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Preface: General Chair

Welcome to the EACL 2017, the 15th Conference of the European Chapter of the Association for
Computational Linguistics! This is the largest ever EACL in terms of the number of papers being
presented. We have a strong scientific program, including 14 workshops, six tutorials, a demos
session, and a student research workshop. EACL received a record number of sumbissions this year,
approximately 1,000 long and short papers combined, which reflects how broad and active our field is.
We are also fortunate to have three excellent invited speakers: David Blei (University of Columbia),
Devi Parikh (Virginia Tech), and Hinrch Schiitze (LMU Munich). I hope that you will enjoy both the
conference and Valencia.

I am deeply indebted to the Program Committee Chairs, Alexander Koller and Phil Blunsom, for their
hard work. They put together a team of 27 area chairs who in turned assembled many reviewers and
handled a large number of papers. The Workshop Chairs, Laura Rimmell and Richard Johansson,
coordinated with the workshop chairs for ACL 2017 and EMNLP 2017 and succeeded in putting together
an exciting and broad programme including 14 workshops. The student research workshop was organised
by the student members of the EACL board — John Camilleri, Mariona Coll Ardanuy Uxoa Ifiourrieta,
and Florian Kunneman. With the help of Barbara Plank (Faculty advisor), they issued the call, organised
a team of reviewers, assigned papers, coordinated and mediated among reviewers, and finally constructed
a schedule consisting of 12 papers.

The Tutorial Chairs, Lucia Specia and Alexandre Klementiev, put together a very strong programme
of six tutorials, which I hope many of us will attend. The publication chairs, Maria Liakata and Chris
Biemann, have been short of amazing. They undertook the complex task of producing the conference
proceedings and managed to make it seem easy, while being extremely thorough and paying attention
to every detail. Chris Biemann deserves a double thank you for being Sponsorship Chair. Our demo
chairs, Anselmo Pefias and André Martins, did a fantastic job selecting 30 demos for our demo session
which I encourage you all to attend. I would also like to thank David Weir our publicity chair and
the ACL business manager Priscilla Rassmussen, who knows more about our conferences than anyone
else. Sincere thanks are due to the various sponsors for their generous contribution. I am grateful to all
members of the EACL board for their advice and guidance, in particular to Llufs Marques and Walter
Daelemans.

Last, but not least, this conference could not have taken place without the local organising committee
who have worked tremendously hard to make EACL 2017 a success. The Local Chair, Paolo and Andrea
Aldea from Groupo Pacifico, have brought together a fantastic local team and have dealt with many of
the day-to-day tasks arising in organizing such a large conference expertly and efficiently.

I am always amazed by the dedication of our colleagues and their willingness to share knowledge and
invest precious time in order to make our conferences a success. On that note, I would like to thank
the authors who submitted their work to EACL and everyone else involved: area chairs, workshop
organizers, tutorial presenters, reviewers, demo presenters, and participants of the conference.

Welcome to EACL 2017!

Mirella Lapata
General Chair
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Preface: Programme Chairs

Welcome to the 15" Conference of the European Chapter of the Association for Computational
Linguistics! In these proceedings you will find all the papers accepted for presentation at the conference
in Valencia from the 3" to the 7" of April 2017. The main conference program consists of both oral
and poster presentations and also includes additional presentations of papers from the Transaction of the
Association for Computational Linguistics (TACL), posters from the Student Research Workshop, and
two demonstration sessions.

We received considerably more paper submissions than previous meetings of the EACL: 441 Long Papers
and 502 Short Papers (excluding papers withdrawn or rejected for incorrect formatting). The Short Paper
deadline was set after that for Long Papers and it is notable that we received more submissions of Short
than Long papers. After the commendable reviewing efforts of our Program Committee we accepted
119 Long Papers, 78 as oral presentations and 41 posters, and 120 Short Papers, 47 orals and 73 posters.
Overall the acceptance rates where 27% and 24% for the Long and Short Paper tracks respectively. The
EACL 2017 programme also contained the oral presentations of four papers published in TACL.

It would not have been possible to produce such a high quality programme without the amazing effort
and dedication of our Program Committee. We would like to than all of those who served on the
committee, which consisted of 27 Area Chairs and 612 Reviewers, drawn from a diverse range of fields
and from both Europe and further afield. Each paper received at least three reviews. We selected the final
programme based on the recommendations of the Area Chairs and reviewers, while aiming to ensure
the representation of a wide variety of research areas. The Area Chairs were each asked to nominate
candidate papers for the Outstanding Papers sessions, of which the Programme Chairs and General Chair
selected three Long Papers and one Short Paper. These were allocated extra time in the programme for
their oral presentations.

Following the precedent set at ACL 2016, we decided to allocate Long Paper and Short Paper oral
presentations 20 minute and 15 minute slots respectively, including time for questions and changing
speakers. While this shorter scheduling requires presenters to be more concise in their presentation, it
allowed us to accommodate a larger program of talks in the space available at the venue.

In addition to the main conference programme, a Student Research Workshop was held which selected 12
papers for presentation as posters, and two demonstration sessions were held during the evening poster
sessions. We are particularly grateful to our three distinguished invited speakers, Devi Parikh (Georgia
Tech), David Blei (Columbia University), and Hinrich Schiitze (LMU Munich). They represent the
amazing diversity of contemporary research being conducted across Computational Linguistics, Artificial
Intelligence, and Machine Learning.

In total the programme contains 126 talks and 126 posters, making this the largest EACL conference by
a considerable margin. Firstly this would not be possible without the authors who chose to submit there
research papers for publication at EACL, and we thank them for choosing our conference. Obviously
coordinating such a programme requires contributions from many people beyond the Programme Chairs.
We would like to thank our Area Chairs who ensured the smooth running of the two reviewing cycles.
We are also thankful for the support we received from the rest of the organising committee, including the
Publication Chairs, Local Organisers, Workshop Chairs, Tutorial Chairs, Demo Chairs, the Handbook
Chair, and the Student Research Workshop Chair, all listed in full later in the proceedings. We are also
grateful for the technical support received form the START team. We would like to thank the Programme
Chairs for ACL 2016, Katrin Erk and Noah Smith, who generously provided many insights and tips from
their own experience to help us avoid pitfalls and ensure the smooth running of the reviewing process.
Finally, we are thankful to have been blessed with an exceptionally calm and organised General Chair in
Mirella Lapata, who ensured the smooth running of the organising process and the ultimate success of
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this conference.
We hope you enjoy EACL 2017 in Valencia!

Phil Blunsom and Alexander Koller
EACL 2017 Programme Chairs
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Invited Talk: David Blei

Title: Probabilistic Topic Models and User Behavior

Topic modeling algorithms analyze a document collection to estimate its latent thematic structure. How-
ever, many collections contain an additional type of data: how people use the documents. For example,
readers click on articles in a newspaper website, scientists place articles in their personal libraries, and
lawmakers vote on a collection of bills. Behavior data is essential both for making predictions about
users (such as for a recommendation system) and for understanding how a collection and its users are
organized.

I will review the basics of topic modeling and describe our recent research on collaborative topic models,
models that simultaneously analyze a collection of texts and its corresponding user behavior. We studied
collaborative topic models on 80,000 scientists’ libraries from Mendeley and 100,000 users’ click data
from the arXiv. Collaborative topic models enable interpretable recommendation systems, capturing
scientists’ preferences and pointing them to articles of interest. Further, these models can organize the
articles according to the discovered patterns of readership. For example, we can identify articles that are
important within a field and articles that transcend disciplinary boundaries.

Biography:

David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of
the Columbia Data Science Institute. His research is in statistical machine learning, involving proba-
bilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms
for massive data. He works on a variety of applications, including text, images, music, social networks,
user behavior, and scientific data. David has received several awards for his research, including a Sloan
Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career
Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Founda-
tion Award (2013). He is a fellow of the ACM.
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Invited Talk: Devi Parikh

Title: Words, Pictures, and Common Sense

Wouldn’t it be nice if machines could understand content in images and communicate this understanding
as effectively as humans? Such technology would be immensely powerful, be it for aiding a visually-
impaired user navigate a world built by the sighted, assisting an analyst in extracting relevant information
from a surveillance feed, educating a child playing a game on a touch screen, providing information to a
spectator at an art gallery, or interacting with a robot. As computer vision and natural language processing
techniques are maturing, we are closer to achieving this dream than we have ever been.

Visual Question Answering (VQA) is one step in this direction. Given an image and a natural language
question about the image (e.g., “What kind of store is this?”, “How many people are waiting in the
queue?”’, “Is it safe to cross the street?”’), the machine’s task is to automatically produce an accurate
natural language answer (“bakery”, “5”, “Yes”). In this talk, I will present our dataset, some neural
models, and open research questions in free-form and open-ended Visual Question Answering (VQA).
I will also show a teaser about the next step moving forward: Visual Dialog. Instead of answering
individual questions about an image in isolation, can we build machines that can hold a sequential natural
language conversation with humans about visual content?

While machines are getting better at superficially connecting words to pictures, interacting with them
quickly reveals that they lack a certain common sense about the world we live in. Common sense is a
key ingredient in building intelligent machines that make "human-like" decisions when performing tasks
— be it automatically answering natural language questions, or understanding images and videos. How
can machines learn this common sense? While some of this knowledge is explicitly stated in human-
generated text (books, articles, blogs, etc.), much of this knowledge is unwritten. While unwritten, it is
not unseen! The visual world around us is full of structure bound by commonsense laws. But machines
today cannot learn common sense directly by observing our visual world because they cannot accurately
perform detailed visual recognition in images and videos. We argue that one solution is to give up on
photorealism. We propose to leverage abstract scenes — cartoon scenes made from clip art by crowd
sourced humans — to teach our machines common sense. I will demonstrate how knowledge learnt from
this abstract world can be used to solve commonsense textual tasks.

Biography:

Devi Parikh is an Assistant Professor in the School of Interactive Computing at Georgia Tech, and a
Visiting Researcher at Facebook Al Research (FAIR). From 2013 to 2016, she was an Assistant Pro-
fessor in the Bradley Department of Electrical and Computer Engineering at Virginia Tech. From 2009
to 2012, she was a Research Assistant Professor at Toyota Technological Institute at Chicago (TTIC),
an academic computer science institute affiliated with University of Chicago. She has held visiting po-
sitions at Cornell University, University of Texas at Austin, Microsoft Research, MIT, and Carnegie
Mellon University. She received her M.S. and Ph.D. degrees from the Electrical and Computer Engi-
neering department at Carnegie Mellon University in 2007 and 2009 respectively. She received her B.S.
in Electrical and Computer Engineering from Rowan University in 2005. Her research interests include
computer vision and Al in general and visual recognition problems in particular. Her recent work in-
volves exploring problems at the intersection of vision and language, and leveraging human-machine
collaboration for building smarter machines. She has also worked on other topics such as ensemble of
classifiers, data fusion, inference in probabilistic models, 3D reassembly, barcode segmentation, compu-
tational photography, interactive computer vision, contextual reasoning, hierarchical representations of
images, and human-debugging. She is a recipient of an NSF CAREER award, a Sloan Research Fellow-
ship, an Office of Naval Research (ONR) Young Investigator Program (YIP) award, an Army Research
Office (ARO) Young Investigator Program (YIP) award, an Allen Distinguished Investigator Award in
Artificial Intelligence from the Paul G. Allen Family Foundation, four Google Faculty Research Awards,
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an Amazon Academic Research Award, an Outstanding New Assistant Professor award from the Col-
lege of Engineering at Virginia Tech, a Rowan University Medal of Excellence for Alumni Achievement,
Rowan University’s 40 under 40 recognition, and a Marr Best Paper Prize awarded at the International
Conference on Computer Vision (ICCV).
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Invited Talk: Hinrich Schiitze

Title: Don’t cram two completely different meanings into a single !&??@#"$% vector! Or should
you?

It is tempting to interpret a high-dimensional embedding space cartographically, i.e., as a map each point
of which represents a distinct identifiable meaning — just as cities and mountains on a real map represent
distinct identifiable geographic locations. On this interpretation, ambiguous words pose a problem: how
can two completely different meanings be in the same location? Instead of learning a single embedding
for an ambiguous word, should we rather learn a different embedding for each of its senses (as has
often been proposed)? In this talk, I will take a fresh look at this question, drawing on simulations with
pseudowords, sentiment analysis experiments, psycholinguistics and — if time permits — lexicography.

Biography:

Hinrich Schiitze is professor of computational linguistics and director of the Center for Information and
Language Processing at LMU Munich. He received his PhD from Stanford University’s Department
of Linguistics in 1995 and worked on natural language processing and information retrieval technology
at Xerox PARC, at several Silicon Valley startups and at Google 1995-2004 and 2008/9. He coau-
thored Foundations of Statistical Natural Language Processing (with Chris Manning) and Introduction
to Information Retrieval (with Chris Manning and Prabhakar Raghavan). His research is motivated by
a fundamental question that computational linguists face today: Is domain knowledge about language
dispensable (as many in deep learning seem to believe) or can linguistics and statistical NLP learn and
benefit from each other?

X1V



Table of Contents

Gated End-to-End Memory Networks
Fei Liuand Julien Perez . ... ... . e e e 1

Neural Tree Indexers for Text Understanding
Tsendsuren Munkhdalai and Hong Yu ... i e 11

Exploring Different Dimensions of Attention for Uncertainty Detection
Heike Adel and Hinrich Schiitze ......... ... e 22

Classifying Illegal Activities on Tor Network Based on Web Textual Contents
Mhd Wesam Al Nabki, Eduardo Fidalgo, Enrique Alegre and Ivande Paz .................... 35

When is multitask learning effective? Semantic sequence prediction under varying data conditions
Héctor Martinez Alonso and Barbara Plank........ ... .. ... o o i i 44

Learning Compositionality Functions on Word Embeddings for Modelling Attribute Meaning in Adjective-
Noun Phrases
Matthias Hartung, Fabian Kaupmann, Soufian Jebbara and Philipp Cimiano .................. 54

Hypernyms under Siege: Linguistically-motivated Artillery for Hypernymy Detection
Vered Shwartz, Enrico Santus and Dominik Schlechtweg ................................... 65

Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network
Kim Anh Nguyen, Sabine Schulte im Walde and Ngoc Thang Vu............... ... . ... ..., 76

Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction and Disambiguation
Alexander Panchenko, Eugen Ruppert, Stefano Faralli, Simone Paolo Ponzetto and Chris Biemann
86

Word Sense Disambiguation: A Unified Evaluation Framework and Empirical Comparison
Alessandro Raganato, Jose Camacho-Collados and Roberto Navigli.......................... 99

Which is the Effective Way for Gaokao: Information Retrieval or Neural Networks?
Shangmin Guo, Xiangrong Zeng, Shizhu He, Kang Liu and Jun Zhao....................... 111

If You Can’t Beat Them Join Them: Handcrafted Features Complement Neural Nets for Non-Factoid
Answer Reranking
Dasha Bogdanova, Jennifer Foster, Daria Dzendzik and Qun Liu ........................... 121

Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks
Rajarshi Das, Arvind Neelakantan, David Belanger and Andrew McCallum ................. 132

Recognizing Mentions of Adverse Drug Reaction in Social Media Using Knowledge-Infused Recurrent
Models
Gabriel Stanovsky, Daniel Gruhl and PabloMendes...................ccooiiiiiiiiinn.... 142

Multitask Learning for Mental Health Conditions with Limited Social Media Data
Adrian Benton, Margaret Mitchell and Dirk Hovy........ ... oo o it 152

Evaluation by Association: A Systematic Study of Quantitative Word Association Evaluation
Ivan Vulié¢, Douwe Kiela and Anna Korhonen ............ . ... o .. 163

XV



Computational Argumentation Quality Assessment in Natural Language
Henning Wachsmuth, Nona Naderi, Yufang Hou, Yonatan Bilu, Vinodkumar Prabhakaran, Tim
Alberdingk Thijm, Graeme Hirstand Benno Stein.......... ... . . i, 176

A method for in-depth comparative evaluation: How (dis)similar are outputs of pos taggers, dependency
parsers and coreference resolvers really?
Don TUGGENET . . . ...ttt et et e 188

Re-evaluating Automatic Metrics for Image Captioning
Mert Kilickaya, Aykut Erdem, Nazli Ikizler-Cinbis and Erkut Erdem........................ 199

Integrating Meaning into Quality Evaluation of Machine Translation
Osman Baskaya, Eray Yildiz, Doruk Tunaoglu, Mustafa Tolga Eren and A. Seza Dogruoz .... 210

Cross-Lingual Dependency Parsing with Late Decoding for Truly Low-Resource Languages
Michael Schlichtkrull and Anders Sggaard ......... ... oo 219

Parsing Universal Dependencies without training
Héctor Martinez Alonso, Zeljko Agi¢, Barbara Plank and Anders Sggaard................... 229

Delexicalized Word Embeddings for Cross-lingual Dependency Parsing
Mathieu Dehouck and Pascal Denis ... 240

Stance Classification of Context-Dependent Claims
Roy Bar-Haim, Indrajit Bhattacharya, Francesco Dinuzzo, Amrita Saha and Noam Slonim. . ..250

Exploring the Impact of Pragmatic Phenomena on Irony Detection in Tweets: A Multilingual Corpus

Study
Jihen Karoui, Benamara Farah, Véronique Moriceau, Viviana Patti, Cristina Bosco and Nathalie
AUSSENAC-GILIES . . . ..t 261

A Multi-View Sentiment Corpus
Debora Nozza, Elisabetta Fersini and Enza Messina. ...............ooi ... 272

A Systematic Study of Neural Discourse Models for Implicit Discourse Relation
Attapol Rutherford, Vera Demberg and Nianwen Xue ... .. 280

Cross-lingual RST Discourse Parsing
Chloé Braud, Maximin Coavoux and Anders Sggaard ........ ... ... 291

Dialog state tracking, a machine reading approach using Memory Network
Julien Perez and Fei Liu. ... ..o o e 304

Sentence Segmentation in Narrative Transcripts from Neuropsychological Tests using Recurrent Convo-
lutional Neural Networks
Marcos Treviso, Christopher Shulby and Sandra Alufsio.............. ... o ... 314

Joint, Incremental Disfluency Detection and Utterance Segmentation from Speech
Julian Hough and David Schlangen......... .. ... . i e 325

From Segmentation to Analyses: a Probabilistic Model for Unsupervised Morphology Induction
Toms Bergmanis and Sharon Goldwater. . .............uiiite et 336

Creating POS Tagging and Dependency Parsing Experts via Topic Modeling
Atreyee Mukherjee, Sandra Kiibler and Matthias Scheutz.................................. 346

XVi



Universal Dependencies and Morphology for Hungarian - and on the Price of Universality
Veronika Vincze, Katalin Simko, Zsolt Szanté and Richard Farkas.......................... 355

Addressing the Data Sparsity Issue in Neural AMR Parsing
Xiaochang Peng, Chuan Wang, Daniel Gildea and Nianwen Xue ........................... 365

Generating Natural Language Question-Answer Pairs from a Knowledge Graph Using a RNN Based
Question Generation Model
Sathish Reddy, Dinesh Raghu, Mitesh M. Khapra and SachindraJoshi...................... 375

Enumeration of Extractive Oracle Summaries
Tsutomu Hirao, Masaaki Nishino, Jun Suzuki and Masaaki Nagata ......................... 385

Neural Semantic Encoders
Tsendsuren Munkhdalai and Hong Yu . ...... .o 396

Efficient Benchmarking of NLP APIs using Multi-armed Bandits
Gholamreza Haffari, Tuan Dung Tran and Mark Carman.............. ..., 407

Character-Word LSTM Language Models
Lyan Verwimp, Joris Pelemans, Hugo Van hamme and Patrick Wambacq.................... 416

A Hierarchical Neural Model for Learning Sequences of Dialogue Acts
Quan Hung Tran, Ingrid Zukerman and Gholamreza Haffari ............................... 427

A Network-based End-to-End Trainable Task-oriented Dialogue System
Tsung-Hsien Wen, David Vandyke, Nikola Mrksié, Milica Gasic, Lina M. Rojas Barahona, Pei-Hao
Su, Stefan Ultes and Steve YOUNG . . ... ..ottt ettt e et eeeiee s 437

May I take your order? A Neural Model for Extracting Structured Information from Conversations
Baolin Peng, Michael Seltzer, Y.C. Ju, Geoffrey Zweig and Kam-Fai Wong.................. 449

A Two-stage Sieve Approach for Quote Attribution
Grace Muzny, Michael Fang, Angel Chang and Dan Jurafsky ................... . ... ..... 459

Out-of-domain FrameNet Semantic Role Labeling
Silvana Hartmann, Ilia Kuznetsov, Teresa Martin and Iryna Gurevych....................... 470

TDParse: Multi-target-specific sentiment recognition on Twitter
Bo Wang, Maria Liakata, Arkaitz Zubiaga and Rob Procter................... ... . ... .... 482

Annotating Derivations: A New Evaluation Strategy and Dataset for Algebra Word Problems
Shyam Upadhyay and Ming-Wei Chang ...t 493

An Extensive Empirical Evaluation of Character-Based Morphological Tagging for 14 Languages
Georg Heigold, Guenter Neumann and Josef van Genabith................................. 504

Neural Multi-Source Morphological Reinflection
Katharina Kann, Ryan Cotterell and Hinrich Schiitze............. ... ... ... ..o ... 513

Online Automatic Post-editing for MT in a Multi-Domain Translation Environment
Rajen Chatterjee, Gebremedhen Gebremelak, Matteo Negri and Marco Turchi............... 524

An Incremental Parser for Abstract Meaning Representation
Marco Damonte, Shay B. Cohen and Giorgio Satta................ooiiiiiiiiiiinna... 535

XVvil



Integrated Learning of Dialog Strategies and Semantic Parsing
Aishwarya Padmakumar, Jesse Thomason and Raymond J. Mooney ........................ 546

Unsupervised AMR-Dependency Parse Alignment
Wei-Te Chen and Martha Palmer................ ... ... . . i ... 557

Improving Chinese Semantic Role Labeling using High-quality Surface and Deep Case Frames
Gongye Jin, Daisuke Kawahara and Sadao Kurohashi ..................................... 567

Multi-level Representations for Fine-Grained Typing of Knowledge Base Entities
Yadollah Yaghoobzadeh and Hinrich Schiitze............ ... ... . ... 577

The ContrastMedium Algorithm: Taxonomy Induction From Noisy Knowledge Graphs With Just A Few
Links
Stefano Faralli, Alexander Panchenko, Chris Biemann and Simone Paolo Ponzetto........... 589

Probabilistic Inference for Cold Start Knowledge Base Population with Prior World Knowledge
Bonan Min, Marjorie Freedman and Talya Meltzer.......... ... .. ..., 600

Generalizing to Unseen Entities and Entity Pairs with Row-less Universal Schema
Patrick Verga, Arvind Neelakantan and Andrew McCallum ............. ... . ... ... ..., 612

Learning to Generate Product Reviews from Attributes
Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhouand Ke Xu................. 622

Learning to generate one-sentence biographies from Wikidata
Andrew Chisholm, Will Radford and Ben Hachey............... ... ... ... . .. 632

Transition-Based Deep Input Linearization
Ratish Puduppully, Yue Zhang and Manish Shrivastava................. ... ..o, 642

Generating flexible proper name references in text: Data, models and evaluation
Thiago Castro Ferreira, Emiel Krahmer and Sander Wubben ............................... 654

Dependency Parsing as Head Selection
Xingxing Zhang, Jianpeng Cheng and Mirella Lapata . ........... ...t 664

Tackling Error Propagation through Reinforcement Learning: A Case of Greedy Dependency Parsing
Minh Le and Antske FOKKeNs . ... ..o e e 676

Noisy-context surprisal as a human sentence processing cost model
Richard Futrell and Roger Levy .. ... e e 687

Task-Specific Attentive Pooling of Phrase Alignments Contributes to Sentence Matching
Wenpeng Yin and Hinrich Schiitze ......... ... . 698

On-demand Injection of Lexical Knowledge for Recognising Textual Entailment
Pascual Martinez-G6émez, Koji Mineshima, Yusuke Miyao and Daisuke Bekki............... 709

Learning to Predict Denotational Probabilities For Modeling Entailment
Alice Lai and Julia Hockenmaier. ........... .. it 720

A Societal Sentiment Analysis: Predicting the Values and Ethics of Individuals by Analysing Social Media
Content

Tushar Maheshwari, Aishwarya N. Reganti, Samiksha Gupta, Anupam Jamatia, Upendra Kumar,
Bjorn Gambick and Amitava Das . ... ... .. e 730

XViil



Argument Strength is in the Eye of the Beholder: Audience Effects in Persuasion
Stephanie Lukin, Pranav Anand, Marilyn Walker and Steve Whittaker ...................... 741

A Language-independent and Compositional Model for Personality Trait Recognition from Short Texts
Fei Liu, Julien Perez and Scott NOWSON . . . ..ottt e e e i 753

A Strong Baseline for Learning Cross-Lingual Word Embeddings from Sentence Alignments
Omer Levy, Anders Sggaard and Yoav Goldberg..............ccoiiiiiiiiiiniiiinn... 764

Online Learning of Task-specific Word Representations with a Joint Biconvex Passive-Aggressive Algo-
rithm
Pascal Denis and Liva Ralaivola. .......... . 774

Nonsymbolic Text Representation
Hinrich SChitZe . . .. ..o e e et 784

Fine-Grained Entity Type Classification by Jointly Learning Representations and Label Embeddings
Abhishek Abhishek, Ashish Anand and Amit Awekar ............. ... ..o iiiiiineeenn. 796

Event extraction from Twitter using Non-Parametric Bayesian Mixture Model with Word Embeddings
Deyu Zhou, Xuan Zhang and Yulan He .......... ... i 807

End-to-end Relation Extraction using Neural Networks and Markov Logic Networks
Sachin Pawar, Pushpak Bhattacharyya and Girish Palshikar................................ 817

Trust, but Verify! Better Entity Linking through Automatic Verification
Benjamin Heinzerling, Michael Strube and Chin-Yew Lin ............ ... ... ... ... 827

Named Entity Recognition in the Medical Domain with Constrained CRF Models
Charles Jochim and Lea Deleris. . ... 838

Learning and Knowledge Transfer with Memory Networks for Machine Comprehension
Mohit Yadav, Lovekesh Vig and Gautam Shroff.............. ... ... ... ..., 849

If No Media Were Allowed inside the Venue, Was Anybody Allowed?
Zahra Sarabi and Eduardo Blanco .......... .. 859

Metaheuristic Approaches to Lexical Substitution and Simplification
Sallam Abualhaija, Tristan Miller, Judith Eckle-Kohler, Iryna Gurevych and Karl-Heinz Zimmer-

Paraphrasing Revisited with Neural Machine Translation
Jonathan Mallinson, Rico Sennrich and Mirella Lapata..................ccooiiieneennnn... 880

Multilingual Training of Crosslingual Word Embeddings

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird and Trevor Cohn................. 893
Building Lexical Vector Representations from Concept Definitions

Danilo Silva de Carvalho and Minh Le Nguyen............. ... i, 904
ShotgunWSD: An unsupervised algorithm for global word sense disambiguation inspired by DNA se-
quencing

Andrei Butnaru, Radu Tudor Ionescu and Florentina Hristea . ................ ... . ... ..., 915

LanideNN: Multilingual Language Identification on Text Stream
Tom Kocmi and Ondfej Bojar. .. ... e 926

X1X



Cross-Lingual Word Embeddings for Low-Resource Language Modeling
Oliver Adams, Adam Makarucha, Graham Neubig, Steven Bird and Trevor Cohn ............ 936

Consistent Translation of Repeated Nouns using Syntactic and Semantic Cues
Xiao Pu, Laura Mascarell and Andrei Popescu-Belis ........... ... oo, 947

Psycholinguistic Models of Sentence Processing Improve Sentence Readability Ranking
David M. Howcroft and Vera Demberg . ..ot 957

Web-Scale Language-Independent Cataloging of Noisy Product Listings for E-Commerce
Pradipto Das, Yandi Xia, Aaron Levine, Giuseppe Di Fabbrizio and Ankur Datta............. 968

Recognizing Insufficiently Supported Arguments in Argumentative Essays
Christian Stab and Iryna Gurevych . ... ... e 979

Distributed Document and Phrase Co-embeddings for Descriptive Clustering
Motoki Sato, Austin J. Brockmeier, Georgios Kontonatsios, Tingting Mu, John Y. Goulermas,
Jun’ichi Tsujii and Sophia Ananiadou .. ...t e e 990

SMARTies: Sentiment Models for Arabic Target entities
Noura Farra and Kathy McKeown ... ... ... e 1001

Exploring Convolutional Neural Networks for Sentiment Analysis of Spanish tweets
Isabel Segura-Bedmar, Antonio Quiros and Paloma Martinez . ............................ 1013

Contextual Bidirectional Long Short-Term Memory Recurrent Neural Network Language Models: A
Generative Approach to Sentiment Analysis
Amr Mousa and Bjorn Schuller . ............ . e 1022

Large-scale Opinion Relation Extraction with Distantly Supervised Neural Network
Changzhi Sun, Yuanbin Wu, Man Lan, Shiliang Sun and Qi Zhang ........................ 1032

Decoding with Finite-State Transducers on GPUs
Arturo Argueta and David Chiang.......... .o i 1043

Learning to Translate in Real-time with Neural Machine Translation
Jiatao Gu, Graham Neubig, Kyunghyun Cho and Victor O.K. Li................ ... ... ... 1052

A Multifaceted Evaluation of Neural versus Phrase-Based Machine Translation for 9 Language Direc-
tions
Antonio Toral and Victor M. Sdnchez-Cartagena ..., 1062

Personalized Machine Translation: Preserving Original Author Traits
Ella Rabinovich, Raj Nath Patel, Shachar Mirkin, Lucia Specia and Shuly Wintner.......... 1073

Bilingual Lexicon Induction by Learning to Combine Word-Level and Character-Level Representations
Geert Heyman, Ivan Vuli¢ and Marie-Francine Moens. ................ ..., 1084

Grouping business news stories based on salience of named entities
Llorenc Escoter, Lidia Pivovarova, Mian Du, Anisia Katinskaia and Roman Yangarber ... ... 1095

Very Deep Convolutional Networks for Text Classification
Alexis Conneau, Holger Schwenk, Loic Barrault and Yann Lecun ......................... 1106

"PageRank" for Argument Relevance
Henning Wachsmuth, Benno Stein and Yamen Ajjour..............ooiiiiiiiiiienannn. 1116

XX



Predicting Counselor Behaviors in Motivational Interviewing Encounters
Verdnica Pérez-Rosas, Rada Mihalcea, Kenneth Resnicow, Satinder Singh, Lawrence Ann, Kathy
J. Goggin and Delwyn Catley. ... ...ttt e e 1127

Authorship Attribution Using Text Distortion
Efstathios Stamatatos . .. ... ..ot e 1137

Structured Learning for Temporal Relation Extraction from Clinical Records
Artuur Leeuwenberg and Marie-Francine Moens .............. ..., 1149

Entity Extraction in Biomedical Corpora: An Approach to Evaluate Word Embedding Features with PSO
based Feature Selection
Shweta Yadav, Asif Ekbal, Sriparna Saha and Pushpak Bhattacharyya ..................... 1158

Distant Supervision for Relation Extraction beyond the Sentence Boundary
Chris Quirk and Hoifung Poon. . ... 1170

Noise Mitigation for Neural Entity Typing and Relation Extraction
Yadollah Yaghoobzadeh, Heike Adel and Hinrich Schiitze................. ... ... ... 1182

Analyzing Semantic Change in Japanese Loanwords
Hiroya Takamura, Ryo Nagata and Yoshifumi Kawasaki................ ... . ... ... ... 1194

Using support vector machines and state-of-the-art algorithms for phonetic alignment to identify cog-
nates in multi-lingual wordlists
Gerhard Jiger, Johann-Mattis List and Pavel Sofroniev................ ... .. ... ... ... 1204

A Multi-task Approach to Predict Likability of Books
Suraj Maharjan, John Arevalo, Manuel Montes, Fabio A. Gonzédlez and Thamar Solorio ... .. 1216

A Data-Oriented Model of Literary Language
Andreas van Cranenburgh and Rens Bod......... ... i i 1227

Aye or naw, whit dae ye hink? Scottish independence and linguistic identity on social media
Philippa Shoemark, Debnil Sur, Luke Shrimpton, lain Murray and Sharon Goldwater ....... 1238

What Do Recurrent Neural Network Grammars Learn About Syntax?
Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham Neubig and Noah A.
SIIth . 1248

Incremental Discontinuous Phrase Structure Parsing with the GAP Transition
Maximin Coavoux and Benoit Crabbé ... ... ... .. . i 1258

Neural Architectures for Fine-grained Entity Type Classification
Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui and Sebastian Riedel..................... 1270

XX1






Conference Program

Wednesday, April 5, 2017

9:30-10:50

10:50-11:20

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

12:40-13:00

Invited talk: David Blei

Coffee break

Session 1A: Machine Learning

Gated End-to-End Memory Networks
Fei Liu and Julien Perez

Neural Tree Indexers for Text Understanding
Tsendsuren Munkhdalai and Hong Yu

Exploring Different Dimensions of Attention for Uncertainty Detection
Heike Adel and Hinrich Schiitze

Classifying Illegal Activities on Tor Network Based on Web Textual Contents
Mhd Wesam Al Nabki, Eduardo Fidalgo, Enrique Alegre and Ivan de Paz

When is multitask learning effective? Semantic sequence prediction under varying
data conditions
Héctor Martinez Alonso and Barbara Plank

XX1iil



Wednesday, April 5, 2017 (continued)

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

12:40-13:00

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

12:40-13:00

Session 1B: Lexical Semantics

Learning Compositionality Functions on Word Embeddings for Modelling Attribute
Meaning in Adjective-Noun Phrases
Matthias Hartung, Fabian Kaupmann, Soufian Jebbara and Philipp Cimiano

Hypernyms under Siege: Linguistically-motivated Artillery for Hypernymy Detec-
tion
Vered Shwartz, Enrico Santus and Dominik Schlechtweg

Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network
Kim Anh Nguyen, Sabine Schulte im Walde and Ngoc Thang Vu

Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction
and Disambiguation

Alexander Panchenko, Eugen Ruppert, Stefano Faralli, Simone Paolo Ponzetto and
Chris Biemann

Word Sense Disambiguation: A Unified Evaluation Framework and Empirical Com-
parison
Alessandro Raganato, Jose Camacho-Collados and Roberto Navigli

Session 1C: Information Retrieval and Information Extraction

Which is the Effective Way for Gaokao: Information Retrieval or Neural Networks?
Shangmin Guo, Xiangrong Zeng, Shizhu He, Kang Liu and Jun Zhao

If You Can’t Beat Them Join Them: Handcrafted Features Complement Neural Nets

for Non-Factoid Answer Reranking

Dasha Bogdanova, Jennifer Foster, Daria Dzendzik and Qun Liu

Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Net-
works
Rajarshi Das, Arvind Neelakantan, David Belanger and Andrew McCallum

Recognizing Mentions of Adverse Drug Reaction in Social Media Using Knowledge-
Infused Recurrent Models
Gabriel Stanovsky, Daniel Gruhl and Pablo Mendes

Multitask Learning for Mental Health Conditions with Limited Social Media Data
Adrian Benton, Margaret Mitchell and Dirk Hovy

XX1V



Wednesday, April 5, 2017 (continued)

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

12:40-13:00

13:00-14:30

14:30-14:50

14:50-15:10

15:10-15:30

Session 1D: Evaluation

Evaluation by Association: A Systematic Study of Quantitative Word Association
Evaluation
Ivan Vuli¢, Douwe Kiela and Anna Korhonen

Computational Argumentation Quality Assessment in Natural Language
Henning Wachsmuth, Nona Naderi, Yufang Hou, Yonatan Bilu, Vinodkumar Prab-
hakaran, Tim Alberdingk Thijm, Graeme Hirst and Benno Stein

A method for in-depth comparative evaluation: How (dis)similar are outputs of pos
taggers, dependency parsers and coreference resolvers really?

