N E A LT Proceedings

Northern European Association for Language Technology

Editors
Stephan Oepen
Kristin Hagen
Janne Bondi Johannessen

/s

Proceedings of the

19th Nordic Conference of Computational Linguistics

NODALIDA 2013

May 22-24, 2013 « Oslo, Norway

Linkdping Electronic Conference Proceedings

Proceedings of the 19™

Nordic Conference of
Computational Linguistics

(NODALIDA 2013)

Stephan Oepen, Kristin Hagen, and
Janne Bondi Johannessen (Editors)

May 22-24, 2013

Oslo University (Norway)

Published by

Linképing University Electronic Press, Sweden
Linkdping Electronic Conference Proceedings #85
(ISSN 1650-3740; ISBN 978-91-7519-589-6

Cover Design: Joel Pristley; Photograph: Arthur Sand

Preface

The tradition of bi-annual Nordic conferences in Computational Linguistics and related disci-
plines dates back to 1977, well before our professional organization—The Northern European
Association for Language Technology (NEALT; http://omilia.uio.no/nealt/)—was formally
established. With a sense of tradition as well as pride, this volume comprises the proceedings
of the 19t Nordic Conference on Computational Linguistics (NODALIDA 2013), held on the
campus of the University of Oslo, Norway, between May 22 and May 24, 2013. On the first day
of NODALIDA 2013, four topical worshops are held, each with its own set of organizers and
programme committee; these workshops have compiled their own proceedings volumes, which
are published in the same series and included on the media distributed at the conference.

NODALIDA addresses all aspects of speech recognition and synthesis, natural language process-
ing, and computational linguistics—including work in closely related neighbouring disciplines
(such as, for example, linguistics or psychology) that is sufficiently formalized or applied to
bear relevance to speech and language technologies. Following the pattern of previous years,
the Programme Committee invited paper submissions in four distinct tracks:

e regular papers on substantial, original, and unpublished research, including empirical
evaluation results, where appropriate;

o student papers on completed or ongoing work, where at least the first author is a Master-
or PhD-level student;

e short papers on smaller, focused contributions, work in progress, negative results, surveys,
or opinion pieces; and

o demonstration papers summarizing a software system or language resource, to be accom-
panied by a live demonstration at the conference.

The conference received 60 submissions from all over Europe (and one each from Mexico and
the US), of which 38 are collected in this volume and will be presented at the conference: 13
regular, 6 student, 12 short, and 7 demonstration papers. All submissions were reviewed by
at least three experts in the field (two for demonstration papers), and the final selection was
made by the Programme Committee. We are indebted to everyone who contributed to the
reviewing and selection process. The conference programme is complemented by three invited
keynotes by distinguished researchers from Denmark, Germany, and the US, as well as by a
special session on High-Performance Computing for Natural Language Processing.

NODALIDA 2013 is made possible by the joint work of many dedicated individuals, in particular
the Programme and Organizing Committees; we warmly acknowledge their enthusiasm and
community spirit. From the Organizing Committee, Kristin Hagen deserves a special note of
gratitude, as the untiring ‘heart and soul’ of the conference logistics. We are grateful to the
Department of Linguistics and Scandinavian Studies and the Department of Informatics at the
University of Oslo for generously making available infrastructure and staff time. The conference
is financially supported by organizations listed on the back cover, who thus make an important
contribution to keeping participation fees at quite reasonable leves (by Norwegian standards).

With just about two more weeks to go, we expect some 150 participants at the conference and
much look forward to welcoming our colleagues and peers to Oslo.

Stephan Oepen (Programme Chair), Janne Bondi Johannessen (Organizing Chair)

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page i of 474]

http://omilia.uio.no/nealt/

Programme Committee

e Lars Ahrenberg, Linkoping University, Sweden
e Heiki-Jaan Kaalep, University of Tartu, Estonia

e Mikko Kurimo, Aalto University, Finland

Stephan Oepen (Programme Chair), University of Oslo, Norway

Eva Pettersson, Uppsala University, Sweden

Bolette Sandford Pedersen, University of Copenhagen, Denmark

Victoria Rosén, University of Bergen, Norway

Organizing Committee
e Ruth Vatvedt Fjeld

e Kristin Hagen

e Janne Bondi Johannessen (Organizing Chair)

Anders Ngklestad

Erik Velldal

Lilja @vrelid

Reviewers

e Szymon Acedanski, Poland
e Tanel Alumée, Estonia

e Miguel Ballesteros, Spain
e Emily M. Bender, USA

e Gosse Bouma, Netherlands
e Johan Boye, Sweden

e Aoife Cahill, USA

o Stefanie Dipper, Germany
e Helge Dyvik, Norway

e Jakob Elming, Denmark

e Tomaz Erjavec, Slovenia

e Peter Exner, Sweden

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page ii of 474]

Mark Fishel, Estonia

Victoria Fossum, USA

Jennifer Foster, Irland

Tatiana Gornostay, Latvia
Gintaré Grigonyté, Switzerland
Christian Hardmeier, Sweden
Petter Haugereid, Norway
Anna Hjalmarsson, Sweden
Sofie Johansson Kokkinakis, Sweden
Arne Jonsson, Sweden

Reima Karhila, Finland

Mare Koit, Estonia

Jan Tore Lgnning, Norway
Bente Maegaard, Denmark
Diana McCarthy, United Kingdom
Beata Megyesi, Sweden

Einar Meister, Estonia

Magnus Merkel, Sweden

Paul Meurer Norway

Costanza Navarretta, Denmark
Mattias Nilsson, Sweden
Joakim Nivre, Sweden

Pierre Nugues Lund, Sweden
Petya Osenova, Bulgaria
Patrizia Paggio, Denmark
Barbara Plank, Italy

Adam Przepiérkowsk, Poland
Jonathon Read, Norway

Trial Reviewer, Norway

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page iii of 474]

Inguna Skadina, Latvia
Anders Sggaard, Denmark
Sara Stymne, Sweden

Jorg Tiedemann, Sweden
Andrius Utka, Lithuania
Erik Velldal, Norway
Sumithra Velupillai, Sweden
Yi Zhang, Germany

Heike Zinsmeister, Germany

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page iv of 474]

Table of Contents

Invited Keynotes
Ron Kaplan
(The Conversational User Interfacel 1
Caroline Sporleder
[Detecting and Processing Figurative Language in Discourse 3
Anders Sggaard
[6,909 Reasons to Mess Up Your Data| 5

Special Session on HPC for NLP

Gudmund Hest

[The Nordic e-Infrastucture Collaboration: Opportunities for Synergy Across Borders| 7
Stephan Oepen

[Tidying up the Basement: A Tale of Large-Scale Parsing on National elnfrastructure) 9
Jorg Tiedemann

[Experiences in Building the Let's MT! Portal on Amazon EC2| 11

Regular Papers

Eckhard Bick

[Using Constraint Grammar for Chunking] 13

Johan Falkenjack, Katarina Heimann Miihlenbock, Arne Jonsson
[Features Indicating Readability in Swedish Text| 27

Katri Haverinen, Veronika Laippala, Samuel Kohonen, Anna Missild, Jenna Nyblom,
Stina Ojala, Timo Viljanen, Tapio Salakoski, Filip Ginter
[Towards a Dependency-Based PropBank of General Finnish| 41

Ryan Johnson, Lene Antonsen, Trond Trosterud
[Using Finite State Transducers for Making Efficient Reading Comprehension Dictionaries59

Jurgita Kapociiité-Dzikiené, Anders Ngklestad, Janne Bondi Johannessen, Algis

Krupavitius

[Exploring Features for Named Entity Recognition in Lithuanian Text Corpus| 73
Hrafn Loftsson

[Tagging the Past: Experiments using the Saga Corpus| 89

Hrafn Loftsson, Robert Ostling
[Tagging a Morphologically Complex Language Using an Averaged Perceptron Tagger: The |
i 105

Magnus Merkel, Jody Foo, Lars Ahrenberg
[[Phraxtor: A Linguistically Informed System for Extraction of Term Candidates| 121

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page v of 474]

Costanza Navarretta, Patrizia Paggio
[Classifying Multimodal Turn Management in Danish Dyadic First Encounters| 133

Bolette S. Pedersen, Lars Borin, Markus Forsberg, Neeme Kahusk, Krister Lindén, Jyrki
Niemi, Niklas Nisbeth, Lars Nygaard, Heili Orav, Eirikur Rognvaldsson, Mitchell Seaton,
Kadri Vider, Kaarlo Voionmaa

[Nordic and Baltic Wordnets Aligned and Compared through “WordTies”| 147

Eva Pettersson, Beata Megyesi, Joakim Nivre
[Normalisation of Historical Text Using Context-Sensitive Weighted Levenshtein Distance and|
[Compound Splitting] 163

Teemu Ruokolainen, Miikka Silfverberg
[Modeling OOV Words With Letter N-Grams in Statistical Taggers: Preliminary Work in |
[Biomedical Entity Recognition| 181

Inguna Skadina, Andrejs Vasiljevs, Lars Borin, Krister Lindén, Gyri Losnegaard, Sussi
Olsen, Bolette S. Pedersen, Roberts Rozis, Koenraad De Smedt
[Baltic and Nordic Parts of the European Linguistic Infrastructure] 195

Student Papers

Liesbeth Augustinus, Peter Dirix

[The IPP Effect in Afrikaans: A Corpus Analysis| 213
Christopher Horn, Alisa Zhila, Alexander Gelbukh, Roman Kern, Elisabeth Lex
[Using Factual Density to Measure Informativeness of Web Documents| 227

Tapio Luostarinen, Oskar Kohonen
[Using Topic Models in Content-Based News Recommender Systems| 239

Bernd Opitz, Cicilia Zirn
[Bootstrapping an Unsupervised Approach for Classifying Agreement and Disagreement253

Peteris Paikens, Laura Rituma, Lauma Pretkalnina

[Morphological Analysis with Limited Resources: Latvian Example| 267
Lauma Pretkalnina, Laura Rituma
[Statistical Syntactic Parsing for Latvian| 279
Short Papers

Filip Ginter, Jenna Nyblom, Veronika Laippala, Samuel Kohonen, Katri Haverinen, Simo
Vihjanen, Tapio Salakoski
[Building a Large Automatically Parsed Corpus of Finnish| 291

Lars Hellan, Tore Bruland
[Constructing a Multilingual Database of Verb Valence] 301

Jussi Karlgren
[New Measures to Investigate Term Typology by Distributional Data| 311

Andreas Sgeborg Kirkedal
[Analysis of Phonetic Transcription for Danish Automatic Speech Recognition| 321

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page vi of 474]

Samuel Liubli, Mark Fishel, Martin Volk, Manuela Weibel
[Combining Statistical Machine Translation and Translation Memories with Domain |
Adap 331

Sjur N. Moshagen, Tommi A. Pirinen, Trond Trosterud
[Building an Open-Source Development Infrastructure for Language Technology Projects343

Gailius Raskinis, Asta Kazlauskiené

[From Speech Corpus to Intonation Corpus: Clustering Phrase Pitch Contours of |
[Lithuanian] 353
Jonathon Read, Rebecca Dridan, Stephan Oepen

[Simple and Accountable Segmentation of Marked-up Text] 365

Sara Stymne, Jorg Tiedemann, Christian Hardmeier, Joakim Nivre
[Statistical Machine Translation with Readability Constraints| 375

Hideyuki Tanushi, Hercules Dalianis, Martin Duneld, Maria Kvist, Maria Skeppstedt,
Sumithra Velupillai

[Negation Scope Delimitation in Clinical Text Using Three Approaches: NegEx, |
[PyConTextNLP and SynNeg| 387

Marcus Uneson
[Tone Restoration in Transcribed Kammu: Decision-List Word Sense Disambiguation for an |
[Unwritten Language| 399

Nynke Van Der Vliet, Gosse Bouma, Gisela Redeker
The Automatic Identification of Discourse Units in Dutch Text 411

Demonstration Papers

Liesbeth Augustinus, Vincent Vandeghinste, Ineke Schuurman, Frank Van Eynde
[Example-Based Treebank Querying with GrETEL - Now Also for Spoken Dutch| 423

Malin Ahlberg, Lars Borin, Markus Forsberg, Martin Hammarstedt, Leif-J6ran Olsson,
Olof Olsson, Johan Roxendal, Jonatan Uppstrom
[Korp and Karp — A Bestiary of Language Resources: The Research Infrastructure of |

Sprakbanken 429

Lars Hellan, Tore Bruland, Elias Aamot, Mads H. Sandgy

[A Grammar Sparrer for Norwegian| 435
Mans Hulden, Miikka Silfverberg, Jerid Francom
[Finite State Applications with Javascript] 441

Emanuele Lapponi, Erik Velldal, Nikolay A. Vazov, Stephan Oepen
[HPC-ready Language Analysis for Human Beings| 447

Paul Meurer, Helge Dyvik, Victoria Rosén, Koenraad De Smedt, Gunn Inger Lyse, Gyri
Smerdal Losnegaard, Martha Thunes
[The INESS Treebanking Infrastructure] 453

Per Erik Solberg
[Building Gold-Standard Treebanks for Norwegian| 459

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page vii of 474]

The Conversational User Interface

Ron Kaplan

Nuance Communications & Stanford University

ron.kaplan@nuance.com

ABSTRACT

Work on both the graphical user interface (GUI) and the conversational user interface (CUI)
started at about the same time, about 40 years ago. The GUI was a lot easier to implement, and
it made computing and information resources available to ordinary people—but over the years
it has lost much of its simplicity and charm. The CUI has taken many more years to develop,
requiring major scientific and engineering advances in speech, natural language processing,
user-modeling, and reasoning, not to mention increases in cost-effective computation. But
the infrastructure is now in place for the widespread distribution of conversational interfaces,
and we have begun to imagine and create sophisticated ways of exploiting this new mode of

interaction. This may well be the “killer app” for deep natural language processing and complex
reasoning.

KEYWORDS: Conversational User Interface, Deep Natural Language Processing, Reasoning.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 1 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 2 of 474]

Detecting and Processing Figurative Language in Discourse

Caroline Sporleder

Universitat Trier

sporledc@uni-trier.de

ABSTRACT

Figurative language poses a serious challenge to NLP systems. The use of idiomatic and
metaphoric expressions is not only extremely widespread in natural language; many figurative
expressions, in particular idioms, also behave idiosyncratically. These idiosyncrasies are not
restricted to a non-compositional meaning but often also extend to syntactic properties, selec-
tional preferences etc. To deal appropriately with such expressions, NLP tools need to detect
figurative language and assign the correct analyses to non-literal expressions. While there has
been quite a bit of work on determining the general ‘idiomaticity’ of an expression (type-based
approaches), this only solves part of the problem as many expressions, such as break the ice or
play with fire, can also have a literal, perfectly compositional meaning (e.g. break the ice on the
duck pond). Such expressions have to be disambiguated in context (token-based approaches).
Token-based approaches have received increased attention recently. In this talk, I will present
an unsupervised method for token-based idiom detection. The method exploits the fact that
well-formed texts exhibit lexical cohesion, i.e. words are semantically related to other words
in the context. I will show how cohesion can be modelled and how the cohesive structure can
be used to distinguish literal and idiomatic usages and even detect newly coined figurative
expressions.

KEYWORDS: Discourse, Figurative Language, Token-Based Idiom Detection.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 3 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 4 of 474]

6,909 Reasons to Mess Up Your Data

Anders Seggaard

Kgbenhavns Universitet

soegaard@hum.ku.dk

ABSTRACT

In computational linguistics we develop tools and on-line services for everything from literature
to social media data, but our tools are often optimized to minimize expected error on a single
annotated dataset, typically newspaper articles—and evaluated on held-out data sampled
from the same dataset. Significance testing across data points randomly sampled from a
standard dataset only tells us how likely we are to see better performance on more data points
sampled this way, but says nothing about performance on other datasets. This talk discusses
how to modify learning algorithms to minimize expected error on future, unseen datasets,
with applications to PoS tagging and dependency parsing, including cross-language learning
problems. It also discusses the related issue of how to best evaluate NLP tools (intrinsically)
taking their possible out-of-domain applications into account.

KEYWORDS: Domain Variation, PoS Tagging, Dependency Parsing, Evaluation.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 5 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 6 of 474]

The Nordic e-Infrastucture Collaboration:
Opportunities for Synergy Without Borders

Gudmund Hgst

NordForsk, Nordic e-Infrastructure Collaboration

gudmund.host@nordforsk.org

ABSTRACT

The Nordic e-Infrastructure Collaboration (NelC) is a distributed organization of IT-experts
working at various national HPC centers throughout the Nordic region. The mission of NeIC
is to facilitate the development of high-quality e-Infrastructure solutions in areas of joint
Nordic interest. It is owned by the research councils and national e-Infrastructure provider
organisations from Denmark, Finland, Iceland, Norway, and Sweden. NelC is hosted by
NordForsk in Oslo. Current collaboration areas include high-energy physics (CERN-related)
and life sciences. A call for Letters of Interest in 2012 elicited several opportunities within
the humanities, including fields such as computational analysis of language and semantic
annotation. This presentation will give an overview of the NelC and its modus operandi, and
aims to provide a basis for discussions at NoDaLiDa on how NelIC may be put into use as a
vehicle for facilitating development of common e-Infrastructure services for linguistics and
related fields.

KEYWORDS: Nordic e-Infrastructure Collaboration, NelC, Cross-Border HPC Collaboration.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 7 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 8 of 474]

Tidying up the Basement:
A Tale of Large-Scale Parsing on National elnfrastructure

Stephan Oepen

Universitetet i Oslo

oe@ifi.uio.no

ABSTRACT

Until about six years ago, our research group used non-trivial amounts of project funds and
researcher time on maintaining a dedicated server farm in the basement of our department.
Rack space and cooling (just as much as funds and time) were in short supply, and we never
quite got around to implementing automated load balancing across compute nodes, tuning the
Linux kernel and filesystem for optimum performance, or connecting to the uninterruptible
power supply. When pointed to the Norwegian National High-Performance Computing Initiative,
we were intially doubtful that Natural Language Processing should be among their target user
groups. Also, we were a tad hesitant to give up control of our own equipment and of course
worried we would miss what we thought were our fancy toys. Today, any member of the
group can access thousands of cpus simultaneously, we have about five terabytes of project data
on-line, and our research has scaled to dataset sizes and turn-around times that would be just
inconceivable on group-local hardware—at no charge to our project funds and no administrator
responsibilities. For example, ‘deep’ semantic parsing of the about 900 million words of the
English Wikipedia we can typically complete in less than one day (while expending what would
be about eight sequential years of computation). Or, when searching for the best-performing
features and hyper-parameters in a machine learning problem, we can explore a large ‘grid’
of possible configurations in parallel, without much need for a staged, partly manual, ‘coarse-
to-fine’ search strategy. Access to the very large-scale Norwegian National elnfrastructure and
its high-quality technical support have enabled a comparatively computation-heavy research
profile of our group and has thus contributed to its international competitiveness. In this
presentation, I will review some of our experiences in establishing a dialogue with the HPC
crowd and propose HPC for the Masses as a candidate vision in the on-going development trend
towards more and more large-scale computational sciences.

KEYWORDS: Parsing Wikipedia, HPC for the Masses, National elnfrastructure.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 9 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 10 of 474]

Experiences in Building the Let’s MT! Portal on Amazon EC2

Jorg Tiedemann

Uppsala Universitet

jorg.tiedemann@lingfil.uu.se

ABSTRACT

In this presentation I will discuss the design and implementation of Let’s MT!, a collaborative
platform for building statistical machine translation systems. The goal of this platform is to
make MT technology, that has been developed in academia, accessible for professional transla-
tors, freelancers and every-day users without requiring technical skills and deep background
knowledge of the approaches used in the backend of the translation engine. The main challenge
in this project was the development of a robust environment that can serve a growing commu-
nity and large numbers of user requests. The key for success is a distributed environment that
allows a maximum of scalability and robustness. With this in mind, we developed a modular
platform that can be scaled by adding new nodes to the different components of the system. We
opted for a cloud-based solution based on Amazon EC2 to create a cost-efficient environment
that can dynamically be adjusted to user needs and system load. In the presentation I will
explain our design of the distributed resource repository, the SMT training facilities and the
actual translation service. I will mention issues of data security and optimization of the training
procedures in order to fit our setup and the expected usage of the system.

KEYWORDS: Let’s MT!, Statistical Machine Translation, Distributed Computing.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 11 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 12 of 474]

Using Constraint Grammar for Chunking

Eckhard Bick

University of Southern Denmark, Odense
eckhard.bick@mail.dk

ABSTRACT

This paper presents and evaluates a novel and flexible chunking method using Constraint
Grammar (CG) rules to introduce chunk edges in corpus annotation. Our method exploits pre-
existing (non-constituent) morphosyntactic annotation such as part-of-speech or function tags,
but can also be made to work on raw text, integrated with other CG modules. The first version of
the chunker was developed for German CG-annotated interview data, with a parallel English
version derived from the German one, indicating a high degree of language-independence of the
rules in the presence of generalized syntactic-functional tags (e.g. subject, object, modifier). Two
different approaches are discussed, one for minimal, flat chunking, the other for deep, nested
chunking. The system has a reasonable performance and robustness for both, achieving F-scores
of 89.1 and 97.4 for nested and minimal chunking, respectively. Xml markup is supported, and
with a full set of rules, the tool can be used to convert CG annotation into complete constituent
trees in VISL or TIGER format.

Keyworps: Chunking, Constraint Grammar, Syntactic Constituent Trees

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 13 of 474]

1 Introduction and related research

In its simplest NLP meaning, chunking can be defined as a shallow parsing method where the
edges of syntactic groups are marked, but where the internal structure, head-dependent relations
and syntactic function is ignored. When defining the term, Abney (1991) cited psychological
(processing) evidence for the linguistic relevance of chunks and used the expression “a single
content word surrounded by a constellation of function words, matching a fixed template”. In the
original sense, chunks are minimal syntactic units with a recursivity restriction, and chunks of
different syntactic type will be shown as chained rather than layered - in particular, no (simple)
chunk type will be allowed to span across a (more complex) daughter chunk, and subclauses are
not made explicit as chunks. Thus, in minimal chunking np's will not contain postnominal pp's or
relative clauses. If a chunk does swallow another chunk, the latter will lose its edges. Depending
on linguistic design, this may occur in the handling of prepositions or quantifying adverbials.

Minimal chunking is often used as an intermediate step in NLP, after part-of-speech (POS)
tagging, and before deeper structural or functional analysis. Thus, Abney's chunk parser would
first create a stream of such minimal chunks, then use an "attacher" to link words within chunks,
and chunks to each other in order to create a complete parse tree. Kiibler & Hinrichs (2001) use a
similar 2-step method, but focus on syntactic function assignment as a vehicle to extend non-
recursive chunks to full parse structures on the background of a treebank instance database. In
our own approach, we implement a third strategy, where (syntactic) function comes before
(syntactic) form, and links are created before chunks. Chunk edges are assigned based on
functional relations, and chunking depth becomes a design option rather than a clear,
methodologically desired, processing stage distinction. In the context of this paper, we will
therefore extend the meaning of chunking to include progressively layered chunking, where
nesting is allowed e.g. for np's or object clauses, and where a fully chunked sentence will
ultimately be structurally equivalent to a PSG constituent tree.

Chunking is useful for tasks such as term and name extraction (Carreras and Marquez 2005),
information retrieval (Banko et al. 2007), topic screening and others. In such automatic analysis
applications, minimal chunking has the obvious advantage of being more robust than layered
chunking, being able to avoid complexity issues such as discontinuity, coordination and ellipsis,
as well as circumventing free-word-order problems, while still supporting most aspects of the
applicative tasks mentioned above. Unlike Abney's original system, the majority of automatic
chunkers today are based on machine learning (ML) and trained on manually revised gold
annotations such as treebanks. In a CoNLL shared task in 2000, the highest F-score for chunking
was 93.5 (Tjong Kim Sang and Buchholz 2000), with relatively little performance variation
across different ML techniques. There is evidence that with sufficient training data, similar
results can be achieved with ML techniques even without the use of POS information (van den
Bosch and Buchholz 2002), while finite state transducers (FST) have an upper bound F-score of
92 for the same task (Jurafsky and Martin 2009). The only rule-based systems in the CoNNL
evaluation performed at the bottom of the field, with F-scores of 85.8 and 87.2.

Contrary to these findings, we believe rule-based chunking to have a considerable potential, and
have chosen Constraint Grammar for the experiments reported here, a versatile and modular
methodology based entirely on linguist-written rules. It is reasonable to assume that differences
between rules sets, the expressive power of the rule formalism itself as well as its lexical support

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 14 of 474]

may amount to huge performance differences - maybe bigger differences than can be expected
from different machine learners using the same training data, and this will be further
compounded by the fact that rule-based approaches require a great deal of specialist labour and
hence may suffer from project time and manpower constraints. Thus, when writing a chunking
grammar, performance will crucially depend on the existence and quality of a morphosyntactic
tagger to provide annotated input. What we intend to show and evaluate in this paper is exactly
this - how rule-based chunking can mash with and exploit output from a CG tagger, in this case
the morphosyntactic stage of the EngGram parser (available online at http://beta.visl.sdu.dk/
visl/en/). Since it has already been shown that morphosyntactic CG tagging does support
syntactic trees, either through a PSG layer (Bick 2003, for English) or an added external
dependency grammar (Bick 2005, for Danish), it is not CG-based constituent bracketing as such
that is the focus here, but rather the efficiency of our method and the fact that we are exploiting a
novel CG feature (relational tags) to perform both dependency-linking and chunking within the
CG formalism itself rather than as a hybrid add-on technique. This way, all types of existing CG
annotation can be seamlessly exploited without loss of information, and with the full expressivity
of contextual CG rules.

2 Adding Chunk Edges

Both the output and input of our chunkers follow the verticalized, 1-token-per-line format
common in Constraint Grammar annotation. We have developed two different methods to add
chunking information to this format, with different methodological advantages, which can then
both be filtered into a common xml-style format. Both methods exploit recent improvements in
the open-source CG3 compiler (http://beta.visl.sdu.dk/cg3.html), allowing so-called cohort
insertion and named, bidirectional relational tags.

2.1 The Cohort Insertion Method

Constraint Grammar compilers traditionally use a fixed tokenization, where each token may have
several readings (a so-called cohort), but without the possibility of changing the number, order or
span of the tokens themselves. In our own implementation, however, we provide for the
possibility of adding, moving and removing tokens, exploiting this feature for the insertion of
chunk edges. In its simplest version, our insertion chunker uses 20 CG rules, first 12 rules (a,b) to
insert different types of chunk-opening brackets (named for phrase type), then 8 rules (c) to insert
matching chunk-closing brackets.

