with discourse structure,
such as discourse cue words (Hirschberg and Lit-
man, 1993). Table 1 lists the 35 discourse features.
The second set is a bag-of-words (BOW) vector
representation, and the third is the combination of
the discourse and BOW features. We used alterna-
tive sets of features on the assumption that the per-
formance of a machine learner across the differ-
ent instance spans will vary, depending on the as-
pects of the utterance that the features capture. We
see some expected differences in performance be-
tween the discourse features and BOW, with BOW
benefitting more than the discourse features from
longer spans. Unexpectedly, we see no gain in
performance from the combination of both feature
sets.

The discourse features consist of acoustic fea-
tures, pause features, word and utterance length
features, proper noun features and speaker change.
The acoustic features and the (unfilled) pause lo-
cation and duration features were extracted using
Praat, a cross-platform tool for speech analysis.
The features pertaining to filled pauses (e.g., um,
uh) were extracted from the transcripts.

4.3 Conditions and Evaluation
The experimental conditions varied the feature set,
the selection of training data versus testing data,

and the fourteen kinds of instance spans and la-
bels. Three feature sets consisted of the discourse
features from Table 1 (discourse), bag-of-words
(bow), and the combination of the two (combo).
In all experiments, the data was randomly split
into 75% for training, and 25% for testing, us-
ing two methods to select instances. In random-
ization by dialog, all utterances from a single di-
alog were kept together and 75% of the dialogs
were selected for training. In randomization by
utterance, 75% of all utterances were randomly
selected for training, without regard to which di-
alog they came from. This was done to test the
hypothesis that the bow representation would be
more sensitive to changes of vocabulary across di-
alogs. The three feature sets, fourteen data rep-
resentations and two randomization methods yield
84 experimental conditions.

While N-fold cross-validation is a popular
method to estimate a classifier’s prediction error,
it is not a perfect substitute for isolating the train-
ing data from the test data (Ng, 1997). The cross-
validation estimate of prediction error is relatively
unbiased, but it can be highly variable (Efron and
Tibshirani, 1997)(Rodriguez et al., 2010). To
avoid the inherent risk of overfitting (Ng, 1997),
one recommendation is to use cross-validation to
compare models, and to reserve a test set to verify
that a selected classifier has superior generaliza-
tion (Rao and Fung, 2008). To assess whether per-
formance measures of different models are gen-
uinely different requires error bounds on the result,
which is not done with cross-validation. We per-
form train-test splits of the data to minimize over-
fitting, and bootstrap confidence intervals for each
classifier’s accuracy (and other metrics) in order to
measure the variance, and thereby assess whether
the performance error bounds of two conditions
are distinct.

5 Results

Given that for this data, the rate of segment
boundary instances (positive labels) is about 10%,
a baseline classifier that always predicts a non-
segment will have about 90% overall accuracy.
The baseline column in Table 2 shows the aver-
age accuracy that would be achieved by this sim-
ple baseline on the test data for a given run, along
with the bootstrapped confidence interval for this
baseline over the 50 runs. In the 84 experiments,
the baseline ranged from 90% (+/- 1%) to 89% (+/-
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Interaction feature
1 Speaker whether there is a speaker switch between preceding utterance and current utterance

Acoustic features
2 Pitch MIN Minimum pitch of the utterance
3 Pitch MAX Maximum pitch of the utterance
4 Pitch MEAN Mean pitch of the utterance
5 Pitch STDV Standard deviation of the pitch of the utterance
6 Pitch RANGE Maximim pitch of the utterance less the minimum pitch
7 Pitch CHANGE Pitch MEAN of the current utterance less the Pitch MEAN of the preceding utterance
8 Intensity MIN Minimum intensity of the utterance
9 Intensity MAX Maximum intensity of the utterance

10 Intensity MEAN Mean intensity of the utterance
11 Intensity STDV Standard deviation of the intensity of the utterance
12 Intensity RANGE Intensity MAX less Intensity MIN
13 Intensity CHANGE Intensity MEAN of the current utterance less Intensity MEAN of preceding utterance
14 LR1 Utterance duration
15 LR1 Normalized Utterance duration normalized by each speaker independently

Lexical features
16 LR2 1 Word count
17 LR2 2 Word count normalized by speaker
18 LR3 1 Words per second
19 LR3 2 Words per second by speaker
20 LR4 Average word length
21 LR5 Maximum word length
22 LR6 1 Average frequency of characters in the utterance
23 LR6 2 Number of low frequency characters
24 IR Number of content words
25 PN 1 Number of named entities
26 PN 2 Whether the utterance contains a new named entity

Pause features
27 Pause DURT total duration of all pauses
28 Pause RATIO proportion utterance consisting of pauses
29 FP1 Presence of a filled pause at the beginning of an utterance
30 FP2 Presence of a filled pause at the end of an utterance
31 FP3 Presence of a filled pause in the middle of an utterance
32 P1 Presence of a pause tag at the beginning of an utterance
33 P2 Presence of a pause tag at the end of an utterance
34 P3 Presence of a pause tag in the middle of an utterance

Table 1: Discourse Features

1%). Crucially, however, the simple baseline will
fail to identify any of the members of the positive
class. Though it is difficult to beat the baseline
on overall accuracy, the question addressed here
is what level of accuracy is achieved on the pos-
itive class, while remaining relatively consistent
with the baseline on overall accuracy. It should
be noted that accuracy on the positive class is the
same as recall, or sensitivity (the term used in the
epidemiological literature). The worst perform-
ing classifier among the 84 (disc/utterance/ S1P4)
achieves 83% (+/- 1%) accuracy overall, or below
the baseline by 6%, with 11% accuracy on the pos-
itive class, 100% of which is a gain over the base-
line. By this standard, the best classifier of the 84
conditions (bow/dial/S4P1) matches the baseline
on overall accuracy, and achieves 50% (+/- 5%)
accuracy on the positive class, which far exceeds
the baseline. About half of the experimental con-
ditions meet the baseline and achieve at least 25%

accuracy on the positive class.

Overall accuracy, and accuracy on the positive
class, measure prediction error, but can be supple-
mented with additional metrics that facilitate anal-
ysis of the nature and cost of error types. As a sup-
plementary metric, we report average F-measure,
the harmonic mean of recall and precision, due to
its familiarity, and because it provides a sense of
how often a classifier incorrectly predicts the pos-
itive class. An F-measure close to accuracy on the
positive class indicates that precision is about the
same as recall, while a relatively higher F-measure
indicates that the precision is even higher than the
F-measure, and the converse is true when the F-
measure is lower than accuracy on the positive
class. Table 2 shows 32 classifiers with the high-
est measures of accuracy, accuracy on the positive
class, and F-measure. The confidence intervals for
accuracy on the positive class and F-measure are
rather wide, compared to those for overall accu-
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Exp. Baseline (sd) Acc (sd) AccPos(Recall) (sd) F (sd) >Accpos > F
bow/dial/S4P1 0.89 (+/-0.010) 0.89 (+/-0.009) 0.42 (+/-0.082) 0.28 (+/-0.054) 22 11
bow/dial/S4P2 0.90 (+/-0.013) 0.89 (+/-0.010) 0.39 (+/-0.071) 0.26 (+/-0.064) 22 3
bow/utterance/S1P0 0.90 (+/-0.004) 0.90 (+/-0.005) 0.51 (+/-0.051) 0.26 (+/-0.034) 30 11
bow/utterance/S4P0 0.89 (+/-0.005) 0.88 (+/-0.006) 0.43 (+/-0.049) 0.26 (+/-0.040) 23 10
disc/dial/S2P1 0.90 (+/-0.009) 0.87 (+/-0.009) 0.32 (+/-0.059) 0.26 (+/-0.037) 4 10
bow/utterance/S4P3 0.89 (+/-0.006) 0.88 (+/-0.005) 0.41 (+/-0.050) 0.25 (+/-0.027) 22 11
combo/dial/S3P2 0.89 (+/-0.011) 0.86 (+/-0.010) 0.31 (+/-0.048) 0.25 (+/-0.031) 7 10
disc/dial/S4P3 0.90 (+/-0.008) 0.86 (+/-0.009) 0.30 (+/-0.041) 0.25 (+/-0.030) 4 10
combo/dial/S3P1 0.89 (+/-0.010) 0.86 (+/-0.011) 0.31 (+/-0.059) 0.25 (+/-0.038) 3 10
combo/dial/S4P2 0.89 (+/-0.013) 0.86 (+/-0.012) 0.30 (+/-0.044) 0.25 (+/-0.031) 4 10
combo/dial/S2P1 0.89 (+/-0.012) 0.87 (+/-0.010) 0.32 (+/-0.054) 0.25 (+/-0.033) 7 10
combo/dial/S4P3 0.90 (+/-0.007) 0.87 (+/-0.008) 0.29 (+/-0.044) 0.25 (+/-0.035) 4 10
disc/dial/S3P2 0.90 (+/-0.008) 0.87 (+/-0.008) 0.29 (+/-0.047) 0.25 (+/-0.040) 3 10
bow/utterance/S4P1 0.90 (+/-0.005) 0.89 (+/-0.004) 0.40 (+/-0.053) 0.25 (+/-0.020) 22 10
bow/dial/S4P3 0.90 (+/-0.007) 0.89 (+/-0.009) 0.39 (+/-0.072) 0.25 (+/-0.035) 22 10
disc/dial/S4P2 0.90 (+/-0.009) 0.86 (+/-0.009) 0.28 (+/-0.042) 0.25 (+/-0.030) 0 10
bow/dial/S1P0 0.90 (+/-0.009) 0.89 (+/-0.009) 0.48 (+/-0.065) 0.24 (+/-0.045) 28 0
combo/dial/S4P1 0.90 (+/-0.010) 0.86 (+/-0.010) 0.28 (+/-0.045) 0.24 (+/-0.034) 0 9
disc/dial/S3P1 0.89 (+/-0.011) 0.86 (+/-0.010) 0.29 (+/-0.046) 0.24 (+/-0.033) 2 9
bow/dial/S4P0 0.90 (+/-0.009) 0.88 (+/-0.011) 0.37 (+/-0.031) 0.24 (+/-0.040) 22 0
disc/dial/S4P1 0.90 (+/-0.009) 0.86 (+/-0.008) 0.27 (+/-0.041) 0.23 (+/-0.032) 0 3
bow/utterance/S4P2 0.89 (+/-0.007) 0.88 (+/-0.010) 0.39 (+/-0.044) 0.23 (+/-0.033) 22 0
combo/utterance/S2P0 0.89 (+/-0.005) 0.86 (+/-0.009) 0.27 (+/-0.041) 0.21 (+/-0.029) 0 0
disc/dial/S2P0 0.89 (+/-0.010) 0.86 (+/-0.009) 0.27 (+/-0.047) 0.20 (+/-0.027) 0 0
disc/utterance/S2P0 0.90 (+/-0.006) 0.86 (+/-0.008) 0.26 (+/-0.032) 0.20 (+/-0.024) 0 0
combo/utterance/S1P0 0.89 (+/-0.005) 0.88 (+/-0.006) 0.31 (+/-0.041) 0.20 (+/-0.026) 10 0
combo/utterance/S3P0 0.90 (+/-0.005) 0.86 (+/-0.008) 0.25 (+/-0.038) 0.20 (+/-0.033) 0 0
disc/utterance/S4P3 0.89 (+/-0.006) 0.86 (+/-0.009) 0.24 (+/-0.043) 0.20 (+/-0.033) 0 0
combo/utterance/S2P1 0.89 (+/-0.006) 0.86 (+/-0.008) 0.26 (+/-0.036) 0.20 (+/-0.023) 0 0
disc/utterance/S2P1 0.89 (+/-0.005) 0.86 (+/-0.007) 0.26 (+/-0.032) 0.20 (+/-0.022) 0 0
combo/utterance/S4P1 0.89 (+/-0.006) 0.85 (+/-0.008) 0.24 (+/-0.033) 0.20 (+/-0.027) 0 0
disc/utterance/S4P0 0.89 (+/-0.006) 0.85 (+/-0.009) 0.24 (+/-0.034) 0.20 (+/-0.024) 0 0

Table 2: Classification performance (with standard deviations in parentheses) of the best 40% of 84
J48 models trained on 75% of the data and tested on the remaining 25%, with bootstrapped confidence
intervals from 50 trials each.

racy. To draw comparisons among the classifiers
that take into account this variance, the two right-
most columns of the table indicate for each clas-
sifier how many other classifiers in the same ta-
ble the current classifier surpasses on mean accu-
racy of the positive class, or on mean F-measure.
Here, to surpass another classifier means the lower
bound of its confidence interval surpasses the up-
per bounds of other classifiers’ confidence inter-
vals.

Table 2 shows that there is no one classifier that
surpasses all others on all measures. There are,
however, some clear trends. Regarding the num-
ber of utterances spanned by each data instance,
the table shows that of the 32 best performing clas-
sifiers, the majority (seventeen) have size 4 spans,
and all but three have spans longer than a single
utterance. This trend indicates that more context
leads to better accuracy overall and better accuracy
on the positive class. Regarding where the seg-
ment boundary is located relative to the span, the
majority of cases (twenty-two) locate the bound-

ary within the span, meaning that the span includes
one or more of the final utterances of a segment
and one or more of the initial utterances of the next
segment. The remaining cases involve spans that
include utterances only from the beginning of the
segment. There are no cases of higher perform-
ing classifiers that use spans from segment end-
ings. Among the classifiers in the top half of the
table, the best performing bow classifiers surpass
a larger number of the other classifiers on accu-
racy of the positive class. The best performing dis-
course or combination classifiers surpass a larger
number of other classifiers on F-measure. This
suggests that in general, the bow classifiers do bet-
ter on recall and the classifiers with discourse fea-
tures have higher precision.

The combination of BOW and discourse fea-
tures has a performance that differs little from the
discourse features alone, and does not do as well
as BOW S4P1. This result was unexpected, and
suggests that the bow and discourse feature sets
often identify nearly the same set of discourse
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Discourse, Rand Dial, S4P3
Activity Type TP % FN %
Inform 7 (0.11) 56 (0.89)
Book Request 18 (0.32) 40 (0.68)
Librarian Proposal 4 (0.27) 11 (0.73)
Request-Action 0 (0.00) 6 (1.00)
Information-Request 6 (0.11) 47 (0.89)
Sidebar 1 (0.08) 11 (0.92)
Conventional 5 (0.17) 25 (0.83)
Total 37 (0.14) 230 (0.86)

BOW, Rand Dial, S4P2
Inform 7 (0.10) 70 (0.90)
Book Request 14 (0.20) 57 (0.80)
Librarian Proposal 1 (0.05) 20 (0.95)
Request-Action 0 (0.00) 5 (1.00)
Information-Request 8 (0.16) 42 (0.84)
Sidebar 0 (0.00) 13 (1.00)
Conventional 6 (0.23) 29 (0.77)
Total 37 (0.14) 230 (0.86)

Table 3: Error Analysis of the Positive Class

boundaries. Since the initial utterances of a seg-
ment seem to have features with greater predictive
power than the final utterances of a segment, and
since discourse cue words tend to occur in the first
utterance or so of a segment, it could be that dis-
course cue words explain the good performance
of both sets of features. This could be tested in fu-
ture work by restricting a BOW representation to
words other than discourse cue words.

To pursue in more detail the factors that influ-
ence accuracy on the positive class (recall), we
now turn to an error analysis of the kinds of dis-
course units associated with true positives versus
false negatives of the classifier’s confusion matrix.
Table 3 presents the results of an error analysis of
the two cells of the confusion matrix for a clas-
sifier’s results on the positive class, the true pos-
itives and the false negatives. We looked at the
breakdown of the seven kinds of discourse units
to see whether there were differences in the like-
lihood of a correct identification of a boundary,
depending on the kind of discourse unit in ques-
tion. Results are drawn from classifiers learned
under two conditions, S4P3 spans with discourse
features randomized by dialogue (disc/dial/S4P3)
and S4P3 spans with BOW features, randomized
by dialogue (bow/dial/S4P3). (Results from other
classifiers are very similar.) In both cases, Book-
Requests have a much higher probability of be-
ing among the true positives (32% for discourse,
20% for BOW) than for the positive class over-
all (14%). Conventional discourse units, where
the participants first make their greetings, or make
their final good byes, are also correctly identified

more often than the overall TP rate. Librarian Pro-
posals are identified well by the model using the
discourse features, but not by the one using the
BOW features. We speculate that this is because
Librarian Proposals typically present information
that is new to the discourse: often, the librarian
is making a suggestion to the patron based on in-
formation the librarian can see in the preference
field of the patron’s record, or in the patron’s past
borrowing behavior. We speculate that the vocab-
ulary in Librarian Proposals may be too variable
to be predictive. Information-Request units and
Inform units are also relatively difficult to identify
correctly.

6 Conclusion

The problem of identification of conversational ac-
tivities is a difficult one for machine processing for
many reasons. Like vision and speech, segmenta-
tion of the units is difficult because the units are
not discrete, objective, components of perception,
but instead are the result of abstraction. The exper-
iments presented here consider a novel explana-
tion for the difficulty of the task, which is that dis-
course units differ from each other regarding the
manner in which they evolve in time. The results
show that a data representation that includes utter-
ances from both the end of one unit and the begin-
ning of another improves performance. The tran-
sition between one conversational activity and an-
other takes place over the course of several utter-
ances, rather than occurring at an instant in time.
Error analysis indicates further that discourse units
that correspond to conversational activities with
clear end points that can be achieved have a higher
probability of being recognized correctly.
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Abstract

Spoken Dialogue Systems ask for clarifi-
cation when they think they have misun-
derstood users. Such requests may dif-
fer depending on the information the sys-
tem believes it needs to clarify. However,
when the error type or location is misiden-
tified, clarification requests appear confus-
ing or inappropriate. We describe a clas-
sifier that identifies inappropriate requests,
trained on features extracted from user re-
sponses in laboratory studies. This classi-
fier achieves 88.5% accuracy and .885 F-
measure in detecting such requests.

1 Introduction

When Spoken Dialogue Systems (SDS) believe
they have not understood a user, they generate re-
quests for clarification. For example, in the fol-
lowing exchange, the System believes it has mis-
understood the word Washington in the user’s ut-
terance and asks a clarification question, prompt-
ing the user to repeat the misrecognized word.

User: I’d like a ticket to Washington.
System: A ticket to where?
User: Washington.

Clarification requests may be generic or specific
to the type and location of the information the sys-
tem believes it has not recognized. Targeted clar-
ifications focus on a specific part of an utterance,
as in the system’s question above. They use under-
stood portions of an utterance (“I’d like a ticket
to”) to query a misunderstood portion (“Wash-
ington”). Targeted clarification is a type of task-
related request, which has been shown to be more
effective and prevalent in human-human dialogues
than more general clarification requests (Skantze,
2005). Such generic clarifications signal mis-
understanding without identifying the type or lo-
cation of the misunderstanding. They often take

the form of a request to repeat or rephrase, e.g.
“please repeat”, “please rephrase”, “what did
you say?”.

Questions that address a particular type of mis-
recognition come in several varieties. Systems
may ask reprise clarification questions, by repeat-
ing a recognized portion of an utterance (Ginzburg
and Cooper, 2004; Purver, 2004). Systems may
also request that users spell a word if they be-
lieve the misrecognized word is a proper name,
especially one that is not in its vocabulary (OOV).
They may ask the user to provide a synonym for
OOV terms that are not proper names. Systems
may also ask users to disambiguate homophones
(e.g. “Did you mean ‘right’ as in correct or ‘rite’ as
in a ritual?”). They may request confirmation ex-
plicitly (e.g. “I heard you say Washington. Is that
correct?”), or implicitly, by repeating the recog-
nized information while asking a follow-up query
(e.g. “When do you want to go to Washington?”).
Each request type may be appropriate in different
circumstances. However, when systems make in-
appropriate requests to users, such as to rephrase
a proper name or to confirm a statement that con-
tains a misrecognized word, dialogues often go
awry. Therefore, it is extremely important for sys-
tems to know when a request is inappropriate, so
that they can provide a different clarification re-
quest or fall back to a more generic strategy.

In this work, we develop a data-driven method
for detecting inappropriate clarification requests.
We have defined a list of inappropriate request
types and have collected a corpus of speaker re-
sponses to both appropriate and inappropriate re-
quests under laboratory conditions. We use this
corpus to train an inappropriate clarification clas-
sifier to be used by a system after a user responds
to a system request, in order to determine whether
the question was appropriate or not. In Section 2,
we describe previous research on error handling in
dialogue. We describe our data set in Section 3 and
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our approach in Section 4. We present our evalua-
tion results in Section 5. We conclude in Section 6
and discuss future directions.

2 Related Work

Today’s SDS use generic approaches to clarifica-
tion, asking the user to repeat or rephrase an en-
tire utterance when the system believes it has not
been understood correctly. They use confidence
scores on the ASR hypothesis to decide whether
to accept, reject, or ask for clarification (Bohus
and Rudnicky, 2005). Hypotheses with low scores
may be confirmed and those with lower scores will
trigger a generic request for repetition or rephras-
ing. Researchers have found that the formulation
of system prompts has a significant effect on the
success of SDS interaction. Goldberg et al. (2003)
find that form of a clarification question affects
user frustration and the consequent success of clar-
ification subdialogue. In previous work, we ex-
plored the use of targeted reprise clarifications to
improve naturalness (Stoyanchev et al., 2014).

Lendvai et al. (2002) apply machine learning
methods to detect errors in human-machine di-
alogue, focusing on predicting when a user ut-
terance causes a misunderstanding. Litman et
al. (2006) identify user corrections of the system’s
recognition errors from speech prosody, ASR con-
fidence scores, and the dialogue history. In con-
trast, we focus here on detecting when a system
clarification request is the cause of dialogue prob-
lems. We employ only lexical features here, as
well as the type of system request, to investigate
user responses to a wide variety of system re-
quests, and to identify system errors in request for-
mulation from user reactions. In future work we
will include acoustic and prosodic features as well.

3 Data

Our data consists of spoken answers to clarifica-
tion requests collected at Columbia University us-
ing a simulated dialogue system in order to control
recognition results and type of system response.
The system displays a sentence and asks the user
to read it. The system then issues a pre-prepared
clarification request, which may be appropriate or
inappropriate, to which the user responds. For ex-
ample, in the following exchange, the system sim-
ulates a misunderstanding of the word furor by
asking a targeted reprise clarification question.

User: We hope this won’t create a furor.

System: Create a what?
User: A furor, an uproar.

The system issued six different types of clari-
fication requests: confirmation; rephrase, spell, or
disambiguate part of the utterance; targeted reprise
clarification; and a targeted-reprise-rephrase com-
bination. These request types were chosen based
on the types of requests made by the SRI Thunder-
BOLT speech-to-speech translation system (Ayan
and others, 2013). Confirmation questions sim-
ply ask the user to confirm an ASR hypothesis.
Rephrase-part requests ask users to rephrase a spe-
cific part of an utterance which is played back
to the user. Spell questions ask users to spell a
word or phrase using the NATO alphabet. Disam-
biguate questions clarify ambiguous terms. Tar-
geted reprise clarification questions make use of
the recognized portion of an utterance to query the
part that has been misrecognized based on the sys-
tem’s assessment. Targeted-reprise-rephrase re-
quests are similar, with the additional request for
the user to rephrase a portion of the utterance
believed to have been misrecognized, which is
played to the user.

Inappropriate requests in this study were de-
fined as those that resulted from the Thunder-
BOLT system’s incorrect identification of an er-
ror segment or an error type. For example, the
clarification request “Please say a different word
for Afdhal” is inappropriate since it asks for a
rephrasal of a proper name. A request to spell
a very long phrase is also identified as inappro-
priate since users have found this difficult, espe-
cially when using the NATO alphabet. Requests
to disambiguate in the system provide two possi-
ble senses of the ambiguous word and are inap-
propriate when the correct sense is not one of the
two provided. Targeted reprise clarification ques-
tions are inappropriate when the error segment is
not correctly recognized and an errorful segment
is included in the question (e.g. “The okay I zoo
would like what?”). An appropriate question cor-
rectly identifies the error segment or ambiguous
term and the error type. For example, the ques-
tion “I think ‘Afdhal’ is a name. Please spell it”,
would be appropriate when ‘Afdhal’ is OOV be-
cause it correctly targets the error and its type.

For each clarification request type, except for
confirmation questions, which are always appro-
priate, we created one or more types of inappro-
priate requests for each of the conditions we ob-
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served in dialogues collected with the Thunder-
BOLT system. For example, when the system
asks the user to rephrase a part of their utter-
ance which the system believes to be a misrecog-
nized non-proper-name, the question is appropri-
ate when indeed that non-proper-name has been
misrecognized. However, the request will be in-
appropriate when the hypothesized error segment
played back to the user is a partial word, a proper
name, an extended segment including a name, or
a function word. We created instances of each
of these conditions for our users to respond to in
our experiment. A full list of the system question
types and their appropriate and inappropriate con-
ditions is provided in Table 3, in the Appendix.
We prepared 228 clarification requests (84 appro-
priate and 144 inappropriate), 12 for each of the 19
categories listed in Table 3 in the Appendix, based
on data in the TRANSTAC dataset (Akbacak and
others, 2009). Our subjects were 17 native Ameri-
can English speakers, each of whom answered 114
requests. We recorded speakers’ answers to 714
appropriate and 1224 inappropriate requests. As
most request types have more than one inappro-
priate version, 63% of the requests in the data set
are inappropriate.

4 Experiment

We used the Weka machine learning library (Wit-
ten and Eibe, 2005) to train classifiers to predict
whether a clarification request was appropriate or
inappropriate. Our features were extracted from
transcripts of user utterances, and included lexical,
syntactic, numeric, and features from the output of
Linguistic Inquiry and Word Count (LIWC) (Pen-
nebaker et al., 2007) as described in Table 1.

We included unigram and bigram features, ex-
cluding unigrams that appeared fewer than 3 times
in the dataset (11% of the unigrams), and bi-
grams that appeared fewer than 2 times (25%),
with thresholds set empirically. LIWC features
were extracted using the LIWC 2007 software,
which includes lexical categories, such as articles
and negations, and psychological constructs, such
as affect and cognition. In one version of the
corpus, we replaced sequences of user spellings
with the tag “SPELL” and disfluencies with the
symbol “DISF”. We used the Stanford POS tag-
ger (Toutanova and others, 2003) to tag both
the original corpus as well as the modified ver-
sion. In the latter, we replaced the “SPELL” and

Feature Description
word unigrams
(Lexical)

Count of unigrams

word bigrams
(Lexical)

Count of bigrams

pos bigrams
(Syntactic)

Bigrams of POS assigned by Stanford
tagger

liwc LIWC Output
func ratio Proportion of function words in re-

sponse
len spell Total length of spelling sequences in

response
request type Type of request preceding response

Table 1: Features used in Classification.

“DISF” tags with the symbols themselves. We
also mapped nine of the most frequent unigrams
to their own POS classes, such as “no”, “not”,
and “neither” to “NO” and “word” to “WORD”.
We then used counts of POS bigrams as a syn-
tactic feature. Additionally, as we observed that
responses to inappropriate requests contained a
higher proportion of function words, we added this
as a numeric feature. We also observed that aver-
age length of responses to inappropriate requests
was greater than responses to appropriate ones,
and we hypothesized this was in part due to in-
appropriate requests to spell long phrases. There-
fore, we also used the length of the total spelling
sequences, or the count of letters spelled out, as a
numeric feature. We also added type of clarifica-
tion request as a feature since some requests are
less likely to be inappropriate than others. For ex-
ample, we consider confirmation questions (“Did
you say . . . ?”) to always be appropriate.

5 Results

We report classification results using Weka’s J48
decision tree classifier with 10-fold cross valida-
tion in Table 2, which outperformed JRip and
LibSVM in our experiments. Compared to the
majority baseline of 63.2% accuracy and .489 F-
measure, our classifier which uses all of the fea-
tures in Table 1 achieves a significant improve-
ment, with an accuracy of 88.5% and an F-
measure of .885. A baseline method that uses
only system request type feature (Req. type base-
line) achieves accuracy of 73.7% and F-measure
of .686, which is significantly below the perfor-
mance of the trained classifier. To identify the
most important features in predicting inappropri-
ate requests, we iteratively removed a single fea-
ture from the full feature set and re-evaluated pre-
diction accuracy. Table 2 shows absolute decrease

240



Features Acc (%) P/R/F-Measure
Majority baseline 63.2 * 0.399/0.632/0.489
Req. type baseline 73.7 * 0.814/0.737/0.686

All Features 88.5 0.885/0.885/0.885
less request type −7.6 * −0.076
less liwc −2.3 −0.023
less pos bigrams −2.0 −0.020
less word unigrams −0.4 −0.004
less func ratio −0.1 −0.001
less len spell −0.05 −0.0005
less word bigrams +0.05 +0.0007

Table 2: Classifying Inappropriate Requests: All
Features vs. Baseline vs. Leave-One-Out Classi-
fiers, where * indicates statistically significant dif-
ference from All Features (p < 0.01)

in percentage points and in F-measure when each
feature is removed in turn compared to the clas-
sifier trained on the full features set. We found
that system request type was the most important
feature, as performance decreased by 7.6 percent-
age points without it. This makes sense in light of
the fact that the ratio of inappropriate to appropri-
ate requests varied for the different request types
represented in our dataset. The next most useful
features were the output of LIWC and the POS
bigrams. We had hypothesized that, since LIWC
captures the presence of negations and assents, it
could capture negative user responses to the sys-
tem such as yes or no. As for the POS bigrams, we
modified the POS tags to mark common words and
included start and end markers in the bigrams be-
cause we hypothesized that the first words and last
words in the responses might be particularly infor-
mative. Looking at the decision tree created with
all our features, we find that the first five branches
involve decisions regarding the unigrams “name”
and “SPELL” (a collapsed spelling sequence), the
〈START, “neither”〉 bigram, the LIWC ingestion-
word feature, and the type of request, in that order.
Not only do these findings confirm our hypothe-
ses, they also confirm that the unigrams “name”,
“SPELL”, and “neither” which we had mapped to
special POS classes are particularly useful.

After training our model, we used it to classify
our entire dataset to see which responses it per-
formed well on and which it tended to misclassify.
Responses to targeted reprise and targeted-reprise-
rephrase questions together accounted for around
half of the misclassified instances. Many easily
identifiable responses to inappropriate requests in-
volved the user correcting the system, as in the fol-
lowing example:

User: You are going to need to dole out
punishment.

System: I think this is a name: ‘dole out
punishment’. Please spell that name.

User: It is not a name, it is a phrase, dole
out punishment.

However, when the users did not correct the sys-
tem after an inappropriate request, their responses
appeared no different from answers to appropri-
ate requests. In the following example, the system
misrecognizes “hyperbaric” and interprets it as the
word “hyper” followed by an unknown phrase, but
the user simply ignores the request and repeats.

User: We are going to put you in a
hyperbaric chamber.

System: Put you in a high what? Please
give me another word or phrase
for ‘perbaric’.

User: Hyperbaric chamber.

Many cases in which appropriate requests were
misclassified as inappropriate involved users re-
sponding correctly to targeted or targeted-rephrase
questions. We hypothesize that these are also due
primarily to users ignoring the inappropriate sys-
tem request and providing the information the sys-
tem should have asked for. As a result, those cases
make it difficult to distinguish between responses
to appropriate and inappropriate targeted ques-
tions. Of course, users may be giving prosodic
cues to indicate confusion or uncertainty or hyper-
articulating in their responses. We will address the
use of prosodic features in predicting inappropri-
ate requests in future work.

6 Conclusions

In this work, we have addressed a novel task of
identifying inappropriate clarification requests us-
ing features extracted from user responses. We
collected responses to inappropriate clarification
requests based on six request types in a simulated
SDS environment. The classifier trained on this
dataset detects inappropriate requests with accu-
racy of 88.5%, which is 25.3 percentage points
above the majority baseline, and an F-measure of
.885, which is .396 points above the majority F-
measure. In future work, we will include acoustic
and prosodic features as well as lexical features
and we will evaluate the use of an inappropriate
clarification request component in our speech-to-
speech translation system.
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Appendix
ID Simulation Appro. Example
1. Confirmation
1 Correctly recognized utterance yes Did you say “place this on the pane”?
2 Misrecognized utterance yes Did you say “these are in um searches will cause the insur-

gents to priest buyer”?
2. Rephrase-part
1 Full non-name word or phrase yes Please say a different word for “surmise”.
2 Partial word no Please say a different word for “nouncing”.
3 Name no Please say a different word for “Afdhal”.
4 Extended segment including name no Please say a different word for “checkpoint at Betirma”.
5 Function word no Please say a different word for “off over”.
3. Disambiguate
1 One choice is correct yes Did you mean fliers as in handouts or fliers as in pilots?
2 Neither choice is correct no Did you mean plane as in aircraft or plain as in simple?
3 Word being disambiguated was not said no Did you mean sight as in vision or site as in location?
4. Spell
1 Name yes Please spell “Hadi Al Hemdani”.
2 Non-name no I think this is a name: “eluding”. Please spell that name.
3 Extended segment no Please spell “staff are stealing themselves”.
5. Reprise
1 Error segment correctly recognized and

no other errors
yes We will search some of the what?

2 Recognition error right before “what”
word

no Supplies of I see them what?

3 Recognition error which is not the last
word before “what”

no Ask if they are for eating for what?

6. Reprise rephrase
1 No errors outside of the error segment yes Use a what? Please say another word for “bristled”.
2 Error segment is a partial word no Are there any my what? Please say another word for “nors”.
3 Error outside the targeted segment no Be a right is what? Please say another word for “rain”.

Table 3: Clarification Requests and Contexts in which they are Appropriate and Inappropriate.
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Abstract

When humans speak they often use gram-
matically incorrect sentences, which is a
problem for grammar-based language pro-
cessing methods, since they expect in-
put that is valid for the grammar. We
present two methods to transform spoken
language into grammatically correct sen-
tences. The first is an algorithm for au-
tomatic ellipsis detection, which finds el-
lipses in spoken sentences and searches
in a combinatory categorial grammar for
suitable words to fill the ellipses. The sec-
ond method is an algorithm that computes
the semantic similarity of two words us-
ing WordNet, which we use to find alter-
natives to words that are unknown to the
grammar. In an evaluation, we show that
the usage of these two methods leads to
an increase of 38.64% more parseable sen-
tences on a test set of spoken sentences
that were collected during a human-robot
interaction experiment.

1 Introduction

Computer systems that are designed to interact
verbally with humans need to be able to recog-
nise and understand human speech. In this pa-
per we use as an example the robot bartender
JAMES (Joint Action for Multimodal Embodied
Social Systems),1 shown in Figure 1. The robot
is able to take drink orders from customers and to
serve drinks. It is equipped with automatic speech
recognition, to understand what the human is say-
ing, and it has a grammar, to parse and process the
spoken utterances.

The JAMES robot grammar was initially very
restricted, and therefore during grammar devel-
opment as well as during the user studies that

1http://www.james-project.eu

Figure 1: The robot bartender of the JAMES
project interacting with a customer.

we conducted (Foster et al., 2012; Giuliani et al.,
2013; Keizer et al., 2013), we experienced situa-
tions in which the robot was not able to process
the spoken input by humans, because they spoke
sentences with grammatical structures that could
not be parsed by the grammar, they used words
that were not part of the grammar, or they left out
words. We had for example cases where humans
approached the robot and used a sentence with an
ellipsis (“I want Coke”, but the grammar expected
a determiner in front of “Coke”) or a sentence with
a word that was unknown to the grammar (“I need
a water”, but “need” was not part of the gram-
mar’s word list). In these cases, the robot was un-
able to process and to respond to the spoken ut-
terance by the human. Of course, these shortcom-
ings can be overcome by extending the grammar,
but even with a much more sophisticated grammar
there will always be instances of unexpected lan-
guage, and we believe that our approach can be
very useful in extending the coverage of a gram-
mar during testing or user studies.

Therefore, we present an approach to transform
unparseable spoken language into sentences that a
given grammar can parse. For ellipsis detection,
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we present in Section 3.1 a novel algorithm that
searches for ellipses in a sentence and computes
candidate words to fill the ellipsis with words from
a grammar. In Section 3.2, we show how we use
WordNet (Miller, 1995) to find replacements for
words that are not in the robot’s grammar. In Sec-
tion 4 we evaluate our approach with a test set
of 211 spoken utterances that were recorded in
a human-robot interaction (HRI) experiment, and
the grammar for processing used in the same ex-
periment.

2 Related Work

The work described in this paper draws on re-
search and techniques from three main areas: the
automatic detection of ellipses in sentences, cal-
culation of semantic similarity between two words
using WordNet, and spoken language processing.
This section provides a summary of relevant work
in these areas.

2.1 Ellipsis Detection

There is a wide range of research in ellipsis de-
tection in written language, where different types
of ellipses are widely defined, such as gapping,
stripping or verb phrase ellipsis (Lappin, 1996).
For example, an ellipsis occurs when a redundant
word is left out of succeeding sentences, such as
the words “want to have” in the sentence “I want
to have a water, and my friend a juice”, which are
omitted in the second part of the sentence.

The detection of verb phrase ellipses (VPE)
is a subfield of ellipsis detection that has re-
ceived much attention. For VPE detection, re-
searchers have used machine learning algorithms
which were trained on grammar-parsed corpora,
for example in the works of Hardt (1997), Nielsen
(2004a), Nielsen (2004b), and Smith and Rauchas
(2006). Other approaches for ellipsis detection
rely on symbolic processing of sentences, which is
similar to our work. Haddar and Hamadou (1998)
present a method for ellipsis detection in the Ara-
bic language, which is based on an augmented
transition network grammar. Egg and Erk (2001)
present a general approach for ellipsis detection
and resolution that uses a language for partial de-
scription of λ-terms called Constraint Language
for Lambda Structures.

2.2 WordNet-based Semantic Similarity
Calculation

WordNet is used in many varied natural language
processing applications, such as word sense dis-
ambiguation, determining the structure of texts,
text summarisation and annotation, information
extraction and retrieval, automatic indexing, lexi-
cal selection, and the automatic correction of word
errors in text. In our work, we use WordNet
to find similar or synonym words. In previous
work, researchers have proposed several methods
to generally compute the semantic relatedness of
two words using WordNet. Budanitsky and Hirst
(2006) review methods to determine semantic re-
latedness. Newer examples for WordNet-based
calculation of semantic similarity are the works
by Qin et al. (2009), Cai et al. (2010), Liu et al.
(2012), and Wagh and Kolhe (2012).