Don Tuggener

Re-evaluating Automatic Metrics for Image Captioning
Mert Kilickaya, Aykut Erdem, Nazli Ikizler-Cinbis and Erkut Erdem

Integrating Meaning into Quality Evaluation of Machine Translation

Osman Baskaya, Eray Yildiz, Doruk Tunaoglu, Mustafa Tolga Eren and A. Seza
Dogruoz

Lunch

Session 2A: Parsing 1
Cross-Lingual Dependency Parsing with Late Decoding for Truly Low-Resource
Languages

Michael Schlichtkrull and Anders Sggaard

Parsing Universal Dependencies without training
Héctor Martinez Alonso, Zeljko Agié, Barbara Plank and Anders Sggaard

Delexicalized Word Embeddings for Cross-lingual Dependency Parsing
Mathieu Dehouck and Pascal Denis

XXV



Wednesday, April 5, 2017 (continued)

14:30-14:50

14:50-15:10

15:10-15:30

14:30-14:50

14:50-15:10

15:10-15:30

14:30-14:50

14:50-15:10

15:10-15:30

15:30-16:00

Session 2B: Social Media 1

Stance Classification of Context-Dependent Claims
Roy Bar-Haim, Indrajit Bhattacharya, Francesco Dinuzzo, Amrita Saha and Noam
Slonim

Exploring the Impact of Pragmatic Phenomena on Irony Detection in Tweets: A
Multilingual Corpus Study

Jihen Karoui, Benamara Farah, Véronique Moriceau, Viviana Patti, Cristina Bosco
and Nathalie Aussenac-Gilles

A Multi-View Sentiment Corpus

Debora Nozza, Elisabetta Fersini and Enza Messina

Session 2C: Discourse and Dialogue

A Systematic Study of Neural Discourse Models for Implicit Discourse Relation
Attapol Rutherford, Vera Demberg and Nianwen Xue

Cross-lingual RST Discourse Parsing
Chloé Braud, Maximin Coavoux and Anders Sggaard

Dialog state tracking, a machine reading approach using Memory Network

Julien Perez and Fei Liu

Session 2D: Segmentation

Sentence Segmentation in Narrative Transcripts from Neuropsychological Tests us-
ing Recurrent Convolutional Neural Networks

Marcos Treviso, Christopher Shulby and Sandra Aluisio

Joint, Incremental Disfluency Detection and Utterance Segmentation from Speech
Julian Hough and David Schlangen

From Segmentation to Analyses: a Probabilistic Model for Unsupervised Morphol-
ogy Induction
Toms Bergmanis and Sharon Goldwater

Coffee break

XXVi



Wednesday, April 5, 2017 (continued)

16:00-17:15

16:00-17:30

16:00-17:30

16:00-17:15

17:30-19:30

Session 3A: Syntax and Machine Learning (See Vol.2, SP)

Session 3B: Generation, Summarisation, and QA (See Vol.2, SP)

Session 3C: Semantics (See Vol.2, SP)

Session 3D: Morphology and Psycholinguistics (See Vol.2, SP)

Long Posters 1

Long Posters 1

Creating POS Tagging and Dependency Parsing Experts via Topic Modeling
Atreyee Mukherjee, Sandra Kiibler and Matthias Scheutz

Universal Dependencies and Morphology for Hungarian - and on the Price of Uni-
versality
Veronika Vincze, Katalin Simkd, Zsolt Szant6 and Richédrd Farkas

Addressing the Data Sparsity Issue in Neural AMR Parsing
Xiaochang Peng, Chuan Wang, Daniel Gildea and Nianwen Xue

Generating Natural Language Question-Answer Pairs from a Knowledge Graph
Using a RNN Based Question Generation Model
Sathish Reddy, Dinesh Raghu, Mitesh M. Khapra and Sachindra Joshi

Enumeration of Extractive Oracle Summaries
Tsutomu Hirao, Masaaki Nishino, Jun Suzuki and Masaaki Nagata

Neural Semantic Encoders
Tsendsuren Munkhdalai and Hong Yu

Efficient Benchmarking of NLP APIs using Multi-armed Bandits
Gholamreza Haffari, Tuan Dung Tran and Mark Carman

XX Vil



Wednesday, April 5, 2017 (continued)

Character-Word LSTM Language Models
Lyan Verwimp, Joris Pelemans, Hugo Van hamme and Patrick Wambacq

A Hierarchical Neural Model for Learning Sequences of Dialogue Acts
Quan Hung Tran, Ingrid Zukerman and Gholamreza Haffari

A Network-based End-to-End Trainable Task-oriented Dialogue System
Tsung-Hsien Wen, David Vandyke, Nikola Mrksi¢, Milica Gasic, Lina M. Rojas
Barahona, Pei-Hao Su, Stefan Ultes and Steve Young

May I take your order? A Neural Model for Extracting Structured Information from
Conversations

Baolin Peng, Michael Seltzer, Y.C. Ju, Geoffrey Zweig and Kam-Fai Wong

A Two-stage Sieve Approach for Quote Attribution
Grace Muzny, Michael Fang, Angel Chang and Dan Jurafsky

Out-of-domain FrameNet Semantic Role Labeling
Silvana Hartmann, Ilia Kuznetsov, Teresa Martin and Iryna Gurevych

TDParse: Multi-target-specific sentiment recognition on Twitter
Bo Wang, Maria Liakata, Arkaitz Zubiaga and Rob Procter

Annotating Derivations: A New Evaluation Strategy and Dataset for Algebra Word
Problems

Shyam Upadhyay and Ming-Wei Chang

An Extensive Empirical Evaluation of Character-Based Morphological Tagging for
14 Languages

Georg Heigold, Guenter Neumann and Josef van Genabith

Neural Multi-Source Morphological Reinflection
Katharina Kann, Ryan Cotterell and Hinrich Schiitze

Online Automatic Post-editing for MT in a Multi-Domain Translation Environment
Rajen Chatterjee, Gebremedhen Gebremelak, Matteo Negri and Marco Turchi

17:30-19:30 Short Posters 1 (See Vol.2, SP)

17.30-19.30  Student Research Workshop (See Vol.4, SRW)

XXViil



Wednesday, April 5, 2017 (continued)

17:30-19:30 Demos (See Vol.3, Demos)

Thursday, April 6, 2017

9:30-10:50  Invited talk: Devi Parikh

10:50-11:20 Coffee break

Session 4A: TACL

11:20-11:40  Encoding Prior Knowledge with Eigenword Embeddings
Dominique Osborne, Shashi Narayan and Shay B. Cohen

11:40-12:00  Shift-Reduce Constituent Parsing with Neural Lookahead Features
Jiangming Liu and Yue Zhang

12:00-12:20  Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
Tal Linzen, Emmanuel Dupoux, Yoav Goldberg

12:20-12:40  Automatically Tagging Constructions of Causation and Their Slot-Fillers
Jesse Dunietz, Lori Levin, Jaime Carbonell
Session 4B: Semantic Analysis

11:20-11:40  An Incremental Parser for Abstract Meaning Representation
Marco Damonte, Shay B. Cohen and Giorgio Satta

11:40-12:00 Integrated Learning of Dialog Strategies and Semantic Parsing
Aishwarya Padmakumar, Jesse Thomason and Raymond J. Mooney

12:00-12:20  Unsupervised AMR-Dependency Parse Alignment
Wei-Te Chen and Martha Palmer

12:20-12:40  Improving Chinese Semantic Role Labeling using High-quality Surface and Deep

Case Frames
Gongye Jin, Daisuke Kawahara and Sadao Kurohashi

XXixX



Thursday, April 6, 2017 (continued)

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

13:00-14:30

Session 4C: Knowledge Bases

Multi-level Representations for Fine-Grained Typing of Knowledge Base Entities
Yadollah Yaghoobzadeh and Hinrich Schiitze

The ContrastMedium Algorithm: Taxonomy Induction From Noisy Knowledge
Graphs With Just A Few Links

Stefano Faralli, Alexander Panchenko, Chris Biemann and Simone Paolo Ponzetto
Probabilistic Inference for Cold Start Knowledge Base Population with Prior World
Knowledge

Bonan Min, Marjorie Freedman and Talya Meltzer

Generalizing to Unseen Entities and Entity Pairs with Row-less Universal Schema
Patrick Verga, Arvind Neelakantan and Andrew McCallum

Session 4D: Generation

Learning to Generate Product Reviews from Attributes
Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhou and Ke Xu

Learning to generate one-sentence biographies from Wikidata
Andrew Chisholm, Will Radford and Ben Hachey

Transition-Based Deep Input Linearization
Ratish Puduppully, Yue Zhang and Manish Shrivastava

Generating flexible proper name references in text: Data, models and evaluation

Thiago Castro Ferreira, Emiel Krahmer and Sander Wubben

Lunch

XXX



Thursday, April 6, 2017 (continued)

14:30-14:50

14:50-15:10

15:10-15:30

14:30-14:50

14:50-15:10

15:10-15:30

14:30-14:50

14:50-15:10

15:10-15:30

Session 5A: Parsing 2 and Pyscholinguistics

Dependency Parsing as Head Selection
Xingxing Zhang, Jianpeng Cheng and Mirella Lapata

Tackling Error Propagation through Reinforcement Learning: A Case of Greedy
Dependency Parsing
Minh Le and Antske Fokkens

Noisy-context surprisal as a human sentence processing cost model
Richard Futrell and Roger Levy

Session 5B: Entailment

Task-Specific Attentive Pooling of Phrase Alignments Contributes to Sentence
Matching
Wenpeng Yin and Hinrich Schiitze

On-demand Injection of Lexical Knowledge for Recognising Textual Entailment
Pascual Martinez-G6émez, Koji Mineshima, Yusuke Miyao and Daisuke Bekki

Learning to Predict Denotational Probabilities For Modeling Entailment
Alice Lai and Julia Hockenmaier

Session 5C: Social Media 2

A Societal Sentiment Analysis: Predicting the Values and Ethics of Individuals by
Analysing Social Media Content

Tushar Maheshwari, Aishwarya N. Reganti, Samiksha Gupta, Anupam Jamatia, Up-
endra Kumar, Bjorn Gambéck and Amitava Das

Argument Strength is in the Eye of the Beholder: Audience Effects in Persuasion
Stephanie Lukin, Pranav Anand, Marilyn Walker and Steve Whittaker

A Language-independent and Compositional Model for Personality Trait Recogni-

tion from Short Texts
Fei Liu, Julien Perez and Scott Nowson

XXX1



Thursday, April 6, 2017 (continued)

Session SD: Word Representations

14:30-14:50 A Strong Baseline for Learning Cross-Lingual Word Embeddings from Sentence
Alignments
Omer Levy, Anders Sggaard and Yoav Goldberg

14:50-15:10  Online Learning of Task-specific Word Representations with a Joint Biconvex
Passive-Aggressive Algorithm
Pascal Denis and Liva Ralaivola

15:10-15:30  Nonsymbolic Text Representation
Hinrich Schiitze

16:00-17:30 Session 6A: Machine Translation (See Vol.2, SP)

16:00-17:30  Session 6B: Word Embeddings (See Vol.2, SP)

16:00-17:30  Session 6C: Document Analysis (See Vol.2, SP)

16:00-17:15 Session 6D: Dialogue (See Vol.2, SP)

17:30-19:30 Long Posters 2

XXXii



Thursday, April 6, 2017 (continued)

Long Posters 2

Fine-Grained Entity Type Classification by Jointly Learning Representations and
Label Embeddings
Abhishek Abhishek, Ashish Anand and Amit Awekar

Event extraction from Twitter using Non-Parametric Bayesian Mixture Model with
Word Embeddings
Deyu Zhou, Xuan Zhang and Yulan He

End-to-end Relation Extraction using Neural Networks and Markov Logic Networks
Sachin Pawar, Pushpak Bhattacharyya and Girish Palshikar

Trust, but Verify! Better Entity Linking through Automatic Verification
Benjamin Heinzerling, Michael Strube and Chin-Yew Lin

Named Entity Recognition in the Medical Domain with Constrained CRF Models
Charles Jochim and Lea Deleris

Learning and Knowledge Transfer with Memory Networks for Machine Compre-
hension
Mohit Yadav, Lovekesh Vig and Gautam Shroff

If No Media Were Allowed inside the Venue, Was Anybody Allowed?
Zahra Sarabi and Eduardo Blanco

Metaheuristic Approaches to Lexical Substitution and Simplification
Sallam Abualhaija, Tristan Miller, Judith Eckle-Kohler, Iryna Gurevych and Karl-
Heinz Zimmermann

Paraphrasing Revisited with Neural Machine Translation
Jonathan Mallinson, Rico Sennrich and Mirella Lapata

Multilingual Training of Crosslingual Word Embeddings
Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird and Trevor Cohn

Building Lexical Vector Representations from Concept Definitions
Danilo Silva de Carvalho and Minh Le Nguyen

ShotgunWSD: An unsupervised algorithm for global word sense disambiguation

inspired by DNA sequencing
Andrei Butnaru, Radu Tudor Ionescu and Florentina Hristea

XXX1i1



Thursday, April 6, 2017 (continued)

LanideNN: Multilingual Language Identification on Text Stream
Tom Kocmi and Ondfej Bojar

Cross-Lingual Word Embeddings for Low-Resource Language Modeling
Oliver Adams, Adam Makarucha, Graham Neubig, Steven Bird and Trevor Cohn

Consistent Translation of Repeated Nouns using Syntactic and Semantic Cues
Xiao Pu, Laura Mascarell and Andrei Popescu-Belis

Psycholinguistic Models of Sentence Processing Improve Sentence Readability
Ranking
David M. Howcroft and Vera Demberg

Web-Scale Language-Independent Cataloging of Noisy Product Listings for E-
Commerce

Pradipto Das, Yandi Xia, Aaron Levine, Giuseppe Di Fabbrizio and Ankur Datta

Recognizing Insufficiently Supported Arguments in Argumentative Essays
Christian Stab and Iryna Gurevych

Distributed Document and Phrase Co-embeddings for Descriptive Clustering
Motoki Sato, Austin J. Brockmeier, Georgios Kontonatsios, Tingting Mu, John Y.

Goulermas, Jun’ichi Tsujii and Sophia Ananiadou

SMARTies: Sentiment Models for Arabic Target entities
Noura Farra and Kathy McKeown

Exploring Convolutional Neural Networks for Sentiment Analysis of Spanish tweets
Isabel Segura-Bedmar, Antonio Quiros and Paloma Martinez

Contextual Bidirectional Long Short-Term Memory Recurrent Neural Network Lan-
guage Models: A Generative Approach to Sentiment Analysis

Amr Mousa and Bjorn Schuller
Large-scale Opinion Relation Extraction with Distantly Supervised Neural Network
Changzhi Sun, Yuanbin Wu, Man Lan, Shiliang Sun and Qi Zhang

17:30-19:30  Short Posters 2 (See Vol.2, SP)

17:30-19:30 Demos (See Vol.3, Demos)

XXX1V



Friday, April 7, 2017

9:30-10:50

10:50-11:20

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

12:40-13:00

Invited talk: Hinrich Schiitze

Coffee break

Session 7A: Machine Translation and Multilinguality

Decoding with Finite-State Transducers on GPUs
Arturo Argueta and David Chiang

Learning to Translate in Real-time with Neural Machine Translation
Jiatao Gu, Graham Neubig, Kyunghyun Cho and Victor O.K. Li

A Multifaceted Evaluation of Neural versus Phrase-Based Machine Translation for
9 Language Directions
Antonio Toral and Victor M. Sanchez-Cartagena

Personalized Machine Translation: Preserving Original Author Traits
Ella Rabinovich, Raj Nath Patel, Shachar Mirkin, Lucia Specia and Shuly Wintner

Bilingual Lexicon Induction by Learning to Combine Word-Level and Character-

Level Representations
Geert Heyman, Ivan Vuli¢ and Marie-Francine Moens

XXXV



Friday, April 7, 2017 (continued)

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

12:40-13:00

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

Session 7B: Document Analysis

Grouping business news stories based on salience of named entities
Llorenc Escoter, Lidia Pivovarova, Mian Du, Anisia Katinskaia and Roman Yangar-
ber

Very Deep Convolutional Networks for Text Classification
Alexis Conneau, Holger Schwenk, Loic Barrault and Yann Lecun

"PageRank" for Argument Relevance
Henning Wachsmuth, Benno Stein and Yamen Ajjour

Predicting Counselor Behaviors in Motivational Interviewing Encounters
Verénica Pérez-Rosas, Rada Mihalcea, Kenneth Resnicow, Satinder Singh,
Lawrence Ann, Kathy J. Goggin and Delwyn Catley

Authorship Attribution Using Text Distortion

Efstathios Stamatatos

Session 7C: Entity and Relation Extraction

Structured Learning for Temporal Relation Extraction from Clinical Records
Artuur Leeuwenberg and Marie-Francine Moens

Entity Extraction in Biomedical Corpora: An Approach to Evaluate Word Embed-
ding Features with PSO based Feature Selection
Shweta Yadav, Asif Ekbal, Sriparna Saha and Pushpak Bhattacharyya

Distant Supervision for Relation Extraction beyond the Sentence Boundary
Chris Quirk and Hoifung Poon

Noise Mitigation for Neural Entity Typing and Relation Extraction
Yadollah Yaghoobzadeh, Heike Adel and Hinrich Schiitze

XXXVi



Friday, April 7, 2017 (continued)

11:20-11:40

11:40-12:00

12:00-12:20

12:20-12:40

12:40-13:00

13:00-14:30

14:30-15:30

15:30-16:00

Session 7D: Historical and Literary Language

Analyzing Semantic Change in Japanese Loanwords
Hiroya Takamura, Ryo Nagata and Yoshifumi Kawasaki

Using support vector machines and state-of-the-art algorithms for phonetic align-
ment to identify cognates in multi-lingual wordlists

Gerhard Jiger, Johann-Mattis List and Pavel Sofroniev

A Multi-task Approach to Predict Likability of Books

Suraj Maharjan, John Arevalo, Manuel Montes, Fabio A. Gonzdlez and Thamar

Solorio

A Data-Oriented Model of Literary Language
Andreas van Cranenburgh and Rens Bod

Aye or naw, whit dae ye hink? Scottish independence and linguistic identity on
social media

Philippa Shoemark, Debnil Sur, Luke Shrimpton, Iain Murray and Sharon Goldwa-
ter

Lunch

Business Meeting

Coffee break

XXX Vil



Friday, April 7, 2017 (continued)

16:00-16:25

16:25-16:50

16:00-16:25

16:25-16:50

16:55-17:10

Session 8A: Outstanding Papers 1
What Do Recurrent Neural Network Grammars Learn About Syntax?

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham Neu-
big and Noah A. Smith

Best Short Paper (See Vol.2, SP)

Session 8B: Outstanding Papers 2

Incremental Discontinuous Phrase Structure Parsing with the GAP Transition
Maximin Coavoux and Benoit Crabbé

Neural Architectures for Fine-grained Entity Type Classification

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui and Sebastian Riedel

Closing Session

XXXViil



Gated End-to-End Memory Networks

Fei Liu *
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Abstract

Machine reading using differentiable rea-
soning models has recently shown re-
markable progress. In this context,
End-to-End trainable Memory Networks
(MemN2N) have demonstrated promising
performance on simple natural language
based reasoning tasks such as factual rea-
soning and basic deduction. However,
other tasks, namely multi-fact question-
answering, positional reasoning or dialog
related tasks, remain challenging particu-
larly due to the necessity of more com-
plex interactions between the memory and
controller modules composing this family
of models. In this paper, we introduce
a novel end-to-end memory access regu-
lation mechanism inspired by the current
progress on the connection short-cutting
principle in the field of computer vision.
Concretely, we develop a Gated End-to-
End trainable Memory Network architec-
ture (GMemN2N). From the machine learn-
ing perspective, this new capability is
learned in an end-to-end fashion without
the use of any additional supervision sig-
nal which is, as far as our knowledge
goes, the first of its kind. Our experi-
ments show significant improvements on
the most challenging tasks in the 20 bAbT
dataset, without the use of any domain
knowledge. Then, we show improvements
on the Dialog bAbI tasks including
the real human-bot conversion-based Di-
alog State Tracking Challenge (DSTC-2)
dataset. On these two datasets, our model
sets the new state of the art.

*Work carried out as an intern at XRCE

tEqual contribution

Julien Perez
Xerox Research Centre Europe
Grenoble, France

.au julien.perez@xrce.xerox.com

1

1 Introduction

Deeper Neural Network models are more diffi-
cult to train and recurrency tends to complex-
ify this optimization problem (Srivastava et al.,
2015b). While Deep Neural Network architec-
tures have shown superior performance in numer-
ous areas, such as image, speech recognition and
more recently text, the complexity of optimiz-
ing such large and non-convex parameter sets re-
mains a challenge. Indeed, the so-called vanish-
ing/exploding gradient problem has been mainly
addressed using: 1. algorithmic responses, e.g.,
normalized initialization strategies (LeCun et al.,
1998; Glorot and Bengio, 2010); 2. architec-
tural ones, e.g., intermediate normalization layers
which facilitate the convergence of networks com-
posed of tens of hidden layers (He et al., 2015;
Saxe et al., 2014). Another problem of memory-
enhanced neural models is the necessity of regulat-
ing memory access at the controller level. Mem-
ory access operations can be supervised (Kumar
et al., 2016) and the number of times they are per-
formed tends to be fixed apriori (Sukhbaatar et al.,
2015), a design choice which tends to be based
on the presumed degree of difficulty of the task in
question. Inspired by the recent success of object
recognition in the field of computer vision (Srivas-
tava et al., 2015a; Srivastava et al., 2015b), we in-
vestigate the use of a gating mechanism in the con-
text of End-to-End Memory Networks (MemN2N)
(Sukhbaatar et al., 2015) in order to regulate the
access to the memory blocks in a differentiable
fashion. The formulation is realized by gated con-
nections between the memory access layers and
the controller stack of a MemN2N. As a result, the
model is able to dynamically determine how and
when to skip its memory-based reasoning process.

Roadmap: Section 2 reviews state-of-the-
art Memory Network models, connection short-
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cutting in neural networks and memory dynamics.
In Section 3, we propose a differentiable gating
mechanism in MemN2N. Section 4 and 5 present
a set of experiments on the 20 bAbI reasoning
tasks and the Dialog bAbI dataset. We report
new state-of-the-art results on several of the most
challenging tasks of the set, namely positional
reasoning, 3-argument relation and the DSTC-2
task while maintaining equally competitive perfor-
mance on the rest.

2 Related Work

This section starts with an introduction of the pri-
mary components of MemN2N. Then, we review
two key elements relevant to this work, namely
shortcut connections in neural networks and mem-
ory dynamics in such models.

2.1 End-to-End Memory Networks

The MemN2N architecture, introduced by
Sukhbaatar et al. (2015), consists of two main
components: supporting memories and final an-
swer prediction. Supporting memories are in turn
comprised of a set of input and output memory
representations with memory cells. The input
and output memory cells, denoted by m,; and c;,
are obtained by transforming the input context
Z1,...,Tn (oOr stories) using two embedding
matrices A and C (both of size d x |V| where
d is the embedding size and |V| the vocabulary
size) such that m; = A®(x;) and ¢; = CP(z;)
where ®(-) is a function that maps the input into
a bag of dimension |V|. Similarly, the question
q is encoded using another embedding matrix
B ¢ R™IVI, resulting in a question embedding
u = B®(q). The input memories {m,}, together
with the embedding of the question w, are utilized
to determine the relevance of each of the stories in
the context, yielding a vector of attention weights

pi = softmax(u'm,) (1)

aq

e
Zj e’
response o from the output memory is constructed
by the weighted sum:

0=Y pe, @)

For more difficult tasks demanding multiple
supporting memories, the model can be extended

where softmax(a;) = Subsequently, the

to include more than one set of input/output mem-
ories by stacking a number of memory layers. In
this setting, each memory layer is named a hop and
the (k + 1)™ hop takes as input the output of the
k™ hop:

L L T 3)

Lastly, the final step, the prediction of the an-
swer to the question g, is performed by

a= softmax(W(oK + uK)) 4)

where a is the predicted answer distribution, W &€
RIVI*4 s a parameter matrix for the model to learn
and K the total number of hops.

2.2 Shortcut Connections

Shortcut connections have been studied from both
the theoretical and practical point of view in the
general context of neural network architectures
(Bishop, 1995; Ripley, 2007). More recently
Residual Networks (He et al., 2016) and Highway
Networks (Srivastava et al., 2015a; Srivastava et
al., 2015b) have been almost simultaneously pro-
posed. While the former utilizes a residual cal-
culus, the latter formulates a differentiable gate-
way mechanism as proposed in Long-Short Terms
Memory Networks (Hochreiter and Schmidhuber,
1997) in order to cope with long-term dependency
issues in the dataset in an end-to-end trainable
manner. These two mechanisms were proposed as
a structural solution to the so-called vanishing gra-
dient problem by allowing the model to shortcut its
layered transformation structure when necessary.

2.3 Memory Dynamics

The necessity of dynamically regulating the in-
teraction between the so-called controller and the
memory blocks of a Memory Network model has
been studied in (Kumar et al., 2016; Xiong et al.,
2016). In these works, the number of exchanges
between the controller stack and the memory mod-
ule of the network is either monitored in a hard
supervised manner in the former or fixed apriori
in the latter.

In this paper, we propose an end-to-end super-
vised model, with an automatically learned gat-
ing mechanism, to perform dynamic regulation of
memory interaction. The next section presents the
formulation of this new Gated End-to-End Mem-
ory Networks (GMemN2N). This contribution can
be placed in parallel to the recent transition from
Memory Networks with hard attention mechanism



(Weston et al., 2015) to MemN2N with attention
values obtained by a softmax function and end-to-
end supervised (Sukhbaatar et al., 2015).

3 Gated End-to-End Memory Network

In this section, the elements behind residual learn-
ing and highway neural models are given. Then,
we introduce the proposed model of memory ac-
cess gating in a MemN2N.

3.1 Highway and Residual Networks

Highway Networks, first introduced by Srivastava
et al. (2015a), include a transform gate T and a
carry gate C, allowing the network to learn how
much information it should transform or carry to
form the input to the next layer. Suppose the orig-
inal network is a plain feed-forward neural net-
work:

y = H(z) (5)

where H(x) is a non-linear transformation of its
input . The generic form of Highway Networks
is formulated as:

y =H(z) 0 T(z) + = ® C(x) (6)

where the transform and carry gates, T(x) and
C(x), are defined as non-linear transformation
functions of the input & and ® the Hadamard
product. As suggested in (Srivastava et al., 2015a;
Srivastava et al., 2015b), we choose to focus, in
the following of this paper, on a simplified version
of Highway Networks where the carry gate is re-
placed by 1 — T(x):

y=H(x)oT(z)+x o (1 —T(x)) (7

where T(z) = o(Wrx + by) and o is the sig-
moid function. In fact, Residual Networks can
be viewed as a special case of Highway Networks
where both the transform and carry gates are sub-
stituted by the identity mapping function:

y=H(z)+x (®)

thereby forming a hard-wired shortcut connection
x.

3.2 Gated End-to-End Memory Networks

Arguably, Equation (3) can be considered as a
form of residuality with o* working as the residual
function and w”* the shortcut connection. How-
ever, as discussed in (Srivastava et al., 2015b),

in contrast to the hard-wired skip connection in
Residual Networks, one of the advantages of
Highway Networks is the adaptive gating mech-
anism, capable of learning to dynamically control
the information flow based on the current input.
Therefore, we adopt the idea of the adaptive gating
mechanism of Highway Networks and integrate it
into MemN2N. The resulting model, named Gated
End-to-End Memory Networks (GMemN2N) and il-
lustrated in Figure 1, is capable of dynamically
conditioning the memory reading operation on the
controller state u”* at each hop. Concretely, we re-
formulate Equation (3) into:

TF(ub) = o(Whaut + bk )
ukJrl — Ok @Tk(uk) + uk ® (1 . Tk(uk))
(10)

where W? and b” are the hop-specific parameter
matrix and bias term for the ™ hop and T*(z) the
transform gate for the £ hop. Similar to the two
weight tying schemes of the embedding matrices
introduced in (Sukhbaatar et al., 2015), we also
explore two types of constraints on W%"’p and bl}:
1. Global: all the weight matrices W% and bias
terms b% are shared across different hops,
ie, Wh = W2 = ... = W& and bl =
b2 = ... = bk,
2. Hop-specific: each hop has its specific
weight matrix W% and bias term b%. for k €
[1, K] and they are optimized independently.

4 QA bAbI Experiments

In this section, we first describe the natural lan-
guage reasoning dataset we use in our experi-
ments. Then, the experimental setup is detailed.
Lastly, we present the results and analyses.

4.1 Dataset and Data Preprocessing

The 20 bAb T tasks (Weston et al., 2016) have been
employed for the experiments (using v1.2 of the
dataset). In this synthetically generated dataset, a
given QA task consists of a set of statements, fol-
lowed by a question whose answer is typically a
single word (in a few tasks, answers are a set of
words). The answer is available to the model at
training time but must be predicted at test time.
The dataset consists of 20 different tasks with vari-
ous emphases on different forms of reasoning. For
each question, only a certain subset of the state-
ments contains information needed for the answer,
and the rest are essentially irrelevant distractors.
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Figure 1: Illustration of the proposed GMemN2N model with 3 hops. Dashed lines indicate elements

different from MemN2N (Sukhbaatar et al., 2015).

As in (Sukhbaatar et al., 2015), our model is fully
end-to-end trained without any additional supervi-
sion other than the answers themselves. Formally,
for one of the 20 QA tasks, we are given example
problems, each having a set of I sentences {x;}
(where I < 320), a question sentence ¢ and an-
swer a. Let the jth word of sentence ¢ be x;;, rep-
resented by a one-hot vector of length |V|. The
same representation is used for the question ¢ and
answer a. Two versions of the data are used, one
that has 1,000 training problems per task and the
other with 10,000 per task.

4.2 Training Details

As suggested in (Sukhbaatar et al., 2015), 10% of
the bADbT training set was held-out to form a val-
idation set for hyperparameter tuning. Moreover,
we use the so-called position encoding, adjacent
weight tying, and temporal encoding with 10%
random noise. Stochastic gradient descent is used
for training and the learning rate 7 is initially as-
signed a value of 0.005 with exponential decay ap-
plied every 25 epochs by 7/2 until 100 epochs are
reached. Linear start is used in all our experiments
as proposed by Sukhbaatar et al. (2015). With lin-
ear start, the softmax in each memory layer is re-
moved and re-inserted after 20 epochs. Batch size
is set to 32 and gradients with an ¢ norm larger
than 40 are divided by a scalar to have norm 40.
All weights are initialized randomly from a Gaus-

sian distribution with zero mean and 0 = 0.1 ex-
cept for the transform gate bias bl} which we em-
pirically set the mean to 0.5. Only the most re-
cent 50 sentences are fed into the model as the
memory and the number of memory hops is 3. In
all our experiments, we use the embedding size
d = 20. Note that we re-use the same hyper-
parameter configuration as in (Sukhbaatar et al.,
2015) and no grid search is performed.

As a large variance in the performance of the
model can be observed on some tasks, we follow
(Sukhbaatar et al., 2015) and repeat each train-
ing 100 times with different random initializations
and select the best system based on the validation
performance. On the 10k dataset, we repeat each
training 30 times due to time constraints. Con-
cerning the model implementation, while there are
minor differences between the results of our im-
plementation of MemN2N and those reported in
(Sukhbaatar et al., 2015), the overall performance
is equally competitive and, in some cases, better.
It should be noted that v1.1 of the dataset was
used whereas in this work, we employ the latest
v1.2. It is therefore deemed necessary that we
present the performance results of our implemen-
tation of MemN2N on the v1.2 dataset. To facilitate
fair comparison, we select our implementation of
MemN2N as the baseline as we believe that it is
indicative of the true performance of MemN2N on
v1.2 of the dataset.



1k 10k
Task Our GMemN2N Our GMemN2N
MemN2N MemN2N

MemN2N +global  +hop MemN2N +global  +hop
1: 1 supporting fact 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
2: 2 supporting facts 91.7 89.9 88.7 919 99.7 99.7  100.0 100.0
3: 3 supporting facts 59.7 58.5 532 612 90.7 89.1 947 95.5
4: 2 argument relations 97.2 99.0 993 99.6 100.0 100.0 100.0 100.0
5: 3 argument relations 86.9 86.6  98.1 99.0 99.4 994 999 998
6: yes/no questions 92.4 92.1 920 91.6 100.0 100.0 96.7 100.0
7: counting 82.7 833 838 822 96.3 96.8  96.7 98.2
8: lists/sets 90.0 89.0 87.8 875 99.2 98.1 99.9 99.7
9: simple negation 86.8 90.3 882 893 99.2 99.1 100.0 100.0
10: indefinite knowledge 84.9 84.6 80.1 83.5 97.6 98.0 999 99.8
11: basic coreference 99.1 99.7  99.8 100.0 100.0 100.0 100.0 100.0
12: conjunction 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
13: compound coreference 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
14: time reasoning 98.3 99.6 985 98.8 100.0 100.0 100.0 100.0
15: basic deduction 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
16: basic induction 98.7 999 99.8 999 99.6 100.0 100.0 100.0
17: positional reasoning 49.0 48.1 60.2 583 59.3 62.1 68.8 72.2
18: size reasoning 88.9 89.7 91.8 90.8 93.3 934 920 0915
19: path finding 17.2 11.3 103 115 335 472 548 69.0
20: agent’s motivation 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Average 86.1 86.1 86.6 87.3 93.4 94.1 952 96.3

Table 1: Accuracy (%) on the 20 QA tasks for models using 1k and 10k training examples.

MemN2N:(Sukhbaatar et al., 2015). Our MemN2N: our implementation of MemN2N. GMemN2N +global:
GMemN2N with global weight tying. GMemN2N +hop: GMemN2N with hop-specific weight tying. Bold
highlights best performance. Note that in (Sukhbaatar et al., 2015), v1.1 of the dataset was used.

4.3 Results

Performance results on the 20 bAbI QA dataset
are presented in Table 1. For comparison pur-
poses, we still present MemN2N (Sukhbaatar et al.,
2015) in Table 1 but accompany it with the accu-
racy obtained by our implementation of the same
model with the same experimental setup on v1.2 of
the dataset in the column “Our MemN2N” for both
the 1k and 10k versions of the dataset. In contrast,
we also list the results achieved by GMemN2N with
global and hop-specific weight constraints in the
GMemN2N columns.

GMemN2N achieves substantial improvements
on task S5 and 17. The performance of
GMemN2N is greatly improved, a substantial gain
of more than 10 in absolute accuracy.

Global vs. hop-specific weight tying. Com-
pared with the global weight tying scheme on the
weight matrices of the gating mechanism, apply-
ing weight constraints in a hop-specific fashion

generates a further boost in performance consis-
tently on both the 1k and 10k datasets.

State-of-the-art performance on both the
1k and 10k dataset. The best performing
GMemN2N model achieves state-of-the-art perfor-
mance, an average accuracy of 87.3 on the 1k
dataset and 96.3 on the 10k variant. This is a
solid improvement compared to MemN2N and a
step closer to the strongly supervised models de-
scribed in (Weston et al., 2015). Notice that the
highest average accuracy of the original MemN2N
model on the 10k dataset is 95.8. However, it was
attained by a model with layer-wise weight tying,
not adjacent weight tying as adopted in this work,
and, more importantly, a much larger embedding
size d = 100 (therefore not shown in Table 1). In
comparison, it is worth noting that the proposed
GMemN2N model, a much smaller model with em-
beddings of size 20, is capable of achieving better
accuracy.



S Dialog bAbI Experiments

In addition to the text understanding and reason-
ing tasks presented in Section 4, we further ex-
amine the effectiveness of the proposed GMemN2N
model on a collection of goal-oriented dialog tasks
(Bordes and Weston, 2016). First, we briefly de-
scribe the dataset. Next, we outline the training
details. Finally, experimental results are presented
with analyses.