The first two examples open np chunks by adding a marker cohort before (left of) the first np
element. Rule (a) looks for prenominal modifiers (@>N) or potential np-heads, i.e. nouns or
pronouns/numbers provided that the latter do not have a function marking as prenominals (@>N)
or predicatives (@PRED, @SC, @OC) which would indicate an adjectival reading. In order to
make sure that the found np-element is in fact the np's left edge, there is a NOT condition
excluding further prenominals (@>N) to the left, as well as adverbial pre-adjects (@>A) that
might pre-modify the premodifiers themselves (e.g. 'very @>A high @>N taxes'). The NEGATE
condition, finally, provides for the exception of coordinated premodifiers’. Rule (b) addresses np-

" In this version of the chunker, we follow the principle, applied in the CoONLL 2000 shared task on chunking, that lower
level coordination within a phrase is treated as chunk-internal, while coordination of phrase heads is treated as chunk-
external.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 15 of 474]

internal adverbial adjects (@>A) in a similar way, again taking into account possible
coordination of pre-modifiers.

(a) ADDCOHORT ("<$np>" "CHUNK" NP) BEFORE @>N OR N/PROP/PRON OR
DET/NUM/PERS - @>N - @PRED - @SC - @OC (NOT -1 @>A OR @>N) (NEGATE -1 IT
LINK -1 @>N);

(b) ADDCOHORT ("<$np>" "CHUNK" NP) BEFORE @>A (*1 @>N BARRIER NON-ADV -
KC) (NOT -1 @>A OR @>N) (NEGATE -1 IT LINK -1 @>A - PRP OR @>N) ;

Similar rules exist for the other chunk types: adjective phrase (adjp), adverbial phrase (advp),
prepositional phrase (pp), verb phrase (vp) and the minor classes of conjp (conjunction phrase),
prt (particles), intj (interjection) that usually contain only a single word. Once a chunk is opened,
a corresponding rule can insert an ENDCHUNK marker token after the last element in the chunk.
Thus, rule (c) looks for potential np-heads with a NOT condition against them functioning as pre-
modifiers (@>N) themselves (as would be the case in English noun chain compounds). To
ensure exact bracket matching and as a safety measure, there is a condition looking left (*-1) for
the corresponding chunk-opening token with a BARRIER condition for overlaps, i.e. other
CHUNK markers.

(c) ADDCOHORT ("<$/np>" "ENDCHUNK" NP) AFTER N/PROP/PRON OR N/PROP/PRON
OR DET/NUM/PERS - @>N - @PRED - @SC - @OC (NOT 0 @>N) (*-1 CHUNK-NP
BARRIER CHUNK) ;

2.2 The Relation-Adding Method

The cohort insertion method is a very simple method, and works well and robustly for minimal
chunking. However, in the face of more complex annotation needs, it has the shortcoming of not
marking chunk heads as opposed to other chunk elements, and it is less well-suited for layered
chunking, because of the risk of crossing brackets. The CG-compiler may lack sufficient
structural information simply because opening and closing brackets are only inserted and not
paired by links. Thus, in layered chunking, closing brackets in particular may accumulate after
the same token, and bracket order will simply be by (inverse) rule order, making it very difficult
for the grammarian to control this order, not least because CG rules can be reiterated if contexts
change from false to true due to other rules being applied, and because opening and closing
brackets have opposite ordering needs. To further complicate things, a more fine-grained, head-
marking chunking scheme may run into cases of discontinuity, with a need for partial closing and
re-opening bracket types raising ambiguity issues in complex cases.

All of these problems can be addressed simultaneously by exploiting another non-traditional CG
feature, named relations, which we originally added for the sake of anaphora treatment and
discourse structure. Using relational tags, chunk edges can either be linked to each other or to the
chunk head, and in principle carry all information needed to configure a complete, classical
constituent tree. In this approach, given sufficient structural information in the CG input
annotation, chunking provides a conversion method between different functional dependency
grammar on the one hand, and labeled constituent trees on the other. Users will be able to apply
standard xml tools to manipulate, search, evaluate or visualize the resulting chunk structures
because chunk brackets can be expressed as xml opening and closing markers.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 16 of 474]

We developed the relation chunker in the context of a joined annotation project for German and
English transcribed speech corpora, and some design options are therefore project-specific, such
as the decision to allow discontinuity (crossing branches), to provide for separate coordination
chunks, and to only mark multi-word chunks. However, it has to be borne in mind that in a rule-
based CG system, it is relatively easy to change such design parameters, without the need of
manual re-annotation of a training corpus. In particular, the chunk type of single-word
constituents is implicit in their word-class, and could be added with one rule per type.

The relations chunker uses 59 rules to establish relations between a constituent head and its
leftmost and rightmost descendents (dependents, dependents of dependents etc.). A typical rule
pair is shown below:

(a) ADDRELATIONS (np-head-1) (np-start) TARGET (*) (c @>N OR @N<&) TO (lIScc (*)) ;

(b) ADDRELATIONS (np-head-r) (np-stop) TARGET (*) (c @>N OR @N<&) (r:np-head-1 (*))
TO (1rScc (*)) ;

Rule (a) adds a left-edge relation between any (*) target word with a pre-nominal (@>N) or
postnominal (@N<) modifier child (c), and the leftmost (Il) of its descendents? (cc - children &
children's children). The S (self) provision allows for the head itself forming the chunk's edge,
and the modifier condition prevents 1-word chunks. An ADDRELATIONS rule allows for two
asymmetric relation names, given in the first two brackets of the rule. Here, np-head-I (np-head-
leftlooking) is the relation name tagged on the head, and np-start is the name for the same
relation seen from, and tagged on, the leftmost dependent.

Rule (b) adds the corresponding right-edge relation to the rightmost (rr) descendents (cc) of np-
heads. Matching bracket counts are ensured by adding the condition that the target already has to
carry a pre-existing np-head-I tag.

2.2.1 Discontinuity

The rules described above will identify external chunk edges by locating leftmost and rightmost
descendents of a given head, but they cannot cope with internal edges caused by crossing
dependency branches (constituent discontinuity). Therefore, further rules are needed, like the np-
examples below. Rule (a) marks the end of a discontinuity "hole", with a head-edge relation
named np-head-Id (left-oriented discontinuity edge) on the head, and np-stop-d (discontinuity
stop edge) on the (right-located) internal edge dependent. The rule works by identifying existing,
ordinary right edges (r:np-head-r (*)) and looks left of these (LINK *-1) for arguments,
adverbials (@ARG/ADVL) or verbs (VV), implying that such function tags would break the
continuity of an np chunk if they are not explicitly marked as embedded, i.e. if neither the break
candidate itself (S) or any of its ancestors or parent (*p) is identical with the rule target (NOT
*pS _TARGET_). If a chunk-breaker is found, the rule backtracks (x) to the outer edge and from
there looks left (**-1xA) for the last word (**) that does have the rule target as parent-ancestor,
or is identical with it (*pS), and attaches (A) the relation here.

(a) ADDRELATIONS (np-head-1d) (np-stop-d) TARGET (*) (c @>N OR @N<&) (r:np-head-r
(*) LINK *-1 @ARG/ADVL OR VV LINK NOT *pS _TARGET_) TO (r:np-head-r (*) LINK
*-1X @ARG/ADVL OR VV LINK **-1xA ALL-ORD LINK *pS _TARGET_);

2 In principle, a leftmost ancestor dependency chain (llcc) can be quite complex because a right daughter dependent may
have crossing left granddaughter dependents that are further left than the head itself or its left daughters.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 17 of 474]

Correspondingly, rule (b) marks a relation between a head and a left-located internal edge, named
np-head-rd (right-oriented discontinuity edge) on the head, and np-start-d (discontinuity start
edge) on the edge dependent. Again, to ensure matching bracket counts, the rule checks if the
matching head-Id relation tag is already present on the head. This way, the head accumulates
information about all edges controlled by it, while the chunk edge tokens themselves carry only
one tag containing chunk type and head ID?.

(b) ADDRELATIONS (np-head-rd) (np-start-d) TARGET (*) (c @>N OR @N<&) TO (r:np-
head-1d (*) LINK **1A ALL LINK *pS _TARGET_);

2.3 Language independence

It is an interesting question to what degree a function-first, linking-before-chunking approach
will lead to a higher degree of language independence in a chunking grammar. We believe this
to be the case because the use of higher-level categories, at least if notationally unified, insulates
the chunking grammar from language specific differences such as agreement features and word
order. Though we do not yet have data for less related languages, our German and English
grammars provide empirical support for this assumption. Thus, the original German layered
chunker did work without rule modifications for English, and even the final, optimized English
grammar (59 rules) needed rule changes or additions almost exclusively in areas, where the
German grammar still had coverage problems, specifically coordination (10 rules) and vp
discontinuity (6 rules). Only one rule had to be amended in a truly language-specific way, to
account for discontinuous, fronted arguments of stranded prepositions in English, and 8 default
bracket closing rules were added to check for matching brackets. Most importantly, all of the
above English changes could be reexported into the German grammar almost as is, and even the
language-specific stranded-preposition rule would do no harm - rather, it would simply not apply.
As long as function tags and dependencies are defined in a unified way, this might be true for
many other language pairs, too: Unimpeded by morphological or topological constraints, a pure
function/relation reference in a chunking rule will either have the desired effect in the other
language, or none at all.

3 Format conversions

Because all information is encoded locally as tags on tokens, Constraint Grammar output is easy
to parse for format conversion programs, allowing such filters to extract information from several
levels of tagging at the same time, with only one regular expression match. This way information
can be made explicit that would otherwise be stated only implicitly, and html tags (for
visualization), sgml tags (for corpus segmentation) or xml tags (for external tools) can be inserted
before or after certain trigger tags or tag combinations. For the speech corpus annotation project,
xml-style encoding of chunking information was the desired target format. With the cohort
insertion method this amounted to simply turning chunk edge cohorts into <...> lines (Fig. 1),
while the filter program for the relation-adding method had to insert xml tags before or after
tokens carrying chunk edge labels (Fig. 3). Because this method was used to produce multi-
layered chunking, the filter program also had to keep track of the xml tag nesting, i.e. arrange
brackets in correct matching order, whereas the minimal chunks produced with the insertion

3 Of course, if a head is situated leftmost or rightmost in its chunk, it will carry both types of tags.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 18 of 474]

method were simply defined - following CoNLL conventions - as non-overlapping and non-

recursive, avoiding any bracketing complexities:

<chunk form="advp">

So [so] <*> <aquant> ADV @ADVL>
<chunk form="/advp">
<chunk form="np">

anyone [anyone] INDP S NOM @SUBJ>
<chunk form="/np">
<chunk form="np">

who_ [who] <sam-> <rel> INDP S/P @SUBJ>
<chunk form="/np">
<chunk form="vp">

_s [be] <-sam> <mv> V PR 3S @FS-N<
<chunk form="/vp">
<chunk form="adjp">

familiar [familiar] ADJ POS @<SC
<chunk form="/adjp">
<chunk form="pp">

with [with] PRP @A<
<chunk form="/pp">
<chunk form="vp">

playing [play] <mv> V PCP1 @ICL-P<
<chunk form="/vp">

<chunk form="np">
different [different] ADJ POS @>N
types [type] <ac-cat> <idf> N P NOM @<ACC
<chunk form="/np">
<chunk form="pp">
of [of] PRP @N<
<chunk form="/pp">
<chunk form="np">
games [game] <game> <idf> N P NOM @P<
<chunk form="/np">
<chunk form="pp">
through [through] PRP @<ADVL
<chunk form="/pp">
<chunk form="np">
a [a] <indef> ART S @>N
console [console] <tool> <idf> N S NOM @P<
<chunk form="/np">
<chunk form="vp">
will [will] <aux> V PR @FS-STA
be [be] <mv> V INF @ICL-AUX<
<chunk form="/vp">

Ficure 1: Minimal chunks, insertion method, xml format

The format does not explicitly mark heads, but because we followed the CoNLL standard in only
allowing left dependents, this does not amount to any loss of information - the head is simply the
rightmost/last constituent of a multi-word minimal chunk.

For the sake of evaluation and comparability, we also provide a denser, non-xml format, with the
 (beginning-of) and <I> (inside-of) tags used in the CoNLL evaluation. This is achieved by a
couple of short CG rules, where (a) extracts the chunk type ("<.(.+)>"r) as a bracketed regular
expression variable from an immediately preceding (-1) CHUNK opening cohort and remaps it
as a tag (<C:B-$1>), while rule (b) adds <I> tags with chunk type-information extracted
from immediately preceding - or <I>-tagged words. A third rule (c) maps an <O> tag
(outside-of-chunk) to all remaining words. Since minimal chunking regards 1-word constituents
as chunks, and all word classes are mapped onto chunk types, all instances of <O> amount to
annotation errors in the CG input.

So <C:B-advp> ADV @ADVL> near <C:B-pp> PRP @<ADVL

you <C:B-np> PERS 2S/P NOM @SUBJ> |completely <C:B-np> ADV @>A

might <C:B-vp> V IMPF @FS-STA *different <C:I-np> ADJ POS @>N

*be <C:I-vp> V INF @ICL-AUX< *things <C:I-np> N P NOM @P<

near <C:B-pp> PRP @<SA that <C:B-np> INDP P @SUBJ>
some <C:B-np> DET S/P @>N are <C:B-vp>V PR -1/3S @FS-N<
*universities <C:I-np> N P NOM @P< completely <C:B-adjp> ADV @>A

but <C:B-conjp> KC @CO *unrelated <C:I-adjp> ADJ POS @<SC
you <C:B-np> PERS 25/P NOM @SUBJ> |to <C:B-pp> PRP @A<

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 19 of 474]

could <C:B-vp> V IMPF @FS-STA you <C:B-np> PERS 2S/P ACC @P<
*end <C:I-vp> V INF @ICL-AUX< as=well <C:B-advp> ADV @<ADVL
up <C:B-prt> ADV @MV< .

Ficure 2: Minimal chunks, insertion method, B/I/O format

Like most Constraint Grammars, our input CG marks a number of multi-word expressions
(MWESs) as tokens, in particular certain complex prepositions, conjunctions and adverbs, as well
as MWEs in the productive category of names. An example is the last word in Fig. 2 (‘as well'),
which however could simply be expanded by splitting on space, letting the first part of the MWE
inherit the MWE tag, and adding <I> tags to all other MWE parts.

Fig. 3 shows a fully layered chunk tree for the same data used in Fig. 1, with layering depth
shown as indented dots (. . .), to improve readability. CG lemma, inflexion, pos, function and
dependency tags are retained, the latter employing a sentence-internal numbering scheme (#n->m
tags). The relational, chunk edge-linking CG tags would be redundant, and are not shown after
conversion into xml-format. In order to facilitate linguistic corpus searches, the xml chunk lines
carry explicit feature-attribute pairs for (chunk) form, (head) function and head ID. The latter are
- unlike dependency IDs - numbered across the whole corpus, because our CG compiler in
principle allows relations across sentence boundaries, allowing for co-referent resolution,
discourse annotation or text-level chunking.

<chunk form="fcl" function="STA" head="167">
. So [so] <*> <aquant> ADV @ADVL> #1->16 ID:153
. <chunk form="np" function="SUBJ" head="154">
.. anyone [anyone] INDP S NOM @SUBJ> #2->15 ID:154
.. <chunk form="fcl" function="N<" head="156">
... who_ [who] <clb> <sam-> <rel> INDP S/P @SUBJ> #3->4 ID:155
._S [be] <-sam> <mv> V PR 3S @FS-N< #4->2 ID:156
.. <chunk form="adjp" function="SC" head="157">

... familiar [familiar] <close-2> <acquainted> ADJ POS @<SC #5->4 ID:157
.. .. <chunk form="pp" function="A<" head="158">
..... with [with] PRP @A< #6->5 ID:158

..... <chunk form="icl" function="P<" head="159">

...... playing [play] <mv> V PCP1 @ICL-P< #7->6 ID:159
...... <chunk form="np" function="ACC" head="161">
....... different [different] ADJ POS @>N #8->9 ID:160

....... types [type] <ac-cat> <idf> <nhead> N P NOM @<ACC #9->7 ID:161
....... <chunk form="pp" function="N<" head="162">
........ of [of] PRP @N< #10->9 ID:162

........ games [game] <game> <idf> <nhead> N P NOM @P< #11->10 ID:163
....... </chunk form="pp" function="N<" head="162">
...... </chunk form="np" function="ACC" head="161">
...... <chunk form="pp" function="ADVL" head="164">
....... through [through] <advl-fs> PRP @<ADVL #12->7 ID:164
....... <chunk form="np" function="P<" head="166">
........ a [a] <indef> ART S @>N #13->14 ID:165
........ console [console] <tool> <idf> <nhead> N S NOM @P< #14->12 ID:166
....... </chunk form="np" function="P<" head="166">
...... </chunk form="pp" function="ADVL" head="164">
..... </chunk form="icl" function="P<" head="159">
.. </chunk form="pp" function="A<" head="158">

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 20 of 474]

... </chunk form="adjp" function="SC" head="157">

.. </chunk form="fcl" function="N<" head="156">

. </chunk form="np" function="SUBJ" head="154">

. <chunk form="vp" function="P" head="167">

.owill [will] <aux> <cjt-first> V PR @FS-STA #15->0 ID:167
.. be [be] <mv> V INF @ICL-AUX< #16->15 ID:168

. </chunk form="vp" function="P" head="167">

... (37 lines)

</chunk form="fcl" function="STA" head="167">

Ficure 3: Layered "maximal" chunking, relational method, xml format

As can be seen from the example, this implementation of layered chunking does provide for right
branching (e.g. postnominal pp's), and it can also handle discontinuity, marking left and right
halves of a discontinuous chunk by adding right or left hyphens, respectively, to the chunk's form
attribute:

<chunk form="fcl" function="STA" headid="2" head="does">

. <chunk form="pp-" function="SA" headid="5" head="from">

.. Where [where] <clb> <*> <interr> <aloc> ADV @>>P #1->5 ID:1
. </chunk form="pp-" function="SA" head="5" head="from">

. <chunk form="vp-" function="STA" headid="2" head="does">
..does [do] <chunk-head> <aux> V PR 3S @FS-STA #2->0 ID:2
. </chunk form="vp-" function="P" head="2" head="does">

Lt [it] PERS NEU 3S NOM @<SUBJ #3->4 ID:3

. <chunk form="-vp" function="STA" headid="2" head="does">
..come [come] <move> <mv>V INF @ICL-AUX< #4->2 ID:4

. </chunk form="-vp" function="STA" head="2" head="does">

. <chunk form="-pp" function="SA" headid="5" head="from">

.. from [from] <chunk-head> <prp-strand> PRP @<SA #5->4 ID:5
. </chunk form="-pp" function="SA" head="5" head="from">
</chunk form="fcl" function="STA" head="2" head="does">

$? [?1PU @PU #6->0 ID:6

Ficure 4: Layered chunking, discontinuity

For the layered, maximal chunking we followed the VISL convention, avoiding non-branching
nodes and bracketing 1-word chunks only in the case of discontinuity
(http://beta.visl.sdu.dk/VTB-design.html). If, for instance for np extraction purposes, single
nouns were to be bracketed, this could be easily achieved by adding one simple rule applying to
all nouns without an np head relation tag, mimicking the behavior of the minimal chunker on this
point*. Because our layered bracketing de facto amounts to complete constituent trees, we were
able to build conversion filters for both the VISL and TIGER formats® (figures 5 & 6), allowing
corpus users to take advantage of the numerous tools available for these formats, such as
visualizers, editors and search tools.

A1l =======DN:adj("different" POS) different
STA:fcl =======H:n("type" <idf> P NOM) types

4 Likewise, all other word classes could of course be made to spawn 1-word chunks of a corresponding type.
® For clarity, a number of secondary tags was removed from the VISL non-terminal brackets. Similarly, the lemma,
morphology and extra fields were removed from the TIGER non-terminal lines.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 21 of 474]

=fA:adv("so" <aquant>) So

=S:np

==H:pron-indef("anyone" S NOM) anyone
==DN:fcl

===S:pron-rel("who" <sam-> <rel> S) who_
===P:v-fin("be" <-sam> PR 3S) _s

===Cs:adjp ====DN:art("a" <indef> S) a
====H:adj("familiar" POS) familiar ========H:n("console" <idf> S NOM) console
====DA:pp =
=====H:prp("with") with =P:vp
=====DP:icl ==Vaux:v-fin("will" <cli> PR) will
======P:v-pcp1("play") playing ==Vm:v-inf("be") be
======0d:np =Cs:adj("content" POS) content

Ficure 5: VISL constituent trees
<terminals> <nonterminals>

<tid="s1_1" word="So" pos="adv"/>

<t id="s1_2" word="anyone" pos="pron-indef" />
<t id="s1_3" word="who_" pos="pron-rel"/>
<t id="s1_4" word="_s" pos="v-fin"/>

<t id="s1_5" word="familiar" pos="adj"/>
<tid="s1_6" word="with" pos="prp"/>
<tid="s1_7" word="playing" pos="v-pcpl"/>
<t id="s1_8" word="different" pos="adj"/>
<tid="s1_9" word="types" pos="n"/>
<tid="s1_10" word="of" pos="prp"/>

<t id="s1_11" word="games" pos="n"/>

<t id="s1_12" word="through" pos="prp"/>
<tid="s1_13" word="a" pos="art"/>
<tid="s1_14" word="console" pos="n"/>
<tid="s1_15" word="," pos="pu"/>
<tid="s1_16" word="will" pos="v-fin"/>
<tid="s1_17" word="be" pos="v-inf"/>
<tid="s1_18" word="content" pos="adj"/>

<t id="s1_19" word="." pos="pu"/>

<nt id="s1_500" cat="s">

<edge label="STA" idref="s1_501"/></nt>
<nt id="s1_501" cat="fcl">

<edge label="PU" idref="s1_19"/></nt>
<nt id="s1_502" cat="np">

<edge label="H" idref="s1_2"/>

<edge label="DN" idref="s1_503"/></nt>
<nt id="s1_503" cat="fcl">

<edge label="S" idref="s1_3"/>

<edge label="P" idref="s1_4"/>

<edge label="Cs" idref="s1_504"/></nt>
<nt id="s1_504" cat="adjp">

<edge label="H" idref="s1_5"/>

<edge label="DA" idref="s1_505"/></nt>
<nt id="s1_505" cat="pp">

<edge label="H" idref="s1_6"/>

<edge label="DP" idref="s1_506"/></nt>
<nt id="s1_506" cat="icl">

<edge label="P" idref="s1_7"/></nt>

</nonterminals>

Ficure 6: TIGER treebank format

</terminals>
4 Evaluation
4.1 Minimal Chunker evaluation

There are several aspects in the evaluation of a CG-based chunker. First of all, in descriptive
terms, it is interesting to see how well a function-based medium-level CG annotation can be
converted into a constituent-based chunking parse which basically amounts to the task of
computing (syntactic) form from (syntactic) function. Second, because a CG rule set is malleable
and allows incremental improvements, it is important for development to identify specific error
patterns and error triggers. For minimal chunking in particular, which as a shallow parsing
technique will usually be performed on raw input rather than on corpora with linguist-revised

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 22 of 474]

grammatical tagging, it is important to evaluate the annotation chain as a whole, not just the
chunker as such, and to identify error triggers at all levels.

We therefore evaluated the minimal chunker together with a morphosyntactic (POS and function)
run of the underlying CG, on a 3563-word section of the English interview corpus, in the B/1/O
format. Since error inspection was important for us, and no funding was available to create a
multi-annotator gold standard, evaluation was done by output correction alone, with a
corresponding risk of parser-friendly bias. For the complete run, recall was 97.4% and precision
97.5%, the difference being due to 3 MWE tokenization errors and 5 <O> (out-of-chunk) errors.
While the latter are caused by the chunking grammar itself, the former is partly triggered by
transcription conventions in the corpus, where noun-verb contractions were not recognized
(persona's = persona is, who've = who have). Of the main body of errors, i.e. and <I> errors,
about 25% were pure chunking errors, where chunk form was correct, but segmentation faulty,
caused almost always by function tag errors in the underlying CG. In the remaining 75%, chunk
form was wrong, indicating underlying POS errors. Table 1 shows a confusion matrix for this
error type.

gold: np adjp advp vp)] conjp intj prt
tagged:
np - 4 2 5 0 1 3 0
adjp 6 - 3 0 0 0 3 0
advp 5 8 - 0 0 1 0 0
vp 4 3 1 - 0 0 0 0
pp 0 0 3 0 - 1 0 0
conjp 3 0 1 0 1 - 0 0
intj 0 0 0 0 0 0 - 0
prt 0 0 0 0 0 0 0 -
sum/all 18/1630 | 15/101 | 10/254 5/956 1/316 3/236 6/50 0/21
relative 1.1% 14.9% 3.9% 0.5% 0.3% 1.3% | 12.0% 0%

Taste 1: Confusion table for chunk form types, minimal chunking

As can be seen, the most common form error was adjective phrases tagged as adverb phrases.
Across confusion types, as a class, np's had the highest error frequency, but in relative terms the
most error-prone classes were adjp's and interjections. Particles (verb-integrated adverbs) were
recognized 100%, and vp and pp errors were very rare.

4.2 Maximal Chunker evaluation

For the the maximal/layered chunker (constituent tree generator), two evaluation runs were
performed, one with a complete analysis chain, the other with a morphosyntactic gold corpus as
input, where PoS and function tags had been hand-corrected, and where only dependency links
had to be added automatically. For the former, the same (interview) data were used as for the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 23 of 474]

minimal chunking evaluation, the latter consisted of 102 random Journalese sentences (1817
words) from the Leipzig Corpora Collection (http://corpora.informatik.uni-
leipzig.de/download.html)®.

With errors in only 12 out of 1055 multi-word” chunks (1,1%), the gold input run demonstrated
the effectiveness of the CG chunking method in isolation, especially when taking into account
that 3/4 of the errors were attachment errors directly attributable to (live) dependency grammar
rather than the chunker itself. The only chunk missing outright was a coordination chunk, and 2
of the 3 chunk bracketing errors that were not due to attachment problems, also involved
coordination chunks. In a certain sense, it can be concluded that CG chunking on top of syntactic
CG analysis is more a format conversion than an independent layer of annotation - in other
words, it is (almost) information-equivalent to CG dependency annotation, with most new
information being contained in the latter already, making performance a direct function of the
performance of the underlying morphosyntactic CG parser. Thus, the only chunk type in our
grammar that does not really "trust" its dependency input, is coordination, where rules work with
matching form and function tags rather than dependency links alone, taking into account the
relatively high dependency error rate for this category.

In the raw text run, the maximal chunker suffered from the accumulated error rate of all CG
analysis modules, and did not perform as well. A 1389 word section was used, containing 635
(multi-word) chunks. 17 chunks were not recognized, 4 chunks were in excess and 58 chunks had
wrong bracketing®. This amounts to a recall of 88.2%, a precision of 90.0% and a balanced F-
score’ of 89.1.