2.3 Spoken Language Processing

Our work addresses the processing of spoken lan-
guage, which differs from the processing of writ-
ten language in that spoken language is more of-
ten elliptical and grammatically incorrect. Previ-
ous work in this area has attempted to address this
issue at different levels of processing. Issar and
Ward (1993) presented the CMU speech process-
ing system that supports recognition for grammat-
ically ill-formed sentences. Lavie (1996) presents
GLR*, a grammar-based parser for spoken lan-
guage, which ignores unparseable words and sen-
tence parts and instead looks for the maximal sub-
set of an input sentence that is covered by the
grammar.

Other researchers in this area have designed
grammar-based approaches for incremental spo-
ken language processing: Brick and Scheutz
(2007) present RISE, the robotic incremental se-
mantic engine. RISE is able to process syntactic
and semantic information incrementally and to in-
tegrate this information with perceptual and lin-
guistic information. Kruijff et al. (2007) present
an approach for incremental processing of situ-
ated dialogue in human-robot interaction, which
maintains parallel interpretations of the current di-
alogue that are pruned by making use of the con-
text information. Schlangen and Skantze (2009)
describe a “general, abstract model of incremental
dialogue processing”, where their goal is to pro-
vide principles for designing new systems for in-
cremental speech processing.
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3 Approach

Our goal in this paper is to transform spoken utter-
ances which cannot be parsed by our grammar into
grammar-valid sentences. During this process, we
have to make sure that the changes to the input
sentence do not change its meaning. In this sec-
tion, we show how we implement ellipsis detec-
tion and semantic similarity computation in order
to achieve this goal. We present our ellipsis detec-
tion algorithm in Section 3.1. Section 3.2 explains
our implementation of WordNet-based word simi-
larity computation.

3.1 Ellipsis Detection Algorithm

We use the OpenCCG parser (White, 2006), which
is based on Combinatory Categorial Grammar
(Kruijff and Baldridge, 2004; Steedman, 2000), to
parse the output of our speech recognition system.
We use the properties of CCGs to solve a prob-
lem that often occurs during parsing of spoken lan-
guage. In our evaluation (Section 4) we use a test
set (Section 4.1) of spoken sentences that was col-
lected during one of our human-robot interaction
studies (Foster et al., 2012) and the CCG (Sec-
tion 4.2) that was used in the same study. In the
test set, we found that speakers leave out words.
For example, one speaker said I want water to
order a drink. The grammar used in the experi-
ment assumed that every noun is specified by an
article; the grammar was only able to parse the
sentence I want a water . Just to remind you,
of course this particular example could have been
solved by rewriting the grammar, but at the time
of running the experiment it was not possible to
us to change the grammar. Furthermore, we argue
that there will always be examples of the above
described situation where experiment participants
use grammatical structures or words that cannot be
processed by the used grammar. Thus, we present
an algorithm that automatically finds ellipses in
sentences and suggests words from the grammar
that could be used to fill the ellipses.

To illustrate our approach, we will use the ex-
ample sentence give me a water . Example (1)
shows the words of the example sentence with
their assigned categories from the used CCG, and
Example (2) shows the parsed sentence. In the ex-
amples, we use the category symbols s for sen-
tence, n for noun, and np for noun phrase. In Ex-
ample (2) the symbol> denotes the used CCG for-
ward application combinator.

(1) CCG lexicon entries
a. give := s / np / np

b. me := np

c. a := np / n

d. water := n

(2) Full parse of an example sentence
give me a water

s/np/np np np/n n
>np

>
s/np

>s

The algorithm consists of two parts: (i) search
for ellipses in the sentence and selection of the
most relevant ellipsis, and (ii) computation of the
category for the word that will fill the chosen el-
lipsis.

(i) Ellipsis Search
In order to find the ellipsis in the sentence, our al-
gorithm assumes that to the left and to the right of
the ellipsis, the spoken utterance consists of sen-
tence parts that the grammar can parse. In our ex-
ample, these sentence parts would be I want to the
left of the ellipsis and water to the right. In order
to automatically find the sentence part to the right,
we use the following algorithm, which we present
in Listing 1 in a Java-style pseudo code: The al-
gorithm uses the method tokenize() to split up the
string that contains the utterance into an array of
single words. It then iterates through the array and
builds a new sentence of the words in the array,
using the method buildString(). This sentence is
then processed by the parser. If the parser finds
a parse for the sentence, the algorithm returns the
result. Otherwise it cuts off the first word of the
sentence and repeats the procedure. This way, the
algorithm searches for a parseable sentence part
for the given utterance from the left to the right un-
til it either finds the right-most parseable sentence
part or there are no more words to parse. In order
to find the left-most parseable sentence part, we
implemented a method findParseReverse(), which
parses sentence parts from right to left.

One has to consider that our method for ellip-
sis detection can falsely identify ellipses in cer-
tain sentence constellations. For example, if the
word like in the sentence I would like a water
is left out and given to our ellipsis detection al-
gorithm, it would falsely find an ellipsis between
I and would , and another ellipsis between would
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Listing 1: Ellipsis detection algorithm.
R e s u l t f i n d P a r s e ( S t r i n g u t t e r a n c e ) {

words [ ] = t o k e n i z e ( u t t e r a n c e ) ;
f o r ( i = 0 ; i < words . l e n g t h ; i ++) {

S t r i n g s e n t e n c e = b u i l d S t r i n g ( words [
i ] , words . l e n g t h ) ;

R e s u l t p a r s e = p a r s e ( s e n t e n c e ) ;
i f ( p a r s e != n u l l ) {

re turn p a r s e ;
}

}
re turn n u l l ;

}

and a. The reason for the detection of the first
ellipsis is that the categories for I and would can-
not be combined together. would and like have to
be parsed first to an auxiliary verb-verb construct.
This construct can then be combined with the pro-
noun I. To overcome this problem, we first com-
pute the category for each found ellipsis. Then we
find a word for the ellipsis with the simplest cate-
gory, which is either an atomic category or a func-
tional category with fewer functors than the other
found categories, add it to the original input sen-
tence, and parse the output sentence. If the output
sentence cannot be parsed, we repeat the step with
the next found ellipsis.

(ii) Ellipsis Category Computation

After the algorithm has determined the ellipsis in
an utterance, it computes the category of the word
that will fill the ellipsis. The goal here is to find a
category which the grammar needs to combine the
sentence parts to the left and right of the ellipsis.
For example, the left part of our example utterance
I want has the category s/np and the right part wa-
ter has the category n. Hence, the category for the
missing word needs to be np/n, because it takes
the category of the right sentence part as argument
and produces the category np, which is the argu-
ment of the category of the left sentence part.

Figure 2 shows the processing sequence dia-
gram of our algorithm for computing the category
of an ellipsis. In the diagram, left and right stand
for the categories of the sentence parts that are to
the left and right of the ellipsis. The predicates
symbolise functions: isEmpty(category) checks
if a category is empty, atom(category) checks
if a category is atomic, compl(category) checks
if a category is complex and has a slash oper-
ator that faces toward the ellipsis. The predi-
cate arg(category) returns the argument of a com-

s / right

true

isEmpty(left) isEmpty(right)
false

s \ left

true

atom(left)
atom(right)

s / right \ left

compl(left)
compl(right)

false

false

true

true

atom(left)
compl(right)

left \ arg(right)

false

true

atom(right)
compl(left)

arg(left) / right

true

false

Figure 2: Processing sequence of the category
computation algorithm.

plex category. Rectangular boxes symbolise steps
where the algorithm builds the result category for
the missing word. The algorithm determines the
category with the following rules:

• if the categories to the left or to the right of
the ellipsis are empty, the ellipsis category is
s/right or s\left, respectively,

• if the categories to the right and to the left of
the ellipsis are atomic, the ellipsis category is
s/right\left,
• if the categories to the right and to the left

of the ellipsis are both complex and have a
slash operator facing toward the ellipsis, the
ellipsis category is s/right\left,
• if the category to the left of the ellipsis is

atomic and to the right of the ellipsis is com-
plex, the ellipsis category is left\arg(right),

• if the category to the right of the ellipsis is
atomic and to the left of the ellipsis is com-
plex, the ellipsis category is arg(left)\right.

After the computation of the ellipsis category,
we use the OpenCCG grammar to select words to
fill the ellipsis. This step is straightforward, be-
cause the grammar maintains a separate word list
with corresponding categories. Here, we benefit
from the usage of a categorial grammar, as the
usage of a top-down grammar formalism would
have meant a more complicated computation in
this step.

3.2 WordNet-based Word Substitution
Spoken language is versatile and there are many
ways to express one’s intentions by using differ-
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ent expressions. Thus, in grammar-based spo-
ken language processing it often happens that sen-
tences cannot be parsed because of words that
are not in the grammar. To overcome this prob-
lem, we use WordNet (Miller, 1995) to find se-
mantically equivalent replacements for unknown
words. WordNet arranges words in sets of syn-
onyms called synsets which are connected to other
synsets by a variety of relations, which differ for
each word category. The most relevant relations
for our work are: for nouns and verbs hyperonyms
(e.g., drink is a hyperonym of juice) and hyponyms
(e.g., juice is a hyponym of drink), and for adjec-
tives we use the similar to relation.

Our implementation of word substitution exe-
cutes two steps if a word is unknown to the gram-
mar: (1) look-up of synonyms for the unknown
words. The unknown word can be substituted with
a semantically similar word directly, if the synset
of the unknown word contains a word, which is
known to the grammar. (2) Computation of simi-
lar words in the WordNet hyperonym/hyponym hi-
erarchy. If the synset of the unknown word does
not contain a substitution, we compute if one of
the hyperonyms of the unknown word has a hy-
ponym which is known to the grammar. Here, one
has to be careful not to move too far away from
the meaning of the unknown word in the Word-
Net tree, in order not to change the meaning of
the originally spoken sentence. Also, the compu-
tation of the similar word should not take too much
time. Therefore, in our implementation, we only
substitute an unknown word with one of its hyper-
onym/hyponym neighbours when the substitution
candidate is a direct hyponym of the direct hyper-
onym of the unknown word.

4 Evaluation

The goal of this evaluation is to measure how
many spoken sentences that our grammar cannot
parse can be processed after the transformation of
the sentences with our methods. In Section 4.1
we present the test set of spoken sentences that we
used in the evaluation. In Section 4.2 we give de-
tails of the used grammar. As mentioned above,
both, the test set as well as the grammar, were
taken from the human-robot interaction study re-
ported by Foster et al. (2012). Section 4.3 sum-
marises the details of the evaluation procedure. Fi-
nally, we present the evaluation results in Section
4.4 and discuss their meaning in Section 4.5.

4.1 Test Set

As test set for the evaluation, we used the spo-
ken utterances from the participants of the human-
robot interaction experiment reported by Foster et
al. (2012). In the experiment, 31 participants were
asked to order a drink from the robot bartender
shown in Figure 1. The experiment consisted of
three parts: in the first part, participants had to or-
der drinks on their own, in the second and third
part, participants were accompanied by a confed-
erate in order to have a multi-party interaction with
the robot. The spoken utterances in the test set
were annotated by hand from video recordings of
the 93 drink order sequences. Please refer to (Fos-
ter et al., 2012) for a detailed description of the
experiment.

Table 1 shows an overview of the test set. In
total, it contains 211 unique utterances; the exper-
iment participants spoke 531 sentences of which
some sentences were said repeatedly. We di-
vided the test set into the following speech acts
(Searle, 1965): Ordering (“I would like a juice
please.”), Question (“What do you have?”), Greet-
ing (“Hello there.”), Polite expression (“Thank
you.”), Confirmation (“Yes.”), Other (“I am
thirsty.”).

4.2 Grammar

The grammar that we used in this evaluation was
also used in the robot bartender experiment (Fos-
ter et al., 2012). This grammar is limited in its
scope, because the domain of the experiment—the
robot hands out drinks to customers—was limited
as well. Overall, the lexicon of the grammar con-
tains 92 words, which are divided into the follow-
ing part of speech classes: 42 verbs, 11 nouns, 10
greetings, 6 pronouns, 5 prepositions, 4 adverbs, 4
determiners, 3 quantifiers, 3 confirmations, 2 rela-
tive pronouns, 1 conjunction, 1 polite expression.

4.3 Procedure

For the evaluation, we implemented a programme
that takes our test set and automatically parses
each sentence with four different settings, which
are also presented in Table 1: (1) parsing with
the grammar only, (2) application of ellipsis de-
tection and word filling before parsing, (3) appli-
cation of WordNet similarity substitution before
parsing, (4) application of a combination of both
methods before parsing. Please note that for al-
ternative (4) the sequence in which the methods
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Speech act No. utt (1) CCG (2) Ell. det. (3) WordNet (4) Ell. + WordNet
Ordering 143 34 16 - 1
Question 19 1 - - -
Greeting 18 4 1 - -
Polite expression 14 1 - - -
Confirmation 5 4 - - -
Other 12 - - - -

Total 211 44 17 - 1

Table 1: Overview for test set and evaluation. Column No. utt contains the number of test utterances
per speech act. Column (1) CCG shows the number of utterances that were directly parsed by the
grammar. Columns (2) Ell. det., (3) WordNet, and (4) Ell. + WordNet show how many utterances were
additionally parsed using the ellipsis detection , WordNet substitution, and combination of both modules.

are applied to a given sentence can make a differ-
ence to the parsing result. In this evaluation, we
used both possible sequences: first ellipsis detec-
tion followed by WordNet substitution method or
vice versa.

4.4 Results

Table 1 shows the result of the evaluation proce-
dure. The grammar parses 44 sentences of the
211 test set sentences correctly. By using the el-
lipsis detection algorithm, 17 additional sentences
are parsed. The usage of the WordNet substitution
algorithm yields no additionally parsed sentences.
The combination of both methods (in this case,
first ellipsis detection, then WordNet substitution)
leads to the correct parse of one additional sen-
tence. None of the transformed sentences changed
its meaning when compared to the original sen-
tence.

4.5 Discussion

The evaluation results show that the application
of our ellipsis detection algorithm leads to an in-
crease of successfully parsed sentences of 38.64%.
In the class of ordering sentences, which was the
most relevant for the human-robot interaction ex-
periment from which we used the evaluation test
set, the number of successfully parsed sentences
increases by 47.06%. Compared to this, the us-
age of WordNet substitution alone does not lead to
an increase in parseable sentences. The one case
in which the combination of ellipsis detection and
WordNet substitution transformed an unparseable
sentence into a grammatically valid sentence is in-
teresting: here, the experiment participant said “I
need Coke.” to order a drink from the robot. This
sentence contained the word “need”, which was

not in the grammar. WordNet has the synonym
“want” in the synset for the word “need”. How-
ever, the sentence “I want Coke.” was also not
parseable, because the grammar expected an arti-
cle in front of every noun. The ellipsis detection
algorithm was able to find the missing article in the
sentence and filled it with an article “a” from the
grammar, leading to a parseable sentence “I want
a Coke.”.

Although we see an increase in parsed sen-
tences, 150 sentences of the test set were not trans-
formed by our approach. Therefore, we made an
analysis for the remaining utterances to find the
main causes for this weak performance. We found
that the following reasons cause problems for the
grammar (with number of cases in brackets behind
each reason):

• Word missing in grammar (81). The partic-
ipant used a word that was not in the gram-
mar. For example, users ordered drinks by
saying “One water, please.” , but the gram-
mar did not contain “one” as an article. This
result shows that the WordNet similarity sub-
stitution has the potential to lead to a large
increase in parseable sentences. However as
mentioned above, there is a risk of changing
the meaning of a sentence too much when al-
lowing the replacement of words which are
only vaguely similar to the unknown word.

• Sentence structure (25). Some participants
said sentences that were either grammatically
incorrect or had a sentence structure that was
not encoded in the grammar. For example
one participant tried to order a juice by saying
“Juice for me.”. Additionally, some partici-
pants asked questions (“Do you have coke?”).
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For the latter, please note that it was not part
of the HRI experiment, from which we use
the test set, that the experiment participants
should be allowed to ask questions to the
robot.

• Unnecessary fill words (22). Some experi-
ment participants used unnecessary fill words
that did not add meaning to the sentence, for
example one participant said “Oh come on, I
only need water” to order a drink.

• Sentence not related to domain (22). Some
participants said sentences that were contrary
to the given experiment instructions. For ex-
ample, some participants asked questions to
the robot (“How old are you?”) and to the ex-
perimenter (“Do I need to focus on the cam-
era?”), or complained about the robot’s per-
formance (“You are not quite responsive right
now.”). Clearly, these sentences were out of
the scope of the grammar.

5 Conclusion

We presented two methods for transforming spo-
ken language into grammatically correct sen-
tences. The first of these two approaches is an
ellipsis detection, which automatically detects el-
lipses in sentences and looks up words in a gram-
mar that can fill the ellipsis. Our ellipsis de-
tection algorithm is based on the properties of
the combinatory categorial grammar, which as-
signs categories to each word in the grammar
and thus enables the algorithm to find suitable fill
words by calculating the category of the ellipsis.
The second approach for sentence transformation
was a WordNet-based word similarity computa-
tion and substitution. Here, we used the synsets of
WordNet to substitute words that are unknown to a
given grammar with synonyms for these words. In
an evaluation we showed that the usage of ellip-
sis detection leads to an increase of successfully
parsed sentences of up to 47.06% for some speech
acts. The usage of the WordNet similarity substi-
tution does not increase the number of parsed sen-
tences, although our analysis of the test set shows
that unknown words are the most common reason
that sentences cannot be parsed.

Our approach was specifically implemented to
help circumventing problems during development
and usage of grammars for spoken language pro-
cessing in human-robot interaction experiments,

and the example grammar was a very restricted
one. However, we believe that our method can
also be helpful with more extensive grammars, and
for developers of dialogue systems in other ar-
eas, such as telephone-based information systems
or offline versions of automatic smartphone assis-
tants like Apple’s Siri.

In the future, we will refine our methodology.
In particular, the WordNet similarity substitution
is too rigid in its current form. Here, we plan
to loosen some of the constraints that we ap-
plied to our algorithm. We will systematically test
how far away from a word one can look for suit-
able substitutes in the WordNet hierarchy, with-
out losing the meaning of a sentence. Further-
more, we plan to add a dialogue history to our
approach, which will provide an additional source
of information—besides the grammar—to the el-
lipsis detection method. Finally, we plan to work
with stop word lists to filter unnecessary fill words
from the input sentences, since these proved also
to be a reason for sentences to be unparseable.
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Abstract

We present a tool that allows human wiz-
ards to select appropriate response utter-
ances for a given dialogue context from
a set of utterances observed in a dia-
logue corpus. Such a tool can be used
in Wizard-of-Oz studies and for collecting
data which can be used for training and/or
evaluating automatic dialogue models. We
also propose to incorporate such automatic
dialogue models back into the tool as an
aid in selecting utterances from a large di-
alogue corpus. The tool allows a user to
rank candidate utterances for selection ac-
cording to these automatic models.

1 Motivation

Dialogue corpora play an increasingly important
role as a resource for dialogue system creation.
In addition to its traditional roles, such as train-
ing language models for speech recognition and
natural language understanding, the dialogue cor-
pora can be directly used for the selection ap-
proach to response formation (Gandhe and Traum,
2010). In the selection approach, the response is
formulated by simply picking the appropriate ut-
terance from a set of previously observed utter-
ances. This approach is used in many wizard of
oz systems, where the wizard presses a button to
select an utterance, as well as in many automated
dialogue systems (Leuski et al., 2006; Zukerman
and Marom, 2006; Sellberg and Jönsson, 2008)

The resources required for the selection ap-
proach are a set of utterances to choose from and
optionally, a set of pairs of 〈context, response
utterance〉 to train automatic dialogue models. A
wizard can generate such resources by performing
two types of tasks. First is the traditional Wizard-
of-Oz dialogue collection, where a wizard inter-
acts with a user of the dialogue system. Here the

wizard selects an appropriate response utterance
for a context that is being updated in a dynamic
fashion as the dialogue proceeds (dynamic context
setting). The second task is geared towards gather-
ing data for training/evaluating automatic dialogue
models, where a wizard is required to select ap-
propriate responses (perhaps more than one) for a
context which is extracted from a human-human
dialogue. The context does not change based on
the wizard’s choices (static context setting).

A wizard tool should help with the challenges
presented by these tasks. A challenge for both
of these tasks is that if the number of utterances
in the corpus is large (e.g., more than the num-
ber of buttons that can be placed on a computer
screen), it may be very difficult for a wizard to lo-
cate appropriate utterances. For the second task of
creating human-verified training/evaluation data,
tools like NPCEditor (Leuski and Traum, 2010)
have been developed which, allow the tagging of
a many to many relationships between contexts
(approximated simply as input utterance) and re-
sponses. In other cases, a corpus of dialogues is
used to acquire the set of selectable utterances, in
which each context is followed by a single next
utterance, and many utterances appear only once.
This sparsity of data makes the selection task hard.
Moreover, it may be the case that there are many
possible continuations of a context or contexts in
which an utterance may be appropriate (DeVault
et al., 2011).

We address these needs with a semi-automated
wizard tool that allows a wizard to engage in dy-
namic or static context utterance selection, select
multiple responses, and use several kinds of search
tools to locate promising utterances from a large
set that can’t all be displayed or remembered. In
the next section we describe the tool and how it
can be used. Then we describe how this tool was
used to create evaluation data in the static context
setting.
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Figure 1: A screenshot of the interface for the wizard data collection
in static context setting.

Figure 2: A Histogram for the
number of selected appropriate
responses.

Figure 3: Avg. cardinality of the
set for different values of |R|.

2 Wizard Tool

Our wizard tool consists of several different views
(see figure 1), and is similar in some respects to the
IORelator annotation tool (DeVault et al., 2010),
but specialized to act as a wizard interface. The
first view (left pane) is a dialogue context, that
shows the recent history of the dialogue, before
the wizard’s decision point. The second view (top
right pane) shows a list of possible utterances that
can be selected from. This view can be ordered
in several different ways, as described below. Fi-
nally, there is a view of selected utterances (bot-
tom right pane). In the case of dynamic context,
the wizard will probably only select one utterance
and then a dialogue partner will respond with a
new utterance that extends the previous context.
In the case of static evaluation, however, used for
training and/or evaluating automated selection al-
gorithms, it is often helpful to select multiple ut-
terances if more than one is appropriate.

To help wizards explore the set of all possible
utterances, we provide the ability to rank the utter-
ances by various automated scores. Our configu-
ration used in the static context task uses Score1 as
the score calculated using one of the automatic di-
alogue models, specifically Nearest Context model
(Gandhe and Traum, 2007) - this model orders
candidate utterances from the corpus by the sim-
ilarity of their previous two utterances to the cur-
rent dialogue context. Score2 is surface text sim-
ilarity, computed as the METEOR score (Lavie
and Denkowski, 2009) between the candidate ut-
terance and the actual response utterance present

at that location in original human-human dialogue
(which is not available to the wizard). Wizards can
also search the set of utterances for specific key-
words and the third column, Relevance, shows the
score for the search string entered by the wizards.
The last column RF stands for relevance feedback
and ranks the utterances by similarity to the utter-
ances that have already been chosen by the wiz-
ard. This allows wizards to easily find paraphrases
of already selected response utterances. Clicking
the header of any of these columns will reorder the
utterance list by the automated score, by relevance
(assuming a search term has been entered) or by
relevance feedback (assuming one or more utter-
ances have already been chosen).

3 Evaluation

We evaluated the tool by having four human vol-
unteers (wizards) use it in order to establish an up-
per baseline for human-level performance in the
static context evaluation task described in (Gandhe
and Traum, 2013). Wizards were instructed in how
to use the search and relevance feedback features.
In order to not bias the wizards, they were not told
exactly what score1 and score2 indicate, but just
that the scores can be useful in search.

Each wizard is presented with a set of utter-
ances (Utrain) (|Utrain| ≈ 500) and is asked to
select a subset from these that will be appropri-
ate as a response for the presented dialogue con-
text. Each wizard was requested to select some-
where between 5 to 10 (at-least one) appropriate
responses for each dialogue context extracted from
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five different human-human dialogues. There are
a total of 89 dialogue contexts for the role that
the wizards were to play. Figure 2 shows the his-
togram for the number of utterances selected as
appropriate responses by the four wizards. As ex-
pected, wizards frequently chose multiple utter-
ances as appropriate responses (mean = 7.80, min
= 1, max = 25).

To get an idea about how much the wizards
agree among themselves for this task, we calcu-
lated the overlap between the utterances selected
by a specific wizard and the utterances selected by
another wizard or a set of wizards. Let UTc be a set
of utterances selected by a wizard T for a dialogue
context c. Let R be a set of wizards (T /∈ R) and
URc be the union of sets of utterances selected by
the set of wizards (R) for the same context c. Then
we define the following overlap measures,

Precisionc =
|UTc ∩ URc |
|UTc |

Recallc =
|UTc ∩ URc |
|URc |

Jaccardc =
|UTc ∩ URc |
|UTc ∪ URc |

Dicec =
2|UTc ∩ URc |
|UTc |+ |URc |

Meteorc =
1
|UTc |

∑
ut

METEOR (ut, URc ) ∀ut ∈ UTc

We compute the average values of these over-
lap measures for all contexts and for all possible
settings of test wizards and reference wizards. Ta-
ble 1 shows the results with different values for the
number of wizards used as reference.

#ref Prec. Rec. Jacc. Dice Meteor
1 0.145 0.145 0.077 0.141 0.290
2 0.244 0.134 0.093 0.170 0.412
3 0.311 0.121 0.094 0.171 0.478

Table 1: Inter-wizard agreement

Precision can be interpreted as the probability
that a response utterance selected by a wizard is
also considered appropriate by at least one other
wizard. Precision rapidly increases along with
the number of reference wizards used. This hap-
pens because the size of the set URc steadily in-
creases with more reference wizards. Figure 3
shows this observed increase and the expected in-
crease if there were no overlap between the wiz-
ards. The near-linear increase in |URc | suggests
that selecting appropriate responses is a hard task
and may require a lot more than four wizards to
achieve convergence.

Subjectively, the wizards reported no major us-
ability problems with the tool, and were able to
use all four utterance ordering techniques to find
appropriate utterances.

4 Future Work
Future work involves performing some formal
evaluations comparing this tool to other tools (that
are missing some of the features of this tool) in
terms of amount of time taken to make selections
and quality of the selections, using the same eval-
uation techniques as (Gandhe and Traum, 2013).

We also see a promising future for semi-
automated selection, which blurs the line between
a pure algorithmic response and pure wizard se-
lection. Here the wizard can select appropriate re-
sponses, which can be used by algorithms as su-
pervised training data, meanwhile the algorithms
can be used to seed the wizard’s selection.
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Abstract

This demonstration highlights the dia-
logue processing in SimSensei Kiosk, a
virtual human dialogue system that con-
ducts interviews related to psychologi-
cal distress conditions such as depression,
anxiety, and post-traumatic stress disorder
(PTSD). The dialogue processing in Sim-
Sensei Kiosk allows the system to con-
duct coherent spoken interviews of human
users that are 15-25 minutes in length,
and in which users feel comfortable talk-
ing and openly sharing information. We
present the design of the individual dia-
logue components, and show examples of
natural conversation flow between the sys-
tem and users, including expressions of
empathy, follow-up responses and contin-
uation prompts, and turn-taking.

1 Introduction

This demonstration highlights the dialogue pro-
cessing in SimSensei Kiosk, a virtual human di-
alogue system that conducts interviews related to
psychological distress conditions such as depres-
sion, anxiety, and post-traumatic stress disorder
(PTSD) (DeVault et al., 2014). SimSensei Kiosk
has two main functions – a virtual human called
Ellie (pictured in Figure 1), who converses with a
user in a spoken, semi-structured interview, and a
multimodal perception system which analyzes the
user’s behavior in real time to identify indicators
of psychological distress.

The system has been designed and devel-
oped over two years using a series of face-to-
face, Wizard-of-Oz, and automated system stud-
ies involving more than 350 human participants
(Scherer et al., 2013; DeVault et al., 2013; DeVault
et al., 2014). Agent design has been guided by
two overarching goals: (1) the agent should make

Figure 1: Ellie, the virtual human interviewer in
SimSensei Kiosk.

the user feel comfortable talking and openly shar-
ing information, and at the same time (2) the agent
should create interactional situations that support
the automatic assessment of verbal and nonver-
bal behaviors correlated with psychological dis-
tress. During an interview, the agent presents a
set of questions which have been shown in user
testing to support these goals. Since the main in-
terview questions and their order are mostly fixed,
dialogue management concentrates on providing
appropriate verbal feedback behaviors to keep the
user engaged, maintain a natural and comfort-
able conversation flow, and elicit continuations
and elaborations from the user.

The agent is implemented using a modular ar-
chitecture (Hartholt et al., 2013). Dialogue pro-
cessing, which is the focus of this demonstration,
is supported by individual modules for speech
recognition, language understanding and dialogue
management (see Section 2). The agent’s lan-
guage and speech are executed by selecting from
pre-recorded audio clips. Additional agent mod-
ules include nonverbal behavior generation, which
matches appropriately timed body movements to
the agent’s speech; character animation in a vir-
tual 3D environment; and rendering in a game en-
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gine. The perception system analyzes audio and
video in real time to identify features such as head
position, gaze direction, smile intensity, and voice
quality. DeVault et al. (2014) provides details on
all the agent’s modules.

2 Overview of Dialogue Processing

2.1 ASR and NLU components

Unlike many task-oriented dialogue domains, in-
terview dialogues between SimSensei Kiosk and
participants are naturally open-ended. People tend
to respond to interview stimuli such as “what’s
one of your most memorable experiences?” with
idiosyncratic stories and events from their lives.
The variability in the vocabulary and content of
participants’ answers to such questions is so large
that it makes the ASR task very challenging. Fur-
thermore, continuous ASR is employed to ensure
that participants feel comfortable interacting with
the system without being distracted by having to
use a push-to-talk microphone. The use of con-
tinuous ASR necessitates the development of spe-
cific policies for turn-taking (see Section 2.2). In
this demonstration, voice activity detection and
speech recognition are performed using Pocket-
Sphinx (Huggins-Daines et al., 2006).

Because of the open-ended participants’ re-
sponses, for NLU, we cannot simply construct a
small semantic ontology and expect to cover the
majority of meanings that will be expressed by
users. Thus, this is an application in which the
dialogue policy needs to be able to create a sense
of engagement, continuation, and empathy despite
relatively shallow and limited understanding of
user speech. SimSensei Kiosk currently uses 4
statistically trained utterance classifiers to capture
different aspects of user utterance meaning.

The first NLU classifier identifies generic di-
alogue act types, including statements, yes-no
questions, wh-questions, yes and no answers, and
several others. This classifier is trained using
the Switchboard DAMSL corpus (Jurafsky et al.,
1997) using a maximum entropy model.

The second NLU classifier assigns positive,
negative, or neutral valence to utterances, in or-
der to guide Ellie’s expression of empathy. We
use SentiWordNet 3.0 (Baccianella et al., 2010), a
lexical sentiment dictionary, to assign valence to
individual words spoken by users (as recognized
by the ASR); the valence assigned to an utterance
is based primarily on the mean valence scores of

Opening Rapport Building Phase
Ellie What are some things you really like about LA?

(top level question)

User I love the weather, I love the palm trees, I love the
beaches, there’s a lot to do here.

Diagnostic Phase
Ellie Have you noticed any changes in your behavior or

thoughts lately? (top level question)

User Yes.

Ellie Can you tell me about that? (continuation prompt)

User I’m having a lot more nightmares now uh can’t
sleep have haven’t really been eating uh trying to
eat. . . I have to force down food um just feeling
like an emotional wreck.

Ellie I’m sorry to hear that. (empathy response)

Ellie What are you like when you don’t sleep well?
(follow-up question)

User Irritable, emotional, it just adds to my overall
stress um [long pause]

Ellie What. . . (Ellie speaks after the participant’s long
pause)

User Can’t concentrate uh I uh. . . (the participant starts
speaking while Ellie is speaking)

Ellie I’m sorry please continue. (Ellie realizes that she
has interrupted the participant and apologizes)

Positive Closing Phase
Ellie How would your best friend describe you? (top

level question)

User As caring, as fun because most of the time when
I’m around my best friends I’m happy and I’m fun
loving. I joke around with them a lot and uh I do
better when I’m around my friends. . .

Figure 2: Examples of Ellie’s interview phases.

the individual words in the utterance.
The third NLU classifier supports domain-

specific small talk by recognizing a handful of
specific anticipated responses to Ellie’s rapport-
building questions. For example, when Ellie asks
users where they are from, this classifier detects
the names of commonly mentioned cities and re-
gions using keyphrase spotting.

The fourth NLU classifier identifies domain-
specific dialogue acts, and supports Ellie’s follow-
up responses to specific questions, such as “how
close are you to your family?”. This maximum
entropy classifier is trained using face-to-face and
Wizard-of-Oz data to detect specific responses
such as assertions of closeness.

2.2 Dialogue Management

Ellie currently uses about 100 fixed utterances in
total in the automated system. She employs 60 top
level interview questions (e.g., “do you travel a
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lot?”), plus some follow-up questions (e.g., “what
do you enjoy about traveling?”) and a range of
backchannels (e.g., “uh huh”), empathy responses
(e.g., “that’s great”, “I’m sorry”), and continua-
tion prompts (e.g., “tell me more about that”).

The dialogue policy is implemented using the
FLoReS dialogue manager (Morbini et al., 2012).
The policy groups interview questions into three
phases (opening rapport building, diagnostic, pos-
itive closing – ensuring that the participant leaves
with positive feelings). Questions are generally
asked in a fixed order, with some branching based
on responses to specific questions.

Rule-based subpolicies determine what Ellie’s
follow-up responses will be for each of her top-
level interview questions. The rules for follow-ups
are defined in relation to the four NLU classifiers
and the duration of user speech (measured in sec-
onds). These rules trigger continuation prompts
and empathy responses under specific conditions.

The turn-taking policy supports our design goal
to encourage users to openly share information
and to speak at length in response to Ellie’s open-
ended questions. In this domain, users often pause
before or during their responses to think about
their answers to Ellie’s personal questions. The
turn-taking policy is designed to provide ample
time for users to consider their responses, and to
let users take and keep the initiative as much as
possible. Ellie’s turn-taking decisions are based
on thresholds for user pause duration, i.e., how
much time the system should wait after the user
has stopped speaking before Ellie starts speaking.
These thresholds are tuned to the face-to-face and
Wizard-of-Oz data to minimize Ellie’s interrup-
tion rate, and are extended dynamically when El-
lie detects that she has interrupted the participant.
This is to take into account the fact that some peo-
ple tend to use longer pauses than others.

Examples of the three interview phases and of
Ellie’s subdialogue policies (top level and follow-
up questions, continuation prompts, empathy re-
sponses, and turn-taking) are given in Figure 2.

3 Demonstration Summary

The demonstration will feature a live interac-
tion between Ellie and a participant, showing El-
lie’s real-time understanding and consequent pol-
icy actions. Live dialogues will highlight Ellie’s
strategies for questioning, follow-up continuation
prompts, displays of empathy, and turn-taking,

similar to the example in Figure 2. The demon-
stration will illustrate how these elements work to-
gether to enable Ellie to carry out extended inter-
views that also provide information relevant to the
automatic assessment of indicators of distress.
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Abstract

The Multimodal Virtual Assistant (MVA)
is an application that enables users to plan
an outing through an interactive multi-
modal dialog with a mobile device. MVA
demonstrates how a cloud-based multi-
modal language processing infrastructure
can support mobile multimodal interac-
tion. This demonstration will highlight in-
cremental recognition, multimodal speech
and gesture input, contextually-aware lan-
guage understanding, and the targeted
clarification of potentially incorrect seg-
ments within user input.

1 Introduction

With the recent launch of virtual assistant appli-
cations such as Siri, Google Now, S-Voice, and
Vlingo, spoken access to information and services
on mobile devices has become commonplace. The
Multimodal Virtual Assistant (MVA) project ex-
plores the application of multimodal dialog tech-
nology in the virtual assistant landscape. MVA de-
parts from the existing paradigm for dialog-based
mobile virtual assistants that display the unfold-
ing dialog as a chat display. Instead, the MVA
prototype situates the interaction directly within a
touch-based interface that combines a map with
visual information displays. Users can interact
using combinations of speech and gesture inputs,
and the interpretation of user commands depends
on both map and GUI display manipulation and
the physical location of the device.

MVA is a mobile application that allows users
to plan a day or evening out with friends using
natural language and gesture input. Users can
search and browse over multiple interconnected
domains, including music events, movie show-
ings, and places to eat. They can specify multi-
ple parameters in natural language, such as “Jazz

concerts around San Francisco next Saturday”. As
users find interesting events and places, they can
be collected together into plans and shared with
others. The central components of the graph-
ical user interface are a dynamic map showing
business and event locations, and an information
display showing the current recognition, system
prompts, search result listing, or plans (Figure 1).

Figure 1: MVA User Interface

Spoken input begins when the user taps a micro-
phone button on the display. As the user speaks,
incremental speech recognition results appear. In
addition to enabling voice input, the microphone
button also activates the map as a drawing can-
vas, and enables the user to combine speech with
drawing in coordinated multimodal commands.
For example, a user might say, “Movies playing
tonight in this area” while simultaneously outlin-
ing a relevant area on the map. Or a user may say,
“Restaurants” while drawing a line down a spe-
cific street. MVA determines the intent and dis-
ambiguates concepts in the input in order to re-
turn relevant results. MVA then responds to user
input multimodally, by updating the display and
using speech synthesis to summarize results, pro-
vide feedback, or make requests for clarification
and additional information.
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2 Sample Interaction

In Figure 2 we present a sample of interaction
from MVA that illustrates some of its capabilities.
The user starts with a spoken natural language
query where they specify some constraints: the
type of music (jazz), location (San Francisco), and
time (tomorrow). The system gets low confidence
on the location, so it constructs a targeted clarifi-
cation for clarifying only that constraint. The user
repeats the location, and then the system searches
for events meeting the user’s constraints. The user
then reviews the results, and follows on with a
refinement: “What about blues?”. Even though
many parameters in this query are underspecified,
the system applies contextually-aware natural lan-
guage understanding and interprets this as “Blues
concerts near San Francisco tomorrow”. After
selecting a concert, the user then searches for a
restaurant nearby. The location of the concert re-
mains salient. The user follows up with a mul-
timodal query combining speech and gesture to
search for similar restaurants in an adjoining area.

U: “Jazz concerts near San Francisco tomorrow.”
S: “Where did you want to see jazz tomorrow?”
U: “San Francisco.”
S: “I found 20 jazz concerts in San

Francisco tomorrow.”
[Zooms map to San Francisco and displays
pins on map and list of results]

U: “What about blues?”
S: “I found 20 blues concerts in

San Francisco tomorrow.”
U: [Clicks on a concert listing and adds it

to the plan]
U: “Sushi restaurants near there.”
S: “I found 10 sushi restaurants.”
U: “What about here?”