5.1 Dataset and Data Preprocessing

In this work, we adopt the goal-oriented dialog
dataset developed by Bordes and Weston (2016)
organized as a set of tasks. The tasks in this
dataset can be divided into 6 categories with each
group focusing on a specific objective: 1. issu-
ing API calls, 2. updating API calls, 3. displaying
options, 4. providing extra-information, 5. con-
ducting full dialogs (the aggregation of the first 4
tasks), 6. Dialog State Tracking Challenge 2 cor-
pus (DSTC-2). The first 5 tasks are synthetically
generated based on a knowledge base consisting of
facts which define all the restaurants and their as-
sociated properties (7 types, such as location and
price range). The generated texts are in the form
of conversation between a user and a bot, each of
which is designed with a clear yet different objec-
tive (all involved in a restaurant reservation sce-
nario). This dataset essentially tests the capac-
ity of end-to-end dialog systems to conduct dialog
with various goals. Each dialog starts with a user
request with subsequent alternating user-bot utter-
ances and it is the duty of a model to understand
the intention of the user and respond accordingly.
In order to test the capability of a system to cope
with entities not appearing in the training set, a
different set of test sets, named out-of-vocabulary
(OOV) test sets, are constructed separately. In
addition, a supplementary dataset, task 6, is pro-
vided with real human-bot conversations, also in
the restaurant domain, which is derived from the
second Dialog State Tracking Challenge (Hender-
son et al., 2014). It is important to notice that the
answers in this dataset may no longer be a single
word but can be comprised of multiple ones.

5.2 Training Details

At a certain given time ¢, a memory-based
model takes the sequence of utterances
U T U T U T 1

ct,cl,cy,¢5,...,cf 1,ci_; (alternating  be-
tween the user ¢’ and the system response c}) as

the stories and cf' as the question. The goal of the
model is to predict the response cj .

As answers may be composed of multiple
words, following (Bordes and Weston, 2016), we
replace the final prediction step in Equation (4)
with:

a = softmax(u W' d(y,), ..., u" W d(y))

where W’ € R*IV| is the weight parameter ma-
trix for the model to learn, u = o +u* (K is the
total number of hops), y, is the i'" response in the
candidate set C' such that y, € C, |C] the size of
the candidate set, and ®(-) a function which maps
the input text into a bag of dimension |V|.

As in (Bordes and Weston, 2016), we extend
® by several key additional features. First, two
features marking the identity of the speaker of a
particular utterance (user or model) are added to
each of the memory slots. Second, we expand
the feature representation function ® of candidate
responses with 7 additional features, each, focus-
ing on one of the 7 properties associated with any
restaurants, indicating whether there are any exact
matches between words occurring in the candidate
and those in the question or memory. These 7 fea-
tures are referred to as the match features.

Apart from the modifications described above,
we carry out the experiments using the same ex-
perimental setup described in Section 4.2. We also
constrain ourselves to the hop-specific weight ty-
ing scheme in all our experiments since GMemN2N
benefits more from it than global weight tying as
shown in Section 4.3. As in (Sukhbaatar et al.,
2015), since the memory-based models are sen-
sitive to parameter initialization, we repeat each
training 10 times and choose the best system based
on the performance on the validation set.

5.3 Results

Performance results on the Dialog bAbI
dataset are shown in Table 2, measured using
both per-response accuracy and per-dialog accu-
racy (given in parentheses). While per-response
accuracy calculates the percentage of correct re-
sponses, per-dialog accuracy, where a dialog is
considered to be correct if and only if every re-
sponse within it is correct, counts the percentage
of correct dialogs. Task 1-5 are presented in the
upper half of the table while the same tasks in the
OOV setting are in the lower half with the dialog
state tracking task as task 6 at the bottom. We



MemN2N GMemN2N
Task MemN2N GMemN2N

+match +match
T1: Issuing API calls 99.9 (99.6) 100.0(100.0) || 100.0(100.0) 100.0(100.0)
T2: Updating API calls 100.0(100.0) 100.0(100.0) || 98.3 (83.9) 100.0(100.0)
T3: Displaying options 749 (2.0) 749 (0.0) 749 (0.0) 749 (0.0)
T4: Providing information 59.5 (3.00 572 (0.0) | 100.0(100.0) 100.0(100.0)
T5: Full dialogs 96.1 (49.4) 963 (52.5) || 934 (19.7) 98.0 (72.5)
Average 86.1 (50.8) 85.7 (50.5) || 93.3 (60.7) 94.6 (74.5)
T1 (OOV): Issuing API calls 723 (0.00 824 (0.0) 96.5 (82.7) 100.0(100.0)
T2 (OOV): Updating API calls 789 (0.00 789 (0.0) || 94.5 (48.4) 942 (47.1)
T3 (OOV): Displaying options 744 (0.0) 753 (0.0) 752 (0.0)  75.1 (0.0)
T4 (OOV): Providing information | 57.6 (0.0)  57.0 (0.0) || 100.0(100.0) 100.0(100.0)
T5 (OOV): Full dialogs 655 (0.00 66.7 (0.0) || 77.7 (0.0) 79.4 (0.0
Average 69.7 (0.0) 721 (0.0) 88.8 (46.2) 89.7 (49.4)
T6: Dialog state tracking 2 | 411 (0.0) 474 (14) [ 410 (0.0) 487 (14

Table 2: Per-response accuracy and per-dialog accuracy (in parentheses) on the Dialog bADT tasks.
MemN2N: (Bordes and Weston, 2016). +match indicates the use of the match features in Section 5.2.

choose (Bordes and Weston, 2016) as the baseline
which achieves the current state of the art on these
tasks.

GMemN2N with the match features sets a new
state of the art on most of the tasks. Other than
on task T2 (OOV) and T3 (OOV), GMemN2N with
the match features scores the best per-response
and per-dialog accuracy. Even on T2 (OOV) and
T3 (OOV), the model generates rather competitive
results and remains within 0.3% of the best perfor-
mance. Overall, the best average per-response ac-
curacy in both the OOV and non-OOV categories
is attained by GMemN2N.

GMemN2N with the match features significantly
improves per-dialog accuracy on TS. A break-

through in per-dialog accuracy on T5 from less
than 20% to over 70%.

GMemN2N succeeds in improving the perfor-
mance on the more practical task T6. With or
without the match features, GMemN2N achieves
a substantial boost in per-response accuracy on
T6. Given that T6 is derived from a dataset based
on real human-bot conversations, not syntheti-
cally generated, the performance gain, although
far from perfect, highlights the effectiveness of
GMemN2N in practical scenarios and constitutes an
encouraging starting point towards end-to-end di-
alog system learning.

The effectiveness of GMemN2N is more pro-
nounced on the more challenging tasks. The

performance gains on TS, TS5 (OOV) and T6, com-
pared with the rest of the tasks, are more pro-
nounced. Regarding the performance of MemN2N,
these tasks are relatively more challenging than
the rest, suggesting that the adaptive gating mech-
anism in GMemN2N is capable of managing com-
plex information flow while doing little damage on
easier tasks.

6 Visualization and Analysis

In addition to the quantitative results, we fur-
ther look into the memory regulation mechanism
learned by the GMemN2N model. Figure 2 presents
the three most frequently observed patterns of the
T*(u¥) vectors for each of the 3 hops in a model
trained on T6 of the Dialog bAbI dataset with
an embedding dimension of 20. Each row corre-
sponds to the gate values at a specific hop whereas
each column represents a given embedding dimen-
sion. The pattern on the top indicates that the
model tends to only access memory in the first and
third hop. In contrast, the middle and bottom pat-
terns only focus on the memory in either the first
or last hop respectively. Figure 3 is a t-SNE pro-
jection (Maaten and Hinton, 2008) of the flattened
[T (w!); T?(u?); T3(u?)] vectors obtained on the
test set of the same dialog task with points cor-
responding to the correct and incorrect responses
in red and blue respectively. Despite the relative
uniform distribution of the wrong answer points,
the correct ones tend to form clusters that suggest
the frequently observed behavior of a successful



Story Support MemN2N GMemN2N

Hop1l Hop2 Hop3 | Hopl Hop2 Hop3
Fred took the football there. 0.05 0.10 0.07 0.06 0.00 0.00
Fred journeyed to the hallway. 0.45 0.09 0.01 0.00 0.00 0.00
Fred passed the football to Mary. yes 0.10 0.29
Mary dropped the football. 0.40 0.17 0.00 0.00 0.00
Avg. transform gate cell values, >, T*(u¥);/d | NJA  N/A  N/A 023 045
Question: Who gave the football? Answer: Fred, MemN2N: Mary, GMemN2N: Fred

Table 3: MemN2N vs. GMemN2N- bAbT dataset - Task 5 - 3 argument relations
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Figure 2: 3 most frequently observed gate value
T*(u¥) patterns on T6 of the Dialog bAbT
dataset

inference. Lastly, Table 3 shows the comparison
of the attention shifting process between MemN2N
and GMemN2N on a story on bAbT task 5 (3 ar-
gument relations). Not only does GMemN2N man-
age to focus more accurately on the supporting fact
than MemN2N, it has also learned to rely less in this
case on hop 1 and 2 by assigning smaller transform
gate values. In contrast, MemN2N carries false and
misguiding information (caused by the distracting
attention mechanism) accumulated from the previ-
ous hops, which eventually led to the wrong pre-
diction of the answer.

7 Related Reading Tasks

Apart from the datasets adopted in our exper-
iments, the CNN/Daily Mail (Hermann et al.,
2015) has been used for the task of machine read-
ing formalized as a problem of text extraction from
a source conditioned on a given question. How-
ever, as pointed out in (Chen et al., 2016), this
dataset not only is noisy but also requires little
reasoning and inference, which is evidenced by
a manual analysis of a randomly selected subset
of the questions, showing that only 2% of the ex-
amples call for multi-sentence inference. Richard-

“10 -+« Incorrect Answers ||
-+ . Correct Answers

-6 -4 -2 4 6 8 10 12

Figure 3: t-SNE scatter plot of the flattened gate
values

son et al. (2013) constructed an open-domain read-
ing comprehension task, named MCTest. Al-
though this corpus demands various degrees of
reasoning capabilities from multiple sentences, its
rather limited size (660 paragraphs, each asso-
ciated with 4 questions) renders training statisti-
cal models infeasible (Chen et al., 2016). Chil-
dren’s Book Test (CBT) (Hill et al., 2015) was
designed to measure the ability of models to ex-
ploit a wide range of linguistic context. Despite
the claim in (Sukhbaatar et al., 2015) that increas-
ing the number of hops is crucial for the perfor-
mance improvements on some tasks, which can
be seen as enabling MemN2N to accommodate
more supporting facts, making such performance
boost particularly more pronounced on those tasks
requiring complex reasoning, Hill et al. (2015)
admittedly reported little improvement in perfor-
mance by stacking more hops and chose a single-
hop MemN2N. This suggests that the necessity of
multi-sentence based reasoning in this dataset is
not mandatory. In the future, we plan to investi-
gate into larger dialog datasets such as (Lowe et
al., 2015).



8 Conclusion and Future Work

In this paper, we have proposed and developed
what is, as far as our knowledge goes, the first
attempt at incorporating an iterative memory ac-
cess control to an end-to-end trainable memory-
enhanced neural network architecture. We showed
the added value of our proposition on a set of,
natural language based, state-of-the-art reasoning
tasks. Then, we offered a first interpretation of
the resulting capability by analyzing the attention
shifting mechanism and connection short-cutting
behavior of the proposed model. In future work,
we will investigate the use of such mechanism in
the field of language modeling and more gener-
ally on the paradigm of sequential prediction and
predictive learning. Furthermore, we plan to look
into the impact of this method on the recently in-
troduced Key-Value Memory Networks (Miller et
al., 2016) on larger and semi-structured corpus.
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Abstract

Recurrent neural networks (RNNs) pro-
cess input text sequentially and model the
conditional transition between word to-
kens. In contrast, the advantages of recur-
sive networks include that they explicitly
model the compositionality and the recur-
sive structure of natural language. How-
ever, the current recursive architecture is
limited by its dependence on syntactic
tree. In this paper, we introduce a robust
syntactic parsing-independent tree struc-
tured model, Neural Tree Indexers (NTI)
that provides a middle ground between the
sequential RNNs and the syntactic tree-
based recursive models. NTI constructs a
full n-ary tree by processing the input text
with its node function in a bottom-up fash-
ion. Attention mechanism can then be ap-
plied to both structure and node function.
We implemented and evaluated a binary-
tree model of NTI, showing the model
achieved the state-of-the-art performance
on three different NLP tasks: natural lan-
guage inference, answer sentence selec-
tion, and sentence classification, outper-
forming state-of-the-art recurrent and re-
cursive neural networks !.

1 Introduction

Recurrent neural networks (RNNs) have been suc-
cessful for modeling sequence data (Elman, 1990).
RNNs equipped with gated hidden units and in-
ternal short-term memories, such as long short-
term memories (LSTM) (Hochreiter and Schmid-
huber, 1997) have achieved a notable success in

!Code for the experiments and NTI is available at
https://bitbucket.org/tsendeemts/nti
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several NLP tasks including named entity recog-
nition (Lample et al., 2016), constituency parsing
(Vinyals et al., 2015), textual entailment recogni-
tion (Rocktischel et al., 2016), question answer-
ing (Hermann et al., 2015), and machine trans-
lation (Bahdanau et al., 2015). However, most
LSTM models explored so far are sequential. It
encodes text sequentially from left to right or vice
versa and do not naturally support compositional-
ity of language. Sequential LSTM models seem to
learn syntactic structure from the natural language
however their generalization on unseen text is rel-
atively poor comparing with models that exploit
syntactic tree structure (Bowman et al., 2015b).

Unlike sequential models, recursive neural net-
works compose word phrases over syntactic tree
structure and have shown improved performance
in sentiment analysis (Socher et al., 2013). How-
ever its dependence on a syntactic tree architecture
limits practical NLP applications. In this study,
we introduce Neural Tree Indexers (NTI), a class
of tree structured models for NLP tasks. NTI
takes a sequence of tokens and produces its rep-
resentation by constructing a full n-ary tree in a
bottom-up fashion. Each node in NTI is associated
with one of the node transformation functions:
leaf node mapping and non-leaf node composition
functions. Unlike previous recursive models, the
tree structure for NTI is relaxed, i.e., NTI does not
require the input sequences to be parsed syntac-
tically; and therefore it is flexible and can be di-
rectly applied to a wide range of NLP tasks beyond
sentence modeling.

Furthermore, we propose different variants of
node composition function and attention over tree
for our NTI models. When a sequential leaf node
transformer such as LSTM is chosen, the NTI net-
work forms a sequence-tree hybrid model taking
advantage of both conditional and compositional
powers of sequential and recursive models. Figure

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 11-21,

Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics



[ @: where was the cat? ]=> =>[ A:on the mat
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cat  sat the  mat

(a)

on Two

Figure 1:

Premise

black dogs

Hypothesis

are playing around the grass the lake

(b)

Two dogs swim in

A binary tree form of Neural Tree Indexers (NTI) in the context of question answering and

natural language inference. We insert empty tokens (denoted by —) to the input text to form a full binary
tree. (a) NTI produces answer representation at the root node. This representation along with the question
is used to find the answer. (b) NTI learns representations for the premise and hypothesis sentences and
then attentively combines them for classification. Dotted lines indicate attention over premise-indexed

tree.

1 shows a binary-tree model of NTI. Although the
model does not follow the syntactic tree structure,
we empirically show that it achieved the state-of-
the-art performance on three different NLP appli-
cations: natural language inference, answer sen-
tence selection, and sentence classification.

2 Related Work

2.1 Recurrent Neural Networks and
Attention Mechanism

RNNs model input text sequentially by taking a
single token at each time step and producing a cor-
responding hidden state. The hidden state is then
passed along through the next time step to pro-
vide historical sequence information. Although a
great success in a variety of tasks, RNNs have lim-
itations (Bengio et al., 1994; Hochreiter, 1998).
Among them, it is not efficient at memorizing long
or distant sequence (Sutskever et al., 2014). This
is frequently called as information flow bottle-
neck. Approaches have therefore been developed
to overcome the limitations. For example, to mit-
igate the information flow bottleneck, Bahdanau
et al. (2015) extended RNNs with a soft attention
mechanism in the context of neural machine trans-
lation, leading to improved the results in translat-
ing longer sentences.

RNNs are linear chain-structured; this limits its
potential for natural language which can be repre-
sented by complex structures including syntactic
structure. In this study, we propose models to mit-
igate this limitation.

2.2 Recursive Neural Networks

Unlike RNNs, recursive neural networks explic-
itly model the compositionality and the recur-
sive structure of natural language over tree. The
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tree structure can be predefined by a syntactic
parser (Socher et al., 2013). Each non-leaf tree
node is associated with a node composition func-
tion which combines its children nodes and pro-
duces its own representation. The model is then
trained by back-propagating error through struc-
tures (Goller and Kuchler, 1996).

The node composition function can be varied.
A single layer network with tanh non-linearity
was adopted in recursive auto-associate memo-
ries (Pollack, 1990) and recursive autoencoders
(Socheretal., 2011). Socher et al. (2012) extended
this network with an additional matrix represen-
tation for each node to augment the expressive
power of the model. Tensor networks have also
been used as composition function for sentence-
level sentiment analysis task (Socher et al., 2013).
Recently, Zhu et al. (2015) introduced S-LSTM
which extends LSTM units to compose tree nodes
in a recursive fashion.

In this paper, we introduce a novel attentive
node composition function that is based on S-
LSTM. Our NTI model does not rely on either a
parser output or a fine-grained supervision of non-
leaf nodes, both required in previous work. In
NTI, the supervision from the target labels is pro-
vided at the root node. As such, our NTI model
is robust and applicable to a wide range of NLP
tasks. We introduce attention over tree in NTI
to overcome the vanishing/explode gradients chal-
lenges as shown in RNNs.

3 Methods

Our training set consists of N examples
{X"Y? fil, where the input X" is a sequence of
word tokens wi, w5, ... ,wifi and the output Y*
can be either a single target or a sequence. Each



input word token w; is represented by its word
embedding z; € RF.

NTI is a full n-ary tree (and the sub-trees
can be overlapped). It has two types of
transformation function: non-leaf node func-
tion fre%(pl ... h¢) and leaf node function
fleat (zy).  fleaf(2;) computes a (possibly non-
linear) transformation of the input word embed-
ding x;. fm°%(h', ..., h¢)isafunction of its child
nodes representation h', . .., h¢, where cis the to-
tal number of child nodes of this non-leaf node.

NTI can be implemented with different tree
structures. In this study we implemented and eval-
uated a binary tree form of NTI: a non-leaf node
can take in only two direct child nodes (i.e., ¢ =
2). Therefore, the function f"°%(h!,h") com-
poses its left child node h‘ and right child node
h". Figure 1 illustrates our NTI model that is
applied to question answering (a) and natural lan-
guage inference tasks (b). Note that the node and
leaf node functions are neural networks and are the
only training parameters in NTL

We explored two different approaches to com-
pose node representations: an extended LSTM and
attentive node composition functions, to be de-
scribed below.

3.1 Non-Leaf Node Composition Functions

We define two different methods for non-leaf node
function fmo% (Al AT).

LSTM-based Non-leaf Node Function (S-
LSTM): We initiate f™°%(h!, h") with LSTM.
For non-leaf node, we adopt S-LSTM Zhu et al.
(2015), an extension of LSTM to tree structures, to
learn a node representation by its children nodes.
Let hl, h%, ¢} and ¢} be vector representations
and cell states for the left and right children. An
S-LSTM computes a parent node representation
hy, | and a node cell state ¢} ; as

i1 = o(WPhh + WShE + Wich + Wich) (1)
fliy = o(WERL + WER, + Wich + Wic)) (2)
fty1 = U(Wghl+W10hr+Wnct+ 1aci) (3)

= ftl+1 ®c+ fir1©c
+ip01 © tanh(WShL + WEAT)  (4)
orp1 = o(Wisht + Wishf + Wisel ) (5)
h 1 = o1 © tanh(c} ) (6)
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where W3,..., Wi, € RF<* and biases (for
brevity we eliminated the bias terms) are the train-
ing parameters. o and © denote the element-
wise stgmoid function and the element-wise vec-
tor multiplication. Extension of S-LSTM non-
leaf node function to compose more children is
straightforward. However, the number of parame-
ters increases quadratically in S-LSTM as we add
more child nodes.

Attentive Non-leaf Node Function (ANF):
Some NLP applications (e.g., QA and machine
translation) would benefit from a dynamic query
dependent composition function. We introduce
ANF as a new non-leaf node function. Unlike S-
LSTM, ANF composes the child nodes attentively
in respect to another relevant input vector g € R¥.
The input vector g can be a learnable representa-
tion from a sequence representation. Given a ma-
trix SANF ¢ RF*2 resulted by concatenating the
child node representations A, h] and the third in-
put vector ¢, ANF is defined as

m = fscore(GANF o) 7
o = softmaz(m) (8)

5 — GANF T 9)

WY, = ReLU(W{'NE2) (10

where WlAN F ¢ RkXk ig a learnable matrix, m €

R? the attention score and o € R? the attention
weight vector for each child. f%“°" is an attention
scoring function, which can be implemented as a
multi-layer perceptron (MLP)

m = wTReLU(WfCOTeSANF

Wscoreq ® 6) (11)

or a matrix-vector product m = ¢' SANF. The
matrices W and Wis“¢ € R¥*¥ and the vec-
tor w € R* are training parameters. e € R? is a
vector of ones and ® the outer product. We use
ReLU function for non-linear transformation.

3.2 Attention Over Tree

Comparing with sequential LSTM models, NTI
has less recurrence, which is defined by the tree
depth, log(n) for binary tree where n is the length
of the input sequence. However, NTT still needs
to compress all the input information into a sin-
gle representation vector of the root. This im-
poses practical difficulties when processing long
sequences. We address this issue with attention



Model d [0]as | Train | Test
Classifier with handcrafted features (Bowman et al., 2015a) - - 99.7 | 78.2
LSTMs encoders (Bowman et al., 2015a) 300 | 3.0M 83.9 | 80.6
Dependency Tree CNN encoders (Mou et al., 2016) 300 | 3.5M | 833 | 82.1
NTI-SLSTM (Ours) 300 | 3.3M | 839 | 824
SPINN-PI encoders (Bowman et al., 2016) 300 | 3.7M 89.2 | 83.2
NTI-SLSTM-LSTM (Ours) 300 | 4.0M | 825 | 834
LSTMs attention (Rocktiischel et al., 2016) 100 | 242K 854 | 82.3
LSTMs word-by-word attention (Rocktischel et al., 2016) 100 | 250K 85.3 | 83.5
NTI-SLSTM node-by-node global attention (Ours) 300 | 3.5M | 85.0 | 84.2
NTI-SLSTM node-by-node tree attention (Ours) 300 | 3.5M 86.0 | 84.3
NTI-SLSTM-LSTM node-by-node tree attention (Ours) 300 | 4.2M 88.1 | 85.7
NTI-SLSTM-LSTM node-by-node global attention (Ours) 300 | 42M | 87.6 | 85.9
mLSTM word-by-word attention (Wang and Jiang, 2016) 300 | 1LOM | 92.0 | 86.1
LSTMN with deep attention fusion (Cheng et al., 2016) 450 | 34M | 88.5 | 86.3
Tree matching NTI-SLSTM-LSTM tree attention (Ours) 300 | 3.2M 87.3 | 86.4
Decomposable Attention Model (Parikh et al., 2016) 200 | 580K 90.5 | 86.8
Tree matching NTI-SLSTM-LSTM global attention (Ours) 300 | 3.2M 87.6 | 87.1
Full tree matching NTI-SLSTM-LSTM global attention (Ours) | 300 | 3.2M | 88.5 | 87.3

Table 1: Training and test accuracy on natural language inference task. d is the word embedding size and

|0|as the number of model parameters.

mechanism over tree. In addition, the attention
mechanism can be used for matching trees (de-
scribed in Section 4 as Tree matching NTI) that
carry different sequence information. We first de-
fine a global attention and then introduce a tree
attention which considers the parent-child depen-
dency for calculation of the attention weights.
Global Attention: An attention neural network
for the global attention takes all node representa-
tions as input and produces an attentively blended
vector for the whole tree. This neural net is sim-
ilar to ANF. Particularly, given a matrix S¢4 €
RFE*2n=1 resulted by concatenating the node rep-
resentations hq, ..., ho,—1 and the relevant input
representation g, the global attention is defined as

m = fscore(SGA’ q) (12)

a = softmaz(m) (13)

z =864 T (14)

hiree = ReLU (W42 + WE4y) (15)

where W4 and W4 € RF¥F are training pa-
rameters and o € R?"~! the attention weight vec-
tor for each node. This attention mechanism is ro-
bust as it globally normalizes the attention score
m with softmax to obtain the weights a. How-
ever, it does not consider the tree structure when
producing the final representation h'"¢¢.

Tree Attention: We modify the global atten-
tion network to the tree attention mechanism. The
resulting tree attention network performs almost
the same computation as ANF for each node. It
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compares the parent and children nodes to pro-
duce a new representation assuming that all node
representations are constructed. Given a matrix
STA ¢ RF*3 resulted by concatenating the parent
node representation h?, the left child h! and the
right child h} and the relevant input representation
q, every non-leaf node hY simply updates its own
representation by using the following equation in
a bottom-up manner.

m = feore(STA o) (16)
o = softmaz(m) (17)
z=8T4T (18)

WY = ReLU(W{*z) (19)

and this equation is similarity to the global at-
tention. However, now each non-leaf node atten-
tively collects its own and children representations
and passes towards the root which finally con-
structs the attentively blended tree representation.
Note that unlike the global attention, the tree atten-
tion locally normalizes the attention scores with
softmax.

4 [Experiments

We describe in this section experiments on three
different NLP tasks, natural language inference,
question answering and sentence classification to
demonstrate the flexibility and the effectiveness of
NTI in the different settings.



We trained NTI using Adam (Kingma and Ba,
2014) with hyperparameters selected on develop-
ment set. The pre-trained 300-D Glove 840B vec-
tors (Pennington et al., 2014) were obtained for
the word embeddings®. The word embeddings are
fixed during training. The embeddings for out-of-
vocabulary words were set to zero vector. We pad
the input sequence to form a full binary tree. A
padding vector was inserted when padding. We
analyzed the effects of the padding size and found
out that it has no influence on the performance (see
Appendix 5.3). The size of hidden units of the NTI
modules were set to 300. The models were regu-
larized by using dropouts and an [ weight decay.

4.1 Natural Language Inference

We conducted experiments on the Stanford
Natural Language Inference (SNLI) dataset
(Bowman et al.,, 2015a), which consists of
549,367/9,842/9,824 premise-hypothesis pairs for
train/dev/test sets and target label indicating their
relation. Unless otherwise noted, we follow the
setting in the previous work (Mou et al., 2016;
Bowman et al., 2016) and use an MLP for classi-
fication which takes in NTI outputs and computes
the concatenation [Rh _;hE ], absolute dif-
ference hh | — hb, _, and elementwise product
R, -h%. _, of the two sentence representations.
The MLP has also an input layer with 1024 units
with ReLU activation and a softmax output
layer. We explored nine different task-oriented
NTI models with varying complexity, to be
described below. For each model, we set the batch
size to 32. The initial learning, the regularization
strength and the number of epoch to be trained are
varied for each model.

NTI-SLSTM: this model does not rely on f¢e/
transformer but uses the S-LSTM units for the
non-leaf node function. We set the initial learning
rate to le-3 and [ regularizer strength to 3e-5, and
train the model for 90 epochs. The neural net was
regularized by 10% input dropouts and the 20%
output dropouts.

NTI-SLSTM-LSTM: we use LSTM for the
leaf node function f*/. Concretely, the LSTM
output vectors are given to NTI-SLSTM and the
memory cells of the lowest level S-LSTM were
initialized with the LSTM memory states. The
hyper-parameters are the same as the previous

>http://nlp.stanford.edu/projects/glove/
3More detail on hyper-parameters can be found in code.
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model.

NTI-SLSTM node-by-node global attention:
This model learns inter-sentence relation with the
global attention over premise-indexed tree, which
is similar to word-by-word attention model of
Rocktischel et al. (2016) in that it attends over the
premise tree nodes at every time step of hypothesis
encoding. We tie the weight parameters of the two
NTI-SLSTMs for premise and hypothesis and no
ftef transformer used. We set the initial learning
rate to 3e-4 and [ regularizer strength to le-5, and
train the model for 40 epochs. The neural net was
regularized by 15% input dropouts and the 15%
output dropouts.

NTI-SLSTM node-by-node tree attention:
this is a variation of the previous model with the
tree attention. The hyper-parameters are the same
as the previous model.

NTI-SLSTM-LSTM node-by-node global at-
tention: in this model we include LSTM as the
leaf node function f'*%f. Here we initialize the
memory cell of S-LSTM with LSTM memory
and hidden/memory state of hypothesis LSTM
with premise LSTM (the later follows the work
of (Rocktischel et al., 2016)). We set the initial
learning rate to 3e-4 and [ regularizer strength to
le-5, and train the model for 10 epochs. The neu-
ral net was regularized by 10% input dropouts and
the 15% output dropouts.

NTI-SLSTM-LSTM node-by-node tree at-
tention: this is a variation of the previous model
with the tree attention. The hyper-parameters are
the same as the previous model.

Tree matching NTI-SLSTM-LSTM global
attention: this model first constructs the premise
and hypothesis trees simultaneously with the NTI-
SLSTM-LSTM model and then computes their
matching vector by using the global attention and
an additional LSTM. The attention vectors are
produced at each hypothesis tree node and then
are given to the LSTM model sequentially. The
LSTM model compress the attention vectors and
outputs a single matching vector, which is passed
to an MLP for classification. The MLP for this
tree matching setting has an input layer with 1024
units with ReLU activation and a softmax out-
put layer.

Unlike Wang and Jiang (2016)’s matching
LSTM model which is specific to matching se-
quences, we use the standard LSTM units and
match trees. We set the initial learning rate to 3e-



4 and [, regularizer strength to 3e-5, and train the
model for 20 epochs. The neural net was regular-
ized by 20% input dropouts and the 20% output
dropouts.

Tree matching NTI-SLSTM-LSTM tree at-
tention: we replace the global attention with the
tree attention. The hyper-parameters are the same
as the previous model.

Full tree matching NTI-SLSTM-LSTM
global attention: this model produces two sets
of the attention vectors, one by attending over the
premise tree regarding each hypothesis tree node
and another by attending over the hypothesis tree
regarding each premise tree node. Each set of
the attention vectors is given to a LSTM model
to achieve full tree matching. The last hidden
states of the two LSTM models (i.e. one for
each attention vector set) are concatenated for
classification. The training weights are shared
among the LSTM models The hyper-parameters
are the same as the previous model.*

Table 1 shows the results of our models. For
comparison, we include the results from the pub-
lished state-of-the-art systems. While most of
the sentence encoder models rely solely on word
embeddings, the dependency tree CNN and the
SPINN-PI models make use of sentence parser
output; which present strong baseline systems.
The last set of methods designs inter-sentence re-
lation with soft attention (Bahdanau et al., 2015).
Our best score on this task is 87.3% accuracy
obtained with the full tree matching NTI model.
The previous best performing model on the task
performs phrase matching by using the attention
mechanism.

Our results show that NTI-SLSTM improved
the performance of the sequential LSTM encoder
by approximately 2%. Not surprisingly, using
LSTM as leaf node function helps in learning
better representations. Our NTI-SLSTM-LSTM
is a hybrid model which encodes a sequence
sequentially through its leaf node function and
then hierarchically composes the output repre-
sentations. The node-by-node attention models
improve the performance, indicating that model-
ing inter-sentence interaction is an important el-
ement in NLI. Aggregating matching vector be-
tween trees or sequences with a separate LSTM
model is effective. The global attention seems to

*Computational constraint prevented us from experiment-
ing the tree attention variant of this model
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Model MAP MRR
Classifier with features (2013) | 0.5993 | 0.6068
Paragraph Vector (2014) 0.5110 | 0.5160
Bigram-CNN (2014) 0.6190 | 0.6281
3-layer LSTM (2016) 0.6552 | 0.6747
3-layer LSTM attention (2016) | 0.6639 | 0.6828
NASM (2016) 0.6705 | 0.6914
NTI (Ours) 0.6742 | 0.6884

Table 2: Test set performance on answer sentence
selection.

Model Bin FG
RNTN (Socher et al., 2013) 85.4 | 45.7
CNN-MC (Kim, 2014) 88.1 | 474
DRNN (Irsoy and Cardie, 2015) | 86.6 | 49.8
2-layer LSTM (Tai et al., 2015) | 86.3 | 46.0
Bi-LSTM (Tai et al., 2015) 87.5 | 49.1
NTI-SLSTM (Ours) 87.8 | 50.5
CT-LSTM (Tai et al., 2015) 88.0 | 51.0
DMN (Kumar et al., 2016) 88.6 | 52.1
NTI-SLSTM-LSTM (Ours) 89.3 | 53.1

Table 3: Test accuracy for sentence classification.
Bin: binary, FG: fine-grained 5 classes.

be robust on this task. The tree attention were not
helpful as it normalizes the attention scores locally
in parent-child relationship.

4.2 Answer Sentence Selection

For this task, a model is trained to identify the
correct sentences that answer a factual question,
from a set of candidate sentences. We experiment
on WikiQA dataset constructed from Wikipedia
(Yang et al., 2015). The dataset contains
20,360/2,733/6,165 QA pairs for train/dev/test
sets.

We used the same setup in the language infer-
ence task except that we replace the softmax
layer with a sigmoid layer and model the follow-
ing conditional probability distribution.

po(y = 1|h%, %) = sigmoid(0%*) (20)
where Ry, and h? are the question and the answer
encoded vectors and 094 denotes the output of
the hidden layer of the MLP. For this task, we
use NTI-SLSTM-LSTM to encode answer candi-
date sentences and NTI-ANF-LSTM to encode the
question sentences. Note that NTI-ANF-LSTM is
relied on ANF as the non-leaf node function. ¢
vector for NTI-ANF-LSTM is the answer repre-
sentation produced by the answer encoding NTI-
SLSTM-LSTM model. We set the batch size to 4
and the initial learning rate to le-3, and train the
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The phrases shown on the top are nodes from

a person park for fun Santa Claus sad, depressed, and hatred
single person an outdoor concert at the park a snowmobile in a blizzard an Obama supporter is upset

a woman kids playing at a park outside a Skier ski - jumping but doesn’t have any money

a young person | a mom takes a break in a park A skier preparing a trick crying because he didn’t get cake
a guy people play frisbee outdoors a child is playing on christmas | trying his hardest to not fall off

a single human | takes his lunch break in the park | two men play with a snowman | is upset and crying on the ground

Table 4: Nearest-neighbor phrases based on cosine similarity between learned representations.

model for 10 epochs. We used 20% input dropouts
and no [, weight decay. Following previous work,
we adopt MAP and MRR as the evaluation metrics
for this task.’

Table 2 presents the results of our model and
the previous models for the task.® The classifier
with handcrafted features is a SVM model trained
with a set of features. The Bigram-CNN model
is a simple convolutional neural net. The Deep
LSTM and LSTM attention models outperform
the previous best result by a large margin, nearly
5-6%. NASM improves the result further and sets
a strong baseline by combining variational auto-
encoder (Kingma and Welling, 2014) with the soft
attention. In NASM, they adopt a deep three-layer
LSTM and introduced a latent stochastic attention
mechanism over the answer sentence. Our NTI
model exceeds NASM by approximately 0.4% on
MAP for this task.

SWe used trec_eval script to calculate the evaluation met-
rics

%Inclusion of simple word count feature improves the per-
formance by around 0.15-0.3 across the board
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4.3 Sentence Classification

Lastly, we evaluated NTI on the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013). This
dataset comes with standard train/dev/test sets and
two subtasks: binary sentence classification or
fine-grained classification of five classes. We
trained our model on the text spans corresponding
to labeled phrases in the training set and evaluated
the model on the full sentences.