Because both the CG dependency grammar and the chunk form assignment relied on
morphosyntactic tags, erroneous head PoS or erroneous dependent function will lead to both
wrong attachment and wrong form assignment, so form tag errors in correctly bracketed chunks
were extremely rare, and category confusion was otherwise mainly triggered by wrong
morphosyntactic tagging. Again, coordination errors figured prominently, and over 50% of
undetected chunks were coordination chunks.

5 Conclusions

We have shown that Constraint Grammar rules constitute an efficient method for syntactic
chunking. In a full CG suite, together with a morphosyntactic annotation module, between 89%
and 97.5% of chunks will be correctly recovered for raw English text, representing the extremes
of minimal chunking (no right np-branching and no nesting) on the one hand, and full layered
constituent chunking on the other. While both chunking modules are quite rule-efficient (with 20
and 59 rules, respectively), only the minimal chunker works on morphosyntactic tags alone,
while the layered chunker (which in its deepest version is a constituent parser rather than a
chunker in the traditional sense of the word) uses an intermediate step of dependency attachment
(279 rules). Still, even the combined error percentage of dependency and chunker is very low

© A direct comparison on the same data could have been interesting, but within the timeframe of the project, it was not
possible to create a CG gold corpus for the Interview data.

7 If single words were counted as chunks, no new error information would be added because all errors would constitute
integration into multi-word chunks and should thus already be marked as multi-word chunk errors.

8 For discontinuous chunks, both parts were counted as chunks, and the only discontinuity error was therefore counted as
two.

° Defined as the harmonic mean of recall and precision.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 24 of 474]

(just over 1%) if seen in isolation, i.e. on correct function tag input, so the performance gap
between minimal and layered chunking seems to be caused not so much by the chunking rules
themselves, but rather by the fact that the deeper the nesting, the more morphosyntactic errors
will trigger bracketing errors.

We believe, from a grammar writer's perspective, that the chunkers - especially the minimal
chunker - are fairly language independent, because they run on an input level where syntactic
function categories provide a "language-insulating” level of abstraction (provided a common
notational system is used), but this assumption needs to be verified by future evaluation with
generic rules and a larger set of languages, including languages that are typologically more
different than English and German.

For practical reasons of availability, we tested gold input performance on a different genre
(news) than the raw input runs (interview data), but optimally both runs and both chunking levels
should be evaluated across different genre in a comparable way. This could also shed light on the
question whether rule-based chunking is either more or less genre-sensitive than machine
learning methods, and - if relevant - how much individual rules contribute to genre sensitivity,
allowing the use of limited, genre-specific grammar patches.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 25 of 474]

References

Abney, Steven (1991). Parsing by Chunks. In: Principle-Based Parsing. Kluwer Academic
Publishers, pp. 257-278

Banko, M., M.J. Cafarella, S. Soderland, M. Broadhead and O. Etzioni (2007). Open
Information Extraction from the Web. In: Proceedings of the 20th IJCAI, pp. 2670-2676

Bick, Eckhard (2003). A CG & PSG Hybrid Approach to Automatic Corpus Annotation. In:
Kiril Simow & Petya Osenova (eds.), Proceedings of SProLaC2003 (at Corpus Linguistics
2003, Lancaster), pp. 1-12

Bick, Eckhard (2005). Turning Constraint Grammar Data into Running Dependency Treebanks,
In: Civit, Montserrat & Kiibler, Sandra & Marti, Ma. Antonia (red.), Proceedings of TLT 2005
(4th Workshop on Treebanks and Linguistic Theory, Barcelona, December 9th - 10th, 2005),
pp. 19-27

Carreras, X and L. Marquez (2003). Phrase Recognition by Filtering and Ranking with
Perceptrons. In: Proceedings of RANLP-2003, pp. 78-85.

Jurafsky, D. and J. H. Martin (2009). Speech and Language Technology, Pearson Education, p.
490.

Kiibler, Sandra and Erhard W. Hinrichs (2001). From chunks to function-argument structure: A
similarity- based approach. In Proceedings of ACL-EACL 2001 (Tolouse, France), pp. 338-345.

Tjong Kim Sang, E. and S. Buchholz. (2000). Introduction to the CoNLL-2000 shared task:
Chunking. In Proceedings of CoNLL-2000 and LLL-2000 (Lisbon, Portugal), pp. 127— 132.

Van den Bosch, Antal and Sabine Buchholz (2002). Shallow parsing on the basis of words only:
A case study . In Proceedings of the 40th Meeting of the Association for Computational
Linguistics (ACL'02), pp. 433-440.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 26 of 474]

Features indicating readability in Swedish text

Johan Falkenjack®, Katarina Heimann Miihlenbock?, Arne Jonsson®

(1) Department of Information and Computer Science, Linképing University, Link6ping, Sweden
(2) Sprakbanken, University of Gothenburg, Gothenburg
(3) SICS East Swedish ICT AB

johan.falkenjack@liu.se, katarina.heimann.muhlenbock@gu.se, arne. jonsson@liu.se

ABSTRACT

Studies have shown that modern methods of readability assessment, using automated linguistic
analysis and machine learning (ML), is a viable road forward for readability classification and
ranking. In this paper we present a study of different levels of analysis and a large number of
features and how they affect an ML-system’s accuracy when it comes to readability assessment.
We test a large number of features proposed for different languages (mainly English) and
evaluate their usefulness for readability assessment for Swedish as well as comparing their
performance to that of established metrics. We find that the best performing features are
language models based on part-of-speech and dependency type.

KEYWORDS: Readability assessment, Machine learning, Dependency parsing, Weka.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 27 of 474]

1 Introduction

The problem of readability assessment is the problem of mapping from a text to some unit
representing the text’s degree of readability. Measures of readability are mostly used to inform
a reader how difficult a text is to read, either to give them a hint that they may try to find
an easier to read text on the same topic or simply to inform them that a text may take some
time to comprehend. Readability measures are mainly used to inform persons with reading
disabilities on the complexity of a text, but can also be used to, for instance, assist teachers
with assessing the reading ability of a student. By measuring the reading abilities of a person, it
might also be possible to automatically find texts that fits that persons reading ability. It has
further been shown that readability is a useful measure for finding a corpus for training vector
space models (Smith et al., 2012).

Readability gives rise to a number of problems. For instance, readability is not a function of text
only but a function of both text and reader, as defined by Dale and Chall (1949): "[Readability
is] the sum total (including all the interactions) of all those elements within a given piece of
printed material that affect the success a group of readers have with it. The success is the extent
to which they understand it, read it at optimal speed, and find it interesting." However, in this
study we make the assumption that a function of text only can be a useful approximation. This
assumption is supported by and related to the practice of American researchers to normalize
their metrics to the U.S. grade level. Resources for such a normalisation for Swedish are not
yet readily available and until they are we focus on the problem of classifying texts as either
easy-to-read or not.

Readability assessment has been a field of interest for linguists since the 1920s but intensive
research begun in the U.S. in the late 1940s (Sjoholm, 2012). This research resulted in the
introduction of the first version of the Flesch Reading Ease test (Flesch, 1948) and the Dale-Chall
formula, versions of which are still used today.

A number of easily calculated readability metrics (consisting of a small number of easily counted
features such as average word length, lexical variation and frequency of "simple words") were
introduced for English during the following three decades. Some examples are the Coleman-
Liau index, which was specifically designed for automated assessment of readability (Coleman
and Liau, 1975), the SMOG formula (McLaughlin, 1969) and the Fry readability formula (Fry,
1968). All of these metrics were designed to output a score corresponding to the U.S. grade
level thought necessary for full comprehension of a text. In 1975 the Flesch Reading Ease test
was reinvented as the Flesch-Kincaid Grade Level with the same principle in mind (Kincaid
et al., 1975).

This way of constructing readability metrics was widely accepted as good enough for a long
time. However, in the 1980’s research questioning the performance of these traditional metrics
was being published (Davison and Kantor, 1982).

Readability assessment for Swedish has mostly been done using metrics similar to the ones
constructed for English. The most utilized readability metric for Swedish is LIX, Lasbarhetsindex
(Readability index) (Bjornsson, 1968), which is formulated in a way similar to that of the
Flesch metric. Today the LIX metric is basically the standard metric for readability in Swedish.
However, in recent years new research has shown that the metric is not always sufficient
(Miihlenbock and Johansson Kokkinakis, 2009; Heimann Miihlenbock, 2013).

The OVIX Ordvariationsindex (Word variation index) and Nominal Ratio metrics (Hultman

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 28 of 474]

and Westman, 1977) have been used in research to complement LIX as they are assumed to
correlate with degree of readability viewed from other linguistic levels.

Since the early 2000s the speed and accuracy of text analysis tools such as lemmatizers, part-
of-speech taggers and syntax parsers have made new text features available for readability
assessment. By using machine learning a number of researchers have devised innovative ways
of assessing readability. For instance, phrase grammar parsing has been used to find the average
number of sub-clauses, verb phrases, noun phrases and average tree depth (Schwarm and
Ostendorf, 2005).

The use of language models to assess the degree of readability was also introduced in the early
2000s (Collins-Thompson and Callan, 2004) and later combined with classification algorithms
such as support vector machines to further increase accuracy (Petersen, 2007; Feng, 2010)

In this paper we present a study on the problem of finding and evaluating features relevant for
classification. Such classifiers have previously been experimented with for Italian (Dell’Orletta
et al., 2011). An extension of such a classifier has been proposed as an alternative to regression
or detectors when it comes to ordering documents based on degree of readability (Falkenjack
and Heimann Miihlenbock, 2012). The present approach is experimental in the sense that
several feature models, simple as well as complex, are tested and compared. The models are
based on text properties acting at various language levels, and the task is to identify the best-
performing feature model for readability assessment viewed from one or several specific aspects
of written language. An even more complex model where also the semantic aspect is taken into
account would demand language resources supplied with information on concepts and meaning
as for instance WordNet (Miller, 1995). Such an approach is presented in Heimann Miihlenbock
(2013), where readability is regarded as the totality of features acting at five different levels of
language representation, including the idea density level.

2 Study

In the study presented in this paper we evaluate a number of models for readability on a variety
of corpora to assess the models’ ability to classify a text as easy-to-read or not.

2.1 Corpora

To train and test our classifier we use one easy-to-read corpus and five corpora representing
ordinary language in different text genres. The latter corpora will further on be labeled as
non-easy-to-read. For each category we use 700 texts.

Our source of easy-to-read material is the LaSBarT corpus (Miihlenbock, 2008). LiSBarT
consists of manually created easy-to-read texts from a variety of sources and genres.

The non-easy-to-read material comprise texts from a variety of corpora to make sure that
what we are classifying is readability rather than genre. This material consists of 215 articles
from GP2007 (news text), 34 whole issues of Forskning och Framsteg (popular science), 214
articles from Likartidningen 05 (professional news), 214 public information notices from
Smittskyddsinstitutet (government text) and 23 full novels from the Norstedts publishing house
(fiction).

By using a corpus with such a variety of documents we will get texts that have different degree
of readability which is important as we want to be able to use the same model on all types of
text.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 29 of 474]

The texts are preprocessed using the Korp corpus import tool (Borin et al., 2012). Steps in
the preprocessing chain relevant for this study are tokenization, lemmatisation, part-of-speech
tagging and dependency grammar parsing. The Korp tool is publicly available for testing.

2.2 Classification

We use the Waikato Environment for Knowledge Analysis (Weka) suite and its implementation
of the popular classification algorithm Support Vector Machine (SVM). Support Vector Machines
has been increasingly popular in Computational Linguistics in recent years and have, among
other uses, been used for readability assessment with good results (Petersen, 2007; Feng, 2010).

The SVM algorithm is an algebraic approach to the classification problem. Objects with a known
class are represented as points in an n-dimensional space, where n is the number of attributes.
An algorithm then attempts to find a maximum margin hyperplane separating the objects by
their class (Witten et al., 2011). New objects are classified by calculating on which side of this
hyperplane the object’s corresponding point occurs.

The version of SVM-learning (finding the separating hyperplane) we use is the SMO, Sequential
Minimal Optimization, algorithm (Platt, 1998). A Java implementation of a SMO-based SVM is
included in the standard Weka toolkit.

We chose the SVM-approach as prior research has shown that it is one of the best performing
algorithms for degree of readability classification using the full set, or subsets, of features we
evaluate in this study (Sjoholm, 2012).

2.3 Models

We have constructed a total of 34 models. First we have three models representing the
established Swedish metrics used to measure, or assumed to correlate with some aspect of
readability, namely LIX, OVIX and Nominal ratio (NR).

We also use 21 single feature models. These models represent features proposed for readability
assessment in prior research, mainly on English texts. As the primary aim of this study is to
evaluate these feature models’ ability to predict readability these models are the most important.

As many of the single feature models result from the same kind of preprocessing, we have
also decided to create ten compound models. We divide the features into four levels similar
to the four levels used by the READ-IT system for Italian (Dell’Orletta et al., 2011). These
levels are Shallow (requires tokenization), Lexical (requires lemmatisation), morpho-syntactic
(requires part-of-speech tagging) and Syntactic (requires parsing, in our case with a dependency
grammar parser).

Seven models based on these levels are constructed, four which covers only a single level each;
Shallow, Lexical, Morpho and Syntactic. Three models incrementally add levels to the analysis;
the Lexicallnc model which consists of all features from the Lexical and Shallow models, the
Morpholnc model which consists of all features from the Lexicallnc and Morpho models and the
SyntacticInc model which consists of all features from the Morpholnc and the Syntactic models.
These models are used to evaluate to what degree each level of linguistic analysis improves our
model’s ability to predict readability.

We also create three models combining the established metrics, LIX, OVIX and NR. The first,
called TradComb, comprise only the three established metrics. The other two combine TradComb

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 30 of 474]

with SyntacticInc (Total) and Morpholnc (NoDep) respectively.

2.3.1 Shallow features

The shallow text features are the main features traditionally used for simple readability metrics.
They occur in the "shallow" surface structure of the text and can be extracted after tokenization
by simply counting words and characters. They include:

AvgWordLengthChars Average word length calculated as the average number of characters
per word.

AvgWordLengthSylls Average word length calculated as the average number of syllables per
word. The number of syllables is approximated by counting the number of vowels.

AvgSentLength Average sentence length calculated as the average number of words per
sentence.

Longer sentences, as well as longer words, tend to predict a more difficult text as exemplified
by the performance of the LIX metric and related metrics for English. These types of features
have been used in a number of readability studies based on machine learning (Feng, 2010) and
as baseline when evaluating new features (Pitler and Nenkova, 2008).

2.3.2 Lexical features

Our lexical features are based on categorical word frequencies. The word frequencies are
extracted after lemmatization and are calculated using the basic Swedish vocabulary SweVoc
(Heimann Miihlenbock, 2013). SweVoc is comparable to the list used in the classic Dale-Chall
formula (Dale and Chall, 1949) for English and developed for similar purposes, however special
sub-categories have been added (of which three are specifically considered). The following
frequencies are calculated, based on different categories in SweVoc:

SweVocC SweVoc lemmas fundamental for communication (category C).
SweVocD SweVoc lemmas for everyday use (category D).
SweVocH SweVoc other highly frequent lemmas (category H).

SweVocTotal Unique, per lemma, SweVoc words (all categories, including some not mentioned
above) per sentence.

A high ratio of SweVoc words should indicate a more easy-to-read text. The Dale-Chall metric
(Chall and Dale, 1995) has been used as a similar feature in a number of machine learning
based studies of text readability for English (Feng, 2010; Pitler and Nenkova, 2008). The
SweVoc metrics are also related to the language model features used in a number of studies
(Schwarm and Ostendorf, 2005; Heilman et al., 2008).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 31 of 474]

2.3.3 Morpho-syntactic features

The morpho-syntactic features concern a morphology based analysis of text. For the purposes of
this study the analysis relies on previously part-of-speech annotated text, which is investigated
with regard to the following features:

UnigramPOS Unigram probabilities for 26 different parts-of-speech in the document, that is,
the ratio of each part-of-speech, on a per token basis, as individual attributes. Such a
unigram language model based on part-of-speech, and similar metrics, has shown to be a
relevant feature for readability assessment for English (Heilman et al., 2007; Petersen,
2007; Dell’Orletta et al., 2011).

RatioContent The ratio of content words (nouns, verbs, adjectives and adverbs), on a per
token basis, in the text. Such a metric has been used in a number of related studies
(Alusio et al., 2010).

2.3.4 Syntactic features

These features are estimable after syntactic parsing of the text. The syntactic feature set is
extracted after dependency parsing using the Maltparser (Nivre et al., 2006). Such parsers
has been used for preprocessing texts for readability assessment for Italian (Dell’Orletta et al.,
2011). The dependency based features consist of:

AvgDepDistDep The average dependency distance in the document on a per dependent basis.
A longer average dependency distance could indicate a more complex text (Liu, 2008).

AvgDepDistSent The average dependency distance in the document on a per sentence basis. A
longer average total dependency distance per sentence could indicate a more complex
text (Liu, 2008).

RightDeps The ratio of right dependencies to total number of dependencies in the document.
A high ratio of right dependencies could indicate a more complex text.

SentenceDepth The average sentence depth. Sentences with deeper dependency trees could
be indicative of a more complex text in the same way as phrase grammar trees has been
shown to be (Petersen and Ostendorf, 2009).

UnigramDepType Unigram probabilities for the 63 dependency types resulting from the depen-
dency parsing, on a per token basis. These features are comparable to the part-of-speech
unigram probabilities and to the phrase type rate based on phrase grammar parsing used
in earlier research (Nenkova et al., 2010).

VerbalRoots The ratio of sentences with a verbal root, that is, the ratio of sentences where the
root word is a verb to the total number of sentences (Dell’Orletta et al., 2011).

AvgVerbArity The average arity of verbs in the document, calculated as the average number of
dependents per verb (Dell’Orletta et al., 2011).

UnigramVerbArity The ratios of verbs with an arity of 0-7 as distinct features (Dell’Orletta
et al., 2011).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 32 of 474]

We also propose the following four syntactic features:

TokensPerClause The average number of tokens per clause in the document. This is related to
the shallow feature average number of tokens per sentence.

PreModifiers The average number of nominal pre-modifiers per sentence.
PostModifiers The average number of nominal post-modifiers per sentence.

PrepComp The average number of prepositional complements per sentence in the document.

2.4 Evaluation

We evaluated the 21 single feature models presented above, three traditional metric models
and the ten compound models presented above. Some features, rendered in italics in Table 2,
consist of more than one concrete attribute and a few attributes are considered both as features
in themselves and as attributes in larger feature models.

To test our models we use 7-fold cross validation over a set of 1400 documents. Each chunk
consists of 100 easy-to-read texts and 100 non-easy-to-read texts. The corpora used to make
up the non-easy-to-read set are shuffled and might therefore not be evenly distributed among
the chunks (if this is a problem it should show up as a generally high standard deviation for all
accuracies).

The result of the evaluation represents each model’s ability to correctly identify easy-to-read
texts. The accuracy of a model represents the proportion of the documents which are correctly
classified as either easy-to-read or non-easy-to-read. A higher accuracy implies that the model,
and its underlying features, more strongly predict degree of readability. To complement the
accuracy we also provide precision and recall for the sets of easy-to-read texts and non-easy-
to-read texts respectively, this to better understand where low performing models might go
wrong.

In addition we present the standard deviation for each percentage based on the 7 folds of the
cross validation. A high standard deviation implies inconsistent performance.

3 Results and discussion

The results of our test runs are presented below. We present the average values for the 7-fold
cross validation in percent as well as the standard deviation in percentage points.

3.1 Traditional metrics

Among the traditional metrics (see Table 1) OVIX actually seems to perform about as well as
LIX. This is somewhat surprising as LIX is designed to directly measure readability while OVIX
is only assumed to indirectly measure readability. As OVIX considers totally different features
from LIX, it does, perhaps, strengthen the point that LIX, as the standard readability metric for
Swedish, might be overly simplistic.

Nominal ratio, NR, is the worst performing of the traditional metrics. It seems that the NR
model tend to over-classify documents as easy to read, demonstrated by high recall but low
precision for LaSBarT. As NR and ratio of content words, RatioContent, (see Table 2) both

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 33 of 474]

Table 1: Performance of the three traditional metrics. The accuracy represents the average
percentage of texts classified correctly, with the standard deviation within parentheses. Precision
and Recall are also provided, with standard deviations within parenthesis, for both easy-to-read
(LaSBarT) and non-easy-to-read (Other) sets.

LaSBarT Other
Model | Accuracy | Precision Recall Precision Recall
LIX | 84.6(1.9) | 87.9(2.9) | 80.4 (2.8) | 82.0 (2.1) | 88.9 (3.0)
OVIX | 85.6(2.3) | 86.8(4.3) | 84.4(3.1) | 84.9(2.4) | 86.9 (5.0)
NR 55.3(9.1) | 53.5(6.8) | 99.1 (1.9) | 96.0 (7.7) | 11.4 (20.1)

perform badly, it seems that only a more complex part-of-speech based feature, such as the
multi-attribute feature consisting of unigrams for all POS-types is sufficient. Further analysis of
single POS-type models might yield interesting results though.

3.2 Single feature models

Looking at Table 2 we see that most single feature models provide some indication on degree of
text readability. There are however some models which perform a lot worse than anticipated.

It seems that the average dependency distance per sentence, AvgDepDistSent, is more or less
useless, it might be that this is nothing more than a convoluted way to talk about sentence
length, AvgSentLength, which in itself appears to be a highly inconsistent feature. Both these
metrics over-classify documents as easy-to-read to a very high degree.

Also surprising is that the ratio of content words, RatioContent, does not seem to be a good
indicator of readability. However, this does not seem to be a problem of over-classification,
rather the model seems to be equally bad at classifying both sets, based on precision and recall
close to 50 % for both sets. It might be that a high ratio of content words indicate a higher
information density and therefore a more complex text while at the same time a low ratio might
instead indicate a syntactically complex text. In such cases a simple SVM classification is not
sufficient. Also, for an inflecting language like Swedish, the ratio of content words might yield
different results than for languages with a more modest morphology, as for instance English. As
with the nominal ratio metric, a closer inspection of single POS-type ratios might yield some
further clues.

The average number of tokens per clause, TokensPerClause, and the ratio of nominal post-
modifiers also seem to have a tendency to over-classify documents as easy-to-read having high
LaSBarT recall but relatively low precision. Nominal pre-modifiers, however, while still suffering
from slight easy-to-read over-classification, perform almost as well as LIX or OVIX when only
accuracy is considered.

Best performing of the single feature models are the unigram models for part-of-speech,
UnigramPOS, and dependency type, UnigramDepType. This is not surprising as these features
represent simple language models and language models are often very powerful when compared
to single attribute features.

It is only the unigram language models, UnigramPOS and UnigramDepType, and the average

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 34 of 474]

Table 2: Performance of the single feature models, italicised models consist of more than one
concrete attribute. The accuracy represents the average percentage of texts classified correctly,
with the standard deviation within parentheses. Precision and Recall are also provided, with
standard deviations within parenthesis, for both easy-to-read (LdSBarT) and non-easy-to-read

(Other) sets.

LaSBarT Other

Model Accuracy Precision Recall Precision Recall
AvgWordLengthChars | 79.6 (2.6) | 82.3 (5.0) | 75.7 (1.4) | 77.4 (1.3) 83.4 (5.5)
AvgWordLengthSylls 75.6 (2.6) | 78.7 (4.0) | 70.3 (2.8) | 73.1(2.1) 80.9 (4.4)
AvgSentLength 62.4 (8.1) 58.0 (7.5) | 98.7 (3.0) 97.8 (4.0) 26.1 (19.2)
SweVocC 79.3 (0.8) 84.3 (1.1) | 72.0 (2.1) 75.6 (1.2) 86.6 (1.3)
SweVocD 57.6 (3.8) 63.1(7.4) | 37.9 (5.2) 55.5 (2.7) 77.4 (6.3)
SweVocH 63.1 (4.5) | 63.1(4.6) | 63.4(5.1) | 63.2 (4.5 62.9 (5.4)
SweVocTotal 75.2(1.4) | 80.6 (3.4) | 66.7 (2.3) | 71.6 (0.8) 83.7 (4.2)
UnigramPOS 96.8 (1.6) | 96.9 (2.5) | 96.7 (1.1) | 96.7 (1.1) 96.9 (2.6)
RatioContent 50.4 (1.8) 50.4 (1.7) | 52.7 (3.1) 50.4 (1.9) 48.1 (3.6)
AvgDepDistDep 88.5(2.0) | 88.5(2.3) | 88.6(2.2) | 88.6(2.1) 88.4 (2.4)
AvgDepDistSent 53.9 (10.2) | 52.8 (7.2) | 99.7 (0.8) | 28.1 (48.0) | 8.1 (21.1)
RightDeps 68.9 (2.1) | 70.6 (3.2) | 65.1 (4.0) | 67.7 (2.1) 72.7 (4.6)
SentenceDepth 75.1 (3.5) | 79.1 (4.3) | 68.4(4.6) | 72.2 (3.4) 81.9 (4.2)
UnigramDepType 97.9(0.8) | 97.7 (1.1) | 98.0 (1.3) | 98.0 (1.3) 97.7 (1.1)
VerbalRoots 72.6 (2.0) 77.0 (3.4) | 64.6 (3.3) 69.5 (1.7) 80.6 (4.3)
AvgVerbArity 63.4 (3.0) | 64.9(3.2) | 58.4(4.9) | 62.3 (3.0) 68.4 (3.2)
UnigramVerbArity 68.6 (1.7) | 70.2 (2.6) | 65.0 (2.8) | 67.4 (1.5) 72.3 (4.0)
TokensPerClause 71.4 (4.7) | 64.2 (4.4) | 98.6 (1.0) | 97.0 (1.8) | 44.3 (10.0)
PreModifiers 83.4(2.9) | 78.1(3.1) | 93.0(2.2) | 91.3 (2.6) 73.9 (4.5)
PostModifiers 57.4(4.3) | 54.1(2.7) | 99.9 (0.4) | 98.4 (4.2) 15.0 (8.5)
PrepComp 83.5(3.5) | 80.1(2.4) | 89.1(5.9) | 88.1(5.8) 77.9 (2.7)

dependency distance per dependency, AvgDepDistDep, that outperform the traditional metrics
OVIX and LIX. However, the average number of prepositional complements per sentence,
PrepComp, and nominal pre-modifiers per sentence, PreModifiers, respectively do come close.

3.3 Compound models

When we look at the compound models, Table 3 we can see highly improved performance. Not
surprisingly, we get the best performance from the Total model consisting of all features that
the system is able to extract.

All compound metrics except for the Shallow and Lexical models outperform the traditional
metrics. However, combining these two, the Lexicallnc model, does outperform the traditional
metrics LIX, OVIX and NR.