[Circles adjoining area on map]
S: “I found 5 sushi restaurants in

the area you indicated”

Figure 2: Sample Interaction

3 System Architecture

Figure 3 shows the underlying multimodal assis-
tant architecture supporting the MVA app. The
user interacts with a native iOS client. When the
user taps the microphone icon, this initiates the
flow of audio interleaved with gesture and context
information streamed over a WebSocket connec-
tion to the platform.

This stream of interleaved data is handled at
the server by a multimodal natural language pro-
cessing pipeline. This fields incoming packets of

Figure 3: MVA Multimodal assistant Architecture

data from the client, demuxes the incoming data
stream, and sends audio, ink traces, and context
information to three modules that operate in par-
allel. The audio is processed using the AT&T
WatsonSM speech recognition engine (Goffin et
al., 2005). Recognition is performed using a dy-
namic hierarchical language model (Gilbert et al.,
2011) that combines a statistical N-gram language
model with weighted sub-grammars. Ink traces
are classified into gestures using a linear classi-
fier. Speech recognition results serve as input to
two NLU modules. A discriminative stochastic se-
quence tagger assigns tags to phrases within the
input, and then the overall string with tags is as-
signed by a statistical intent classifier to one of
a number of intents handled by the system e.g.
search(music event), refine(location).

The NLU results are passed along with gesture
recognition results and the GUI and device context
to a multimodal dialog manager. The contextual
resolution component determines if the input is a
query refinement or correction. In either case, it
retrieves the previous command from a user con-
text store and combines the new content with the
context through destructive unification (Ehlen and
Johnston, 2012). A location salience component
then applies to handle cases where a location is
not specified verbally. This component uses a su-
pervised classifier to select from among a series
of candidate locations, including the gesture (if
present), the current device location, or the current
map location (Ehlen and Johnston, 2010).

The resolved semantic interpretation of the ut-
terance is then passed to a Localized Error Detec-
tion (LED) module (Stoyanchev et al., 2012). The
LED module contains two maximum entropy clas-
sifiers that independently predict whether a con-
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cept is present in the input, and whether a con-
cept’s current interpretation is correct. These clas-
sifiers use word scores, segment length, confu-
sion networks and other recognition and context
features. The LED module uses these classifiers
to produce two probability distributions; one for
presence and one for correctness. These distri-
butions are then used by a Targeted Clarification
component (TC) to either accept the input as is,
reject all of the input, or ask a targeted clarifica-
tion question (Stoyanchev et al., 2013). These de-
cisions are currently made using thresholds tuned
manually based on an initial corpus of user inter-
action with MVA. In the targeted clarification case,
the input is passed to the natural language gen-
eration component for surface realization, and a
prompt is passed back to the client for playback
to the user. Critically, the TC component decides
what to attempt to add to the common ground
by explicit or implicit confirmation, and what to
explicitly query from the user; e.g. “Where did
you want to see jazz concerts?”. The TC com-
ponent also updates the context so that incoming
responses from the user can be interpreted with re-
spect to the context set up by the clarification.

Once a command is accepted by the multimodal
dialog manager, it is passed to the Semantic Ab-
straction Layer (SAL) for execution. The SAL in-
sulates natural language dialog capabilities from
the specifics of any underlying external APIs that
the system may use in order to respond to queries.
A general purpose time normalization component
projects relative time expressions like “tomorrow
night” or “next week” onto a reference timeframe
provided by the client context and estimates the
intended time interval. A general purpose location
resolution component maps from natural language
expressions of locations such as city names and
neighborhoods to specific geographic coordinates.
These functions are handled by SAL—rather than
relying on any time and location handling in the
underlying information APIs—to provide consis-
tency across application domains.

SAL also includes mechanisms for category
mapping; the NLU component tags a portion
of the utterance as a concept (e.g., a mu-
sic genre or a cuisine) and SAL leverages
this information to map a word sequence to
generic domain-independent ontological represen-
tations/categories that are reusable across different
backend APIs. Wrappers in SAL map from these

categories, time, and location values to the spe-
cific query language syntax and values for each
specific underlying API. In some cases, a single
natural language query to MVA may require mul-
tiple API calls to complete, and this is captured
in the wrapper. SAL also handles API format dif-
ferences by mapping all API responses into a uni-
fied format. This unified format is then passed to
our natural language generation component to be
augmented with prompts, display text, and instruc-
tions to the client for updating the GUI. This com-
bined specification of a multimodal presentation is
passed to the interaction manager and routed back
to the client to be presented to the user.

In addition to testing the capabilities of our mul-
timodal assistant platform, MVA is designed as a
testbed for running experiments with real users.
Among other topics, we are planning experiments
with MVA to evaluate methods of multimodal in-
formation presentation and natural language gen-
eration, error detection and error recovery.
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Abstract

We demonstrate a mobile application in
English and Mandarin to test and eval-
uate components of the Parlance di-
alogue system for interactive search un-
der real-world conditions.

1 Introduction

With the advent of evaluations “in the wild”,
emphasis is being put on converting re-
search prototypes into mobile applications that
can be used for evaluation and data col-
lection by real users downloading the ap-
plication from the market place. This is
the motivation behind the work demonstrated
here where we present a modular framework
whereby research components from the Par-
lance project (Hastie et al., 2013) can be
plugged in, tested and evaluated in a mobile
environment.
The goal of Parlance is to perform inter-

active search through speech in multiple lan-
guages. The domain for the demonstration
system is interactive search for restaurants in
Cambridge, UK for Mandarin and San Fran-
cisco, USA for English. The scenario is that
Mandarin speaking tourists would be able to
download the application and use it to learn
about restaurants in English speaking towns
and cities.

2 System Architecture

Here, we adopt a client-server approach as il-
lustrated in Figure 1 for Mandarin and Figure
2 for English. The front end of the demon-
stration system is an Android application that
calls the Google Automatic Speech Recogni-
tion (ASR) API and sends the recognized user
utterance to a server running the Interaction

∗Authors are in alphabetical order

Manager (IM), Spoken Language Understand-
ing (SLU) and Natural Language Generation
(NLG) components.

Figure 1: Overview of the Parlance Man-
darin mobile application system architecture

Figure 2: Overview of the Parlance En-
glish mobile application system architecture
extended to use the Yahoo API to populate
the application with additional restaurant in-
formation

When the user clicks the Start button, a di-
alogue session starts. The phone application
first connects to the Parlance server (via
the Java Socket Server) to get the initial sys-
tem greeting which it speaks via the Google
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Text-To-Speech (TTS) API. After the system
utterance finishes the recognizer starts to lis-
ten for user input to send to the SLU compo-
nent. The SLU converts text into a semantic
interpretation consisting of a set of triples of
communicative function, attribute, and (op-
tionally) value1. Probabilities can be associ-
ated with candidate interpretations to reflect
uncertainty in either the ASR or SLU. The
SLU then passes the semantic interpretation
to the IM within the same server.
Chinese sentences are composed of strings of

characters without any space to mark words as
other languages do, for example:

In order to correctly parse and understand
Chinese sentences, Chinese word segmenta-
tions must be performed. To do this segmen-
tation, we use the Stanford Chinese word seg-
mentor2, which relies on a linear-chain condi-
tional random field (CRF) model and treats
word segmentation as a binary decision task.
The Java Socket Server then sends the seg-
mented Chinese sentence to the SLU on the
server.
The IM then selects a dialogue act, accesses

the database and in the case of English passes
back the list of restaurant identification num-
bers (ids) associated with the relevant restau-
rants. For the English demonstration system,
these restaurants are displayed on the smart
phone as seen in Figures 4 and 5. Finally,
the NLG component decides how best to re-
alise the restaurant descriptions and sends the
string back to the phone application for the
TTS to realise. The example output is illus-
trated in Figure 3 for Mandarin and Figure 4
for English.
As discussed above, the Parlance mobile

application can be used as a test-bed for com-
paring alternative techniques for various com-
ponents. Here we discuss two such compo-
nents: IM and NLG.

1This has been implemented for English; Mandarin
uses the rule-based Phoenix parser.

2http://nlp.stanford.edu/projects/chinese-
nlp.shtml

Figure 3: Screenshot and translation of the
Mandarin system

Figure 4: Screenshot of dialogue and the list
of recommended restaurants shown on a map
and in a list for English

2.1 Interaction Management

The Parlance Interaction Manager is based
on the partially observable Markov decision
process (POMDP) framework, where the sys-
tem’s decisions can be optimised via reinforce-
ment learning. The model adopted for Par-
lance is the Bayesian Update of Dialogue
State (BUDS) manager (Thomson and Young,
2010). This POMDP-based IM factors the di-
alogue state into conditionally dependent ele-
ments. Dependencies between these elements
can be derived directly from the dialogue on-
tology. These elements are arranged into a dy-
namic Bayesian network which allows for their
marginal probabilities to be updated during
the dialogue, comprising the belief state. The
belief state is then mapped into a smaller-scale
summary space and the decisions are optimised
using the natural actor critic algorithm. In the
Parlance application, hand-crafted policies
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Figure 5: Screenshot of the recommended
restaurant for the English application

can be compared to learned ones.

2.2 Natural Language Generation

As mentioned above, the server returns the
string to be synthesised by the Google TTS
API. This mobile framework allows for testing
of alternative approaches to NLG. In particu-
lar, we are interested in comparing a surface re-
aliser that uses CRFs against a template-based
baseline. The CRFs take semantically anno-
tated phrase structure trees as input, which it
uses to keep track of rich linguistic contexts.
Our approach has been compared with a num-
ber of competitive state-of-the art surface real-
izers (Dethlefs et al., 2013), and can be trained
from example sentences with annotations of se-
mantic slots.

2.3 Local Search and Knowledge Base

For the English system, the domain database is
populated by the search Yahoo API (Bouchard
and Mika, 2013) with restaurants in San Fran-
sisco. These restaurant search results are
returned based on their longitude and lati-
tude within San Francisco for 5 main areas, 3
price categories and 52 cuisine types contain-
ing around 1,600 individual restaurants.
The Chinese database has been partially

translated from an English database for restau-
rants in Cambridge, UK and search is based
on 3 price categories, 5 areas and 35 cuisine
types having a total of 157 restaurants. Due
to the language-agnostic nature of the Par-
lance system, only the name and address

fields needed to be translated.

3 Future Work

Investigating application side audio compres-
sion and audio streaming over a mobile in-
ternet connection would enable further assess-
ment of the ASR and TTS components used
in the original Parlance system (Hastie et
al., 2013). This would allow for entire research
systems to be plugged directly into the mobile
interface without the use of third party ASR
and TTS.
Future work also involves developing a feed-

back mechanism for evaluation purposes that
does not put undue effort on the user and put
them off using the application. In addition,
this framework can be extended to leverage
hyperlocal and social information of the user
when displaying items of interest.
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Abstract

A spoken dialog system, while commu-
nicating with a user, must keep track of
what the user wants from the system at
each step. This process, termed dialog
state tracking, is essential for a success-
ful dialog system as it directly informs the
system’s actions. The first Dialog State
Tracking Challenge allowed for evalua-
tion of different dialog state tracking tech-
niques, providing common testbeds and
evaluation suites. This paper presents a
second challenge, which continues this
tradition and introduces some additional
features – a new domain, changing user
goals and a richer dialog state. The chal-
lenge received 31 entries from 9 research
groups. The results suggest that while
large improvements on a competitive base-
line are possible, trackers are still prone
to degradation in mismatched conditions.
An investigation into ensemble learning
demonstrates the most accurate tracking
can be achieved by combining multiple
trackers.

1 Introduction

Spoken language provides a medium of communi-
cation that is natural to users as well as hands- and
eyes-free. Voice-based computer systems, called
spoken dialog systems, allow users to interact us-
ing speech to achieve a goal. Efficient operation of
a spoken dialog system requires a component that
can track what has happened in a dialog, incor-
porating system outputs, user speech and context
from previous turns. The building and evaluation
of these trackers is an important field of research
since the performance of dialog state tracking is
important for the final performance of a complete
system.

Until recently, it was difficult to compare ap-
proaches to state tracking because of the wide va-
riety of metrics and corpora used for evaluation.
The first dialog state tracking challenge (DSTC1)
attempted to overcome this by defining a challenge
task with standard test conditions, freely available
corpora and open access (Williams et al., 2013).
This paper presents the results of a second chal-
lenge, which continues in this tradition with the
inclusion of additional features relevant to the re-
search community.

Some key differences to the first challenge in-
clude:
• The domain is restaurant search instead of

bus timetable information. This provides par-
ticipants with a different category of interac-
tion where there is a database of matching en-
tities.

• Users’ goals are permitted to change. In the
first challenge, the user was assumed to al-
ways want a specific bus journey. In this chal-
lenge the user’s goal can change. For exam-
ple, they may want a ‘Chinese’ restaurant at
the start of the dialog but change to wanting
‘Italian’ food by the end.

• The dialog state uses a richer representa-
tion than in DSTC1, including not only the
slot/value attributes of the user goal, but also
their search method, and what information
they wanted the system to read out.

As well as presenting the results of the different
state trackers, this paper attempts to obtain some
insights into research progress by analysing their
performance. This includes analyses of the predic-
tive power of performance on the development set,
the effects of tracking the dialog state using joint
distributions, and the correlation between 1-best
accuracy and overall quality of probability distri-
butions output by trackers. An evaluation of the
effects of ensemble learning is also performed.

The paper begins with an overview of the chal-
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lenge in section 2. The labelling scheme and met-
rics used for evaluation are discussed in section 3
followed by a summary of the results of the chal-
lenge in section 4. An analysis of ensemble learn-
ing is presented in section 5. Section 6 concludes
the paper.

2 Challenge overview
2.1 Problem statement

This section defines the problem of dialog state
tracking as it is presented in the challenge. The
challenge evaluates state tracking for dialogs
where users search for restaurants by specifying
constraints, and may ask for information such as
the phone number. The dialog state is formu-
lated in a manner which is general to information
browsing tasks such as this.

Included with the data is an ontology1, which
gives details of all possible dialog states. The
ontology includes a list of attributes termed re-
questable slots which the user may request, such
as the food type or phone number. It also provides
a list of informable slots which are attributes that
may be provided as constraints. Each informable
slot has a set of possible values. Table 1 gives de-
tails on the ontology used in DSTC2.

The dialog state at each turn consists of three
components:
• The goal constraint for each informable slot.

This is either an assignment of a value from
the ontology which the user has specified as
a constraint, or is a special value — either
Dontcare which means the user has no pref-
erence, or None which means the user is yet
to specify a valid goal for this slot.

• A set of requested slots, i.e. those slots
whose values have been requested by the
user, and should be informed by the system.

• An assignment of the current dialog search
method. This is one of

– by constraints, if the user is attempting
to issue a constraint,

– by alternatives, if the user is requesting
alternative suitable venues,

– by name, if the user is attempting to ask
about a specific venue by its name,

– finished, if the user wants to end the call
– or none otherwise.

Note that in DSTC1, the set of dialog states

1Note that this ontology includes only the schema for di-
alog states and not the database entries

was dependent on the hypotheses given by a Spo-
ken Language Understanding component (SLU)
(Williams et al., 2013), whereas here the state is
labelled independently of any SLU (see section 3).
Appendix B gives an example dialog with the state
labelled at each turn.

A tracker must use information up to a given
turn in the dialog, and output a probability distri-
bution over dialog states for the turn. Trackers
output separately the distributions for goal con-
straints, requested slots and the method. They may
either report a joint distribution over the goal con-
straints, or supply marginal distributions and let
the joint goal constraint distribution be calculated
as a product of the marginals.

2.2 Challenge design
DSTC2 studies the problem of dialog state track-
ing as a corpus-based task, similar to DSTC1. The
challenge task is to re-run dialog state tracking
over a test corpus of dialogs.

A corpus-based challenge means all trackers
are evaluated on the same dialogs, allowing di-
rect comparison between trackers. There is also
no need for teams to expend time and money in
building an end-to-end system and getting users,
meaning a low barrier to entry.

When a tracker is deployed, it will inevitably al-
ter the performance of the dialog system it is part
of, relative to any previously collected dialogs. In
order to simulate this, and to penalise overfitting to
known conditions, evaluation dialogs in the chal-
lenge are drawn from dialogs with a dialog man-
ager which is not found in the training data.

2.3 Data
A large corpus of dialogs with various telephone-
based dialog systems was collected using Ama-
zon Mechanical Turk. The dialogs used in the
challenge come from 6 conditions; all combina-
tions of 3 dialog managers and 2 speech recognis-
ers. There are roughly 500 dialogs in each condi-
tion, of average length 7.88 turns from 184 unique
callers.

The 3 dialog managers are:
• DM-HC, a simple tracker maintaining a sin-

gle top dialog state, and a hand-crafted policy
• DM-POMDPHC, a dynamic Bayesian net-

work for tracking a distribution of dialog
states, and a hand-crafted policy

• DM-POMDP, the same tracking method as
DM-POMDPHC, with a policy learnt using
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Slot Requestable Informable

area yes yes. 5 values; north,
south, east, west, centre

food yes yes, 91 possible values
name yes yes, 113 possible values

pricerange yes yes, 3 possible values
addr yes no

phone yes no
postcode yes no
signature yes no

Table 1: Ontology used in DSTC2 for restaurant informa-
tion. Counts do not include the special Dontcare value.

POMDP reinforcement learning
The 2 speech recognisers are:
• ASR-degraded, speech recogniser with arti-

ficially degraded statistical acoustic models
• ASR-good, full speech recogniser optimised

for the domain
These give two acoustic conditions, the de-

graded model producing dialogs at higher error
rates. The degraded models simulate in-car con-
ditions and are described in Young et al. (2013).

The set of all calls with DM-POMDP, with both
speech recognition configurations, constitutes the
test set. All calls with the other two dialog man-
agers are used for the training and development
set. Specifically, the datasets are arranged as so:
• dstc2 train. Labelled dataset released in Oc-

tober 2013, with 1612 calls from DM-HC and
DM-POMDPHC, and both ASR conditions.

• dstc2 dev. Labelled dataset released at the
same time as dstc2 train, with 506 calls under
the same conditions as dstc2 train. No caller
in this set appears in dstc2 train.

• dstc2 test. Set used for evaluation. Released
unlabelled at the beginning of the evaluation
week. This consists of all 1117 dialogs with
DM-POMDP.

Paid Amazon Mechanical Turkers were as-
signed tasks and asked to call the dialog systems.
Callers were asked to find restaurants that matched
particular constraints on the slots area, pricerange
and food. To elicit more complex dialogs, includ-
ing changing goals (goals in DSTC1 were always
constant), the users were sometimes asked to find
more than one restaurant. In cases where a match-
ing restaurant did not exist they were required to
seek an alternative, for example finding an Indian
instead of an Italian restaurant.

A breakdown of the frequency of goal con-
straint changes is given in table 2, showing around
40% of all dialogs involved a change in goal con-
straint. The distribution of the goal constraints in
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Figure 1: Histogram of values for the food constraint (ex-
cluding dontcare) in all data. The most frequent values are
Indian, Chinese, Italian and European.

Dataset
train dev test

area 2.9% 1.4% 3.8%
food 37.3% 34.0% 40.9%
name 0.0% 0.0% 0.0%

pricerange 1.7% 1.6% 3.1%
any 40.1% 37.0% 44.5%

Table 2: Percentage of dialogs which included a change in
the goal constraint for each informable (and any slot). Barely
any users asked for restaurants by name.

the data was reasonably uniform across the area
and pricerange slots, but was skewed for food as
shown in figure 1. The skew arises from the distri-
bution of the restaurants in the system’s database;
many food types have very few matching venues.

Recently, researchers have started using word
confusion networks for spoken language under-
standing (Henderson et al., 2012; Tür et al., 2013).
Unfortunately, word confusion networks were not
logged at the time of collecting the dialog data. In
order to provide word confusion networks, ASR
was run offline in batch mode on each dialog us-
ing similar models as the live system. This gives
a second set of ASR results, labelled batch, which
not only includes ASR N -best lists (as in live re-
sults), but also word confusion networks.

For each dataset and speech recogniser, table 3
gives the Word Error Rate on the top ASR hypoth-
esis, and F-score for the top SLU hypothesis (cal-
culated as in Henderson et al. (2012)). Note the
batch ASR was always less accurate than the live.

Live Batch
Dataset ASR WER F-score WER

train
degraded 30.7% 72.4% 37.7%

good 22.4% 78.7% 25.5%
all 26.4% 75.7% 31.3%

dev
degraded 40.4% 67.3% 47.3%

good 25.2% 75.2% 30.0%
all 31.9% 71.6% 37.6%

test
degraded 33.6% 70.0% 41.1%

good 23.5% 77.8% 27.1%
all 28.7% 73.8% 34.3%

Table 3: Word Error Rate on the top hypothesis, and F-score
on top SLU hypothesis.
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3 Labelling and evaluation
The output of each tracker is a distribution over
dialog states for each turn, as explained in section
2.1. To allow evaluation of the tracker output, the
single correct dialog state at each turn is labelled.

Labelling of the dialog state is facilitated by first
labelling each user utterance with its semantic rep-
resentation, in the dialog act format described in
Henderson et al. (2013) (some example seman-
tic representations are given in appendix B). The
semantic labelling was achieved by first crowd-
sourcing the transcription of the audio to text.
Next a semantic decoder was run over the tran-
scriptions, and the authors corrected the decoder’s
results by hand. Given the sequence of machine
actions and user actions, both represented seman-
tically, the true dialog state is computed determin-
istically using a simple set of rules.

Recall the dialog state is composed of multiple
components; the goal constraint for each slot, the
requested slots, and the method. Each of these
is evaluated separately, by comparing the tracker
output to the correct label. The joint over the goal
constraints is evaluated in the same way, where the
tracker may either explicitly enumerate and score
its joint hypotheses, or let the joint be computed as
the product of the distributions over the slots.

A bank of metrics which look at the tracker out-
put and the correct labels are calculated in the eval-
uation. These metrics are a slightly expanded set
of those calculated in DSTC1.

Denote an example probability distribution
given by a tracker as p and the correct label to be
i, so we have that the probability reported to the
correct hypothesis is pi, and

∑
j pj = 1.

Accuracy measures the fraction of turns where
the top hypothesis is correct, i.e. where i =
arg maxj pj . AvgP, average probability, mea-
sures the mean score of the correct hypothesis, pi.
This gives some idea of the quality of the score
given to the correct hypothesis, ignoring the rest
of the distribution. Neglogp is the mean nega-
tive logarithm of the score given to the correct hy-
pothesis, − log pi. Sometimes called the negative
log likelihood, this is a standard score in machine
learning tasks. MRR is the mean reciprocal rank
of the top hypothesis, i.e. 1

1+k where jk = i and
pj0 ≥ pj1 ≥ . . .. This metric measures the qual-
ity of the ranking, without necessarily treating the
scores as probabilities. L2 measures the square
of the l2 norm between the distribution and the

correct label, indicating quality of the whole re-
ported distribution. It is calculated for one turn
as (1 − pi)2 +

∑
j 6=i p

2
j . Two metrics, Update

precision and Update accuracy measure the ac-
curacy and precision of updates to the top scoring
hypothesis from one turn to the next. For more
details, see Higashinaka et al. (2004), which finds
these metrics to be highly correlated with dialog
success in their data.

Finally there is a set of measures relating to
the receiver operating characteristic (ROC) curves,
which measure the discrimination of the scores for
the highest-ranked hypotheses. Two versions of
ROC are computed, V1 and V2. V1 computes
correct-accepts (CA), false accepts (FA) and false-
rejects (FR) as fractions of all utterances. The
V2 metrics consider fractions of correctly classi-
fied utterances, meaning the values always reach
100% regardless of the accuracy. V2 metrics mea-
sure discrimination independently of the accuracy,
and are therefore only comparable between track-
ers with similar accuracies.

Several metrics are computed from the ROC
statistics. ROC V1 EER computes the false ac-
ceptance rate at the point where false-accepts are
equal to false-rejects. ROC V1 CA05, ROC V1
CA10, ROC V1 CA20 and ROC V2 CA05, ROC
V2 CA10, ROC V2 CA20, compute the correct
acceptance rates for both versions of ROC at false-
acceptance rates 0.05, 0.10, and 0.20.

Two schedules are used to decide which turns to
include when computing each metric. Schedule 1
includes every turn. Schedule 2 only includes a
turn if any SLU hypothesis up to and including the
turn contains some information about the compo-
nent of the dialog state in question, or if the correct
label is not None. E.g. for a goal constraint, this is
whether the slot has appeared with a value in any
SLU hypothesis, an affirm/negate act has appeared
after a system confirmation of the slot, or the user
has in fact informed the slot regardless of the SLU.

The data is labelled using two schemes. The
first, scheme A, is considered the standard la-
belling of the dialog state. Under this scheme,
each component of the state is defined as the most
recently asserted value given by the user. The
None value is used to indicate that a value is yet
to be given. Appendix B demonstrates labelling
under scheme A.

A second labelling scheme, scheme B, is in-
cluded in the evaluation, where labels are prop-
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agated backwards through the dialog. This la-
belling scheme is designed to assess whether a
tracker is able to predict a user’s intention be-
fore it has been stated. Under scheme B, the la-
bel at a current turn for a particular component of
the dialog state is considered to be the next value
which the user settles on, and is reset in the case
of goal constraints if the slot value pair is given in
a canthelp act by the system (i.e. the system has
informed that this constraint is not satisfiable).

3.1 Featured metrics

All combinations of metrics, state components,
schedules and labelling schemes give rise to 815
total metrics calculated per tracker in evaluation.
Although each may have its particular motiva-
tion, many of the metrics will be highly corre-
lated. From the results of DSTC1 it was found
the metrics could be roughly split into 3 indepen-
dent groups; one measuring 1-best quality (e.g.
Acc), another measuring probability calibration
(e.g. L2), and the last measuring discrimination
(e.g. ROC metrics) (Williams et al., 2013).

By selecting a representative from each of these
groups, the following were chosen as featured
metrics:
• Accuracy, schedule 2, scheme A
• L2 norm, schedule 2, scheme A
• ROC V2 CA 5, schedule 2, scheme A
Accuracy is a particularly important measure

for dialog management techniques which only
consider the top dialog state hypothesis at each
turn, while L2 is of more importance when mul-
tiple dialog states are considered in action selec-
tion. Note that the ROC metric is only compara-
ble among systems operating at similar accuracies,
and while L2 should be minimised, Accuracy and
the ROC metric should be maximised.

Each of these, calculated for joint goal con-
straints, search method and combined re-
quested slots, gives 9 metrics altogether which
participants were advised to focus on optimizing.

3.2 Baseline trackers

Three baseline trackers were entered in the chal-
lenge, under the ID ‘team0’. Source code for
all the baseline systems is available on the DSTC
website2. The first, ‘team0.entry0’, follows sim-
ple rules commonly used in spoken dialog sys-
tems. It gives a single hypothesis for each slot,

2http://camdial.org/˜mh521/dstc/

whose value is the top scoring suggestion so far in
the dialog. Note that this tracker does not account
well for goal constraint changes; the hypothesised
value for a slot will only change if a new value
occurs with a higher confidence.

The focus baseline, ‘team0.entry1’, includes a
simple model of changing goal constraints. Be-
liefs are updated for the goal constraint s = v, at
turn t, P (s = v), using the rule:
P (s = v)t = qtP (s = v)t−1 + SLU (s = v)t

where 0 ≤ SLU(s = v)t ≤ 1 is the evidence
for s = v given by the SLU in turn t, and qt =∑

v′ SLU(s = v′)t ≤ 1.
Another baseline tracker, based on the tracker

presented in Wang and Lemon (2013) is included
in the evaluation, labelled ‘team0.entry2’. This
tracker uses a selection of domain independent
rules to update the beliefs, similar to the focus
baseline. One rule uses a learnt parameter called
the noise adjustment, to adjust the SLU scores.
Full details of this and all baseline trackers are pro-
vided on the DSTC website.

Finally, an oracle tracker is included under the
label ‘team0.entry3’. This reports the correct la-
bel with score 1 for each component of the dialog
state, but only if it has been suggested in the dialog
so far by the SLU. This gives an upper-bound for
the performance of a tracker which uses only the
SLU and its suggested hypotheses.

4 Results

Altogether 9 research teams participated in the
challenge. Each team could submit a maximum of
5 trackers, and 31 trackers were submitted in total.
Teams are identified by anonymous team numbers
team1-9, and baseline systems are grouped under
team0. Appendix A gives the results on the fea-
tured metrics for each entry submitted to the chal-
lenge. The full results, including tracker output,
details of each tracker and scripts to run the evalu-
ation are available on the DSTC2 website.

The table in appendix A specifies which of the
inputs available were used for each tracker- from
live ASR, live SLU and batch ASR. This facil-
itates comparisons between systems which used
the same information.

A variety of techniques were used in the sub-
mitted trackers. Some participants provided short
synopses, which are available in the download
from the DSTC2 website. Full details on the track-
ers themselves are published at SIGdial 2014.
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For the “requested slot” task, some trackers out-
performed the oracle tracker. This was possible
because trackers could guess a slot was requested
using dialog context, even if there was no mention
of it in the SLU output.

Participants were asked to report the results of
their trackers on the dstcs2 dev development set.
Figure 2 gives some insight into how well perfor-
mance on the development set predicted perfor-
mance on the test set. Metrics are reported as per-
centage improvement relative to the focus base-
line to normalise for the difficulty of the datasets;
in general trackers achieved higher accuracies on
the test set than on development. Figure 2 shows
that the development set provided reasonable pre-
dictions, though in all cases improvement rel-
ative to the baseline was overestimated, some-
times drastically. This suggests that approaches to
tracking have trouble with generalisation, under-
performing in the mismatched conditions of the
test set which used an unseen dialog manager.

Joint Goal Constraint Accuracy

�0.3 �0.2 �0.1 0.1

team1entry0

team2entry1

team3entry0

team4entry0

team5entry4

team6entry2
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team9entry0

Joint Goal Constraint L2
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team5entry4

team6entry2
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team8entry1

team9entry0

�0.2 0.2 0.4 0.6

Figure 2: Performance relative to the focus baseline (per-
centage increase) for dev set (white) and test set (grey). Top
entry for each team chosen based on joint goal constraint ac-
curacy. A lower L2 score is better.

Recall from section 2, trackers could output
joint distributions for goal constraints, or simply
output one distribution for each slot and allow the
joint to be calculated as the product. Two teams,
team2 and team8, opted to output a joint distribu-
tion for some of their entries. Figure 3 compares
performance on the test set for these trackers be-
tween the joint distributions they reported, and the
joint calculated as the product. The entries from
team2 were able to show an increase in the accu-

racy of the top joint goal constraint hypotheses,
but seemingly at a cost in terms of the L2 score.
Conversely the entries from team8, though oper-
ating at lower performance than the focus base-
line, were able to show an improvement in L2 at a
slight loss in accuracy. These results suggest that a
tracking method is yet to be proposed which can,
at least on this data, improve both accuracy and
the L2 score of tracker output by reporting joint
predictions of goal constraints.
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Figure 3: Influence of reporting a full joint distribution.
White bar shows test set performance computing the goal
constraints as a product of independent marginals; dark bar is
performance with a full joint distribution. All entries which
reported a full joint are shown. A lower L2 score is better.

It is of interest to investigate the correlation be-
tween accuracy and L2. Figure 4 plots these met-
rics for each tracker on joint goal constraints. We
see that in general a lower L2 score correlates with
a higher accuracy, but there are examples of high
accuracy trackers which do poorly in terms of L2.
This further justifies the reporting of these as two
separate featured metrics.
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Figure 4: Scatterplot of joint goal constraint accuracy and
joint goal constraint L2 for each entry. Plotted line is least-
squares linear regression, L2 = 1.53− 1.43Accuracy
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Joint goal Method Requested
Tracker Acc. L2 Acc. L2 Acc. L2

Single best entry 0.784 0.346 0.950 0.082 0.978 0.035
Score averaging: top 2 entries 0.787 0.364- 0.945- 0.083 0.976 0.039-
Score averaging: top 5 entries 0.777 0.347 0.945 0.089- 0.976 0.038
Score averaging: top 10 entries 0.760- 0.364- 0.934- 0.108- 0.967- 0.056-

Score averaging: all entries 0.765- 0.362- 0.934- 0.103- 0.971- 0.052-
Stacking: top 2 entries 0.789 0.322+ 0.949 0.085- 0.977 0.040-
Stacking: top 5 entries 0.795+ 0.315+ 0.949 0.084 0.978 0.037
Stacking: top 10 entries 0.796+ 0.312+ 0.949 0.083 0.979 0.035

Stacking: all entries 0.798+ 0.308+ 0.950 0.083 0.980 0.034

Table 4: Accuracy and L2 for Joint goal constraint, Method, and Requested slots for the single best tracker (by accuracy) in
DSTC2, and various ensemble methods. “Top N entries” means the N entries with highest accuracies from distinct teams, where
the baselines are included as a team. +/- indicates statistically significantly better/worse than the single best entry (p < 0.01),
computed with McNemar’s test for accuracy and the paired t-test for L2, both with Bonferroni correction for repeated tests.

5 Ensemble learning
The dialog state tracking challenge provides an
opportunity to study ensemble learning – i.e. syn-
thesizing the output of many trackers to improve
performance beyond any single tracker. Here we
consider two forms of ensemble learning: score
averaging and stacking.

In score averaging, the final score of a class is
computed as the mean of the scores output by all
trackers for that class. One of score averaging’s
strengths is that it requires no additional training
data beyond that used to train the constituent track-
ers. If each tracker’s output is correct more than
half the time, and if the errors made by trackers are
not correlated, then score averaging is guaranteed
to improve performance (since the majority vote
will be correct in the limit). In (Lee and Eskenazi,
2013), score averaging (there called “system com-
bination”) has been applied to combine the output
of four dialog state trackers. To help decorrelate
errors, constituent trackers were trained on differ-
ent subsets of data, and used different machine
learning methods. The relative error rate reduction
was 5.1% on the test set.

The second approach to ensemble learning is
stacking (Wolpert, 1992). In stacking, the scores
output by the constituent classifiers are fed to a
new classifier that makes a final prediction. In
other words, the output of each constituent classi-
fier is viewed as a feature, and the new final classi-
fier can learn the correlations and error patterns of
each. For this reason, stacking often outperforms
score averaging, particularly when errors are cor-
related. However, stacking requires a validation
set for training the final classifier. In DSTC2, we
only have access to trackers’ output on the test set.
Therefore, to estimate the performance of stack-
ing, we perform cross-validation on the test set:
the test set is divided into two folds. First, fold 1

is used for training the final classifier, and fold 2
is used for testing. Then the process is reversed.
The two test outputs are then concatenated. Note
that models are never trained and tested on the
same data. A maximum entropy model (maxent) is
used (details in (Metallinou et al., 2013)), which is
common practice for stacking classifiers. In addi-
tion, maxent was found to yield best performance
in DSTC1 (Lee and Eskenazi, 2013).

Table 4 reports accuracy and L2 for goal con-
straints, search method, and requested slots. For
each ensemble method and each quantity (column)
the table gives results for combining the top track-
ers from 2 or 5 distinct teams, for combining the
top tracker from each team, and combining all
trackers (including the baselines as a team). For
example, the joint goal constraint ensemble with
the top 2 entries was built from team2.entry1 &
team4.entry0, and the method ensemble with the
top 2 entries from team2.entry4 & team4.entry0.

Table 4 shows two interesting trends. The first
is that score averaging does not improve perfor-
mance, and performance declines as more track-
ers are combined, yielding a statistically signifi-
cant decrease across all metrics. This suggests that
the errors of the different trackers are correlated,
which is unsurprising since they were trained on
the same data. On the other hand, stacking yields
a statistically significant improvement in accuracy
for goal constraints, and doesn’t degrade accuracy
for the search method and requested slots. For
stacking, the trend is that adding more trackers in-
creases performance – for example, combining the
best tracker from every team improves goal con-
straint accuracy from 78.4% to 79.8%.

For completeness, we note that the additional
data could alternatively be used to improve the ac-
curacy of a constituent classifier; given the con-
straints of the challenge, we can’t assess the mag-
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nitude of that improvement, so it is an open ques-
tion whether stacking is the best use of additional
data. Also, the training and test conditions of
the final stacking classifier are not mis-matched,
whereas in practice they would be. Nonethe-
less, this result does suggest that, if additional
data is available, stacking can be used to success-
fully combine multiple trackers and achieve per-
formance better than the single best tracker.

6 Conclusions

DSTC2 continues the tradition of DSTC1 by pro-
viding a common testbed for dialog state track-
ing, introducing some additional features relevant
to the research community– specifically a new
domain, changing user goals and a richer dialog
state. The data, evaluation scripts, and baseline
trackers will remain available and open to the re-
search community online.

Results from the previous challenge motivated
the selection of a few metrics as featured met-
rics, which facilitate comparisons between track-
ers. Analysis of the performance on the matched
development set and the mismatched test set sug-
gests that there still appears to be limitations on
generalisation, as found in DSTC1. The results
also suggest there are limitations in exploiting cor-
relations between slots, with few teams exploiting
joint distributions and the effects of doing so being
mixed. Investigating ensemble learning demon-
strates the effectiveness of combining tracker out-
puts. Ensemble learning exploits the strengths of
individual trackers to provide better quality output
than any constituent tracker in the group.