We use NTI-SLSTM and NTI-SLSTM-LSTM
models to learn sentence representations for the
task. The sentence representations were passed
to a two-layer MLP for classification. We set the
batch size to 64, the initial learning rate to le-3
and [ regularizer strength to 3e-5, and train each
model for 10 epochs. The NTI-SLSTM model
was regularized by 10%/20% of input/output and
20%/30% of input/output dropouts and the NTI-
SLSTM-LSTM model 20% of input and 20%/30%
of input/output dropouts for binary and fine-
grained settings.

NTI-SLSTM-LSTM (as shown in Table 5)
set the state-of-the-art results on both subtasks.
Our NTI-SLSTM model performed slightly worse
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A dog mouth holds a retrieved ball.

A cat nurses puppies.

A dog sells a woman a hat.

A brown and white dog holds a tennis
ball in his mouth.

The dog has a ball.

The dogs are chasing a ball.

A small dog runs to catch a ball.
The puppy is chasing a ball.

A golden retriever nurses some other
dogs puppies.

A golden retriever nurses puppies.

A mother dog checking up on her baby
puppy.

A girl is petting her dog.

The hat wearing girl is petting a cat.

The dog is a labrador retriever.

A girl is petting her dog.
The dog is a shitzu.

A husband and wife making pizza.
The dog is a chihuahua.

Table 5: Nearest-neighbor sentences based on cosine similarity between learned representations.

than its constituency tree-based counter part, CT-
LSTM model. The CT-LSTM model composes
phrases according to the output of a sentence
parser and uses a node composition function sim-
ilar to S-LSTM. After we transformed the input
with the LSTM leaf node function, we achieved
the best performance on this task.

5 Qualitative Analysis

5.1 Attention and Compositionality

To help analyzing the results, we output atten-
tion weights by our NTI-SLSTM node-by-node
global attention model. Figure 2 shows the atten-
tion heatmaps for two sentences in the SNLI test
set. It shows that our model semantically aligns
single or multiword expressions ( "little child” and
“toddler”; "rock wall” and ”stone”). In addition,
our model is able to re-orient its attention over dif-
ferent parts of the hypothesis when the expression
is more complex. For example, for (¢) "rock wall
in autumn”, NTI mostly focuses on the nodes in
depth 1, 2 and 3 representing contexts related to "a
stone”, "leaves.” and "a stone wall surrounded” .
Surprisingly, attention degree for the single word
expression like "stone”, "wall” and "leaves” is
lower to compare with multiword phrases. Se-
quence models lack this property as they have no
explicit composition module to produce such mu-

1.0

0.8

o
o

02 ~— NTI-SLSTM

~—— NTI-SLSTM-LSTM

0'00 5 10 15 20 25 30

Padding size

Figure 3: Fine-grained sentiment classification ac-
curacy vs. padding size on test set of SST data.

tiword phrases.

Finally, the most interesting pattern is that the
model attends over higher level (low depth) tree
nodes with rich semantics when considering a (c)
longer phrase or (d) full sentence. As shown in (d),
the NTI model aligns the root node representing
the whole hypothesis sentence to the higher level
tree nodes covering larger sub-trees in the premise.
It certainly ignores the lower level single word ex-
pressions and only starts to attend when the words
are collectively to form rich semantics.

5.2 Learned Representations of Phrases and
Sentences

Using cosine similarity between their represen-
tations produced by the NTI-SLSTM model, we
show that NTI is able to capture paraphrases on
SNLI test data. As shown in Table 4, NTI seems
to distinguish plural from singular forms (similar
phrases to "a person”). In addition, NTI captures
non-surface knowledge. For example, the phrases
similar to "park for fun” tend to align to the se-
mantic content of fun and park, including ”people
play frisbee outdoors”. The NTI model was able
torelate "Santa Claus” to christmas and snow. In-
terestingly, the learned representations were also
able to connect implicit semantics. For example,
NTI found that "sad, depressed, and hatred” is
close to the phrases like “an Obama supporter is
upset”. Overall the NTI model is robust to the
length of the phrases being matched. Given a short
phrase, NTI can retrieve longer yet semantically
coherent sequences from the SNLI test set.

In Table 5, we show nearest-neighbor sentences
from SNLI test set. Note that the sentences listed
in the first two columns sound semantically coher-
ent but not the ones in the last column. The query
sentence "A dog sells a women a hat” does not ac-
tually represent a common-sense knowledge and
this sentence now seem to confuse the NTI model.
As aresult, the retrieved sentence are arbitrary and
not coherent.



5.3 Effects of Padding Size

We introduced a special padding character in or-
der to construct full binary tree. Does this padding
character influence the performance of the NTI
models? In Figure 3, we show relationship be-
tween the padding size and the accuracy on Stan-
ford sentiment analysis data. Each sentence was
padded to form a full binary tree. The x-axis
represents the number of padding characters in-
troduced. When the padding size is less (up to
10), the NTI-SLSTM-LSTM model performs bet-
ter. However, this model tends to perform poorly
or equally when the padding size is large. Over-
all we do not observe any significant performance
drop for both models as the padding size increases.
This suggests that NTI learns to ignore the spe-
cial padding character while processing padded
sentences. The same scenario was also observed
while analyzing attention weights. The attention
over the padded nodes was nearly zero.

6 Discussion and Conclusion

We introduced Neural Tree Indexers, a class of
tree structured recursive neural network. The NTI
models achieved state-of-the-art performance on
different NLP tasks. Most of the NTI models form
deep neural networks and we think this is one rea-
son that NTI works well even if it lacks direct
linguistic motivations followed by other syntactic-
tree-structured recursive models (Socher et al.,
2013).

CNN and NTI are topologically related (Kalch-
brenner and Blunsom, 2013). Both NTT and CNNs
are hierarchical. However, current implementa-
tion of NTT only operates on non-overlapping sub-
trees while CNNs can slide over the input to pro-
duce higher-level representations. NTI is flex-
ible in selecting the node function and the at-
tention mechanism. Like CNN, the computation
in the same tree-depth can be parallelized effec-
tively; and therefore NTI is scalable and suitable
for large-scale sequence processing. Note that
NTI can be seen as a generalization of LSTM. If
we construct left-branching trees in a bottom-up
fashion, the model acts just like sequential LSTM.
Different branching factors for the underlying tree
structure have yet to be explored. NTI can be ex-
tended so it learns to select and compose dynamic
number of nodes for efficiency, essentially discov-
ering intrinsic hierarchical structure in the input.
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Abstract

Neural networks with attention have
proven effective for many natural lan-
guage processing tasks. In this paper, we
develop attention mechanisms for uncer-
tainty detection. In particular, we gen-
eralize standardly used attention mecha-
nisms by introducing external attention
and sequence-preserving attention. These
novel architectures differ from standard
approaches in that they use external re-
sources to compute attention weights and
preserve sequence information. We com-
pare them to other configurations along
different dimensions of attention. Our
novel architectures set the new state of
the art on a Wikipedia benchmark dataset
and perform similar to the state-of-the-art
model on a biomedical benchmark which
uses a large set of linguistic features.

1 Introduction

For many natural language processing (NLP)
tasks, it is essential to distinguish uncertain (non-
factual) from certain (factual) information. Such
tasks include information extraction, question an-
swering, medical information retrieval, opinion
detection, sentiment analysis (Karttunen and Za-
enen, 2005; Vincze, 2014a; Diaz et al., 2016)
and knowledge base population (KBP). In KBP,
we need to distinguish, e.g., “X may be Basque”
and “X was rumored to be Basque” (uncertain)
from “X is Basque” (certain) to decide whether
to add the fact “Basque(X)” to a knowledge base.
In this paper, we use the term uncertain infor-
mation to refer to speculation, opinion, vague-
ness and ambiguity. We focus our experiments
on the uncertainty detection (UD) dataset from
the CoNLL2010 hedge cue detection task (Farkas
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et al., 2010). It consists of two medium-sized
corpora from different domains (Wikipedia and
biomedical) that allow us to run a large number
of comparative experiments with different neural
networks and exhaustively investigate different di-
mensions of attention.

Convolutional and recurrent neural networks
(CNNs and RNNs) perform well on many NLP
tasks (Collobert et al., 2011; Kalchbrenner et al.,
2014; Zeng et al., 2014; Zhang and Wang, 2015).
CNNss are most often used with pooling. More re-
cently, attention mechanisms have been success-
fully integrated into CNNs and RNNs (Bahdanau
et al., 2015; Rush et al., 2015; Hermann et al.,
2015; Rocktaschel et al., 2016; Yang et al., 2016;
He and Golub, 2016; Yin et al., 2016). Both pool-
ing and attention can be thought of as selection
mechanisms that help the network focus on the
most relevant parts of a layer, either an input or
a hidden layer. This is especially beneficial for
long input sequences, e.g., long sentences or en-
tire documents. We apply CNNs and RNNs to un-
certainty detection and compare them to a number
of baselines. We show that attention-based CNNs
and RNNs are effective for uncertainty detection.
On a Wikipedia benchmark, we improve the state
of the art by more than 3.5 Fj points.

Despite the success of attention in prior work,
the design space of related network architectures
has not been fully explored. In this paper, we de-
velop novel ways to calculate attention weights
and integrate them into neural networks. Our
models are motivated by the characteristics of
the uncertainty task, yet they are also a first at-
tempt to systematize the design space of atten-
tion. In this paper, we begin with investigat-
ing three dimensions of this space: weighted
vs. unweighted selection, sequence-agnostic vs.
sequence-preserving selection, and internal vs. ex-
ternal attention.
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Figure 1: Internal attention on (1) input and (2) hidden representation. External attention on (3) input
and (4) hidden representation. For the whole network structure, see Figure 3.

Weighted vs. Unweighted Selection. Pooling
is unweighted selection: it outputs the selected
values as is. In contrast, attention can be thought
of as weighted selection: some input elements are
highly weighted, others receive weights close to
zero and are thereby effectively not selected. The
advantage of weighted selection is that the model
learns to decide based on the input how many val-
ues it should select. Pooling either selects all val-
ues (average pooling) or k values (k-max pooling).
If there are more than k uncertainty cues in a sen-
tence, pooling is not able to focus on all of them.

Sequence-agnostic vs. Sequence-preserving
Selection. K-max pooling (Kalchbrenner et al.,
2014) is sequence-preserving: it takes a long se-
quence as input and outputs a subsequence whose
members are in the same order as in the original
sequence. In contrast, attention is generally imple-
mented as a weighted average of the input vectors.
That means that all ordering information is lost
and cannot be recovered by the next layer. As an
alternative, we present and evaluate new sequence-
preserving ways of attention. For uncertainty de-
tection, this might help distinguishing phrases like
“it is not uncertain that X is Basque” and “it is un-
certain that X is not Basque”.

Internal vs. External Attention. Prior work
calculates attention weights based on the input or
hidden layers of the neural network. We call this
internal attention. For uncertainty detection, it can
be beneficial to give the model a lexicon of seed
cue words or phrases. Thus, we provide the net-
work with additional information to bear on iden-
tifying and summarizing features. This can sim-
plify the training process by guiding the model to
recognizing uncertainty cues. We call this external
attention and show that it improves performance
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for uncertainty detection.

Previous work on attention and pooling has only
considered a small number of the possible configu-
rations along those dimensions of attention. How-
ever, the internal/external and un/weighted distinc-
tions can potentially impact performance because
external resources add information that can be crit-
ical for good performance and because weighting
increases the flexibility and expressivity of neural
network models. Also, word order is often critical
for meaning and is therefore an important feature
in NLP. Although our models are motivated by the
characteristics of uncertainty detection, they could
be useful for other NLP tasks as well.

Our main contributions are as follows. (i) We
extend the design space of selection mechanisms
for neural networks and conduct an extensive
set of experiments testing various configurations
along several dimensions of that space, including
novel sequence-preserving and external attention
mechanisms. (ii) To our knowledge, we are the
first to apply convolutional and recurrent neural
networks to uncertainty detection. We demon-
strate the effectiveness of the proposed attention
architectures for this task and set the new state of
the art on a Wikipedia benchmark dataset. (iii) We
publicly release our code for future research.!

2 Models

Convolutional Neural Networks. CNNs have
been successful for many NLP tasks since convo-
Iution and pooling can detect key features inde-
pendent of their position in the sentence. More-
over, they can take advantage of word embeddings
and their characteristics. Both properties are also

"http://cistern.cis.lmu.de



essential for uncertainty detection since we need
to detect cue phrases that can occur anywhere in
the sentence; and since some notion of similarity
improves performance if a cue phrase in the test
data did not occur in the training data, but is simi-
lar to one that did. The CNN we use in this paper
has one convolutional layer, 3-max pooling (see
Kalchbrenner et al. (2014)), a fully connected hid-
den layer and a logistic output unit.

Recurrent Neural Networks. Different types
of RNNs have been applied widely to NLP tasks,
including language modeling (Bengio et al., 2000;
Mikolov et al., 2010), machine translation (Cho et
al., 2014; Bahdanau et al., 2015), relation classi-
fication (Zhang and Wang, 2015) and entailment
(Rocktischel et al., 2016). In this paper, we apply
a bi-directional gated RNN (GRU) with gradient
clipping and a logistic output unit. Chung et al.
(2014) showed that GRUs and LSTMs have sim-
ilar performance, but GRUs are more efficient in
training. The hidden layer h of the GRU is param-
eterized by two matrices W and U and four addi-
tional matrices W,., U, and W, U, for the reset
gate r and the update gate z (Cho et al., 2014):

r=oc(Wyz +Uhi™t) (1)
z=c(W,x +Uh™ ) (2)
R=zoht+(1-2)0h (3)
bt =o(Wz+U(r© ht™1)) (4)

t is the index for the current time step, ® is
element-wise multiplication and o is the sigmoid.

3 Attention

3.1 Architecture of the Attention Layer

We first define an attention layer a for input x:

exp(f(7))

P = e 5
NS () ©)
a; = 04T (6)

where f is a scoring function, the «; are the atten-
tion weights and each input z; is reweighted by its
corresponding attention weight a;.
The most basic definition of f is as a linear scor-
ing function on the input x:
flai) =W (7)

W are parameters that are learned in training.
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Figure 2: Schemes of focus and source: left: in-
ternal attention, right: external attention

3.2 Focus and Source of Attention

In this paper, we distinguish between focus and
source of attention.

The focus of attention is the layer of the net-
work that is reweighted by attention weights, cor-
responding to x in Eq. 6. We consider two op-
tions for the application in uncertainty detection
as shown in Figure 1: (i) the focus is on the in-
put, i.e., the matrix of word vectors ((1) and (3))
and (ii) the focus is on the convolutional layer of
the CNN or the hidden layers of the RNN ((2) and
(4)). For focus on the input, we apply tanh to the
word vectors (see part (1) of figure) to improve re-
sults.

The source of attention is the information
source that is used to compute the attention
weights, corresponding to the input of f in Eq. 5.

Eq. 7 formalizes the case in which focus and
source are identical (both are based only on x). We
call this internal attention (see left part of Fig-
ure 2). An attention layer is called internal if both
focus and source are based only on information
internally available to the network (through input
or hidden layers).”

If we conceptualize attention in terms of source
and focus, then a question that arises is whether
we can make it more powerful by increasing the
scope of the source beyond the input.

In this paper, we propose a way of expanding
the source of attention by making an external re-
source C available to the scoring function f:

f@i) = f' (i, 0) ®)

We call this external attention (see right part of

Figure 2). An attention layer is called external if
its source includes an external resource.

The specific external-attention scoring function

we use for uncertainty detection is parametrized
by Ui, Uy and V' and defined as follows:

f(a;z) = Z vT. tanh(U1 ~x; +Us - Cj) 9
J

’Gates, e.g., the weighting of h*~! in Eq. 4, can also be
viewed as internal attention mechanisms.



where c¢; is a vector representing a cue phrase j of
the training set. We compute c; as the average of
the embeddings of the constituent words of j.

This attention layer scores an input word x; by
comparing it with each cue vector ¢; and summing
the results. The comparison is done using a fully
connected hidden layer. Its weights Uy, U and V'
are learned during training. When using this scor-
ing function in Eq. 5, each «; is an assessment of
how important x; is for uncertainty detection, tak-
ing into account our knowledge about cue phrases.
Since we use embeddings to represent words and
cues, uncertainty-indicating phrases that did not
occur in training, but are similar to training cue
phrases can also be recognized.

We use this novel attention mechanism for un-
certainty detection, but it is also applicable to other
tasks and domains as long as there is a set of vec-
tors available that is analogous to our c; vectors,
i.e., vectors that model relevance of embeddings
to the task at hand (for an outlook, see Section 6).

3.3 Sequence-agnostic vs.
Sequence-preserving Selection

So far, we have explained the basic architecture
of an attention layer: computing attention weights
and reweighting the input. We now turn to the
integration of the attention layer into the overall
network architecture, i.e., how it is connected to
downstream components.

The most frequently used downstream connec-
tion of the attention layer is to take the average:

a:Zai (10)

We call this the average, not the sum, because the
«; are normalized to sum to 1 and the standard
term for this is “weighted average”.

A variant is the k-max average:

a = E CLj

R(oj)<k

where R(c;) is the rank of ¢ in the list of activa-
tion weights «; in descending order. This type of
averaging is more similar to k-max pooling and
may be more robust because elements with low
weights (which may just be noise) will be ignored.

Averaging destroys order information that
may be needed for NLP sequence classification
tasks. Therefore, we also investigate a sequence-
preserving method, k-max sequence:

a = [aj|R(ay) < k] (1)
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Figure 3: Network overview: combination of at-
tention and CNN/RNN output. For details on at-
tention, see Figure 1.

where [a;|P(a;)] denotes the subsequence of se-
quence A = [aq, ..., a | from which members not
satisfying predicate P have been removed. Note
that sequence a is in the original order of the in-
put, i.e., not sorted by value.

K-max sequence selects a subsequence of in-
put vectors. Our last integration method is k-max
pooling. It ranks each dimension of the vectors in-
dividually, thus the resulting values can stem from
different input positions. This is the same as stan-
dard k-max pooling in CNNs except that each vec-
tor element in a; has been weighted (by its atten-
tion weight «;), whereas in standard k-max pool-
ing it is considered as is. Below, we also refer to k-
max sequence as “per-pos” and to k-max pooling
as “per-dim” to clearly distinguish it from k-max
pooling done by the CNN.

Combination with CNN and RNN Output.
Another question is whether we combine the atten-
tion result with the result of the convolutional or
recurrent layer of the network. Since k-max pool-
ing (CNN) and recurrent hidden layers with gates
(RNN) have strengths complementary to attention,
we experiment with concatenating the attention in-
formation to the neural sentence representations.
The final hidden layer then has this form:

h = tanh(Wya + War + b)

with r being either the CNN pooling result or the
last hidden state of the RNN (see Figure 3).

4 Experimental Setup and Results
4.1 Task and Setup

We evaluate on the two corpora of the
CoNLL2010 hedge cue detection task (Farkas



| Model | wiki | bio
(1) | Baseline SVM | 62.01x | 78.64%
(2) | Baseline RNN | 59.82x | 84.69
(3) | Baseline CNN | 64.94 84.23

Table 1: Fj results for UD. Baseline models with-
out attention. * indicates significantly worse than
best model (in bold).*

Model wiki bio

(2) | Baseline RNN 59.82% | 84.69

(4) | RNN attention-only | 62.02% | 85.32

(5) | RNN combined 58.96x | 84.88

(3) | Baseline CNN 64.94% | 84.23

(6) | CNN attention-only | 53.44% | 82.85

(7) | CNN combined 66.49 84.69
Table 2: F; results for UD. Attention-only
vs. combined architectures. Sequence-agnostic

weighted average for attention. x indicates signif-
icantly worse than best model (bold).

et al., 2010): Wikipedia (11,111 sentences in
train, 9634 in test) and Biomedical (14,541 train,
5003 test). It is a binary sentence classification
task. For each sentence, the model has to decide
whether it contains uncertain information.

For hyperparameter tuning, we split the training
set into core-train (80%) and dev (20%) sets; see
appendix for hyperparameter values. We use 400
dimensional word2vec (Mikolov et al., 2013) em-
beddings, pretrained on Wikipedia, with a special
embedding for unknown words.

For evaluation, we apply the official shared task
measure: F; of the uncertain class.

4.2 Baselines without Attention

Our baselines are a support vector machine (SVM)
and two standard neural networks without atten-
tion, an RNN and a CNN. The SVM is a reimple-
mentation of the top ranked system on Wikipedia
in the CoNLL-2010 shared task (Georgescul,
2010), with parameters set to Georgescul (2010)’s
values; it uses bag-of-word (BOW) vectors that
only include hedge cues. Our reimplementation
is slightly better than the published result: 62.01
vs. 60.20 on wiki, 78.64 vs. 78.50 on bio.

The results of the baselines are given in Table 1.
The CNN (line 3) outperforms the SVM (line 1) on
both datasets, presumably because it considers all
words in the sentence — instead of only predefined
hedge cues — and makes effective use of this ad-
ditional information. The RNN (line 2) performs
better than the SVM and CNN on biomedical data,

*randomization test with p<.05.
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but worse on Wikipedia. In Section 5.2, we inves-
tigate possible reasons for that.

4.3 Experiments with Attention Mechanisms

For the first experiments of this subsection, we use
the sequence-agnostic weighted average for atten-
tion (see Eq. 10), the standard in prior work.

Attention-only vs. Combined Architecture.
For the case of internal attention, we first remove
the final pre-output layer of the standard RNN
and the standard CNN to evaluate attention-only
architectures. This architecture works well for
RNNs but not for CNNs. The CNNs achieve bet-
ter results when the pooling output (unweighted
selection) is combined with the attention output
(weighted selection). See Table 2 for F} scores.

The baseline RNN has the difficult task of re-
membering the entire sentence over long distances
— the attention mechanism makes this task much
easier. In contrast, the baseline CNN already has
an effective mechanism for focusing on the key
parts of the sentence: k-max pooling. Replacing
k-max pooling with attention decreases the perfor-
mance in this setup.

Since our main goal is to explore the benefits of
adding attention to existing architectures (as op-
posed to developing attention-only architectures),
we keep the standard pre-output layer of RNNs
and CNNss in the remaining experiments and com-
bine it with the attention layer as in Figure 3.

Focus and Source of Attention. We distin-
guish different focuses and sources of attention.
For focus, we investigate two possibilities: the in-
put to the network, i.e., word embeddings (F=W);
or the hidden representations of the RNN or CNN
(F=H). For source, we compare internal (S=I) and
external attention (S=E). This gives rise to four
configurations: (i) internal attention with focus
on the first layer of the standard RNN/CNN (S=I,
F=H), see lines (5) and (7) in Table 2, (ii) internal
attention with focus on the input (S=I, F=W), (iii)
external attention on the first layer of RNN/CNN
(S=E, F=H) and (iv) external attention on the input
(S=E, F=W). The results are provided in Table 3.

For both RNN (8) and CNN (13), the best result
is obtained by focusing attention directly on the
word embeddings.’ These results suggest that it is
best to optimize the attention mechanism directly
on the input, so that information can be extracted

5The small difference between the RNN results on bio on
lines (5) and (8) is not significant.



Model S| F wiki bio
2) Baseline RNN -] - 59.82% | 84.69
) RNN combined | I | H | 58.96x | 84.88
®) RNN combined | I | W | 62.18x | 84.81
) RNN combined | E | H | 61.19x | 84.62
(10) | RNN combined | E | W | 61.87x | 84.41
3) Baseline CNN - - 64.94% | 84.23%
@) CNN combined | I | H | 66.49 84.69
(11) | CNN combined | I | W | 65.13x | 84.99
(12) | CNN combined | E | H | 64.14x | 84.73
(13) | CNN combined | E | W | 67.08 85.57

Table 3: Fj results for UD. Focus (F) and source
(S) of attention: Internal (I) vs external (E) at-
tention; attention on word embeddings (W) vs.
on hidden layers (H). Sequence-agnostic weighted
average for attention. « indicates significantly
worse than best model (bold).

that is complementary to the information extracted
by a standard RNN/CNN.

For focus on input (F=W), external attention
(13) is significantly better than internal attention
(11) for CNNs. Thus, by designing an architec-
tural element — external attention — that makes it
easier to identify hedge cue properties of words,
the learning problem is apparently made easier.

For the RNN and F=W, external attention (10)
is not better than internal attention (8): results are
roughly tied for bio and wiki. Perhaps the combi-
nation of the external resource and the more indi-
rect representation of the entire sentence produced
by the RNN is difficult. In contrast, hedge cue pat-
terns identified by convolutional filters of the CNN
can be evaluated well based on external attention;
e.g., if there is strong external-attention evidence
for uncertainty, then the effect of a hedge cue pat-
tern (hypothesized by a convolutional filter) on the
final decision can be boosted.

In summary, the CNN with external attention
achieves the best results overall. It is significantly
better than the standard CNN that uses only pool-
ing, both on Wikipedia and biomedical texts. This
demonstrates that the CNN can make effective use
of external information — a lexicon of uncertainty
cues in our case.

Sequence-agnostic vs. Sequence-preserving.
Commonly used attention mechanisms simply av-
erage the vectors in the focus of attention. This
means that sequential information is not pre-
served. We use the term sequence-agnostic for
this. In contrast, we propose to investigate
sequence-preserving attention as presented in Sec-
tion 3.3. We expect this to be important for many
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average k-max sequence

‘ all k-max | per-dim  per-pos
Wiki | 67.08 67.52 66.73 66.50
Bio | 85.57 84.36 ‘ 84.05 84.03

Table 4: Fj results for UD. Model: CNN, S=E,
F=W (13). Sequence-agnostic vs. sequence-
preserving attention.

NLP tasks. Sequence-preserving attention is simi-
lar to k-max pooling which also selects an ordered
subset of inputs. While traditional k-max pooling
is unweighted, our sequence-preserving ways of
attention still make use of the attention weights.

Table 4 compares k-max pooling, attention and
two “hybrid” designs, as described in Section 3.3.
We run these experiments only on the CNN with
external attention focused on word embeddings
(Table 3, line 13), the best performing configura-
tion in the previous experiments.

First, we investigate what happens if we “dis-
cretize” attention and only consider the values
with the top k attention weights. This increases
performance on wiki (from 67.08 to 67.52) and
decreases it on bio (from 85.57 to 84.36). We
would not expect large differences since attention
values tend to be peaked, so for common val-
ues of k (k > 3 in most prior work on k-max
pooling) we are effectively comparing two sim-
ilar weighted averages, one in which most sum-
mands get a weight of 0 (k-max average) and one
in which most summands get weights close to 0
(average over all, i.e., standard attention).

Next, we compare sequence-agnostic with
sequence-preserving attention. As described in
Section 3.3, two variants are considered. In k-max
pooling, we select the k largest weighted values
per dimension (per-dim in Table 4). In contrast,
k-max sequence (per-pos) selects all values of the
k positions with the highest attention weights.

In Table 4, the sequence-preserving architec-
tures are slightly worse than standard attention
(i.e., sequence-agnostic averaging), but not signif-
icantly: performance is different by about half a
point. This shows that k-max sequence and atten-
tion can similarly be used to select a subset of the
information available, a parallel that has not been
highlighted and investigated in detail before.

Although in this case, sequence-agnostic at-
tention is better than sequence-preserving atten-
tion, we would not expect this to be true for all
tasks. Our motivation for introducing sequence-



Model wiki bio

SVM (Georgescul, 2010) 62.01 | 78.64
HMM (Li et al., 2014) 63.97 | 80.15
CRF + ling (Tang et al., 2010) 55.05 | 86.79
Our CNN with external attention | 67.52 | 85.57

Table 5: Comparison of our best model with the
state of the art

preserving attention was that the semantic mean-
ing of a sentence can vary depending on where an
uncertainty cue occurs. However, the core of un-
certainty detection is keyword and keyphrase de-
tection; so, the overall sentence structure might
be less important for this task. For tasks with a
stronger natural language understanding compo-
nent, such as summarization or relation extrac-
tion, on the other hand, we expect sequences of
weighted vectors to outperform averaged vectors.
In Section 6, we show that sequence-preserving
attention indeed improves results on a sentiment
analysis dataset.

4.4 Comparison to State of the Art

Table 5 compares our models with the state of
the art on the uncertainty detection benchmark
datasets. On Wikipedia, our CNN outperforms
the state of the art by more than three points. On
bio, the best model uses a large number of man-
ually designed features and an exhaustive corpus
preprocessing (Tang et al., 2010). Our models
achieve comparable results without preprocessing
or feature engineering.

S5 Analysis

5.1 Analysis of Attention

In an analysis of examples for which pooling alone
(i.e., the standard CNN) fails, but attention cor-
rectly detects an uncertainty, two patterns emerge.

In the first pattern, we find that there are many
cues that have more words than the filter size
(which was 3 in our experiments), e.g., “it is
widely expected”, “it has also been suggested”.
The convolutional layer of the CNN is not able to
detect phrases longer than the filter size while for
attention there is no such restriction.

The second pattern consists of cues spread over
the whole sentence, e.g., “Observations of the
photosphere of 47 Ursae Majoris suggested that
the periodicity could not be explained by stel-
lar activity, making the planet interpretation more
likely” where we have set the uncertainty cues
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Figure 4: Attention weight heat map
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Figure 5: Pooling vs. internal vs. ext. attention

that are distributed throughout the sentence in ital-
ics. Figure 4 shows the distribution of external
attention weights computed by the CNN for this
sentence. The CNN pays the most attention to
the three words/phrases “suggested”, “not” and
“more likely” that correspond almost perfectly to
the true uncertainty cues. K-max pooling of stan-
dard CNNs, on the other hand, can only select the
k maximum values per dimension, i.e., it can pick
at most k uncertainty cues per dimension.

Pooling vs. Internal vs. External Attention.
Finally, we compare the information that pool-
ing, internal and external attention extract. For
pooling, we calculate the relative frequency that
a value from an n-gram centered around a specific
word is picked. For internal and external attention,
we directly plot the attention weights «;. Figure 5
shows the results of the three mechanisms for an
exemplary sentence. For a sample of randomly
selected sentences, we observed similar patterns:
Pooling forwards information from different parts
all over the sentence. It has minor peaks at rele-
vant n-grams (e.g. “was sometimes known as” or
“so might represent”) but also at non-relevant parts
(e.g. “Alternatively” or “the same island”). There
is no clear focus on uncertainty cues. Internal at-
tention is more focused on the relevant words. Ex-
ternal attention finally has the clearest focus. (See
appendix for more examples.)

5.2 Analysis of CNN vs RNN

While the results of the CNN and the RNN are
comparable on bio, the CNN clearly outperforms
the RNN on wiki. The datasets vary in several
aspects, such as average sentence lengths (wiki:
21, bio: 27)°, size of vocabularies (wiki: 45.1k,

®number of tokens per sentence after tokenization with
Stanford tokenizer (Manning et al., 2014).
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Figure 6: F} results for different sentence lengths

bio: 25.3k), average number of out-of-vocabulary
(OOV) words per sentence w.r.t. our word embed-
dings (wiki: 4.5, bio: 6.5), etc. All of those fea-
tures can influence model performance, especially
because of the different way of sentence process-
ing: While the RNN merges all information into a
single vector, the CNN extracts the most important
phrases and ignores all the rest. In the following,
we analyze the behavior of the two models w.r.t.
sentence length and number of OOVs.

Figure 6 shows the F scores on Wikipedia of
the CNN and the RNN with external attention for
different sentence lengths. The lengths have been
accumulated, i.e., index 0 on the x-axis includes
the scores for all sentences of length [ € [0, 10).
Most sentences have lengths [ < 50. In this range,
the CNN performs better than the RNN but the dif-
ference is small. For longer sentences, however,
the CNN clearly outperforms the RNN. This could
be one reason for the better overall performance.

A similar plot for F scores depending on the
number of OOV per sentence does not give addi-
tional insights into the model behaviors: The CNN
performs better than the RNN independent of the
number of OOVs (Figure in appendix).

Another important difference between CNN
and RNN is the distribution of precision and re-
call. While on bio, precision and recall are almost
equal for both models, the values vary on wiki:

P R
CNN 52.5 | 85.1
CNN + external attention | 58.6 | 78.3
RNN 75.2 | 49.6
RNN + external attention | 76.3 | 52.0

Those values suggest that the RNN predicts uncer-
tainty more reluctantly than the CNN.

6 Outlook: Different Task

To investigate whether our attention methods are
also applicable to other tasks, we evaluate them
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Model | S | F | testset
Baseline CNN - - 84.84
CNN attention-only | I | H | 83.56
CNN combined I H 85.22
CNN combined I | W 86.11
CNN combined E | H | 86.06
CNN combined E | W | 86.89

Table 6: Accuracy on SST-2, different focus and
source of attention.
average k-max sequence

all | k-max | per-dim | per-pos
86.89 | 8639 | 87.00 | 87.22

Table 7: Accuracy on SST-2, sequence-agnostic
VS. sequence-preserving attention.

on the 2-class Stanford Sentiment Treebank (SST-
2) dataset’ (Socher et al., 2013). For a baseline
model, we train a CNN similar to our uncertainty
CNN but with convolutional filters of different
widths, as proposed in (Kim, 2014), and extend
it with our attention layer. As cues for external at-
tention, we use the most frequent positive phrases
from the train set. Our model is much simpler
than the state-of-the-art models for SST-2 but still
achieves reasonable results.?

The results in Table 6 show the same trends
as the CNN results in Table 3, suggesting that
our methods are applicable to other tasks as
well. Table 7 shows that the benefit of sequence-
preserving attention is indeed task dependent. For
sentiment analysis on SST-2, sequence-preserving
methods outperform the sequence-agnostic ones.

7 Related Work

Uncertainty Detection. Uncertainty has been ex-
tensively studied in linguistics and NLP (Kiparsky
and Kiparsky, 1970; Karttunen, 1973; Karttunen
and Zaenen, 2005), including modality (Sauri and
Pustejovsky, 2012; De Marneffe et al.,, 2012;
Szarvas et al., 2012) and negation (Velldal et al.,
2012; Baker et al., 2012). Szarvas et al. (2012),
Vincze (2014b) and Zhou et al. (2015) con-
ducted cross domain experiments. Domains stud-
ied include news (Sauri and Pustejovsky, 2009),
biomedicine (Vincze et al., 2008), Wikipedia
(Ganter and Strube, 2009) and social media (Wei
etal., 2013). Corpora such as FactBank (Sauri and
Pustejovsky, 2009) are annotated in detail with re-
spect to perspective, level of factuality and polar-

"http://nlp.stanford.edu/sentiment
8The state-of-the-art accuracy is about 89.5 (Zhou et al.,
2016; Yin and Schiitze, 2015).



ity. De Marneffe et al. (2012) conducted uncer-
tainty detection experiments on a version of Fact-
Bank extended by crowd sourcing. In this work,
we use CoNLL 2010 shared task data (Farkas et
al., 2010) since CoNLL provides larger train/test
sets and the CoNLL annotation consists of only
two labels (certain/uncertain) instead of various
perspectives and degrees of uncertainty. When us-
ing uncertainty detection for information extrac-
tion tasks like KB population (Section 1), it is a
reasonable first step to consider only two labels.

CNNs. Several studies showed that CNNs can
handle diverse sentence classification tasks, in-
cluding sentiment analysis (Kalchbrenner et al.,
2014; Kim, 2014), relation classification (Zeng et
al., 2014; dos Santos et al., 2015) and paraphrase
detection (Yin et al., 2016). To our knowledge, we
are the first to apply them to uncertainty detection.

RNNs. RNNs have mainly been used for se-
quence labeling or language modeling tasks with
one output after each input token (Bengio et al.,
2000; Mikolov et al., 2010). Recently, it has been
shown that they are also capable of encoding and
restoring relevant information from a whole input
sequence. This makes them applicable to machine
translation (Cho et al., 2014; Bahdanau et al.,
2015) and sentence classification tasks (Zhang and
Wang, 2015; Hermann et al., 2015; Rocktidschel et
al., 2016). In this study, we apply them to UD for
the first time and compare their results with CNNs.