Interestingly the UnigramPOS feature model seems to perform slightly better than the Morpho
model (which actually consists of UnigramPOS and RatioContent). The bad performance of the
ratio of content words model, RatioContent, might introduce some performance-decreasing

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 35 of 474]

Table 3: Performance of the ten compound models. The accuracy represents the average
percentage of texts classified correctly, with the standard deviation within parentheses. Precision
and Recall are also provided, with standard deviations within parenthesis, for both easy-to-read
(LaSBarT) and non-easy-to-read (Other) sets.

LaSBarT Other

Model Accuracy | Precision Recall Precision Recall
TradComb | 91.4 (3.0) | 92.0 (4.6) | 91.0 (2.1) | 91.1 (2.2) | 91.9 (4.9)
Shallow 81.6 (2.7) | 83.3(4.4) | 79.4 (3.1) | 80.3 (2.5) | 83.9 (4.9)
Lexical 78.4 (2.2) | 81.8 (2.9) | 73.0 (2.9) | 75.6 (2.1) | 83.7 (3.0)
Morpho 96.7 (1.6) | 96.8 (2.6) | 96.7 (1.4) | 96.7 (1.3) | 96.7 (2.7)
Syntactic 98.0 (1.1) | 97.9 (1.7) | 98.1 (1.2) | 98.1 (1.2) | 97.9 (1.8)
Lexicallnc 90.1 (2.9) | 87.1 (4.1) | 94.3 (2.6) | 93.8 (2.7) | 85.9 (4.9)
Morpholnc | 97.3 (0.8) | 96.9 (1.6) | 97.7 (1.6) | 97.7 (1.5) | 96.9 (1.7)
Syntacticlnc | 98.4 (0.9) | 98.3 (1.4) | 98.6 (1.0) | 98.6 (1.0) | 98.3 (1.4)
NoDep 98.3 (1.0) | 97.4 (1.9) | 99.3 (1.3) | 99.3 (1.2) | 97.3 (2.0)
Total 98.9 (1.0) | 98.9 (1.1) | 98.9 (1.1) | 98.9 (1.1) | 98.9 (1.1)

confusion though.

The Morpho and Syntactic models both more or less equal the UnigramPOS and UnigramDep-
Type models respectively implying that these are by far the most important features in the
respective models.

4 Conclusions

In this study we have presented a large number of feature models proposed for readability
assessment. Most of these models have previously been shown to be useful for assessing
readability of English texts. Our results show that many of them are also relevant for Swedish,
however some models are less relevant, most notably the ratio of content words, RatioContent,
for which we have no simple explanation. Contrary to, for instance, NR which erroneously
classify many texts as readable and consequentially achieves avery low accuracy, RatioContent
does not have a high recall on any category in the corpora.

The best performing features seem to be part-of-speech or dependency type based language
models, especially the compound models that require parsing using a dependency parser;
Syntactic, SyntacticInc and Total. These models all have high Accuracy, more than 98% and a
fairly low standard deviation showing a stable performance.

We also show that a combination of the three established metrics outperform the standard LIX
metric but also that the use of the raw data necessary to calculate those metrics (the data in
the MorphoInc model) might possibly be put to even better use. Dependency grammar parsing
seems to provide very useful data for identifying easy-to-read texts but in an environment
where such heavy calculations are infeasible a very good result might be found without it as
demonstrated by the NoDep model.

We propose that future research look further into the language models represented by the
UnigramPOS and UnigramDepType models. It might be possible to construct relatively simple

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 36 of 474]

metrics based on only a few of the attributes in these models. It might also be possible to
construct even better performing models by looking at bigrams or trigrams instead of just

unigrams.

Acknowledgments

We would like to thank Santa Anna IT Research Institute AB for funding this research as well as
the staff members at Sprdkbanken who created and let us use the Korp corpus import tool.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 37 of 474]

References

Alusio, S., Specia, L., Gasperin, C., and Scarton, C. (2010). Readability assessment for text
simplification. In Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 1-9.

Bjornsson, C. H. (1968). Ldsbarhet. Liber, Stockholm.

Borin, L., Forsberg, M., and Roxendal, J. (2012). Korp — the corpus infrastructure of sprak-
banken. In Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC’12).

Chall, J. S. and Dale, E. (1995). Readability revisited: The new Dale—Chall readability formula.
Brookline Books, Cambride, MA.

Coleman, M. and Liau, T. L. (1975). A computer readability formula designed for machine
scoring. Journal of Applied Psychology, 60:283-284.

Collins-Thompson, K. and Callan, J. (2004). A Language Modeling Approach to Predicting
Reading Difficulty. In Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics.

Dale, E. and Chall, J. S. (1949). The concept of readability. Elementary English, 26(23).

Davison, A. and Kantor, R. N. (1982). On the failure of readability formulas to define readable
texts: A case study from adaptations. Reading Research Quarterly, 17(2):187-209.

Dell’Orletta, E, Montemagni, S., and Venturi, G. (2011). READ-IT: Assessing Readability of
Italian Texts with a View to Text Simplification. In Proceedings of the 2nd Workshop on Speech
and Language Processing for Assistive Technologies, pages 73-83.

Falkenjack, J. and Heimann Miihlenbock, K. (2012). Readability as probability. In Proceedings
of The Fourth Swedish Language Technology Conference, pages 27-28.

Feng, L. (2010). Automatic Readability Assessment. PhD thesis, City University of New York.
Flesch, R. (1948). A new readibility yardstick. Journal of Applied Psychology, 32(3):221-233.
Fry, E. B. (1968). A readability formula that saves time. Journal of Reading, 11:513-516.

Heilman, M. J., Collins-Thompson, K., Callan, J., and Eskenazi, M. (2007). Combining Lexical
and Grammatical Features to Improve Readability Measures for First and Second Language
Texts. In Proceedings of NAACL HLT 2007, pages 460-467.

Heilman, M. J., Collins-Thompson, K., and Eskenazi, M. (2008). An Analysis of Statistical
Models and Features for Reading Difficulty Prediction. In Proceedings of the Third ACL Workshop
on Innovative Use of NLP for Building Educational Applications, pages 71-79.

Heimann Miihlenbock, K. (2013). I see what you mean. Assessing readability for specific target
groups. Dissertation, Sprakbanken, Dept of Swedish, University of Gothenburg.

Hultman, T. G. and Westman, M. (1977). Gymnasistsvenska. LiberLaromedel, Lund.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 38 of 474]

Kincaid, J. B, Fishburne, R. P, Rogers, R. L., and Chissom, B. S. (1975). Derivation of new
readability formulas (Automated Readability Index, Fog Count, and Flesch Reading Ease
Formula) for Navy enlisted personnel. Technical report, U.S. Naval Air Station, Millington, TN.

Liu, H. (2008). Dependency distance as a metric of language comprehension difficulty. Journal
of Cognitive Science, 9(2):169-191.

McLaughlin, G. H. (1969). SMOG grading - a new readability formula. Journal of Reading,
22:639-646.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM,
38(11):39-41.

Miihlenbock, K. (2008). Readable, Legible or Plain Words — Presentation of an easy-to-read
Swedish corpus. In Saxena, A. and Viberg, A., editors, Multilingualism: Proceedings of the
23rd Scandinavian Conference of Linguistics, volume 8 of Acta Universitatis Upsaliensis, pages
327-329, Uppsala, Sweden. Acta Universitatis Upsaliensis.

Miihlenbock, K. and Johansson Kokkinakis, S. (2009). LIX 68 revisited - An extended read-
ability measure. In Mahlberg, M., Gonzalez-Diaz, V., and Smith, C., editors, Proceedings of the
Corpus Linguistics Conference CL2009, Liverpool, UK.

Nenkova, A., Chae, J., Louis, A., and Pitler, E. (2010). Structural Features for Predicting the
Linguistic Quality of Text Applications to Machine Translation, Automatic Summarization and
Human-Authored Text., pages 222-241. Empirical Methods in NLG. Springer-Verlag.

Nivre, J., Hall, J., and Nilsson, J. (2006). MaltParser: A Data-Driven Parser-Generator for
Dependency Parsing. In Proceedings of the fifth international conference on Language Resources
and Evaluation (LREC2006), pages 2216-2219.

Petersen, S. (2007). Natural language processing tools for reading level assessment and text
simplification for bilingual education. PhD thesis, University of Washington, Seattle, WA.

Petersen, S. and Ostendorf, M. (2009). A machine learning approach toreading level assess-
ment. Computer Speech and Language, 23:89-106.

Pitler, E. and Nenkova, A. (2008). Revisiting Readability: A Unified Framework for Predicting
Text Quality. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, pages 186-195, Honolulu, HI.

Platt, J. C. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines. Technical Report MSR-TR-98-14, Microsoft Research.

Schwarm, S. E. and Ostendorf, M. (2005). Reading level assessment using support vector
machines and statistical language models. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics.

Sj6holm, J. (2012). Probability as readability: A new machine learning approach to readability
assessment for written Swedish. Master’s thesis, Linkdping University.

Smith, C., Danielsson, H., and Jonsson, A. (2012). A good space: Lexical predictors in vector
space evaluation. In Proceedings of the eighth international conference on Language Resources
and Evaluation (LREC), Istanbul, Turkey.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 39 of 474]

Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools
and Techniques. The Morgan Kaufmann series in data management system. Morgan Kaufmann
Publishers, third edition.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 40 of 474]

Towards a Dependency-based PropBank of General Finnish

Katri Haverinen,“? Veronika Laippala,® Samuel Kohonen,? Anna Missild,>
Jenna Nyblom,? Stina Ojala,® Timo Viljanen,?
Tapio Salakoski? and Filip Ginter?

(1) Turku Centre for Computer Science (TUCS), Turku, Finland
(2) Department of Information Technology, University of Turku, Finland
(3) Department of Languages and Translation Studies, University of Turku, Finland

first.last@utu.fi

ABSTRACT

In this work, we present the first results of a project aiming at a Finnish Proposition Bank, an
annotated corpus of semantic roles. The annotation is based on an existing treebank of Finnish,
the Turku Dependency Treebank, annotated using the well-known Stanford Dependency scheme.
We describe the use of the dependency treebank for PropBanking purposes and show that both
annotation layers present in the treebank are highly useful for the annotation of semantic roles.
We also discuss the specific features of Finnish influencing the development of a PropBank as
well as the methods employed in the annotation, and finally, we present preliminary evaluation
of the annotation quality.

KEYWORDS: PropBank, Finnish, dependency.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 41 of 474]

1 Introduction

Semantic role labeling (SRL) is one of the fundamental tasks of natural language processing. In
a sense, it continues from where syntactic parsing ends: it identifies the events and participants,
such as agents and patients, present in a sentence, and therefore it is an essential step in
automatically processing the sentence semantics. SRL can be applied in, for example, text
generation, text understanding, machine translation and fact retrieval (Palmer et al., 2005).

There have been several different efforts to capture and annotate semantic roles, the best-known
projects being FrameNet (Baker et al., 1998), VerbNet (Dang et al., 1998) and PropBank (Palmer
et al., 2005), all built for the English language. Out of the three resources, FrameNet is the
most fine-grained one, defining roles for specific classes of verbs, such as Cook and Food for
verbs relating to cooking. PropBank, in contrast, uses very generic labels, and is the only one of
the three intended for corpus annotation rather than as a lexical resource. VerbNet, in turn, is
between FrameNet and PropBank in granularity, and somewhat like PropBank, has close ties to
syntactic structure. For a more thorough comparison of the three schemes, see the overview
by Palmer et al. (2010).

The PropBank scheme in particular has become popular for semantic role labeling resources:
after the initial effort on English, PropBanks for different languages have emerged, including,
among others, PropBanks for Chinese (Xue and Palmer, 2009), Arabic (Zaghouani et al., 2010),
Hindi (Palmer et al., 2009) and Brazilian Portuguese (Duran and Aluisio, 2011). As a PropBank
is intended for corpus annotation purposes, and as the annotation scheme is closely tied to
syntax, PropBanks are annotated on top of existing treebanks.

For Finnish, a freely available general language treebank has recently become available (Haver-
inen et al., 2010b, 2011), but no corpus annotated for semantic roles exists in the general
domain. Haverinen et al. (2010a) have previously made available a small-scale PropBank of clin-
ical Finnish, and thus shown that in principle, the PropBank scheme is suitable for Finnish and
combinable with the Stanford Dependency (SD) scheme (de Marneffe and Manning, 2008a,b),
the annotation scheme of both the clinical treebank and the general language treebank of
Haverinen et al.

In this work, we present the first results of a project that aims to create a general language
PropBank for Finnish, built on top of the existing Turku Dependency Treebank. This paper
describes the methodology used for constructing the PropBank in a dependency-based manner,
as well as shows the utility of the two different annotation layers present in the treebank. We
also discuss the ways in which the Finnish PropBank relates to the English PropBank, our efforts
to provide links between the two resources and the specific features of the Finnish language
that require attention in the annotation process. Finally, we discuss the employed annotation
methods and present preliminary evaluation.

2 PropBank Terminology

The purpose of a Proposition Bank or PropBank, as originally developed for English by Palmer
et al. (2005), is to provide running text annotation of semantic roles, that is, the participants of
the events described. For instance, the participants may include an agent who actively causes
the event, or a patient, someone to whom the event happens. As defining a single set of roles
that would cover all possible predicates is difficult, the PropBank annotation scheme defines
roles on a verb-by-verb basis. Each verb receives a number of framesets, which can be thought
of as coarse-grained senses for the verb. Each frameset consists of a roleset, which is a set of

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 42 of 474]

act.01: to play a role, to behave | act.02: to do something
arg0 Player arg0 Actor
argl Role argl Grounds for action

Figure 1: Two framesets for the verb to act. The frameset act.01 is intended for usages such as
He acted as her trustee and the frameset act.02 for usages such as He acted on the knowledge that
she betrayed him.

semantic roles associated with this sense of the verb, and in addition, a set of syntactic frames
that describe the allowable syntactic variations.

The roles or arguments in each roleset are numbered from zero onwards. A verb can have up to
six numbered arguments, although according to Palmer et al. most verbs have two to four. The
arguments zero and one (Arg0 and Arg1l) have specific, predefined meanings: Arg0 is reserved
for agents, causers and experiencers, and Argl is used for patients and themes. The arguments
Arg2 to Arg5 have no predefined meanings, but rather they are specified separately for each
verb. The original PropBank project makes an effort, however, to keep also these arguments
consistent within classes of verbs defined in VerbNet (Dang et al., 1998). Figure 1 illustrates
two framesets for the English verb to act.

In addition to numbered arguments, the PropBank scheme defines so called adjunct-like argu-
ments or ArgMs. These, unlike the numbered arguments, are not verb-specific, but rather can
be applied to any verb. The original PropBank defines a set of 11 different ArgMs: location
(LOCQ), extent (EXT), discourse (DIS), negation (NEG), modal verb (MOD), cause (CAU), time
(TMP), purpose (PNC), manner (MNR), direction (DIR) and general purpose adverbial (ADV). The
distinction between numbered arguments and ArgMs is made on the basis of frequency: roles
that occur frequently with a particular verb sense are given numbered argument status, and
less frequent roles are left as ArgMs.

PropBanks are constructed in a data-driven manner using an underlying treebank. For each
different verb present in the corpus, the verb senses observed are assigned framesets in a process
called framing, and after the framesets have been created, the occurrences in the treebank are
annotated accordingly. For each verb occurrence, the annotator must select the correct frameset
and mark the arguments as defined in this frameset as well as the ArgMs.

3 The Turku Dependency Treebank

This work builds on top of the previously established Turku Dependency Treebank (TDT) (Haver-
inen et al., 2010b, 2011), which consists of 204,399 tokens (15,126 sentences) from 10 different
genres of written Finnish. The text sources of the treebank are the Finnish Wikipedia and
Wikinews, popular blogs, a university online magazine, student magazines, the Finnish sections
of the Europarl and JRC-Acquis corpora, a financial newspaper, grammar examples from a
Finnish reference grammar and amateur fiction from various web-sources.

The syntax annotation scheme of the treebank is a Finnish-specific version of the well-known
Stanford Dependency (SD) scheme (de Marneffe and Manning, 2008a,b). The SD scheme
represents the syntactic structure of a sentence as a directed graph, where the nodes represent
the words of the sentence and the edges represent pairwise dependencies between them. Each
dependency has a direction, meaning that one of the two words connected is the head or
governor and the other is the dependent. Each dependency also has a type or label, which
describes the syntactic function of the dependent.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 43 of 474]

punct>

conj>
cc>
<nsubj nommod> ij nommod>
r<au>< advmod>w advmod>j

Nayttelija on asunut aiemmin Italiassa ja muuttanut sielta Saksaan
Actor has lived earlier in Italy and moved from _there to Germany .

Figure 2: The SD scheme on a Finnish sentence. The example can be translated as The actor
has earlier lived in Italy, and moved from there to Germany.

(<amod ccg(ﬁ}npw :.r<amod ccg(%n:l)j
old cars and bikes old cars and bikes

Figure 3: Conjunct propagation and coordination scope ambiguity. Left: the reading where only
the cars are old. Right: The reading where both the cars and the bikes are old.

The original SD scheme contains 55 dependency types arranged in a hierarchy, where each type
is a direct or indirect subtype of the most general dependency type dependent (dep). The scheme
has four different variants, each using a different subset of the dependency types and giving
a different amount of information on the sentence structure. The basic variant of the scheme
restricts the sentence structures to trees, and the dependency types convey mostly syntactic
information. The other variants add further dependencies on top of the tree structure, making
the structures graphs rather than trees.

TDT uses a Finnish-specific version of the scheme, which defines a total of 53 dependency
types and is described in detail in the annotation manual by Haverinen (2012). The annotation
consists of two different layers of dependencies. The first annotation layer is grounded on the
basic variant of the SD scheme, and hence the structures of the sentences in this layer are trees.
The base layer of annotation is illustrated in Figure 2. The second annotation layer, termed
Conjunct propagation and additional dependencies, adds on top of the first layer additional
dependencies describing the following phenomena: propagation of conjunct dependencies,
external subjects and syntactic functions of relativizers.

Conjunct propagation in the SD scheme provides further information on coordinations. The basic
variant of the scheme considers the first coordinated element the head, and all other coordinated
elements and the coordinating conjunction depend on it. Therefore, if a phrase modifies the
first element of a coordination, it may in fact also modify all or some of the other conjuncts,
and it should be propagated to those conjuncts that it modifies. Similarly, it is possible that all
or some of the coordinated elements modify another sentence element. Conjunct propagation is
used to resolve some (not all) coordination scope ambiguities; for instance, whether the adjective
old modifies both cars and bikes or only cars in the phrase old cars and bikes (see Figure 3).

External subjects occur with open clausal complements, where a verb and its complement verb
share a subject (subject control). The fact that the subject of the first verb is also the subject
of the second verb cannot be marked in the first layer due to treeness restrictions, leaving it
part of the second layer. Relativizers, or the phrases containing the relative word, such as which
or who, are only marked as relativizers in the first layer of the treebank annotation, again in
order to preserve the treeness of the structure. However, they also always have a secondary
syntactic function, which in turn is annotated in the second layer of TDT. For instance, in The
man who stood at the door was tall, the pronoun who acts as the subject of the verb stood. All of
the phenomena addressed in the second layer of TDT are illustrated in Figure 4.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 44 of 474]

<nsubj

e punct>
<xsubj
rcmod> —— /
| ———<xsubj
<punct advmod>
nsub conJ> punct>
<rel xcomp> cc> advmod*> <advmod nomm0d>

Mies ,]oka alkoi juosta Ja huutaa hurjasti , melkeln térmasi minuun
Man , who started to run and shout <crazily , almost collided into me .

Figure 4: The second annotation layer of TDT. The example can be translated as The man, who
started to run and shout crazily, almost collided with me. All second layer dependencies are in
bold, and propagated dependencies are marked by an asterisk. The relative pronoun joka (who)
also acts as the subject of the relative clause, as well an external subject to an open clausal
complement. The external subject of the verb juosta (run) is also the external subject of the
second coordinated verb, huutaa (shout) and is therefore propagated to the second conjunct.
Similarly, the adverb modifier hurjasti (crazily) is shared between the two coordinated verbs.
None of these phenomena can be accounted for in the first layer of annotation due to the
treeness restriction.

unct>
______ <nsubj:0 . ———
o conj> ™
H cc>
: nommod : AM-cau>
i——<nsubj :0 dobj :1>_ﬁ adpos> dobj: 1>

Tuomaristo hylkasi.2 kilpailijan vilpin vuok51 ja maarasi.2 rangalstuksen
Judges disqualified competitor deceit due to and ordered punishment

Figure 5: PropBank annotation on top of the dependency treebank. Dependencies with an
associated PropBank argument are marked in bold. Note how one of the arguments (Arg0)
of the latter verb in the sentence is associated with a second-layer dependency. The example
sentence can be translated as The judges disqualified the competitor due to deceit and ordered a
punishment.

4 Dependency-based PropBanking

The PropBank annotation of this work is built on top of the dependency syntax annotation of
TDT, including both the first and second annotation layer. This is in contrast to the English
PropBank, which has been built on top of the constituency-based Penn Treebank (Marcus et al.,
1993). In the Finnish PropBank, each argument of a verb is associated with a dependency (be it
first or second layer) in the underlying treebank, which means that the subtree of the dependent
word, as defined by the dependencies of the first annotation layer, acts as the argument. For an
illustration of the dependency-based PropBank annotation, see Figure 5.

In contrast to the original PropBank (Palmer et al., 2005) where in theory any constituent could
be an argument, we make use of a heuristic: in most cases, the arguments of a verb will be
its direct dependents. However, unlike the clinical language pilot study of Haverinen et al.
(2010a), we do annotate all arguments, whether direct dependents of the verb or not. The
heuristic of direct dependents being the likeliest arguments is only used to increase the speed
of annotation by highlighting likely argument candidates for the annotator in the annotation
software. In cases where an argument is found outside the dependents of the verb, we allow an
extra dependency of the type xarg (external argument) to be added to any non-dependent word
at annotation time, so that the argument can be attached to this dependency. For an illustration
of external arguments, see Figure 6.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 45 of 474]

punct>
<advcl:AM-tmp dobj:1>
xarg:0> xarg: 0>
dobj :2>ﬁ |»<nsubj :0 F<dobj :1 <partmod

Juostuaan.l kilometrin Jussi saavutti.l takkinsa vieneen.l miehen .
After running kilometer Jussi reached his coat took man

Figure 6: Arguments that are not direct dependents of the verb. On the left, the third person
singular possessive suffix of the verb juostuaan (after running, after he ran) shows that it shares
the subject of saavutti (reached), although this is not marked in the syntax annotation as the
structure is not a case of subject control. On the right, semantically the noun miehen (man)
is an argument to the verb vieneen (took), although syntactically, the verb participle modifies
the noun. Note how by the assumption of whole subtrees forming arguments, the verb vieneen
itself is incorrectly included in its own argument (Arg0) in the rightmost case. The example can
be translated as After running a kilometer, Jussi reached the man who took his coat.

In the currently complete portion of the PropBank, 81.0% of all arguments, including both
numbered arguments and ArgMs, are associated with a dependency of the first syntactic layer.
If one takes into account dependencies of the second layer as well as the first, 93.1% of the
arguments are covered, leaving a portion of 6.9% as external arguments. This shows that while
the first layer of annotation does not suffice to cover an adequate proportion of the arguments,
the second layer, which was annotated exactly for the purpose of finding semantic arguments
falling outside the base-syntactic dependents of a verb, covers the majority of the remaining
arguments.

As Choi and Palmer (2010) have shown, when using a dependency treebank for constructing a
PropBank, in some cases the assumption that arguments are the dependents of the verb and
their full subtrees results in some missing arguments that are directly due to the dependency
structure of the sentence, as well as incorrect argument boundaries. In our work, the missing
arguments are remedied by the xarg strategy, for instance in the case of a participal modifier,
which is syntactically a dependent of the noun, although in fact the noun is its semantic
argument. This is illustrated in Figure 6. In the case of a participal modifier, however, the
addition of an xarg dependency leads to an incorrect argument boundary, as by the full subtree
assumption the verb itself becomes part of its own argument. It should be noted that using the
SD scheme already prevents some of the boundary issues mentioned by Choi and Palmer. For
instance, in their work, modal verbs are problematic, as they are marked as the head of the
main verb, whereas in the PropBank, the modal verb should be marked as an ArgM-mod for
the main verb. In SD, however, the main verb is made the head and the auxiliary depends on
it, which is unproblematic for PropBank annotation. A principled solution for the remaining
boundary issues is not proposed in this paper, but is left as future work — perhaps using a
rule-based approach, seeing that the boundary issues consist mostly of clear, regular cases.

5 Specific Features of Finnish Verbs

In the development of the Finnish PropBank, we have followed the same design principles as
were used in the original PropBank: the arguments are numbered similarly from zero onwards,
and the principles on which the framesets are created and distinguished are the same. We also
use the same set of adjunct-like arguments, ArgMs, only adding two new subtypes, consequence
(CSQ) and phrasal marker (PRT).

In order to expand the application potential of the Finnish PropBank to multilingual settings,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 46 of 474]

erota.2: leave a job quit.01: leave a job
Arg0 | Person quitting | Arg0 | Person quitting
Argl | Job or position | Argl | Job or position

Figure 7: Finnish and English verbs with corresponding framesets. The Finnish verb erota can be
translated as to quit, and the framesets of this verb sense define identical argument structures.
Therefore, the Finnish frameset is assigned the English as its corresponding frameset.

we assign to the Finnish frameset a corresponding frameset from the English PropBank where
possible. Naturally, not all Finnish framesets have a corresponding English frameset, due to
differences between the two languages. In this section, we discuss the specific features of
the Finnish language influencing the creation of a PropBank, as well as the assignment of a
corresponding English frameset and cases where no such frameset exists.

5.1 Frameset Correspondences and Non-correspondences

A frameset is assigned a corresponding English PropBank frameset when two conditions apply.
The English verb must be a valid translation for the sense of the Finnish verb under consideration,
and the two framesets must have the same arguments present, with matching argument numbers
as well as argument descriptions. Occasionally, the argument descriptions of a corresponding
English frameset are slightly rephrased in order to maximize the internal consistency of the
Finnish PropBank.

As an example of corresponding framesets, one of the senses of the Finnish verb erota can be
translated as to quit and it is used in contexts such as quitting a job or a position. This sense
of the verb has its own frameset in the Finnish PropBank, and it is assigned a corresponding
frameset in the English PropBank. The two framesets are illustrated in Figure 7.

For some verbs, however, the specific features of Finnish and the usages of the verbs being
different to English do not allow assigning corresponding framesets. For instance, the frameset
for the Finnish verb korjata meaning to fix or to repair, corresponds to neither of the English
framesets, which, in turn, are also different from each other. The framesets for the three verbs
are illustrated in Figure 8.

The difference between the two English framesets lies in the Arg2 argument; to fix includes an
argument described as benefactive, which is absent in the description of to repair. The Finnish
frameset, in contrast, contains an Arg2 describing an instrument, which is absent in both of
the English framesets. Therefore it cannot be assigned either of them as the corresponding
frameset. The addition of the instrument argument was necessary, however, as it is frequently
found in the instances of the verb in the underlying treebank.