A follow up challenge, DSTC3, will present
the problem of adapting to a new domain with
very few example dialogs. Future work should
also verify that improvements in dialog state track-
ing translate to improvements in end-to-end dia-
log system performance. In this challenge, paid
subjects were used as users with real information
needs were not available. However, differences
between these two user groups have been shown
(Raux et al., 2005), so future studies should also
test on real users.
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Appendix A: Featured results of evaluation

Tracker Inputs Joint Goal Constraints Search Method Requested Slots

team entry Live
ASR

Live
SLU

Batch
ASR Acc L2 ROC Acc L2 ROC Acc L2 ROC

0* 0 X 0.619 0.738 0.000 0.879 0.209 0.000 0.884 0.196 0.000
1 X 0.719 0.464 0.000 0.867 0.210 0.349 0.879 0.206 0.000
2 X 0.711 0.466 0.000 0.897 0.158 0.000 0.884 0.201 0.000
3 X† 0.850 0.300 0.000 0.986 0.028 0.000 0.957 0.086 0.000

1 0 X 0.601 0.649 0.064 0.904 0.155 0.187 0.960 0.073 0.000
1 X 0.596 0.671 0.036 0.877 0.204 0.397 0.957 0.081 0.000

2 0 X X 0.775 0.758 0.063 0.944 0.092 0.306 0.954 0.073 0.383
1 X X X 0.784 0.735 0.065 0.947 0.087 0.355 0.957 0.068 0.446
2 X 0.668 0.505 0.249 0.944 0.095 0.499 0.972 0.043 0.300
3 X X X 0.771 0.354 0.313 0.947 0.093 0.294 0.941 0.090 0.262
4 X X X 0.773 0.467 0.140 0.950 0.082 0.351 0.968 0.050 0.497

3 0 X 0.729 0.452 0.000 0.878 0.210 0.000 0.889 0.188 0.000
4 0 X 0.768 0.346 0.365 0.940 0.095 0.452 0.978 0.035 0.525

1 X 0.746 0.381 0.383 0.939 0.097 0.423 0.977 0.038 0.490
2 X 0.742 0.387 0.345 0.922 0.124 0.447 0.957 0.069 0.340
3 X 0.737 0.406 0.321 0.922 0.125 0.406 0.957 0.073 0.385

5 0 X X 0.686 0.628 0.000 0.889 0.221 0.000 0.868 0.264 0.000
1 X X 0.609 0.782 0.000 0.927 0.147 0.000 0.974 0.053 0.000
2 X X 0.637 0.726 0.000 0.927 0.147 0.000 0.974 0.053 0.000
3 X X 0.609 0.782 0.000 0.927 0.147 0.000 0.974 0.053 0.000
4 X X 0.695 0.610 0.000 0.927 0.147 0.000 0.974 0.053 0.000

6 0 X 0.713 0.461 0.100 0.865 0.228 0.199 0.932 0.118 0.057
1 X 0.707 0.447 0.223 0.871 0.211 0.290 0.947 0.093 0.218
2 X 0.718 0.437 0.207 0.871 0.210 0.287 0.951 0.085 0.225

7 0 X 0.750 0.416 0.081 0.936 0.105 0.237 0.970 0.056 0.000
1 X 0.739 0.428 0.159 0.921 0.161 0.554 0.970 0.056 0.000
2 X 0.750 0.416 0.081 0.929 0.117 0.379 0.971 0.054 0.000
3 X 0.725 0.432 0.105 0.936 0.105 0.237 0.972 0.047 0.000
4 X 0.735 0.433 0.086 0.910 0.140 0.280 0.946 0.089 0.190

8 0 X 0.692 0.505 0.071 0.899 0.153 0.000 0.935 0.106 0.000
1 X 0.699 0.498 0.067 0.899 0.153 0.000 0.939 0.101 0.000
2 X 0.698 0.504 0.067 0.899 0.153 0.000 0.939 0.101 0.000
3 X 0.697 0.501 0.068 0.899 0.153 0.000 0.939 0.101 0.000
4 X 0.697 0.508 0.068 0.899 0.153 0.000 0.939 0.101 0.000

9 0 X 0.499 0.760 0.000 0.857 0.229 0.000 0.905 0.149 0.000

* The entries under team0 are the baseline systems mentioned in section 3.2. † team0.entry3 is the
oracle tracker, which uses the labels on the test set and limits itself to hypotheses suggested by the live
SLU.
The top score in each column is indicated by bold-type. The ROC metric is only comparable for trackers
operating at a similar accuracy, and so the highest values are not indicated.
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Appendix B: Sample dialog, labels, and tracker output

S:

U:

Which part of town?

The north uh area

0.2 inform(food=north_african) area=north

method=byconstraints

requested=()

0.1 inform(area=north)

0.2 food=north_african

0.1 area=north
request(area)

inform(area=north)
0.9 byconstraints
0.1 none

0.0 phone
0.0 address

Actual input and output SLU hypotheses and scores Labels Example tracker output Correct?

S:

U:

Which part of town?

A cheap place in 
the north
inform(area=north, 
pricerange=cheap)

0.8 inform(area=north),
inform(pricerange=cheap)

area=north
pricerange=cheap

method=byconstraints

requested=()

0.1 inform(area=north)

0.7 area=north
pricerange=cheap

0.1 area=north
food=north_african

request(area)

0.9 byconstraints
0.1 none

0.0 phone
0.0 address

S:

U:

Clown café is a cheap 
restaurant in the 
north part of town.

Do you have any 
others l ike that, 
maybe in the south 
part of town?
reqalts(area=south)

0.7 reqalts(area=south) area=south
pricerange=cheap

method=byalternatives

requested=()

0.2 reqmore()

0.8 area=south
pricerange=cheap

0.1 area=north
pricerange=cheap

0.6 byalternatives
0.2 byconstraints

0.0 phone
0.0 address

S:

U:

Galleria is a cheap 
restaurant in the 
south.

What is their phone 
number and 
address?
request(phone), 
request(address)

0.6 request(phone) area=south
pricerange=cheap

method=byalternatives

requested= (phone, 
address)

0.2 request(phone),
request(address)

0.9 area=south
pricerange=cheap

0.1 area=north
pricerange=cheap

0.5 byconstraints 
0.4 byalternatives

0.8 phone
0.3 address

0.1 request(address)

0.7 ()

0.2 ()

0.1 ()

0.0 ()

Example dialog illustrating DSTC2 data, labels, and evaluation procedure. The left column shows the
actual system output and user input. The second column shows two SLU N-Best hypothesis and their
scores. In practice, up to 10 SLU N-Best hypotheses are output. In the right 3 columns, the three shaded
regions correspond to the three components of the dialog state output by a tracker at each turn. The blue
region corresponds to the user’s joint goal constraint; the red region to the user’s search method; and
the yellow region to the slots requested by the user. For space, only 2 of the 5 methods and 2 of the
8 requestable slots are shown. The third column shows the label (correct output) for each component.
The fourth column shows example tracker output for each of these three quantities, and the fifth column
indicates correctness. A goal constraint is correct if it exactly matches the label. Therefore, 0 or 1 of
the output goal constraints is correct, and all the others are incorrect. Accuracy is determined by the
correctness of the goal constraint with the highest tracker score. For search method, exactly one method
is correct at each turn, so correctness is determined by comparing the maximum scoring method to the
label. For requested slots, each slot can be requested (or not) in the same turn, so each requestable slot
is separately marked as correct or incorrect. The quantity requested.all averages the correctness of all
requested slots.
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Abstract

For robust spoken dialog management,
various dialog state tracking methods have
been proposed. Although discriminative
models are gaining popularity due to their
superior performance, generative models
based on the Partially Observable Markov
Decision Process model still remain at-
tractive since they provide an integrated
framework for dialog state tracking and
dialog policy optimization. Although a
straightforward way to fit a generative
model is to independently train the com-
ponent probability models, we present a
gradient descent algorithm that simultane-
ously train all the component models. We
show that the resulting tracker performs
competitively with other top-performing
trackers that participated in DSTC2.

1 Introduction

Spoken dialog systems, a field rapidly growing
with the spread of smart mobile devices, has to
deal with challenges to become a primary user in-
terface for natural interaction using conversations.
One of the challenges is to maintain the state of
the dialog in the conversational process, which is
called dialog state tracking. The dialog state en-
capsulates the information needed to successfully
finish the dialog, such as users’ goal or requests,
and thus it is an essential entity in spoken dia-
log systems. However, the error incurred by Au-
tomatic Speech Recognition (ASR) and Spoken
Language Understanding (SLU) makes the true
user utterance not directly observable, and this
makes it difficult to figure out the true dialog state.

Various methods have been used to construct
dialog state trackers. The traditional methods
used in most commercial systems use hand-crafted
rules that typically rely on the most likely result

from SLU. However, these rule-based systems are
prone to frequent errors as the most likely result
is not always correct. Hence, these systems of-
ten drive the users to respond using simple key-
words and to explicitly confirm everything they
say, which is far from a natural conversational in-
teraction. An accurate tracking of the dialog state
is crucial for natural and efficient dialogs. On the
other hand, modern methods take a statistical ap-
proach to calculate the posterior distribution over
the dialog states using multiple results from SLU
in order to overcome the error in the most likely
SLU result.

Statistical dialog state trackers can be catego-
rized into two approaches depending on how the
posterior calculation is modeled. The generative
approach uses the generative model that describes
how the SLU results are generated from the hidden
dialog state and uses the Bayes’ rule to calculate
the posterior. It has been a popular approach for
statistical dialog state tracking, since it naturally
fits into the Partially Observable Markov Decision
Process (POMDP) (Williams and Young, 2007),
an integrated model for dialog state tracking and
dialog strategy optimization. In the POMDP point
of view, the dialog state tracking is essentially be-
lief monitoring, which is the task of calculating
posterior distribution over the hidden state given
the history of observations. Examples of the dia-
log state trackers that take the generative approach
include (Young et al., 2010; Thomson and Young,
2010; Raux and Ma, 2011)

On the other hand, the discriminative approach
directly models the posterior distribution. Since
it avoids modeling of unnecessary aspects of the
task, it typically achieves a better tracking accu-
racy compared to the generative approach. Ex-
amples of discriminative dialog state trackers in-
clude (Lee, 2013; Metallinou et al., 2013). How-
ever, their feature functions often refer to past ob-
servations, and it remains yet to be seen whether
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the discriminative approach can be successfully
incorporated into POMDP or reinforcement learn-
ing (RL) for dialog strategy optimization.

This paper is concerned with the generative ap-
proach to dialog state tracking. In our earlier
work (Kim et al., 2013), the optimization of the
tracker was carried out independently for each
component model (observation model, user action
model, and belief refinement model) that com-
prised our tracker. This was not exactly a proper
way to train the tracker for overall performance
optimization. In this paper, we present an opti-
mization method, which we call “cascading gra-
dient descent”, that trains component models si-
multaneously. We show that this approach yields
a dialog state tracker that performs on par with the
best ones that participated in the second Dialog
State Tracking Challenge (DSTC2).

The rest of the paper is organized as follows:
We briefly review the background of our work in
section 2, and present our method in section 3. We
then explain the DSTC2 dialog domain and the ex-
perimental settings in section 4, and discuss the re-
sults in section 5. Finally, we conclude the paper
with the summary and the suggestion for future
work in section 6.

2 Background and Related Work

The dialog state tracking is formalized as fol-
lows: In each turn of the dialog, the spoken dia-
log system executes system action a, and the user
with goal g responds to the system with utterance
u. The dialog state in each turn is defined s =
(u, g, h), where h is the dialog history encapsulat-
ing additional information needed for tracking the
dialog state (Williams et al., 2005). The SLU pro-
cesses the user utterance and generates the results
as an N -best list o = [〈ũ1, f1〉, . . . , 〈ũN , fN 〉],
where ũi is the hypothesized user utterance and
fi is its confidence score1. Without loss of gener-
ality, we assume that the last item in the N -best
list is the null item 〈∅, 1−∑N−1

i=1 fi〉, representing
the set of unrecognized user utterances. The statis-
tical dialog state tracker maintains the probability
distribution over states, called the belief.

2.1 Discriminative Dialog State Tracking

Dialog state trackers taking the discriminative ap-
proach calculates the belief via trained conditional

1Here we assume that
∑N−1

i=1 fi ≤ 1, acting as a posterior
of N -best list.

models that represent the belief directly. Maxi-
mum Entropy is widely used for the discriminative
approach, which formulates the belief as follows:

b′(g) = P (g|x) = η · exp(wTφ(x)) (1)

where η is the normalizing constant, x =
(u1, a1, g1, . . . , ut, at, gt) is the history of user ac-
tions, system actions, and user goals up to the cur-
rent dialog turn t, φ(·) is the vector of feature
functions on x, and finally, w is the set of model
parameters to be learned from dialog data.

According to the formulation, the posterior
computation has to be carried out for all possible
user goals in order to obtain the normalizing con-
stant η. This is not feasible for real dialog domains
that have a large number of user goals (the DSTC2
dialog domain used on this paper has 371070 user
goals).

Consequently, it is important for the discrimina-
tive approach to reduce the size of the state space.
(Metallinou et al., 2013) adopts the idea behind the
HIS model and confines the set of possible goals
to those appeared in SLU results. (Lee, 2013) as-
sumed conditional independence between dialog
state components to address scalability, and used
conditional random field.

2.2 Generative Dialog State Tracking
In contrast, the generative approach to the dialog
state tracking calculates the belief using Bayes’
rule, with the belief from the last turn b as a
prior and the likelihood given the user utter-
ance hypotheses Pr(o|a, g, h). In the prior work
(Williams et al., 2005), the likelihood is factored
and some independence assumptions are made:

b′(g′, h′) = η
∑
u

Pr(o|u) Pr(u|g′, a) ·∑
h

Pr(h′|g′, u, h, a)
∑
g

Pr(g′|g, a)b(g, h)

(2)

where η is the normalizing constant and u is
marginalized out in the belief.

Scalability became the important issue, just as
in the generative approach. One way to reduce
the amount of computation is to group the states
into partitions, proposed as the Hidden Informa-
tion State (HIS) model (Young et al., 2010). Be-
ginning with one root partition with the probabil-
ity of 1, partitions are split when the distinction
is required by observations, i.e. a user utterance
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hypothesis from SLU. This confines the possible
goal state to the values that have been appeared as
SLU hypotheses, and provides scalability without
a loss of accuracy when the coverage of N-best list
is large enough to include the true utterance. Us-
ing the HIS model with an additional assumption
that the user goal does not change (goal transition
from one to another is 0), the belief update equa-
tion (2) is reformulated as follows:

b′(ψ′, h′) = η
∑
u

Pr(o|u) Pr(u|ψ′, a) ·∑
h

Pr(h′|ψ′, u, h, a) Pr(ψ′|ψ)b(ψ, h)
(3)

where ψ is a set of user goals that share the same
belief. Each probability model in the above equa-
tion has a name: Pr(o|u) is called the observation
model, Pr(u|ψ′, a) is called the user action model,
Pr(ψ′|ψ) is called the belief refinement model, and
Pr(h′|ψ′, u, h, a) is called the history model.

In this paper, we used the last turn’s belief of di-
alog states as history state and preserved its depen-
dence in the observation model to improve perfor-
mance. With the changes, observation model can
distinguish user actions without their value. For
example, request alternative user action may have
the power of diminishing dominant partitions, and
it can only be learnt by the dependence with par-
tition confidence. The belief update formula used
in this paper becomes:

b′(ψ′) = η
∑
u

Pr(o|u, a, h) ·

Pr(u|ψ′, a) Pr(ψ′|ψ)b(ψ)
(4)

Other approaches to cope with the scalabil-
ity problem in dialog state tracking is to adopt
factorized dynamic Bayesian network by making
conditional independence assumptions among di-
alog state components, and use approximate in-
ference algorithms such as loopy belief propa-
gation (Thomson and Young, 2010) or blocked
Gibbs sampling (Raux and Ma, 2011).

3 Cascading Gradient Descent

Although equation (4) is an elegant formulation
of the dialog state tracking via Bayes rule, there
has not been an integrated learning algorithm that
simultaneously optimizes component probability
models, i.e. the observation, the user action, and
the belief refinement models. Our prior work (Kim

et al., 2013) relied on independently training each
component probability model, and then simply
plugging them into (4). Since the independent op-
timization of component probability models does
not lend itself to the optimization of overall dia-
log state tracking performance, we added an ex-
tra post-processing step called “belief transforma-
tion” in order to fine tune the results obtained
from equation (4). Unfortunately, this effort gen-
erally resulted in overfitting to the training data.
In this paper, we present an integrated learning al-
gorithm that simultaneously optimizes the compo-
nent probability models of the HIS model.

We start with defining an objective function
which measures the error of the dialog state track-
ing:

E =
T∑
t=1

∑
i

1
2
(b(ψti)− rti)2 (5)

where t is the dialog turn, i is the partition index,
rti is the binary label with value 1 if and only if
the partition ψti contains the true user goal. Note
that our objective function coincides with the `2
performance metrics used in DSTC.

We then express component probability models
as functions of features, which are parameterized
by sets of weights, and rewrite equation (4):

b(ψti) =ηt
∑

(ut,f t)∈ot

PrwO(ut, f t, at, b(ψt−1
i )) ·

PrwU(ut|ψti , at) PrwR(ψti |ψt−1
i )b(ψt−1

i )
(6)

where wO, wU, and wR represent the set of pa-
rameters for the observation, the user action, and
the belief refinement models, respectively.

Our learning method is basically a gradient de-
scent. The gradient of E with respect to wO is
derived as follows:

∂E

∂wO
=

T∑
t=1

∑
i

(b(ψti)− rti)
∂b(ψti)
∂wO

By convenience, we define:

δti =
∑

(ut,f t)∈ot

PrwO(ut, f t, at, b(ψt−1
i )) ·

PrwU(ut|ψti , at) PrwR(ψti |ψt−1
i )b(ψt−1

i )

=
∑

(ut,f t)∈ot

ptOp
t
Up

t
Rb(ψ

t−1
i )

ηt = (
∑
i

δti)
−1, b(ψti) = ηtδti
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and then obtain:

∂b(ψti)
∂wO

=
∂δti
∂wO

· ηt +
∂ηt

∂wO
· δti

=
∂δti
∂wO

· ηt − b(ψti)
∑
i′

∂δti′

∂wO
· ηt,

where

∂δti
∂wO

=
(
b(ψt−1

i )
∑

(ut,f t)∈ot

∂ptO
∂wO

ptUp
t
R

+
∂b(ψt−1

i )
∂wO

∑
(ut,f t)∈ot

ptOp
t
Up

t
R

)
.

Gradients for the parameters of other com-
ponent probability models are derived similarly.
We call our algorithm cascading gradient descent
since the gradient ∂b(ψt

i)
∂w requires computation of

the gradient in the previous dialog turn ∂b(ψt−1
i )

∂w ,
hence reflecting the temporal impact of the param-
eter change in throughout the dialog turns.

Once we obtain the gradients, we update the pa-
rameters using the gradient descent

w′O = wO − α
[
∂E

∂wO

]
,

w′U = wU − α
[
∂E

∂wU

]
,

w′R = wR − α
[
∂E

∂wR

]
where α is the stepsize parameter. α is initially set
to 0.5 and decreased by multiplying 1

10 whenever
the overall cost function increases.

4 Dialog State Tracking in the
Restaurant Information Domain

This section describes the dialog domain used for
the evaluation of our dialog tracker and the com-
ponent probability models used for the domain.
An instruction on how to obtain the dataset and
a more detailed description on the dialog domain
can be found in the DSTC2 summary paper (Hen-
derson et al., 2014).

4.1 Task Description
We used the DSTC2 dialog domain in which
the user queries the database of local restaurants.
The dataset for the restaurant information domain
were originally collected using Amazon Mechani-
cal Turk. A usual dialog proceeds as follows: the

user specifies the constraints (e.g. type of food,
location, etc) or the name of restaurant he wants,
and the system offers the name of a restaurant that
qualifies the constraints. User then accepts the of-
fer, and requests for additional information about
accepted restaurant. The dialog ends when all the
information requested by the user is provided.

The dialog state tracker should thereby clar-
ify three types of information inside the state:
goal, method, and requested. The goal state is
composed of name, pricerange, area, and food
slots, which is the information of the constraints
that the user has. The method state represents
what method user is using to accomplish his goal,
whose value is one of the none, by constraints, by
alternatives, by name, or finished. Lastly, the re-
quested state represents the information currently
requested by the user, such as the address, phone
number, postal code, etc. In this paper, we restrict
ourselves to tracking the goal states only, but our
tracker can be easily extended to track others as
well.

The dialog state tracker updates the belief turn
by turn, receiving SLU N-best hypotheses each
with an SLU confidence score in every turn. De-
spite the large number of states a dialog can have,
in the most cases, the coverage of N-best hypothe-
ses is enough to limit the consideration of possible
goal state to values that has been observed in SLU
hypotheses. Consequently, the task of the dialog
state tracker is to generate a set of observed val-
ues and their confidence scores for each slot, with
the confidence score corresponding to the poste-
rior probability of the goal state being the true goal
state. The dialog state tracker also maintains a spe-
cial goal state, called None, which represents that
the true goal state has not been observed. Its poste-
rior probability is also computed together with the
observed goal states as a part of the belief update.
For the rest of this section, we describe the models
chosen for each component probabilities.

4.2 Observation Model
The observation model that describes the genera-
tion of SLU result for the user utterance is defined
as

Pr(o = 〈ut, f t〉|u, a, h) =

ηo PrwO(ut, f t, at, b(ψt−1
i ))

= ηo
1

1 + exp(−wT
OφO(ut, f t, at, b(ψt−1

i ))− bO)
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user action feature : 34 × system action feature : 5 × type of feature : 3 = 510

Inform action : 12
[food, pricerange, name, area] offer or

× inform Bias tern
[not match, slot match, value match] (always 1)

% consistency check with system action canthelp or
canthelp.exception

Action with values : 8
[confirm, deny] expl-conf or Value of user confidence

× × impl-conf or × f t

[food, pricerange, name, area] request

Action without values : 14 select
[ack, affirm, bye, hello, negate, Value of last turn’s confidence

repeat, reqmore, reqalts, thankyou, confirm-domain or b(ψt−1
i )

request, null, confirm, deny, inform] welcomemsg

Table 1: 510 features used in observation model are specified.

where φO(ut, f t, at, b(ψt−1
i )) is the vector of fea-

tures taken from the hypothesized user action ut,
its confidence score f t generated from SLU, sys-
tem action at, and the belief of partition we are
dealing with b(ψt−1

i ) from history state. Normal-
ization constante ηo can be ignored since it is sub-
sumed by overall normalization constant η. Fea-
ture details are specified in table 1.

4.3 User Action Model

Similar to the observation model, the user action
model that predicts the user action given the pre-
vious system action and user goal is defined as

Pr(ut|ψti , at) = PrwU(ut|ψti , at)

=
exp(wT

UφU(ut, ψti , a
t))∑

u exp(w
T
UφU(u, ψti , at))

where φU(ut, ψti , a
t) ∈ {0, 1}322 is the vector of

features taken from the (hypothesized) user action
ut, system action at, and the partition being up-
dated ψti . Softmax function is used to normal-
ize over possible user actions. Feature details are
specified in table 2.

4.4 Belief Refinement Model

The belief refinement model predicts how the par-
tition of the user goal will evolve at the next dialog
turn. We defined it as a mixture of the empirical
distribution and the uniform distribution obtained

from the training data:

PrwR(ψti |ψt−1
i )

=
1

1 + exp(−wR)
occurrence(ψti , ψ

t−1
i )

occurrence(ψt−1
i )

+
(

1− 1
1 + exp(−wR)

) |ψti |
|ψt−1
i |

where occurrence(ψti , ψ
t−1
i ) is the number of

consecutive dialog turns in the training data with
user goals being consistent with ψt−1

i in the
previous turn and ψti in the current turn, and
occurrence(ψt−1

i ) is defined similarly for a single
turn only. The ratio of the two, which corresponds
to the partition split probability used in (Young et
al., 2010), is the first term in the mixture. On the
other hand, if we use this empirical distribution
only, we cannot deal with novel user goals that do
not appear in the training data. Assuming that user
goals are generated from the uniform distribution,
the probability that the user goal is in a partition
ψ is |ψ|N where |ψ| is the number of user goals in
the partition ψ, and N is the total number of user
goals. The probability that ψti gets split from ψt−1

i

is then |ψt
i |

|ψt−1
i | . Hence, we mix the two probabilities

for the resulting model.

The mixture weight is the only parameter of the
belief refinement model, which is learned as a part
of the cascading gradient descent. Note that we
use the sigmoid function in order to make the op-
timization unconstrained.
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user action feature : 35 × system action feature : 8 + remaining actions: 42 = 322

Inform action : 24 Confirm/deny action : 16
[food, pricerange, name, area] [confirm, deny]

× [offer or inform, ×
[not match, slot match, value match] canthelp or [food, pricerange, name, area]

% consistency check canthelp.exception, ×
with system action expl-conf or [not match, match]

× impl-conf or % consistency check
[not match, match] request, with partition

% consistency check × select] +
with partition × Remaining system action : 26

[not match, match] [confirm-domain or welcomemsg]
Action without values : 11 % consistency check ×

[ack, affirm, bye, hello, negate, with partition [24 inform actions, null, others]
repeat, reqalts, reqmore, % corresponding user actions
thankyou, request, null]

Table 2: 322 features used in user action model are specified.

5 Experimental Details

5.1 Datasets
The restaurant information domain used in
DSTC2 is arranged into three datasets: train, dev,
test. The first two datasets are labeled with the true
user goals and user actions to optimize the dialog
state tracker before submission. The half of the di-
alogs are created with artificially degraded speech
recognizers, intended to better distinguish the per-
formances of trackers. Details of each dataset are
as below:

• dstc2 train: Composed of 1612 dialogs of
11405 turns, produced from two different
dialog managers with a hand-crafted dialog
policy.

• dstc2 dev: Composed of 506 dialogs of
3836 turns, produced from the dialog man-
agers used in dstc2 train set. Most of dialog
state trackers show lower performance on this
dataset than others.

• dstc2 test: Composed of 1117 dialogs of
9689 turns, produced from the dialog policy
trained by reinforcement learning, which is
not used for the train and dev datasets.

We used both train and dev sets as the training
data, as if they were one big dataset. Although
the true labels for the test dataset were made pub-
lic after the challenge, we did not use these labels
in any way for optimizing our tracker.

5.2 Pre-training
One of the drawbacks in using gradient descent
is convergence to a local optimum. We also ob-

served this phenomena during the training of our
dialog state tracker via cascading gradient descent.
Randomized initialization of parameters is a com-
mon practice for gradient descent, but given the
high-dimensionality of the parameter space, the
randomized initialization had a limited effect in
converging to a sufficiently good local optimum.

We adopted a pre-training phase where the pa-
rameters of each component model are optimized
individually. Once the pre-training is done for
each component model, we gathered the param-
eter values and took them as the initial parameter
value for the cascading gradient descent. This pre-
training phase helped tremendously converging to
a good local optimum, and reduced the number of
iterations as well. We pre-trained the parameters
of each component model as follows:

• Observation Model: True user action labels
in the training set are used as targets for the
observation model. For every user action hy-
pothesis in theN -best list, set the target value
to 1 if the user action hypothesis is the true
user action, and 0 otherwise. A simple gradi-
ent descent was used for pre-training.

• User Action Model: Although the user ac-
tion and the system action labels are avail-
able, the partition of the user goals is not
readily available. However, the latter can be
easily obtained by running an unoptimized
tracker. Thus, using the labels in the train-
ing set and the generated partitions, we set
the target value to 1 if the user action hypoth-
esis is the true user action and the partition is
consistent with the true user action, and 0 oth-
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(a) Evaluation on accuracy metric (higher is better)

(b) Evaluation on L2 metric (lower is better) (c) Evaluation on ROCV 2,ca05 metric (higher is better)

Figure 1: The overall results of proposed method. Each figure shows the evaluations over dstc2 test
dataset by featured metrics (joint accuracy, joint l2, joint roc.v2) in DSTC2.

erwise. A simple gradient descent was also
used for pre-training.

• Belief Refinement Model: Since there is
only a single parameter for this model, we did
not perform pre-training.

5.3 Results and Discussion
Table 3 shows the test set score of tracker im-
plemented based on proposed algorithm, with the
score of other trackers submitted to DSTC2. We
tried 200 random initialised weights to train model
with proposed algorithm, and learned model with
the lowest training L2 error is picked to show
the result on the test set. Because we only used
live SLU and past data to track dialog state, other
tracker results with the same condition are selected
to compare with our tracker.

The implementation of our algorithm was not
ready until the DSTC2 deadline. We participated
as Team 8 using the old optimization method
in (Kim et al., 2013). As shown in the table 3,
the new algorithm shows a substantial improve-
ment, achieving almost 15% decrease in the L2
error. Since both trackers are fine-tuned, this im-
provement seems to be originated from the new
optimization algorithm.

For all three featured metrics used to evalu-
ate, tracker constructed with our proposed method
shows competitive performance. The key to excel
baseline tracker was to discover the relation be-
tween user action and system action. For exam-
ple, user actions that tell about the same slot sys-
tem was talking about but giving different value
are usually correcting wrong recognitions so far,
which should significantly reduce the belief over
state the system was tracking.

Due to the objective function that is designed to
optimize L2 error, our tracker shows better perfor-
mance at L2 error than the other metrics. For both
all goal metric and joint goal metric, our tracker
shows low L2 error when compared to other track-
ers while the rank of accuracy metric is not so
high. When the fact that our method as a genera-
tive state tracker benefits from the ability to be eas-
ily incorporated into POMDP framework is con-
sidered, only similar performance to other trackers
is satisfactory.

6 Conclusion

In this paper, we propose a simple method that
optimizes overall parameters of generative state
tracker using ”Cascading Gradient Descent” al-
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All goal

Team 0 1 3 4 6 7 8 9 Ours
Entry 1 2 0 0 3 0 1 2 4 1 0

Accuracy 0.886 0.88 0.837 0.892 0.895 0.884 0.882 0.885 0.894 0.873 0.77 0.886
AvgP 0.865 0.852 0.778 0.856 0.853 0.789 0.833 0.843 0.862 0.827 0.782 0.846
L2 0.192 0.198 0.289 0.189 0.17 0.197 0.189 0.184 0.179 0.227 0.358 0.186
MRR 0.918 0.914 0.87 0.911 0.927 0.917 0.916 0.918 0.922 0.904 0.833 0.918
ROCV 1,ca05 0.777 0.767 0.0 0.778 0.842 0.773 0.786 0.809 0.806 0.635 0.0 0.805
ROCV 1,eer 0.139 0.133 0.0 0.119 0.103 0.135 0.123 0.116 0.116 0.163 0.219 0.120
ROCV 2,ca05 0.0 0.0 0.0 0.0 0.3 0.27 0.417 0.384 0.154 0.0 0.0 0.197
UpdateAcc 0.886 0.881 0.837 0.891 0.895 0.882 0.88 0.883 0.894 0.873 0.769 0.886
UpdatePrec 0.898 0.897 0.846 0.904 0.907 0.898 0.895 0.897 0.903 0.886 0.804 0.896

Table 3: Test set scores averaged over all goal slots of our proposed algorithm and other trackers are
presented. The goal slots are composed of food, pricerange, name and area.

Joint goal

Team 0 1 3 4 6 7 8 9 Ours
Entry 1 2 0 0 3 0 1 2 4 1 0

Accuracy 0.719 0.711 0.601 0.729 0.737 0.713 0.707 0.718 0.735 0.699 0.499 0.726
AvgP 0.678 0.66 0.503 0.659 0.636 0.54 0.619 0.638 0.673 0.583 0.522 0.658
L2 0.464 0.466 0.649 0.452 0.406 0.461 0.447 0.437 0.433 0.498 0.76 0.427
MRR 0.779 0.757 0.661 0.763 0.804 0.767 0.765 0.772 0.787 0.749 0.608 0.775
ROCV 1,ca05 0.332 0.316 0.096 0.32 0.461 0.324 0.395 0.432 0.349 0.22 0.0 0.438
ROCV 1,eer 0.256 0.254 0.382 0.249 0.208 0.281 0.241 0.226 0.243 0.299 0.313 0.218
ROCV 2,ca05 0.0 0.0 0.064 0.0 0.321 0.1 0.223 0.207 0.086 0.067 0.0 0.135
UpdateAcc 0.489 0.487 0.37 0.495 0.507 0.473 0.466 0.476 0.514 0.459 0.325 0.488
UpdatePrec 0.729 0.694 0.677 0.759 0.726 0.748 0.743 0.743 0.703 0.692 0.54 0.71

Table 4: Test set scores of joint goal slot of our proposed algorithm and other trackers are presented. The
joint goal slot is a slot that is treated as correct when every goal slot is correct.

gorithm. Using proposed method on Hidden In-
formation State model, we construct a tracker
that performs competitively with DSTC2 par-
ticipants, who mostly adopt discriminative ap-
proaches. Since generative approach has much
more potential to be extended to more com-
plex models or toward different domains such as
DSTC3, our tracker has the advantage over the
other trackers.

Hidden Information State (HIS) model with
cascading gradient descent has far more steps of
improvement remaining. Although history state
in current paper only includes previous partition
belief due to implementation convenience, utiliz-
ing additional history state is the key to improve
performance even more. History state can in-
clude any information depending on how we de-
fine the state. The reason why the discriminative
state tracking methods generally show good per-
formance in terms of accuracy is rich set of poten-
tially informative features, which can be employed
by the history state.

In addition to the future improvements with his-

tory state, we can consider improving each prob-
ability models. In this paper, probability mod-
els are modeled with sigmoid function or soft-
max function over weighted features, which is in
other words a neural network with no hidden layer.
The model used in this paper can naturally devel-
oped by adding hidden layers, and ultimately deep
learning techniques could be applicable. Apply-
ing deep learning techniques could help the his-
tory state to find out influential hidden features to
employ.
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Abstract

In spoken dialog systems, statistical state
tracking aims to improve robustness to
speech recognition errors by tracking a
posterior distribution over hidden dialog
states. This paper introduces two novel
methods for this task. First, we explain
how state tracking is structurally simi-
lar to web-style ranking, enabling ma-
ture, powerful ranking algorithms to be ap-
plied. Second, we show how to use mul-
tiple spoken language understanding en-
gines (SLUs) in state tracking — multiple
SLUs can expand the set of dialog states
being tracked, and give more information
about each, thereby increasing both recall
and precision of state tracking. We eval-
uate on the second Dialog State Tracking
Challenge; together these two techniques
yield highest accuracy in 2 of 3 tasks, in-
cluding the most difficult and general task.

1 Introduction

Spoken dialog systems interact with users via nat-
ural language to help them achieve a goal. As the
interaction progresses, the dialog manager main-
tains a representation of the state of the dialog in
a process called dialog state tracking (Williams
et al., 2013; Henderson et al., 2014). For exam-
ple, in a restaurant search application, the dialog
state might indicate that the user is looking for an
inexpensive restaurant in the center of town. Di-
alog state tracking is difficult because errors in
automatic speech recognition (ASR) and spoken
language understanding (SLU) are common, and
can cause the system to misunderstand the user’s
needs. At the same time, state tracking is crucial
because the system relies on the estimated dia-
log state to choose actions – for example, which
restaurants to present to the user.

Historically, commercial systems have used
hand-crafted rules for state tracking, selecting the
SLU result with the highest confidence score ob-
served so far, and discarding alternatives. In con-
trast, statistical approaches compute a posterior
distribution over many hypotheses for the dialog
state, and in general these have been shown to be
superior (Horvitz and Paek, 1999; Williams and
Young, 2007; Young et al., 2009; Thomson and
Young, 2010; Bohus and Rudnicky, 2006; Met-
allinou et al., 2013; Williams et al., 2013).

This paper makes two contributions to the task
of statistical dialog state tracking. First, we show
how to cast dialog state tracking as web-style rank-
ing. Each dialog state can be viewed as a doc-
ument, and each dialog turn can be viewed as a
search instance. The benefit of this construction is
that it enables a rich literature of powerful rank-
ing algorithms to be applied. For example, the
ranker we apply constructs a forest of decision
trees, which — unlike existing work — automat-
ically encodes conjunctions of low-level features.
Conjunctions are attractive in dialog state tracking
where relationships exist between low-level con-
cepts like grounding and confidence score.

The second contribution is to incorporate the
output of multiple spoken language understanding
engines (SLUs) into dialog state tracking. Using
more than one SLU can increase the number of di-
alog states being tracked, improving the chances
of discovering the correct one. Moreover, addi-
tional SLUs supply more features, such as seman-
tic confidence scores, improving accuracy.

This paper is organized as follows. First, sec-
tion 2 states the problem formally and covers re-
lated work. Section 3 then lays out the data, fea-
tures, and experimental design. Section 4 applies
web-style ranking, and section 5 covers the usage
of multiple SLUs. Section 6 extends the types of
tracking tasks, section 7 compares performance to
other entries in DSTC2, and section 8 briefly con-
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cludes.

2 Background

Statistical dialog state tracking can be formalized
as follows. At each turn in the dialog, the state
tracker maintains a set X of dialog state hypothe-
ses X = {x1, x2, . . . , xN}. Each state hypothesis
corresponds to a possible true state of the dialog.
The posterior of a state xi at a certain turn in the
dialog is denoted P (xi).

Based on this posterior, the system takes an ac-
tion a, the user provides an utterance in reply,
and an automatic speech recognizer (ASR) con-
verts the user’s utterance into words. Since speech
recognition is an error prone process, the speech
recognizer outputs weighted alternatives, for ex-
ample an N-best list or a word-confusion network.
A spoken language understanding engine (SLU)
then converts the ASR output into a meaning rep-
resentation U for the user’s utterance, where U
can contain alternatives for the user’s meaning,
U = {u1, . . . , uL}.

The state tracker then updates its internal state.
This is done in three stages. First, a hand-written
function G ingests the system’s last action s, the
meaning representation U , and the current set of
states X , and yields a new set of possible states,
X ′ = G(s, U,X), where we denote the members
of X ′ as {x′1, x′2, . . . , x′N ′}. The number of ele-
ments in X ′ may be different than X , and typi-
cally the number of states increases as the dialog
progresses, i.e. N ′ > N . In this work, G simply
takes the Cartesian product of X and U . Second,
for each new state hypothesis x′i, a vector of J fea-
tures is extracted, φ(x′i) = [φ1(x′i), . . . , φJ(x′i)].
In the third stage, a scoring process takes all of the
features for all of the new dialog states and scores
them to produce the new distribution over dialog
states, P ′(x′i). This new distribution is used to
choose another system action, and the whole pro-
cess repeats.

Most early work cast dialog state tracking as a
generative model in which hidden user goals gen-
erate observations in the form of SLU hypothe-
ses (Horvitz and Paek, 1999; Williams and Young,
2007; Young et al., 2009; Thomson and Young,
2010). More recently, discriminatively trained di-
rect models have been applied, and two studies
on dialog data from two publicly deployed dialog
systems suggest direct models yield better perfor-
mance (Williams, 2012; Zilka et al., 2013). The

methods introduced in this paper also use discrim-
inative techniques.

One of the first approaches to direct models for
dialog state tracking was to consider a small, fixed
number of states and then apply a multinomial
classifier (Bohus and Rudnicky, 2006). Since a
multinomial classifier can make effective use of
more features than a generative model, this ap-
proach improves precision, but can decrease recall
by only considering a small number of states (e.g.
5 states). Another discriminative approach is to
score each state using a binary model, then some-
how combine the binary scores to form a distribu-
tion – see, for example (Henderson et al., 2013b)
which used a binary neural network. This ap-
proach scales to many states, but unlike a multi-
nomial classifier, each binary classifier isn’t aware
of its competitors, reducing accuracy. Also, when
training a binary model in the conventional way,
the training criteria is mis-matched, since the clas-
sifier is trained per hypothesis per timestep, but is
evaluated only once per timestep.

Maximum entropy (maxent) models have been
proposed which provide the strengths of both of
these approaches (Metallinou et al., 2013). The
probability of a dialog hypothesis xi being correct
(y = i) is computed as:

P (y = i|X,λ) =
exp(

∑
j∈J λjφj(xi))∑

x∈X exp(
∑
j∈J λjφj(x))

.