Attention has been mainly used for recurrent
neural networks (Bahdanau et al., 2015; Rush et
al., 2015; Hermann et al., 2015; Rocktischel et
al., 2016; Peng et al., 2015; Yang et al., 2016). We
integrate attention into CNNs and show that this
is beneficial for uncertainty detection. Few stud-
ies in vision integrated attention into CNNs (Stol-
lenga et al., 2014; Xiao et al., 2015; Chen et al.,
2015) but this has not been used often in NLP so
far. Exceptions are Meng et al. (2015), Wang et al.
(2016) and Yin et al. (2016). Meng et al. (2015)
used several layers of local and global attention
in a complex machine translation model with a
large number of parameters. Our reimplementa-
tion of their network performed poorly for uncer-
tainty detection (51.51/66.57 on wiki/bio); we sus-
pect that the reason is that Meng et al. (2015)’s
training set was an order of magnitude larger than
ours. Our approach makes effective use of a much
smaller training set. Yin et al. (2016) compared
attention based input representations and attention
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based pooling. Instead, our goal is to keep the con-
volutional and pooling layers unchanged and com-
bine their strengths with attention. Allamanis et al.
(2016) applied a convolutional layer to compute
attention weights. In this work, we concentrate on
the commonly used feed forward layers for that.
Comparing them to other options, such as convo-
lution, is an interesting direction for future work.
Attention in the literature computes a weighted
average with internal attention weights. In con-
trast, we investigate different strategies to incor-
porate attention information into a neural network.
Also, we propose external attention. The un-
derlying intuition is similar to attention for ma-
chine translation, which learns alignments be-
tween source and target sentences, or attention
in question answering, which computes attention
weights based on a question and a fact. However,
these sources for attention are still internal infor-
mation of the network (the input or previous out-
put predictions). Instead, we learn weights based
on an external source — a lexicon of cue phrases.

8 Conclusion

In this paper, we presented novel attention archi-
tectures for uncertainty detection: external atten-
tion and sequence-preserving attention. We con-
ducted an extensive set of experiments with var-
ious configurations along different dimensions of
attention, including different focuses and sources
of attention and sequence-agnostic vs. sequence-
preserving attention. For our experiments, we
used two benchmark datasets for uncertainty de-
tection and applied recurrent and convolutional
neural networks to this task for the first time. Our
CNNss with external attention improved state of the
art by more than 3.5 F} points on a Wikipedia
benchmark. Finally, we showed in an outlook
that our architectures are applicable to sentiment
classification as well. Investigations of other se-
quence classification tasks are future work. We
made our code publicly available for future re-
search (http://cistern.cis.lmu.de).
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A Supplementary Material

A.1 Parameter Tuning

All parameters and learning rate schedule deci-
sions are based on results on the development set
(20% of the official training set). After tuning
the hyperparameters (see Tables 8 and 9), the net-
works are re-trained on the whole training set.

We trained the CNNs with stochastic gradient
descent and a fixed learning rate of 0.03. For the
RNNs, we used Adagrad (Duchi et al., 2011) with
an initial learning rate of 0.1. For all models, we
used mini-batches of size 10 and applied L2 regu-
larization with a weight of 1e-5. To determine the
number of training epochs, we looked for epochs
with peak performances on the development set.

Model || #conv | filter | # hidden # att
filters | width units hidden
units
= 3) 200 3 200 -
T (6 100 3 500 -
) 200 3 200 .
Z an 200 3 200 .
(12) 200 3 200 200
(13) 100 3 200 200
o 3) 200 3 500 -
E (6) 100 3 200 -
z 100 3 500 -
g (a1 200 3 200 -
(12) 200 3 500 100
(13) 200 3 50 100

Table 8: Result of parameter tuning for CNN (“att
hidden units” is the number of units in the hidden
layer of the attention component); Model numbers
refer to numbers in the main paper

Model # rnn # hidden # att
hidden units hidden

units units
= 2) 10 100 -
g @ 10 100 -
z (5 10 200 -
5 ®) 10 100 -

9 30 200 200

(10) 10 200 100
R 2) 10 500 -
3 @ 10 500 -
Z (5 10 50 -
Z @®) 10 50 -

9) 30 100 200

(10) 10 50 200

Table 9: Result of parameter tuning for RNN

A.2 Additional Examples: Attention Weights

Figure 7 and Figure 8 compare pooling, inter-
nal attention and external attention for randomly
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Figure 8: Pooling vs. internal attention vs. external
attention

picked examples from the test set. Again, pool-
ing extracts values from all over the sentence
while internal and external attention learn to fo-
cus on words which can indicate uncertainty (e.g.
“thought” or “probably”).

A.3 Additional Figure for Analysis: Results
Depending on Number of OOVs

Figure 9 plots the F scores of the CNN and RNN
with external attention w.r.t. the number of out-
of-vocabulary (OOV) words in the sentences. The
number of OOVs have been accumulated, i.e., in-
dex 0 on the x-axis includes the score for all sen-
tences with a number of OOVs in [0,10), etc.
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RNN —

0.8 -
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Figure 9: Fj results for different numbers of
OOVs in sentence
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Abstract

The freedom of the Deep Web offers a
safe place where people can express them-
selves anonymously but they also can
conduct illegal activities. In this pa-
per, we present and make publicly avail-
able! a new dataset for Darknet active do-
mains, which we call it "Darknet Usage
Text Addresses” (DUTA). We built DUTA
by sampling the Tor network during two
months and manually labeled each ad-
dress into 26 classes. Using DUTA,
we conducted a comparison between two
well-known text representation techniques
crossed by three different supervised clas-
sifiers to categorize the Tor hidden ser-
vices. We also fixed the pipeline ele-
ments and identified the aspects that have
a critical influence on the classification re-
sults. We found that the combination of
TF-IDF words representation with Logis-
tic Regression classifier achieves 96.6%
of 10 folds cross-validation accuracy and
a macro F1 score of 93.7% when clas-
sifying a subset of illegal activities from
DUTA. The good performance of the clas-
sifier might support potential tools to help
the authorities in the detection of these ac-
tivities.

1 Introduction

If we think about the web as an ocean of data, the
Surface Web is no more than the slight waves that
float on the top. While in the depth, there is a lot
of sunken information that is not reached by the
traditional search engines. The web can be divided
into Surface Web and Deep Web. The Surface Web
is the portion of the web that can be crawled and

!The dataset is available upon request to the first author
(email).
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indexed by the standard search engines, such as
Google or Bing. However, despite their existence,
there is still an enormous part of the web remained
without indexing due to its vast size and the lack
of hyperlinks, i.e. not referenced by the other web
pages. This part, that can not be found using a
search engine, is known as Deep Web (Noor et
al., 2011; Boswell, 2016). Additionally, the con-
tent might be locked and requires human interac-
tion to access e.g. to solve a CAPTCHA or to en-
ter a log-in credential to access. This type of web
pages is referred to as ’database-driven” websites.
Moreover, the traditional search engines do not ex-
amine the underneath layers of the web, and con-
sequently, do not reach the Deep Web. The Dark-
net, which is also known as Dark Web, is a subset
of the Deep Web. It is not only not indexed and
isolated, but also requires a specific software or
a dedicated proxy server to access it. The Dark-
net works over a virtual sub-network of the World
Wide Web (WWW) that provides an additional
layer of anonymity for the network users. The
most popular ones are The Onion Router”? also
known as Tor network, ~’Invisible Internet Project”
I2P3, and Freenet*. The community of Tor refers
to Darknet websites as “Hidden Services” (HS)
which can be accessed via a special browser called
Tor Browser”.

A study by Bergman et al. (2001) has stated as-
tonishing statistics about the Deep Web. For ex-
ample, only on Deep Web there are more than 550
billion individual documents comparing to only 1
billion on Surface Web. Furthermore, in the study
of Rudesill et al. (2015) they emphasized on the
immensity of the Deep Web which was estimated
to be 400 to 500 times wider than the Surface Web.

The concepts of Darknet and Deep Net have ex-

www.torproject.org
www.geti2p.net
www.freenetproject.org
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isted since the establishment of World Wide Web
(WWW), but what make it very popular in the re-
cent years is when the FBI had arrested Dread Pi-
rate Roberts, the owner of Silk Road black mar-
ket, in October 2013. The FBI has estimated the
sales on Silk Road to be 1.2 Billion dollars by
July 2013. The trading network covered among
150,000 anonymous customers and approximately
4,000 vendors (Rudesill et al., 2015). The cryp-
tocurrency (Nakamoto, 2008) is a hot topic in the
field of Darknet since it anonymizes the financial
transactions and hides the trading parties identi-
ties (Ron and Shamir, 2014).

The Darknet is often associated with illegal
activities. In a study carried out by Intelliagg
group (2015) over 1K samples of hidden services,
they claimed that 68% of Darknet contents would
be illegal. Moore et at. (2016) showed, after an-
alyzing 5K onion domains, that the most com-
mon usages for Tor HS are criminal and illegal
activities, such as drugs, weapons and all kind of
pornography.

It is worth to mention about dramatic increase in
the proliferation of Darknet domains which dou-
bled their size from 30K to 60K between Au-
gust 2015 and 2016 (Figure 1). However, the
publicly reachable domains are no more than 6K
to 7K due to the ambiguity nature of the Dark-
net (Ciancaglini et al., 2016).

Unigue .onion addresses

Aug-2015 Nov-2015 Feb-2016 May-2016 Aug-2018

The Tor Project - https:/fmetrics.torproject.org/

Figure 1: The number of unique *.onion addresses
in Tor network between August 2015 to August
2016

Motivated by the critical buried contents on the
Darknet and its high abuse, we focused our re-
search in designing and building a system that
classifies the illegitimate practices on Darknet. In
this paper, we present the first publicly available
dataset called "Darknet Usage Text Addresses”
(DUTA) that is extracted from the Tor HS Darknet.
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DUTA contains 26 categories that cover all the le-
gal and the illegal activities monitored on Darknet
during our sampling period. Our objective is to
create a precise categorization of the Darknet via
classifying the textual content of the HS. In order
to achieve our target, we designed and compared
different combinations of some of the most well-
known text classification techniques by identify-
ing the key stages that have a high influence on the
method performance. We set a baseline method-
ology by fixing the elements of text classification
pipeline which allows the scientific community to
compare their future research with this baseline
under the defined pipeline. The fixed methodology
we propose might represent a significant contribu-
tion into a tool for the authorities who monitor the
Darknet abuse.

The rest of the paper is organized as follows:
Section 2 presents the related work. Next, Sec-
tion 3 explains the proposed dataset DUTA and its
characteristics. After that, Section 4 describes the
set of the designed classification pipelines. Then,
in Section 5 we discuss the experiments performed
and the results. In Section 6 we describe the
technical implementation details and how we em-
ployed the successful classifier in an application.
Finally, in Section 7 we present our conclusions
with a pointing to our future work.

2 Related Work

In the recent years, many researchers have inves-
tigated the classification of the Surface Web (Du-
mais and Chen, 2000; Sun et al., 2002; Kan, 2004;
Kan and Thi, 2005; Kaur, 2014), and the Deep
Web (Su et al., 2006; Xu et al., 2007; Barbosa
et al., 2007; Lin et al., 2008; Zhao et al., 2008;
Xian et al., 2009; Khelghati, 2016). However, the
Darknet classification literature is still in its early
stages and specifically the classification of the il-
legal activities (Graczyk and Kinningham, 2015;
Moore and Rid, 2016).

Kaur (2014) introduced an interesting survey
covering several algorithms to classify web con-
tent, paying attention to its importance in the field
of data mining. Furthermore, the survey included
the pre-processing techniques that might help in
features selection, like eliminating the HTML
tags, punctuation marks and stemming. Kan et
al. explored the use of Uniform Resource Loca-
tors (URL) in web classification by extracting the
features through parsing and segmenting it (Kan,



2004; Kan and Thi, 2005). These techniques can
not be applied to Tor HS since the onion addresses
are constructed with 16 random characters. How-
ever, tools like Scallion® and Shallot” allow Tor
users to create customized .onion addresses based
on the brute-force technique e.g. Shallot needs 2.5
years to build only 9 customized characters out
of 16. Sun et at. (2002) employed Support Vec-
tor Machine (SVM) to classify the web content by
taking the advantage of the context features e.g.
HTML tags and hyperlinks in addition to the tex-
tual features to build the feature set.

Regarding the Deep Web classification, Noor et
al. (2011) discussed the common techniques that
are used for the content extraction from the Deep
Web data sources called "Query Probing”, which
is commonly used for supervised learning algo-
rithms, and ”Visible Form Features” (Xian et al.,
2009). Su et al. (2006) have proposed a combi-
nation between SVM with query probing to clas-
sify the structured Deep Web hierarchically. Bar-
bosa et al. (2007) proposed an unsupervised ma-
chine learning clustering pipeline, in which Term
Frequency Inverse Document Frequency (TF-IDF)
was used for the text representation, and the co-
sine similarity for distance measurement for the k-
means.

With respect to the Darknet, Moore et. al.
in (2016) have presented a new study based on Tor
hidden services to analyze and classify the Dark-
net. Initially, they collected 5K samples of Tor
onion pages and classified them into 12 classes
using SVM classifier. Graczyk et al. (2015) pro-
posed a pipeline to classify the products of a fa-
mous black market on Darknet, called Agora, into
12 classes with 79% of accuracy. Their pipeline
architecture uses the TF-IDF for text features ex-
traction, the PCA for features selection, and SVM
for features classification.

Several attempts in literature have been pro-
posed to detect illegal activities whether on the
World Wide Web (WWW) network (Biryukov et
al., 2014; Graczyk and Kinningham, 2015; Moore
and Rid, 2016), peer-to-peer networks (P2P) (Lat-
apy et al., 2013; Peersman et al., 2014) and in chat-
ting messaging systems (Morris and Hirst, 2012).
Latapy el at. (2013) investigated P2P systems, e.g.
eDonkey, to quantify the paedophile activity by
building a tool to detect child-pornography queries

Swww.github.com/lachesis/scallion
"www.github.com/katmagic/Shallot
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by performing a series of lexical text process-
ing. They found that 0.25% of entered queries
are related to pedophilia context, which means that
0.2% of eDonkey network users are entering such
queries. However, this method is based on a pre-
defined list of keywords which can not detect new
or previously unknown words.

3 The Dataset

3.1 Dataset Building Procedure

To best of our knowledge, there is no labeled
dataset that encompasses the activities on the
Darknet web pages. Therefore, we have created
the first publicly available Darknet dataset and we
called it Darknet Usage Text Addresses (DUTA)
dataset. Currently, DUTA contains only Tor hid-
den services (HS). We built a customized crawler
that utilizes Tor socket to fetch onion web pages
through port 80 only i.e. the HTTP protocol. The
crawler has 70 worker threads in parallel to down-
load the HTML code behind the HS. Each thread
dives into the second level in depth for each HS in
order to gather as much text as possible rather than
just the index page as in others work (Biryukov et
al., 2014). It searches for the HS links on sev-
eral famous Darknet resources like onion.city &
and ahmia.fi °. We reached more than 250K HS
addresses, but only 7K were alive, and the oth-
ers were down or not responding. After that, we
concatenated the HTML pages of every HS into
a single HTML file resulting a single HTML file
for each single HS domain. We collected 7,931
hidden services by running the crawler for two
months between May and July 2016. For the time
being, we labeled 6,831 samples.

3.2 Dataset Characteristics

Darknet researchers have analyzed the HS con-
tents and categorized them into a different num-
ber of categories. Biryukov et al. (2014) sampled
1,813 HS and detected 18 categories. Intelliagg
group in (2015) analyzed 1K HS samples and clas-
sified them into 12 categories. Moore et al. (2016)
studied 5,615 HS examples and categorized them
into 12 classes. Based on our objective to build
a multipurpose dataset and for the sake of com-
pleteness, we classified DUTA manually into 26
classes. To the best of our knowledge, this clas-
sification is the most extent and complete up to

8www.onion.city
*www.ahmia.fi



date. The collected samples were divided among
the four authors and each one labeled their des-
ignated part; if an author hesitated, it was openly
discussed with the rest of the authors. Finally, to
check the consistency of the manual labeling, the
first author reviewed the final labeling by analyz-
ing random samples of the categorization made by
the others.

In addition to labeling the main classes, we
dived into labeling the sub-classes of the HS. For
example, the class Counterfeit Personal Identifica-
tion has three sub-classes: Identity Card, Driving
License, and Passport. Table 1 enumerates DUTA
classes.

Main Class Sub-Class | Count Main Class Count
Hate 4 Art/ Music 8
Violence . Casino/
Hitman 11 Gambling 26
Weapons 47 Services 285
Counterfeit D.“""‘g' 4 Cryptocurrency | 586
Personal Licence
Identification 1D L Down 608
Passport 37 Empty 1649
File-Sharing 111 Forum 104
Hosting g:;;i:;s 63 Hacking 90
and el 38 Wiki 29
Software Engine
Server 95 Leaked-Data 12
Software 121 Locked 435
Directory 142 Personal 405
Druss Illegal 230 Politics 8
8 Legal 9 Religion 6
Black 63 Library/Books 27
Marketplace |z &7 Fraud 1
Child- 10 Counterfeit
Pornography | pornography o14(%) Money 3
General- Counterfeit
3 . 24
pornography 8 Credit Cards 0
Human-
. Blog ! Trafficking 2
Social-
Network Chat all
Email 56
News 32 The total count | 6831 |

Table 1: DUTA dataset classes

Counterfeit is a wide class so we split it into
three main classes 1) Counterfeit Personal Identi-
fication which is related to government documents
forging. 2) Counterfeit Money includes curren-
cies forging and 3) Counterfeit Credit Cards cov-
ers cloning credit cards, hacked PayPal accounts
and fake markets cards like Amazon and eBay.
The class Services contains the legal services that
are provided by individuals or organizations. The
class Down contains the errors that were returned
by the down web pages while crawling them e.g.
an SQL error in a website database or a javascript
error.

We assign class Empty to a web page when:

!0This class includes 57 unique sample plus 857 samples
that are extracted from a single forum (See Section 3.2)
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1) The text is very short i.e. less than 5 words,
2) It has only images with no text, 3) It con-
tains unreadable text like special characters, num-
bers, or unreadable words, 4) The empty Cryp-
tolockers pages (ransomware) (Ciancaglini et al.,
2016). The class Locked contains the HS that re-
quire solving a CAPTCHA or a log-in credential.
We noticed that some people love to present their
works, projects, or even their personal information
through an HS page so we labeled them into class
Personal. The pages that fell under more than one
category were labeled based on its main content.
For example, we assign Forum label to the multi-
topic forums unless the whole forum is related to
a single topic. e.g. a hacking forum was assigned
to Hacking class instead of Forum. The class Mar-
ketplace was divided into Black when it contained
a group of illegal services like Drugs, Weapons,
and Counterfeit services and White when the mar-
ketplace offered legal shops like mobile phones or
clothes.

As we have labeled DUTA manually, we re-
alized that some forums on HS contain numer-
ous web pages and all of them are related to a
single class i.e. we found a forum about child-
pornography that has more than 800 pages of tex-
tual content, so we split it up into single samples
representing one single forum page, and we added
them to the dataset.

4 Methodology

Each classification pipeline is comprised of three
main stages. First, text pre-processing, then, fea-
tures extraction, and finally, classification. We
used two famous text representation techniques
across three different supervised classifiers result-
ing six different classification pipelines, and we
examined every pipeline to figure out the best
combination with the best parameters that can
achieve high performance.

4.1 Text Pre-processing

Initially, we eliminated all the HTML tags, and
when we detected an image tag, we preserved
the image name and removed the extension. Fur-
thermore, we filtered the training set for the non-
English samples using Langdetect!! python li-
brary and stemmed the text using Porter library
from NLTK package'?. Additionally, we re-

https://pypi.python.org/pypi/langdetect
https://tartarus.org/martin/PorterStemmer/



moved special characters and stop words thanks
to SMART stop list'® (Salton, 1971). At this
stage, we modified the stop words list by adding
100 words more in order to make it compatible
with the work domain. Moreover, we mapped all
emails, URLs, and currencies into a single com-
mon token for each.

4.2 Features Extraction

After pre-processing the text, we used two famous
text representation techniques. A) Bag-of-Words
(BOW) is a well-known model for text representa-
tion that extracts the features from the text corpus
by counting the words frequency. Consequently,
every document is represented as a sparse feature
vector where every feature corresponds to a sin-
gle word in the training corpus. B) Term Fre-
quency Inverse Document Frequency model (TD-
IDF) (Aizawa, 2003) is a statistical model that as-
sign weights for the vocabularies where it empha-
sizes the words that occur frequently in a given
document, while at the same time de-emphasizes
words that occur frequently in many documents.
However, even though the BOW and TF-IDF do
not take into considerations the words order, they
are simple, computationally efficient and compat-
ible with medium dataset sizes.

4.3 Classifier Selection

For each features representation method, we ex-
amined three different supervised machine learn-
ing algorithms which are Support Vector Machine
(SVM) (Suykens and Vandewalle, 1999), Logis-
tic Regression (LR) (Hosmer Jr and Lemeshow,
2004), and Naive Bayes (NB) (McCallum et al.,
1998).

S Empirical Evaluation

5.1 Experimental Setting

Due to the purpose of this paper to classify the
Darknet illegal activities, we selected a subset of
our DUTA dataset by creating eight categories try-
ing to cover the most representative illegal activ-
ities on the Darknet. Another condition that we
imposed was that each class in the selected sub-
set should be monotopic (i.e. related to a single
category) and contain a sufficient amount of sam-
ples (i.e. 40 samples minimum). The rest of the
classes are assigned to a 9th category which we

Bhttp://jmir.csail.mit.edu/papers/ volume5/lewisO4a/al 1-
smart-stop-list/
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called Others. Since we are working on classify-
ing the illegal activities, we did not consider the
class Black-Market in the training set because its
contents are related to more than one class at a
single time, and we wanted the classifier to learn
from pure patterns. Moreover, when a sample con-
tains relevant images but an irrelevant text or with-
out any textual information, we excluded it from
the dataset. Therefore, we had 5,635 samples dis-
tributed over nine classes i.e. the eight classes
plus the Others one ( Table 2). After the text
pre-processing, we got 5,002 sample split it into
a training set that contains 3,501 samples and a
testing set of 1,501 samples.

Experiment Main Class Count
Pornography 963
Cryptocurrency 578
Counterfeit Credit Cards 209
Drugs 169
Violence 60
Hacking 57
Counterfeit Money 46
Counterfeit Personal Identification 40
(Driving-License, ID, Passport)
Others 3513

Table 2: Illegal activities dataset classes (A por-
tion of DUTA dataset)

The dataset is highly unbalanced since the
largest class has 3,513 samples while the small-
est one has only 40 samples. We solved the skew
in the dataset thanks to the class-weight parameter
in Scikit-Learn library'* which assigns a weight
for each class proportional to the number of sam-
ples it has (Hauck, 2014). In addition to adjusting
the weights of classes, we split up forums by the
discussion page (See Section 3.2).

For the models tuning, we applied a grid search
over different combinations of parameters with a
cross-validation of 10 folds. The successful com-
bination, which corresponds to the selected clas-
sification pipeline, is the one that can achieve the
highest value of an averaged F1 score metric and
an accuracy of 10 folds cross-validation.

We used Python3 with Scikit-Learn machine
learning library for the pipelines implementation.
We modified the parameters that have a critical in-
fluence on the performance of the models. For the
BOW dictionary, we set it to 30,000 words with a
minimum word frequency of 3, and we left the rest
of the parameters to default. Regarding the TF-
IDF, we set the maximum feature vectors length to

“http://scikit-learn.org/



10,000 and the minimum to 3. With respect to the
classifiers parameters, we kept the default setting
for the NB. In contrast, for the LR, we modified
only the value of the regularization parameter ”C”
by setting it to 10 with the balanced class-weight
flag activated. For the SVM classifier, we set the
decision function parameter to one-vs-rest ’ovr”,
kernel to "RBF”, ”C” parameter to 10e5, balanced
classes weights, and the rest were left to default.

5.2 Results and Discussion

Since we are working on an unbalanced multiclass
problem, every class has a precision, a recall, and
an F1 score. To combine these three values into
a single value, we calculated the macro, micro
and weighted average for each class as Table 3
shows. We can see that the pipeline of TF-IDF
with LR achieves the highest value with a macro
F1 score of 93.7% and the highest cross-validation
accuracy of 96.6%. The state-of-the-art paper has
achieved 94% accuracy on a different dataset that
contains 1K samples (Intelliagg, 2015). Addition-
ally, we plot the macro average precision-recall
curve for four classifiers (Figure 2). The plot indi-
cates that the pipeline of TF-IDF with LR achieves
the highest precision-recall.

Extension of Precision-Recall curve to multi-class

10

Precision

— TF-IDF LR (area = 0.98)
BOW LR (area = 0.92)

--- TF-IDF SVM (area = 0.91)

BOW SVM (area = 0.81)

00 02 04 06 08 10
Recall

Figure 2: Macro averaging Precision-Recall curve
over 4 pipelines, where the area value corresponds
to the macro-average Precision-recall curve

Figure 3 shows F1 score comparison between
the six classification pipelines over the nine
classes. We can see that the classes Counterfeit
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Metrics/ Average | Average | Average CvV
Methods (macro) | (micro) | (weighted) | Accuracy
P 0,952 0,965 0,965
BI(‘)IXV R | 0,889 0,965 0,965 . /(3(9)5081 0
F1| 0916 0,965 0,964 ’
P 0,982 0,974 0,975
Tl;}g ¥ R | 0,902 0,974 0,974 . /0’(9)6061 0
F1| 0,937 0,974 0,974 ’
BOW P 0,877 0,941 0,942 0.932
SVM R | 0875 0,941 0,941 +-0.013
F1| 0,874 0,941 0,941 o
TFIDF P 0,983 0,971 0,972 0.960
SVM R | 0,882 0,971 0,971 +-0011
F1| 0924 0,971 0,970 :
P 0,865 0,941 0,943
B;)I‘;V R 0,790 0,941 0,941 + /(_)320% 9
F1| 0812 0,941 0,940 i
P 0,530 0,885 0,855
TI;III];F R | 0425 0,885 0,885 +/(_)’§60312
F1 | 0,460 0,885 0,860 i

Table 3: A comparison between the classification
pipelines with respect to 10 folds cross-validation
accuracy (CV), precision (P), recall (R) and F1
score metrics for micro, macro and weighted av-
eraging.

Credit Cards and Hacking have a low F1 score
over all the pipelines, which is due to several rea-
sons: firstly, the words interference between the
classes. For example, the websites which offer
counterfeiting credit cards services are most prob-
ably "Hack” the credit card system or ”Attack” the
PayPal accounts, the use sentences like ”"We hack
credit card” or "Hacked Paypal account for sale”.
Moreover, those classes intersect with Counter-
feit Personal Identification class due to their sim-
ilarity from the perspective of forgery. Secondly,
the number of samples that were used for training
plays an important role during the learning phase,
e.g. class Violence has 60 samples only.

Nevertheless, the learning curve for the TF-IDF
LR pipeline in Figure 4 proves that the algorithm
is learning correctly where the validation accuracy
curve is raising up and classification accuracy is
improving by increasing the number of the sam-
ples while the training accuracy curve is starting
to decrease slightly. This high accuracy archived
will help to build a solid model that will be able to
detect illegal activity on Darknet.

6 Application and Implementation

The work presented in the previous sections has
been included into an application that can be ac-
cessed and tested through a web browser. The
implementation of the methods was developed in
Python3 using Nltk library to stem the document
text, Langdetect library to detect the language of
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the documents and the Scikit-learn library to build
the classifiers. The web application is made up of
3 views: one for algorithm selection, the second
one for the selection of data to analyze and the
third one for showing the results of the analysis
(Figure 5).

The Docker image is not publicly available, nei-
ther the applications, but under email request, we
will grant a temporal access to the web interface.

7 Conclusions and Future Work

In this paper, we have categorized illegal activities
of Tor HS by using two text representation meth-
ods, TF-IDF and BOW, combined with three clas-
sifiers, SVM, LR, and NB. To support the clas-
sification pipelines, we built the dataset DUTA,
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Figure 5: The application has three interfaces. (a)
Pipeline selection. (b)The HS content preview. (c)
The classification result.

containing 7K samples labeled manually into 26
categories. We picked out nine classes, including
the Others class, that are related only to illegal ac-
tivities e.g. drugs trading and child pornography
and we used it for training our model. Further-
more, we distinguished the critical aspects that af-
fect the classification pipeline results in term of
text representation i.e. the dictionary size and the
minimum word frequency influence the text rep-
resentation techniques performance, and the regu-
larization parameter on the LR and the SVM clas-
sifiers. We found that the combination of the TF-
IDF text representation with the Logistic Regres-
sion classifier can achieve 96.6% accuracy over
10 folds of cross-validation and 93.7% macro F1
score. We noticed that our classifier suffers from
overfitting due to the difficulty of reaching more
samples of onion hidden services for some classes
like counterfeiting personal identification or ille-
gal drugs. However, our results are encouraging,
and yet there is still a wide margin for future im-
provements. We are looking forward to enlarg-
ing the dataset by digging deeper into the Dark-
net by adding more HS sources, even from I2P
and Freenet, and exploring ports other than the
HTTP port. Moreover, we plan to get the benefit
of the HTML tags and the hyperlinks by weight-
ing some tags or parsing the hyperlinks text. Also,
during the manual labeling of the dataset, we re-
alized that a wide portion of the hidden services



advertise their illegal products graphically, i.e. the
service owner uses the images instead of the text.
Therefore, our aim is to build an image classifier
to work in parallel with the text classification. The
high accuracy we have obtained in this work might
represent an opportunity to insert our research into
a tool that supports the authorities in monitoring
the Darknet.
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Abstract

Multitask learning has been applied suc-
cessfully to a range of tasks, mostly mor-
phosyntactic. However, little is known
on when MTL works and whether there
are data characteristics that help to deter-
mine its success. In this paper we evalu-
ate a range of semantic sequence labeling
tasks in a MTL setup. We examine differ-
ent auxiliary tasks, amongst which a novel
setup, and correlate their impact to data-
dependent conditions. Our results show
that MTL is not always effective, signif-
icant improvements are obtained only for
1 out of 5 tasks. When successful, auxil-
iary tasks with compact and more uniform
label distributions are preferable.

1 Introduction

The recent success of recurrent neural networks
(RNNs) for sequence prediction has raised a
great deal of interest, which has lead researchers
to propose competing architectures for several
language-processing tasks. These architectures of-
ten rely on multitask learning (Caruana, 1997).
Multitask learning (MTL) has been applied with
success to a variety of sequence-prediction tasks
including chunking and tagging (Collobert et al.,
2011; Sggaard and Goldberg, 2016; Bjerva et al.,
2016; Plank, 2016), name error detection (Cheng
et al., 2015) and machine translation (Luong et
al., 2016). However, little is known about MTL
for tasks which are more semantic in nature, i.e.,
tasks that aim at labeling some aspect of the mean-
ing of words (Cruse, 1986), instead their mor-
phosyntactic behavior. In fact, results on seman-
tic tasks are either mixed (Collobert et al., 2011)
or, due to the file drawer bias (Rosenthal, 1979),
simply not reported. There is no prior study—to
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the best of our knowledge—that compares data-
dependent conditions with performance measures
to shed some light on when MTL works for se-
mantic sequence prediction. Besides any varia-
tion in annotation and conceptualization, the la-
bel distributions of such semantic tasks tends to
be very different to the characteristic distributions
expected in more frequently studied morphosyn-
tactic tasks such as POS-tagging.

The main contribution of this work is an eval-
uvation of MTL on semantic sequence predic-
tion on data-dependent conditions. We derive
characteristics of datasets that make them favor-
able for MTL, by comparing performance with
information-theoretical metrics of the label fre-
quency distribution.

We use an off-the-shelf state-of-the-art archi-
tecture based on bidirectional Long-Short Term
Memory (LSTM) models (Section 3) and evaluate
its behavior on a motivated set of main and auxil-
iary tasks. We gauge the performance of the MTL
setup (Section 4) in the following ways: i) we
experiment with different combinations of main
and auxiliary tasks, using semantic tasks as main
task and morphosyntactic tasks as auxiliary tasks;
ii) we apply FREQBIN, a frequency-based auxil-
iary task (see Section 2.5) to a series of language-
processing tasks and evaluate its contribution, and
iii) for POS we experiment with different data
sources to control for label inventory size and cor-
pus source for the auxiliary task.

From our empirical study we observe the MTL
architecture’s sensitivity to label distribution prop-
erties, and its preference for compact, mid-entropy
distributions. Additionally, we provide a novel
parametric refinement of the FREQBIN auxiliary
task that is more robust. In broader terms, we ex-
pect to motivate more thorough analysis of the per-
formance of neural networks in MTL setups.
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2 Analyzing multi-task learning

Multitask learning systems are often designed
with the intention of improving a main task by
incorporating joint learning of one or more re-
lated auxiliary tasks. For example, training a MTL
model for the main task of chunking and treating
part-of-speech tagging (POS) as auxiliary task.

The working principle of multitask learning
is to improve generalization performance by
leveraging training signal contained in related
tasks (Caruana, 1997). This is typically done by
training a single neural network for multiple tasks
jointly, using a representation that is shared across
tasks. The most common form of MTL is the
inclusion of one output layer per additional task,
keeping all hidden layers common to all tasks.
Task-specific output layers are customarily placed
at the outermost layer level of the network.

In the next section, we depict all main and aux-
iliary tasks considered in this paper.

2.1 Main tasks

We use the following main tasks, aimed to repre-
sent a variety of semantic sequence labeling tasks.
FRAMES: We use the FrameNet 1.5 (Baker et al.,
1998) annotated corpus for a joint frame detection
and frame identification tasks where a word can
receive a predicate label like Arson or Personal
success. We use the data splits from (Das et al.,
2014; Hermann et al., 2014). While frame identi-
fication is normally treated as single classification,
we keep the sequence-prediction paradigm so all
main tasks rely on the same architecture.
SUPERSENSES: We use the supersense version of
SemCor (Miller et al., 1993) from (Ciaramita and
Altun, 2006), with coarse-grained semantic labels
like noun.person or verb.change.

NER: The CONLL2003 shared-task data for
named entity recognition for labels Person, Loc,
etc. (Tjong Kim Sang and De Meulder, 2003).
SEMTRAITS: We have used the EurWordNet list
of ontological types for senses (Vossen et al.,
1998) to convert the SUPERSENSES into coarser
semantic traits like Animate or UnboundedEvent."
MPQA: The Multi-Perspective Question Answer-
ing (MPQA) corpus (Deng and Wiebe, 2015),
which contains sentiment information among oth-
ers. We use the annotation corresponding to the

'Available at: https://github.com/bplank/
multitasksemantics
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coarse level of annotation, with labels like attitude
and direct-speech-event.

2.2 Auxiliary tasks

We have chosen auxiliary tasks that represent
the usual features based on frequency and mor-
phosyntax used for prediction of semantic labels.
We collectively refer to them as lower-level tasks.
CHUNK: The CONLL2003 shared-task data for
noun- and verb-phrase chunking (Tjong Kim Sang
and De Meulder, 2003).

DEPREL: The dependency labels for the English
Universal Dependencies v1.3 (Nivre et al., 2016).
FREQBIN: The log frequency of each word,
treated as a discrete label, cf. Section 2.5.

POS: The part-of-speech tags for the Universal
Dependencies v1.3 English treebank.

2.3 Data properties

Table 1 lists the datasets used in this paper, both
to train main tasks and auxiliary tasks. For each
dataset we list the following metrics: number
of sentences, number of tokens, token-type ratio
(TTR), the size of the label inventory counting B-
labels and I-labels as different (|Y']), and the pro-
portion of out-of-span labels, which we refer to as
O labels.

The table also provides some of the
information-theoretical measures we describe
in Section 2.4. Note that DEPRELS and POS
are the only datasets without any O labels, while
FRAMES and SEMTRAITS are the two tasks with
O labels but no B/I-span notation, as tokens are
annotated individually.