The corpus-based development of the framesets implies, naturally, that the non-correspondence
of framesets does not necessarily indicate a difference between the languages. As the framesets
are based on the treebank texts, they do not reflect all possible meanings and argument
structures that a verb can have. This means that a non-correspondence can be caused merely
by the limited and possibly different topics and text sources of the underlying treebanks. For
example, the non-correspondence of the verb korjata with its English equivalents may be, at
least partly, caused by contextual differences in the treebank texts.

A clear example of contextual differences causing non-correspondence of framesets is the Finnish

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 47 of 474]

fix.02: to repair korjata.1: to fix, to repair

arg0 Fixer arg0 Entity repairing something
argl Thing fixed argl Entity repaired
arg2 Benefactive arg2 Instrument, thing repaired with

repair.01: to restore after damage or injury
arg0 Repairer, agent
argl Entity repaired

Figure 8: Framesets of Finnish and English verbs with the meaning to repair. The Finnish

frameset contains an argument describing the instrument of fixing, which is not present in

either of the English framesets. Note that also the two English framesets differ in that the

frameset for to fix contains a benefactive argument, whereas the frameset for to repair does not.
run.02: walk quickly, course or contest | juosta.l: move rapidly on foot

arg0 Runner arg0 Creature running, agent
argl Course, race, distance arg2 EXT, distance
arg2 Opponent arg3 Start point

arg4 End point

Figure 9: Framesets of Finnish and English verbs describing running, the rapid movement of an
agent on foot. The English frameset describes running a competition or a course, as in John
ran a marathon, and the Finnish frameset describes running from one location to another, as
in John ran from home to work. The abbreviation EXT on the Finnish frameset refers to extent,
which is one of the ArgM subtypes defined in the PropBank scheme.

verb juosta and its English counterpart, to run, both of which describe the rapid movement of an
agent. In the underlying Finnish treebank, the majority of examples describe an agent running
from one location to another. However, the English PropBank does not contain a frameset for
such a use of the verb to run, but rather only a frameset describing running a competition,
distance or course. This is presumably due to the Penn Treebank only containing such examples,
as the English to run can perfectly well be used for describing movement between two locations
(see for instance the Collins English dictionary (2009)). As the examples present in the Finnish
treebank require a frameset whose equivalent does not exist in the English PropBank, the
framesets for these two verbs are necessarily different, as illustrated in Figure 9.

5.2 Finnish Causative Verbs and Polysemous Verbs in English

In addition to verbs differing by virtue of different usages, a more systematic difference between
English and Finnish verbs is caused by the verb derivation system in Finnish. In English, many
verbs, especially those of movement, are polysemous and can be used in different syntactic
configurations. These verbs, also termed variable behavior verbs (see the work of Levin and
Hovav (1994) and Perlmutter (1978)), can take as their syntactic subject either an agent actively
causing an event or a patient merely undergoing it. For instance, the verb to move can have
both subject types, as in I move versus The chair moves. In addition, the verb can also be used
transitively, as in I move the chair, where the agent causes the event undergone by the patient.

In contrast, Finnish expresses the transitive meaning using a separate verb, typically formed by
adding a morpheme to the root verb. For example, from the verb liitkkua (to move, intransitive),
it is possible to derive litkuttaa (to make something move), as illustrated in Figure 10. These
causative verbs can be formed both from originally transitive, such as syédd (to eat), the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 48 of 474]

(1) Imove Mind litkun

(2) The chair moves Tuoli litkkuu

(3) Imove the chair *Mind liikun tuolia
Mind litkutan tuolia

Figure 10: Verbs taking both agents and patients as subjects in English and in Finnish. In
English, the verb to move has three different uses: two intransitive uses and one transitive,
where the agent causes the event occurring to the patient. In Finnish, this last sense, the
transitive one, is expressed by a causative verb derived from the root verb.

lilkkua.1l: to move, be moved liikuttaa.1: to move something
arg0 Entity moving actively arg0 Entity moving argl
argl Entity whose movement something causes | argl Entity moved

if not arg0
arg2 Place arg2 Place

move.01: change location
arg0 Mover

argl Moved

arg2 Destination

Figure 11: Framesets of Finnish and English verbs with the meaning to move. Top left: Finnish,
intransitive verb that takes as its subject either an agent or a patient. Top right: Finnish,
transitive causative verb for moving. Bottom left: English, transitive and intransitive uses.
Despite appearances, the frameset liikuttaa.1 does not correspond to the frameset move.01, as
the English verb is allowed to take either an Arg0 or an Argl as its subject, whereas the Finnish
verb is not.

causative being syottdd (to feed), and intransitive verbs, such as nukkua (to sleep), where the
causative is nukuttaa (to make someone sleep) (Hakulinen et al., 2004, §311). For causatives
and causativity in general, see for instance the work of Shibatani (1976) and Itkonen (1996),
and the introduction by Paulsen (2011).

For the English PropBank, all three usages of the verb to move can be defined by a single
frameset that includes both argument zero and argument one. Depending on the arguments
present in a sentence, one or both arguments can be annotated, as PropBank does not require
that all arguments are present in all examples. The formulation of the Finnish framesets and
the assignment of corresponding framesets is, however, more challenging.

Because of its specific argument structure, the frameset for the Finnish causative derivation
liikuttaa (to make something move) cannot be assigned the English to move as its corresponding
frameset; to move can take either an Arg0 or an Argl as its subject, while litkuttaa can not.
Despite this, the verb can still have the same arguments as the English frameset. As the Finnish
intransitive litkkua (to move) is able to take either an agent or a patient as a subject, we assign
it a single frameset that contains both an Arg0 and an Argl, and explicitly mark that these
arguments are mutually exclusive, meaning that only one of them should be annotated in any
given example. Figure 11 illustrates the framesets of the two Finnish verbs and for comparison,
the English verb to move.

It is also possible, although less common, for a Finnish verb taking alternatively an agent or a
patient as its subject to allow a transitive usage. An example of this is the verb lentdd (to fly),

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 49 of 474]

where the intransitive with an agent (lintu lentdd, the bird flies), the intransitive with a patient
(lentokone lentdd, the plane flies) and the transitive (pilotti lentdd lentokonetta, the pilot flies the
plane) all use the same verb. These verbs are treated similarly to the original PropBank as they
are not problematic in the same way as the verbs described above, but they are nevertheless
marked as variable behavior verbs in the frameset.

6 Annotation Protocol

The annotation of the Finnish PropBank, similarly to the English one, consists of two main
phases. In the first phase, each verb is given a number of framesets that describe the different
senses of the verb as they occur in the underlying corpus, and in the second phase, all the
occurrences of the verb are annotated according to the framesets given.

In order to recognize tokens that require PropBank annotation, we use the open source mor-
phological analyzer OMorFi (Pirinen, 2008; Lindén et al., 2009), which gives each token all of
its possible readings with no disambiguation between them. In order to ensure the annotation
of all verbs in the treebank, all tokens that receive a verbal reading, or a reading indicating
that the word can be a minen-derivation (resembles the English ing-participle), are selected
for annotation. Calculated in this manner, the Turku Dependency Treebank contains 49,727
potential verb tokens that require annotation, and 2,946 possible different verb lemmas. At this
stage, 335 lemmas have been fully annotated, resulting in a total of 9,051 annotated tokens.
This means that with respect to lemmas, approximately 11.4% of the work has been completed,
and with respect to tokens, the estimate is 18.2%. It should be noted that when advancing from
the common verbs towards verbs with less occurrences, the annotation becomes gradually more
laborious. As illustrated in Figure 12, the amount of verbs with a large amount of occurrences
is fairly small as compared to the amount of verbs with only few occurrences. The framing and
annotation in this project commenced not from the most common verbs but rather those with a
middle range occurrence rate, in order to settle the annotation scheme before moving to the
most common verbs. Thus at this stage, the verbs with the most occurrences are in fact not yet
annotated.

In total six different annotators, with different amounts of previous experience and different
backgrounds, contribute to the PropBank, and the same annotators also act as framers. The
verbs present in the treebank are framed and annotated one lemma at a time. In the beginning
of the annotation process, all occurrences of each lemma were double annotated, in order
to ensure high annotation quality even in the beginning phases of the project. As the work
has progressed, we have gradually moved towards single annotation; high-frequency lemmas
are partially double annotated, while low-frequency lemmas are single annotated. This is to
increase the annotation speed while still being able to measure and control the annotation
quality even after the initial learning phase.

In the case of double annotation, the two annotators assigned to a lemma create the framesets
jointly, after which both of them independently annotate all occurrences using these framesets.
At this stage, the annotator is required to mark both the numbered arguments and the adjunct-
like arguments present in each example. Afterwards, the two analyses of each example are
automatically merged, so that all disagreements can easily be seen, and in a meeting between
all annotators, a single correct analysis is decided upon. Partially double annotated lemmas are
framed in co-operation, and a portion of the occurrences is double annotated while the rest are
divided between the annotators. In single annotation, each lemma is given to one annotator,
and additionally, one annotator is assigned as a consultant, whom the annotator of the lemma

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 50 of 474]

100000 F , : : , : —
< 10000 f 1
(@]
o
2 1000]
0]
X
S
5 100 F 1
o
e}
£ 10 t 1
2

1 L 4

0 500 1000 1500 2000 2500 3000
Number of lemmas

Figure 12: Numbers of verb lemmas of different frequencies as sorted from the highest number
of occurrences to the lowest. High-frequency lemmas are relatively few, while many different
low-frequency lemmas occur in the treebank text.

can turn to if facing problems with the framing. If unsure in the annotation phase, be it double
or single annotation, an annotator can mark any argument as unsure. This function can also be
used to signal suspected syntax-level errors in the treebank, as annotators are not allowed to
alter the syntax at this stage.

In order to alleviate the labor-intensity of creating the framesets, batches of similar verbs are
given their framesets simultaneously. When creating a new frameset for a lemma, the annotator
is to consider whether there are other verbs that should also receive the same frameset, if
such verbs are easily found. (The opposite is also possible: when considering a lemma, if
the annotator finds that an existing frameset from another lemma can be re-used, they may
copy the desired frameset for the verb under consideration.) For instance, if an annotator is
considering the verb to like, possible other verbs that could receive the same frameset would be
to love, to care or other verbs expressing affection that may have the same arguments. However,
simply having the same arguments as in numbered arguments is not sufficient to be included in
the same batch: for instance, verbs of dislike, although they also receive arguments describing
the experiencer and the object of the feeling, should not be assigned to the same batch as the
verbs of affection. In order to be included in the same batch, the verbs must have the same
numbered arguments, and also the argument descriptions are required to be suitable for all
verbs included.

This strategy has two benefits: in addition to saving time by creating framesets practically with
no additional cost, it can enforce some consistency across the verbs. As a minor drawback,
it requires additional care, as annotators should always make sure that the lemma they are
considering does not already have the intended frameset as a side product of some other
lemma. Also, if making a frameset for several verbs at once, care should be taken that verbs
assigned simultaneously to other annotators do not receive framesets without these annotators’
knowledge.

The distinctions between different framesets are made according to guidelines similar to those

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 51 of 474]

used in the English PropBank, that is, the verb senses that the framesets correspond to are
fairly coarse-grained. The main criterion used is that if two potential framesets have the same
arguments (including the descriptions), or the arguments of one are a subset of the arguments
of the other, only one frameset should be created.

The annotation is done using a custom software (see Figure 13) that allows the annotator to
select a lemma to be annotated and then displays each occurrence as a separate case. The
annotator must first select the correct frameset for the occurrence under consideration, and
then assign the numbered arguments and adjunct-like arguments. All dependents of the verb
occurrence are highlighted as default options for arguments, except for certain dependency
types, such as punctuation, which never act as arguments. In case a dependency does not
correspond to an argument, it is possible to leave the dependency unmarked. In addition, it
is possible to mark a sentence element not depending on the verb as an argument using the
external argument dependency. In addition to choosing one of the framesets defined, it is also
possible to take one of the following actions. First, the annotator can mark an occurrence as not
a verb, where the token is not in fact a verb but rather another part-of-speech, despite having a
verbal reading assigned by OMorFi. Second, similarly it is possible mark the token to have a
wrong lemma, where the token is a verb, but not of the lemma currently under consideration.
Third, it is possible to mark the occurrence as an auxiliary, as in the PropBank scheme auxiliaries
do not receive framesets or arguments.

7 Evaluation

In order to evaluate the performance of the annotators, we measure their annotator accuracy
against the merged annotation. The accuracy is calculated using F;-score, which is defined
as F, = %. Precision (P) is the percentage of arguments in the individual annotation that
are also present in the merged annotation, and recall (R) the percentage of arguments in the
merged annotation that are also present in the individual annotation. For an argument to
be considered correct, both its dependent word (the head word is the verb and thus always
correct) and the argument number or the ArgM type must be correct. If the frameset of a
verb is incorrect, then all numbered arguments of this verb token are considered incorrect as
well. An ArgM of the correct type is judged correct regardless of the frameset of the verb, as
ArgMs are verb-independent. For comparison, we also calculate inter-annotator agreement using
Cohen’s kappa, defined as k = PA-PE) where P(A) is the observed agreement and P(E) is the

1-P(E) ’
agreement expected by chance.

The overall annotator accuracy on the whole task is 94.1%, and the overall inter-annotator
agreement in Kappa is 89.7%. While the F;-score measures the accuracy of an annotator against
the merged gold-standard, the Kappa-score measures the agreement between the annotators.
It should also be noted that as the Kappa-score can only reasonably be calculated for labeling
tasks, the external arguments, that is, arguments that are not syntactically direct dependents
of the verb, are only taken into account in the F;-score and not in Kappa. The per-annotator
accuracies in F;-score are listed in Table 1. The Table lists both overall scores and scores on
numbered arguments and adjunct-like arguments separately, as well as the external arguments.
These results show that overall, the accuracy is high, and that the adjunct-like arguments
are more difficult to annotate than the numbered arguments, which is an expected result
based on the figures previously reported by Palmer et al. (2005). The external arguments also
seem to be more difficult than the numbered arguments in general. Some annotators show a
large difference between precision and recall on the external arguments, indicating that these

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 52 of 474]

Finnish h.2

rf<nsubj.l:rw/—c1cvbj_2>
j Iahestya.1 Liikkua kohti jotain

Huomasin miehen |3hestyvan.l minua .

ARGO Agentti, joka liikkuu
ARGL Asia, joka liikkuu
ARG2 Maaranpas, asia tai taho
jota lahestytaan
ommod.M-tmp=>
<nsubj.1: obj.7>

GTS Finnjet Idhestyy.l Helsinkia kevaalla 2004 .

Load lemma: [Iahestya Load save

ldhestya. |1 Original probbank: | None

Definition: ‘ Move towards something

‘Liikkua kohti jotain
Note: not in sync with approach.01. VVB in Finnish Huom! Ei synkr. approach.01:n kanssa, VVB

(tags: VVB, seed:lahestya). Arg0 and argl mutually | | suomessa. Arg0 ja argl toisensa poissulkevat.
exclusive.

ARG |0 ‘Agent in motion Agentti, joka liikkuu

EN ‘None

Fi ‘None

Figure 13: The annotation tool. Top: occurrence annotation. Two occurrences to be annotated
are shown on the left, one marked as ready and one in mid-annotation. The direct dependents
of the verb are shown as default alternatives for the arguments, and the question mark in
the latter example indicates a dependency that has not been assigned with an argument. The
framesets that have been created for the verb currently being annotated are shown on the
right. Bottom: frameset editor. Each frameset has a number, a description, a field for the
corresponding English PropBank frameset (not set in this example), as well as a free comment
field. Similarly, each argument has a number, a description and a comment field. The comment
fields may be used, for instance, for case requirements or use examples.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 53 of 474]

| Ann. 1 | Ann. 2 | Ann. 3 | Ann. 4 | Ann. 5 | Ann. 6 | All
Numbered (n=29,076)

Recall 98.1 96.5 96.5 94.9 97.8 95.6 96.9

Precision 98.5 98.0 98.0 95.1 98.1 94.5 97.4

F-score 98.3 97.2 97.3 95.0 97.9 95.1 97.1
ArgM (n=15,771)

Recall 92.5 86.6 87.3 83.7 90.1 82.8 87.8

Precision 92.9 87.3 86.6 85.2 92.6 82.0 88.2

F-score 92.7 86.9 87.0 84.4 91.3 82.4 88.0

xarg (n=3,118)

Recall 93.3 80.8 79.3 70.3 87.4 85.9 86.0

Precision 97.8 97.8 92.3 70.3 94.7 84.3 92.7

F-score 95.5 88.5 85.3 70.3 90.9 85.1 89.2
overall (n=44,847)

Recall 96.3 93.0 93.4 90.9 95.2 91.6 93.9

Precision 96.7 94.2 94.1 91.5 96.3 90.6 94.3

F-score 96.5 93.6 93.7 91.2 95.8 91.1 94.1

Table 1: Annotator accuracy results per annotator, both overall and separately for numbered
arguments and ArgMs. Also a separate evaluation of the external arguments (xarg) is given.
Note that for the F;-scores the external arguments are also included in the counts of numbered
arguments and ArgMs, seeing that each external argument is also one of these two argument

types.

annotators forget to mark an external argument more often than mark an extraneous one. In
addition to the possibility of overlooking an external argument, the task is made more difficult
by the fact that with xargs, unlike the other arguments, the annotator is required to identify the
correct token to act as the dependent.

Further, we evaluate the correctness of the frameset selections. Out of all frameset choices
(including the possible choices of not a verb, wrong lemma and auxiliary), 88.4% were correct
as measured against the final annotation result. Measured on only those instances where the
frameset was correctly selected, the overall F;-score was 94.6%.

8 Conclusions

In this work, we have presented the first results from a project aiming at a general Finnish
PropBank. This PropBank is built on top of the previously existing Turku Dependency Treebank
and utilizes both the first and second layers of syntax annotation present in the treebank, which
are annotated according to the Stanford Dependency scheme.

We confirm the preliminary finding of the clinical language pilot study by Haverinen et al.
(2010a) that the PropBank scheme can be used for Finnish and is compatible with the SD
scheme. We also find that a large number of arguments are covered by the simplifying
assumption that arguments are syntactic dependents of the verb; 81.0% of all arguments are
accounted for when only considering the first layer of syntax annotation in TDT, and 93.1% if
also the second layer is taken into consideration.

Regarding the quality of annotation, we find that the overall annotator accuracy of all six
different annotators is 94.1% in F;-score, and the accuracy on adjunct-like arguments (ArgMs)
alone is 88.0%. The inter-annotator agreement in Cohen’s kappa on the overall task disregarding

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 54 of 474]

external arguments is 89.7%. From these figures we conclude that overall the quality of
annotation is high, and that as expected, the adjunct-like arguments are more difficult to
annotate than the numbered arguments. External arguments, with an overall F;-score of
89.2%, are also more difficult than numbered arguments in general, due to the possibility of
overlooking an external argument as well as the fact that for these arguments, the annotator
also needs to identify the correct dependent word.

As future work, in addition to increasing the coverage of the PropBank, it would be beneficial
to build rules to treat cases where the full subtree assumption of arguments fails, as well as
enhance the annotation towards noun argument structures, that is, a NomBank (Meyers et al.,
2004). The annotation could also be enhanced in several ways in order to accommodate, for
instance, text generation, along the guidelines suggested by Wanner et al. (2012).

Acknowledgments

This work has been supported by the Academy of Finland and the Emil Aaltonen Foundation.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 55 of 474]

References
(2009). Collins English Dictionary — 30th Anniversary Edition. HarperCollins Publishers.

Baker, C. E, Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet project. In
Proceedings of COLING-ACL98, pages 86-90.

Choi, J. and Palmer, M. (2010). Retrieving correct semantic boundaries in dependency
structure. In Proceedings of LAW IV, pages 91-99.

Dang, H. T., Kipper, K., Palmer, M., and Rosenzweig, J. (1998). Investigating regular sense
extensions based on intersective Levin classes. In Proceedings of COLING-ACL98, pages 293—
299.

Duran, M. S. and Aluisio, S. M. (2011). Propbank-br: a Brazilian treebank annotated with
semantic role labels. In Proceedings of STIL'11, pages 1862-1867.

Hakulinen, A., Vilkuna, M., Korhonen, R., Koivisto, V., Heinonen, T.-R., and Alho, 1. (2004). Iso
suomen kielioppi / Grammar of Finnish. Suomalaisen kirjallisuuden seura.

Haverinen, K. (2012). Syntax annotation guidelines for the Turku Dependency Treebank.
Technical Report 1034, Turku Centre for Computer Science.

Haverinen, K., Ginter, E, Laippala, V,, Kohonen, S., Viljanen, T., Nyblom, J., and Salakoski,
T. (2011). A dependency-based analysis of treebank annotation errors. In Proceedings of
Depling’11, pages 115-124.

Haverinen, K., Ginter, E, Laippala, V, Viljanen, T., and Salakoski, T. (2010a). Dependency-based
propbanking of clinical Finnish. In Proceedings of LAW IV, pages 137-141.

Haverinen, K., Viljanen, T., Laippala, V, Kohonen, S., Ginter, E, and Salakoski, T. (2010b).
Treebanking Finnish. In Dickinson, M., Miiiirisep, K., and Passarotti, M., editors, Proceedings of
The ninth International Workshop on Treebanks and Linguistic Theories (TLT9), pages 79-90.

Itkonen, E. (1996). Maailman kielten erilaisuus ja samuus / Differences and Similarities of the
World Languages. Gaudeamus.

Levin, B. and Hovav, M. R. (1994). Unaccusativity: At the syntax-lexical semantics interface,
volume 26 of Linguistic Inquiry. MIT Press.

Lindén, K., Silfverberg, M., and Pirinen, T. (2009). HFST tools for morphology — an efficient
open-source package for construction of morphological analyzers. In State of the Art in
Computational Morphology, volume 41 of Communications in Computer and Information Science,
pages 28-47.

Marcus, M., Marcinkiwicz, M. A., and Santorini, B. (1993). Building a large annotated corpus
of English: The Penn Treebank. Computational Linguistics, 19(2):313-330.

de Marneffe, M.-C. and Manning, C. (2008a). Stanford typed dependencies manual. Technical
report, Stanford University.

de Marneffe, M.-C. and Manning, C. (2008b). Stanford typed dependencies representation. In
Proceedings of COLING’08, Workshop on Cross-Framework and Cross-Domain Parser Evaluation,
pages 1-8.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 56 of 474]

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V, Young, B., and Grishman,
R. (2004). The NomBank project: An interim report. In In Proceedings of the NAACL /HLT
Workshop on Frontiers in Corpus Annotation.

Palmer, M., Bhatt, R., Narasimhan, B., Rambow, O., Sharma, D. M., and Xia, E (2009). Hindi
syntax: annotating dependency, lexical predicate-argument structure, and phrase structure.
In Proceedings of ICON’09.

Palmer, M., Gildea, D., and Kingsbury, P (2005). The Proposition Bank: An annotated corpus
of semantic roles. Computational Linguistics, 31(1):71-106.

Palmer, M., Gildea, D., and Xue, N. (2010). Semantic Role Labeling. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool Publishers.

Paulsen, G. (2011). Causation and Dominance. PhD thesis.

Perlmutter, D. (1978). Impersonal passives and the unaccusative hypothesis. In Proceedings of
the Fourth Annual Meeting of the Berkeley Linguistic Society, pages 157-189.

Pirinen, T. (2008). Suomen kielen dérellistilainen automaattinen morfologinen jasennin
avoimen lahdekoodin resurssein. Master’s thesis, University of Helsinki.

Shibatani, M., editor (1976). The Grammar of Causative Constructions, volume 6 of Syntax and
Semantics. Seminar Press.

Wanner, L., Mille, S., and Bohnet, B. (2012). Towards a surface realization-oriented corpus
annotation. In Proceedings of INLG 12, pages 22-30.

Xue, N. and Palmer, M. (2009). Adding semantic roles to the Chinese treebank. Natural
Language Engineering, 15(Special issue 01):143-172.

Zaghouani, W, Diab, M., Mansouri, A., Pradhan, S., and Palmer, M. (2010). The revised Arabic
PropBank. In Proceedings of LAW IV, pages 222-226.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 57 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 58 of 474]

Using Finite State Transducers for Making Efficient Reading
Comprehension Dictionaries

Ryan Johnson, Lene Antonsen, Trond Trosterud

University of Tromsg, Norway

ryan.txanson@gmail.com, lene.antonsen@uit.no, trond.trosterud@uit.no

ABSTRACT

This article presents a novel way of combining finite-state transducers (FSTs) with electronic
dictionaries, thereby creating efficient reading comprehension dictionaries. We compare a North
Saami - Norwegian and a South Saami - Norwegian dictionary, both enriched with an FST, with
existing, available dictionaries containing pre-generated paradigms, and show the advantages
of our approach. Being more flexible, the FSTs may also adjust the dictionary to different
contexts. The finite state transducer analyses the word to be looked up, and the dictionary itself
conducts the actual lookup. The FST part is crucial for morphology-rich languages, where as
little as 10 % of the wordforms in running text actually consists of lemma forms. If a compound
or derived word, or a word with an enclitic particle is not found in the dictionary, the FST will
give the stems and derivation affixes of the wordform, and each of the stems will be given a
separate translation. In this way, the coverage of the FST-dictionary will be far larger than an
ordinary dictionary of the same size.

KEYWORDS: Lexicography, Computational Morphology, Orthographic Variation, Finite-state
Transducers, Electronic Dictionaries.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 59 of 474]

1 Introduction

The article presents work on enriching bilingual dictionaries with existing finite state transducers
(FST). There is a need for reading comprehension dictionaries of morphology-rich languages
like the Saami languages. They are also members of the North European Sprachbund, and
contain dynamic compounds.

All of the Saami languages are minority languages. An effective digital dictionary is a necessity
for language learners, but it is also important for Saami speakers: when they write in Saami,
they are often met with complaints from those who do not understand the language well
enough, and are asked to write in the majority language instead. This repeatedly appears in
discussions in the Facebook group of one of the Saami organisations in Norway (Facebook-group,
2012).

The paper is structured as follows: in Section 2, we look at why we need dictionaries with
morphology and dynamic compounding for highly inflected languages. Section 3 describes
how we produce dictionaries by combining lexical resources, finite-state transducers, and open-
source software. In Section 4, we evaluate the North Saami and South Saami FST-dictionaries
and compare their performance with wordform dictionaries. In Section 5, we look at more
possibilities that this gives us, by adjusting the FST for special needs. Our conclusion is presented
in Section 6.