(1)
Maximum entropy models yielded top perfor-
mance in the first dialog state tracking challenge
(Lee and Eskenazi, 2013). In this paper, we use
maxent models as a baseline.

A key limitation with linear (and log-linear)
models such as maximum entropy models is that
they do not automatically build conjunctions of
features. Conjunctions express conditional combi-
nations of features such as whether the system at-
tempted to confirm x and if “yes” was recognized
and if the confidence score of “yes” is high. Con-
junctions are important in dialog state tracking be-
cause they are often more discriminative than indi-
vidual features. Moreover, in linear models for di-
alog state tracking, one weight is learned per fea-
ture (equation 1) (Metallinou et al., 2013). As a re-
sult, if a feature takes the same value for every dia-
log hypothesis at a given timestep, its contribution
to every hypothesis will be the same, and it will
therefore have no effect on the ranking. For exam-
ple, features describing the current system action
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are identical for all state hypotheses. Concretely,
if φj(xi) = c for all i, then changing c causes no
change in P (y = i|X,λ) for all i.

Past work has shown that conjunctions improve
dialog state tracking (Metallinou et al., 2013; Lee,
2013). However, past work has added conjunction
by hand, and this doesn’t scale: the number of pos-
sible conjunctions increases exponentially in the
number of terms in the conjunction, and it’s diffi-
cult to predict in advance which conjunctions will
be useful. This paper introduces algorithms from
web-style ranking as a mechanism for automati-
cally building feature conjunctions.

In this paper we also use score averaging, a
well-known machine learning technique for com-
bining the output of several models, where each
output class takes the average score assigned by
all the models. Under certain assumptions — most
importantly that errors are made independently —
score averaging is guaranteed to exceed the perfor-
mance of the best single model. Score averaging
has been applied to dialog state tracking in previ-
ous work (Lee and Eskenazi, 2013). Here we use
score averaging to maximize data use in cascaded
models, and as a hedge against unlucky parameter
settings.

3 Preliminaries

In this paper we use data and evaluation metrics
from the second dialog state tracking challenge
(DSTC2) (Henderson et al., 2014; Henderson et
al., 2013a). Dialogs in DSTC2 are in the restau-
rant search domain. Users can search for restau-
rants in multiple ways, including via constraints,
or by name. The system can offer restaurants that
match, confirm user input, ask for additional con-
straints, etc.

There are three components to the hidden di-
alog state: user’s goal, search method, and re-
quested slots. The user’s goal specifies the
user’s search constraints, and consists of 4 slots:
area, pricerange, foodtype, and name. The num-
ber of values for the slots ranges from 4 to
113.1 In DSTC2, trackers output scored lists
for each slot, and also a scored list of joint hy-
potheses. For example, at a given timestep in
a given dialog, three joint goal hypothesis might
be (area=west,food=italian), (area=west), and (),
where () means the user hasn’t specified any con-
straints yet. Since tracking the joint user goal is

1Including a special “don’t care” value.

the most general and most difficult task, we’ll fo-
cus on this first, and return to the other tasks in
section 6.

3.1 User goal features

For features, we broadly follow past work (Lee
and Eskenazi, 2013; Lee, 2013; Metallinou et al.,
2013). For a hypothesis xi, for each slot the fea-
tures encode 253 low-level quantities, such as:
whether the slot value appears in this hypothesis;
how many times the slot value has been observed;
whether the slot value has been observed in this
turn; functions of recognition metrics such as con-
fidence score and position on N-best list; goal pri-
ors and confusion probabilities estimated on train-
ing data (Williams, 2012; Metallinou et al., 2013);
results of confirmation attempts (“Italian food, is
that right?”); output of the four rule-based base-
line trackers; and the system act and its relation to
the goal’s slot value (e.g., whether the system act
mentions this slot value).

Of these 253 features for each slot, 119 are the
same for all values of that slot in a given turn,
such as which system acts were observed in this
turn. For these, we add 238 conjunctions with
slot-specific features like confidence score, which
makes these features useful to our maxent base-
line. This results in a total of 253+238 = 491 fea-
tures per slot. The features for each of the 4 slots
are concatenated together to yield 491 ∗ 4 = 1964
features per joint hypothesis.

3.2 Evaluation metrics

In DSTC2, there are 3 primary metrics for eval-
uation — accuracy of the top-scored hypothesis,
the L2 probability quality, and an ROC measure-
ment. The ROC measurement is only meaningful
when compared across systems with similar accu-
racy; since our variants differ in accuracy, we omit
ROC. However, note that all of the metrics, includ-
ing ROC, for our final entries on the development
set and test set are available for public download
from the DSTC2 website.2

The DSTC2 corpus consists of three partitions:
train, development, and test. Throughout sections
4-6, we report accuracy by training on the train-
ing set, and report accuracy on the development
set and test set. The development set was avail-
able during development of the models, whereas
the test set was not.

2camdial.org/˜mh521/dstc/
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3.3 Baselines

We first compare to the four rule-based trackers
provided by DSTC2. These were carefully de-
signed by other research groups, and earlier ver-
sions of them scored very well in the first DSTC
(Wang and Lemon, 2013). In each column in Ta-
bles 2 and 3, we report the best result from any
rule-based tracker. We also compare to a maxent
model as in Eq 1. Our implementation includes
L1 and L2 regularization which was automatically
tuned via cross-validation.

4 Web-style ranking

The ranking task is to order a set of N docu-
ments by relevance given a query. The input
to a ranker is a query Q and set of documents
X = {D1, . . . , DN}, where each document is de-
scribed in terms of features of that document and
the query φ(Di, Q). The output is a score for
each document, where the highest score indicates
the most relevant document. The overall objective
is to order the documents by relevance, given the
query. Training data indicates the relevance of ex-
ample query/document pairs. Training labels are
provided by judges, and relevance is typically de-
scribed in terms of several levels, such as “excel-
lent”, “good”, “fair”, and “not relevant”.

The application of ranking to dialog state track-
ing is straightforward: instead of ranking features
of documents and queries φ(Di, Q), we rank fea-
tures of dialog states φ(Xi). For labeling, the cor-
rect dialog state is “relevant” and all other states
are “not relevant”.

Like dialog state tracking, ranking tasks often
have features which are constant over all docu-
ments – particularly features of the query. This is
one reason why ranking algorithms have incorpo-
rated methods for automatically building conjunc-
tions. The specific algorithm we use here is lamb-
daMART (Wu et al., 2010; Burges, 2010). Lamb-
daMART is a mature, scalable ranking algorithm:
it has underpinned the winning entry in a commu-
nity ranking challenge task (Chapelle and Chang,
2011), and is the foundation of the ranker in the
Bing search engine. LambdaMART constructs a
forest of M decision trees, where each tree con-
sists of binary branches on features, and the leaf
nodes are real values. Each binary branch speci-
fies a threshold to apply to a single feature. For a

forest of M trees, the score of a dialog state x is

F (x) =
M∑
m=1

αmfm(x) (2)

where αm is the weight of treem and fm(x) is the
value of the leaf node obtained by evaluating de-
cision tree m by features [φ1(x), . . . , φJ(x)]. The
training objective is to maximize ranking quality,
which here means one-best accuracy. The deci-
sion trees are learned by regularized gradient de-
scent, where trees are added successively to im-
prove ranking quality – in our case, to maximize
how often the correct dialog state is ranked first.
The number of trees to create and the number of
leaves per tree are tuning parameters. Through
cross-validation, we found that 500 decision trees
each with 32 leaves were the best settings. We use
the same set of 1964 features for lambdaMART as
was used for the maxent baseline.

Results are shown in row 3 of table 2 under
“Joint goal”. Ranking outperforms both baselines
on both the development and training set. This re-
sult illustrates that automatically-constructed con-
junctions do indeed improve accuracy in dialog
state tracking. An example of a single tree com-
puted by lambdaMART is shown in Appendix
A. The complexity of this tree suggests that hu-
man designers would find it difficult to specify a
tractable set of good conjunction features.

5 Multiple SLU engines

As described in the introduction, dialog state
tracking typically proceeds in three stages: enu-
meration of the set of dialog states to score, fea-
ture extraction, and scoring. Incorporating the out-
put of multiple SLUs requires changing the first
two steps. Continuing with notation from sec-
tion 2, with a single SLU output U , the enumer-
ation step is X ′ = G(s, U,X) — recall that U
is a set of SLU hypotheses from an SLU engine.
With multiple SLU engines we have K SLU out-
puts U1, . . . , UK , and the enumeration step is thus
X ′ = G(s, U1, . . . , UK , X). In our implementa-
tion, we simply take the union of all concepts on
all SLU N-best lists and enumerate states as in the
single SLU case – i.e., the Cartesian product of di-
alog states X with concepts on the SLU output.

The feature extraction step is modified to out-
put features derived from all of the SLU engines.
Concretely, if a feature φj(x) includes informa-
tion from an SLU engine (such as confidence score
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or position on the N-best list), it is duplicated K
times – i.e., once for each SLU engine. Additional
binary features are added to encode whether each
SLU engine has output the slot value of this dialog
state. This allows for the situation that a slot value
is not output by all SLU engines, in which case
its confidence score, N-best list position, etc. will
not be present from some SLU engines. Using two
SLU engines on our data increases the number of
features per joint goal from 1964 to 3140.

5.1 SLU Engines

We built two new SLU engines, broadly following
(Henderson et al., 2012). Both consist of many
binary classifiers. In the first engine SLU1, a
binary classifier is estimated for each slot/value
pair, and predicts the presence of that slot/value
pair in the utterance. Similarly, a binary classi-
fier is estimated for each user dialog act. Input
features are word n-grams from the ASR N-best
list. We only considered n-grams which were ob-
served at least c times in the training data; infre-
quent n-grams were mapped to a special UNK
feature. For binary classification we used deci-
sion trees, which marginally outperformed logis-
tic regression, SVMs, and deep neural networks.
Through cross-validation we set n = 2 and c = 2
– i.e., uni-grams and bi-grams which appear at
least twice in the training data.

At runtime, the top SLU output on the N-best
list is formed by taking the most likely combina-
tion of all the binary classifiers; the second SLU
output is formed by taking the second most likely
combination of all the binary classifiers; and so on,
where only valid SLU combinations are consid-
ered. For example, the “bye” dialog act takes no
arguments, so if “bye” and “food=italian” were the
most likely combination, this combination would
be skipped. Scores are formed by taking the prod-
uct of all the binary classifiers, with some smooth-
ing.

The second SLU engine SLU2 is identical ex-
cept that it also includes features from the word
confusion network. Specifically, each word (uni-
gram) appearing in the word confusion network is
a feature. Bi-gram confusion network features did
not improve performance.

If we train a new SLU engine and a ranker on
the same data, this will introduce unwanted bias.
Therefore, we divided the training data in half, and
use the first half for training the SLU, and the sec-

ond for training the ranker. Table 1 shows several
evaluation metrics for each SLU engine, includ-
ing the SLU included in the corpus, which we de-
note SLU0. SLU precision, recall, and F-measure
are computed on the top hypotheses. Item cross-
entropy (ICE) (Thomson et al., 2008) measures the
quality of the scores for all the items on the SLU
N-best list. Table 1 also shows joint goal accu-
racy by using SLU0, SLU1, or SLU2, for either a
rule-based baseline or the ranking model. Over-
all, our SLU engines performed better on isolated
SLU metrics, but did not yield better state tracking
performance when used instead of the SLU results
in the corpus.

5.2 Results with multiple SLU engines
Table 2, rows 4 and 7 show that an improvement
in performance does results from using 2 SLU en-
gines. In rows 4 and 7, the additional SLU en-
gine is trained on the first half of the data, and the
ranker is trained on the second half – we call this
arrangement Fold A. To maximize use of the data,
it’s possible to train a second SLU/ranker pair by
inverting the training data – i.e., train a second
SLU on the second half, and a second ranker (us-
ing the second SLU) on the first half. We call this
arrangement Fold B. These two configurations can
be combined by running both trackers on test data,
then averaging their scores. We call this arrange-
ment Fold AB. If a hypothesis is output by only
one configuration, it is assumed the other configu-
ration output a zero score.

Table 2, rows 5 and 8 show that the fold AB con-
figuration yields an additional performance gain.

5.3 Model averaging
A small further improvement is possible by aver-
aging across multiple models (rankers) with dif-
ferent parameter settings. Since all of the mod-
els will be estimated on the same data, this is un-
likely to make a large improvement, but it can
hedge against an unlucky parameter setting, since
the performance after averaging is usually close to
the maximum.

To test this, we trained a second pair of rank-
ing models, with a different number of leaves per
tree (8 instead of 32). We then applied this sec-
ond model, and averaged the scores between the
two variants. Results are in Table 2, rows 6 and
9. Averaging scores across two parameter settings
generally results in performance equal to or better
than the maximum of the two models.
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Dev set Test set
SLU SLU Metrics Goal track. acc. SLU Metrics Goal track. acc.

source Prec. Recall F-meas. ICE Rules Ranking Prec. Recall F-meas. ICE Rules Ranking
SLU0 0.883 0.666 0.759 2.185 0.623 0.666 0.900 0.691 0.782 1.955 0.719 0.739
SLU1 0.818 0.729 0.771 2.189 0.598 0.637 0.846 0.762 0.802 1.943 0.667 0.709
SLU2 0.844 0.742 0.789 2.098 0.605 0.658 0.870 0.777 0.821 1.845 0.685 0.734

Table 1: Performance of three SLU engines. SLU0 is the DSTC2 corpus; SLU1 is our engine with
uni-grams and bi-grams of ASR results in the corpus; and SLU2 is SLU1 with the addition of unigram
features from the word confusion network. Precision, Recall, F-measure, and ICE evaluate the quality
of the SLU output, not state tracking. “ICE” is item-wise cross entropy — smaller numbers are better
(Thomson et al., 2008). “Rules” indicates dialog state tracking accuracy for user joint goals by running
the rule-based baseline tracker on the indicated SLU (alone); “Ranking” indicates joint goal accuracy of
running a ranker trained on the indicated SLU (alone). For training, goal tracking results use the “Fold
A” configuration (c.f. Section 5.2).

5.4 Joint goal tracking summary

The overall process used to train the joint goal
tracker is summarized in Appendix B. For joint
goal tracking, web-style ranking and multiple
SLUs both yield improvements in accuracy on the
development and test sets, with the improvement
associated with multiple SLUs being larger. We
also observe that ranking produces relatively poor
L2 results. This can be attributed to its training
objective, which explicitly maximizes 1-best ac-
curacy without regard to the distribution of the
scores. This is in contrast to maxent models which
explicitly minimize the L2 loss. We examined the
distribution of scores, and qualitatively the ranker
is usually placing less mass on its top guess than
maxent, and spreading more mass out among other
(usually wrong) entries. We return to this in the
future work section.

6 Fixed-size state components

DSTC2 consists of three tracking tasks: in addi-
tion to the user’s goal, the user’s search method
and which slots they requested to hear were also
tracked. These other two tasks were comparatively
simpler because their domains are of a small, fixed
size. Thus classical machine learning methods can
be applied – i.e., ranking is not directly applicable
to tracking the method and required slots. How-
ever, applying multiple SLU engines is still appli-
cable.

The search method specifies how the user
wants to search. There are 5 values: by-constraints
such as area=west,food=italian, by-name such as
“royal spice”, by-alternatives as in “do you have
any others like that?”, finished when the user is
done as in “thanks goodbye”, and none when the

method can’t be determined. At each turn, ex-
actly one of the 5 methods is active, so we view
the method component as a standard multinomial
classification task. For features, we use the score
for each method output by each of the 4 rule-
based baselines, and whether each of the methods
is available according to the SLU results observed
so far. We also take conjunctions for each method
with: whether each system dialog act is present in
the current turn, or has ever been used, and what
slots they mentioned; and whether each slot has
appeared in the SLU results from this turn, or any
turn. In total there are 640 features for the method
classifier (when using one SLU engine).

The requested slots are the pieces of informa-
tion the user wants to hear in that turn. The user
can request to hear a restaurant’s area, food-type,
name, price-range, address, phone number, post-
code, and/or signature dish. The user can ask to
hear any combination of slots in a turn – e.g., “tell
me their address and phone number”. Therefore
we view each requested slot as a binary classifica-
tion task, and estimate 8 binary classifiers, one for
each requestable slot. Each requested slot takes
as features: whether the slot could logically be re-
quested at this turn in the dialog; whether the SLU
output contained a “request” act and which slot
was requested; the score output by each of the 4
rule-based baselines; whether each system dialog
act is present in the current turn, or has ever been
used, and what slots they mentioned; and whether
each slot has appeared in the SLU results from this
turn, or any turn. For each requestable slot’s bi-
nary classifier, this results in 187 features (with
one SLU engine).

For each of these tasks, we applied a maxent
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Joint goal Search method Requested slot
Model Dev. set Test set Dev. set Test set Dev. set Test set

Row SLU Fold Model comb. Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2
1 0 — rules N 0.623 0.601 0.719 0.464 0.860 0.217 0.897 0.158 0.903 0.155 0.884 0.196
2 0 all maxent N 0.649 0.532 0.692 0.480 0.890 0.177 0.909 0.143 0.952 0.078 0.967 0.054
3 0 all * N 0.666 0.739 0.739 0.721 — — — — — — — —
4 0+1 A * N 0.686 0.770 0.757 0.766 0.912 0.144 0.936 0.104 0.960 0.062 0.976 0.039
5 0+1 AB * N 0.697 0.749 0.769 0.748 0.913 0.135 0.938 0.097 0.962 0.060 0.978 0.037
6 0+1 AB ** Y 0.699 0.766 0.770 0.766 0.916 0.135 0.943 0.091 0.964 0.059 0.978 0.036
7 0+2 A * N 0.697 0.731 0.765 0.727 0.910 0.146 0.939 0.099 0.966 0.058 0.979 0.037
8 0+2 AB * N 0.711 0.725 0.778 0.721 0.913 0.133 0.943 0.092 0.967 0.058 0.980 0.033
9 0+2 AB ** Y 0.710 0.742 0.781 0.739 0.915 0.132 0.948 0.085 0.967 0.057 0.980 0.033

Table 2: Summary of accuracy and L2 for the three tracking tasks, trained on the “train” set. In rows
marked (*), joint goal accuracy used ranking, and the other two tasks used maxent. In rows marked (**),
several model classes/parameter settings were used and combined with score averaging.

model; results for this and the best rule-based
baseline are in the rows 1 and 2 of Table 2. We
tried applying decision trees, but this did not im-
prove performance (not shown) as it did for goal
tracking. Note that in the goal tracking task,
one weight is learned for each feature for any
class (goal), whereas in standard multiclass and bi-
nary classification, one weight is learned for each
feature,class pair.3 Perhaps decision trees were
not effective in increasing accuracy for method
and requested slots because, compared to joint
goal tracking, some conjunctions are implicitly in-
cluded in linear models.

We then added a second SLU engine in the same
manner as for goal tracking. This increased the
number of features for the method task from 640
to 840, and from 187 to 217 for each binary re-
quested slot classifier. Results are shown in Ta-
ble 2; rows 4 and 7 show results with one fold,
and rows 5 and 8 show results with both folds.
Finally, we considered alternate model forms for
each classifier, and then combined them with score
averaging. For the method task, we used a sec-
ond maximum entropy model with different regu-
larization weights, and a multi-class decision tree.
For the requested slot binary classifiers, we added
a neural network classifier. As above, score av-
eraging across different model classes can yield
small gains (rows 6 and 9).

Overall, as with goal tracking, adding a sec-
ond SLU engine resulted in a substantial increase
in accuracy. Unlike goal tracking which used
a ranker, the standard classification models used
here are explicitly optimized for L2 performance
and as a result achieved very good L2 perfor-
mance.

3Plus a constant term per class.

7 Blind evaluation results

When preparing final entries for the DSTC2 blind
evaluation, we not longer needed a separate devel-
opment set, so our final models are trained on the
combined training and development sets. In the
DSTC2 results, we are team2. Our entry 0 and 1
use the process described above, including score
averaging across multiple models. Entry0 used
SLU0+1, and entry1 used SLU0+2. Entry3 used
a maxent model on SLU0+2, but without model
averaging since its parameters are set with cross-
validation.4

Results are summarized in Table 3. For accu-
racy for the joint goal and method tasks, our en-
tries had highest accuracy. After the evaluation,
we learned that we were the only team to use fea-
tures from the word confusion network (WCN).
Comparing our entry0, which does not use WCN
features, to the other teams shows that, given the
same input data, our entries were still best for the
joint goal and method tasks.

The blind evaluation results give a final oppor-
tunity to compare the maxent model with the rank-
ing model: entry1 and entry3 both use SLU0+2,
and score an identical set of dialog states using
identical features. Joint goal accuracy is better for
the ranking model. However, as noted above, L2
performance for the ranking model was substan-
tially worse than for the maxent model.

After the blind evaluation, we realized that we
had inadvertently omitted a key feature from the
“requested” binary classifiers — whether the “re-
quest” dialog act appeared in the SLU results.

4The other entries team2.entry2 and team2.entry4 are not
described in this paper. In brief, entry2 was based on a recur-
rent neural network, and entry4 was a combination of entries
1, 2, and 3.
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Goal Method Requested Requested*
model Acc. L2 Acc. L2 Acc. L2 Acc. L2

Best baseline 0.719 0.464 0.897 0.158 0.884 0.196 0.884 0.196
Best DSTC2 result from another team 0.768 0.346 0.940 0.095 0.978 0.035 0.978 0.035
SLU0+1, AB, model comb. (entry0) 0.775 0.758 0.944 0.092 0.954 0.073 0.977 0.037
SLU0+2, AB, model comb. (entry1) 0.784 0.735 0.947 0.087 0.957 0.068 0.980 0.034

SLU0+2, AB, maxent (entry3) 0.771 0.354 0.947 0.093 0.941 0.090 0.979 0.040

Table 3: Final DSTC2 evaluation results, training on the combined “train” and “development” sets. In
the results, we are team2. “Model comb.” indicates score averaging over several model instances. For the
“requested” task, our entry in DSTC2 inadvertently omitted a key feature, which decreased performance
significantly. “Requested*” columns indicate results with this feature included. They were computed
after the blind evaluation and are not part of the official DSTC2 results.

Therefore table 3 shows results with and without
this feature. With the inclusion of this feature, the
requested classifiers also achieved best accuracy
and L2 scores, although we note that this is not
part of the official DSTC2 results. (The results in
the preceding sections of this paper included this
feature.)

8 Conclusion

This paper has introduced two new methods for
dialog state tracking. First, we have shown how
to apply web-style ranking for scoring dialog state
hypotheses. Ranking is attractive because it can
construct a forest of decision trees which compute
feature conjunctions, and because it optimizes di-
rectly for 1-best accuracy. Second, we have in-
troduced the usage of multiple SLU engines. Us-
ing additional SLU engines is attractive because it
both adds more possible dialog states to score (in-
creasing recall), and adds features which help to
discriminate the best states (increasing precision).

In experiments, using multiple SLU engines im-
proved performance on all three of the tasks in the
second dialog state tracking challenge. Maximum
entropy models scored best in the previous dia-
log state tracking challenge; here we showed that
web-style ranking improved accuracy over max-
ent when using either a single or multiple SLU
engines. Thus, the two methods introduced here
are additive: they each yield gains separately, and
further gains in combination.

Comparing to other systems in the DSTC2 eval-
uation, these two techniques yielded highest accu-
racy in DSTC2 for 2 of 3 tasks. If we include a
feature accidentally omitted from the third task,
our methods yield highest accuracy for all three
tasks. This experience highlights the importance
of the manual task of extracting a set of informa-

tive features. Also, ranking improved accuracy,
but yielded poor probability quality. For rank-
ing, the L2 performance of ranking was among
the worst in DSTC2. By contrast, for the method
task, where standard classification could be ap-
plied, our entry yielded best L2 performance. The
relative importance of L2 vs. accuracy in dialog
state tracking is an open question.

In future work, we plan to investigate how to
improve the L2 performance of ranking. One ap-
proach is to train a maxent model on the output of
the ranker. On the test set, this yields an improve-
ment in L2 score from 0.735 to 0.587, and simply
clamping ranker’s best guess to 1.0 and all others
to 0.0 improves L2 to 0.431. This is a start, but
not competitive with the best result in DSTC2 of
0.346. Also, techniques which avoid the extrac-
tion of manual features altogether would be ideal,
particularly in light of experiences here.

Even so, for the difficult and general task of
user goal tracking, the techniques here yielded a
relative error rate reduction of 23% over the best
baseline, and exceeded the accuracy of any other
tracker in the second dialog state tracking chal-
lenge.
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Appendix A: Example decision tree

Figure 1 shows an example decision tree gener-
ated by lambdaMART. Note how the tree is able to
combine features across different slots – for exam-
ple, following the right-most path tests the scores
of 3 different slots. Also, note how generally more
positive evidence leads to higher scores.

Appendix B: Schematic of approach

Figure 2 shows a schematic diagram of our
overall approach for training the state tracker
(team2.entry0).
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Figure 1: Appendix A: Example decision tree with 8 leaves generated by lambdaMART. Each non-
terminal node contains a binary test; each terminal node contains a real value that linearly contributes to
the score of the dialog state being evaluated. “baseline1” refers to the output of one of the rule-based
baseline trackers, used in this classifier as an input feature.
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Figure 2: Appendix B: Schematic diagram of our overall approach for training the state tracker, using
SLU1 (team2.entry0). Cylinders represent data, rectangles are models, and scripts are tracker output.
Solid arrows are steps done at training time, and dotted arrows are steps done at test time. Approach for
SLU2 (team2.entry1) is identical except that additional features are used in training the SLU models.
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Abstract

Recently discriminative methods for track-
ing the state of a spoken dialog have been
shown to outperform traditional generative
models. This paper presents a new word-
based tracking method which maps di-
rectly from the speech recognition results
to the dialog state without using an explicit
semantic decoder. The method is based on
a recurrent neural network structure which
is capable of generalising to unseen dialog
state hypotheses, and which requires very
little feature engineering. The method
is evaluated on the second Dialog State
Tracking Challenge (DSTC2) corpus and
the results demonstrate consistently high
performance across all of the metrics.

1 Introduction

While communicating with a user, statistical spo-
ken dialog systems must maintain a distribution
over possible dialog states in a process called di-
alog state tracking. This distribution, also called
the belief state, directly determines the system’s
decisions. In MDP-based systems, only the most
likely dialog state is considered and in this case
the primary metric is dialog state accuracy (Bo-
hus and Rudnicky, 2006). In POMDP-based sys-
tems, the full distribution is considered and then
the shape of the distribution as measured by an L2
norm is equally important (Young et al., 2009). In
both cases, good quality state tracking is essential
to maintaining good overall system performance.

Typically, state tracking has assumed the output
of a Spoken Language Understanding (SLU) com-
ponent in the form of a semantic decoder, which
maps the hypotheses from Automatic Speech
Recognition (ASR) to a list of semantic hypothe-
ses. This paper considers mapping directly from
ASR hypotheses to an updated belief state at each

turn in the dialog, omitting the intermediate SLU
processing step. This word-based state tracking
avoids the need for an explicit semantic represen-
tation and also avoids the possibility of informa-
tion loss at the SLU stage.

Recurrent neural networks (RNNs) provide a
natural model for state tracking in dialog, as
they are able to model and classify dynamic se-
quences with complex behaviours from step to
step. Whereas, most previous approaches to dis-
criminative state tracking have adapted station-
ary classifiers to the temporal process of dialog
(Bohus and Rudnicky, 2006; Lee and Eskenazi,
2013; Lee, 2013; Williams, 2013; Henderson et
al., 2013b). One notable exception is Ren et al.
(2013), which used conditional random fields to
model the sequence temporally.

Currently proposed methods of discriminative
state tracking require engineering of feature func-
tions to represent the turn in the dialog (Ren et
al., 2013; Lee and Eskenazi, 2013; Lee, 2013;
Williams, 2013; Henderson et al., 2013b). It is un-
clear whether differences in performance are due
to feature engineering or the underlying models.
This paper proposes a method of using simple n-
gram type features which avoid the need for fea-
ture engineering. Instead of using inputs with a se-
lect few very informative features, the approach is
to use high-dimensional inputs with all the infor-
mation to potentially reconstruct any such hand-
crafted feature. The impact of significantly in-
creasing the dimensionality of the inputs is man-
aged by careful initialisation of model parameters.

Accuracy on unseen or infrequent slot values
is an important concern, particularly for discrim-
inative classifiers which are prone to overfitting
training data. This is addressed by structuring
the recurrent neural network to include a compo-
nent which is independent of the actual slot value
in question. It thus learns general behaviours for
specifying slots enabling it to successfully decode
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ASR output which includes previously unseen slot
values.

In summary, this paper presents a word-based
approach to dialog state tracking using recurrent
neural networks. The model is capable of gen-
eralising to unseen dialog state hypotheses, and
requires very little feature engineering. The ap-
proach is evaluated in the second Dialog State
Tracking Challenge (DSTC2) (Henderson et al.,
2014) where it is shown to be extremely competi-
tive, particularly in terms of the quality of its con-
fidence scores.

Following a brief outline of DSTC2 in section
2, the definition of the model is given in section
3. Section 4 then gives details on the initialisation
methods used for training. Finally results on the
DSTC2 evaluation are given in 5.

2 The Second Dialog State Tracking
Challenge

This section describes the domain and method-
ology of the second Dialog State Tracking Chal-
lenge (DSTC2). The challenge is based on a
large corpus collected using a variety of telephone-
based dialog systems in the domain of finding a
restaurant in Cambridge. In all cases, the subjects
were recruited using Amazon Mechanical Turk.

The data is split into a train, dev and test set.
The train and dev sets were supplied with labels,
and the test set was released unlabelled for a one
week period. At the end of the week, all partici-
pants were required to submit their trackers’ out-
put on the test set, and the labels were revealed. A
mis-match was ensured between training and test-
ing conditions by choosing dialogs for the eval-
uation collected using a separate dialog manager.
This emulates the mis-match a new tracker would
encounter if it were actually deployed in an end-
to-end system.

In summary, the datasets used are:

• dstc2 train - Labelled training consisting of
1612 dialogs with two dialog managers and
two acoustic conditions.

• dstc2 dev - Labelled dataset consisting
of 506 calls in the same conditions as
dstc2 train, but with no caller in common.

• dstc2 test - Evaluation dataset consisting of
1117 dialogs collected using a dialog man-
ager not seen in the labelled data.

In contrast with DSTC1, DSTC2 introduces dy-
namic user goals, tracking of requested slots and

tracking the restaurant search method. A DSTC2
tracker must therefore report:

• Goals: A distribution over the user’s goal for
each slot. This is a distribution over the possi-
ble values for that slot, plus the special value
None, which means no valid value has been
mentioned yet.

• Requested slots: A reported probability for
each requestable slot that has been requested
by the user, and should be informed by the
system.

• Method: A distribution over methods, which
encodes how the user is trying to use the di-
alog system. E.g. ‘by constraints’, when the
user is trying to constrain the search, and ‘fin-
ished’, when the user wants to end the dialog.

A tracker may report the goals as a joint over
all slots, but in this paper the joint is reported as a
product of the marginal distributions per slot.

Full details of the challenge are given in Hen-
derson et al. (2013a), Henderson et al. (2014). The
trackers presented in this paper are identified un-
der ‘team4’ in the reported results.

3 Recurrent Neural Network Model

This section defines the RNN structure used for
dialog state tracking. One such RNN is used per
slot, taking the most recent dialog turn (user input
plus last machine dialog act) as input, updating its
internal memory and calculating an updated belief
over the values for the slot. In what follows, the
notation a⊕b is used to denote the concatenation
of two vectors, a and b. The ith component of the
vector a is written a|i.
3.1 Feature Representation
Extracting n-grams from utterances and dialog
acts provides the feature representations needed
for input into the RNN. This process is very sim-
ilar to the feature extraction described in Hender-
son et al. (2012), and is outlined in figure 1.

For n-gram features extracted from the ASR
N -best list, unigram, bigram and trigram features
are calculated for each hypothesis. These are
then weighted by the N -best list probabilities and
summed to give a single vector.

Dialog acts in this domain consist of
a list of component acts of the form
acttype(slot=value) where the slot=value

pair is optional. The n-gram type features
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extracted from each such component act are
‘acttype’, ‘slot’, ‘value’, ‘acttype

slot’, ‘slot value’ and ‘acttype slot

value’, or just ‘acttype’ for the act acttype().
Each feature is given weight 1, and the features
from individual component acts are summed.

To provide a contrast, trackers have also been
implemented using the user dialog acts output by
an SLU rather than directly from the ASR output.
In this case, the SLU N -best dialog act list is en-
coded in the same way except that the n-grams
from each hypothesis are weighted by the corre-
sponding probabilities, and summed to give a sin-
gle feature vector.

Consider a word-based tracker which takes an
ASR N -best list and the last machine act as input
for each turn, as shown in figure 1. A combined
feature representation of both the ASR N -best list
and the last machine act is obtained by concate-
nating the vectors. This means that in figure 1 the
food feature from the ASR and the food feature
from the machine act contribute to separate com-
ponents of the final vector f .

fv

ASR

food
jamaican

indian food

1.0
0.9

0.1

<value> food
<value>

0.9
0.9

Machine Act

confirm food

confirm food 
jamaican

food jamaican

1.0
1.0

1.0

e.g. v = jamaican
confirm food 
<value>

food <value>

1.0

1.0

for each value, v

jamaican food 0.9

<slot>
<value> 

1.0
1.0

<value> <slot> 1.0

confirm 1.0

<value> 1.0

confirm <slot> 
<value>

<slot> <value>

1.0
1.0

<value> 1.0

indian 0.1

<value> food 1.0
jamaican <slot> 0.9
indian <slot> 0.1

confirm food 
<value> 1.0
food <value> 1.0
confirm <slot> 
jamaican 1.0
<slot> 
jamaican

1.0

0.9jamaican food
0.1indian food confirm(food=jamaican)

food 1.0

<slot> 1.0

fs

f

5 non-zero 
elements

6 non-zero 
elements

2 non-zero 
elements

6 non-zero 
elements

8 non-zero 
elements

3 non-zero 
elements

11 non-zero 
elements

14 non-zero 
elements

5 non-zero 
elements

jamaican 1.0

Figure 1: Example of feature extraction for one
turn, giving f , fs and fv. Here s = food. For all
v /∈{indian, jamaican}, fv = 0.

Note that all the methods for tracking reported
in DSTC1 required designing feature functions.
For example, suggested feature functions included
the SLU score in the current turn, the probabil-

ity of an ‘affirm’ act when the value has been
confirmed by the system, the output from base-
line trackers etc. (e.g. Lee and Eskenazi (2013),
Williams (2013), Henderson et al. (2013b)). In
contrast, the approach described here is to present
the model with all the information it would need
to reconstruct any feature function that might be
useful.

3.2 Generalisation to Unseen States

One key issue in applying machine learning to the
task of dialog state tracking is being able to deal
with states which have not been seen in training.
For example, the system should be able to recog-
nise any obscure food type which appears in the
set of possible food types. A naı̈ve neural net-
work structure mapping n-gram features to an up-
dated distribution for the food slot, with no tying
of weights, would require separate examples of
each of the food types to learn what n-grams are
associated with each. In reality however n-grams
like ‘<value> food’ and ‘serving <value>’ are likely
to correspond to the hypothesis food=‘<value>’ for
any food-type replacing ‘<value>’.

The approach taken here is to embed a network
which learns a generic model of the updated belief
of a slot-value assignment as a function of ‘tagged’
features, i.e. features which ignore the specific
identity of a value. This can be considered as re-
placing all occurrences of a particular value with
a tag like ‘<value>’. Figure 1 shows the process of
creating the tagged feature vectors, fs and fv from
the untagged vector f .

3.3 Model Definition

In this section an RNN is described for tracking
the goal for a given slot, s, throughout the se-
quence of a dialog. The RNN holds an internal
memory, m ∈ RNmem which is updated at each
step. If there are N possible values for slot s, then
the probability distribution output p is in RN+1,
with the last component p|N giving the probabil-
ity of the None hypothesis. Figure 2 provides an
overview of how p and m are updated in one turn
to give the new belief and memory, p′ and m′.

One part of the neural network is used to learn
a mapping from the untagged inputs, full memory
and previous beliefs to a vector h ∈ RN which
goes directly into the calculation of p′:

h = NNet (f ⊕ p⊕m) ∈ RN
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f
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fv

pN

Figure 2: Calculation of p′ and m′ for one turn

where NNet(·) denotes a neural network function
of the input. In this paper all such networks have
one hidden layer with a sigmoidal activation func-
tion.

The sub-network for h requires examples of ev-
ery value in training, and is prone to poor general-
isation as explained in section 3.2. By including a
second sub-network for g which takes tagged fea-
tures as input, it is possible to exploit the obser-
vation that the string corresponding to a value in
various contexts is likely to be good evidence for
or against that value. For each value v, a compo-
nent of g is calculated using the neural network:

g|v = NNet
(

f⊕ fs ⊕ fv⊕
{p|v, p|N} ⊕m

)
∈ R

By using regularisation, the learning will pre-
fer where possible to use the sub-network for g
rather than learning the individual weights for
each value required in the sub-network for h. This
sub-network is able to deal with unseen or infre-
quently seen dialog states, so long as the state can
be tagged in the feature extraction. This model can
also be shared across slots since fs is included as
an input, see section 4.2.

The sub-networks applied to tagged and un-
tagged inputs are combined to give the new belief:

p′ = softmax ([h + g]⊕ {B}) ∈ RN+1

where B is a parameter of the RNN, contributing
to the None hypothesis. The contribution from g
may be seen as accounting for general behaviour
of tagged hypotheses, while h makes corrections
due to correlations with untagged features and

value specific behaviour e.g. special ways of ex-
pressing specific goals and fitting to specific ASR
confusions.

Finally, the memory is updated according to the
logistic regression:

m′ = σ (Wm0f +Wm1m) ∈ RNmem

where the Wmi are parameters of the RNN.

3.4 Requested Slots and Method

A similar RNN is used to track the requested slots.
Here the v runs over all the requestable slots, and
requestable slot names are tagged in the feature
vectors fv. This allows the neural network calcu-
lating g to learn general patterns across slots just
as in the case of goals. The equation for p′ is
changed to:

p′ = σ (h + g)

so each component of p′ represents the probability
(between 0 and 1) of a slot being requested.

For method classification, the same RNN struc-
ture as for a goal is used. No tagging of the feature
vectors is used in the case of methods.