2.4 Information-theoretic measures

In order to quantify the properties of the different
label distributions, we calculate three information-
theoretical quantities based on two metrics, kurto-
sis and entropy.

Entropy is the best-known information-
theoretical metric. It indicates the amount of
uncertainty in a distribution. We calculate two
variants of entropy, one taking all labels in
consideration H(Y f,;), and another one H(Y_p)
where we discard the O label and only measure
the entropy for the named labels, such as frame
names in FRAMES. The entropy of the label
distribution H(Y f,y;) is always lower than the
entropy for the distribution disregarding the O
label H(Y_p). This difference is a consequence



sentences tokens TTR Y| propofO k(Y) H(Y¢u) H(Y-0)

FRAMES 5.9k 119k 12 707 .80 701.41  1.60 5.51
MPQA 1.7k 44k 15 9 .65 2.79 1.12 1.33
NER 22.1k 303k .10 9 .83 4.10 0.77 1.93
SEMTRAITS 20k 435k .07 11 .66 5.68 1.29 1.89
SUPERSENSES 20k 435k .07 83 .66 76.73 1.84 3.53
CHUNK 22.1k 303k .10 22 .14 3.68 1.73 1.54
DEPRELS 16.6k 255k .09 47 - 1.80 3.11 3.11
FREQBIN Same as respective main task ~ 4-7 - Depends on variant

POS 16.6k 255k .09 17 - -0.20 249 249

Table 1: Datasets for main tasks (above) and auxiliary tasks (below) with their number of sentences,
tokens, type-token ratio, size of label inventory, proportion of O labels, kurtosis of the label distribution,
entropy of the label distribution, and entropy of the label distribution without the O label.

of the O-label being often the majority class in
span-annotated datasets. The only exception is
CHUNK, where O-tokens make up 14% of the
total, and the full-distribution entropy is higher.

Kurtosis indicates the skewness of a distribu-
tion and provides a complementary perspective to
the one given by entropy. The kurtosis of the
label distribution describes its tailedness, or lack
thereof. The kurtosis for a normal distribution is
3, and higher kurtosis values indicate very tailed
distributions, while lower kurtosis values indicate
distributions with fewer outliers.

For instance, we can see that larger inventory
sizes yield more heavy-tailed distributions, e.g.
FRAMES presents a lot of outliers and has the
highest kurtosis. The very low value for POS in-
dicates a distribution that, although Zipfian, has
very few outliers as a result of the small label set.
In contrast, DEPRELS, coming from the same cor-
pus, has about three times as many labels, yielding
a distribution that has fewer mid-values while still
being less than 3. Nevertheless, the entropy val-
ues of Pos and DEPRELS are similar, so kurtosis
provides a complementary perspective on the data.

2.5 FREQBIN variants

Recently, a simple auxiliary task has been pro-
posed with success for POS tagging: predicting
the log frequency of a token (Plank et al., 2016).
The intuition behind this model is that the aux-
iliary loss, predicting word frequency, helps dif-
ferentiate rare and common words, thus providing
better predictions for frequency-sensitive labels.
They refer to this auxiliary task as FREQBIN, how-
ever, focus on POS only. Plank et al. (2016) used
the discretized log frequency of the current word
to build the FREQBIN auxiliary task to aid POS
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tagging, with good results. This auxiliary task aids
the prediction of the main task (POS) in about half
the languages, and improves the prediction of out
of vocabulary words. Therefore, it is compelling
to assess the possible contribution of FREQBIN for
other tasks, as it can be easily calculated from the
same training data as the main task, and requires
no external resources or annotation.

We experiment with three different variants of
FREQBIN, namely:

1. SKEWEDjg: The original formulation of a =
int(logio(fregtrain(w)), where a is the fre-
quency label of the word w. Words not in the
training data are treated as hapaxes.

2. SKEWED5: A variant using 5 as logarithm
base, namely a = int(logs(freqtrain(w)),
aimed at providing more label resolution, e.g.
for the NER data, SKEWED yields 4 differ-
ent labels, and SKEWEDj5 yields 6.

3. UNIFORM: Instead of binning log frequen-
cies, we take the index of the k-quantilized
cumulative frequency for a word w. We use
this parametric version of FREQBIN with the
median number of labels produced by the
previous variants to examine the importance
of the label distribution being skewed. For
k=>5, this variant maximizes the entropy of a
FREQBIN five-label distribution. Note that
this method still places all hapaxes and out-
of-vocabulary words of the test data in the
same frequency bin.

Even though we could have used a reference
corpus to have the same FREQBIN for all the data,
we prefer to use the main-task corpus for FRE-
QBIN. Using an external corpus would otherwise
lead to a semisupervised learning scenario which
is out of the scope of our work. Moreover, in us-



ing only the input corpus to calculate frequency
we replicate the setup of Plank et al. (2016) more
closely.

3 Model

Recurrent neural networks (RNNs) (Elman, 1990;
Graves and Schmidhuber, 2005) allow the compu-
tation of fixed-size vector representations for word
sequences of arbitrary length. An RNN is a func-
tion that reads in n vectors z1, ..., £, and produces
a vector h,, that depends on the entire sequence
zi,...,T,. The vector h, is then fed as an in-
put to some classifier, or higher-level RNNs in
stacked/hierarchical models. The entire network
is trained jointly such that the hidden representa-
tion captures the important information from the
sequence for the prediction task.

A Dbi-directional recurrent neural net-
work (Graves and Schmidhuber, 2005) is an
extension of an RNN that reads the input se-
quence twice, from left to right and right to left,
and the encodings are concatenated. An LSTM
(Long Short-Term Memory) is an extension of
an RNN with more stable gradients (Hochreiter
and Schmidhuber, 1997). Bi-LSTM have recently
successfully been used for a variety of tasks (Col-
lobert et al., 2011; Huang et al., 2015; Dyer et
al., 2015; Ballesteros et al., 2015; Kiperwasser
and Goldberg, 2016; Liu et al., 2015; Plank et al.,
2016). For further details, cf. Goldberg (2015)
and Cho (2015).

We use an off-the-shelf bidirectional LSTM
model (Plank et al., 2016).> The model is illus-
trated in Figure 1. It is a context bi-LSTM tak-
ing as input word embeddings . Character em-
beddings ¢ are incorporated via a hierarchical bi-
LSTM using a sequence bi-LSTM at the lower
level (Ballesteros et al., 2015; Plank et al., 2016).
The character representation is concatenated with
the (learned) word embeddings w to form the in-
put to the context bi-LSTM at the upper layers.
For hyperparameter settings, see Section 3.1.

The stacked bi-LSTMs represent the shared lay-
ers between tasks. We here use three stacked
(h=3) bi-LSTMs for the upper layer, and a sin-
gle layer bi-LSTM at the lower level for the char-
acter representations. Following Collobert et al.
(2011), at the outermost (h = 3) layer separate
output layers for the single tasks are added using a

2Available at:
bilstm—aux

https://github.com/bplank/
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Figure 1: Multi-task bi-LSTM. The input to the
model are word « and character embeddings ¢
(from the lower bi-LSTM). The model is a stacked
3-layer bi-LSTM with separate output layers for
the main task (solid line) and auxiliary tasks
(dashed line; only one auxiliary task shown in the
illustration).

softmax. We additionally experiment with predict-
ing lower-level tasks at inner layers, i.e., predict-
ing POS at h = 1, while the main task at h = 3,
the outermost layer, following Sggaard and Gold-
berg (2016). During training, we randomly sample
a task and instance, and backpropagate the loss of
the current instance through the shared deep net-
work. In this way, we learn a joint model for main
and auxiliary task(s).

3.1 Hyperparameters

All the experiments in this article use the same bi-
LSTM architecture described in Section 3. We
train the bi-LSTM model with default parame-
ters, i.e., SGD with cross-entropy loss, no mini-
batches, 30 epochs, default learning rate (0.1), 64
dimensions for word embeddings, 100 for charac-
ter embeddings, 100 hidden states, random initial-
ization for the embeddings, Gaussian noise with
0=0.2. We use a fixed random seed set upfront
to facilitate replicability. The only hyperparame-
ter we further examine is the number of epochs,
which is set to 30 unless otherwise specified.

We follow the approach of Collobert et al.
(2011) in that we do not use any task-specific
features beyond word and character information,
nor do we use pre-trained word embeddings for
initialisation or more advanced optimization tech-
niques.> While any of these changes would likely
improve the performance of the systems, the goal
of our experiments is to delimit the behavior of the
bi-LSTM architecture and the interaction between
main and auxiliary task(s).

3For example, AdamTrainer
MomentumSGDTrainer in pycnn.

or



3.2 Experimental Overview

A system in our experiments is defined by a main
task and up to two auxiliary tasks, plus a choice of
output layers (at which layer to predict the auxil-
iary task, i.e., h €{1,2,3}). For each main task, we
ran the following systems:

1. Baseline, without any auxiliary task.

2. One additional system for each auxiliary task,
say DEPREL.
A combination of each of the three versions
of FREQBIN, namely SKEWED5,SKEWED g
and UNIFORM, and each of the other auxil-
iary tasks, such as DEPREL+UNIFORM.
The total combination of systems for all five main
tasks is 1440.

3.

4 Results

This section describes the results of both exper-
imental scenarios, namely the benchmarking of
FREQBIN as an auxiliary task, and the combina-
tions of semantic main task with low-level auxil-
iary tasks, including an analysis of the data prop-
erties. The different tasks in our experiments typi-
cally use different evaluation metrics, however we
evaluate all tasks on micro-averaged F1 without
the O class, which we consider the most informa-
tive overall. We do not use the O-label’s F1 score
because it takes recall into consideration, and it is
deceptively high for the majority class. We test for
significance with a 10K-iteration bootstrap sample
test, and p < .05.

4.1 Main semantic tasks

This section presents the results for the prediction
of the main semantic tasks described in Section 2.
Given the size of the space of possible task combi-
nations for MTL, we only report the baseline and
the results of the best system. Table 2 presents
the results for all main semantic tasks, comparing
the results of the best system with the baseline.
The last column indicates the amount of systems
that beat the baseline for a given certain main task.
Having fixed the variant of FREQBIN to UNIFORM
(see Section 4.2), and the number of epochs to 30
(see below) on development data, the total amount
of systems for any main task is 22.

Out of the two main tasks over the baseline only
SEMTRAITS is significantly better over BL. SEM-
TRAITS has a small label set, so the system is able
to learn shared parameters for the label combina-
tions of main and aux without suffering from too
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BL ABest Description aux layer # over
FRAMES 3893 -8.13 +FREQBIN outer 0
MPQA 28.26 0.96 +POS+FREQBIN inner 2
NER 90.60 -0.58 +FREQBIN inner 0
SEMTRAITS 70.42 1.24 +FREQBIN outer 13
SUPERSENSES 62.36  -0.13 +POS+FREQBIN inner 0

Table 2: Baseline (BL) and best system per-
formance difference (A) for all main tasks—
improvements in bold, significant improvements
underlined—plus number of systems over baseline
for each main task.

much sparsity. Compare with the dramatic loss of
the already low-performing FRAMES, which has
the highest kurtosis caused by the very long tail of
low-frequency labels.

We have expected CHUNK to aid SUPER-
SENSES, but in spite of our expectations, other
low-level tasks do not aid in general the prediction
of high-level task. What is otherwise an informa-
tive feature for a semantic task in single-task learn-
ing does not necessarily lend itself as an equally
useful auxiliary task for MTL.

For a complementary evaluation, we have also
measured the precision of the O label. However,
precision score is also high, above 90, for all tasks
except the apparently very difficult MPQA (70.41
for the baseline). All reported systems degrade
around 0.50 points with regards to the baseline, ex-
cept SUPERSENSES which improves slightly form
96.27 to 96.44. The high precision obtained for
the also very difficult FRAMES tasks suggests that
this architecture, while not suitable for frame dis-
ambiguation, can be used for frame-target identifi-
cation. Disregarding FREQBIN, the only low-level
tasks that seems to aid prediction is POS.

An interesting observation from the BIO task
analysis is that while the standard bi-LSTM model
used here does not have a Viterbi-style decoding
like more complex systems (Ma and Hovy, 2016;
Lample et al., 2016), we have found very few in-
valid BIO sequences. For NER, there are only ten
I-labels after an O-label, out of the 27K predicted
by the bi-LSTM. For SUPERSENSES there are 59,
out of 1,5K predicted I-labels.

The amount of invalid predicted sequences is
lower than expected, indicating that an additional
decoding layer plays a smaller role in prediction
quality than label distribution and corpus size, e.g.
NER is a large dataset with few labels, and the
system has little difficulty in learning label prece-
dences. For larger label sets or smaller data sizes,



invalid sequence errors are bound to appear be-
cause of sparseness.

Effect of output layer choice We observe no
systematic tendency for an output layer to be a bet-
ter choice, and the results of choosing the inner-
or outer-layer (h=1 vs h=3) input differ only min-
imally. However, both systems that include POS
have a preference for the inner layer having higher
performance, which is consistent with the results
for POS in (Sggaard and Goldberg, 2016).

Effect of the number of training epochs Be-
sides all the data properties, the only hyperpa-
rameter that we examine further is the number
of network training epochs.* All the results re-
ported in this article have been obtained in a
30-epoch regime. However, we have also com-
pared system performance with different numbers
of epochs. Out of the values we have experi-
mented (5,15,30,50) with, we recommend 30 iter-
ations for this architecture. At 5 and 15 epochs, the
performance does not reach the levels for 30 and
is consistently worse for baselines and auxiliary-
task systems. Moreover, the performance for 50 is
systematically worse than for 30, which indicates
overfitting at this point.

Effect of training data size We have run all sys-
tems increasing the size of the main task training
data in blocks of 25%, keeping the size of the aux-
iliary task constant. We do not observe improve-
ments over baseline along the learning curve for
any of the main tasks except MPQA and SEM-
TRAITS. At smaller main task data sizes, the
auxiliary task learning swamps the training of the
main task. This results is consistent with the find-
ings by Luong et al. (2016). We leave the research
on the effects auxiliary data size—and its size ratio
with regards to the main task—for further work.

4.2 Auxiliary task contribution

As follows from the results so far, the bi-LSTM
will not benefit from auxiliary loss if there are
many labels and entropy is too high. Auxiliary
task level distribution also plays a role, as we
will discuss in Section 4.3, FREQBIN-UNIFORM
consistently outperforms the skewed measure with
base 5 and 10.

“Number of epochs is among the most influential param-
eters of the system. Adding more layers did not further im-
prove results.
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BL AUD/UPOS AUD/PTB AWSJ/PTB
FRAMES 38.93 -14.64 -16.02 -28.18
NER 90.60 -1.36 -2.05 -2.56
MPQA 28.26 -5.62 -13.53 -14.81
SEMTRAITS 70.42 0.67 -0.3 -0.14
SUPERSENSES  62.36 -2.86 -2.83 -6.32
CHUNK 94.76 0.2 0.18 0.18
DEPRELS 88.70 -0.19 -0.18 -1.06
POS 94.36 - 0.18 -0.53

Table 3: Comparison different POS variants (data
source/tag granularity): Baseline (BL) and the dif-
ference in performance on the +POS system when
using the UD Corpus with UPOS (UD/UPOS) or
with PTB tabs (UD/PTB), as well as the Wall
Street Journal with PTB tags (WSJ/PTB).

Therefore we have also measured the effect of
using different sources of POS auxiliary data to
give account for the possible differences in label
inventory and corpus for all tasks, high and low-
level, cf. Table 3. The English UD treebank is dis-
tributed with Universal POS (UPOS), which we
use throughout this article, and also with Penn
Treebank (PTB) tags (Marcus et al., 1993). We
have used the PTB version of the English UD cor-
pus (UD/PTB) as well as the training section of
the Wall Street Journal (WSJ) treebank as of POS
(WSJ/PTB) auxiliary task. The former offers the
opportunity to change the POS inventory to the
three times larger PTB inventory while using the
same corpus.

However, the characteristics of the UD/UPOS
we have used as POS throughout the article makes
it a more suitable auxiliary source, in fact it sys-
tematically outperforms the other two. We ar-
gue that UD/UPOS has enough linguistic signal
to be a useful auxiliary task, while still depend-
ing on a smaller label inventory. Interestingly, if
we use Pos for CHUNK (cf. Table 3), note that
even though the language in WSIJ is closer to the
language in the training corpora for CHUNK and
NER, it is not the best auxiliary POS source for
either task.

We observe an improvement when using
UD/PTB for Pos, while using WSJ/PTB worsens
the results for this task. We argue that this archi-
tecture benefits from the scenario where the same
corpus is used to train with two different label sets
for POS, whereas using a larger label set and a
different corpus does not aid prediction.



4.3 Analyzing FREQBIN

In this section we evaluate the interaction between
all tasks and the FREQBIN auxiliary task. For
this purpose, we treat all tasks (high- or low-level)
as main task, and compare the performance of a
single-task baseline run, with a task +FREQBIN
setup. We have compared the three versions of
FREQBIN (Section 2.5) but we only report UNI-
FORM, which consistently outperforms the other
two variants, according to our expectations.

Table 4 lists all datasets with the size of their
label inventory for reference (|Y]), as well as the
absolute difference in performance between the
FREQBIN-UNIFORM system and the baseline (A).
Systems that beat the baseline are marked in bold.

Following Plank et al. (2016), the FREQBIN
system beats the baseline for the POS task. More-
over, it also aids the prediction for SEMTRAITS
and MPQA. The better performance of these two
systems indicates that this architecture is not nec-
essarily only advisable for lower-level tasks, as
long as the datasets have the right data properties.

Y| BL AU R?
FRAMES 707 3893 -8.13 .00
MPQA 9 2826 044 .09
NER 9 90.60 -1.31 .26
SEMTRAITS 11 70.42 1.12 44
SUPERSENSES 83 62.36 -0.69 47
CHUNK 22 9476  -0.14 .49
Pos 17 9435 0.21 .68
DEPRELS 47 88.70 -0.16 .64

Table 4: Label inventory size (|Y|), FREQBIN-
baseline absolute difference in performance (A)—
improvements are in bold, significant improve-
ments are underlined—and coefficient of determi-
nation for label-to-frequency regression (R?).

The improvement of low-level classes is clear
in the case of POS. We observe an improvement
from 75 to 80 for the X label, mostly made up of
low-frequency items. The similarly scattered label
INTIJ goes from 84 to 87. While no POS label
drops in performance on +FREQBIN with regards
to the baseline, all the other improvements are of
1 point of less.

4.4 Label-frequency co-informativeness

To supplement the benchmarking of FREQBIN, we
estimate how much frequency information is con-
tained in all the linguistic sequence annotations
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used in this article. We do so by evaluating the
coefficient of determination (R?) of a linear re-
gression model to predict the log frequency of a
word given its surrounding label trigram, which
we use as a proxy for sequence prediction. For
instance, for ‘the happy child’, it would attempt to
predict the log-frequency of happy given the ‘DET
ADJ NOUN’ POS trigram. Note that this model is
delexicalized, and only uses task labels because its
goal is to determine how much word-frequency in-
formation is contained in e.g. the POS sequence.
A high R? indicates there is a high proportion of
the variance of log frequency explained by the la-
bel trigram. We use linear regression implemented
in sklearn with L2 regularization and report the
average R? of 10-fold cross-validation.

POS is the label set with the highest explana-
tory power over frequency, which is expectable:
determiners, punctuations and prepositions are
high-frequency word types, whereas hapaxes are
more often closed-class words. DEPRELS se-
quences contain also plenty of frequency informa-
tion. Three sequence tasks have similar scores un-
der .50, namely CHUNK, SUPERSENSE and SEM-
TRAITS. They all have in common that their O
class is highly indicative of function words, an ar-
gument supported by their similar values of full-
distribution entropy. The one with the lowest score
out of these three, namely SEMTRAITS is the one
with the least grammatical information, as it does
not contain part of speech-related labels. The (R2)
is very low for the remaining tasks, and indeed,
for FRAMENET it is a very small negative number
which rounds up to zero.

While the co-informativeness of FREQBIN with
regards to its main task is a tempting explanation,
it does not fully explain when it works as an aux-
iliary task. Indeed, the FREQBIN contribution at
handling out-of-vocabulary words seems to only
affect POS and SEMTRAITS, while it does not im-
prove DEPRELS, which normally depends on syn-
tactic trees for accurate prediction.

5 Net capacity and contribution of
character representation

In this section we alter the network to study the
effect of network width and character representa-
tions. Multitask learning allows easy sharing of
parameters for different tasks. Part of the expla-
nation for the success of multitask learning are
related to net capacity (Caruana, 1997). Enlarg-



ing a network’s hidden layers reduces generaliza-
tion performance, as the network potentially learns
dedicated parts of the hidden layer for different
tasks. This means that the desirable trait of param-
eter sharing of MTL is lost. To test this property,
we train a MTL network for all setups where we
increase the size of the hidden layer by a factor k,
where k is the number of auxiliary tasks.

Our results confirm that increasing the size of
the hidden layers reduces generalization perfor-
mance. This is the case for all setups. None of the
results is better than the best systems in Table 2,
and the effective number of systems that outper-
form the baseline are fewer (FRAMES 0, MPQA:
2, NER: 0, SEMTRAITS: 9, SUPERSENSES: 0).

Throughout the article we used the default net-
work structure which includes a lower-level bi-
LSTM at the character level. However, we hypoth-
esize that the character features are not equally im-
portant for all tasks. In fact, if we disable the char-
acter features, making the system only depend on
word information (cf. Table 5), we observe that
two of the tasks (albeit the ones with the overall
lowest performance) increase their performance in
about 2.5 points, namely MPQA and FRAMES. For
the other two tasks we observe drops up to a max-
imum of 8-points for NER. Character embeddings
are informative for NER, because they approxi-
mate the well-known capitalization features in tra-
ditional models. Character features are not infor-
mative for tasks that are more dependent on word
identity (like FRAMES), but are indeed useful for
tasks where parts of the word can be informative,
such as POS or NER.

BL (w+¢) Aonly w
FRAMES 38.93 +2.39
NER 90.60 -8.05
MPQA 28.26 +2.91
SEMTRAITS 70.42 -3.62
SUPERSENSES  62.36 -4.44
CHUNK 94.76 -0.96
DEPRELS 88.70 -1.87
POS 94.36 -3.18

Table 5: Comparison default hierarchical systems
using a lower-level bi-LSTM for characters (BL
w + c¢) versus system using only words (w).

6 Related Work

Multitask learning has been recently explored by
a number of studies, including name error recog-
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nition (Cheng et al., 2015), tagging and chunk-
ing (Collobert et al., 2011; Plank et al., 2016), en-
tity and relation extraction (Gupta et al., 2016),
machine translation (Luong et al., 2016) and
machine translation quality estimation including
modeling annotator bias (Cohn and Specia, 2013;
Shah and Specia, 2016). Most earlier work had in
common that it assumed jointly labeled data (same
corpus annotated with multiple labels). In con-
trast, in this paper we evaluate multitask training
from distinct sources to address data paucity, like
done recently (Kshirsagar et al., 2015; Braud et
al., 2016; Plank, 2016).

Sutton et al. (2007) demonstrate improvements
for POS tagging by training a joint CRF model
for both POS tagging and noun-phrase chunking.
However, it is not clear under what conditions
multi-task learning works. In fact, Collobert et
al. (2011) train a joint feedforward neural network
for POS, chunks and NER, and observe only im-
provements in chunking (similar to our findings,
cf. Section 4.2), however, did not investigate data
properties of these tasks.

To the best of our knowledge, this is the first
extensive evaluation of the effect of data proper-
ties and main-auxiliary task interplay in MTL for
semantic sequence tasks. The most related work
is Luong et al. (2016), who focus on the effect of
auxiliary data size (constituency parsing) on the
main task (machine translation), finding that large
amounts of auxiliary data swamp the learning of
the main task. Earlier work related to MTL is
the study by Ando and Zhang (2005) who learn
many auxiliary task from unlabeled data to aid
morphosyntactic tasks.

7 Conclusions and Future Work

We have examined the data-conditioned behav-
ior of our MTL setup from three perspectives.
First, we have tested three variants of FREQBIN
showing that our novel parametric UNIFORM vari-
ant outperforms the previously used SKEWED ),
which has a number of labels determined by the
corpus size. Second, we examined main-auxiliary
task combinations for five semantic tasks and up
to two lower-level tasks. We observe that the
best auxiliary task is either FREQBIN or FRE-
QBIN+POS, which have low kurtosis and fairly
high entropy.

We also explored three sources of POS data as
auxiliary task, differing in corpus composition or



label inventory. We observe that the UPOS variant
is the most effective auxiliary task for the evalu-
ated architecture. Indeed, UPOS has fewer labels,
and also a more compact distribution with lower
kurtosis than its PTB counterpart.

While we propose a better variant of FREQBIN
(UNIFORM) we conclude that it is not a useful aux-
iliary task in the general case. Rather, it helps pre-
dict low-frequency labels in scenarios where the
main task is already very co-informative of word
frequency. While log frequency lends itself nat-
urally to a continuous representation so that we
could use regression to predict it instead of clas-
sification, doing so would require a change of the
architecture and, most importantly, the joint loss.
Moreover, discretized frequency distributions al-
low us to interpret them in terms of entropy. Thus,
we leave it to future work.

When comparing system performance to data
properties, we determine the architecture’s prefer-
ence for compact, mid-entropy distributions what
are not very skewed, i.e., have low kurtosis. This
preference explains why the system fares consis-
tently well for a lot of POS experiments but falls
short when used for task with many labels or with
a very large O majority class. Regarding output
layer choice, we have not found a systematic pref-
erence for inner or outer-layer predictions for an
auxiliary task, as the results are often very close.

We argue strongly that the difficulty of semantic
sequence predictions can be addressed as a matter
of data properties and not as the antagonic truism
that morphosyntax is easy and semantics is hard.
The underlying problems of semantic task predic-
tion have often to do with the skewedness of the
data, associated often to the preponderance of the
O-class, and a possible detachment from mainly
lexical prediction, such as the spans of MPQA.

This paper is only one step towards better un-
derstanding of MTL. It is necessarily incomplete,
we hope to span more work in this direction. For
instance, the system evaluated in this study has no
Viterbi-style decoding for sequences. We hypoth-
esize that such extension of the model would im-
prove prediction of labels with strong interdepen-
dency, such as BIO-span labels, in particular for
small datasets or large label inventories, albeit we
found the current system predicting fewer invalid
sequences than expected. In future, we would like
to extend this work in several directions: compar-
ing different MTL architectures, additional tasks,
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loss weighting, and comparing the change of per-
formance between a label set used as an auxiliary
task or as a—predicted—feature.
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Abstract

Word embeddings have been shown to be
highly effective in a variety of lexical se-
mantic tasks. They tend to capture mean-
ingful relational similarities between in-
dividual words, at the expense of lack-
ing the capabilty of making the underly-
ing semantic relation explicit. In this pa-
per, we investigate the attribute relation
that often holds between the constituents
of adjective-noun phrases. We use CBOW
word embeddings to represent word mean-
ing and learn a compositionality function
that combines the individual constituents
into a phrase representation, thus captur-
ing the compositional attribute meaning.
The resulting embedding model, while be-
ing fully interpretable, outperforms count-
based distributional vector space models
that are tailored to attribute meaning in the
two tasks of attribute selection and phrase
similarity prediction. Moreover, as the
model captures a generalized layer of at-
tribute meaning, it bears the potential to be
used for predictions over various attribute
inventories without re-training.

1 Introduction

Attributes such as SIZE, WEIGHT or COLOR are
part of the building blocks of representing knowl-
edge about real-world entities or events (Barsalou,
1992). In natural language, formal attributes find
their counterpart in attribute nouns which can be
used in order to generalize over individual proper-
ties, e.g., big or small in case of SIZE, blue or red
in case of COLOR (Hartung, 2015).

In order to ascribe such properties to entities or
events, adjective-noun phrases are a very frequent
linguistic pattern. In these constructions, attribute

54

meaning is conveyed only implicitly, i.e., with-
out being overtly realized at the phrasal surface.
Hence, attribute selection has been defined as the
task of predicting the hidden attribute meaning ex-
pressed by a property-denoting adjective in com-
position with a noun (Hartung and Frank, 2011b),
as in the following examples:

(1) a. hot summer — TEMPERATURE
b. hot debate — EMOTIONALITY
c. hot soup — TASTE/TEMPERATURE

Previous work on this task has largely been car-
ried out in distributional semantic models (cf. Har-
tung (2015) for an overview). In the face of the re-
cent rise of distributed neural representations as a
means of capturing lexical meaning in NLP tasks
(Collobert et al., 2011; Mikolov et al., 2013a; Pen-
nington et al., 2014), our goal in this paper is to
model attribute meaning based on word embed-
dings. In particular, we use CBOW embeddings
of adjectives and nouns (Mikolov et al., 2013a) as
underlying word representations and train a com-
positionality function in order to compute a phrase
representation that is predictive of the implicitly
conveyed attribute meaning.

In fact, word embeddings (also referred to as
predict models) have been shown to be highly ef-
fective in a variety of lexical semantic tasks (Ba-
roni et al., 2014b), compared to “traditional” dis-
tributional semantic models (or count models) in
the tradition of Harris (1954). However, this find-
ing has been refuted to a certain extent by Levy et
al. (2015), stating that much of the perceived supe-
riority of word embeddings is due to hyperparam-
eter optimizations rather than principled advan-
tages. Moreover, the authors found that in many
cases, tailoring count models to a particular task
at hand is both feasible and beneficial in order to
outperform the more generic embeddings.
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This sheds light on a definitive plus of count
models, viz. their transparency and interpretabil-
ity in the sense that their semantic similarity rat-
ings can (under certain conditions) be traced back
to particular semantic relations, whereas word em-
beddings typically yield rather vague and diver-
sified similarities (Erk, 2016). Due to this lack
in interpretability, word embeddings are not eas-
ily interoperable with symbolic lexical resources
or ontologies. Thus, we argue that modelling
attribute meaning poses an interesting challenge
to word embeddings for two reasons: First, be-
ing rooted in ontological knowledge, attribute
meaning clearly draws on interpretability of the
underlying model; second, attribute meaning in
adjective-noun phrases is conveyed in composi-
tional processes (cf. Ex. (1)) which are under-
researched in the context of word embeddings so
far (Manning, 2015).

Our main contributions in this paper are: (i)
We demonstrate that word embeddings can be suc-
cessfully harnessed for attribute selection — a task
that requires both compositional and interpretable
representations of phrase meaning. (ii) This is
achieved via a learned compositionality function f
on adjective and noun embeddings that carves out
attribute meaning in their compositional phrase
meaning. (iii) We show that f captures gener-
alized attribute meaning (cf. Bride et al. (2015))
that abstracts from individual attributes. Thus, af-
ter fitting the compositionality function, our model
bears the potential of being applied to various ap-
plication scenarios (e.g., aspect-based sentiment
analysis) involving diverse attribute inventories.
(iv) We show that the same model also scales to the
task of predicting semantic similarity of adjective-
noun phrases, which indicates both the robustness
of the model and the importance of attribute mean-
ing as a major source of phrase similarity.

2 Related Work

Attribute Learning from Adjectives and Nouns.
Adjective-centric approaches to attribute learn-
ing from text date back to Almuhareb (2006)
and Cimiano (2006). Bakhshandeh and Allen
(2015) present a sequence tagging model in order
to extract attribute nouns from adjective glosses
in WordNet. Most recently, Petersen and Hell-
wig (2016) use a clustering approach based on
adjective-noun co-occurrences in order to induce
clusters of German adjectives that constitute the
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value space of an attribute. However, their ap-
proach falls short of making the respective at-
tribute explicit.

These approaches have in common that they do
not consider the compositional semantics of an ad-
jective in its phrasal context with a noun in order
to derive attribute meaning. This is in contrast to
Hartung and Frank (2010; 2011b) who frame at-
tribute selection in a distributional count model
which (i) encodes adjectives and nouns as distri-
butional word vectors over attributes as shared di-
mensions of meaning and (ii) uses vector mixture
operations in order to compose these word vec-
tors into phrase reresentations that are predictive
of compositional attribute meaning.

Tandon et al. (2014) propose a semi-supervised
method for populating a knowledge base with
triples of nouns, attributes and adjectives that
are acquired from adjective-noun phrases. Being
based on label propagation over monosemous ad-
jectives as seeds, their approach depends on a lex-
ical resource providing initial mappings between
adjectives and attributes.

The present approach and the work by Hartung
and Frank may be considered as pairs of opposites
in two respects: First, our model is based on pre-
trained CBOW word embeddings for representing
adjective and noun meaning. Thus, we do not en-
code any attribute-specific lexical information ex-
plicitly at the level of word representation. Sec-
ond, we apply function learning in order to em-
pirically induce a compositionality function that is
trained to promote aspects of attribute meaning in
adjective-noun phrase embeddings.

Compositionality. Modelling  compositional
processes at the intersection of word and phrase
meaning in distributional semantic models has
attracted considerable attention in the last years
(Erk, 2012). Mitchell and Lapata (2010) have
promoted a variety of vector mixture models
for the task, which have been criticized for their
syntactic agnosticism (Baroni and Zamparelli,
2010; Guevara, 2010).

Focussing on adjective-noun compositionality,
the latter authors propose instead to model ad-
jective meaning as matrices encoding linear map-
pings between noun vectors. These attempts to in-
tegrate formal semantic principles in the tradition
of Frege (1892) into a distributional framework
have been generalized to a “program for compo-
sitional distributional semantics” (Baroni et al.,



2014a) that is centered around functional appli-
cation as the general process to model composi-
tionality in semantic spaces, thus emphasizing the
insight that different linguistic phenomena require
to be modeled in corresponding algebraic struc-
tures and composition operators matching these
structures (cf. Widdows (2008), Grefenstette and
Sadrzadeh (2011), Grefenstette et al. (2014)).

Bride et al. (2015) observe that such composi-
tion operators, by being trained on empirical cor-
pus data, can either be tailored to specific lexical
types (i.e., individual composition functions for
each adjective in the corpus), or designed to cap-
ture general compositional processes in syntactic
configurations (i.e., a single lexical function for
all adjective-noun phrases). In line with these au-
thors, we aim at learning a lexical function which
captures attribute meaning in the compositional
semantics of adjective-noun phrases, while gener-
alizing over individual attributes.

Contrary to distributional count models, there is
relatively few work on applying word embeddings
to linguistic problems or NLP tasks related to
compositionality. Notable exceptions are Socher
et al. (2013) for sentiment analysis, as well as
Salehi et al. (2015) and Cordeiro et al. (2016) who
focus on predicting the degree of compositional-
ity in nominal compounds rather than carving out
a particular semantic relation that is expressed in
their compositional semantics.

3 Learning Attribute Meaning in Word
Embeddings

3.1 Attribute Meaning in Natural Language

Natural language refers to ontological attributes
in terms of attribute nouns such as color, size or
shape (Guarino, 1992; Lobner, 2013). Therefore,
despite remaining mostly implicit in adjective-
noun phrases (cf. Ex. (1) above), we hypothesize
that attribute meaning can be learned from contex-
tual patterns of attribute nouns in natural language
text. This leads us to the assumption that adjec-
tives, nouns and attributes (via attribute nouns)
can be embedded in the same semantic space.

3.2 Compositional Models of Attribute
Meaning

In this work, we aim at a compositional approach
to attribute meaning in adjective-noun phrases. As
a consequence of the above assumption, our model
represents adjectives, nouns and attributes as vec-
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tors @, 7 and atir, respectively, in one and the
same embedding space S C R¢.

By designing a composition function f(a,)
that produces phrase representations p € S, we
can use nearest neighbour search in S in order
to predict the attribute attr that is most likely
expressed in the compositional semantics of an
adjective-noun phrase p:

attr == a ax cos(p, att
attr rg artrtlre}fél (P, attr)

2

where p’ f(a,n), cos denotes cosine vector
similarity and A the set of all attributes consid-
ered. The compositional functions that we use
in this work can be divided into baseline models,
largely derived from Mitchell and Lapata (2010),
and trainable models.

3.2.1 Baseline Models

Adjective or Noun. The simplest model is to
skip any composition and just use the representa-
tion of the adjective or the noun as a surrogate:
P = a or p = i, respectively.