2 Saami Lexicography and its Challenges

Saami lexicography boasts a history spanning over 250 years, and contains several multi-volume
works of high quality (for overview and discussion, see (Larsson, 1997) and (Magga, 2012)).
During the first 200 years, the goal in Saami lexicography was to present the Saami languages
to scientific audiences. In recent decades, an increasing use of Saami in writing has posed new
challenges for Saami lexicography. For a discussion on how to present Saami in dictionaries
with Saami as a target language, see (Trosterud, 2000); and for a discussion on the source
language vocabulary behind Norwegian - Saami dictionaries, see (Trosterud and Eskonsipo,
2012).

Electronic North Saami dictionaries are a fairly recent phenomenon. Apart from the work
presented here, there are two such dictionaries available offering lemma pairs: a small (5500
lemma) North Saami <-> English dictionary, by Renato B. Figueiredo'; and in 2013 a larger
dictionary between Norwegian and North Saami was released from the publisher Davvi girji2,
presenting the lemma pairs from their large paper dictionaries. Giellatekno, at the University of
Tromsg, has published wordform dictionaries for North and South Saami®. These are discussed
in Section 4 below.

The idea of using FSTs for making passive dictionaries is not new. One version similar to ours
is (Maxwell and Poser, 2004). It elaborates upon the idea of unifying dictionaries with FSTs,
but does not cite any actual implemetation. A simpler non-FST approach would be to create
a static list of every inflected form, combined with their respective lemmas, or articles in the
dictionary which these forms relate to. Commercial products rarely present their methodology,

'http://www.freelang.net/online/sami.php

2http://533.davvi.no/ordbok_samnor.php?lang=sam

3Vuostta$ Digisanit for North Saami in 2008 (http://giellatekno.uit.no/words/dicts/index.eng.
html) and Voestes Digibaakoeh (http://giellatekno.uit.no/words/dicts/index-sma.eng.html for
South Saami in 2010.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 60 of 474]

but this is probably the method underlying dictionaries for morphology-poor languages like
English and German.

The Saami languages are morphologically complex, suffixing languages with much non-
concatenative morphology. Most lemmas have large inflection paradigms: North Saami verbs
have about 55 different wordforms, with more than 40 of these being finite forms. Nouns have
about 80 different wordforms, 70 of which include possessive suffixes. Adjectives have about 30
wordforms. In addition, variants of these forms exist within the normative orthography. Many
of the word forms are transparent, but others are not. For example, the North Saami wordforms
gulldi and bodii are the first person singular past tense form of the verbs gulldt ‘to start to wake
up’ and boahtit ‘to come’, the latter of which has a less obvious basic form, due to diphthong
simplification and consonant gradation, frequent phonological processes in the language.

The Saami languages also rely heavily on derivation. Lexical aspects like continuative and
inchoative, the causative, and even the passive voice are the result of derivation. North Saami
compounding causes vowel changes in the stem vowel, so it is not possible to split a compound
mechanically into two parts. For example, bargojoavku ‘work team’ is a compound of the nouns
bargu ‘work’ and joavku ‘team’, but a noun like *bargo does not exist. This is also very common:
in a corpus of 1.1 million words, 26.7 % are noun compounds, comprising 7.0 % of all of the
words (Antonsen et al., 2009). In addition, the Saami languages have clitic particles. In North
Saami for instance, there is a question enclitic and 11 focus enclitics which can be written as a
part of almost all words.

The conclusion is that we need comprehension dictionaries with inflectional word forms, as
well as dynamic derivation, compounding and enclitisation. Used as an electronic dictionary,
a dictionary containing only lemmas is simply not sufficient, particularly because only 7.9 %
of the word forms in North Saami running text are identical to the lemma form, as in Table 2.
Another possibility would be to use stemming, but as shown in (Antonsen and Trosterud,
2010), a stemmer containing all North Saami inflectional suffixes still assigns the wrong stem to
31% of a large test corpus. The reason for this poor result is wide range of non-concatenative
morphological processes in North Saami: consonant gradation, and root and stem vowel
changes require an approach beyond concatenative affixation.

North Saami | Finnish | Norwegian
Wordforms in test material 252,461 | 45,144 64,994
Lemmata in automaton 99,071 | 94,111 38,983
Coverage 7.9% | 10.0% 30.5%

Table 1: Coverage of dictionary without a morphological component, (Antonsen et al., 2009).

Our previous approach for a morphological dictionary was presented in (Antonsen et al., 2009)
and consists of lemmas and wordforms for each lemma. The last version for North Saami was
compiled in 2012 and contains 252,787 wordforms referring to 9,999 lemma articles, and the
South Saami dictionary contains 180,352 wordforms referring to 10,657 lemma articles. The
wordforms are generated ahead of time with the same FST as is used in the implementation in
this article. In Section 4, we will compare the performance of this wordform dictionary to the
FST dictionary described in 3.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 61 of 474]

rg -> rgg || _ Vow* "WeG ;
vk -> vkk || _ Vow* “WeG ;
u ->o0 || _ “Cmp ;
bargu
joavku+N triggers:
joavku "WeG = Weak grade
"WeGs ACmp = Compound

Figure 1: The finite-state transducer produces the word forms bargu, barggu, barggus (‘work.N’)
and joavku, joavkku, joavkkus (‘team.N’) and it maps between the wordform and the grammati-
cal word. There is a compound path for both the genitive and the nominative form, so the FST
can produce e.g. boargojoavku, joavkobargu (‘work team, team work’) (cfr. Section 2). Changes
in the stem are carried out simultaneously in another transducer twolc by means of triggers.

3 Morphologically Sensitive Dictionaries

3.1 Building an FST-dictionary on Existing Resources

Our FST-dictionary, which we call Neahttadigisdnit (http://sanit.oahpa.no) , takes exist-
ing lexical resources and morphological resources and combines them to produce a dictionary
which is able to look up a larger set of possible inputs, by analysing wordforms and finding
lemmas, but also by splitting up compound words to provide either lemmas that combine to
make the compound, or either the whole compound word if a translation is available. The
application also runs without need for relational databases, as linguistic resources are all
contained within static files and external command-line tools.

In this system, we use bilingual lexicons for different language pairs, which we will evaluate
later in this article. Currently, the dictionaries are built on a North Saami dictlexicon containing
9,999 lemmas, and a South Saami dictlexicon containing 10,657 lemmas. The lexicons are
stored in XML and combined with existing FSTs for these two languages.

Both the North Saami and South Saami FSTs consist of lexical transducers written in lexc
with respectively 110,000 and 85,000 entries, and phonological transducers implemented in
twolc for the suprasegmental processes (Koskenniemi, 1983) and (Moshagen et al., 2004).
They may be compiled with both the Xerox (Beesley and Karttunen, 2003) and HFST (Lindén
et al., 2009) compilers, and are available as open-source * under the terms of the GNU General
Public License.

Instead of compiling what is essentially a list of all word forms in a language, the FST approach
involves listing the stems and affixes separately, and combining them to individual word forms
by means of finite-state automata. A finite-state transducer is a finite-state automaton that
maps between two strings of characters: the word form itself and the grammatical word, as in
Figure 1: girjin (the lower level) and girji+N+Ess (the upper level). An FST can run both ways:
giving the grammatical word from a wordform, or generating a wordform from the grammatical
word.

Using an FST to generate paradigms for the dictionary demands some adaptations to make it

“https://victorio.uit.no/langtech/trunk/gt/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 62 of 474]

possible to generate the correct paradigm for each lemma, because there are certain considera-
tions that are not present from the perspective of a morphological analyser, which may simply
accept any and all input in a descriptive manner. Instead, generation requires attention to lexi-
calisation of certain word forms as their own individual words. For example, some lemmas have
different meanings in singular or plural, such as gaskabeaivi ‘midday (sg.)’, and gaskabeaivvit
‘dinner (pl.)’. Some lemmas also have a homonymous basic form, but have different paradigms
and different translations. Some extra tags in the FST are used to keep these apart.

The FSTs already build the backbone to pedagogical systems for new beginners and heritage
speakers, spellchecking and grammar checking systems for text proofing, and machine transla-
tion systems. As such, some modifications are also required in order to mark certain words or
word forms for inclusion or exclusion from individual systems, to control for normative outputs,
or to compensate for specific kinds of input from second-language learners.

3.2 Software

3.2.1 User Interface

Thanks to the open-source community, there are numerous resources available which make
it easy to produce designs with good cross-browser compatibility. Previously, troubleshooting
these issues for each individual browser would take time, when one would rather focus on
implementation and basically, producing usable software.

In this case, we used Twitter Bootstrap® to get the most for less, and it has resulted in an easy
to use and very minimal layout, see Figure 2. The layout works simultaneously on all the
major browsers for desktop operating systems, as well as the most popular mobile browsers,
see Figure 2. Thus, there is no real need to produce code specific to Apple’s iOS or the Android
operating system, or pay for the licensing setup involved with iOS development, and we get all
of these things for free.

Nordsamisk (#SoMe) — Norsk (5 Shu)
cazis Sk
cahci (s.)

1. vann, vatn

cazis er en mulig form av ...

cahci

subst. ent. gen. poss. 3.p.ent.
subst. ent. akk. poss. 3.p.ent.
subst. ent. lok.

Figure 2: The FST-dictionary on the mobile.

3.2.2 Server Architecture

Having to not worry about the design meant that there was more time left for developing
functionality. Our dictionary is based on Flask®, a light, and flexible web framework for Python.

Shttp://twitter.github.com/bootstrap/
Shttp://flask.pocoo.org/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 63 of 474]

As mentioned above, the lexical data used in this application is stored in an XML format, with
one file per language pair, per direction (thus making separate files for language 1 to language 2,
and language 2 to language 1). These files range in size from 2MB to 5MB, and are used in the
live site, without the need for a relational database to store the data. On our server, queries end
up being quite fast, but to ensure that this continues to be true for larger dictionaries, we have
also used one of the quickest XML libraries for Python currently available, lxml” benchmarks®
This allows us to simply update the files, and restart the service, and any new lexical entries are
immediately available to users.

Our previous wordform dictionaries demanded installation in two steps: installing a separate
dictionary program (StarDict for Windows and Linux; and the preinstalled Dictionary.app for
Mac OS X), and then downloading and installing the linguistic files in the dictionary program.
New and updated dictionary versions demanded new downloading and installing. Our new,
web-based approach naturally avoids all of this, as users only require the URL. The web
dictionary may also be updated by the providers at any time, without the need for users to be
aware of and perform the updates themselves.

Compared to our web dictionary, the wordform dictionaries had one major advantage: they
could be used to click on words in any application running within the operating system in
order to get an analysis and definition, whereas the similar functionality provided in the web
dictionary only works on web pages within the browser. However, newer versions of Mac OSX
have lost a user-friendly means of installing additional dictionaries to the preinstalled dictionary
application, as such, this has become a point in favor of web-based solutions.

There is also an advantage for the providers of the dictionary, programmers and linguists alike.
With the previous wordform dictionaries, new versions of the software (such as with StarDict),
required adjustments in the format of the dictionary files, and we would often find ourselves
concerned over whether we should add more linguistic content, or aim for smaller file sizes. As
such, running the dictionary on a server with already existing lexicons is a big step forward.

Having a server-based system also allows us to pay attention to actual usage of the systems. As
such, we log all incoming queries along with their results, in order to detect areas where the
dictionary needs expansion, and these updates are then available to users as they are made.

3.3 Dictionary API

In addition to being searchable via a form in the web interface, we provide detailed lexical
entries in an easily linkable HTML format, and in a more bare-bones format, JSON (JavaScript
Object Notation). JSON is a widely adopted, and open standard for communication between
applications, specifically with a focus on web applications. The intent here is that data is
provided not just for our web-based dictionary via the interface that we provide, but that it may
also be used within external applications, on other websites, and even potentially in mobile
services.

The data is exposed in a couple of public-facing API endpoints or URL paths, more or less
following REST (Representational State Transfer) architecture. One of the endpoints, which pro-
vides detailed word entries with inflectional paradigms has already been included in MultiDict’s

"http://1lxml.de/
Shttp://1xml.de/performance.html

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 64 of 474]

Wordlink®, a reading comprehension tool that includes many other languages and dictionaries.
WordLink is quite nice, but naturally, we had some of our own designs for how to use this API.

3.4 Example Applications

3.4.1 Wordpress Plugin and Cross-browser Bookmarklet

Two of the learning tools already constructed for North Saami are Kursa and Oahpa. Kursa is
a free, multimedia-rich set of online course materials in North Saami, containing lessons with
text, and audio recordings, which are implemented in WordPress'°, a free and open-source
blogging tool. There is another version on the way for South Saami.

To go with these learning materials, we have created a plugin for WordPress written in
JavaScript, jQuery, and Twitter Bootstrap, which provides access to lemmatisation, compound
analysis and lexicon lookup. Users simply A1t/Opt+Double Click a word, and it is high-
lighted with a text-bubble appearing below that contains word translations and wordform
analysis 2. Users can quickly and easily look up as many words as they need to comprehend
a text, which erases one of the barriers to reading in a new language, namely: the need to
frequently look up words in a dictionary, while being unacquainted with potential "dictionary"
word forms.

The modular nature of the core library within the plugin allows it to be inserted into several
other potential situations with ease. For example, it could be included on a specific page or
website, or inserted via a web browser plugin in any page. We have ensured that the library
works in the most commonly used, and current web browsers, as such, this functionality is
available on Windows, Mac OS X and Linux; in Internet Explorer, Firefox, Chrome, Opera, and
Safari.

In addition to plugin for Kursa, we have produced a cross-browser solution which is similar to
a browser extension, but instead, is accessible via a bookmarklet, which is a bookmark providing
functionality, instead of a link to a website. As it turns out, this option has been much more
preferable to developing (and also convincing users to install) browser specific plugins, and
"installation" is simply a drag-and-drop affair. Thus, when on a page they wish to read, users
may simply click the bookmarklet, which downloads and includes the plugin source in the
HTML document structure facing the user. Now the world of news, blogs, or even Facebook, is
accessible in all of the language pairs that we support.

— Norgga stuorimus gilvvut

Badjelas vahkku geah&en alga Sami vahkku Romssas,
B ja dat loahpahuvvo heargegilvvuin. Okta dain
huaremus b- ~raevuddiiin nalaa gilvalit doppe, gilvwus
imus heargegilvun....

Ty loahpahuvvo

loahpahit (v) — 1. avrunde, 2.
sluttfere

Figure 3: Reading a text with the FST-dictionary on the Saami news website site Avvir.no.

°http://multidict.net/multidict/
Ohttp://www.wordpress.org/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 65 of 474]

4 Evaluation

The evaluation was run against two separate corpora, one North Saami corpus, containing
44,256 words, and one South Saami corpus, containing 60,037 words (excluding Arabic
numerals, punctuation, web-addresses, and proper nouns). Since the task was to evaluate web
dictionaries, the test corpora contain a balanced selection of the main text genres found online:
web sites of official institutions, news texts, and political blogs. Note that Saami text on the
Internet is poorly proofread, and 4.4 % of the North Saami corpus (Antonsen, 2013) are words
not written according to normative orthography. A part of them are misspellings, a part are
subforms which are included in the FST. This should be taken into account when evaluating the
data in Table 4.

The corpora were tested with both the FST-dictionary and the wordform dictionary in order
to compare performance. The wordform dictionary can only recognise whole words based on
sets of pre-generated word forms; while the FST-dictionary also recognises individual parts of
compound words, so these translations are categorised as partial translations in Table 4.

Translation Partly transl. No transl. 100%
FST-dict: all wds 39,920 | 90.2% | 549 | 1.2% | 3787 | 8.6% | 44,256
wif-dict: all wds 36,231 | 81.9% - — | 8025 | 18.1% | 44,256

FST-dict: unique wds | 10,862 | 79.7% | 448 | 3.3% | 2322 | 17.0% | 13,632
wf-dict: unique wds 7874 | 57.8% - — | 5758 | 42.2% | 13,632

Table 2: Coverage of an North Saami FST-dictionary compared to a wordform-dictionary.

In Table 4, the coverage of the FST-dictionary is as high as 91.4% (90.2% + 1.2%)
for all words in the running text. The numbers for unique words in the corpus give
a more realistic picture of the usefulness of the dictionary for a language learner. The
FST-dictionary leaves 17% of the unique words without any translation, while the word-
form dictionary is unable to translate three times as many. If we look closer at the
words that are not translated by the wordform dictionary, there are derivations such as
bivanutvuoda, which receives the analysis bivnnut+A+Der/vuohta+N+Sg+Acc. The FST-
dictionary finds the lemma bivnnut with ‘popular’, while the whole word together means
‘popularity’. There are also compounds which get all parts translated by the FST-dictionary,
such as sdhpdnjagiid sdhpdn+N+SgNomCmp+Cmp#jahki-+N+Pl+Gen, translations: sdhpdn
‘mouse’, jahki ‘year’. And, there are compounds with partial translations, such as divamdvssu
diva+N-+SgNomCmp+Cmp#mdksu+N+Sg+Acc. Here, only one of the lemmas is translated:
mdksu ‘payment, signification’.

The FST-dictionary also manages to translate words with an enclitic, like oidnoge oid-
not+V-+Ind+Prs+ConNeg+Foc/ge. The lemma is translated: oidnot ‘to show’, ge is an enclitic.
And the FST-dictionary is more tolerant to non-normative forms, such as eandalit, which is
recognised by the FST as eandalii+Adv ‘absolutely’. Among the unique 2,322 words for which
the FST-dictionary does not give any translation to at all, 47.6 % are unknown for the FST,
mostly misspellings, or even Norwegian or Finnish quotes. 52.4 % are missing in the dictionary.

In Table 4, a similar evaluation was performed with a South Saami corpus and dictionaries. The
South Saami wordform dictionary leaves more words without translation than the North Saami
wordform dictionary, which correlates to the fact that the South Saami dictionary has a smaller

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 66 of 474]

Translation Partly transl. No transl. 100%
FST-dict: all wds 53,295 | 88.8% | 475 | 0.8% 6266 | 10.4% | 60,037
wi-dict: all wds 44,989 | 74.7% - - | 15,268 | 25.3% | 60,257
FST-dict: unique wds 8039 | 67.0% | 308 | 2.6% 3660 | 30.5% | 12,008
wf-dict: unique wds 4945 | 41.1% - - 7085 | 58.9% | 12,030

Table 3: Coverage of a South Saami FST-dictionary compared to a wordform-dictionary. Data
for partly translation is relevant only for the FST dictionary, the wordform dictionary is not able
to handle compounds.

amount of wordforms (180,352 vs. 252,787). The FST-dictionary leaves as much as 30.5% of
the unique words without translation. Of these 3,660 words, 78.4% are lacking in the FST. This
is due to the fact that the South Saami FST is not as good as the North Saami ones, and also
that there are even more misspellings in South Saami than in North Saami. Note that even
though the amount of lemmas in the South Saami dictionary is slightly higher than for North
Saami, they are not as relevant for the corpus as the lemmas in the North Saami dictionary are
for the corpus.

South Saami also has some additional orthographic challenges not present in North Saami:
namely, the orthography lacks a single norm that is used in the whole of the South Saami
speaking region. Generally, one can expect certain sounds to be represented with characters that
are found in each region’s majority language, such as Swedish d and 6, compared to Norwegian
@ and g, however these are often found mixed in single texts; thus the FSTs take into account
certain "spelling relaxations" to handle this. In addition, there is a character, i, which does not
exist in either Norwegian or Swedish, and is not obligatory to write since its distribution is
phonologically predictable.

5 More FST possibilites
5.1 Modularising the North Saami FST-dictionary

Using finite state transducers makes it possible to make more flexible dictionaries. Many text
genres are written outside the written norm, or using input devices with keyboard restrictions.
A case in point is the North Saami Facebook group Artegis sdgat''. The group is open, and
has over 1800 registered members, a number equivalent to approximately 10 % of the whole
speaker community. Many Facebook users read and write using smartphones. Smartphones
come without preinstalled Saami keyboards, and for iPhone and Nokia smartphones there also
are no such keyboards available at all. An investigation of the discussion during a three months’
period, measuring the 30 most frequent words containing North Saami characters, revealed
that almost 20 % of the text was written without a Saami keyboard. In a North Saami running
text, 38 % of the words contain North Saami characters, and are thus the remainder are outside
of the reach of electronic dictionaries.

Table 5.1 shows the performance of the dictionary combined with the ordinary FST and with
a Facebook-FST with spell relax, thus allowing it to accept letters without diacritics as North
Saami letters (e.g. the characters acdsz are accepted as representatives of d¢dsz). The corpus

https://www.facebook.com/groups/336300756303/?fref=ts

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 67 of 474]

is taken from Artegis sdgat during the period 24.10.2012 — 21.01.2013 and contains 67,265
words (excluding Arabic numerals, punctuation, web-addresses and proper nouns).

Translation Partly transl. No transl. 100%
Fb-FST: all wds 54,197 | 80.6% | 315 | 0.5% | 12,753 | 19.0% | 67,265
ord. FST: all wds 50,263 | 76.3% | 250 | 0.4% | 15,364 | 23.3% | 65,877

Fb-FST: unique wds 10,596 | 59.8% | 286 | 1.6% 6825 | 38.5% | 17,707
ord. FST: unique wds 8813 | 50.8% | 224 | 1.3% 8326 | 48.0% | 17,363

Table 4: Coverage of a North Saami FST-dictionary. The corpus is analysed with the ordinary
FST and an FST adapted to the Facebook orthography.

The overall results shown in Table 5.1 are worse than the results given in Table 4 above, but this
is due to the nature of the Facebook corpus, containing a higher amount of orthographic errors
and non-Saami text than is found in published text. The important point when reading Table
5.1 is the difference between the ordinary and the adjusted dictionaries. For unique words, the
adapted FST recognises 59.8 % of the words, as opposed to 50.8% with the ordinary FST.

Finite state transducers are flexible tools, not only for analysing wordforms, but also for
changing their shapes. In this way, we are able to adjust the dictionary to different types of
input. In an ordinary dictionary, the preference will still be to show the lexicalised words, while
filtering out other analyses, however in a student dictionary it would be useful to show all the
potential analyses. A Facebook-oriented dictionary will be like the ordinary dictionary, but in
addition be able to understand letters lacking the proper diacritics.

5.2 Flexible FSTs: Nynorsk and Bokmal in one

Most bilingual Norwegian-L1 dictionaries are made with Bokmél as the source language.
There are lexical differences between Bokmaél and Nynorsk (ikke/ikkje ‘not’, forskjell /skilnad
‘difference’), but the main difference between Nynorsk and Bokmal is morphological. In the
nominal morphology, Nynorsk masculines have -ar, -ane, whereas Bokmal has -er; -ene. Similar
differences are to be found in other parts of speech. In order to deal with this, we have made a
special dictionary transducer. At the outset, it was an ordinary Bokmaél transducer, but we added
the main lexical differences between Bokmal and Nynorsk, as well as the Nynorsk morphology.
Thus, rather than adding ikkje to the dictionary, we made ikke the lemma form of ikkje, which
is then used in lexicon lookups. Nynorsk forms like handlingar, diskusjonar, were recognised
as plural forms of handling ‘action’, diskusjon ‘discussion’ on par with Bokmal handlinger,
diskusjoner. For a paper dictionary user, such plural forms do not pose problems, but the
electronic comprehension dictionary needs a mechanism for coping with it.

In Table 5.2, we analyse two corpora of 10,606,263 words from the Nynorsk and Bokmal
Wikipedia (excluding words containing capital letters or symbols outside of the Norwegian
alphabet). The reference Bokmal transducer is not of outstanding quality: it recognised only
93.36% of the Bokmaél test corpus. Analysing the Nynorsk corpus with the same transducer
resulted in coverage of 79.34 % of the wordforms, but minor changes to the analyser (referred
to above) to include Nynorsk forms improves the coverage to 89.62 %, cf. 5.212,

12The dictionary coverage is poorer than the FST coverage, this reflects the size of the Norwegian - North Saami
dictionary, and is irrelevant to the discussion on FST flexibility.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 68 of 474]

Text FST coverage dictionary coverage

Nynorsk text | Conservative Bokmal | 2,191,428 | 79.34% | 3,504,733 | 66.96%
All Bokmal varieties 1,849,654 | 82.56% | 3,206,796 | 69.77 %
Bokmél with Nynorsk | 1,101,116 | 89.62% | 2,530,995 | 76.14%
Bokmal text | All Bokmal varieties 703,950 | 93.36% | 1,644,286 | 84.50%

Table 5: Coverage of an Bokmal - North Saami FST-dictionary on Nynorsk text.

5.3 Reuse of FSTs for Reading Comprehension Dictionaries

FSTs are in use in many areas apart from lexicography, such as in parsing and spellchecking.
The demands on a FST when used for electronic dictionaries are very different from these other
usages, however. In order to be efficient for spellchecking and parsing, the FST must have an
accuracy rate very close to 100 %. If it drops to, say 95 %, there will, on average, be one error
in almost every sentence. For sentence analysis and syntactic disambiguation, every error has
the potential of destroying larger parts of the sentence analysis, and for a spellchecker, one
false alarm in each sentence will make the spellchecker useless. For an e-dictionary, on the
other hand, 95 % correct implies that 19 out of 20 words will have a relevant analysis. Since
the individual errors will not destroy the overall result, the dictionary is much more tolerant
to errors, and even an FST recognising two thirds of the wordforms would result in a great
improvement over an e-dictionary without any FST.

There are openly available finite state transducers for all Nordic languages, for all languages
taught as foreign languages in Nordic schools, for all official EU languages except for Greek,
and for most of the minority languages in Europe. With an increasing amount of parallel texts
online, the number of bilingual dictionary resources is increasing rapidly. Given the dictionary
setup described here, the missing link is a finite state transducer, which will turn a bilingual
dictionary into a useful comprehension dictionary for reading of online texts.

Although our example evaluations have shown high quality FSTs in use in comprehension
dictionaries, even a low quality FST would result in a drastic improvement for morphologically
complex languages, where a running text contains a relatively small percentage of word forms
that are also the lemma. Adding one more noun to such an FST system where each noun may
have upwards of 40 word forms would thus result in coverage of 40 additional tokens in a text,
as opposed to just one word form as with a non-morphologically sensitive dictionary. Gains to
text coverage by adding more frequent words to such a system would result in dramatic gains
to coverage. Thus, one does not need a high quality morphology or a high quality lexicon to
gain the benefits that come from connecting these two things.

5.4 FSTs for Vacillating Norms

Several literary languages have vacillating norms, for one reason or another. The reason may
be purely technical, as is the case for Romanian, where the Turkic s (s with cedilla) is used more
often than the correct Romanian s (s with comma below); or when users of minority languages
in Russia use Latin letters instead of modified Cyrillic ones. Writers may also lack access to
keyboard layouts for their language, as demonstrated with North Saami above, or alternatively
writers may just write without need or attention to detail.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 69 of 474]

In cases where there are several dialects competing for the status of being the written standard,
or where the standard is new or otherwise not yet firmly rooted in the language community,
the variation within written text may be considerable. To the extent that one may predict the
variation, it is a trivial matter to use an FST to reduce the varying forms to a common lemma,
thus increasing the coverage of a dictionary drastically.