4 Training

The RNNs are trained using Stochastic Gradient
Descent (SGD), maximizing the log probability of
the sequences of observed beliefs in the training
data (Bottou, 1991). Gradient clipping is used to
avoid the problem of exploding gradients (Pascanu
et al., 2012). A regularisation term is included,
which penalises the l2 norm of all the parameters.
It is found empirically to be beneficial to give more
weight in the regularisation to the parameters used
in the network calculating h.

When using the ASR N -best list, f is typi-
cally of dimensionality around 3500. With so
many weights to learn, it is important to initialise
the parameters well before starting the SGD algo-
rithm. Two initialisation techniques have been in-
vestigated, the denoising autoencoder and shared
initialisation. These were evaluated by training
trackers on the dstc2 train set, and evaluating on
dstc2 dev (see table 1).

4.1 Denoising Autoencoder

The denoising autoencoder (dA), which provides
an unsupervised method for learning meaningful
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Joint Goals Method Requested
Shared
init.

dA
init. Acc L2 Acc L2 Acc L2

0.686 0.477 0.913 0.147 0.963 0.059
X 0.688 0.466 0.915 0.144 0.962 0.059

X 0.680 0.479 0.910 0.152 0.962 0.059
X X 0.696 0.463 0.915 0.144 0.965 0.057

Baseline: 0.612 0.632 0.830 0.266 0.894 0.174

Table 1: Performance on the dev set when varying initialisation techniques for word-based tracking. Acc
denotes the accuracy of the most likely belief at each turn, and L2 denotes the squared l2 norm between
the estimated belief distribution and correct (delta) distribution. For each row, 5 trackers are trained
and then combined using score averaging. The final row shows the results for the focus-based baseline
tracker (Henderson et al., 2014).

underlying representations of the input, has been
found effective as an initialisation technique in
deep learning (Vincent et al., 2008).

A dA is used to initialise the parameters of the
RNN which multiply the high-dimensional input
vector f . The dA learns a matrix WdA which re-
duces f to a lower dimensional vector such that
the original vector may be recovered with minimal
loss in the presence of noise.

For learning the dA, f is first mapped such that
feature values lie between 0 and 1. The dA takes as
input fnoisy, a noisy copy of f where each compo-
nent is set to 0 with probability p. This is mapped
to a lower dimensional hidden representation h:

h = σ (WdAfnoisy + b0)

A reconstructed vector, frec, is then calculated
as:

frec = σ
(
WT

dAh + b1
)

The cross-entropy between f and frec is used as
the objective function in gradient descent, with an
added l1 regularisation term to ensure the learning
of sparse weights. As the ASR features are likely
to be very noisy, dense weights would be prone to
overfitting the examples. 1

When using WdA to initialise weights in the
RNN, training is observed to converge faster. Ta-
ble 1 shows that dA initialisation leads to better
solutions, particularly for tracking the goals.

4.2 Shared Initialisation
It is possible to train a slot-independent RNN, us-
ing training data from all slots, by not including h
in the model (the dimensionality of h is dependent

1The state-of-the-art in dialog act classification with very
similar data also uses sparse weights Chen et al. (2013).

on the slot). In shared initialisation, such an RNN
is trained for a few epochs, then the learnt param-
eters are used to initialise slot-dependent RNNs
for each slot. This follows the shared initialisation
procedure presented in Henderson et al. (2013b).

Table 1 suggests that shared initialisation when
combined with dA initialisation gives the best per-
formance.

4.3 Model Combination

In DSTC1, the most competitive results were
achieved with model combination whereby the
output of multiple trackers were combined to give
more accurate classifications (Lee and Eskenazi,
2013). The technique for model combination used
here is score averaging, where the final score for
each component of the dialog state is computed as
the mean of the scores output by all the trackers
being combined. This is one of the simplest meth-
ods for model combination, and requires no extra
training data. It is guaranteed to improve the accu-
racy if the outputs from the individual trackers are
not correlated, and the individual trackers operate
at an accuracy > 0.5.

Multiple runs of training the RNNs were found
to give results with high variability and model
combination provides a method to exploit this
variability. In order to demonstrate the effect,
10 trackers with varying regularisation parame-
ters were trained on dstc2 train and used to track
dstc2 dev. Figure 3 shows the effects of combin-
ing these trackers in larger groups. The mean ac-
curacy in the joint goals from combining m track-
ers is found to increase with m. The single output
from combining all 10 trackers outperforms any
single tracker in the group.

The approach taken for the DSTC2 challenge
was therefore to train multiple trackers with vary-
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0.64

0.65

0.66
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0.69

0.70
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Figure 3: Joint goal accuracy on dstc2 dev from system
combination. Ten total trackers are trained with varying reg-
ularisation parameters. For each m = 1 . . . 10, all subsets
of size m of the 10 trackers are used to generate 10Cm com-
bined results, which are plotted as a boxplot. Boxplots show
minimum, maximum, the interquartile range and the median.
The mean values are plotted as connected points.

ing model hyper-parameters (e.g. regularisation
parameters, memory size) and combine their out-
put using score averaging. Note that maintaining
around 10 RNNs for each dialog state components
is entirely feasible for a realtime system, as the
RNN operations are quick to compute. An un-
optimised Python implementation of the tracker
including an RNN for each dialog state compo-
nent is able to do state tracking at a rate of around
50 turns per second on an Intel® Core™ i7-970
3.2GHz processor.

5 Results

The strict blind evaluation procedure defined for
the DSTC2 challenge was used to investigate the
effect on performance of two contrasts. The first
contrast compares word-based tracking and con-
ventional tracking based on SLU output. The sec-
ond contrast investigates the effect of including
and omitting the sub-network for h in the RNN.
Recall h is the part of the model that allows learn-
ing special behaviours for particular dialog state
hypotheses, and correlations with untagged fea-
tures. These two binary contrasts resulted in a to-
tal of 4 system variants being entered in the chal-
lenge.

Each system is the score-averaged combined
output of 12 trackers trained with varying hyper-
parameters (see section 4.3). The performance of
the 4 entries on the featured metrics of the chal-
lenge are shown in table 2.

It should be noted that the live SLU used the
word confusion network, not made available in the
challenge. The word confusion network is known

to provide stronger features than theN -best list for
language understanding (Henderson et al., 2012;
Tür et al., 2013), so the word-based trackers us-
ing N -best ASR features were at a disadvantage
in that regard. Nevertheless, despite this hand-
icap, the best results were obtained from word-
based tracking directly on the ASR output, rather
than using the confusion network generated SLU
output. Including h always helps, though this is
far more pronounced for the word-based track-
ers. Note that trackers which do not include h are
value-independent and so are capable of handling
new values at runtime.

The RNN trackers performed very competi-
tively in the context of the challenge. Figure 4 vi-
sualises the performance of the four trackers rela-
tive to all the entries submitted to the challenge for
the featured metrics. For full details of the evalua-
tion metrics see Henderson et al. (2014). The box
in this figure gives the entry IDs under which the
results are reported in the DSTC (under the team
ID ‘team4’). The word-based tracker including
h (h-ASR), was top for joint goals L2 as well as
requested slots accuracy and L2. It was close to
the top for the other featured metrics, following
closely entries from team 2. The RNN trackers
performed particularly well on measures assessing
the quality of the scores such as L2.

There are hundreds of numbers reported in the
DSTC2 evaluation, and it was found that the h-
ASR tracker ranked top on many of them. Consid-
ering L2, accuracy, average probability, equal er-
ror rate, log probability and mean reciprocal rank
across all components of the the dialog state, these
give a total of 318 metrics. The h-ASR tracker
ranked top of all trackers in the challenge in 89 of
these metrics, more than any other tracker. The
ASR tracker omitting h came second, ranking top
in 33 of these metrics.

The trackers using SLU features ranked top
in all of the featured metrics among the trackers
which used only the SLU output.

6 Conclusions

The RNN framework presented in this paper pro-
vides very good performance in terms of both ac-
curacy and the quality of reported probability dis-
tributions. Word-based tracking is shown to be one
of the most competitive approaches submitted to
DSTC2. By mapping straight from the ASR out-
put to a belief update, it avoids any information
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Tracker
Inputs Joint Goals Method Requested

entry Include
h

Live
ASR

Live
SLU Acc L2 ROC Acc L2 ROC Acc L2 ROC

0 X X 0.768 0.346 0.365 0.940 0.095 0.452 0.978 0.035 0.525
1 X 0.746 0.381 0.383 0.939 0.097 0.423 0.977 0.038 0.490
2 X X 0.742 0.387 0.345 0.922 0.124 0.447 0.957 0.069 0.340
3 X 0.737 0.406 0.321 0.922 0.125 0.406 0.957 0.073 0.385

Table 2: Featured metrics on the test set for the 4 RNN trackers entered to the challenge.
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0.8
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Joint Goals Method Requested All

0.2
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L2
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word-based

SLU input

full model no h
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Figure 4: Relative performance of RNN trackers for fea-
tured metrics in DSTC2. Each dash is one of the 34 trackers
evaluated in the challenge. Note a lower L2 is better. ROC
metric is only comparable for systems of similar accuracies,
so is not plotted. The focus baseline system is shown as a
circle.

lost in the omitted SLU step.
In general, the RNN appears to be a promising

model, which deals naturally with sequential input
and outputs. High dimensional inputs are handled
well, with little feature engineering, particularly
when carefully initialised (e.g. as here using de-
noising autoencoders and shared initialisation).

Future work should include making joint pre-
dictions on components of the dialog state. In this
paper each component was tracked using its own
RNN. Though not presented in this paper, no im-
provement could be found by joining the RNNs.
However, this may not be the case for other do-
mains in which slot values are more highly cor-
related. The concept of tagging the feature func-
tions allows for generalisation to unseen values
and slots. This generalisation will be explored in
future work, particularly for dialogs in more open-
domains.
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son, Pirros Tsiakoulis, Kai Yu, and Steve Young.
2012. Discriminative Spoken Language Under-
standing Using Word Confusion Networks. In Spo-
ken Language Technology Workshop, 2012. IEEE.

298



Matthew Henderson, Blaise Thomson, and Jason
Williams. 2013a. Dialog State Tracking Challenge
2 & 3 Handbook. camdial.org/˜mh521/dstc/.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2013b. Deep Neural Network Approach for
the Dialog State Tracking Challenge. In Proceed-
ings of SIGdial, Metz, France, August.

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the SIGdial 2014 Con-
ference, Baltimore, U.S.A., June.

Sungjin Lee and Maxine Eskenazi. 2013. Recipe for
building robust spoken dialog state trackers: Dialog
state tracking challenge system description. In Pro-
ceedings of the SIGDIAL 2013 Conference, Metz,
France, August.

Sungjin Lee. 2013. Structured discriminative model
for dialog state tracking. In Proceedings of the SIG-
DIAL 2013 Conference, Metz, France, August.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. Understanding the exploding gradient prob-
lem. CoRR.

Hang Ren, Weiqun Xu, Yan Zhang, and Yonghong Yan.
2013. Dialog state tracking using conditional ran-
dom fields. In Proceedings of the SIGDIAL 2013
Conference, Metz, France, August.

Gökhan Tür, Anoop Deoras, and Dilek Hakkani-Tür.
2013. Semantic parsing using word confusion net-
works with conditional random fields. In INTER-
SPEECH.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In Proceedings of the 25th International
Conference on Machine Learning, Helsinki, Fin-
land.

Jason Williams. 2013. Multi-domain learning and gen-
eralization in dialog state tracking. In Proceedings
of the SIGDIAL 2013 Conference, Metz, France, Au-
gust.
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Abstract

A primary motivation of the Dialog State
Tracking Challenge (DSTC) is to allow
for direct comparisons between alterna-
tive approaches to dialog state tracking.
While results from DSTC 1 mention per-
formance limitations, an examination of
the errors made by dialog state trackers
was not discussed in depth. For the new
challenge, DSTC 2, this paper describes
several techniques for examining the er-
rors made by the dialog state trackers in or-
der to refine our understanding of the lim-
itations of various approaches to the track-
ing process. The results indicate that no
one approach is universally superior, and
that different approaches yield different er-
ror type distributions. Furthermore, the
results show that a pairwise comparative
analysis of tracker performance is a useful
tool for identifying dialogs where differ-
ential behavior is observed. These dialogs
can provide a data source for a more care-
ful analysis of the source of errors.

1 Introduction

The Dialog State Tracking Challenge (Henderson
et al., 2013) provides a framework for compari-
son of different approaches to tracking dialog state
within the context of an information-seeking dia-
log, specifically information about restaurants in
the Cambridge, UK, area. The challenge makes
available an annotated corpus that includes system
logs from actual human-machine dialog interac-
tions. These logs include information about the
system dialog acts, the N-best speech recognition
hypotheses, and the hypothesized interpretation
(including confidence estimates) of the user’s spo-
ken utterances as provided by the dialog system’s
Spoken Language Understanding (SLU) module.

Consequently, standalone algorithms for track-
ing the state of the dialog can be developed and
tested. While performance as part of an actual
dialog interaction cannot easily be evaluated (be-
cause differing results produced by different track-
ers may lead to different choices for system dialog
acts in a real-time interaction), performance on a
turn-by-turn basis can be evaluated and compared.

Results from the first challenge were presented
in several papers at SIGDial 2013 (general refer-
ence Williams et al. (2013)) and highlighted sev-
eral different approaches. These papers focused
on comparative performance as well as a descrip-
tion of the various techniques for tracking dialog
state that were employed. However, there was no
detailed error analysis about tracker performance,
either within or across trackers. Such analysis can
help further our understanding of the sources and
impact of dialog miscommunication. This paper
presents such an analysis from the current Dia-
log State Tracking Challenge (DSTC 2) using the
publicly available results of the challenge (http:
//camdial.org/˜mh521/dstc/). This pa-
per describes techniques for examining the follow-
ing aspects of performance as it relates to tracking
errors and their potential impact on effective com-
munication in dialog.

• Estimating an upper bound on accuracy.

• Error distribution as a function of tracker—
both globally and subdivided by acoustic
model or attribute type.

• Pairwise comparative accuracy of trackers—
for what types of dialogs does one tracker
perform better than another?

Initial results based on application of these tech-
niques are also presented.
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2 Data Source: DSTC 2

DSTC 2 is based on corpora collected on dialogs
about restaurant information for Cambridge, UK.
Besides introducing a different domain from the
original DSTC (that dealt with bus timetables)
DSTC 2 is structured in such a way as to allow
for the possibility of changing user goals and thus
represents a more significant challenge for dialog
state tracking. An overview of the current chal-
lenge and results can be found in Henderson et al.
(2014).

2.1 Nature of Dialogs

Unlike the dialogs of the original DSTC that were
based on actual uses of the bus timetable informa-
tion system, the dialogs for DSTC 2 were collected
in the more traditional experimental paradigm
where system users were given a dialog scenario
to follow. Example scenario descriptions extracted
from two of the log files are given below.

• Task 09825: You want to
find a cheap restaurant and
it should be in the south part
of town. Make sure you get
the address and phone number.

• Task 05454: You want to find
an expensive restaurant and it
should serve malaysian food.
If there is no such venue how
about korean type of food.
Make sure you get the address
and area of the venue.

The basic structure of the dialogs has the fol-
lowing pattern.

1. Acquire from the user a set of constraints
about the type of restaurant desired. Users
may supply constraint information about
area, food, name, and price range. This phase
may require multiple iterations as user goals
change.

2. Once the constraints have been acquired, pro-
vide information about one or more restau-
rants that satisfy the constraints. Users
may request that additional attributes about
a restaurant be provided (such as address and
phone number).

2.2 Measuring Task Performance
Because of the complex nature of statistical dia-
log state tracking there are many different reason-
able ways to measure tracker performance. Be-
sides evaluating the accuracy of the 1-best hypoth-
esis there are also a number of possible measures
based on the quality of the estimate for dialog state
(see Henderson et al. (2013) for details).

For the purpose of this paper the analysis will be
based on tracker performance on accuracy (1-best
quality) for the joint goal based on the four previ-
ously mentioned constraint attributes (area, food,
name, and price range). The reason for this choice
is that in an actual human-system dialog in an
information-seeking domain, the dialog manager
must choose an action based on the system’s be-
liefs about the constraining attributes. While level
of belief might positively influence when to en-
gage in explicit or implicit confirmation, ultimate
success depends on correct identification of values
for the constraining attributes. Having too much
confidence in inaccurate information has always
been a major error source in dialog systems. Con-
sequently, 1-best joint goal accuracy is the focus
of study in this paper.

2.3 Description of Error Types
Since we are focused on joint goal accuracy, er-
ror type classification will be based on the follow-
ing three types of possible deviations from the true
joint goal label for a given turn.

1. Missing Attributes (MA) - these are situa-
tions where a value for an attribute has been
specified in the actual data (e.g. “belgian”
for the attribute “food”), but the dialog state
tracker has no value for the attribute in the
joint belief state.1

2. Extraneous Attributes (EA) - these are situ-
ations where the tracker has a value for the
attribute in the joint belief state, but the at-
tribute has not been mentioned in the actual
dialog.

1The format of DSTC 2 allows for automatic compilation
of the joint belief state by the scoring software. The probabil-
ity mass for a given attribute that is not assigned to specific
values for attributes is assigned to a special value None. If no
value for the attribute has a probability estimate exceeding
None, then no value for that attribute is included in the joint
belief state. It is also possible for a dialog state tracker to ex-
plicitly provide a joint belief state. In DSTC 2 some systems
do explicitly provide a joint belief state while others use the
default.
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3. False Attributes (FA) - these are situations
where a value for an attribute has been spec-
ified in the actual data (e.g. “catalan” for the
attribute “food”), but the dialog state tracker
has a different value (such as “fusion” for
“food”).

For turns where there are errors, it is certainly
possible that multiple errors occur, both multiple
errors of a given type, and multiple errors of dif-
ferent types. This is taken into consideration as
described next.

2.4 Recording Tracker Performance

For each tracker a data file consists of a sequence
of tuples of the form (Correct,EA,MA,FA) that
were generated for each turn for which there was a
valid joint goal label.2. The meaning of each value
in the tuple is given below.

• Correct - has the value 1 if the tracker joint
goal label is correct and 0 if it was incorrect.

• EA - a count of the number of different ex-
traneous attributes that occurred in the turn.
Will always be 0 if Correct = 1.

• MA - a count of the number of different
missing attributes that occurred in the turn.
Will always be 0 if Correct = 1.

• FA - a count of the number of different false
attributes that occurred in the turn. Will al-
ways be 0 if Correct = 1.

Consequently, whenever Correct is 1, the tuple
will always be of the form (1,0,0,0). If Correct is
0, at least one of the three following entries in the
tuple will have a non-zero value.

These files were generated by modifying the
scoring script provided by the DSTC organizing
committee. The modification causes the neces-
sary information to be output for each relevant
turn. These data files represent the result of tracker
performance on 1117 dialogs over a total of 9689
turns.

2In some cases at the start of dialogs, no SLU hypothe-
ses have yet to mention any values for any of the joint goal
attributes. As mentioned in Henderson et al. (2013), those
turns are not included in the joint-goal accuracy evaluation.
This occurred in a total of 201 turns over 193 dialogs.

2.5 Mapping Labels to Dialogs

Another modified version of the scoring script was
used to iterate through the dialogs to produce a
template that associates each of the 9689 labeled
turns with the specific (dialog ID, turn within dia-
log) pair that the turn represents. This information
was used in the error analysis process to identify
specific dialogs for which tracking was not partic-
ularly accurate (see section 4).

2.6 Choice of Trackers

There were a total of 9 different teams that sub-
mitted a total of 31 trackers for DSTC 2. For this
study, one tracker from each team is being used.
The choice of tracker is the one that performed
the best on 1-best joint goal accuracy, one of the
overall “featured metrics” of the challenge (Hen-
derson et al., 2013). Their performance on this
metric ranged from 50.0% to 78.4%. Seven of the
nine trackers had performance of better than 69%,
while there were two performance outliers at 50%
and 60%.

For purposes of this study, it seemed best to
include a tracker from all groups since part of
the intent of the challenge is to carefully exam-
ine the impact of different approaches to dialog
state tracking. Based on the optional descrip-
tions that teams submitted to the challenge, there
were quite a variety of approaches taken (though
not all teams provided a description). Some sys-
tems used the original SLU results. Other sys-
tems ignored the original SLU results and fo-
cused on the ASR hypotheses. Some systems cre-
ated their own modified versions of the original
SLU results. Modeling approaches included Max-
imum Entropy Markov model, Deep Neural Net-
work model, rule-based models, Hidden Informa-
tion State models, and conditional random fields.
Hybrid approaches were used as well. A few more
details about our submitted tracker will be pro-
vided in section 4.

One of the purposes of this study was to look
at the distribution of errors based on the different
types discussed in section 2.3, both in absolute and
relative terms. Consequently, one intended inves-
tigation is to see if there is a difference in error
type distribution depending on a number of param-
eters, including the approach used to dialog state
tracking. Thus, examining the results from the top
trackers of all teams can provide valuable infor-
mation regardless of the absolute accuracy of the
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tracker. As it turned out, each tracker studied had
multiple turns where it was the only tracker to pro-
vide a correct joint goal label. This happened on
about 4% of all the turns. The number of turns for
which a tracker was the only tracker to provide a
correct joint goal label ranged from 5 to 89 and
tended to follow the general ranking of accuracy
(i.e., more accurate trackers tended to have more
turns where it was the only tracker correct). How-
ever, it did not follow the relative rankings pre-
cisely.

3 Analysis: Global Tracker Performance

3.1 How much misunderstanding can be
expected?

Another way to ask this question would be, “what
error rate should be expected from a high perfor-
mance tracker? For example, there were 21 di-
alogs consisting of 8 user turns or more where
none of the trackers under study correctly repre-
sented the joint goal for any turn.

Looking more broadly, there were 1332 turns
over the entire set of dialogs for which none of
the trackers had a correct representation of the
joint goal. Thus, if we could construct an “oracle”
tracker that could always select the correct repre-
sentation of the joint goal from among the nine
trackers under study (when at least one of them
had the correct representation), this would imply
an error rate of 13.7%.3 This contrasts with an er-
ror rate of 21.6% for the best performing tracker
submitted as part of DSTC 2. If we look at tracker
performance as a function of acoustic model (ar-
tificially degraded (A0), and optimized (A1)), the
error rate estimate for the oracle tracker is 17.0%
using model A0 and 10.3% using model A1.

3.2 Global Error Type Distribution

Using the classification of error types described
in section 2.3: Extraneous Attributes (EA), Miss-
ing Attributes (MA), and False Attributes (FA),
we can explore the distribution of error types as
a function of the dialog tracker. Table 1 provides a
summary view of the distributions over all the di-
alogs of the test set. For comparison, the baseline
focus tracker provided by the DSTC 2 organizers

3Note that this is not any sort of an absolute estimate.
For example, if provided baseline trackers are included (one
provided by the DSTC 2 organizers and another by Zhuoran
Wang of Heriot-Watt University), the number of turns where
no tracker correctly represents the joint goal reduces to 1325
turns.

(see Henderson et al. (2013)) and the HWU base-
line tracker provided by Zhuoran Wang of Heriot-
Watt University (see http://camdial.org/
˜mh521/dstc/) are also included. While track-
ers 1 and 9 are also presented for completeness,
the main focus of the analysis is on trackers 2
through 8, the trackers with higher levels of per-
formance on the featured metric of 1-best joint
goal accuracy. Each row represents the relative
distribution of errors by a given tracker. For ex-
ample, for our tracker, tracker 3, there were 2629
turns (out of the total 9689 turns) where the tracker
made one or more errors for the attributes of the
joint goal. There were a total of 3075 different
attribute errors of which 545 or 17.7% of the er-
rors were of type EA, 1341 or 43.6% were of type
MA, and 1189 or 38.7% of type FA. A visual rep-
resentation of this information is provided in the
Appendix in figure 1. Some general observations
are the following.

• Other than tracker 5, the relative number of
errors of type MA exceeded the relative num-
ber of errors of type FA. For attributes actu-
ally mentioned by the user, trackers in gen-
eral were more likely to reject a correct hy-
pothesis (leading to a type MA error) than
accept an incorrect hypothesis (leading to a
type FA error).

• Based on the brief description provided with
submission of the tracker, tracker 5 uses a hy-
brid approach for tracking the different goals
(one of the baseline trackers for the food at-
tribute, but an n-best approach to the oth-
ers). This approach seemed to lead to the
acceptance of more spurious hypotheses than
the other trackers (hence the higher EA rate).
Tracker 8 also had a slightly higher error rate
for EA. Its submission description indicates
the combined use of several models, at least
one of which used the training data for devel-
oping model parameters.

3.3 Error Type Distribution as a Function of
Acoustic Model

Since publicly available spoken dialog systems
cannot control the environment in which they are
used, speech recognition rates can vary widely.
One of the general goals of the DSTC is to eval-
uate tracker performance for varying levels of
speech recognition accuracy. Hence the use in

303



Total Errors EA MA FA
Tracker # Turns # Errors Count Percent Count Percent Count Percent
Focus 2720 3214 652 20.3% 1124 35.0% 1438 44.7%
HWU 2802 3352 601 17.9% 1526 45.5% 1225 36.6%

1 3865 4411 673 15.3% 2436 55.2% 1302 29.6%
2 2090 2432 451 18.5% 1177 48.4% 804 33.1%
3 2629 3075 545 17.7% 1341 43.6% 1189 38.7%
4 2246 2598 441 17.0% 1100 42.3% 1057 40.7%
5 2956 3618 947 26.2% 1218 33.7% 1453 40.2%
6 2730 3231 552 17.1% 1410 43.6% 1269 39.3%
7 2419 2791 446 16.0% 1205 43.2% 1140 40.8%
8 2920 3546 763 21.5% 1456 41.0% 1327 37.4%
9 4857 6183 781 12.6% 4222 68.3% 1180 19.1%

Table 1: Error Distribution: all dialogs

DSTC 2 of two acoustic models: model A1 which
is a model optimized for the domain, and model
A0 which has artificially degraded acoustic mod-
els (Henderson et al., 2013). For the test set, there
were 542 dialogs yielding 4994 turns with joint
goal labels for model A0, and 575 dialogs yielding
4695 turns with joint goal labels for model A1. It
is unsurprising that the average number of turns in
a dialog was shorter for the dialogs using the more
accurate speech recognizer.

The previous table looked at the global behav-
ior combining all the dialogs. An interesting ques-
tion to examine is if the error distributions change
as a function of acoustic model. Tables 2 and 3
give some insight into that question. Table 2, the
results using the optimized model A1, unsurpris-
ingly shows that when the speech signal is bet-
ter and by implication the SLU confidence scores
are stronger and more accurate, the relative rate
of type FA errors declines while the relative rate
of type MA errors increases (when compared to
the overall results of Table 1). For errors of type
EA it is about an even split—for some the relative
number of EA errors decreases, and for some it in-
creases. The results in Table 3 for the A0 model
show the opposite trend for the relative errors of
type MA compared to type FA.

3.4 Error Type Distribution as a Function of
Attribute

While it is future work to do an exact count to de-
termine the frequency with which the four differ-
ent constraining attributes (area, food, name, and
price range) are actually mentioned in the dialogs,
it is clear from the data that the primary objects

of conversation are area, food, and price range.
This makes sense, since there are often alterna-
tive effective ways to access information about a
restaurant other than to interact with a dialog sys-
tem given that the name has already been deter-
mined by the user.4 Consequently, for the remain-
ing three attributes, an investigation into the rela-
tive distribution of errors as a function of attribute
type within error type was conducted. The results
are presented in Table 4. This table is looking at
all the test data combined and not separating by
acoustic model. Again the focus of discussion will
be trackers 2 through 8. For brevity, the results for
error type FA are omitted as they are pretty similar
for all trackers.

relative error rate for food >> than rel-
ative error rate for area >> than relative
error rate for price range.

This follows naturally from the fact that there are
91 possible values for food, 5 possible values for
area, and only 3 possible values for price range.
Thus, there are many more possibilities for confu-
sion for the value for the food attribute. When we
examine the results in Table 4, there are a variety
of interesting observations.

• Within error type EA, the only trackers for
which the relative error rate for price range
exceeds the relative error rate for area are
trackers 5 and 7.

• Trackers 3 and 4 are more prone to have EA
errors for the food attribute.

4One of the anonymous reviewers pointed out that the
choice of scenarios used in the data collection process is also
a factor.
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Tracker EA MA FA
1 12.4% 61.7% 25.9%
2 20.5% 53.4% 26.1%
3 16.1% 50.3% 33.7%
4 17.8% 45.7% 36.6%
5 25.7% 40.9% 33.4%
6 17.5% 49.9% 32.6%
7 15.0% 53.6% 31.5%
8 23.0% 43.0% 34.0%
9 11.6% 71.7% 16.7%

Table 2: Error Distribution: A1 dialogs

Tracker EA MA FA
1 17.3% 50.5% 32.1%
2 17.5% 45.8% 36.6%
3 18.7% 39.8% 41.5%
4 16.5% 40.4% 43.0%
5 26.4% 29.9% 43.7%
6 16.8% 40.0% 43.2%
7 16.5% 37.4% 46.0%
8 20.6% 39.9% 39.5%
9 13.3% 65.8% 20.8%

Table 3: Error Distribution: A0 dialogs

• Trackers 2, 6, 7, and 8 all have a noticeable
jump in the relative error rate for the food at-
tribute for type MA errors over type EA er-
rors. In contrast, trackers 3, 4, and 5 show a
noticeable decrease.

What of course is missing from these obser-
vations is any conjecture of causality based on
a careful analysis of individual tracker behav-
ior. Given the lack of accessibility to the details
of system implementations for all the trackers,
other techniques of investigation are needed. The
next section explores another potentially valuable
technique—comparing the results of two trackers
on a turn-by-turn basis, and using these results
to identify particular dialogs that exhibit radically
different outcomes in performance.

4 Analysis: Pairwise Comparative
Accuracy

Another avenue of analysis is to directly compare
the performance of two trackers. How do they dif-
fer in terms of the types of dialog situations that
they handle effectively? We will examine these
issues through comparison of the top performing

tracker in the challenge (with respect to the fea-
tured metric 1-best joint goal accuracy) with our
tracker entry, Pirate.5

4.1 Pirate methodology: what should dialog
expectation mean?

The overarching philosophy behind the develop-
ment of Pirate is simply the following.

There is belief about what we think we
know, but there should also be an expec-
tation about what comes next if we are
correct.

One of the first dialog systems to make use of
a hierarchy of dialog expectations was the Circuit
Fix-It Shop (Smith et al., 1995) which was also
one of the first working dialog systems to be care-
fully and extensively evaluated (Smith and Gor-
don, 1997) and (Smith, 1998). However, at the
time, the ability to make use of large corpora in
system development was largely non-existent.6

Our approach in DSTC 2 for making use of
the extensive training data combined the SLU hy-
potheses with confidence scores (interpreted as
probabilities) with a simple statistical model of
dialog expectation to create modified SLU con-
fidence scores. The model of dialog expectation
was based on a simple bigram model using fre-
quency counts for (system dialog act, user speech
act) pairs. This can be normalized into a prob-
abilistic model that gives the probability of a user
speech act given the context of the most recent sys-
tem dialog act to which the user is responding. The
equation used to modify SLU confidence scores is
the following. Let Prob(SLU) represent the con-
fidence score (expressed as a probability) for the
hypothesis SLU , and let V al(SLU) represent the
actual hypothesis (e.g. inform(food = belgian)).

Prob(SLUmod) = 0.7∗Prob(SLU)+0.3∗Expct
where Prob(SLU) is the original confidence
score for the hypothesis, and Expct is the prob-
ability of the occurrence of the speech act used

5The mascot name of East Carolina sports teams is the
Pirates. In addition, the code development process for our
tracker was based on modification of the simple baseline
tracker provided by the DSTC 2 organizers.

6Moody (1988) used the Wizard-of-Oz paradigm to col-
lect dialogs relevant to the Circuit Fix-It Shop domain as
part of her research into the effects of restricted vocabulary
on discourse structure, but the total number of dialogs was
about 100. In contrast, DSTC 2 provided 1612 actual human-
computer dialogs for the training set, 506 dialogs for the de-
velopment set, and 1117 dialogs for the test set.
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EA MA
Tracker Food Price Area Food Price Area

1 41.2% 25.6% 29.9% 41.5% 36.7% 20.2%
2 29.5% 34.8% 35.7% 41.4% 26.6% 27.8%
3 36.0% 23.7% 33.0% 30.9% 34.1% 31.9%
4 44.4% 25.8% 27.7% 30.4% 35.4% 29.8%
5 32.2% 40.5% 27.0% 19.5% 34.0% 42.4%
6 28.8% 34.2% 37.0% 46.0% 27.7% 22.8%
7 26.7% 38.3% 31.4% 35.7% 33.1% 28.0%
8 28.3% 25.7% 44.2% 49.4% 28.9% 18.9%
9 28.3% 17.7% 34.3% 54.5% 17.8% 26.8%

Table 4: Error Distribution by Attribute

in the SLU hypothesis given the current system
speech act (i.e., the probability that comes from
the statistical model of dialog expectation). The
0.3 weighting factor was determined through trial
and error to perform the best given the training
data (basing performance on 1-best joint goal ac-
curacy).7

After calculating the modified values, the scores
are renormalized so that the confidence values
sum to 1. Given the renormalized values for
Prob(SLUmod), dialog state was updated by us-
ing the following rules. Let V al(HypCur) repre-
sent the current hypothesis in the dialog state for
the value of an attribute, and its confidence score
be denoted by Prob(HypCur).

1. Increase Prob(SLUmod) by Prob(X)
where V al(X) == NULL (i.e. the default
NULL hypothesis for the SLU), whenever
Prob(X) is < 0.5. Reset Prob(X) to 0.

2. Replace HypCur with the highest scoring
SLUmod for that attribute if the user speech
act is an inform, and the following relation-
ship holds.

Prob(SLUmod) + Tol ≥ Prob(HypCur)

where Tol is an experimentally determined
tolerance value (currently set at 0.1).

3. If the system speech act was a canthelp
act that specifies particular attribute values
(e.g. food = belgian), and the current cho-
sen hypothesis (SLUmod) provides informa-
tion about that attribute, overwrite the state

7For recent work using a Bayesian-based alternative for
combining dialog history with the current utterance to calcu-
late probabilities, see Raux and Ma (2011).

information for the attribute listed in canthelp
even if the confidence score is less.

The motivation for these rules comes from the
assumption that the Gricean Cooperative Principle
for conversation (Grice, 1975) applies to this di-
alog environment. Given this assumption, rule 1
is based on the belief that the human dialog par-
ticipant is attempting to make an appropriate dia-
log contribution at every turn. Consequently when
reasonable, we will augment the top hypothesized
SLU’s confidence score with any weight given to
the NULL hypothesis. Rule 2 is based on the idea
that an intended new contribution should replace
a previous contribution and that some allowance
should be made for “signal noise” in calculating
SLU confidence. Rule 3 reflects the idea that when
the system cannot provide assistance about a spec-
ified attribute value, any new information about
the attribute should be considered a replacement.

The above rules are for updating choices for
the individual attributes that are possible compo-
nents of the goal state (area, food, name and price
range). In our modeling of dialog state, we only
maintain the top actual hypothesis for each at-
tribute, For producing the joint goal, we used the
default that the joint goal is the product of the
marginal goals.8

With this fairly simple approach, Pirate had a
1-best joint goal accuracy of 72.9%. This accu-
racy rate exceeded the performance of all baseline
trackers, and was 13th out of 31 for the trackers
submitted.9

8Consequently, if our confidence score for the top hypoth-
esis is < 0.5, that hypothesis will not be included in the joint
goal, as the default “None” is associated with higher confi-
dence.

9The set of 12 trackers that performed better is comprised
of 4 trackers each from 3 other teams.
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4.2 Comparison to the Best Performing
Tracker

An entry from team2 achieved 78.4% accuracy on
the 1-best joint goal accuracy metric. A compar-
ative analysis was conducted whereby the perfor-
mance of each tracker was compared on a turn-by-
turn basis. Highlights of this analysis include the
following.

• The two trackers were both correct 70.6% of
the time and both incorrect 19.3% of the time.

• 7.8% of the time Pirate was incorrect when
the team2 tracker was correct.

• 2.2% of the time, Pirate was correct when the
team2 tracker was incorrect.

Further exploration examined performance
within dialogs. It was discovered that there
were 18 dialogs where Pirate was incorrect for
at least 8 turns where the team2 tracker was cor-
rect. Furthermore, there were no turns in those di-
alogs where the team2 tracker was incorrect when
Pirate was correct. Given that the team2 tracker
performed several percentage points better over-
all, this is not surprising. What might be surprising
is that there are 7 dialogs where the opposite was
true, and Pirate performed better than the team2
tracker. An initial glance at an actual dialog from
each situation indicated the following.

• While team2 did not offer a description of
their methodology in their submission, it can
be inferred that they used the original ASR
hypotheses as part of its dialog state track-
ing. Pirate was unable to detect in the 2nd
turn that the goal (area=dontcare) was being
communicated because it did not show up in
the SLU hypotheses. However, the top ASR
hypothesis was “area”. Integrating SLU with
dialog context is known to be a good idea
when technically feasible, and is borne out by
this example. This missing attribute for goal
state was propagated throughout all subse-
quent turns of the dialog. However, it should
be noted that omitting an attribute where the
correct value is “dontcare” is a somewhat be-
nign error as discussed in the next example.

• The dialog reviewed where the team2 tracker
had trouble that Pirate did not revolved
around the fact that at an important mo-
ment in the dialog, the team2 tracker

added an unstated hypothesis of the form
(food=dontcare) to its joint goal. This was
retained for the duration of the dialog. It can
be readily argued that this is a benign error.
If the user never explicitly gave a constraint
about food (implying thatNone is the correct
value for the attribute), the dialog manager
is not likely to make a wrong decision if it’s
basing its action instead on (food=dontcare).

Time constraints have prohibited further exam-
ination of the other dialogs, but clearly this is a
fruitful area of exploration for understanding be-
havioral differences between approaches to dialog
state tracking.

5 Conclusion

A primary motivation of the DSTC is to allow
for direct comparisons between alternative ap-
proaches to dialog state tracking. The results from
DSTC 1 focused on performance aspects with-
out providing a detailed analysis of errors sources.
This paper describes several techniques for exam-
ining the errors made by the dialog state trackers in
order to refine our understanding of the limitations
of various approaches to the tracking process.