Pointwise Vector Addition. The first step in the
direction of compositionality is pointwise vector
addition: P’ = @ + 7. According to Mitchell and
Lapata (2010), the commutativity of addition is a
disadvantage because the model ignores word or-
der and thus syntactic information is lost.

Weighted Vector Addition. For the latter rea-
son, Mitchell and Lapata (2010) also propose a
weighted variant of pointwise vector addition. In
order to account for possibly different contribu-
tions of the constituents to phrasal composition,
scalar weights o and 3 are applied to the word
vectors before pointwise addition: p = ad + 7.

Pointwise Vector Multiplication. This compo-
sition function multiplies the individual dimen-
sions of the adjective and noun vector: p; = a; - b;.
Mitchell and Lapata (2010) point out that vector
multiplication can be seen as equivalent to logical
intersection. In previous work on attribute selec-
tion in a count-based distributional framework, the
best results were obtained using pointwise multi-
plication (Hartung, 2015).

Dilation. The dilation model of Mitchell and La-
pata (2010) dilates one vector in the direction of
the other. This is inspired by the dilation effect of
matrix multiplication, but is specifically designed



to be basis-independent:

p=(-Mai+ -G aa 3

Here, 77 is stretched by a factor A to emphasize
the contribution of @. A is a parameter that has to
be chosen manually. Analogously, dilation of the
adjective is possible as well.

3.2.2 Trainable Models

In this section, we present a method for supervised
training of compositionality functions. We pro-
pose additive and multiplicative models that use
weighting matrices or tensors to balance the con-
tributions of adjectives and nouns. The compo-
sition is trained to specifically capture attribute
meaning in the resulting phrase representation.
The weights are trained as part of a shallow neural
network (see Section 3.2.3).

Full Weighted Additive Model. Following
Guevara (2010), the full additive model capitalizes
on vector addition with weighting matrices for ad-
jective and noun:

F=A -G+N-i &)

As initializations of the weighting matrices, we
use an identity matrix!, which is equivalent to
non-parametric vector addition. As weighting
schemes, we use one of (i) weighting only the ad-
jective or noun, respectively, or (ii) weighting both
adjective and noun distinctly.

Note that, in line with Guevara (2010), this
model makes use of weight matrices in order to
balance the contribution of adjectives and nouns
to phrasal attribute meaning, whereas Mitchell and
Lapata (2010) use scalar weights in their pointwise
additive model (cf. Section 3.2.1). Our intuition is
that full additive models should be better suited to
model compositonal processes that involve inter-
actions between dimensions of meaning.

Trained Tensor Product. As a weighted mul-
tiplicative model, we use multiplication of adjec-
tive and noun representations with a learned third-
order tensor T, following Bride et al. (2015):

—

p
with @ € R?, 77 € R?, Tdl ¢ Raxdxd

_ dT- T[l:d] i

&)

"We also experimented with different initializations such
as random values, all-ones, or an identity matrix with addi-
tional small random values on non-diagonal elements, but
found the identity matrix to work best.
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In order to compose a phrase representation
from @ and 77, T is applied to the adjective vector
in a tensor dot product. The tensor dot product
multiplies components of vector and tensor and
sums along the third axis of the tensor:

d
Xij= Zak Tk (6)
k=1

with d being the dimensionality of the word em-
beddings. Equation (6) results in a matrix X that
is multiplied with the noun vector in a second step
using common matrix multiplication: p'= X - 7.

Note that the latter step corresponds to func-
tional application of the adjective to the noun as
rooted in compositional distributional semantics
(Baroni et al., 2014a). The result is a phrase vec-
tor with the same dimensionality as adjective and
noun. For initialization, we use an identity matrix
for each second-order tensor along the third axis?.

3.2.3 Training Method

The weights of the models in Section 3.2.2 are
trained as part of a shallow neural network with
no hidden layer. For each adjective-noun phrase
and the corresponding ground truth attribute in the
training dataset, the respective 300-dimensional
vectors® @, 77 and atir are obtained by performing
a look-up in the pre-trained word embeddings.

With @ and 77 as its inputs, the neural network
computes a phrase representation € R3% at the
output layer. The error of the computed phrase
representation to the expected attribute represen-
tation attr is computed using the mean squared
error between the two vectors and is used as the
training signal for the network parameters. Note
that we do not train the embedding vectors along
with the connection weights. While this could
potentially benefit the results, we aim to explore
whether generally trained word embeddings can
be used to retrieve attribute meaning.

For our network architectures and computa-
tions, we use the deep learning library keras
(Chollet, 2016). Training takes 10 iterations over
the training data; weights are optimized using the
stochastic optimization method Adam (Kingma
and Ba, 2015). For the use of pre-trained word

*We found a random initialization of all entries to perform
substantially worse.

3This is the number of dimensions in the pre-trained word
embeddings from Mikolov et al. (2013b).



vectors (Mikolov et al., 2013b)* in a Python envi-
ronment, we rely on the Gensim library (Rehiifek
and Sojka, 2010).

4 Attribute Selection Experiments

In this experiment, we evaluate the compositional
models defined in Section 3.2 on the attribute se-
lection task.

4.1 Data

We use the HeiPLAS data set (Hartung, 2015)
which contains adjective-attribute-noun triples
that were heuristically extracted from WordNet
(Miller and Fellbaum, 1998) and manually filtered
by linguistic curators. The data is separated into
development and test set (comprising 869 and 729
triples, respectively, which correspond to a to-
tal of 254 target attributes). The target attributes
are subdivided into various semantically homoge-
neous subsets, as shown in Table 1. Due to cov-
erage issues in the pre-trained word2vec embed-
dings (Mikolov et al., 2013a), some adjectives and
nouns from HeiPLAS cannot be projected into the
embedding space’.

4.2 Experiment 1: Large-scale Attribute
Selection

Experimental Procedure. Composition models
as described in Section 3.2.2 are trained on all
triples in HeiPLAS-Dev (following the proce-
dure described in Section 3.2.3) and evaluated on
HeiPLAS-Test. The word vector representations
corresponding to the adjective and the noun in a
test triple are composed into a phrase vector by
applying the trained composition function. Using
nearest neighbour search in S as described in Sec-
tion 3.2, all test attributes are ranked wrt. their sim-
ilarity to the composed phrase vector. For eval-
uation, we use precision-at-rank to measure the
number of times the correct attribute is ranked as
most similar to the phrase vector or among the first
five ranks (P@1 and P@35, respectively).

Baseline Semantic Spaces. We directly com-
pare our approach against the results of two count-
based distributional models, C-LDA and L-LDA
(Hartung, 2015), on the same evaluation data. C-
LDA and L-LDA induce distributional adjective

*Available from https://drive.google.com/
file/d/0B7XkCwpI5SKDYNINUTT1SS21pQmM/
edit?usp=sharing

5This affects 54 triples in HeiPLAS-Dev and 44 triples in
HeiPLAS-Test, which were removed from the evaluation.
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and noun vectors over attributes as dimensions of
meaning, which are composed into phrase repre-
sentations using pointwise vector multiplication.
Using these models for comparison enables us
to assess both the impact of different types of
word representations (dense CBOW word embed-
dings vs. specifically tailored attribute-based dis-
tributional word vectors) and different approaches
to compositionality (pre-defined vector mixture
operations on attribute-specific word representa-
tions vs. trained composition functions for pro-
moting generalized attribute meaning in word em-
beddings).

Results. Results of Experiment 1 are shown in
Table 2. The upper part of the table contains
the results based on word embeddings (comprising
non-parametric, parametric, dilation and trainable
composition models); the count-based C-LDA and
L-LDA baselines are displayed below.

Focussing on the non-parametric models first,
we find that relying on the adjective embedding as
a surrogate of a composed representation already
outperforms both count models by a wide margin.
This indicates a clear advantage of CBOW embed-
dings over count-based representations for captur-
ing attribute meaning at the word level. However,
this holds only for adjectives; noun embeddings in
isolation perform much worse.

This is confirmed by the dilation results: Di-
lating the noun representation into the direction
of the adjective performs considerably better than
vice versa, while there is no improvement beyond
the non-compositional adjective baseline. These
findings are in line with Hartung (2015) and Har-
tung and Frank (2011a) who also observed that ad-
jective representations capture more of the com-
positional attribute semantics in adjective-noun
phrases than noun representations do.

Considering the trained composition models,
we find that weighting either the adjective or the
noun in a full additive model substantially outper-
forms the respective non-compositional baseline.
The overall best results are obtained by assigning
trained weights to both the adjective and the noun
embedding (P@1=0.56). This model also out-
performs weighted vector addition® using scalar
weights by great margins.

The weighted vector addition scores shown in Table 2 are
based on optimized parameters as reported by Mitchell and
Lapata (2010): «=0.88 and $=0.12. By shifting the param-
eters further into the direction of the adjective (i.e., a=0.90;
£=0.10), P@1 slightly increases to 0.34.



Num. Num.
Subset Attributes  Train. Triples Example Phrases
Core 10 72 silvery hair (COLOR), huge wave (S1ZE), longstanding conflict (DURATION)
Selected 23 153 sufficient food (QUANTITY), grave decision (IMPORTANCE), broad river (WIDTH)
Measurable 65 261 heavy load (WEIGHT), short hair (LENGTH), slow walker (SPEED)
Property 73 300 young people (AGE), high mountain (HEIGHT), straight line (SHAPE)
All 254 869 dry paint (WETNESS), scentless wisp (SMELL), vehement defense (STRENGTH)

Table 1: Overview of subsets of attributes contained in HeiPLAS data, together with example phrases

Compositional Model P@1 P@5
Adjective 0.33  0.50
Noun 0.03  0.10
Vector Addition () 0.24 045
=  Weighted Vector Addition 033 0.1
B Vector Multiplication (®) 0.00 0.02
£ Adj. Dilation (A = 2) 0.06 0.18
% Noun Dilation (A = 2) 033 051
& Full Add. Weighted Noun 033 054
Full Add. Weighted Adjective 046  0.71
Full Add. Weighted Adj. and Noun 0.56  0.75
Trained Tensor Product (®) 0.44  0.57
§ C-LDA (Hartung, 2015) 0.09 n/a
S L-LDA (Hartung, 2015) 0.16 n/a

Table 2: Results of Experiment 1; evaluation on
all phrases from HeiPLAS-Test

In comparison to the best full additive model,
the tensor product underperforms by more than
10 points in P@1 and also falls short of weight-
ing only the adjective. This is in line with a gen-
eral preference of word embeddings for additive
models (Mikolov et al., 2013a), which is also con-
firmed by the non-parametric composition func-
tions. On the other hand, we conjecture that the
relatively small size of the training set used here
is not sufficient for optimally tuning the 3002 pa-
rameters in the learned tensor.

4.3 Experiment 2: Generalization Power

In this experiment, we are interested in assessing
the generalization power of the best-performing
composition function as trained in Experiment 1.
More precisely, we investigate the hypothesis that
a full additive model captures a generalized com-
positional process in the semantics of attribute-
denoting adjective-noun phrases rather than the
lexical meaning of individual attributes (cf. Bride
et al. (2015)).

We evaluate this hypothesis wrt. (i) the fit of the
composition function to different subsets of testing
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Figure 1: Attribute selection performance of the
full additive model after training on all attributes,
specific subsets, and in zero-shot learning

attributes, and (ii) its predictive capacity in a zero-
shot learning scenario.

Subsets of Testing Attributes. First, we com-
pare the fit of the composition function that has
been trained on all attributes (cf. Experiment 1)
on the different subsets of attributes in HeiPLAS-
Test, as displayed in Table 1.

The results of this experiment are shown in Fig-
ure 1. As can be seen from the solid bars in the
plot, the attribute selection performance on indi-
vidual subsets is considerably stronger than on
the entire inventory, ranging from P@1=0.82 on
the Core subset to P@1=0.64 on the Property and
Measurable subsets (compared to P@1=0.56 on
all attributes; cf. Table 2). The cross-hatched bars
in the figure indicate the relative differences that
result from re-training a composition function on
the specific subset of interest. The improvements
are consistently small (max. +0.08 on the Selected
and Measurable subsets); in case of the Property
subset, there is no difference at all.

Zero-Shot Learning. As defined by Palatucci et
al. (2009), zero-shot learning is the task of learn-
ing a classifier for predicting novel class labels un-



seen during training. In order to assess the selec-
tion performance of our model in a zero-shot set-
ting, we create four zero-shot training sets by re-
moving from HeiPLAS-Train all attributes that are
contained in each of the subsets described in Ta-
ble 1, respectively. The corresponding subset from
HeiPLAS-Test is used for evaluation afterwards.
The zero-shot results are shown by the diago-
nally hatched bars in Fig. 1. We find that Core
attributes, without being seen during training, can
be predicted at a performance of P@1=0.68. On
larger subsets, zero-shot performance decreases
(down to P@1=0.32 on Property attributes). Yet,
we consider these results very decent overall,
given that they are largely comparable or even su-
perior (except for the Selected subset) to the best
scores of the distributional L-LDA model (Har-
tung, 2015) as shown by the plain bars in Fig. 1.
Even though benefits from attribute-specific
training cannot be denied, we find that the trained
compositionality function is largely capable of
generalizing over individual target attributes.

4.4 Discussion

Our experiments on attribute selection show that
CBOW word embeddings can be effectively har-
nessed for carving out attribute meaning from
adjective-noun phrases. Observed improvements
over the previous state-of-the-art are due to the
type of word representation as such (dense neu-
ral embeddings vs. distributional count models) as
well as a learned compositionality function based
on a full additive model capitalizing on weight
matrices for balancing the contributions of adjec-
tives and nouns. Moreover, we were able to show
that the compositionality function captures a gen-
eralized compositional process in the semantics
of attribute-denoting adjective-noun phrases rather
than the lexical meaning of individual attributes.
Therefore, the proposed approach (i) poses an
interesting alternative to previous distributional
models which explicitly encode attribute meaning
in word vectors and rely on vector mixture opera-
tions in order to compose them into attribute-based
phrase representations, and (ii) bears the potential
of being used as a generalized attribute extraction
model on various domains of applications that de-
mand for different attribute inventories.
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S Similarity Prediction Experiments

In this experiment, we assess the scalability of the
previously trained composition models to different
tasks by applying them to the prediction of seman-
tic similarity in pairs of adjective-noun phrases.

5.1 Data

Our experiments are based on the adjective-noun
section of the evaluation data set released by
Mitchell and Lapata (2010). It consists of 108
pairs of adjective-noun phrases that were rated for
similarity on a 7-point scale’ by 54 human judges.
In total, the data set comprises 1944 data points.

5.2 Experiment 3: Predicting
Adjective-Noun Phrase Similarity

Experimental Procedure. For a given pair of
adjective-noun phrases, we compute two phrase
representations using word embeddings as word
representations and compositionality functions
trained on the HeiPLAS-Core subset, which
achieved the best attribute selection results in Ex-
periments 1 and 2. In the next step, we compute
the cosine similarity between these two phrase
representations. We correlate the results with hu-
man similarity ratings using Spearman’s p and
compare the resulting correlation scores to the re-
ported results of Mitchell and Lapata (2010).

Baseline Models. We compare our models
against the following approaches from the litera-
ture which were evaluated on the same data set:
C-LDA (Hartung and Frank, 2011a), M&L-BoW
and M&L-Topic (both by Mitchell and Lapata
(2010)). All baseline models are count-based dis-
tributional models which differ in their underly-
ing representation of word meaning: M&L-BoW
relies on bag-of-words context windows, M&L-
Topic and C-LDA use topics and attribute nouns
as dimensions of meaning, respectively.

Results. As shown in Table 3, the best cor-
relation scores between human similarity judg-
ments and model predictions are achieved by our
model that is built upon word embeddings and a
trained full additive composition function based
on weighting adjective and noun vectors (p=0.50).
This model outperforms all distributional base-
line models using vector mixtures as composition
functions.

7A score of 1 expresses low similarity between phrases, 7
indicates high similarity.



Underlying Word o o Weighted Full
Representation Addition Additive
word2vec 0.36 048 0.42 0.50
M&L-BoW 046 0.36 0.44 n/a
M&L-Topic 025 0.37 0.38 n/a
C-LDA 0.28 0.19 n/a n/a

Table 3: Results of Experiment 3 (Spearman’s p
between human judgments and model predictions)

With respect to weighted addition, all results re-
ported in Table 3 are based on the weighting pa-
rameters (a=0.88; 5=0.12) that have been found
as optimal by Mitchell and Lapata (2010). Based
on a grid search, we find «=0.60 and 5=0.40 to
be the best weighting parameters on our data. In
this setting, the performance of the weighted vec-
tor addition model on word2vec embeddings can
be increased to p=0.47, which is still slightly be-
low unweighted vector addition on embeddings
(p=0.48). Apparently, scalar weights in pointwise
vector addition are quite sensitive to the under-
lying word representation. In the particular case
of using word embeddings for similarity predic-
tion, the contribution of the noun to the compo-
sitional semantics of the phrase seems to be rela-
tively stronger than in the attribute selection task
(cf. Experiment 1).

In total, these results indicate that composition-
ality functions optimized on the task of attribute
selection can be effectively transferred to similar-
ity prediction. This suggests that attribute mean-
ing might be a prominent source of similarity in
adjective-noun phrases, which will be subject to a
closer investigation in the next experiment.

5.3 Experiment 4: Interpreting the Source of
Similarity

Research in distributional semantics tends to fo-
cus on the degree of similarity between words or
phrases, while the source of similarity is largely
neglected (cf. Hartung (2015)). In this experiment,
we hypothesize that attribute meaning provides a
plausible explanation for the observed degree of
similarity in phrase pairs from the M&L data set.

Experimental Procedure. For a given phrase
pair, we compute the top-5 most similar attributes
for each phrase in terms of their nearest neigh-
bours in S (cf. Section 3.2). Then, both phrases
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Figure 2: ASTA-5 scores over different levels of
human similarity ratings (cf. Experiment 4)

are compared wrt. the proportion of shared at-
tributes within these top-5 predictions. Averag-
ing this score over all phrase pairs which were as-
signed a particular similarity rating by the human
judges yields an Average Shared Top-5 Attributes
(ASTA-5) score for this similarity level.

Results. Figure 2 plots ASTA-5 scores at differ-
ent levels of human similarity ratings. We observe
a general trend across all compositionality func-
tions investigated: The higher the rating cutoff,
the higher the number of shared attributes. Thus,
with increasing similarity between two phrases
(according to human ratings), the proportion of
shared attributes in their compositional semantics
tends to increase as well. Moreover, for highly
similar pairs (rating cutoff>5), the full additive
vector addition model yields the highest ASTA-5
scores.

Beyond this quantitative analysis, two of the au-
thors manually investigated the shared attributes in
38 high-similarity phrase pairs (rating cutoff>4)
as predicted by the weighted vector addition
model wrt. their potential as plausible sources of
similarity. We find that in 28 phrase pairs (73.6%),
the predicted attribute is considered a plausible
source of similarity, in eight others (26.4%), the
predicted attribute does not explain the high sim-
ilarity. The agreement between the annotators in
terms of Fleiss” Kappa amounts to x = 0.62.

5.4 Discussion

Our results show that a full additive compositional
model trained to target attribute meaning improves
performance on similarity prediction. This sup-
ports the interpretation that attributes are (at least)



a partial source of similarity between adjective-
noun phrases. In fact, this has been corroborated
by a preliminary manual investigation of shared
attributes between high-similarity phrases. How-
ever, there is also evidence for several cases in
which attribute meaning falls short of explaining
high phrase similarity. This holds for phrases in-
volving abstract concepts, for instance (cf. Har-
tung (2015), Borghi and Binkofski (2014)).

Nevertheless, we consider it a strength of our
model that it is capable of providing plausible ex-
planations in cases where attribute meaning is the
most prominent source of similarity.

6 Conclusions

We have presented a model of attribute mean-
ing in adjective-noun phrases that capitalizes on
CBOW word embeddings. In our experiments,
the model proves remarkably versatile as it ad-
vances the state-of-the-art in the two tasks of at-
tribute selection and phrase similarity prediction.
In the latter task, the property of being fully inter-
pretable wrt. attributes as the potential source of
similarities became apparent as an additional as-
set rendering the model potentially interoperable
with knowledge representation formalisms and re-
sources.

Improvements over previous distributional
models can be traced back to two major sources:
First, CBOW word embeddings work surprisingly
well at the word level for capturing attribute
meaning in adjectives (not for nouns, though).
Future work should investigate whether fur-
ther improvements can be obtained from more
adjective-specific word embeddings that are
trained on symmetric coordination patterns
(Schwartz et al., 2016). Second, a learned
compositionality function is effective at pro-
moting attribute meaning in composed phrase
representations. Best performances across both
tasks are achieved by a full additive model with
distinct weight matrices for the adjective and noun
constituent. A trained tensor product that comes
closer to the linguistic notion of functional ap-
plication also performs well beyond the previous
state-of-the-art, while falling short of the additive
model. Apparently, more training data is needed
to exhaust the full potential of the tensor product.
Alternatively, tensor decomposition techniques
along the lines of Shah et al. (2015) may be a
possible way of coping with the large parameter
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space of the tensor approach.

Moreover, the learned compositionality func-
tion turns out to generalize well over individual
attributes, which we consider a very promising re-
sult wrt. the suitability of the model in various
NLP tasks such as aspect-based sentiment analy-
sis. In future work, we are going to extend the
present model to consider broader linguistic con-
texts and more varied syntactic configurations.
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Abstract

The fundamental role of hypernymy in
NLP has motivated the development of
many methods for the automatic identi-
fication of this relation, most of which
rely on word distribution. We investigate
an extensive number of such unsupervised
measures, using several distributional se-
mantic models that differ by context type
and feature weighting. We analyze the per-
formance of the different methods based
on their linguistic motivation. Comparison
to the state-of-the-art supervised methods
shows that while supervised methods gen-
erally outperform the unsupervised ones,
the former are sensitive to the distribution
of training instances, hurting their relia-
bility. Being based on general linguistic
hypotheses and independent from training
data, unsupervised measures are more ro-
bust, and therefore are still useful artillery
for hypernymy detection.

1 Introduction

In the last two decades, the NLP community has
invested a consistent effort in developing auto-
mated methods to recognize hypernymy. Such ef-
fort is motivated by the role this semantic relation
plays in a large number of tasks, such as taxonomy
creation (Snow et al., 2006; Navigli et al., 2011)
and recognizing textual entailment (Dagan et al.,
2013). The task has appeared to be, however,
a challenging one, and the numerous approaches
proposed to tackle it have often shown limitations.

Early corpus-based methods have exploited pat-
terns that may indicate hypernymy (e.g. “animals
such as dogs”) (Hearst, 1992; Snow et al., 2005),
but the recall limitation of this approach, requir-
ing both words to co-occur in a sentence, mo-
tivated the development of methods that rely on
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adaptations of the distributional hypothesis (Har-
ris, 1954).

The first distributional approaches were unsu-
pervised, assigning a score for each (z,y) word-
pair, which is expected to be higher for hyper-
nym pairs than for negative instances. Evalua-
tion is performed using ranking metrics inherited
from information retrieval, such as Average Pre-
cision (AP) and Mean Average Precision (MAP).
Each measure exploits a certain linguistic hypoth-
esis such as the distributional inclusion hypothesis
(Weeds and Weir, 2003; Kotlerman et al., 2010)
and the distributional informativeness hypothesis
(Santus et al., 2014; Rimell, 2014).

In the last couple of years, the focus of the re-
search community shifted to supervised distribu-
tional methods, in which each (z,y) word-pair is
represented by a combination of z and y’s word
vectors (e.g. concatenation or difference), and a
classifier is trained on these resulting vectors to
predict hypernymy (Baroni et al., 2012; Roller et
al., 2014; Weeds et al., 2014). While the origi-
nal methods were based on count-based vectors,
in recent years they have been used with word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014), and have gained popularity thanks to their
ease of use and their high performance on sev-
eral common datasets. However, there have been
doubts on whether they can actually learn to rec-
ognize hypernymy (Levy et al., 2015b).

Additional recent hypernymy detection meth-
ods include a multimodal perspective (Kiela et al.,
2015), a supervised method using unsupervised
measure scores as features (Santus et al., 2016a),
and a neural method integrating path-based and
distributional information (Shwartz et al., 2016).

In this paper we perform an extensive evalua-
tion of various unsupervised distributional mea-
sures for hypernymy detection, using several dis-
tributional semantic models that differ by context
type and feature weighting. Some measure vari-
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ants and context-types are tested for the first time.!

We demonstrate that since each of these mea-
sures captures a different aspect of the hypernymy
relation, there is no single measure that consis-
tently performs well in discriminating hypernymy
from different semantic relations. We analyze the
performance of the measures in different settings
and suggest a principled way to select the suitable
measure, context type and feature weighting ac-
cording to the task setting, yielding consistent per-
formance across datasets.

We also compare the unsupervised measures to
the state-of-the-art supervised methods. We show
that supervised methods outperform the unsuper-
vised ones, while also being more efficient, com-
puted on top of low-dimensional vectors. At the
same time, however, our analysis reassesses pre-
vious findings suggesting that supervised meth-
ods do not actually learn the relation between the
words, but only characteristics of a single word in
the pair (Levy et al., 2015b). Moreover, since the
features in embedding-based classifiers are latent,
it is difficult to tell what the classifier has learned.
We demonstrate that unsupervised methods, on the
other hand, do account for the relation between
words in a pair, and are easily interpretable, being
based on general linguistic hypotheses.

2 Distributional Semantic Spaces

We created multiple distributional semantic spaces
that differ in their context type and feature weight-
ing. As an underlying corpus we used a concate-
nation of the following two corpora: ukwac (Fer-
raresi, 2007), a 2-billion word corpus constructed
by crawling the .uk domain, and wackypedia EN
(Baroni et al., 2009), a 2009 dump of the English
Wikipedia. Both corpora include POS, lemma
and dependency parse annotations. Our vocabu-
lary (of target and context words) includes only
nouns, verbs and adjectives that occurred at least
100 times in the corpus.

Context Type We use several context types:

Window-based contexts: the contexts of a tar-
get word w; are the words surrounding it in a k-
sized window: Wi—fy ooy Wi—1, Wig1seery Witk
If the context-type is directional, words occur-
ring before and after w; are marked differently,
ie wi—g/ly oy wim1 /L w1 )7y oy Witk /T

'Our code and data are available at:
https://github.com/veredl1986/UnsupervisedHypernymy
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cute cats drink milk
ADJ NOUN VERB NOUN

Figure 1: An example dependency tree of the sentence cute
cats drink milk, with the target word cats. The dependency-
based contexts are drink-v:nsubj and cute-a:amod~'. The
joint-dependency context is drink-v#milk-n. Differently from
Chersoni et al. (2016), we exclude the dependency tags to
mitigate the sparsity of contexts.

Out-of-vocabulary words are filtered out before
applying the window. We experimented with
window sizes 2 and 5, directional and indirec-
tional (win2, win2d, win5, win5d).

Dependency-based contexts: rather than adja-
cent words in a window, we consider neighbors
in a dependency parse tree (Pad6 and Lapata,
2007; Baroni and Lenci, 2010). The contexts
of a target word w; are its parent and daughter
nodes in the dependency tree (dep). We also
experimented with a joint dependency context
inspired by Chersoni et al. (2016), in which the
contexts of a target word are the parent-sister
pairs in the dependency tree (joint). See Fig-
ure 1 for an illustration.

Feature Weighting Each distributional seman-
tic space is spanned by a matrix M in which each
row corresponds to a target word while each col-
umn corresponds to a context. The value of each
cell M; ; represents the association between the
target word w; and the context c;. We experi-
mented with two feature weightings:

e Frequency - raw frequency (no weighting):
M; ; is the number of co-occurrences of w; and
c; in the corpus.

e Positive PMI (PPMI) - pointwise mutual in-
formation (PMI) (Church and Hanks, 1990)
is defined as the log ratio between the joint
probability of w and ¢ and the product of
their marginal probabilities: PMI(w,c) =
log%, where P(w), P(c), and P(w,c)
are estimated by the relative frequencies of
a word w, a context ¢ and a word-context
pair (w,c), respectively. To handle unseen
pairs (w, ¢), yielding PMI(w,c) = log(0) =
—o0, PPMI (Bullinaria and Levy, 2007) assigns
zero to negative PMI scores: PPMI(w,c) =
mazx(PMI(w,c),0).

In addition, one of the measures we used (San-
tus et al., 2014) required a third feature weighting:



e Positive LMI (PLMI) - positive local mu-
tual information (PLMI) (Evert, 2005; Ev-
ert, 2008). PPMI was found to have a bias
towards rare events. PLMI simply balances
PPMI by multiplying it by the co-occurrence
frequency of w and ¢: PLMI(w,c) =
freq(w,c) - PPMI(w,c).

3 Unsupervised Hypernymy Detection
Measures

We experiment with a large number of unsuper-
vised measures proposed in the literature for dis-
tributional hypernymy detection, with some new
variants. In the following section, ¥, and %, de-
note x and y’s word vectors (rows in the matrix
M). We consider the scores as measuring to what
extent y is a hypernym of z (z — y).

3.1 Similarity Measures

Following the distributional hypothesis (Harris,
1954), similar words share many contexts, thus
have a high similarity score. Although the hyper-
nymy relation is asymmetric, similarity is one of
its properties (Santus et al., 2014).

e Cosine Similarity (Salton and McGill, 1986) A
symmetric similarity measure:

¥, - 7,

cos(z,y) = ——=—
e AN

e Lin Similarity (Lin, 1998) A symmetric simi-
larity measure that quantifies the ratio of shared
contexts to the contexts of each word:

Yeev,n, [V[c] + y[c]]
Yeew, Urlc] + Eceﬁyﬁy [c]

Lin(z,y) =

e APSyn (Santus et al., 2016b) A symmetric
measure that computes the extent of intersec-
tion among the N most related contexts of two
words, weighted according to the rank of the
shared contexts (with N as a hyper-parameter):

1
ECEN(ﬁw)mN(ﬁy) rankg(c)+ranky(c)
2

APSyn(z,y) =

3.2 Inclusion Measures

According to the distributional inclusion hypothe-
sis, the prominent contexts of a hyponym (x) are
expected to be included in those of its hypernym

).
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e Weeds Precision (Weeds and Weir, 2003) A
directional precision-based similarity measure.
This measure quantifies the weighted inclusion
of z’s contexts by y’s contexts:

Eceffgc Ny ﬁx [C]
Eceﬁxﬁm [C]

e cosWeeds (Lenci and Benotto, 2012) Geomet-

ric mean of cosine similarity and Weeds preci-
sion:

WeedsPrec(x — y) =

cosWeeds(x — y) \/cos (z,y) - WeedsPrec(z — y)

e ClarkeDE (Clarke, 2009) Computes degree of
inclusion, by quantifying weighted coverage of
the hyponym’s contexts by those of the hyper-
nym:

ZCEUxﬂvymZ”( Ux[c], Uylc])

cevzﬁ [ ]

e balAPinc (Kotlerman et al., 2010) Balanced av-
erage precision inclusion.

S [P(r) - rel(cy)]
Ny

CDE(x — y) =

APinc(z — y) =

is an adaptation of the average precision mea-
sure from information retrieval for the inclusion
hypothesis. N, is the number of non-zero con-
texts of y and P(r) is the precision at rank r,
defined as the ratio of shared contexts with y
among the top r contexts of z. rel(c) is the
relevance of a context ¢, set to 0 if ¢ is not

a context of 7, and to 1 — T%lﬁ(f) otherwise,

where rank,(c) is the rank of the context c in
y’s sorted vector. Finally,

bal APinc(x — y) = \/Lin(z,y) - APinc(z — y)
is the geometric mean of APinc and Lin similar-
ity.

e invCL (Lenci and Benotto, 2012) Measures
both distributional inclusion of x in y and dis-
tributional non-inclusion of y in x:

invCL(z — y) = \/CDE(x —vy) - (1— CDE(y — x))

3.3 Informativeness Measures

According to the distributional informativeness
hypothesis, hypernyms tend to be less informative
than hyponyms, as they are likely to occur in more
general contexts than their hyponyms.
e SLQS (Santus et al., 2014)
SLQS(x —y)=1— s
By
The informativeness of a word z is evaluated as
the median entropy of its top N contexts: F, =
median?¥ | (H(c;)), where H(c) is the entropy
of context c.



e SLQS Sub A new variant of SLQS based on
the assumption that if y is judged to be a hyper-
nym of x to a certain extent, then = should be
judged to be a hyponym of y to the same extent
(which is not the case for regular SLQS). This
is achieved by subtraction:

SLQSsup(x = y) = By — E,

It is weakly symmetric in the sense that
SLQSsub(x — y) = _SLQSsub(y — 1‘)

SLQS and SLQS Sub have 3 hyper-parameters:
i) the number of contexts /N; ii) whether to
use median or average entropy among the top
N contexts; and iii) the feature weighting used
to sort the contexts by relevance (i.e., PPMI or
PLMI).

SLQS Row Differently from SLQS, SLQS Row
computes the entropy of the target rather than
the average/median entropy of the contexts, as
an alternative way to compute the generality of
aword.? In addition, parallel to SLQS we tested
SLQS Row with subtraction, SLQS Row Sub.

RCTC (Rimell, 2014) Ratio of change in topic
coherence:

ROTC(x — y) = Tc(t:c)/TC(tz\y)

B Tc(ty)/Tc(ty\x)

where t, are the top IV contexts of z, considered
as a’s topic, and t;,, are the top N contexts of
x which are not contexts of y. T'C(A) is the
topic coherence of a set of words A, defined as
the median pairwise PMI scores between words
in A. N is a hyper-parameter. The measure
is based on the assumptions that excluding y’s
contexts from z’s increases the coherence of the
topic, while excluding x’s contexts from y’s de-
creases the coherence of the topic. We include
this measure under the informativeness inclu-
sion, as it is based on a similar hypothesis.

3.4 Reversed Inclusion Measures

These measures are motivated by the fact that,
even though—being more general—hypernyms
are expected to occur in a larger set of contexts,
sentences like “the vertebrate barks” or “the mam-
mal arrested the thieves” are not common, since
hyponyms are more specialized and are hence
more appropriate in such contexts. On the other

In our preliminary experiments, we noticed that the
entropies of the targets and those of the contexts are not
highly correlated, yielding a Spearman’s correlation of up
to 0.448 for window based spaces, and up to 0.097 for the
dependency-based ones (p < 0.01).
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dataset relations #instances size
hypernym 1,337
meronym 2,943
coordination 3,565
BLESS event 3828 | 26,554
attribute 2,731
random-n 6,702
random-v 3,265
random-j 2,187
hypernym 3,637
meronym 1,819
EVALution attribute 2,965 13,465°
synonym 1,888
antonym 3,156
hypernym 1,933
Lenci/Benotto synonym 1,311 5,010
antonym 1,766
hypernym 1,469
Weeds coordination 1,459 2,928

Table 1: The semantic relations, number of instances in each
relation, and size of each dataset.

hand, hyponyms are likely to occur in broad con-
texts (e.g. eat, live), where hypernyms are also ap-
propriate. In this sense, we can define the reversed
inclusion hypothesis: ‘“hypernym’s contexts are
likely to be included in the hyponym’s contexts”.
The following variants are tested for the first time.

e Reversed Weeds
RevWeeds(x — y) = Weeds(y — x)

¢ Reversed ClarkeDE
RevCDE(x — y) = CDE(y — x)

4 Datasets

We use four common semantic relation datasets:
BLESS (Baroni and Lenci, 2011), EVALution
(Santus et al., 2015), Lenci/Benotto (Benotto,
2015), and Weeds (Weeds et al., 2014). The
datasets were constructed either using knowledge
resources (e.g. WordNet, Wikipedia), crowd-
sourcing or both. The semantic relations and the
size of each dataset are detailed in Table 1.