6 Conclusion

The present article has focused upon the role that FSTs may play in coping with linguistic
variation of one type or another with the goal of building reading comprehension dictionaries.
Written language occurs in many varieties and in many contexts, and FSTs provide dictionaries
that are flexible enough to cope with this variation, while at the same time maintaining the
integrity of the dictionary itself. This article gave one example using a North Saami Facebook
corpus, but many other settings may be envisaged, and coped with in a similar way.

Here, we presented bilingual dictionaries combined with finite-state transducers for morphology-
rich languages. In our evaluation, we compared our existing wordform dictionaries with this
finite-state solution, and found that use of an FST improves the coverage of the dictionary
tremendously, from 57.8 % to 83.3 % for North Saami, and from 41.4% to 69.6% for South
Saami.

In addition, there are other ways of analysing the linguistic inputs. For instance, words do not
occur in isolation, but in sentences, so with morphological analysis as a starting point, one
might also disambiguate the word grammatically, syntactically, and lexically, in order to pick a
verbal reading rather than a nominal one, and to give word-sense disambiguation based upon
context. These perspectives are left to future research, but it is also worth note that given
the availability of FSTs in many other highly inflected languages, these possibilities are also
available for many more languages than just those presented here.

Running the dictionary on a server is also a far better user experience to providing users with a
dictionary to install on their computers, and has the added benefit of providing a mobile-friendly
dictionary for users on the go. The implementation has also resulted in a means for reading
running texts on any website without having to look away from the text itself, with a high
success rate for text coverage. Together, these solutions strike down one of the larger barriers to
text comprehension for language learners, who will no longer need to spend their time looking
up words in dictionaries, and can instead use it for reading more texts.

Acknowledgments

Our thanks go to Norway Open Universities for funding the project "Interactive Saami Instruction
on the Internet", which this work is a part of, to Berit Merete N. Eskonsipo and Inger Ellen
Mdrjd Eira for working on the North Saami dictionary content, and to our other collegues at
Giellatekno, Divvun and Aajege for participating in the project as a whole.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 70 of 474]

References

Antonsen, L. (2013). Callinmeattdhusaid guorran. [English summary: Tracking misspellings.].
University of Tromsg.

Antonsen, L. and Trosterud, T. (2010). Manne dihtor galgd méhttit grammatihka? [English
summary: Why the computer should know its Sami grammar.]. Sdmi diedalas digeédla, 1:3-28.

Antonsen, L., Trosterud, T., Gerstenberger, C.-V,, and Moshagen, S. N. (2009). Ei intelligent
ordbok for samisk. LexicoNordica, 16:271-283.

Beesley, K. R. and Karttunen, L. (2003). Finite State Morphology. CSLI publications in
Computational Linguistics, USA.

Facebook-group (2012). Discussions in NSR — a Norwegian Saami Organisation’s facebook
group. https://www.facebook.com/groups/norskesamersriksforbund/?fref=
ts. [last visited on 25/01/2013].

Koskenniemi, K. (1983). Two-level morphology : a general computational model for word-form
recognition and production. Helsingin yliopisto, Helsinki.

Larsson, L.-G. (1997). Présten och ordet. Ur den samiska lexikografins historia. LexicoNordica,
4:101-117.

Lindén, K., Silfverberg, M., and Pirinen, T. (2009). HFST tools for morphology — An Efficient
Open-Source Package for Construction of Morphological Analyzers. In Proceedings of the
Workshop on Systems and Frameworks for Computational Morphology, Ziirich, Switzerland.

Magga, O. H. (2012). Lexicography and indigenous languages. In Fjeld, R. V. and Torjusen,
J. M., editors, Proceedings of the 15th EURALEX International Congress, pages 3—18, Oslo,
Norway. Department of Linguistics and Scandinavian Studies, University of Oslo.

Maxwell, M. and Poser, W. (2004). Morphological interfaces to dictionaries. In Zock, M., editor,
COLING 2004 Enhancing and using electronic dictionaries, pages 65-68, Geneva, Switzerland.
COLING.

Moshagen, S., Sammallahti, P, and Trosterud, T. (2004). Twol at work. In Arppe, A., Carlson,
L., Lindén, K., Piitulainen, J., Suominen, M., Vainio, M., Westerlund, H., and Yli-Jyrd, A.,
editors, Inquiries into Words, Constraints and Contexts, pages 94-105, Stanford, CA. CSLI.

Trosterud, T. (2000). Kaven, Brita E. (red) 2000: Stor norsk-samisk ordbok [book review].
LexicoNordica, 8:283-306.

Trosterud, T. and Eskonsipo, B. N. (2012). A North Sami translator’s mailing list seen as a
key to minority language lexicography. In Fjeld, R. V. and Torjusen, J. M., editors, Proceedings
of the 15th EURALEX International Congress, pages 250-256, Oslo, Norway. Department of
Linguistics and Scandinavian Studies, University of Oslo.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 71 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 72 of 474]

Exploring Features for Named Entity Recognition in
Lithuanian Text Corpus

Jurgita Kapociité-Dzikiené', Anders Noklestad",

Janne Bondi Johannessen®, Algis Krupavicius'

(1) KAUNAS UNIVERSITY OF TECHNOLOGY, K. Donelai¢io 73, LT-44249, Kaunas, Lithuania
(2) UNIVERSITY OF OSLO, P.O. Box 1102, Blindern, N-0317 Oslo, Norway

Jurgita.Kapociute-Dzikiene@ktu.lt, Anders.Noklestad@iln.uio.no,
J.B.Johannessen@iln.uio.no, pvai@ktu.lt

ABSTRACT

Despite the existence of effective methods that solve named entity recognition tasks for such
widely used languages as English, there is no clear answer which methods are the most suitable
for languages that are substantially different. In this paper we attempt to solve a named entity
recognition task for Lithuanian, using a supervised machine learning approach and exploring
different sets of features in terms of orthographic and grammatical information, different
windows, etc. Although the performance is significantly higher when language dependent
features based on gazetteer lookup and automatic grammatical tools (part-of-speech tagger,
lemmatizer or stemmer) are taken into account; we demonstrate that the performance does not
degrade when features based on grammatical tools are replaced with affix information only. The
best results (micro-averaged F-score=0.895) were obtained using all available features, but the
results decreased by only 0.002 when features based on grammatical tools were omitted.
KeEywoRrDs: Named entity recognition and classification, supervised machine learning,
Lithuanian.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 73 of 474]

1 Introduction

The objective of Named Entity Recognition (NER) is to allocate and classify tokens in texts into
predefined categories, such as person names, location names, organizations, etc. NER is a subtask
of many natural language processing applications, i.e. in information extraction, machine
translation, question answering, etc.

The methods used to solve NER task fall into three main categories: hand-crafted, machine
learning and hybrid. Hand-crafted approaches are based on an analysis of the application domain
and the manual construction of gazetteers and sets of patterns capable of taking named entity
recognition and classification decisions. Hand-crafted methods assure high accuracy, but at the
same time they have low portability to new domains: i.e. changing domains require expert
intervention and manual re-creation of rules. Thus, very often machine learning methods are
selected instead of the rule-based ones. For machine learning approaches NER is usually
interpreted as classification task, where tokens are classified into categories with non-named and
different named entity types. Rules (defined as the model) by these methods are built
automatically after observation and generalization over the characteristics extracted from the text.
Supervised machine learning methods for model creation use texts prepared by the domain
experts with manually assigned classes (identifying particular named entity type or not a named
entity) to all tokens. Semi-supervised machine learning methods for NER are usually based on a
bootstrapping learning scheme: an initial small set of tokens with predefined categories (types of
named entities) is used as the seed to build initial model, then all tokens in the texts are classified
using that seed model and the most confident classifications (recognized named entities) are
added to the training data and the process is iterated. Supervised machine learning methods
outperform semi-supervised methods in terms of accuracy, but the strongest point of semi-
supervised methods is that they do not require large annotated corpora. Hybrid methods usually
combine the strongest points of both hand-crafted and machine learning methods.

In this paper we are solving the named entity recognition task using a supervised machine
learning technique. Our focus is to find the most informative features for the Standard Lithuanian
language yielding the best named entity classification results for person, location and
organization names. Our experiments include different sets of language independent and
dependent features based on orthographic and grammatical information, different windows
(tokens before and after a current one), etc. We also assess whether it is possible to perform
named entity classification effectively without resorting to external grammatical tools such as
part-of-speech taggers, lemmatizers or stemmers, because they have limited availability, and are
slow and unreliable when identifying proper names in Lithuanian texts.

Section 2 contains an overview of related work. In Section 3, we describe the Lithuanian
language and its properties. We outline the methodology of our named entity classification
experiments in Section 4 and present the results in Section 5. We discuss these results in
Section 6 and conclude in Section 7.

2 Related work

The NER research for English started in early 1990s and this task was successfully solved (for a
review see Nadeu & Sekine, 2007), because NER achieved human annotation performance
(Sundheim, 1995) in terms of accuracy. Thus current works for English mostly focus on the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 74 of 474]

improvement of other important metrics, e.g. speed: i.e. Al-Rfou’ & Skiena (2012) demonstrated
that the speed of a NER tagger can be increased after improvement of tokenizer and part-of-
speech tagger that are used as the sub-modules in NER pipeline.

The reason why methods achieve very high accuracy on English texts is because they are based
on rich external resources (such as wide range of annotated corpora and gazetteers, accurate part-
of-speech taggers, etc.) that are not always available for the other languages. Besides, the English
language is not as complex as highly inflective, morphologically rich and ambiguous languages;
moreover it does not suffer from lack of capitalization problems for proper nouns. Thus, it can be
concluded that NER task for each language requires its detailed analysis and adaptation.

However, some generalizations can be made, e.g. language dependent features (based on
gazetteers or morphological information) always increase NER accuracy; morphological
information is inevitable for morphologically rich languages in order for the NER method to be
comparable to the state-of-the-art methods for English. The importance of accurate
morphological analyzers in NER task was revealed by Hasan et al. (2009): NER results for
Bengali were significantly improved by simple refining non-accurate part-of-speech tagger (the
part-of-speech tagger was improved during extraction of information from Wikipedia that in turn
improved recognizer). Morphological information in NER methods can be either incorporated
into rules or used as features (part-of-speech tags, lemmas). Examples of such methods are: rule-
based methods for Arabic (Elsebai et al., 2009), Danish and Norwegian (Johannessen et al.,
2005), Russian (Popov et al., 2004), and Urdu (Singh et al., 2012); supervised machine learning
methods for Bulgarian (Georgiev et al., 2009), Dutch (Desmet & Hoste, 2010), Norwegian
(Haaland, 2008; Neklestad, 2009), and Polish (Marcinczuk et al., 2011; Marcinczuk & Janicki,
2012); hybrid method for Arabic (Mai & Khaled, 2012). Hasan et al. (2009) also proved that
affixes are very important in solving NER task for morphologically rich languages. Affixes
helped to increase NER results for Bengali, Bulgarian, Polish, etc.

NER task for Lithuanian was previously solved using two different methods: rule-based (for
person and location names, abbreviations, date and time) (Kapoc¢itté & Raskinis, 2005) and semi-
supervised machine learning (bootstrapping) (for person, location and organization names,
product, date, time and money) (Pinnis, 2012). Unfortunately, we cannot give any examples of
experiments based on supervised machine learning techniques for NER. Consequently, this paper
will be the first attempt at finding an accurate supervised machine learning method (in terms of
the most informative features) for NER in Lithuanian texts.

3 Lithuanian language challenges

Of all living Indo-European languages, Lithuanian has the richest inflectional morphology,
making it more complex than even Latvian or Slavic languages (Savickiené et al., 2009).
Lithuanian nominal words (nouns or adjectives that are used as person, location or organization
names) can be inflected by 7 cases, 2 genders, and 2 numbers. Various inflection forms are
expressed by different endings. Person names can have either masculine or feminine gender and
are inflected by case and number. To exemplify: the possible inflection forms of masculine
person name Jonas (John) are: Jonas (singular nominative), Jono (singular genitive), Jonui
(singular dative), Jong (singular accusative), Jonu (singular ablative), Jone (singular locative),
Jonai (singular and plural vocative; plural nominative), Jony (plural genitive), Jonams (plural
dative), Jonus (plural accusative), Jonais (plural ablative), Jonuose (plural locative). The location

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 75 of 474]

names or organizations can have either masculine or feminine gender and singular or plural
number, and are inflected by case. E.g. Lietuva (Lithuania) is singular feminine noun; Aukstieji
Tatrai (High Tatres) is composed of plural masculine adjective Aukstieji (High) and plural
masculine noun Tatrai (Tatres), where all words are inflected only by 7 cases. In the Lithuanian
language there are 12 inflection paradigms for nouns, and 9 inflection paradigms for adjectives.

The same inflection rules are used to inflect foreign person names in Standard Lithuanian texts.
Endings can either be directly attached to the end of the noun e.g. Tonis Blairas (Tony Blair) or
can be added after an apostrophe e.g. Tonyis Blair’as (Tony Blair).

In Lithuanian, male and female surnames are different; moreover, in the surnames of married and
unmarried women the suffixes are also different. For example, given the male surname Karalius,
the appropriate female surname of an unmarried woman is Karaliiité, and of a married woman —
Karaliené. Besides, women can have surnames that do not reveal their marital status, e.g. Karale,
or keep both surnames — typically written with a hyphen, e.g. Petraityté-Karaliené or Petraityte-
Karale.

In Lithuanian organization names only the first word is capitalized in organization names (the
other words are capitalized only if they happen to be a person or location name). E.g. Lietuvos
mokslo taryba (Research Council of Lithuania), Kauno Maironio gimnazija (Kaunas Maironis
Gymnasium) Maironio is a person name that is capitalized. The names of the companies in
Lithuanian texts are written in quotation-marks. Despite the fact that the words in organization
names are written in lower case (starting from the second word); acronyms are written in upper
case, e.g. the acronym for Kauno technologijos universitetas (Kaunas University of Technology)
is abbreviated to KTU.

Lithuanian is a synthetic language; and the word order in the sentence is absolutely free. As in
ancient Indo-European languages, in Lithuanian the word order does not perform a grammatical,
but a notional, function: i.e., the same sentence will be grammatically correct regardless of word
order, but the meaning (things that have to be highlighted) will be a bit different. Thus, any
named entity can appear in any place of the sentence. Despite this, the words that act as triggers
(words that directly signal a named entity) or modifiers (words that limit or qualify the sense of
named entity) are located close to the named entity they describe. E.g. in dr. Jonas Basanavicius
(dr. Jonas Basanavicius) dr. is the trigger that identifies the following word as the person name;
in gyventi Lietuvoje or Lietuvoje gyventi (to live in Lithuania) gyventi (to live in) is the modifier
that qualifies the named entity Lietuvoje as a location name.

47% of Lithuanian words or word forms are ambiguous (Zinkevicius et al., 2005); named entities
are no exception. Ambiguities are often between common nouns/adjectives written at the
beginning of a sentence and person/location/organization names, e.g. Raudonoji (Red) can be
either a common word in Raudonoji arbata (Red tea) or a location hame in Raudonoji jira (Red
sea); Riita can be either the name of the person or the common word “rue”. Ambiguities can also
emerge between person names and location names, e.g. Roma is the name of the person or
location name “Rome”). Depending on the meaning, named entities can change their type, e.g.
Maironis is a person name, but in Maironio gatvé (Maironis street) the word is treated as a
location; Vilnius is a location name, but in Vilniaus universitetas (Vilnius University) it is treated
as part of an organization name. This analysis reflects what is called “Function over Form” in
Johannessen et al. (2005).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 76 of 474]

4 Methodology

4.1 Feature extraction

Supervised machine learning systems cannot be directly trained on a corpus annotated with
named entities. The corpus has to be transformed into a collection of instances. Usually instances
are generated for consecutive tokens excluding punctuation marks (e.g. from string J. Petraityte-
Karaliené would be generated three instances “J”, “Petraityté”, and “Karaliené”), sometimes
punctuation marks are stored as part of tokens (e.g. from string J. Petraityte-Karaliené would be
generated: “J.”, “Petraityté-”, and “Karaliené¢”). Since punctuation marks carry a lot of
information about named entities in Lithuanian language and their loss would be harmful (e.g.
when recognizing classified named entities in plain text) in our experiments we treat punctuation
marks as tokens, too — i.e. as separate instances (thus, e.g. from string J. Petraityte-Karaliene
would be generated five instances: “J”, “.”, “Petraityté”, “-”, and “Karaliené¢”). During such
transformation the order of tokens and punctuation marks in the collection is not changed.

All instances that are used in the classification process are represented as vectors, each composed
of the class label (identifying none or a particular type of named entity) and the list of features
(where the first one describes original token — “J”, “Petraityté”, “Karalé” or punctuation mark —
«>, <), Considering Lithuanian language properties and available resources, we have made the
list of features that should be effective in solving named entity classification task. All features
can be grouped into two main categories: language independent and language dependent.
Language independent features are very general, based only on the orthographic information
directly available in the corpus; language dependent features resort to external resources such as
special purpose grammatical tools (part-of-speech tagger, lemmatizer, stemmer) or gazetteers
(gazetteer of person names, gazetteer of location names).

Below we present a list of all the features that were used in our experiments.
Language independent (basic and orthographic) features:

e t—the original token or punctuation mark.

Lowercase (t) —t in lower case letters (e.g. Lowercase (Lietuva) = lietuva). The usage of this
feature decreases the number of tokens that can be treated differently because of case
sensitivity (especially relevant for common words at the beginning of the sentence).

o IsFirstUpper(t) — Boolean indicator that determines if the first character of t is capitalized

(e.g. IsFirstUpper(Lietuva) = true).

e Acronym(t) — Boolean indicator that determines if all characters in t are capitalized (e.g.
Acronym(KTU) = true). This feature should help to identify organizations abbreviated as
acronyms.

o Number(t) — Boolean indicator that determines if t is a number (e.g. Number(Sk1) = false).

o Length (t) — numeral indicator that determines the length of t.

o Prefix-n(t) — affix that determines the first n (in our experiments 3 < n < 5) characters of t in
lower case (e.g. Prefix-5(Siauliai) = siaul). This feature should help to extract stable parts
of tokens and thus get rid of inflectional Lithuanian endings.

o Suffix-n(t) — affix that determines the last n (in our experiments 3 < n < 5) characters of t in
lower case (e.g. Suffix-5(Siaulivose) = iuose; Suffix-5(Sakiuose) = iuose). This feature
should help to extract inflectional Lithuanian endings. E.g. the roots in “Siauliuose” and
“Sakiuose” are different, but they share the same ending in locative case “iuose”.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 77 of 474]

Language dependent features:

e Lemma(t) — the lemma of t (e.g. Lemma(Lietuvoje) = Lietuva). The lemmatizer transforms
recognized words into their major form (by replacing appropriate endings, but not
touching affixes); the common words also are transformed into lower-case letters.

POS(t) — the part-of-speech tag of t (e.g. POS(Lietuvoje) = noun).

Stem(t) — the stem of t (e.g. Stem(Lietuvoje) = Lietuv). The stemmer eliminates inflectional
ending (and some other suffixes) of the input word.

ISPERGaz(t) — A Boolean indicator that determines if t is in the gazetteer of person names.

IsSLOCGaz(t) — A string indicator that determines if t is in the gazetteer of location names,
and if so, then if it is the beginning or any other word in the location name (e.g. for gyvenu
Didziojoje Britanijoje (I live in Great Britain), IsSLOCGaz(gyvenu) = no;
IsSLOCGaz(Didziojoje) = yesB; IsLOCGaz(Britanijoje) = yesl).

Class labels:

The corpus contains three types of named entities for person names, location names and
organizations. Class labels are represented in BIO notation, thus B-PER, B-LOC, B-ORG
indicate the first token in person, location, organization named entity, respectively; I-PER, I-
LOC, I-ORG indicate any other token (except the first one) in person, location, organization
named entity, respectively; O indicates any other token (not in named entities).

4.2 Dataset

All the texts for the NER task were taken from the \tautas Magnus University corpus
(Marcinkeviciené, 2000). We aimed to avoid domain adaptation problem, thus texts were taken
from several domains (as it was done by Kitoogo et al. (2008)). The created dataset in total
contained ~ 0.5 million running words and was composed from the texts representing Standard
Lithuanian and taken from 5 different domains: popular periodic, local newspapers, republican
newspapers, parliamentary transcripts and legislative texts (the distribution of running words over
different domains is presented in FIGURE 1).

Parlamentiary
transcripts
14%

FIGURE 1 — The distribution of words (used in our NER experiments) over 5 different domains.

All texts used in our named entity classification experiments were manually annotated with
person, location and organization names (the distribution of words into named entities over
different domains is presented in FIGURE 2.). Named entities were annotated considering
“Function over Form” annotation manner, thus the same named entity could be tagged differently

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 78 of 474]

in different context, e.g. in Maironis skaito savo poezijg (Maironis reads his poetry) Maironis is
annotated as person name; in gyvenu Maironio gatvéje (live in Maironis street) Maironio is
annotated as location name; in Skaitau knygq “Apie Maironj” (I read the book “About Maironis™)
Maironj is not annotated as named entity because it is neither person, nor location, nor
organization name, but it is the title of the book. Besides, inner named entities were not annotated.
E.g. in Vilniaus universitetas (Vilnius University) inner location name Vilniaus was ignored;
instead of it both words were annotated as single organization name.

12,0

8,0 1

=in ORG v 12

! 0 4%
inLoc °°)
®in PER cutEo
40 -
0,0 T
& S &>
%sz& Qc,c‘ %@Q S \ \4@
‘@4 & \Q < (S %\%\
> ey N
9 ‘0\\0% e&\‘b odb QOQQ\ %
* Qw‘\%

FIGURE 2 — The distribution of words into named entities (person names — in PER, location
names — in LOC, organization names — in ORG) over 5 different domains.

Annotated texts were transformed into collection of instances. Statistics about number of
instances (tokens/punctuation marks) belonging to their appropriate classes is presented in
TABLE 1.

Class label Number of instances
B-PER 10902
I-PER 13861
B-LOC 12152
I-LOC 1322
B-ORG 5937
I-ORG 10482
All NEs 54656
0] 577771
Total 632427

TABLE 1 — Number of instances for all classes in the dataset used in our NER experiments.

4.3 Formal description of the task

The mathematical formulation of the named entity classification task we are attempting to solve
is given below.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 79 of 474]

Let D be our dataset containing instances I, where V1eD.

Let C be a finite set of classes: C = {c,, Cs, ..., Cn}. In our case 2 < N << oo — i.e. we have a multi-
class classification problem, because C = {B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG, O}
and N=7.

Let | be the instance described by feature vector v with the appropriate class label c, thus all
instances in the dataset are represented as 1=(v, ¢). We do not consider inner named entities;
therefore our dataset contains single-labeled instances only: i.e. any instance cannot be attached
to more than one class c.

Let function y be a classification function mapping instances to classes, y: 1 — C. Function y
determines how | was labeled with c. In our dataset annotation of named entities was performed
by the domain expert.

Let /" denote a supervised learning method which given D as the input, could return a learned
classification function »’ (defined as a model) as the output: 7{D)—y".

4.4 Experimental setup

In order to find the most informative features for the NER task on Lithuanian texts, we performed
experiments based on:

o Different windows [tn, twm]. E.g. window [t,-g] contains only one element — current
instance t,—o; window [t,, t,-o] contains current instance t,-, and instance t,; that is before
ty=0; Window [t,=o, ty+1] CONtains current instance t,-, and instance t,.; that is after t,-, etc.
We restricted m to 3 and thus experimented with 12 different windows in total.

o 9 different sets of features (see TABLE 2). The sets of features No. 1 and No. 5 contain only
language independent features; all other sets of features contain both language
independent and language dependent features.

Sets No. 2 and No. 6 — No. 9 also contain gazetteer lookup features. These feature values
were generated considering information stored in the gazetteers. To avoid redundancy
when storing named entities in all their inflectional forms as separate instances, distinct
named entities were represented by stem and their appropriate inflectional paradigm
identifier. Thus, the gazetteer of person names consists of ~7 thousand individual person
names (e.g. Jon:1 retains named entity in all its inflectional forms: Jonas, Jono, Jonui,
etc.); the gazetteer of location names consists of ~2.2 thousand location names: individual
(the same as for person names) or compound (e.g. Didzi:2 Britanij: 3 retains this named
entity in all its inflectional forms: DidZioji Britanija, DidZiosios Britanijos, DidZiajai
Britanijai, etc.).

Sets No. 3, No. 6, and No. 9 also contain part-of-speech tags and lemmas as features. The
tokens were part-of-speech tagged and lemmatized using the dictionary-based
morphological analyzer-lemmatizer “Lemuoklis” (Zinkevi¢ius, 2000; Daudaravi¢ius et al.,
2007). “Lemuoklis” also solves morphological disambiguation problems and achieves
~95% accuracy on standard texts. Despite “Lemuoklis” being very accurate on common
words; its weakness is unknown proper names (Zinkevicius et al., 2005). In our
experiments “Lemuoklis” was unable to recognize 30.6% of the words as either named
entities or common words, and classified them as “unknown”; it recognized only 34.4% of
words as proper names, the rest 35% words it recognized as common words (for the
detailed statistics see FIGURE 3).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 80 of 474]

100,0

14,3%

90,0 +—19,9%
80,0

70,0

60,0 -
50,0 -

40,0
30,0 -

20,0 -
10,0 -

0,0 -

in PER

in LOC

75,2%.

§

in ORG

FIGURE 3 — The percentage distribution of words in named entities (person names — in PER,
location names — in LOC, organization names — in ORG) that were recognized by “Lemuoklis”
as proper names (proper), common words (common) or not recognized at all (unknown).

H proper

common

®munknown

Feature sets

No.4

No.5

No.6

Z
o

o]

©

Features

t

X

X

Lowercase(t)

IsFirstUpper(t)

Acronym(t)

Number(t)

Length(t)

X [X | X |X [X [X |O

X [X | X | X [X [X |O

X [X | X |X [X [X |O

X [X | X [X |X

X [X | X [X | X

X X [x |x |x |x |©

Prefix-3-5(t)

Suffix-3-5(1)

X | X X [x |x |x [x

X | XX [X |[X |X [X X |¢

Lemma(t)

POS(t)

Stem(t)

ISPERGaz(t)

X

X

X

IsSLOCGaz(t)

X

X

X

X

XX [X [X [X [X [X |[X |X|X|X[X|X]|O

TABLE 2 — Different sets of features used in our NER experiments.

Sets No. 4, No. 7, and No. 9 also contain stems of tokens as features. The tokens were
stemmed using a Lithuanian stemmer (Krilavi¢ius & Medelis, 2010) based on the Porter
stemming algorithm (Willet, 2006). The Lithuanian stemmer eliminates all endings and
also some suffixes (but do not touch prefixes). The stemmer is rule-based, thus it can cope
with proper names as well as with the other words. But in some cases stemming can cause
the loss of meaning and ambiguity, e.g. Lietuva (Lithuania), Lietuvis (Lithuanian) will

both be stemmed to the same Lietuv.