Though the analysis at this point is incomplete,
one immediate observation is that no one approach
is universally superior to other approaches with re-
spect to the performance metric 1-best joint goal
accuracy. However, being able to carefully de-
termine the conditions under which one approach
outperforms another and determining if there are
ways to combine alternative techniques into a
more effective but sufficiently efficient tracking
model is very much an unsolved problem. The
results from this paper suggest that a careful anal-
ysis of errors can provide further insight into our
knowledge about the difficult challenge of dialog
state tracking. We would like to explore some
of the trends observed with appropriate statisti-
cal tests as well as look more carefully at di-
alogs where pairwise comparative analysis indi-
cates highly differential behavior.
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Figure 1: Error Distribution: all dialogs

Appendix

Figure 1 displays in a graphical fashion the er-
ror counts for the different types of missing at-
tributes for the trackers listed in Table 1. For
clarity, the data for trackers 1 and 9 are omitted.
“Focus” is the baseline focus tracker provided by
the DSTC 2 organizers (Henderson et al., 2013),
and “HWU” is the baseline tracker provided by
Zhuoran Wang (see http://camdial.org/

˜mh521/dstc/). “Trk 3” is our tracker, Pirate.
As a reminder, the best overall performing tracker
is the one labeled “Trk 2”. One observation from
the figure is that its best performance is in mini-
mizing False Attribute (FA) errors.
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Abstract 

During the recent Dialog State Tracking 

Challenge (DSTC), a fundamental question 

was raised: “Would better performance in 

dialog state tracking translate to better 

performance of the optimized policy by 

reinforcement learning?” Also, during the 

challenge system evaluation, another non-

trivial question arose: “Which evaluation 

metric and schedule would best predict 

improvement in overall dialog performance?” 

This paper aims to answer these questions by 

applying an off-policy reinforcement learning 

method to the output of each challenge system. 

The results give a positive answer to the first 

question. Thus the effort to separately improve 

the performance of dialog state tracking as 

carried out in the DSTC may be justified. The 

answer to the second question also draws 

several insightful conclusions on the 

characteristics of different evaluation metrics 

and schedules. 

1 Introduction 

Statistical approaches to spoken dialog 

management have proven very effective in 

gracefully dealing with noisy input due to 

Automatic Speech Recognition (ASR) and 

Spoken Language Understanding (SLU) error 

(Lee, 2013; Williams et al., 2013). Most recent 

advances in statistical dialog modeling have been 

based on the Partially Observable Markov 

Decision Processes (POMDP) framework which 

provides a principled way for sequential action 

planning under uncertainty (Young et al., 2013). 

In this approach, the task of dialog management 

is generally decomposed into two subtasks, i.e., 

dialog state tracking and dialog policy learning. 

The aim of dialog state tracking is to accurately 

estimate the true dialog state from noisy 

observations by incorporating patterns between 

turns and external knowledge as a dialog unfolds 

(Fig. 1). The dialog policy learning process then 

strives to select an optimal system action given 

the estimated dialog state.  

Many dialog state tracking algorithms have 

been developed. Few studies, however, have 

reported the strengths and weaknesses of each 

method. Thus the Dialog State Tracking 

Challenge (DSTC) was organized to advance 

state-of-the-art technologies for dialog state 

tracking by allowing for reliable comparisons 

between different approaches using the same 

datasets (Williams et al., 2013). Thanks to the 

DSTC, we now have a better understanding of 

effective models, features and training methods 

we can use to create a dialog state tracker that is 

not only of superior performance but also very 

robust to realistic mismatches between 

development and deployment environments (Lee 

and Eskenazi, 2013). 

Despite the fruitful results, it was largely 

limited to intrinsic evaluation, thus leaving an 

important question unanswered: “Would the 

improved performance in dialog state tracking 

carry over to dialog policy optimization?” 

Furthermore, there was no consensus on what 

and when to measure, resulting in a large set of 

metrics being evaluated with three different 

schedules. With this variety of metrics, it is not 

clear what the evaluation result means. Thus it is 

important to answer the question: “Which metric 

best serves as a predictor to the improvement in 

dialog policy optimization” since this is the 

ultimate goal, in terms of end-to-end dialog 

performance. The aim of this paper is to answer 

these two questions via corpus-based 

experiments. Similar to the rationale behind the 

DSTC, the corpus-based design allows us to 
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compare different trackers on the same data. We 

applied a sample efficient off-policy 

reinforcement learning (RL) method to the 

outputs of each tracker so that we may examine 

the relationship between the performance of 

dialog state tracking and that of the optimized 

policy as well as which metric shows the highest 

correlation with the performance of the 

optimized policy. 

This paper is structured as follows. Section 2 

briefly describes the DSTC and the metrics 

adopted in the challenge. Section 3 elaborates on 

the extrinsic evaluation method based on off-

policy RL. Section 4 presents the extrinsic 

evaluation results and discusses its implication 

on metrics for dialog state tracking evaluation. 

Finally, Section 5 concludes with a brief 

summary and suggestions for future research.  

2 DSTC Task and Evaluation Metrics 

This section briefly describes the task for the 

DSTC and evaluation metrics. For more details, 

please refer to the DSTC manual
1
.  

                                                 
1
 http://research.microsoft.com/apps/pubs/?id=169024 

2.1 Task Description 

DSTC data is taken from several different 

spoken dialog systems which all provided bus 

schedule information for Pittsburgh, 

Pennsylvania, USA (Raux et al., 2005) as part of 

the Spoken Dialog Challenge (Black et al., 2011). 

There are 9 slots which are evaluated: route, 

from.desc, from.neighborhood, from.monument, 

to.desc, to.neighborhood, to.monument, date, and 

time. Since both marginal and joint 

representations of dialog states are important for 

deciding dialog actions, the challenge takes both 

into consideration. Each joint representation is an 

assignment of values to all slots.  Thus there are 

9 marginal outputs and 1 joint output in total, 

which are all evaluated separately. 

The dialog tracker receives the SLU N-best 

hypotheses for each user turn, each with a 

confidence score. In general, there are a large 

number of values for each slot, and the coverage 

of N-best hypotheses is good, thus the challenge 

confines its determination of whether a goal has 

been reached to slots and values that have been 

observed in an SLU output. By exploiting this 

aspect, the task of a dialog state tracker is to 

generate a set of observed slot and value pairs, 

with a score between 0 and 1. The sum of all 

 
 

Figure 1: An example of dialog state tracking for the Route slot. At each turn the system asks for user’s 

goal or attempts to confirm one of hypotheses. The user’s utterance is recognized to output an N-best 

list. The SLU module generates semantic inputs to the dialog manager by parsing the N-best 

hypotheses. Each SLU hypothesis receives a confidence score. From the current turn’s SLU 

hypotheses and all previous ones thus far, the dialog state tracker computes a probability distribution 

over a set of dialog state hypotheses. Note that the number of hypotheses in a dialog state can be 

different from the number of SLU hypotheses, e.g., at turn t+1, 3 and 5 respectively.  
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scores is restricted to sum to 1.0. Thus 1.0 – total 

score is defined as the score of a special value 

None that indicates the user’s goal has not yet 

appeared on any SLU output. 

2.2 Evaluation Metrics 

To evaluate tracker output, the correctness of 

each hypothesis is labeled at each turn. Then 

hypothesis scores and labels over the entire 

dialogs are collected to compute 11 metrics:  

 

 Accuracy measures the ratio of states under 

evaluation where the top hypothesis is 

correct. 

 ROC.V1 computes the following quantity:  

 

     ( )  
  ( )

 
 

 

where    is the total number of top 

hypotheses over the entire data and   ( ) 

denotes the number of correctly accepted top 

hypotheses with the threshold being set to  . 

Similarly FA denotes false-accepts and FR 

false-rejects. From these quantities, several 

metrics are derived. ROC.V1.EER 

computes FA.V1(s) where FA.V1(s) = 

FR.V1(s). The metrics ROC.V1.CA05, 

ROC.V1.CA10, and ROC.V1.CA20 

compute CA.V1(s) when FA.V1(s) = 0.05, 

0.10, and 0.20 respectively. These metrics 

measure the quality of score via plotting 

accuracy with respect to false-accepts so that 

they may reflect not only accuracy but also 

discrimination.  

 ROC.V2 computes the conventional ROC 

quantity:  

 

     ( )  
  ( )

  ( )
 

 

ROC.V2.CA05, ROC.V2.CA10, and 

ROC.V2.CA20 do the same as the V1 

versions. These metrics measure the 

discrimination of the score for the top 

hypothesis independently of accuracy. 

 

Note that Accuracy and ROC curves do not take 

into consideration non-top hypotheses while the 

following measures do. 

 

 L2 calculates the Euclidean distance 

between the vector consisting of the scores 

of all hypotheses and a zero vector with 1 in 

the position of the correct one. This 

measures the quality of tracker’s output 

score as probability. 

 AvgP indicates the averaged score of the 

correct hypothesis. Note that this measures 

the quality of the score of the correct 

hypothesis, ignoring the scores assigned to 

incorrect hypotheses.  

 MRR denotes the mean reciprocal rank of 

the correct hypothesis. This measures the 

quality of rank instead of score. 

 

As far as evaluation schedule is concerned, there 

are three schedules for determining which turns 

to include in each evaluation. 

 

 Schedule 1: Include all turns. This schedule 

allows us to account for changes in concepts 

that are not in focus. But this makes across-

concept comparison invalid since different 

concepts appear at different times in a dialog. 

 Schedule 2: Include a turn for a given 

concept only if that concept either appears on 

the SLU N-Best list in that turn, or if the 

system’s action references that concept in 

that turn. Unlike schedule 1, this schedule 

makes comparisons across concepts valid but 

cannot account for changes in concepts 

which are not in focus. 

 Schedule 3: Include only the turn before the 

system starts over from the beginning, and 

the last turn of the dialog. This schedule does 

not consider what happens during a dialog.  

3 Extrinsic Evaluation Using Off-Policy 

Reinforcement Learning  

In this section, we present a corpus-based 

method for extrinsic evaluation of dialog state 

tracking. Thanks to the corpus-based design 

where outputs of various trackers with different 

characteristics are involved, it is possible to 

examine how the differences between trackers 

affect the performance of learned policies. The 

performance of a learned policy is measured by 

the expected return at the initial state of a dialog 

which is one of the common performance 

measures for episodic tasks.  

3.1 Off-Policy RL on Fixed Data 

To learn an optimal policy from fixed data, we 

applied a state-of-the-art kernelized off-policy 

RL method. Off-policy RL methods allows for 

optimization of a policy by observing how other 

policies behave. The policy used to control the 
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system’s behavior is called Behavior policy. As 

far as a specific algorithm is concerned, we have 

adopted Least-Squares Temporal Difference 

(LSTD) (Bradtke and Barto, 1996) for policy 

evaluation and Least-Squares Policy Iteration 

(LSPI) (Lagoudakis and Parr, 2003) for policy 

learning. LSTD and LSPI have been well known 

to be sample efficient, thus easily lending 

themselves to the application of RL to fixed data 

(Pietquin et al., 2011). LSPI is an instance of 

Approximate Policy Iteration where an 

approximated action-state value function (a.k.a Q 

function) is established for a current policy and 

an improved policy is formed by taking greedy 

actions with respect to the estimated Q function. 

The process of policy evaluation and 

improvement iterates until convergence. For 

value function approximation, in this work, we 

adopted the following linear approximation 

architecture: 

 

 ̂ (   )     (   ) 

 

where   is the set of parameters,  (   )  an 

activation vector of basis functions,   a state and 

  an action. Given a policy    and a set of state 

transitions  (             )      , where    is the 

reward that the system would get from the 

environment by executing action    at state   , 

the approximated state-action value function  ̂  

is estimated by LSTD. The most important part 

of LSTD lies in the computation of the gradient 

of temporal difference: 

 

 (   )    (    (  )) 
 

In LSPI,  (  ) takes the form of greedy policy:  

 

 (  )        
  

 ̂ (     ) 

 

It is however critical to take into consideration 

the inherent problem of insufficient exploration 

in fixed data to avoid overfitting (Henderson et 

al., 2008). Thus we confined the set of available 

actions at a given state to the ones that have an 

occurrence probability greater than some 

threshold  : 

 

 (  )        
       (  |  )  

 ̂ (     ) 

 

The conditional probability  (  |  )  can be 

easily estimated by any conventional 

classification methods which provide posterior 

probability. In this study, we set   to 0.1. 

3.2 State Representation and Basis Function 

In order to make the process of policy 

optimization tractable, the belief state is 

normally mapped to an abstract space by only 

taking crucial information for dialog action 

selection, e.g., the beliefs of the top and second 

hypotheses for a concept. Similarly, the action 

space is also mapped into a smaller space by 

only taking the predicate of an action. In this 

work, the simplified state includes the following 

elements: 

 

 The scores of the top hypothesis for each 

concept with None excluded 

 The scores of the second hypothesis for each 

concept with None excluded 

 The scores assigned to None for each 

concept 

 Binary indicators for a concept if there are 

hypotheses except None 

 The values of the top hypothesis for each 

concept 

 A binary indicator if the user affirms when 

the system asks a yes-no question for next 

bus 

 

It has been shown that the rapid learning speed 

of recent approaches is partly attributed to the 

use of kernels as basis functions (Gasic et al., 

2010; Lee and Eskenazi, 2012; Pietquin et al., 

2011). Thus to make the best of the limited 

amount of data, we adopted a kernelized 

approach. Similar to previous studies, we used a 

product of kernel functions: 

 

 (    )    (   
 )∏  (    )

   

 

 

where   (   )  is responsible for a vector of 

continuous elements of a state and   (   )  for 

each discrete element. For the continuous 

elements, we adopted Gaussian kernels: 

 

  (   
 )       ( 

‖     
 ‖

   )   

 

where   governs the value at center,   controls 

the width of the kernel and   represents the 

vector of continuous elements of a state. In the 

experiments,  and   were set to 4 and 3, 
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respectively. For a discrete element, we adopted 

delta kernel: 

 

  (    )     
(  

 ) 

 

where   ( 
 )  returns one if     , zero 

otherwise and    represents an element of a state. 

As the number of data points increases, 

kernelized approaches commonly encounter 

severe computational problems. To address this 

issue, it is necessary to limit the active kernel 

functions being used for value function 

approximation. This sparsification process has to 

find out the sufficient number of kernels which 

keeps a good balance between computational 

tractability and approximation quality. We 

adopted a simple sparsification method which 

was commonly used in previous studies (Engel et 

al., 2004). The key intuition behind of the 

sparsification method is that there is a mapping 

 ( )  to a Hilbert space in which the kernel 

function  (    )  is represented as the inner 

product of  ( )  and  (  )  by the Mercer’s 

theorem. Thus the kernel-based representation of 

Q function can be restated as a plain linear 

equation in the Hilbert space: 

 

 ̂ ( )  ∑  

 

 (    
 )  〈 ( ) ∑   (  

 )

 

〉 

 

where   denotes the pair of state and action. The 

term ∑    (  
 )  plays the role of the weight 

vector in the Hilbert space. Since this term takes 

the form of linear combination, we can safely 

remove any linearly dependent  (  
 )  without 

changing the weighted sum by tuning  . It is 

known that the linear dependence of  ( ) from 

the rest can be tested based on kernel functions 

as follows:  

 

     (     )      
(  )

     (1) 

 

where     
     (       )  (       )    

and   is a sparsification threshold. When 

equation 1 is satisfied,    can be safely removed 

from the set of basis functions. Thus the sparsity 

can be controlled by changing  . It can be shown 

that equation 1 is minimized when   
    

      
(  ) , where     

   is the Gram matrix 

excluding   . In the experiments,   was set to 3. 

3.3 Reward Function 

The reward function is defined following a  

common approach to form-filling, task-oriented 

systems: 

 

 Every correct concept filled is rewarded 100 

 Every incorrect concept filled is assigned     

-200 

 Every empty concept is assigned -300 if the 

system terminated the session, -50 otherwise. 

 At every turn, -20 is assigned 

 

The reward structure is carefully designed such 

that the RL algorithm cannot find a way to 

maximize the expected return without achieving 

the user goal. 

4 Experimental Setup 

In order to see the relationship between the 

performance of dialog state tracking and that of 

the optimized policy, we applied the off-policy 

RL method presented in Section 3 to the outputs 

of each tracker for all four DSTC test datasets
2
. 

The summary statistics of the datasets are 

presented in Table 1. In addition, to quantify the 

impact of dialog state tracking on an end-to-end 

dialog, the performance of policies optimized by 

RL was compared with Behavior policies and 

another set of learned policies using supervised 

learning (SL). Note that Behavior policies were 

developed by experts in spoken dialog research. 

The use of a learned policy using supervised 

                                                 
2
 We took the entry from each team that achieved the 

highest ranks of that team in the largest number of 

evaluation metrics: entry2 for team3 and team6, 

entry3 for team8, entry4 for team9, and entry1 for the 

rest of the teams. We were not, however, able to 

process the tracker output of team2 due to its large 

size. This does not negatively impact the general 

results of this paper. 

 # Dialogs # Turns 

Training Test Training Test 

DS1 274 312 2594 2168 
DS2 321 339 3394 2579 
DS3 277 286 2221 1988 
DS4 141 165 1060 979 

Table 1: The DSTC test datasets (DS1-4) 

were evenly divided into two groups of 

datasets for off-policy RL training and test. To 

simplify the analysis, the dialogs that include 

startover and canthelp were excluded. 
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learning (Hurtado et al., 2005) is also one of the 

common methods of spoken dialog system 

development. We exploited the SVM method 

with the same kernel functions as defined in 

Section 3.2 except that the action element is not 

included. The posterior probability of the SVM 

model was also used for handling the insufficient 

exploration problem (in Section 3.1).  

5 Results and Discussion  

The comparative results between RL, SL and 

Behavior policies are plotted in Fig. 2. Despite 

the relatively superior performance of SL 

policies over Behavior policies, the performance 

improvement is neither large nor constant. This 

confirms that Behavior policies are very strong 

baselines which were designed by expert 

researchers. RL policies, however, consistently 

outperformed Behavior as well as SL policies, 

with a large performance gap. This result 

indicates that the policies learned by the 

proposed off-policy RL method are a lot closer to 

optimal ones than the hand-crafted policies 

created by human experts. Given that many state 

features are derived from the belief state, the 

large improvement in performance implies that 

the estimated belief state is indeed a good 

summary representation of a state, maintaining 

the Markov property between states. The Markov 

property is a crucial property for RL methods to 

approach to the optimal policy. On the other 

hand, most of the dialog state trackers surpassed 

the baseline tracker (team0) in the performance 

of RL policies. This result assures that the better 

the performance in dialog state tracking, the 

better a policy we can learn in the policy 

optimization stage. Given these two results, we 

can strongly assert that dialog state tracking 

plays a key role in enhancing end-to-end dialog 

performance. 

Another interesting result worth noticing is 

that the performance of RL policies does not 

exactly align with the accuracy measured at the 

end of a dialog (Schedule 3) which would have 

been the best metric if the task were a one-time 

classification (Fig. 2). This misalignment 

therefore supports the speculation that accuracy-

schedule3 might not be the most appropriate 

metric for predicting the effect of dialog state 

tracking on end-to-end dialog performance. In 

order to better understand What To Measure and 

When To Measure to predict end-to-end dialog 

performance, a correlation analysis was carried 

out between the performance of RL policies and 

that of the dialog state tracking measured by 

different metrics and schedules. The correlations 

are listed in descending order in Fig. 3. This 

result reveals several interesting insights for 

different metrics.  

First, metrics which are intended to measure 

the quality of a tracker’s score (e.g., L2 and 

AvgP) are more correlated than other metrics. 

This tendency can be understood as a 

consequence of the sequential decision-making 

nature of a dialog task. A dialog system can 

always initiate an additional turn, unless the user 

 
 

Figure 2: The left vertical axis is associated with the performance plots of RL, SL and Behavior 

policies for each team. The right vertical axis measures the accuracies of each team’s tracker at the end 

of a dialog (schedule 3). 

315



terminates the session, to refine its belief state 

when there is no dominant hypothesis. Thus 

accurate estimation of the beliefs of all observed 

hypotheses is essential. This is why the 

evaluation of only the top hypothesis does not 

provide sufficient information.  

Second, schedule1 and schedule3 showed a 

stronger correlation than schedule2. In fact 

schedule2 was more preferred in previous studies 

since it allows for a valid comparison of different 

concepts (Williams, 2013; Williams et al., 2013). 

This result can be explained by the fact that the 

best system action is selected by considering all 

of the concepts together. For example, when the 

system moves the conversation focus from one 

concept to another, the beliefs of the concepts 

that are not in focus are as important as the 

concept in focus. Thus evaluating all concepts at 

the same time is more suitable for predicting the 

performance of a sequential decision-making 

task involving multiple concepts in its state.  

Finally, metrics for evaluating discrimination 

quality (measured by ROC.V2) have little 

correlation with end-to-end dialog performance. 

In order to understand this relatively unexpected 

result, we need to give deep thought to how the 

scores of a hypothesis are distributed during the 

session. For example, the score of a true 

hypothesis usually starts from a small value due 

to the uncertainty of ASR output and gets bigger 

every time positive evidence is observed. The 

score of a false hypothesis usually stays small or 

medium. This leads to a situation where both true 

and false hypotheses are pretty much mixed in 

the zone of small and medium scores without 

significant discrimination. It is, however, very 

important for a metric to reveal a difference 

between true and false hypotheses before their 

scores fully arrive at sufficient certainty since 

most additional turns are planned for hypotheses 

with a small or medium score. Thus general 

metrics evaluating discrimination alone are 

hardly appropriate for a tracking problem where 

the score develops gradually. Furthermore, the 

choice of threshold (i.e. FA = 0.05, 0.10, 0.20) 

was made to consider relatively unimportant 

regions where the true hypothesis is likely to 

have a higher score, meaning that no further 

turns need to be planned. 

6 Conclusion 

In this paper, we have presented a corpus-based 

study that attempts to answer two fundamental 

questions which, so far,  have not been 

rigorously addressed: “Would better 

performance in dialog state tracking translate to 

better performance of the optimized policy by 

RL?”  and “Which evaluation metric and 

schedule would best predict improvement in 

overall dialog performance?” The result 

supports a positive answer to the first question. 

Thus the effort to separately improve the 

performance of dialog state tracking as carried 

out in the recent held DSTC may be justified. As 

a way to address the second question, the 

correlations of different metrics and schedules 

 
 

Figure 3: The correlations of each combination of metric and schedule with the performance of 

optimized polices.  
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with the performance of optimized policies were 

computed. The results revealed several insightful 

conclusions: 1) Metrics measuring score quality 

are more suitable for predicting the performance 

of an optimized policy. 2) Evaluation of all 

concepts at the same time is more appropriate for 

predicting the performance of a sequential 

decision making task involving multiple 

concepts in its state. 3) Metrics evaluating only 

discrimination (e.g., ROC.V2) are inappropriate 

for a tracking problem where the score gradually 

develops. Interesting extensions of this work 

include finding a composite measure of 

conventional metrics to obtain a better predictor. 

A data-driven composition may tell us the 

relative empirical importance of each metric. In 

spite of several factors which generalize our 

conclusions such as handling insufficient 

exploration, the use of separate test sets and 

various mismatches between test sets, it is still 

desirable to run different policies for live tests in 

the future. Also, since the use of an approximate 

policy evaluation method (e.g. LSTD) can 

introduce systemic errors, more deliberate 

experimental setups will be designed for a future 

study: 1) the application of different RL 

algorithms for training and test datasets 2) 

further experiments on different datasets, e.g., 

the datasets for DSTC2 (Henderson et al., 2014). 

Although the state representation adopted in this 

work is quite common for most systems that use 

a POMDP model, different state representations 

could possibly reveal new insights. 
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Abstract

Dialog state tracking challenge provides
a common testbed for state tracking al-
gorithms. This paper describes the SJTU
system submitted to the second Dialogue
State Tracking Challenge in detail. In
the system, a statistical semantic parser is
used to generate refined semantic hypothe-
ses. A large number of features are then
derived based on the semantic hypothe-
ses and the dialogue log information. The
final tracker is a combination of a rule-
based model, a maximum entropy and a
deep neural network model. The SJTU
system significantly outperformed all the
baselines and showed competitive perfor-
mance in DSTC 2.

1 Introduction

Dialog state tracking is important because spo-
ken dialog systems rely on it to choose proper
actions as spoken dialog systems interact with
users. However, due to automatic speech recog-
nition (ASR) and spoken language understanding
(SLU) errors, it is not easy for the dialog man-
ager to maintain the true state of the dialog. In
recent years, much research has been devoted to
dialog state tracking. Many approaches have been
applied to dialog state tracking, from rule-based
to statistical models, from generative models to
discriminative models (Wang and Lemon, 2013;
Zilka et al., 2013; Henderson et al., 2013; Lee
and Eskenazi, 2013). Recently, shared research
tasks like the first Dialog State Tracking Challenge
(DSTC 1) (Williams et al., 2013) have provided
a common testbed and evaluation suite for dialog
state tracking (Henderson et al., 2013).

Compared with DSTC 1 which is in the bus
timetables domain, DSTC 2 introduces more com-
plicated and dynamic dialog states, which may

change through the dialog, in a new domain, i.e.
restaurants domain (Henderson et al., 2014). For
each turn, a tracker is supposed to output a set
of distributions for each of the three components
of the dialog state: goals, method, and requested
slots. At a given turn, the goals consists of the
user’s true required value having been revealed
for each slot in the dialog up until that turn; the
method is the way the user is trying to interact with
the system which may be by name, by constraints,
by alternatives or finished; and the requested slots
consist of the slots which have been requested by
the user and not replied by the system. For evalua-
tion in DSTC 2, 1-best quality measured by accu-
racy, probability calibration measured by L2, and
discrimination measured by ROC are selected as
featured metrics. Further details can be found in
the DSTC 2 handbook (Henderson et al., 2013).

Previous research has demonstrated the effec-
tiveness of rule-based (Zilka et al., 2013), maxi-
mum entropy (MaxEnt) (Lee and Eskenazi, 2013)
and deep neural network (DNN) (Henderson et al.,
2013) models separately. Motivated by this, the
SJTU system employs a combination of a rule-
based model, a MaxEnt and a DNN model. The
three models were first trained (if necessary) on
the training set and tested for each of the three
components of the dialog state, i.e goals, method,
and requested slots on the development set. Then,
models with the best performance for each of the
three components were selected to form a com-
bined model. Finally, the combined model was
retrained using both training set and development
set. Additionally, as the live SLU was found not
good enough with some information lost com-
pared with the live ASR, a new semantic parser
was implemented which took the live ASR as in-
put and the SJTU system used the result from the
new semantic parser instead of the live SLU.

The remainder of the paper is organized as fol-
lows. Section 2 describes the design of the new
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semantic parser. Section 3 presents the rule-based
model. Section 4 describes the statistical mod-
els including the maximum entropy model and the
deep neural network model. Section 5 shows and
discusses the performance of the SJTU system. Fi-
nally, section 6 concludes the paper.

2 Semantic Parser

It was found that the live SLU provided by the or-
ganisers has poor quality. Hence, a new statistical
semantic parser is trained to parse the live ASR
hypotheses.

2.1 Semantic Tuple Classifier
The semantics of an utterance is represented in
functor form called dialogue act consisting of a
dialogue act type and a list of slot-value pairs, for
example:

request(name,food=chinese)
where “request” is the dialogue act type,“name”
is a slot requested and “food=chinese” is a
slot-value pair which provides some informa-
tion to the system. In DSTC 2, there are
many different dialogue act types (e.g. “request”,
“inform”, “deny”, etc) and different slot-value
pairs (e.g. “food=chinese”, “pricerange=cheap”,
“area=center”, etc), which are all called semantic
items.

A semantic tuple (e.g. act type, type-slot pair,
slot-value pair) classifier (STC) approach devel-
oped by Mairesse et al. ( 2009) is used in the SJTU
system. It requires a set of SVMs to be trained on
n-gram features from a given utterance: a multi-
class SVM is used to predict the dialogue act type,
and a binary SVM is used to predict the exis-
tence of each slot-value pair. Henderson et al. (
2012) improved this method with converting the
SVM outputs to probabilities, and approximating
the probability of a dialogue-act d of type d-typej
with a set of slot-value pairs S by:

P (d|u) = P (d-typej |u)
∏
sv∈S

P (sv|u)∏
sv/∈S

(1− P (sv|u)) (1)

where u denotes an utterance and sv runs over all
possible slot-value pairs.

2.2 Dialogue Context Features
In addition to the n-gram feature used in the orig-
inal STC parser, the dialogue context can be ex-

ploited to constrain the semantic parser. In DSTC
2, the dialogue context available contains the his-
tory information of user’s ASR hypotheses, the
system act and the other output of system (e.g.
whether there is a barge-in from the user or not,
the turn-index) and so on. In the SJTU system,
the context features from the last system act (in-
dicators for all act types and slot-value pairs on
whether they appear), an indicator for “barge-in”
and the reciprocal of turn-index are combined with
the original n-gram feature to be the final feature
vector.

2.3 Generating Confidence Scores

For testing and predicting the dialogue act, the se-
mantic parser is applied to each of the top N ASR
hypotheses hi, and the set of results Di with mi

distinct dialogue act hypotheses would be merged
in following way:

P (d|o) =
N∑
i=1

{
p(hi|o)p(d|hi) if d ∈ Di

0 otherwise

where o is the acoustic observation, d runs over
each different dialogue act in Di, i = 1, ..., N ,
p(hi|o) denotes the ASR posterior probability of
the i-th hypothesis, p(d|hi) denotes the semantic
posterior probability given the i-th ASR hypoth-
esis as in equation (1). Finally, a normalization
should be done to guarantee the sum of P (d|o) to
be one.

2.4 Implementation

The STCs-based semantic parser is implemented
with linear kernel SVMs trained using the Lib-
SVM package (Chang and Lin, 2011). The SVM
misclassification cost parameters are optimised in-
dividually for each SVM classifier by performing
cross-validations on the training data.

3 Rule-based Model

In this section, the rule-based model which is
slightly different from the focus tracker (Hender-
son et al., 2013) and HWU tracker (Wang, 2013) is
described. The idea of the rule-based model is to
maintain beliefs based on basic probability opera-
tions and a few heuristic rules that can be observed
on the training set. In the following the rule-based
model for joint goals, method and requested slots
are described in detail.
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3.1 Joint Goals

For slot s, the i-th turn and value v, p+
s,i,v (p−s,i,v) is

used to denote the sum of all the confidence scores
assigned by the SLU to the user informing or af-
firming (denying or negating) the value of slot s is
v. The belief of “the value of slot s being v in the
i-th turn” denoted by bs,i,v is defined as follows.

• If v 6= “None”,

bs,i,v = (bs,i−1,v + p+
s,i,v(1− bs,i−1,v))

(1− p−s,i,v −
∑
v′ 6=v

p+
s,i,v′)

• Otherwise,

bs,i,v = 1−
∑

v′ 6=“None”

bs,i,v′

In particular, when i = 0, bs,0,v = 1 if v =
“None”, otherwise 0. The motivation here comes
from HWU tracker (Wang, 2013) that only p+

s,·,v
positively contributes to the belief of slot s being
v, and both p+

s,·,v′ (v′ 6= v) and p−s,·,v contribute to
the belief negatively.

3.2 Method

For the i-th turn, pi,m is used to denote the sum of
all the confidence scores assigned by the SLU to
method m. Then the belief of “the method being
m in the i-th turn” denoted by bi,m is defined as
follows.

• If m 6= “none”,

bi,m = bi−1,m(1−
∑

m′ 6=“none”

pi,m′) + pi,m

• Otherwise,

bi,m = 1−
∑

m′ 6=“none”

bi,m′

In particular, b0,m = 0 when i = 0 and m 6=
“none”. An explanation of the above formula
is given by Zilka et al. (2013). The idea is also
adopted by the focus tracker (Henderson et al.,
2013).

3.3 Requested Slots
For the i-th turn and slot r, pi,r is used to denote
the sum of all the confidence scores assigned by
the SLU to r is one of the requested slots. Then
the belief of “r being one of the requested slots in
the i-th turn” denoted by bi,r is defined as follows.

• If i = 1, or system has at least one of
the following actions: “canthelp”, “offer”,
“reqmore”, “confirm-domain”, “expl-conf”,
“bye”, “request”,

bi,r = pi,r

• Otherwise,

bi,r = bi−1,r(1− pi,r) + pi,r

This rule is a combination of the idea of HWU
tracker (Wang, 2013) and an observation from the
labelled data that once system has some certain ac-
tions, the statistics of requested slots from the past
turn should be reset.

4 Statistical Model

In this section, two statistical models, one is the
MaxEnt model, the other is the DNN model, are
described.

4.1 Features
The performance of statistical models is highly de-
pendent on the feature functions.

Joint Goals
For slot s, the i-th turn and value v, the feature
functions designed for joint goals are listed below.

• f1 , inform(s, i, v) = the sum of all the
scores assigned by the SLU to the user in-
forming the value of slot s is v.

• f2 , affirm(s, i, v) = the sum of all the
scores assigned by the SLU to the user af-
firming the value of slot s is v.

• f3 , pos(s, i, v) = inform(s, i, v) +
affirm(s, i, v).

• f4 , deny(s, i, v) = the sum of all the scores
assigned by the SLU to the user denying the
value of slot s is v.

• f5 , negate(s, i, v) = the sum of all the
scores assigned by the SLU to the user negat-
ing the value of slot s is v.
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• f6 , neg(s, i, v) = deny(s, i, v) +
negate(s, i, v).

• f7 , acc(s, i, v) = pos(s, i, v)−neg(s, i, v).
• f8 , rule(s, i, v) = the confidence score

given by the rule-based model.

• f9 , rank inform(s, i, v) = the sum of all
the reciprocal rank of the scores assigned by
the SLU to the user informing the value of
slot s is v, or 0 if informing v cannot be found
in the SLU n-best list.

• f10 , rank affirm(s, i, v) = the sum of all
the reciprocal rank of the scores assigned by
the SLU to the user affirming the value of slot
s is v, or 0 if affirming v cannot be found in
the SLU n-best list.

• f11 , rank+(s, i, v) =
rank inform(s, i, v) +
rank affirm(s, i, v).

• f12 , rank deny(s, i, v) = the sum of all the
reciprocal rank of the scores assigned by the
SLU to the user denying the value of slot s
is v, or 0 if denying v cannot be found in the
SLU n-best list.

• f13 , rank negate(s, i, v) = the sum of all
the reciprocal rank of the scores assigned by
the SLU to the user negating the value of slot
s is v, or 0 if negating v cannot be found in
the SLU n-best list.

• f14 , rank−(s, i, v) = rank deny(s, i, v)+
rank negate(s, i, v).

• f15 , rank(s, i, v) = rank+(s, i, v) −
rank−(s, i, v).

• f16 , max(s, i, v) = the largest score given
by SLU to the user informing, affirming,
denying, or negating the value of slot s is v
from the 1-st turn.

• f17 , rest(s, i, v) = 1 if v = “None”, oth-
erwise 0.

• f18 , pos(s, i, v) =
∑

k=1≤i pos(s,k,v)

i , which
is the arithmetic mean of pos(s, ·, v) from the
1-st turn to the i-th turn. Similarly, f19 ,
neg(s, i, v), f20 , rank+(s, i, v) and f21 ,
rank−(s, i, v) are defined.

• f22 , (f22,1, f22,2, · · · , f22,10), where
f22,j , bin pos(s, i, v, j) = totpos(s,i,v,j)

Z ,
where totpos(s, i, v, j) = the total number
of slot-value pairs from the 1-st turn to the
i-th turn with slot s and value v which
will fall in the j-th bin if the range of
confidence scores is divided into 10 bins,
and Z =

∑
k≤i,1≤j′≤10,v′ totpos(s, k, v

′, j′),
which is the normalization factor. Simi-
larly, f23 , (f23,1, f23,2, · · · , f23,10) where
f23,j , bin neg(s, i, v, j) is defined.

• f24 , (f24,1, f24,2, · · · , f24,10). Where
f24,j , bin rule(s, i, v, j) = totrule(s,i,v,j)

Z ,
where totrule(s, i, v, j) = the total number
of rule(s, ·, v) from the 1-st turn to the i-
th turn which will fall in the j-th bin if the
range of rule(·, ·, ·) is divided into 10 bins,
and Z =

∑
k≤i,1≤j′≤10,v′ totrule(s, k, v

′, j′),
which is the normalization factor. Simi-
larly, f25 , (f25,1, f25,2, · · · , f25,10) where
f25,j , bin rank(s, i, v, j), and f26 ,
(f26,1, f26,2, · · · , f26,10) where f26,j ,
bin acc(s, i, v, j) are defined.

• f27 , (f27,1, f27,2, · · · , f27,10). Where
f27,j , bin max(s, i, v, j) = 1 if
max(s, i, v) will fall in the j-th bin if
the range of confidence scores is divided into
10 bins, otherwise 0.

• f28 , (f28,1, f28,2, · · · , f28,17). Where
f28,j , user acttype(s, i, v, uj) = the sum
of all the scores assigned by the SLU to the
user act type being uj(1 ≤ j ≤ 17). There
are a total of 17 different user act types de-
scribed in the handbook of DSTC 2 (Hender-
son et al., 2013).

• f29 , (f29,1, f29,2, · · · , f29,17). Where
f29,j , machine acttype(s, i, v,mj) = the
number of occurrences of act type mj(1 ≤
j ≤ 17) in machine act. There are a total of
17 different machine act types described in
the handbook of DSTC 2 (Henderson et al.,
2013).

• f30 , canthelp(s, i, v) = 1 if the system can-
not offer a venue with the constrain s = v,
otherwise 0.

• f31 , slot confirmed(s, i, v) = 1 if the sys-
tem has confirmed s = v, otherwise 0.
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• f32 , slot requested(s, i, v) = 1 if the sys-
tem has requested the slot s, otherwise 0.

• f33 , slot informed(s, i, v) = 1 if the sys-
tem has informed s = v, otherwise 0.

• f34 , bias(s, i, v) = 1.

In particular, all above feature function are 0
when i ≤ 0.

Method
For the i-th turn and method m, the feature func-
tions designed for method are listed below.

• f1 , slu(i,m) = the sum of all the scores
assigned by the SLU to the method being m.

• f2 , rank(i,m) = the sum of all the recip-
rocal rank of the scores assigned by the SLU
to the method being m.

• f3 , rule(i,m) = the confidence score given
by the rule-based model.

• f4 , slu(i,m) =
∑i

k=1 slu(k,m)
i , which is

the arithmetic mean of slu(·,m) from the
1-st turn to the i-th turn. Similarly, f5 ,
rank(i,m) and f6 , rule(i,m) are defined.

• f7 , score name(i) = the sum of all the
scores assigned by the SLU to the user in-
forming the value of slot name is some
value.

• f8 , venue offered(i) = 1 if at least one
venue has been offered to the user by the sys-
tem from the 1-st turn to the i-th turn, other-
wise 0.

• f9 , (f9,1, f9,2, · · · , f9,17). Where f9,j ,
user acttype(i, uj) = the sum of all the
scores assigned by the SLU to the user act
type being uj(1 ≤ j ≤ 17).