Sets No. 5, No. 8, and No. 9 contain affix features: the first and the last 3, 4 and 5

characte

rs of each token.

As previously described, in our experiments we used 9 sets of features and 12 windows, that is
9x12=108 different experiments in total.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkoping Electronic Conference Proceedings #85

[page 81 of 474]

Before the experiments we made two hypotheses.

Our first hypothesis is that language dependent features (morphological and gazetteer lookup)
should increase the accuracy of NER on Lithuanian texts (the same as for Bengali ((Hasan et al.,
2009), Polish (Marcinczuk & Janicki, 2012), and other languages). We expect that gazetteers
should solve the disambiguation problems between named entities and not named entities or
between different types of named entities; and grammatical tools (part-of-speech
tagger/lemmatizer and stemmer) will cope with the inflections of the Lithuanian language (that in
turn should reduce the sparseness of feature space and should lead to the construction of more
reliable model).

The grammatical tools seem necessary due to the importance of inflection in Lithuanian, but they
are unreliable when identifying proper names (Zinkevicius et al., 2005). Therefore, our second
hypothesis is that the stable parts of the words and the influence of inflection can be captured in a
different way — i.e. by affix information. We expect that with affix features (Prefix-3-5(t) and
Suffix-3-5(t)), the NER method will achieve similar accuracy as with features based on part-of-
speech information, lemmas or stems.

45 Classification

Our attempt was to find a method 7" which could create the model »’ the best approximating y.
Since a NER task using supervised machine learning approach has never been undertaken for
Lithuanian, we had no knowledge which method is the most appropriate. Therefore we selected
Conditional Random Fields (CRFs) method (a detailed description of CRFs is presented in
Lafferty et al., 2001) as 7, because it is one of the popular techniques utilized for the NER task
(Nadeau & Sekine, 2007) outperforming many other popular methods, such as Hidden Markov
Models (HMMs), Maximum Entropy Markov Models (MEMMs), and etc.

The implementation of CRFs we used in our experiments is CRF++ version 0.57*, which requires
a template file (with the determined features that are considered) and datasets for training and
testing.

5 Results

All results reported below are based on 10 fold cross-validation (the biggest class O for non-
named entities is treated as the negative class in all calculations).

The experiments with different windows revealed that the best results are obtained with window
[te2; te1], €xcept for the feature sets No. 2 and No. 3, where the best results were obtained with
[te1; tr1]. Despite that, the improvement on micro-averaged F-scores was less than 0.0006.
FIGURE 4 reports the results obtained using different windows with the feature set No. 1.

We experimented with different n values of Prefix-n(t) and Suffix-n(t) also, but the best results
were reported with 3 <n <5: with feature set No. 5 micro-averaged F-score using n=3 was
0.8556, with 3<n<4 — 0.8614, the peak 0.8645 was with 3<n <5, the higher n values
degraded the results. Besides, using only Prefix-3-5(t) or only Suffix-3-5(t) was not effective also:
e.g. with the feature set No. 5 micro-averaged F-score when using only Prefix-3-5(t) was 0.8549,
when using only Suffix-3-5(t) — 0.8517, when using both — 0.8645.

! http://crfpp.sourceforge.net

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 82 of 474]

0,84
5 oss m
o Y

7 0w /A\ /

L 081

o /

Fom | AV4

© 079 -
2 0,78

05 tx+1] I

[te-15 tu=o]

[tx-1s tua]
[tx-1s tuz]
[teez; txea]
[te-2; tu2]
[te-15 tua]
[tx_as tua]
[te_2; tus]
[te-3; tu2]
[te-35 tua]

[t

FIGURE 4 — Micro-averaged F-scores obtained with different windows when feature set No. 1.

The results obtained using window [t,.; ty+1] and 3 <n <5 for all 9 feature sets are reported in
TABLE 3.

Precision Recall F-score
micro avg |macro avg |microavg |macro avg |micro avg |macro avg
No.1 |0.8655 0.8648 0.8043 0.8061 0.8338 0.8342
No.2 |0.9159 0.9174 0.8587 0.8643 0.8864 0.8897
@ |No.3 |0.8738 0.8745 0.8353 0.8380 0.8541 0.8556
3 [No.4 [0.8748 0.8744 0.8122 0.8141 0.8424 0.8429
§ No.5 [0.8933 0.8923 0.8375 0.8391 0.8645 0.8647
§ No.6 |0.9141 0.9169 0.8732 0.8785 0.8932 0.8970
L [No.7 |0.9177 0.9195 0.8636 0.8691 0.8899 0.8933
No.8 |0.9168 0.9176 0.8708 0.8754 0.8932 0.8957
No.9 10.9140 0.9161 0.8773 0.8817 0.8953 0.8984

TABLE 3 — Micro/macro averaged precision/recall/f-scores for all sets of features with window
[te2; ter] @nd 3 < n < 5.

To determine whether the performances of the classifier trained on different feature sets were
significantly different from each other, we performed approximate randomization testing (Yeh,
2000). In all approximate randomization testing experiments we used 1000 shuffles.

The differences between many experiments are statistically significant to a very high degree
(p =0.00099) with some exceptions, presented in FIGURE 5: i.e. differences are statistically
significant to a high degree when 0.00099 <p <0.01; statistically significant when
0.01 < p <£0.05; and not significant when p > 0.05.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 83 of 474]

0,08
0,07
0,06
0,05 A Omicro-Pr
0,04 - 1 Omacro-Pr
0,03 A Emicro-R
0,02 A Emacro-R
0,01 - | Emicro-F
0 | Emacro-F

™~ < 0 ™~ ® o @ o o

o o o (=} o o (=] (=] o

2 2 2 2 2 2 Z Z 2

) o o3 o3 o3 o3]))

N @ @ © © © ~ ~ @

o (=} (=} o (=} o (=] (=] (=]

2 2 2 2 2 2 zZ zZ zZ

FIGURE 5— p scores indicating statistical differences between the results (micro/macro
precision (Pr)/recall (R)/F-score (F)) obtained on different feature sets.

6 Discussion

A glance at TABLE 3 in Section 5 shows that our first hypothesis is confirmed: language
independent features are easily beaten with language dependent features. These findings agree
with the findings obtained for other languages: Bengali (Hasan et al., 2009), Bulgarian (Georgiev
et al., 2009), etc.

As it is presented in TABLE 3, the usage of gazetteer lookup features in No. 2 increased the results
of No. 1 by 0.0526 in micro-averaged F-score, despite the fact that a gazetteer of organization
names is not available for Lithuanian (only of person and location names). The features obtained
using grammatical tools also increased NER results (compared with No. 1 which is based on
orthographic information only): the increment in micro-averaged F-score using part-of-speech
tagger/lemmatizer in No. 3 is 0.0203; whereas stemmer in No. 4 caused only a small boost in
performance — increment in micro-average F-score is only 0.0086. The lemmatizer and stemmer
cope with inflectional endings of Lithuanian language by reducing the number of distinct tokens.
Thus a reduced number of feature values leads to the construction of more reliable and, as it can
be concluded from the results, to more accurate models. The reason why part-of-speech
tagging/lemmatization improves performance over stemming is that the part-of-speech
tagger/lemmatizer is more accurate compared with stemmer, besides it preserves inflectional
information that is important in Lithuanian language (the ending is not lost during lemmatization,
only changed into the major form). The results obtained in No.3 (with the part-of-speech
tagger/lemmatizer) are worse than in No. 2 (with the gazetteer lookup), because the part-of-
speech tagger/lemmatizer is not robust in recognizing proper names, as well as not being capable
of determining types of named entities.

Experiments with gazetteer lookup + part-of-speech tagging/lemmatizing in No. 6, or gazetteer
lookup + stemming in No. 7, yielded even better results compared with the results when they

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 84 of 474]

were used separately (as in No. 2, No. 3, No. 4). Despite the result in No. 6 exceeded No. 7 by
0.0033 in micro-average F-score, the difference was proved to be statistically significant.

More interestingly, the results also support our second hypothesis: grammatical tools (part-of-
speech tagger/lemmatizer and stemmer) can be replaced with affix information. The same effect
can be achieved by automatically slicing n characters from the beginning and the end of the token
as it is done with Prefix-3-5(t) and Suffix-3-5(t). Experiments with Prefix-3-5(t) and Suffix-3-5(t)
in No. 5 outperformed No. 4 (with stemming) by 0.0221 in micro-average F-score (the difference
was proved to be statistically significant to a very high degree for all measures). No. 5 yielded
similar results as No. 3 (with part-of-speech taggering/lemmatization): despite the increment in
No. 5 was by 0.0102 in micro-average F-score, but the difference was proved to be statistically
significant in terms of micro-precision and macro-recall only and not statistically significant for
all the other measures.

Experiments with gazetteer lookup + affixes as it is in No. 8 yielded even better results compared
with the results obtained separately (as in No. 2, No. 5) (all differences were proved to be
statistically significant to a very high degree), besides No. 8 outperformed gazetteer lookup +
stemming in No. 7 (the differences were proved to be statistically significant) and No. 8
yielded the same micro-average F-score as with gazetteer lookup + part-of-speech
tagging/lemmatization in No. 6 (the differences were proved to be statistically significant for all
measures, except for micro-recall). The best results were obtained using all available features in
No. 9. Despite that the difference between sets of features No. 8 and No. 9 was proved to be
statistically significant, the increment is only by 0.0021 in micro-averaged F-score.

The observations obtained from the experiments allow us to conclude that simple automatic
prefix and suffix information capture enough of the Lithuanian language inflection information;
therefore it can replace features generated by part-of-speech taggers, lemmatizers, and stemmers.
It is indeed very good news, because the Lithuanian part-of-speech tagger/lemmatizer has limited
availability, is not very convenient and slow to use; the Lithuanian stemmer is low in accuracy.

If we take a close look at the confusion matrix (see TABLE 4) obtained with feature set No. 9 and
window [ty; t..1], we would notice the main errors made by named entity classifier. Below we
discuss main named entity classification error types (summarized by Nadeu & Sekine, 2007).

Predicted class
B-PER | I-PER B-LOC | I-LOC B-ORG | I-ORG 0
B-PER 8,719 155 789 4 25 7 1,203
) I-PER 63 | 13,354 14 15 17 25 373
‘—j B-LOC 263 169 10,192 23 234 36 1,235
= I-LOC 8 138 24 939 17 97 99
*g B-ORG 82 31 557 6 3,762 157 1,342
< I-ORG 29 171 33 48 54 6,674 3,473
0 449 709 547 47 475 1,551 | 57,3993

TABLE 4 — Confusion matrix obtained with the feature set No. 9 and window [t,.,; ty1].

The amount of correct predictions (see TABLE 4) is presented in diagonal where the actual class
label is equal to predicted, thus from 632,427 instances, only 14,794 were predicted incorrectly:
3,788 times the classifier hypothesized as named entities where there was none; 7,725 times a
named entity was completely missed by the classifier; 2,444 times classifier correctly recognized

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 85 of 474]

the boundary of named entity, but got the wrong type; 476 times the classifier recognized the
type of named entity, but got its boundary wrong; 371 times the classifier recognized that it is a
named entity, but got wrong type and boundary.

The major problem is the 25.54% of all errors where the classifier determined named entity
where there was none and 52.22% of all errors where named entity was completely missed.
These problems arose because of different ambiguities in Lithuanian texts between proper and
common words: i.e. a lot of person and location names are ambiguous with common words
(especially at the beginning of the sentence), but the major problem is ambiguity between
organization names and common words (typically only the first word in an organization name is
capitalized and all other words are written in lower-case), because in our experiments we could
not use a gazetteer for organization names, because such gazetteer is not yet available.

The experiments with different windows revealed, that the best results for Lithuanian were
obtained using a rather small window [t,,; t«.;] (compared with the results obtained e.g. for
Polish [t,,, tw2] (Marcinczuk & Janicki, 2012) or Turkish — [ty.3, t+s] (Gokhan & Gulsen, 2012)):
i.e. two instances before and one after the current. Thus, we can conclude, that even if the word
order in the sentence in Lithuanian is free, the nearest information is more useful in NER process.

7 Conclusion and Outlook

In this paper we were solving NER task for Lithuanian language using supervised machine
learning approach: i.e. we explored different sets of features in terms of orthographic and
grammatical information, different windows, etc.

We have formulated and experimentally confirmed two hypotheses:

e The language dependent features (based on dictionaries, part-of-speech tagger, lemmatizer,
and stemmer) increase the NER results, especially due to the importance of inflection
information in Lithuanian language.

e The features based on external grammatical tools (part-of-speech tagger, lemmatizer, and
stemmer) can be replaced with affixes that can capture relevant patterns intrinsically.

The best results were obtained using all available features and the window [t,,; ty1]. The
decrease of micro-average F-score was only 0.0021 when features generated by the grammatical
tools were eliminated. This result should be promising for other resource-scarce languages with
similar properties as Lithuanian.

In future research, it would be interesting to experiment with different named entity types and
classification methods.

Acknowledgments

This research was funded by European Union Structural Funds project “Postdoctoral Fellowship
Implementation in Lithuania” (No. VP1-3.1-SMM-01) and initiated when the first author was
visiting the Department of Linguistics and Nordic Studies at the University of Oslo, Norway.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 86 of 474]

References

Al-Rfou’, R. and Skiena, S. (2012). SpeedRead: A Fast Named Entity Recognition Pipeline. In
Proceedings of the 24th International Conference on Computational Linguistics (COLING
2012), pages 51-66.

Daudaraviéius, V., Rimkut¢, E. and Utka, A. (2007). Morphological annotation of the
Lithuanian corpus. In Proceedings of the Workshop on Balto-Slavonic Natural Language
Processing: Information Extraction and Enabling Technologies (ACL’07), pages 94-99.

Desmet, B. and Hoste, V. (2010). Dutch named entity recognition using ensemble classifiers. In
Computational Linguistics in the Netherlands 2010: selected papers from the twentieth CLIN
meeting (CLIN 2010), pages 29-41.

Elsebai, A., Meziane, F. and Belkredim, F. Z. (2009). A Rule Based Persons Names Arabic
Extraction System. In Proceedings of the 11th International Conference on Innovation and
Business Management (IBIMA), pages 53-59.

Georgiev, G., Nakov, P., Ganchev, K., Osenova, P. and Simov, K. (2009). Feature-Rich
Named Entity Recognition for Bulgarian Using Conditional Random Fields. In Proceedings of
the International Conference on Recent Advances in Natural Language Processing (RANLP-
2009), pages 113-117.

Gokhan, A. S. and Gulsen, E. (2012). Initial Explorations on using CRFs for Turkish Named
Entity Recognition. In Proceedings of the 24th International Conference on Computational
Linguistics (COLING 2012), pages 2459-2474.

Haaland, A. (2008). A Maximum Entropy Approach to Proper Name Classification for
Norwegian. PhD thesis, University of Oslo.

Hasan, K. S., Rahman, A., and Ng, V. (2009). Learning-based named entity recognition for
morphologically-rich, resource-scarce languages. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics, pages 354—-262.

Johannessen, J. B., Hagen, K., Haaland, A., Neklestad, A., Jonsdottir, A. B., Kokkinakis, D.,
Meurer, P., Bick, E. and Haltrup, D. (2005). Named Entity Recognition for the Mainland
Scandinavian Languages. Literary & Linguistic Computing, 20(1): 91-102.

Kapociute, J. and Raskinis, G. (2005). Rule-based annotation of Lithuanian text corpora.
Information technology and control, Kaunas, Technologija, 34 (3): 290-296.

Kitoogo F. E., Baryamureeba, V, and De Pauw, G. (2008). Towards Domain Independent
Named Entity Recognition. International Journal of Computing and ICT Research, 2 (2): 84—
95.

Krilavi¢éius, T. and Medelis, Z. Lithuanian stemmer. (2010). May, 2012.
<https://github.com/tokenmill/ltlangpack/tree/master/snowball/>.

Lafferty, J. D., McCallum, A. and Pereira, F. (2001). Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML’01), pages 282—289.

Mai, M. O. and Khaled, S. (2012). A Pipeline Arabic Named Entity Recognition Using a Hybrid

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 87 of 474]

Approach. In Proceedings of the 24th International Conference on Computational Linguistics
(COLING 2012), pages 2159-2176.

Marcinczuk, M. and Janicki, M. (2012). Optimizing CRF-Based Model for Proper Name
Recognition in Polish Texts. In Proceedings of the 13th international conference on
Computational Linguistics and Intelligent Text Processing (CICLing’12), (1): 258—269.

Marcinczuk, M., Stanek, M., Piasecki, M. and Musial, A. (2011). Rich Set of Features for
Proper Name Recognition in Polish Texts. SIIS, Lecture Notes in Computer Science, 7053:
332-344.

Marcinkeviciené, R. (2000). Tekstyny lingvistika (teorija ir paktika) [Corpus linguistics (theory
and practice)]. Darbai ir dienos, 24: 7-63. (in Lithuanian).

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification.
Linguisticae Investigationes, 30 (1): 3-26.

Neklestad A. (2009). A Machine Learning Approach to Anaphora Resolution Including Named
Entity Recognition, PP Attachment Disambiguation, and Animacy Detection. PhD Thesis,
University of Oslo.

Pinnis, M. (2012). Latvian and Lithuanian Named Entity Recognition with TildeNER. In
Proceedings of the Eight International Conference on Language Resources and Evaluation
(LREC’12), pages 1258-1265.

Popov, B., Kirilov, A., Maynard, D. and Manov, D. (2004). Creation of Reusable Components
and Language Resources for Named Entity Recognition in Russian. In Proceedings of the 4th
International Conference on Language Resources and Evaluation (LREC 2004), pages 309-
312.

Savickiené, 1., Kempe, V. and Brooks, P. J. (2009). Acquisition of gender agreement in
Lithuanian: exploring the effect of diminutive usage in an elicited production task. Journal of
Child Language, 36: 477-494.

Singh, U., Goyal, V. and Lehal, G. S. (2012). Named Entity Recognition System for Urdu. In
Proceedings of the 24th International Conference on Computational Linguistics (COLING
2012), pages 2507-2518.

Sundheim, B. (1995). Overview of results of the muc-6 evaluation. In Proceedings of the 6th
Conference on Message Understanding (MUC-6), pages 13-31.

Willett, P. (2006). The Porter stemming algorithm: then and now. Program: electronic library
and information systems, 40 (3): 219-223.

Yeh, A. (2000). More Accurate Tests for the Statistical Significance of Result Differences. In
Proceedings of the 18th International Conference on Computational Linguistics (COLING’00),
2, pages 947-953.

Zinkevi¢ius, V. (2000). Lemuoklis — morfologinei analizei [Morphological analysis with
Lemuoklis]. In: Gudaitis, L. (ed.) Darbai ir Dienos, 24: 246-273. (in Lithuanian).

Zinkevi¢ius, V., Daudaravi¢ius, V. and Rimkuté, E. (2005). The Morphologically annotated
Lithuanian Corpus. In Proceedings of the Second Baltic Conference on Human Language
Technologies, pages 365-370.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 88 of 474]

Tagging the Past: Experiments using the Saga Corpus

Hrafn Loftsson

School of Computer Science, Reykjavik University, Iceland

hrafn@ru.is

ABSTRACT

There is an increasing interest in the NLP community in developing tools for annotating
historical data, for example, to facilitate research in the field of corpus linguistics. In this work,
we experiment with several PoS taggers using a sub-corpus of the Icelandic Saga Corpus. This
is carried out in three main steps. First, we evaluate taggers, which were trained on Modern
Icelandic, when tagging Old Icelandic. Second, we semi-automatically correct errors in the
training corpus using a bootstrapping method. Finally, we evaluate the taggers on the corrected
training corpus. The best performing single tagger is Stagger, a tagger based on the averaged
perceptron algorithm, obtaining an accuracy of 91.76%. By combining the output of three
taggers, using a simple voting scheme, the accuracy increases to 92.32%.

KEYWORDS: Historical Data, Icelandic Saga Corpus, Part-of-Speech Tagging.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 89 of 474]

1 Introduction

Most Natural Language Processing (NLP) tools, for various languages, have been developed
for processing and analyzing modern texts, as opposed to historical (cultural heritage) texts.
This is due to the abundance of modern texts in digital form, and, often, the lack of availability
of historical texts. Another reason is that when the first NLP tools are developed for a given
language, the emphasis is usually on producing tools for processing and analyzing the modern
language.

More and more historical texts are now gradually becoming available in digital form. Conse-
quently, there is an increasing interest in the NLP community in developing annotated historical
resources, and tools for analyzing historical texts.

Examples of recent annotated resources are: Penn Parsed Corpora of Historical English (Kroch
and Taylor, 2000), Icelandic Parsed Historical Corpus (Wallenberg et al., 2011), and Corpus of
Early Modern German (Scheible et al., 2011a). These three example resources are all tagged
with Part-of-Speech (PoS), while the first two are also syntactically annotated.

Examples of recent experiments with NLP tools for historical texts are: an identification of verb
constructions in Swedish (Pettersson et al., 2012), a study of the performance of basic NLP
tools for Italian (Pennacchiotti and Zanzotto, 2008), an adaptation of existing NLP tools for
Spanish (Sanchez-Marco et al., 2011), and an evaluation of an “off-the-shelf” PoS tagger for
German (Scheible et al., 2011b).

Recently, Rognvaldsson and Helgaddttir (2011) developed the first tagger for Old Icelandic.
They bootstrapped a Hidden Markov Model (HMM) tagger by creating a tagged sub-corpus
(95,000 tokens) from the Saga Corpus (Old Icelandic Sagas).1 Hereafter, we refer to the tagged
sub-corpus as Saga-Gold.

The aim of our work is to complement the work of Régnvaldsson and Helgadéttir (2011). The
overall goal is similar, i.e. developing a high accuracy tagger for Old Icelandic texts. We carry this
out in the following three main steps. First, we evaluate several PoS taggers, which were trained
on Modern Icelandic, on Saga-Gold produced by Rognvaldsson and Helgadéttir (2011). Second,
we semi-automatically correct tagging errors in Saga-Gold, with a bootstrapping method using
the same taggers.? Finally, we perform 10-fold cross-validation on the corrected corpus, again
using the same taggers and a combination method. All the PoS taggers and corpora used in our
work are freely available and open-source.

The best performing single tagger is Stagger (Ostling, 2012), a tagger based on the averaged
perceptron algorithm, obtaining an accuracy of 91.76%. By combining the output of three
taggers using a simple voting scheme, the accuracy increases to 92.32%. We intend to use our
combination method to annotate the whole of the Saga Corpus.

The problem of domain adaptation has received increasing attention in recent years. The
problem arises in a variety of NLP applications where the distribution of the training data differs
in some way from that of the test data. Our work, as well as, for example, (Rognvaldsson and
Helgadottir, 2011; Sanchez-Marco et al., 2011), essentially deals with the issue of adapting
a PoS tagging model based on a modern language to a different domain, an older language.

! Available for download at http://www.malfong.is
2Although Saga-Gold is a gold corpus, we found that it contained many errors that needed to be corrected. The
corrected training corpus will be made available at http://www.malfong.is

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 90 of 474]

Several other experiments with domain adaptation within the field of PoS tagging have been
described in the literature, e.g. adapting a model based on finanical data to biomedical data
(Blitzer et al., 2006) and to dialogues (Kiibler and Baucom, 2011), respectively.

This paper is structured as follows. In Section 2, we describe the individual PoS taggers used
in our experiments. We discuss previous work in tagging both Modern and Old Icelandic in
Section 3. Our development and evaluation work is described in Section 4. Error analysis is
performed in Section 5, and, finally, we draw conclusions and propose future work in Section 6.

2 PoS Taggers Used

We use four different PoS taggers for tagging Old Icelandic texts in Section 4: Stagger, TriTag-
ger, IceTagger and HMM+Ice+HMM. These taggers are freely available, open-source, and,
importantly, fast during training and testing.?

Stagger (Ostling, 2012) is an implementation of the averaged perceptron algorithm by Collins
(2002). Stagger uses feature-vector representations commonly used in maximum entropy
taggers (Ratnaparkhi, 1996; Toutanova et al., 2003). The feature vectors represent “histories”,
the context in which a tagging decision is made. For every feature, the perceptron algorithm
calculates integer weight coefficients, which are updated for every training sentence. After the
final update, these coefficients are stored with the corresponding features. When tagging new
texts, the perceptron algorithm sums up all the coefficients of the features in a given context
and returns the highest scoring sequence of tags for an input sentence.

TriTagger is a HMM tagger, a re-implementation of the well-known TnT tagger (Brants, 2000).
TriTagger uses a trigram model to find the sequence of tags for words in a sentence, which
maximizes:

P(t)P(t)e) [[PCeiltis, tio) [[POwilE) e
i=3 i=1

In equation 1, w; denotes word i in a sentence of length n (1 <i < n) and t; denotes the
tag for w;. The probabilities are derived using maximum likelihood estimation based on the
frequencies of tags found during training.

IceTagger (Loftsson, 2008) is a linguistic rule-based tagger. It is reductionistic in nature, i.e. it
removes inappropriate tags from the set of possible tags for a specific word in a given context.
IceTagger first applies local rules for initial disambiguation and then uses a set of heuristics for
further disambiguation. If a word is still ambiguous after the application of the heuristics, the
default heuristic is simply to choose the most frequent tag for the given word.

HMM+Ice+HMM (Loftsson et al., 2009) is a hybrid tagger, comprising both IceTagger and
TriTagger. It works as follows. First, TriTagger (the HMM) performs initial disambiguation
only with regard to the word class. Then, the rules of IceTagger are run. Finally, the HMM
disambiguates words that IceTagger is not able to fully disambiguate.

In addition to these four taggers, we use CombiTagger* (Henrich et al., 2009), a system for
developing combined taggers. Tagger combination methods are a means of correcting for
the biases of individual taggers, and they are especially suitable when tagging a corpus, i.e.

3TriTagger, IceTagger and HMM-+Ice+HMM are all part of the IceNLP toolkit, available for download at http:
//icenlp.sourceforge.net. Stagger is available for download at http://www.ling.su.se/stagger
4CombiTagger is open-source — available for download at http://combitagger.sourceforge.net

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 91 of 474]

when effectiveness (accuracy) is more important than efficiency (running time). It has been
shown that combining taggers will often result in a higher tagging accuracy than is achieved
by individual taggers (Brill and Wu, 1998; van Halteren et al., 2001; Loftsson, 2006). The
reason is that different taggers tend to produce different errors, and the differences can often
be exploited to yield better results.

3 Previous Work on Tagging Icelandic

The Icelandic language is one of the Nordic languages which comprise the North-Germanic
branch (Danish, Swedish, Norwegian, Icelandic, Faroese) of the Germanic language tree.
Linguisticall