• f10 , bias(i) = 1.

In particular, all above feature function are 0
when i ≤ 0.

Requested Slots
For the i-th turn and slot r, the feature functions
designed for requested slots are listed below.

• f1 , slu(i, r) = the sum of all the scores
assigned by the SLU to r being one of the
requested slots.

• f2 , rank(i, r) = the sum of all the recipro-
cal rank of the scores assigned by the SLU to
r being one of the requested slots.

• f3 , rule(i, r) = the confidence score given
by the rule-based model.

• f4 , bias(i, r) = 1

In particular, all above feature function are 0
when i ≤ 0.

4.2 Maximum Entropy Model

Total 6 MaxEnt models (Bohus and Rudnicky,
2006) are employed, four models for the joint
goals, one for the method and one for the re-
quested slots. The Maximum Entropy model is an
efficient means that models the posterior of class
y given the observations x:

P (y|x) =
1

Z(x)
exp (λTf(y,x))

Where Z(x) is the normalization constant. λ is
the parameter vector and f(y,x) is the feature
vector.

The models for the joint goals are implemented
for four informable slots (i.e. area, food, name
and pricerange) separately. In the k-th turn, for
every informable slot s and its value v, i.e. slot-
value pair in SLU, the MaxEnt model for the cor-
responding slot is used to determine whether the
value v for the slot s in the user goals is right or
not. The input consists of 160 features 1 which
are selected from the feature functions described
in section 4.1 Joint Goals:

{f34}i=k ∪
⋃

k−2≤i≤k
{f1, · · · , f15,f28, · · · , f33}

Where i is the turn index . The output of the model
is the confidence score that the value v for the slot
s is right.

In the k-th turn, the model for the method is
used to determine which way the user is trying to
interact with the system. The input consists of 97
features which are selected from the feature func-

1For the feature function whose range is not 1 dimen-
sion, the number of features defined by the feature function
is counted as the number of dimensions rather than 1. For
example, the number of features defined by f28 is 17.
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tions described in section 4.1 Method:

{f10}i=k ∪
⋃

k−3≤i≤k
{f7, f8,f9}

∪
⋃
m

k − 3 ≤ i ≤ k

{f3}

and the output consists of five confidence scores
that the method belongs to every one of the five
ways (i.e. by name, by constraints, by alternatives,
finished and none).

The model for the requested slots is used to de-
termine whether the requestable slot r in the SLU
“request(slot)” is truly requested by the user or not
in the k-th turn. The input consists of 10 features
which are selected from the feature functions de-
scribed in section 4.1 Requested Slots:

{f4}i=k ∪
⋃

k−2≤i≤k
{f1, f2, f3}

and the output is the confidence score that r is truly
requested by the user in this turn.

The parameters of the 6 MaxEnt models are op-
timised separately through maximizing the likeli-
hood of the training data. The training process is
stopped when the likelihood change is less than
10−4.

4.3 Deep Neural Network Model
4 DNNs for joint goals (one for each slot), 1 for
method and 1 for requested slots are employed.
All of them have similar structure with Sigmoid
for hidden layer activation and Softmax for out-
put layer activation. As shown in figure 1, each
DNN has 3 hidden layers and each layer has 64
nodes. DNNs take the feature set (which will be
described in detail later) of a certain value of goal,
method, or requested slots as the input, then out-
put two values (donated by X and Y ), through the
hidden layer processing, and finally the confidence
of the value can be got by eX

eX+eY .
For slot s, the k-th turn and value v, the feature

set of goal consisting of 108 features is defined as:⋃
k−5≤i≤k

{f3, f6, f7, f8, f11, f14, f15}

∪ {f18, · · · , f21}i=k−6

∪ {f16, f17,f22, · · · ,f27}i=k
For the k-th turn and method m, the feature set

of method consisting of 15 features is defined as:⋃
k−3≤i≤k

{f1, f2, f3} ∪ {f4, f5, f6}i=k−4

An input layer 
with |feature_set| nodes 

3 hidden layers 
Each has 64 nodes 

An output layer 
with 2 nodes 

…
 

…
 

…
 

…
 

Figure 1: Structure of the DNN Model

For the k-th turn and slot r, the feature set of
requested slots consisting of 12 features is defined
as: ⋃

k−3≤i≤k
{f1, f2, f3}

Bernoulli-Bernoulli RBM was applied to pre-
train DNNs and Stochastic Gradient Descent with
cross-entropy criterion to fine-tune DNNs. For the
fine-tuning process, 3/4 of the data was used for
training and 1/4 for validation.

5 Experiments

DSTC 2 provides a training dataset of 1612 dia-
logues (11677 utterances) and a development set
of 506 dialogues (3934 utterances). The training
data was first used to train the semantic parser
and the MaxEnt and the DNN models for internal
system development as shown in section 5.1 and
5.2. These systems were tested on the develop-
ment data. Once the system setup and parameters
were determined, the training and development set
were combined together to train the final submit-
ted system. The final system was then tested on
the final evaluation data as shown in section 5.3.

5.1 Effect of the STC Semantic Parser
In DSTC 2, as the live semantic information was
found to be poor, two new semantic parsers were
then trained as described in section 2. One used
the top ASR hypothesis n-gram features and the
other one employed additional system feedback
features (the last system act, “barge-in” and turn-
index).

Table 1 shows the performance of two new se-
mantic parser in terms of the precision, recall,

323



System Precision Recall F-score ICE
baseline 0.6659 0.8827 0.7591 2.1850
1-best 0.7265 0.8894 0.7997 1.4529

+ sys fb 0.7327 0.8969 0.8065 1.3449

Table 1: Performance of semantic parsers with dif-
ferent features on the development set.

F-score of top dialogue act hypothesis and the
Item Cross Entropy (ICE) (Thomson et al., 2008)
which measures the overall quality of the confi-
dences distribution of semantic items (the less the
better). The baseline is the original live seman-
tic hypotheses, “1-best” (row 3) represents the se-
mantic parser trained on the top ASR hypothesis
with n-gram feature, and “sys fb” (row 4) rep-
resents the semantic parser added with the sys-
tem feedback features. The STC semantic parsers
significantly improve the quality of semantic hy-
potheses compared with baseline in the score of
precision, recall, F-score and ICE. And the parser
using context features (row 4) scored better than
the other one (row 3).

The improved semantic parsers are expected to
also yield better performance in dialogue state
tracking. Hence, the parsers were used in focus
baseline provided by the organiser. As shown in

Joint Goals Method Requested
baseline 0.6121 0.8303 0.8936
1-best 0.6613 0.8764 0.8987

+ sys fb 0.6765 0.8764 0.9297

Table 2: Results for focus baseline tracker with
different parsers

table 2, the new parsers achieved consistent im-
provement on the accuracy of joint goals, method
and requested slots. So the semantic hypotheses
of parser using the system feedback features was
used for later development.

5.2 Internal System Development

Table 3 shows the the results of rule-based model,
the MaxEnt model and the DNN model on the de-
velopment set. From the table we can see that
the DNN model has the best performance for joint
goals, the MaxEnt model has the best performance
for method and the rule-based model has the best
performance for requested slots. So the combined
model is a combination of those three models, one
for one of the three components where it has the
best performance, that is, the rule-based model
for requested slots, the MaxEnt model for method,

and the DNN model for joint goals.

Joint Goals Method Requested
Rule-based 0.6890 0.8955 0.9668

MaxEnt 0.6741 0.9079 0.9665
DNN 0.6906 0.8991 0.9661

Table 3: Performance of three tracking models

5.3 Evaluation Performance
The official results of the challenge are publicly
available and the SJTU team is team 7. Entry
0, 1, 2, 3 of team 7 is the combined model, the
rule-based model, the DNN model and the Max-
Ent model respectively. They all used the new se-
mantic parser based on live ASR hypotheses. En-
try 4 of team 7 is also a combined model but it
does not use the new semantic parser and takes the
live SLU as input.

Table 4 shows the results on the final evalua-
tion test set. As expected, the semantic parser does
work, and the combined model has the best perfor-
mance for joint goals and method, however, that
is not true for requested slots. Notice that on the
development set, the difference of the accuracy of
requested slots among the 3 models is significantly
smaller than that of joint goals and method. One
reasonable explanation is that one cannot claim
that the rule-based model has better performance
for requested slots than the MaxEnt model and the
DNN model only with an accuracy advantage less
than 0.1%.

Joint Goals Method Requested
Baseline 0.6191 0.8788 0.8842

Focus 0.7193 0.8670 0.8786
HWU 0.7108 0.8971 0.8844

HWU+ 0.6662 0.8846 0.8830
Rule-based 0.7387 0.9207 0.9701

MaxEnt 0.7252 0.9357 0.9717
DNN 0.7503 0.9287 0.9710

Combined+ 0.7503 0.9357 0.9701
Combined- 0.7346 0.9102 0.9458

Table 4: Accuracy of the combined model (Com-
bined+) compared with the rule-based model,
the MaxEnt model, the DNN model, the com-
bined model without the new semantic parser
(Combined-) and four baselines on the test set.
Four baselines are the baseline tracker (Base-
line), the focus tracker (Focus), the HWU tracker
(HWU) and the HWU tracker with “original” flag
set to (HWU+) respectively.

Figure 2 summaries the performance of the ap-
proach relative to all 31 entries in the DSTC 2.
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Figure 2: Performance of the combined model among 31 trackers. SJTU is the combined model (entry 0
of team 7).

As ROC metric is only comparable between sys-
tems of similar accuracy, only accuracy and L2
are compared. The results of the combined model
is competitive for all the three components, espe-
cially for joint goals.

5.4 Post Evaluation Analysis
Two strategies and two kinds of features were
added to the MaxEnt model for the requested slots
after DSTC 2 based on some observations on the
training set and development set. The first strategy
is that the output for the requested slots of the first
turn is set to empty by force. The second strategy
is that the output of the confidence is additionally
multiplied by (1−Cf ), whereCf denotes the con-
fidence given by the MaxEnt model to the method
of current turn being finished. As for the two kinds
of features, one is the slot indicator and the other
is the acttype-slot tuple. They are defined as 2:

• f5 , (f5,1, f5,2, · · · , f5,8), where f5,j ,
slot indicator(i, r, sj) = 1 if the index of the
slot r is j, i.e. sj = r, otherwise 0.

• f6 , (f6,1, f6,2, · · · , f6,33), where f6,j ,
user act slot(i, r, tj) = the sum of all the
scores assigned by the SLU to the j-th user
acttype-slot tuple tj . The acttype-slot tuple is
the combination of dialog act type and possi-
ble slot, e.g. inform-food, confirm-area.
There are 33 user acttype-slot tuples.

2The feature number is consistent with that in section 4.1.

• f7 , (f7,1, f7,2, · · · , f7,46), where f7,j ,
sys act slot(i, r, tj) = the number of occur-
rences of the j-th machine acttype-slot tuple
tj in the dialog acts. There are 46 machine
acttype-slot tuples.

With those strategies and features, the Max-
Ent model achieved an accuracy of 0.9769 for the
requested slots, which is significantly improved
compared with the submitted system.

6 Conclusion

This paper describes the SJTU submission for
DSTC 2 in detail. It is a combined system con-
sisting of a rule-based model, a maximum entropy
model and a deep neural network model with a
STC semantic parser. The results show that the
SJTU system is competitive and outperforms most
of the other systems in DSTC 2 on test datasets.
Post evaluation analysis reveal that there is still
room for improvement by refining the features.
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Abstract

Discriminative dialog state tracking has
become a hot topic in dialog research com-
munity recently. Compared to genera-
tive approach, it has the advantage of be-
ing able to handle arbitrary dependent fea-
tures, which is very appealing. In this
paper, we present our approach to the
DSTC2 challenge. We propose to use dis-
criminative Markovian models as a natu-
ral enhancement to the stationary discrim-
inative models. The Markovian structure
allows the incorporation of ‘transitional’
features, which can lead to more effi-
ciency and flexibility in tracking user goal
changes. Results on the DSTC2 dataset
show considerable improvements over the
baseline, and the effects of the Markovian
dependency is tested empirically.

1 Introduction

Spoken dialog systems (SDS) have become much
more popular these days, but still far from wide
adoption. One of the most outstanding problems
that affect user experience in an SDS is due to
automatic speech recognition (ASR) and spoken
language understanding (SLU) errors. While the
advancement of ASR technology has a positive ef-
fect on SDS, it is possible to improve the SDS user
experience by designing a module which explicitly
handles ASR and SLU errors. With accurately es-
timated dialog state, the dialog manager could se-
lect more effective and flexible dialog actions, re-
sulting in shorter dialogs and higher dialog success
rate. Dialog state tracking is the task of identifying
the correct dialog state (user action, user goal, etc.)
from ASR and SLU outputs in the presence of er-
rors. Commercial dialog systems these days usu-
ally use simple dialog state tracking strategies that
only consider the most probable SLU output. Pre-
vious research shows that several errors in dialog

state tracking can be rectified by considering the
full N-best results from the ASR and SLU compo-
nents (Williams, 2012). Thus it is very important
to develop robust and practical dialog state track-
ing models.

In statistical dialog state tracking, models
can be roughly divided into two major classes,
i.e. generative and discriminative. Generative
(Bayesian) dialog tracking models are prevalent
in early studies due to its close relationship with
the POMDP dialog management model (Young et
al., 2013). Generative models generally use Dy-
namic Bayesian Networks to model the observa-
tion probability P (Ot|St) and transition probabil-
ity P (St|St−1), where Ot and St are observations
and dialog state at turn t. In a discriminative
model, the conditional probability P (St|Ot1) is
modeled directly, where Ot1 is all the observations
from turn 1 to t. One problem with the generative
models is that the independent assumptions are al-
ways not realistic. For example, N-best hypothe-
ses are often assumed independent of each other,
which is flawed in realistic scenarios (Williams,
2012). Furthermore, it is intrinsically difficult for
generative models to handle overlapping features,
which prevents model designers from incorporat-
ing arbitrarily large feature set. Discriminative
model does not suffer from the above problems as
there is no need to make any assumptions about
the probabilistic dependencies of the features. As
a result. it is potentially able to handle much larger
feature sets and to make more accurate predic-
tions (Bohus and Rudnicky, 2006). Discrimina-
tive models also tend to be more data-driven, un-
like generative models in which many sub-models
parameters are heuristically tuned.

2 DSTC1 revisited

The first Dialog State Tracking Challenge
(DSTC1) for the first time provided a common
test bed for various state tracking methods, and
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several participants employed various discrimi-
native models in the challenge. DSTC1 provided
real user dialog corpora in the domain of bus
route service to evaluate performance of various
state tracking methods. In DSTC1 there are 9
teams with 27 submissions, where discriminative,
generative and rule-based models are used in the
challenge. Maximum entropy models (Lee and
Eskenazi, 2013), conditional random fields (Lee,
2013) and neural networks (Henderson et al.,
2013) are the most frequently used discriminative
models, which gave competitive results on several
metrics. It has been empirically analyzed that dis-
criminative methods are especially advantageous
when the ASR/SLU confidence scores are poorly
estimated (Williams et al., 2013).

3 Discriminative modeling in dialog state
tracking

In the design of a slot-filling or task-oriented di-
alog systems, dialog state tracking can be consid-
ered as a classification problem, i.e. assigning pre-
defined values to a fixed number of slots. One
major problem in the formulation is that in com-
plex dialog scenarios the number of classes tends
to be very big, resulting in extremely sparse train-
ing instances for each class. This sparsity affects
the classification performance. A large predic-
tion domain also leads to computation inefficiency
which makes the model less practical. Usually we
could focus only on the on-list hypotheses, which
are the hypotheses appeared in the SLU results,
and all the other values in the slot value set are
grouped into a meta category Other. It is simi-
lar to the partition concept in HIS (Young et al.,
2010), and by doing this we could reduce the num-
ber of classes to a reasonable size. We use Yt to
denote the prediction domain at turn t. Although
the number of classes is reduced by focusing on
the dynamically generated Yt, some classes will
still suffer from the lack of training instances, and
what is even worse is that a large portion of the
classes will not have any training data, since in
practical SDS deployment it is hard to collect a
large dialog corpus. To handle the data sparseness
problem, parameters are often shared across dif-
ferent slots, or even data sets, and by doing this the
model complexity could be effectively controlled
and the overfitting problem would be alleviated.
Williams proposed to use various techniques from
multi-domain learning to improve model perfor-

Monday: 0.5

Thursday: 0.2

Other: 0.3

Monday: 0.7

Tuesday: 0.1

Thursday: 0.1

Other: 0.1

Observations 
from turn 1 to t

Turn t-1 Turn t

Figure 1: Markovian discriminative model depen-
dency diagram. In this figure the dialog state is
simplified to a single slot variable: date, the do-
main of the slot typically increases as dialog con-
tinues, which includes all the slot values appeared
as SLU results. As indicated by the arrows, St
depends on St−1 and Ot1. In stationary discrimi-
native model, there’s no dependency between ad-
jacent turns indicated by the upper arrow.

mance (Williams, 2013), which could be taken as
another way of parameter sharing.

3.1 Markovian discriminative model
A dialog can be naturally seen as a temporal se-
quence involving a user and an agent, where strong
dependencies exist between adjacent turns. In typ-
ical task-oriented dialogs, users often change their
goals when their original object cannot be satis-
fied. Even when the true user goal stays constant
in a dialog session, the agent’s perception of it will
tend to evolve and be more accurate as the con-
versation proceeds, and thus the dialog state will
often change. The states at adjacent turns are sta-
tistically correlated, and therefore it is important
to leverage this natural temporal relationship in
tracking dialog state. We enhance the stationary
discriminative model in a similar way as described
in (McCallum et al., 2000), by assuming Marko-
vian dependency between adjacent turns.

Thus, the original probability P (St|Ot1) can be
factored into the following form:

P (St|Ot1) = (1)∑
St−1∈S

P (St|Ot1, St−1)P (St−1|Ot−1
1 )

The graphical model is shown is figure
1. Unlike stationary discriminative models,
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we model the conditional transition probability
P (St|Ot1, St−1) instead of P (St|Ot1) and the dia-
log state is updated according to equation 1 at each
turn. The feature functions in the structured model
can depend on the state of the previous turn, which
we call transitional features.

It is worth noting that stationary discriminative
model can include features built from dialog his-
tory (Metallinou et al., 2013). The major dif-
ference in utilizing this information from our ap-
proach is that by explicitly assuming the Marko-
vian dependency, the structured model is able to
exploit the whole probabilistic dialog state distri-
bution of the previous turn. The previous dialog
state St−1 is inferred from previous dialog history
Ot−1

1 , which contains higher level hypotheses than
the raw history features. Apart from that, the struc-
tured model can also use any stationary features
built from Ot1, which makes the stationary model
a special case of the structured one.

3.2 Neural network classifier
We use the family of multi-layer neural net-
works to model the transition probability
P (St|Ot−1

1 , St−1). To allow for the use of the
dynamic prediction domain, we utilize a forward
network structure similar to (Henderson et al.,
2013). Feature vectors for each class in Yt are
fed into the model and forwarded through several
hidden layers for non-linear transformation in the
hope that deeper layers may form higher abstrac-
tion of the raw inputs. The parameter vectors for
each class are shared. For each feature vector
the model generates a real score. The scores for
all the classes in Yt are then normalized using a
softmax function resulting in valid probabilities.

yi = Wl−1 · gl−1(. . . g1(W1 ·Xi) . . .) (2)

PY = Softmax(y1, . . . , y|Yt|) (3)

where g1 to gl−1 are sigmoid functions, Wi is the
weight matrix for linear transformation at layer i
and Xi = f(Ot1, yi) is the feature vector for class
i. We also test maximum entropy models, which
can be seen as a simple neural network without
hidden layers:

P (Y = y|Ot1) =
eλ·f(Ot

1,y)∑
y∈Y eλ·f(Ot

1,y)
(4)

4 DSTC2 challenge

DSTC2 is the second round of Dialog State Track-
ing Challenge, and it provides dialog corpora

collected from real human-machine dialogs in a
restaurant domain. The corpora are split into la-
beled training and development sets and unlabeled
test set. Test sets are collected from a SDS dif-
ferent from the training and development set to
reflect the mismatch in real deployment. Unlike
DSTC1, the user goal often changes in DSTC2
when the condition specified by the user cannot
be met. For evaluation DSTC2 defined a number
of metrics among which several featured metrics
are selected. Besides tracking user goals (the val-
ues of each slot), two additional states method and
requested slots are also defined, which track the
method to query and the slots requested by users
respectively. Further details about DSTC2 could
be found in (Henderson et al., 2014).

5 Feature set

We briefly describe the feature set used in our sys-
tem. We only use the live SLU information pro-
vided by the organizers, and no extra external data
is used. The features used can be divided into two
classes.

stationary features which only depend on the
observations and the class (slot value) pre-
dicted at current turn in the form of f(yt, Ot).

transitional features that can also depends on
the predicted class at the previous turn in the
form of f(yt, yt−1, Ot).

Stationary features include:

• SLU Scores: confidence scores of the current
prediction binned into boolean values, raw
scores are also added as real features.

• SLU Status: whether the prediction is denied,
informed and confirmed in the current turn.

• Dialog history: whether the prediction has
been denied, informed and confirmed in all
the dialog turns until the current one.

• User/system action: The most probable user
action and the machine action in the current
turn.

The transitional features are as follows:

• Transition1: whether the predictions in the
previous and the current turn are the same.
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Name Model Class Hidden layers
Entry1 MEMM –
Entry2 Structured NN [50]
Entry3 Structured NN [50, 30]
MLP Stationary NN [50, 30]

Table 1: Configurations of models. The model
MLP uses the same structure as Entry3, but with-
out the transitional features described in section 5.
Number in brackets denotes the number of units
used in each hidden layers.

• Transition2: joint feature of Transition1 in
conjunction with the machine action in cur-
rent turn, i.e. for each machine cation, Tran-
sision1 is replicated and only the one corre-
sponding to the machine action at current turn
is activated.

Transitional features are specific to Markovian
models while stationary features can be used in
any discriminative models.

6 Model training

Markovian models in various forms are tested to
find the most appropriate structure for the task.
Models for ‘method’ and ‘state’ are built sepa-
rately using similar structured models.

When using the maximum entropy model to
build the conditional probability, the Markovian
model is equivalent to the maximum-entropy
Markov model (MEMM) model introduced in
(McCallum et al., 2000). More sophisticated neu-
ral networks with different configurations are used
to fit the model to more complex patterns in the
input features. In tracking the state ‘goal’, the
joint distribution of slots is built assuming differ-
ent slots are independent of each other. From the
perspective of practical implementation, one ad-
vantage of the simpler MEMM model is that the
training objective is convex. Thus the optimiza-
tion routine is guaranteed to find the global opti-
mum, while neural networks with hidden layers al-
ways have many local optima which require care-
ful initialization of the parameters. LBFGS (Liu
and Nocedal, 1989) is used in optimizing the batch
log-likelihood objective and L1 and L2 regulariz-
ers are used to penalize the model from overfitting.
We train the model on the training set, the devel-
opment set is used for model selection and models
produced at each training iteration are evaluated.

State Tracker ACC L2 CA05

Goal

Baseline 0.619 0.738 0.000
Entry1 0.707 0.447 0.223
Entry2 0.713 0.437 0.207
Entry3 0.718 0.461 0.100
MLP 0.713 0.448 0.128

Method

Baseline 0.875 0.217 0.000
Entry1 0.865 0.228 0.199
Entry2 0.871 0.211 0.290
Entry3 0.871 0.210 0.287
MLP 0.946 0.092 0.000

Requested

Baseline 0.884 0.196 0.000
Entry1 0.932 0.118 0.057
Entry2 0.947 0.093 0.218
Entry3 0.951 0.085 0.225
MLP 0.863 0.231 0.291

Table 2: Evaluation results on the DSTC2 test set.
ACC stands for accuracy, L2 measures the Eu-
clidean distance between the predicted distribution
and the ground truth vector with only the correct
hypothesis set to 1. CA05 is the correct accep-
tance rate when false acceptance rate is 5%. De-
tails of the metrics can be found in (Henderson et
al., 2014). Except L2, the larger the scores, the
better the performance.

In DSTC2 we submitted 3 trackers, an additional
tracker without the transitional features is trained
afterwards for comparison. Configurations of the
models are described in table 1.

7 Experiments and part of the results

Featured metrics on the test set are shown in ta-
ble 2. By most metrics our models are superior
to the simple baseline. Especially in tracking user
goals which is the most important state to track in
DSTC2, the discriminative trackers show consid-
erable performance gain. Judging from the per-
formance of Entry1 to Entry3, we can conclude
that the more complex 2-layer neural networks
have better performance. Markovian neural net-
works can fit to the training instances with much
more flexibility than the simple MEMM model.
We have also trained a standard multi-layer neural
network (MLP) model by disabling all the transi-
tional features. By comparing the model ‘Entry 3’
and ‘MLP’, which share the same network struc-
ture, we explicitly test the effect of the Marko-
vian structure. On the state ‘goal’ and ‘requested’,
the Markovian model shows better tracking accu-
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racies, which means that the Markovian structure
has a positive effect on fitting the target. But in
tracking the state ‘method’, the MLP model has
the best performance among all the models com-
pared. Thus although the log-likelihood increases
considerably on the training set by adding the tran-
sitional features, the overfiting to the training set is
more serious in tracking ‘method’.

8 Conclusion

We described the models used in the DSTC2 chal-
lenge. We proposed a novel approach to enhanc-
ing the model capability of stationary discrimina-
tive models in dialog state tracking by assuming
Markovian dependencies between adjacent turns.
The results showed better performance than the
simple baseline which uses the most probable hy-
pothesis, and we empirically compared the mod-
els with and without the Markovian dependency.
In future work, more discriminative models in dif-
ferent forms could be compared to evaluate their
capability, and the effects of the Markovian struc-
ture and transitional features needs to be further
studied.
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Abstract

This paper presents a sequential labeling
approach for tracking the dialog states for
the cases of goal changes in a dialog ses-
sion. The tracking models are trained us-
ing linear-chain conditional random fields
with the features obtained from the results
of SLU. The experimental results show
that our proposed approach can improve
the performances of the sub-tasks of the
second dialog state tracking challenge.

1 Introduction

A dialog manager is one of the key components
of a dialog system, which aims at determining the
system actions to generate appropriate responses
to users. To make the system capable of conduct-
ing a dialog in a more natural and effective man-
ner, the dialog manager should take into account
not only a given user utterance itself, but also
the dialog state which represents various conver-
sational situations obtained from the dialog ses-
sion progress. Dialog state tracking is a sub-task
of dialog management that analyzes and maintains
this dialog state at each moment. The major ob-
stacle to dialog state tracking is that the inputs to
the tracker are likely to be noisy because of the
errors produced by automatic speech recognition
(ASR) and spoken language understanding (SLU)
processes which are required to be performed prior
to the tracking.

Thus, many researchers have focused on im-
proving the robustness of dialog state trackers
against ASR and SLU errors. The simplest ways
to tackle this problem have been based on hand-
crafted rules mainly on the confidence scores ob-
tained from ASR and SLU modules (Nakano et al.,
1999; Wang and Lemon, 2013). However, these
approaches have the limitation that building the
quality rules manually is expensive and, what is

worse, the confidence scores could be unreliable
and inconsistent in some cases.

The other direction of dialog state tracking ap-
proaches have utilized statistical machine learn-
ing techniques to obtain the distribution over a set
of hypotheses. Although the most widely studied
approaches have been based on generative mod-
els (Williams and Young, 2007; Williams, 2010;
Young et al., 2010; Thomson and Young, 2010;
Gašić and Young, 2011; Raux and Ma, 2011), re-
cently, some researchers have reported that dis-
criminative models (Bohus and Rudnicky, 2006;
Lee, 2013; Zilka et al., 2013) achieved compara-
ble, or even better, performances than generative
models, especially in the tasks of the first dialog
state tracking challenge (DSTC) (Williams et al.,
2013).

This work focuses on the second phase of
DSTC (Henderson et al., 2014). The major dif-
ference of DSTC 2 from the previous challenge is
that user goals can be changed even in a single di-
alog session. This aspect can cause the limitations
of the previous approaches assuming the fixed user
goal for each session. To solve this dynamic state
tracking problem, we propose a sequential label-
ing approach using linear-chain conditional ran-
dom fields (CRFs) (Lafferty et al., 2001). This
approach aims to improve the performances of
the tracker in the case of goal changes by jointly
performing prediction and segmentation of dialog
states.

2 Problem Definition

A dialog state defined in DSTC 2 consists of the
following three components: goals, method, and
requested slots.

2.1 Goals Tracking

Goals represent the constraint values which are
truly intended by a user at each moment. These
values can be represented by using a slot filling
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Utterance Goals
Food Area

S1 Hello, How may I help you?
U1 I need a Persian restaurant in the south part of

town.
Persian South

S2 What kind of food would you like?
U2 Persian. Persian South
S3 I’m sorry but there is no restaurant serving persian

food
U3 How about Portuguese food? Portuguese South
S4 Peking restaurant is a nice place in the south of

town.
U4 Is that Portuguese? Portuguese South
S5 Nandos is a nice place in the south of town serving

tasty Portuguese food.
U5 Alright. Whats the phone number? Portuguese South
S6 The phone number of nandos is 01223 327908 .
U6 And the address? Portuguese South
S7 Sure, nandos is on Cambridge Leisure Park Clifton

Way.
U7 Thank you good bye.

Figure 1: Examples of user goals tracking on a
dialog in the restaurant information domain

over the following four categories: area, food,
name, and price range. Assuming the possible
value set for each slot is fixed, this task can be
considered to be a problem of finding the distri-
butions over these hypotheses. While the previous
challenge aims at identifying a single fixed goal
for each session, the models for DSTC 2 should
be able to handle goal changes during a session,
as shown in Figure 1.

2.2 Method Tracking

Method tracking is performed by classifying the
way of requesting information by a user into the
following four categories: ‘by constraints’, ‘by al-
ternatives’, ‘by name’, and ‘finished’. The prob-
ability distribution over these four hypotheses is
computed for each turn. For example, a meth-
ods sequence {byconstraints, byconstraints, byal-
ternatives, byalternatives, byalternatives, byalter-
natives, finished} can be obtained for the dialog
session in Figure 1.

2.3 Requested Slots Tracking

The other component for dialog state tracking is to
specify the slots requested by a user. The tracker
should output the binary distributions with the
probabilities whether each slot is requested or not.
Since the requestable slots are area, food, name,
pricerange, addr, phone, postcode, and signature,
eight different distributions are obtained at each
turn. In the previous example dialog, ‘phone’ and
‘addr’ are requested in the 5th and 6th turns re-
spectively.

(a) Goal chain on the food slot

(b) Method chain

(c) Requested chain on the phone slot

Figure 2: Examples of dialog state tracking as se-
quential labeling with liner-chain CRFs

3 Method

Although some discriminative approaches (Lee,
2013; Zilka et al., 2013; Lee and Eskenazi, 2013;
Ren et al., 2013) have successfully applied to the
dialog state tracking tasks of DSTC 1 by explor-
ing various features, they have limited ability to
perform the DSTC 2 tasks, because the previous
models trained based on the features mostly ex-
tracted under the assumption that the user goal in
a session is unchangeable. To overcome this limi-
tation, we propose a sequential labeling approach
using linear-chain CRFs for dynamic dialog state
tracking.

3.1 Sequential Labeling of Dialog States

The goal of sequential labeling is to produce the
most probable label sequence y = {y1, · · · , yn}
of a given input sequence x = {x1, · · · , xn},
where n is the length of the input sequence, xi ∈
X , X is the finite set of the input observation,
yi ∈ Y , and Y is the set of output labels. The
input sequence for dialog state tracking at a given
turn t is defined as xt = {x1, · · · , xt}, where xi

denotes the i-th turn in a given dialog session, then
a tracker should be able to output a set of label se-
quences for every sub-task.
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For the goals and requested slots tasks, a la-
bel sequence is assigned to each target slot, which
means the number of output sequences for these
sub-tasks are four and eight in total, respectively.
On the other hand, only a single label sequence is
defined for the method tracking task.

Due to discourse coherences in conversation,
the same labels are likely to be located contigu-
ously in a label sequence. To detect the bound-
aries of these label chunks, the BIO tagging
scheme (Ramshaw and Marcus, 1999) is adopted
for all the label sequences, which marks beginning
of a chunk as ’B’, continuing of a chunk as ’I’, and
outside a chunk as ’O’. Figure 2 shows the exam-
ples of label sequences according to this scheme
for the input dialog session in Figure 1.

3.2 Linear Chain CRFs

In this work, all the sequential labeling tasks were
performed by the tracking models trained using
first-order linear-chain CRFs. Linear-chain CRFs
are conditional probability distributions over the
label sequences y conditioned on the input se-
quence x, which are defined as follows:

p (y|x) =
1

Z (x)

n∏
t=1

Ψ(yt, yt−1,x),

Ψ(yt, yt−1,x) = Ψ1(yt,x) · Ψ2(yt, yt−1),

Ψ1(yt,x) = exp

(∑
k

λkfk(yt,x)

)
,

Ψ2(yt, yt−1) = exp

(∑
k

λkfk(yt, yt−1)

)
,

where Z(x) is the normalization function which
makes that the distribution sums to 1, {fk} is a set
of feature functions for observation and transition,
and {λk} is a set of weight parameters which are
learnt from data.

3.3 Features

To train the tracking models, a set of feature func-
tions were defined based on the n-best list of user
actions obtained from the live SLU results at a
given turn and the system actions corresponding
to the previous system output.

The most fundamental information to capture a
user’s intentions can be obtained from the SLU hy-
potheses with ‘inform’ action type. For each ‘in-
form’ action in the n-best SLU results, a feature

function is defined as follows:

fi(inf, s, v) =

{
Si(inf, s, v), if inf(s, v) ∈ UAi,

0, otherwise,

where Si (a, s, v) is the confidence score of the
hypothesis (a, s, v) assigned by SLU for the i-th
turn, a is the action type, s is the target slot, v is
its value, and UAi is the n-best list of SLU results.

Similarly, the actions with ‘confirm’ and ’deny’
types derive the corresponding feature functions
defined as:

fi(con, s, v) =

{
Si(con, s, v), if con(s, v) ∈ UAi,

0, otherwise,

fi(den, s, v) =

{
Si(den, s, v), if den(s, v) ∈ UAi,

0, otherwise.

In contrast with the above action types, both ‘af-
firm’ and ‘negate’ don’t specify any target slot and
value information on the SLU results. The feature
functions for these types are defined with (s, v)
derived from the previous ‘expl-conf’ and ‘impl-
conf’ system actions as follows:

fi(aff, s, v) =
maxj (Sij(aff)) , if expl-conf(s, v) ∈ SAi,

or impl-conf(s, v) ∈ SAi

0, otherwise,

fi(neg, s, v) =
maxj (Sij(neg)) , if expl-conf(s, v) ∈ SAi,

or impl-conf(s, v) ∈ SAi

0, otherwise,

where SAi is the system actions at the i-th turn.
The user actions with ‘request’ and ‘reqalts’

could be able to play a crucial role to track the
requested slots with the following functions:

fi(req, s) =

{
Si(req, s), if req(s) ∈ UAi,

0, otherwise,

fi(reqalts, s) =

{
Si(reqalts, s), if reqalts ∈ UAi,

0, otherwise.

The other function is to indicate whether the
system is able to provide the information on (s, v)
using the ‘canthelp’ actions as follows:

fi(canthelp, s, v) =

{
1, if canthelp(s, v) ∈ SAi,

0, otherwise.
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Dev set Test set
Acc L2 ROC Acc L2 ROC

Joint Goals
ME 0.638 0.551 0.144 0.596 0.671 0.036
CRF 0.644 0.545 0.103 0.601 0.649 0.064

Method
ME 0.839 0.260 0.398 0.877 0.204 0.397
CRF 0.875 0.202 0.181 0.904 0.155 0.187

Requested Slots
ME 0.946 0.099 0.000 0.957 0.081 0.000
CRF 0.942 0.107 0.000 0.960 0.073 0.000

Table 1: Comparisons of dialog state tracking performances

4 Experiment

To demonstrate the effectiveness of our proposed
sequential labeling approach for dialog state track-
ing, we performed experiments on the DSTC 2
dataset which consists of 3,235 dialog sessions
on restaurant information domain which were col-
lected using Amazon Mechanical Turk. The re-
sults of ASR and SLU are annotated for every
turn in the dataset, as well as the gold standard
annotations are also provided for evaluation. We
used this dataset following the original division
into training/development/test sets, which have
1,612/506/1,117 sessions, respectively.

Using this dataset, we trained two different
types of models: one is based on CRFs for our pro-
posed sequential labeling approach; and the other
is a baseline using maximum entropy (ME) that
performs the prediction for each individual turn
separately from others in a given session. All the
models for both approaches were trained on the
training set with the same feature functions de-
fined in Section 3.3 using MALLET 1 toolkit.

The trained models were used for predicting
goals, method, and requested slots of each turn in
the development and test sets, the results of which
were then organized into a tracker output object
defined as the input format to the evaluation script
of DSTC 2. Since we omitted the joint goals dis-
tributions in the output, the evaluations on the joint
goals were performed on the independent combi-
nations of the slot distributions.

Among the various combinations of evaluation
variables listed in the results of the evaluation
script, the following three featured metrics were
selected to report the performances of the tracker
in this paper: Accuracy, L2 norm, and ROC CA 5.
All these metrics were computed for the predicted
joint goals, method and requested slots.

1http://mallet.cs.umass.edu/

Table 1 compares the performances of our pro-
posed approach (CRF) and the baseline method
(ME) for three sub-tasks on the development and
test sets. The results indicate that our proposed
sequential labeling approach achieved better per-
formances than the baseline for most cases. Es-
pecially, CRF models produced better joint goals
and method predictions in terms of accuracy and
L2 norm on both development and test sets. For
the requested slots task, our proposed approach
failed to generate better results than the baseline
on the development set. However, this situation
was reversed on the test set, which means our pro-
posed approach achieved better performances on
all three sub-tasks on the test set in two of the three
evaluation metrics.

5 Conclusions

This paper presented a sequential labeling ap-
proach for dialog state tracking. This approach
aimed to solve the cases of goal changes using
linear-chain CRFs. Experimental results show
the merits of our proposed approach with the im-
proved performances on all the sub-tasks of DSTC
2 compared to the baseline which doesn’t consider
sequential aspects.

However, these results are still not enough to
be competitive with the other participants in the
challenge. One possible reason is that our trackers
were trained only on the very basic features in this
work. If we discover more advanced features that
help to track the proper dialog states, they can raise
the overall performances further.

The other direction of our future work is to inte-
grate these dialog state trackers with our existing
dialog systems which accept the 1-best results of
ASR and SLU as they are, then to see their impacts
on the whole system level.
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