In our distributional semantic spaces, a target
word is represented by the word and its POS tag.
While BLESS and Lenci/Benotto contain this in-
formation, we needed to add POS tags to the other
datasets. For each pair (z,y), we considered 3
pairs (z-p, y-p) for p € {noun, adjective, verb},
and added the respective pair to the dataset only if
the words were present in the corpus.*

3We removed the entailment relation, which had too few
instances, and conflated relations to coarse-grained relations
(e.g. HasProperty and HasA into attribute).

“Lenci/Benotto includes pairs to which more than one re-
lation is assigned, e.g. when « or y are polysemous, and re-



dataset hyper vs. relation measure context fe.atur.'e hyper-parameters AP@100 | AP@AIl
type weighting
all other relations invCL joint freq - 0.661 0.353
meronym APSyn joint freq N=500 0.883 0.675
attribute APSyn joint freq N=500 0.88 0.651
joint freq 0.74 0.54
EVALution antonym SLQS_row joint ppmi - 0.74 0.55
joint plmi 0.74 0.537
joint freq 0.83 0.647
synonym SLQS _row joint ppmi - 0.83 0.657
joint plmi 0.83 0.645
all other relations invCL win5 freq - 0.54 0.051
meronym SLQSsup win5d freq N=100, median, plmi 1.0 0.76
SLQS win5d freq N=100, median, plmi 1.0 0.758
BLESS coord SLQSsup joint freq N=50, average, plmi 0.995 0.537
. SLQSsup dep plmi N=70, average, plmi 1.0 0.74
attribute cosine joint freq - 1.0 0.622
event APSyn dep freq N=1000 1.0 0.779
Lenci/ all other relations APSyn joint freq N=1000 0.617 0.382
Benotto antonym APSyn dep freq N=1000 0.861 0.624
synonym SLQS _rowsup joint ppmi - 0.948 0.725
Weeds all other relations clarkeDE win5d freq - 0911 0.441
coord clarkeDE win5d freq - 0.911 0.441

Table 2: Best performing unsupervised measures on each dataset in terms of Average Precision (AP) at k = 100, for hypernym
vs. all other relations and vs. each single relation. AP for £ = all is also reported for completeness. We excluded the
experiments of hypernym vs. random-(n, v, j) for brevity; most of the similarity and some of the inclusion measures achieve

AP@100 = 1.0 in these experiments.

We split each dataset randomly to 90% test and
10% validation. The validation sets are used to
tune the hyper-parameters of several measures:
SLQS (Sub), APSyn and RCTC.

S Experiments

5.1 Comparing Unsupervised Measures

In order to evaluate the unsupervised measures
described in Section 3, we compute the measure
scores for each (i, y) pair in each dataset. We first
measure the method’s ability to discriminate hy-
pernymy from all other relations in the dataset, i.e.
by considering hypernyms as positive instances,
and other word pairs as negative instances. In ad-
dition, we measure the method’s ability to discrim-
inate hypernymy from every other relation in the
dataset by considering one relation at a time. For
a relation R we consider only (x,y) pairs that are
annotated as either hypernyms (positive instances)
or R (negative instances). We rank the pairs ac-
cording to the measure score and compute average
precision (AP) at £k = 100 and k = all?

lated differently in each sense. We consider y as a hypernym
of z if hypernymy holds in some of the words’ senses. There-
fore, when a pair is assigned both hypernymy and another
relation, we only keep it as hypernymy.

>We tried several cut-offs and chose the one that seemed
to be more informative in distinguishing between the unsu-
pervised measures.
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Table 2 reports the best performing measure(s),
with respect to AP@100, for each relation in each
dataset. The first observation is that there is no
single combination of measure, context type and
feature weighting that performs best in discrimi-
nating hypernymy from all other relations. In or-
der to better understand the results, we focus on
the second type of evaluation, in which we dis-
criminate hypernyms from each other relation.

The results show preference to the syntactic
context-types (dep and joint), which might be ex-
plained by the fact that these contexts are richer
(as they contain both proximity and syntactic in-
formation) and therefore more discriminative. In
feature weighting there is no consistency, but in-
terestingly, raw frequency appears to be success-
ful in hypernymy detection, contrary to previously
reported results for word similarity tasks, where
PPMI was shown to outperform it (Bullinaria and
Levy, 2007; Levy et al., 2015a).

The new SLQS variants are on top of the list
in many settings. In particular they perform well
in discriminating hypernyms from symmetric re-
lations (antonymy, synonymy, coordination).

The measures based on the reversed inclu-
sion hypothesis performed inconsistently, achiev-
ing perfect score in the discrimination of hyper-
nyms from unrelated words, and performing well



[ relation [ measure [ context type [ feature weighting ]
cosWeeds dep ppmi
meronym Weeds dep / joint ppmi
ClarkeDE dep / joint ppmi / freq
APSyn joint freq
attribute cos.ine joint freq.
Lin dep ppmi
cosine dep ppmi
antonym SLQS - -
SLQS _row joint (freq/ppmi/plmi)
synonym SLQS_row/SLQS _row_sub dep ppmi
invCL win2/5/5d freq
coordination -

Table 3: Intersection of datasets’ top-performing measures when discriminating between hypernymy and each other relation.

in few other cases, always in combination with
syntactic contexts.

Finally, the results show that there is no single
combination of measure and parameters that per-
forms consistently well for all datasets and classi-
fication tasks. In the following section we analyze
the best combination of measure, context type and
feature weighting to distinguish hypernymy from
any other relation.

5.2 Best Measure Per Classification Task

We considered all relations that occurred in two
datasets. For such relation, for each dataset, we
ranked the measures by their AP@100 score, se-
lecting those with score > 0.8.% Table 3 displays
the intersection of the datasets’ best measures.

Hypernym vs. Meronym The inclusion hy-
pothesis seems to be most effective in discriminat-
ing between hypernyms and meronyms under syn-
tactic contexts. We conjecture that the window-
based contexts are less effective since they capture
topical context words, that might be shared also
among holonyms and their meronyms (e.g. car
will occur with many of the neighbors of wheel).
However, since meronyms and holonyms often
have different functions, their functional contexts,
which are expressed in the syntactic context-types,
are less shared. This is where they mostly differ
from hyponym-hypernym pairs, which are of the
same function (e.g. cat is a type of animal).

Table 2 shows that SLQS performs well in this
task on BLESS. This is contrary to previous find-
ings that suggested that SLQS is weak in dis-
criminating between hypernyms and meronyms,
as in many cases the holonym is more general
than the meronym (Shwartz et al., 2016).” The

®We considered at least 10 measures, allowing scores

slightly lower than 0.8 when others were unavailable.
"In the hypernymy dataset of Shwartz et al. (2016),
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surprising result could be explained by the nature
of meronymy in this dataset: most holonyms in
BLESS are rather specific words.

BLESS was built starting from 200 basic level
concepts (e.g. goldfish) used as the x words, to
which y words in different relations were asso-
ciated (e.g. eye, for meronymy; animal, for hy-
pernymy). x words represent hyponyms in the
hyponym-hypernym pairs, and should therefore
not be too general. Indeed, SLQS assigns high
scores to hyponym-hypernym pairs. At the same
time, in the meronymy relation in BLESS, x is
the holonym and y is the meronym. For consis-
tency with EVALution, we switched those pairs in
BLESS, placing the meronym in the x slot and the
holonym in the y slot. As a consequence, after the
switching, holonyms in BLESS are usually rather
specific words (e.g., there are no holonyms like
animal and vehicle, as these words were originally
in the y slot). In most cases, they are not more gen-
eral than their meronyms ((eye, goldfish)), yielding
low SLQS scores which are easy to separate from
hypernyms. We note that this is a weakness of the
BLESS dataset, rather than a strength of the mea-
sure. For instance, on EVALution, SLQS performs
worse (ranked only as high as 13th), as this dataset
has no such restriction on the basic level concepts,
and may contain pairs like (eye, animal).

Hypernym vs. Attribute Symmetric similar-
ity measures computed on syntactic contexts suc-
ceed to discriminate between hypernyms and at-
tributes. Since attributes are syntactically different
from hypernyms (in attributes, y is an adjective),
it is unsurprising that they occur in different syn-
tactic contexts, yielding low similarity scores.

nearly 50% of the SLQS false positive pairs were meronym-
holonym pairs, in many of which the holonym is more general
than the meronym by definition, e.g. (mauritius, africa).



hvper vs best supervised best unsupervised

dataset r):ell)a tion. thod ¢ It AP measure context feature AP
method | vectors | penally | @100 type | weighting | @100
meronym concat | dep-based Lo 0.998 APSyn joint freq 0.886
. attribute concat | Glove-100 Lo 1.000 invCL dep ppmi 0.877
EVALution antonym concat | dep-based Lo 1.000 invCL joint ppmi 0.773
synonym concat dep-based Ly 0.996 SLQSsup win2 plmi 0.813
meronym concat Glove-50 Ly 1.000 SLQSsup win5 freq 0.939
coord concat | Glove-300 Ly 1.000 || SLQS_rowsys joint plmi 0.938
attribute concat | Glove-100 Ly 1.000 SLQSsup dep freq 0.938
BLESS event concat | Glove-100 Ly 1.000 SLQSsup dep freq 0.847
random-n concat word2vec Ly 0.995 cosWeeds win2d ppmi 0.818
random-j concat | Glove-200 Ly 1.000 SLQSsup dep freq 0.917
random-v concat word2vec Ly 1.000 SLQSsup dep freq 0.895
Lenci/ antonym concat | dep-based Lo 0.917 invCL joint ppmi 0.807
Benotto synonym concat | Glove-300 Ly 0.946 invCL win5d freq 0.914
Weeds coord concat | dep-based Lo 0.873 invCL VYII:12d freq. 0.824

SLQS rowsus joint ppmi

Table 4: Best performance on the validation set (10%) of each dataset for the supervised and unsupervised measures, in terms
of Average Precision (AP) at k = 100, for hypernym vs. each single relation.

Hypernym vs. Antonym In all our experi-
ments, antonyms were the hardest to distinguish
from hypernyms, yielding the lowest performance.
We found that SLQS performed reasonably well in
this setting. However, the measure variations, con-
text types and feature weightings were not consis-
tent across datasets. SLQS relies on the assump-
tion that y is a more general word than x, which is
not true for antonyms, making it the most suitable
measure for this setting.

Hypernym vs. Synonym SLQS performs well
also in discriminating between hypernyms and
synonyms, in which y is also not more general
than . We observed that in the joint con-
text type, the difference in SLQS scores between
synonyms and hypernyms was the largest. This
may stem from the restrictiveness of this context
type. For instance, among the most salient con-
texts we would expect to find informative contexts
like drinks milk for cat and less informative ones
like drinks water for animal, whereas the non-
restrictive single dependency context drinks would
probably be present for both.

Another measure that works well is invCL: in-
terestingly, other inclusion-based measures assign
high scores to (x,y) when y includes many of z’s
contexts, which might be true also for synonyms
(e.g. elevator and lift share many contexts). in-
vCL, on the other hand, reduces with the ratio of
y’s contexts included in z, yielding lower scores
for synonyms.

Hypernym vs. Coordination We found no con-
sistency among BLESS and Weeds. On Weeds,
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inclusion-based measures (ClarkeDE, invCL and
Weeds) showed the best results. The best per-
forming measures on BLESS, however, were vari-
ants of SLQS, that showed to perform well in
cases where the negative relation is symmetric
(antonym, synonym and coordination). The dif-
ference could be explained by the nature of the
datasets: the BLESS test set contains 1,185 hy-
pernymy pairs, with only 129 distinct ys, many of
which are general words like animal and object.
The Weeds test set, on the other hand, was inten-
tionally constructed to contain an overall unique
y in each pair, and therefore contains much more
specific ys (e.g. (quirk, strangeness)). For this rea-
son, generality-based measures perform well on
BLESS, and struggle with Weeds, which is han-
dled better using inclusion-based measures.

5.3 Comparison to State-of-the-art
Supervised Methods

For comparison with the state-of-the-art, we eval-
uated several supervised hypernymy detection
methods, based on the word embeddings of x and
y: concatenation v, @ v, (Baroni et al., 2012), dif-
ference v, — v, (Weeds et al., 2014), and ASYM
(Roller et al., 2014). We downloaded several pre-
trained embeddings (Mikolov et al., 2013; Pen-
nington et al., 2014; Levy and Goldberg, 2014),
and trained a logistic regression classifier to pre-
dict hypernymy. We used the 90% portion (orig-
inally the test set) as the train set, and the other
10% (originally the validation set) as a test set,
reporting the best results among different vectors,




method AP@100 original | AP@100 switched A
supervised concat, word2vec, L1 0.995 0.575 -0.42
unsupervised | cosWeeds, win2d, ppmi 0.818 0.882 +0.064

Table 5: Average Precision (AP) at k = 100 of the best supervised and unsupervised methods for hypernym vs. random-n, on
the original BLESS validation set and the validation set with the artificially added switched hypernym pairs.

method and regularization factor.®

Table 4 displays the performance of the best
classifier on each dataset, in a hypernym vs. a sin-
gle relation setting. We also re-evaluated the unsu-
pervised measures, this time reporting the results
on the validation set (10%) for comparison.

The overall performance of the embedding-
based classifiers is almost perfect, and in partic-
ular the best performance is achieved using the
concatenation method (Baroni et al., 2012) with
either GloVe (Pennington et al., 2014) or the
dependency-based embeddings (Levy and Gold-
berg, 2014). As expected, the unsupervised mea-
sures perform worse than the embedding-based
classifiers, though generally not bad on their own.

These results may suggest that unsupervised
methods should be preferred only when no train-
ing data is available, leaving all the other cases to
supervised methods. This is, however, not com-
pletely true. As others previously noticed, super-
vised methods do not actually learn the relation
between z and y, but rather separate properties
of either x or y. Levy et al. (2015b) named this
the “lexical memorization” effect, i.e. memoriz-
ing that certain ys tend to appear in many positive
pairs (prototypical hypernyms).

On that account, the Weeds dataset has been
designed to avoid such memorization, with every
word occurring once in each slot of the relation.
While the performance of the supervised methods
on this dataset is substantially lower than their per-
formance on other datasets, it is yet well above the
random baseline which we might expect from a
method that can only memorize words it has seen
during training.® This is an indication that super-
vised methods can abstract away from the words.

Indeed, when we repeated the experiment with a
lexical split of each dataset, i.e., such that the train
and test set consist of distinct vocabularies, we
found that the supervised methods’ performance
did not decrease dramatically, in contrast to the

8In our preliminary experiments we also trained other
classifiers used in the distributional hypernymy detection lit-
erature (SVM and SVM+RBF kernel), that performed simi-
larly. We report the results for logistic regression, since we
use the prediction probabilities to measure average precision.
The dataset is balanced between its two classes.
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findings of Levy et al. (2015b). The large perfor-
mance gaps reported by Levy et al. (2015b) might
be attributed to the size of their training sets. Their
lexical split discarded around half of the pairs in
the dataset and split the rest of the pairs equally
to train and test, resulting in a relatively small
train set. We performed the split such that only
around 30% of the pairs in each dataset were dis-
carded, and split the train and test sets with a ratio
of roughly 90/10%, obtaining large enough train
sets.

Our experiment suggests that rather than mem-
orizing the verbatim prototypical hypernyms, the
supervised models might learn that certain regions
in the vector space pertain to prototypical hyper-
nyms. For example, device (from the BLESS train
set) and appliance (from the BLESS test set) are
two similar words, which are both prototypical
hypernyms. Another interesting observation was
recently made by Roller and Erk (2016): they
showed that when dependency-based embeddings
are used, supervised distributional methods trace
x and y’s separate occurrences in different slots of
Hearst patterns (Hearst, 1992).

Whether supervised methods only memorize or
also learn, it is more consensual that they lack the
ability to capture the relation between x and y, and
that they rather indicate how likely y () is to be
a hypernym (hyponym) (Levy et al., 2015b; San-
tus et al., 2016a; Shwartz et al., 2016; Roller and
Erk, 2016). While this information is valuable, it
cannot be solely relied upon for classification.

To better understand the extent of this limita-
tion, we conducted an experiment in a similar
manner to the switched hypernym pairs in Santus
et al. (2016a). We used BLESS, which is the only
dataset with random pairs. For each hypernym
pair (x1,y1), we sampled a word yo that partici-
pates in another hypernym pair (x2, y2), such that
(x1,y2) is not in the dataset, and added (z1,y2)
as a random pair. We added 139 new pairs to the
validation set, such as (rifle, animal) and (salmon,
weapon). We then used the best supervised and
unsupervised methods for hypernym vs. random-
n on BLESS to re-classify the revised validation
set. Table 5 displays the experiment results.



The switched hypernym experiment paints a
much less optimistic picture of the embeddings’
actual performance, with a drop of 42 points in
average precision. 121 out of the 139 switched
hypernym pairs were falsely classified as hyper-
nyms. Examining the y words of these pairs re-
veals general words that appear in many hypernym
pairs (e.g. animal, object, vehicle). The unsuper-
vised measure was not similarly affected by the
switched pairs, and the performance even slightly
increased. This result is not surprising, since most
unsupervised measures aim to capture aspects of
the relation between z and y, while not relying on
information about one of the words in the pair.'”

6 Discussion

The results in Section 5 suggest that a supervised
method using the unsupervised measures as fea-
tures could possibly be the best of both worlds. We
would expect it to be more robust than embedding-
based methods on the one hand, while being more
informative than any single unsupervised measure
on the other hand.

Such a method was developed by Santus et al.
(2016a), however using mostly features that de-
scribe a single word, e.g. frequency and entropy. It
was shown to be competitive with the state-of-the-
art supervised methods. With that said, it was also
shown to be sensitive to the distribution of training
examples in a specific dataset, like the embedding-
based methods.

We conducted a similar experiment, with a
much larger number of unsupervised features,
namely the various measure scores, and encoun-
tered the same issue. While the performance was
good, it dropped dramatically when the model was
tested on a different test set.

We conjecture that the problem stems from the
currently available datasets, which are all some-
what artificial and biased. Supervised methods
which are strongly based on the relation between
the words, e.g. those that rely on path-based in-
formation (Shwartz et al., 2016), manage to over-
come the bias. Distributional methods, on the
other hand, are based on a weaker notion of the
relation between words, hence are more prone to
overfit the distribution of training instances in a
specific dataset. In the future, we hope that new

10Turney and Mohammad (2015) have also shown that un-
supervised methods are more robust than supervised ones in
a transfer-learning experiment, when the “training data” was
used to tune their parameters.
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datasets will be available for the task, which would
be drawn from corpora and will reflect more real-
istic distributions of words and semantic relations.

7 Conclusion

We performed an extensive evaluation of unsuper-
vised methods for discriminating hypernyms from
other semantic relations. We found that there is
no single combination of measure and parameters
which is always preferred; however, we suggested
a principled linguistic-based analysis of the most
suitable measure for each task that yields consis-
tent performance across different datasets.

We investigated several new variants of existing
methods, and found that some variants of SLQS
turned out to be superior on certain tasks. In addi-
tion, we have tested for the first time the joint
context type (Chersoni et al., 2016), which was
found to be very discriminative, and might hope-
fully benefit other semantic tasks.

For comparison, we evaluated the state-of-
the-art supervised methods on the datasets, and
they have shown to outperform the unsupervised
ones, while also being efficient and easier to use.
However, a deeper analysis of their performance
demonstrated that, as previously suggested, these
methods do not capture the relation between x and
v, but rather indicate the “prior probability” of ei-
ther word to be a hyponym or a hypernym. As a
consequence, supervised methods are sensitive to
the distribution of examples in a particular dataset,
making them less reliable for real-world applica-
tions. Being motivated by linguistic hypotheses,
and independent from training data, unsupervised
measures were shown to be more robust. In this
sense, unsupervised methods can still play a rele-
vant role, especially if combined with supervised
methods, in the decision whether the relation holds
or not.
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Abstract

Distinguishing between antonyms and
synonyms is a key task to achieve high
performance in NLP systems. While
they are notoriously difficult to distinguish
by distributional co-occurrence models,
pattern-based methods have proven effec-
tive to differentiate between the relations.
In this paper, we present a novel neu-
ral network model AntSynNET that ex-
ploits lexico-syntactic patterns from syn-
tactic parse trees. In addition to the lexi-
cal and syntactic information, we success-
fully integrate the distance between the re-
lated words along the syntactic path as a
new pattern feature. The results from clas-
sification experiments show that AntSyn-
NET improves the performance over prior
pattern-based methods.

1 Introduction

Antonymy and synonymy represent lexical se-
mantic relations that are central to the organization
of the mental lexicon (Miller and Fellbaum, 1991).
While antonymy is defined as the oppositeness be-
tween words, synonymy refers to words that are
similar in meaning (Deese, 1965; Lyons, 1977).
From a computational point of view, distinguish-
ing between antonymy and synonymy is impor-
tant for NLP applications such as Machine Trans-
lation and Textual Entailment, which go beyond a
general notion of semantic relatedness and require
to identify specific semantic relations. However,
due to interchangeable substitution, antonyms and
synonyms often occur in similar contexts, which
makes it challenging to automatically distinguish
between them.

Two families of approaches to differentiate be-
tween antonyms and synonyms are predominent
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in NLP. Both make use of distributional vector
representations, relying on the distributional hy-
pothesis (Harris, 1954; Firth, 1957), that words
with similar distributions have related meanings:
co-occurrence models and pattern-based models.
These distributional semantic models (DSMs) of-
fer a means to represent meaning vectors of words
or word pairs, and to determine their semantic re-
latedness (Turney and Pantel, 2010).

In co-occurrence models, each word is repre-
sented by a weighted feature vector, where fea-
tures typically correspond to words that co-occur
in particular contexts. When using word embed-
dings, these models rely on neural methods to rep-
resent words as low-dimensional vectors. To cre-
ate the word embeddings, the models either make
use of neural-based techniques, such as the skip-
gram model (Mikolov et al., 2013), or use matrix
factorization (Pennington et al., 2014) that builds
word embeddings by factorizing word-context co-
occurrence matrices. In comparison to standard
co-occurrence vector representations, word em-
beddings address the problematic sparsity of word
vectors and have achieved impressive results in
many NLP tasks such as word similarity (e.g.,
Pennington et al. (2014)), relation classification
(e.g., Vuetal. (2016)), and antonym-synonym dis-
tinction (e.g., Nguyen et al. (2016)).

In pattern-based models, vector representations
make use of lexico-syntactic surface patterns to
distinguish between the relations of word pairs.
For example, Justeson and Katz (1991) suggested
that adjectival opposites co-occur with each other
in specific linear sequences, such as between
X and Y. Hearst (1992) determined surface pat-
terns, e.g., X such as Y, to identify nomi-
nal hypernyms. Lin et al. (2003) proposed two
textual patterns indicating semantic incompatibil-
ity, from X to Y and either X or Y, to
distinguish opposites from semantically similar
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words. Roth and Schulte im Walde (2014) pro-
posed a method that combined patterns with dis-
course markers for classifying paradigmatic rela-
tions including antonymy, synonymy, and hyper-
nymy. Recently, Schwartz et al. (2015) used two
prominent patterns from Lin et al. (2003) to learn
word embeddings that distinguished antonyms
from similar words in determining degrees of sim-
ilarity and word analogy.

In this paper, we present a novel pattern-
based neural method AntSynNET to distinguish
antonyms from synonyms. We hypothesize that
antonymous word pairs co-occur with each other
in lexico-syntactic patterns within a sentence more
often than would be expected by synonymous
pairs. This hypothesis is inspired by corpus-based
studies on antonymy and synonymy. Among oth-
ers, Charles and Miller (1989) suggested that ad-
jectival opposites co-occur in patterns; Fellbaum
(1995) stated that nominal and verbal opposites
co-occur in the same sentence significantly more
often than chance; Lin et al. (2003) argued that if
two words appear in clear antonym patterns, they
are unlikely to represent synonymous pair.

We start out by inducing patterns between X and
Y from a large-scale web corpus, where X and Y
represent two words of an antonym or synonym
word pair, and the pattern is derived from the sim-
ple paths between X and Y in a syntactic parse
tree. Each node in the simple path combines lexi-
cal and syntactic information; in addition, we sug-
gest a novel feature for the patterns, i.e., the dis-
tance between the two words along the syntactic
path. All pattern features are fed into a recur-
rent neural network with long short-term mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997), which encode the patterns as vector repre-
sentations. Afterwards, the vector representations
of the patterns are used in a classifier to distin-
guish between antonyms and synonyms. The re-
sults from experiments show that AntSynNET im-
proves the performance over prior pattern-based
methods. Furthermore, the implementation of our
models is made publicly available'.

The remainder of this paper is organized as fol-
lows: In Section 2, we present previous work dis-
tinguishing antonyms and synonyms. Section 3
describes our proposed AntSynNET model. We
present the induction of the patterns (Section 3.1),
describe the recurrent neural network with long

1https ://github.com/nguyenkh/AntSynNET
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short-term memory units which is used to en-
code patterns within a vector representation (Sec-
tion 3.2), and describe two models to classify
antonyms and synonyms: the pure pattern-based
model (Section 3.3.1) and the combined model
(Section 3.3.2). After introducing two baselines in
Section 4, we describe our dataset, experimental
settings, results of our methods, the effects of the
newly proposed distance feature, and the effects of
the various types of word embeddings. Section 6
concludes the paper.

2 Related Work

Pattern-based methods: Regarding the task of
antonym-synonym distinction, there exist a vari-
ety of approaches which rely on patterns. Lin
et al. (2003) used bilingual dependency triples
and patterns to extract distributionally similar
words. They relied on clear antonym patterns such
as from X to Y and either X or Y in a
post-processing step to distinguish antonyms from
synonyms. The main idea is that if two words X
and Y appear in one of these patterns, they are
unlikely to represent synonymous pair. Schulte
im Walde and Koper (2013) proposed a method
to distinguish between the paradigmatic relations
antonymy, synonymy and hypernymy in German,
based on automatically acquired word patterns.
Roth and Schulte im Walde (2014) combined gen-
eral lexico-syntactic patterns with discourse mark-
ers as indicators for the same relations, both for
German and for English. They assumed that if
two phrases frequently co-occur with a specific
discourse marker, then the discourse relation ex-
pressed by the corresponding marker should also
indicate the relation between the words in the af-
fected phrases. By using the raw corpus and a
fixed list of discourse markers, the model can eas-
ily be extended to other languages. More re-
cently, Schwartz et al. (2015) presented a symmet-
ric pattern-based model for word vector represen-
tation in which antonyms are assigned to dissim-
ilar vector representations. Differently to the pre-
vious pattern-based methods which used the stan-
dard distribution of patterns, Schwartz et al. used
patterns to learn word embeddings.

Vector representation methods: Yih et al.
(2012) introduced a new vector representation
where antonyms lie on opposite sides of a sphere.
They derived this representation with the incor-
poration of a thesaurus and latent semantic anal-



ysis, by assigning signs to the entries in the co-
occurrence matrix on which latent semantic anal-
ysis operates, such that synonyms would tend to
have positive cosine similarities, and antonyms
would tend to have negative cosine similarities.
Scheible et al. (2013) showed that the distribu-
tional difference between antonyms and synonyms
can be identified via a simple word space model by
using appropriate features. Instead of taking into
account all words in a window of a certain size
for feature extraction, the authors experimented
with only words of a certain part-of-speech, and
restricted distributions. Santus et al. (2014) pro-
posed a different method to distinguish antonyms
from synonyms by identifying the most salient
dimensions of meaning in vector representations
and reporting a new average-precision-based dis-
tributional measure and an entropy-based mea-
sure. Ono et al. (2015) trained supervised word
embeddings for the task of identifying antonymy.
They proposed two models to learn word embed-
dings: the first model relied on thesaurus informa-
tion; the second model made use of distributional
information and thesaurus information. More re-
cently, Nguyen et al. (2016) proposed two meth-
ods to distinguish antonyms from synonyms: in
the first method, the authors improved the qual-
ity of weighted feature vectors by strengthening
those features that are most salient in the vec-
tors, and by putting less emphasis on those that
are of minor importance when distinguishing de-
grees of similarity between words. In the second
method, the lexical contrast information was inte-
grated into the skip-gram model (Mikolov et al.,
2013) to learn word embeddings. This model suc-
cessfully predicted degrees of similarity and iden-
tified antonyms and synonyms.

3 AntSynNET: LSTM-based
Antonym-Synonym Distinction

In this section, we describe the AntSynNET
model, using a pattern-based LSTM for distin-
guishing antonyms from synonyms. We first
present the induction of patterns from a parsed cor-
pus (Section 3.1). Section 3.2 then describes how
we utilize the recurrent neural network with long
short-term memory units to encode the patterns
as vector representation. Finally, we present the
AntSynNET model and two approaches to classify
antonyms and synonyms (Section 3.3).
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3.1 Induction of Patterns

Corpus-based studies on antonymy have sug-
gested that opposites co-occur with each other
within a sentence significantly more often than
would be expected by chance. Our method thus
makes use of patterns as the main indicators of
word pair co-occurrence, to enforce a distinction
between antonyms and synonyms. Figure 1 shows
a syntactic parse tree of the sentence “My old
village has been provided with the new services”.
Following the characterizations of a tree in graph
theory, any two nodes (vertices) of a tree are
connected by a simple path (or one unique path).
The simple path is the shortest path between any
two nodes in a tree and does not contain repeated
nodes. In the example, the lexico-syntactic tree
pattern of the antonymous pair old—new is deter-
mined by finding the simple path (in red) from
the lemma o1d to the lemma new. It focuses
on the most relevant information and ignores
irrelevant information which does not appear in
the simple path (i.e., has, been). The example
pattern between X oldand Y new in Fig-
ure 1 is represented as follows: x/JJ/amod/2 —-

village/NN/nsubj/1 —- provide/VBN/ROOT/0
-— with/IN/prep/l —-- service/NNS/pobij/2
-— Y/JJ/amod/3.

Node Representation: The path patterns make
use of four features to represent each node in the
syntax tree: lemma, part-of-speech (POS) tag, de-
pendency label and distance label. The lemma fea-
ture captures the lexical information of words in
the sentence, while the POS and dependency fea-
tures capture the morpho-syntactic information of
the sentence. The distance label measures the path
distance between the target word nodes in the syn-
tactic tree. Each step between a parent and a child
node represents a distance of 1; and the ancestor
nodes of the remaining nodes in the path are rep-
resented by a distance of 0. For example, the node
providedis an ancestor node of the simple path
from old to new. The distances from the node
provided to the nodes village and old are
1 and 2, respectively.

The vector representation of each node concate-
nates the four-feature vectors as follows:

[Ulemma S Upos S Edep 2] Udist]

Unode

where Uiemmas Upos, Udeps Udist Tepresent the em-
beddings of the lemma, POS tag, dependency label



My/PRP$

Figure 1: Illustration of the syntactic tree for the sentence “My old village has been provided with the
new services”. Red lines indicate the path from the word o1d to the word new.

and distance label, respectively; and the & denotes
the concatenation operation.

Pattern Representation: For a pattern p
which is constructed by the sequence of nodes
ni,na,...,Ng, the pattern representation of p is
a sequence of vectors: p = [y, 2, ...,7ix]. The
pattern vector %, is then encoded by applying a
recurrent neural network.

3.2 Recurrent Neural Network with Long
Short-Term Memory Units

A recurrent neural network (RNN) is suitable for
modeling sequential data by a vector representa-
tion. In our methods, we use a long short-term
memory (LSTM) network, a variant of a recur-
rent neural network to encode patterns, for the
following reasons. Given a sequence of words
p = [ni1,ne,...,nk| as input data, an RNN pro-
cesses each word n; at a time, and returns a vec-
tor of state hj for the complete input sequence.
For each time step ¢, the RNN updates an inter-
nal memory state h; which depends on the current
input n; and the previous state h;_1. Yet, if the se-
quential input is a long-term dependency, an RNN
faces the problem of gradient vanishing or explod-
ing, leading to difficulties in training the model.
LSTM units address these problems. The un-
derlying idea of an LSTM is to use an adaptive gat-
ing mechanism to decide on the degree that LSTM
units keep the previous state and memorize the ex-
tracted features of the current input. More specif-
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ically, an LSTM comprises four components: an
input gate i;, a forget gate f;, an output gate o,
and a memory cell ¢;. The state of an LSTM at
each time step ¢ is formalized as follows:

it:U(M/i'xt—f—Ui'ht_l'i‘bi)

fi=0Wys-a¢+Up-hi—1 + by)
Ot = O'(Wo'illt—i‘Uo 'ht—l +b0)
gt = tanh(Wc cxy +Us - hy—1 + bc)

=1t ®gr+ fr ®cp1

W refers to a matrix of weights that projects in-
formation between two layers; b is a layer-specific
vector of bias terms; o denotes the sigmoid func-
tion. The output of an LSTM at a time step ¢ is
computed as follows:

ht =0t ® tanh(ct)

where ® denotes element-wise multiplication. In
our methods, we rely on the last state hy to repre-
sent the vector 7, of a pattern p = [fi1, 7ig, ..., Tig].

3.3 The Proposed AntSynNET Model

In this section, we present two models to distin-
guish antonyms from synonyms. The first model
makes use of patterns to classify antonyms and
synonyms, by using an LSTM to encode pat-
terns as vector representations and then feeding
those vectors to a logistic regression layer (Sec-
tion 3.3.1). The second model creates combined
vector representations of word pairs, which con-
catenate the vectors of the words and the patterns
(Section 3.3.2).
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Figure 2: Illustration of the AntSynNET model. Each word pair is represented by several patterns, and
each pattern represents a path in the graph of the syntactic tree. Patterns consist of several nodes where
each node is represented by a vector with four features: lemma, POS, dependency label, and distance
label. The mean pooling of the pattern vectors is the vector representation of each word pair, which is
then fed to the logistic regression layer to classify antonyms and synonyms.

3.3.1 Pattern-based AntSynNET

In this model, we make use of a recurrent neural
network with LSTM units to encode patterns con-
taining a sequence of nodes. Figure 2 illustrates
the AntSynNET model. Given a word pair (x,y),
we induce patterns for (z, y) from a corpus, where
each pattern represents a path from z to y (cf. Sec-
tion 3.1). We then feed each pattern p of the word
pair (z,y) into an LSTM to obtain @), the vector
representation of the pattern p (cf. Section 3.2).
For each word pair (z,y), the vector representa-
tion of (x, y) is computed as follows:
ZpEP(x,y) 6P “Cp

—

Ugy =

(D

ZpGP(z,y) Cp

Uyy refers to the vector of the word pair (z,y);
P(x,y) is the set of patterns corresponding to the
pair (x,y); ¢, is the frequency of the pattern p.
The vector v, is then fed into a logistic regres-
sion layer whose target is the class label associ-
ated with the pair (x, y). Finally, the pair (x,y) is
predicted as positive (i.e., antonymous) word pair
if the probability of the prediction for i, is larger
than 0.5.

3.3.2 Combined AntSynNET

Inspired by the supervised distributional concate-
nation method in Baroni et al. (2012) and the in-
tegrated path-based and distributional method for
hypernymy detection in Shwartz et al. (2016), we
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take into account the patterns and distribution of
target pairs to create their combined vector rep-
resentations. Given a word pair (z,y), the com-
bined vector representation of the pair (z, y) is de-
termined by using both the co-occurrence distribu-
tion of the words and the syntactic path patterns:

2

ﬁcomb(m,y) = [1733 S 171"2; S ﬁy]

Ucomb(z,y) Tefers to the combined vector of the
word pair (x,y); U, and ¥, are the vectors of word
x and word y, respectively; ¥, is the vector of the
pattern that corresponds to the pair (z, y), cf. Sec-
tion 3.3.1. Similar to the pattern-based model, the
combined Vector Ueomp(z,y) 18 fed into the logis-
tic regression layer to classify antonyms and syn-
onyms.

4 Baseline Models

To compare AntSynNET with baseline models for
pattern-based classification of antonyms and syn-
onyms, we introduce two pattern-based baseline
methods: the distributional method (Section 4.1),
and the distributed method (Section 4.2).

4.1 Distributional Baseline

As a first baseline, we apply the approach by Roth
and Schulte im Walde (2014), henceforth R&SiW.
They used a vector space model to represent pairs
of words by a combination of standard lexico-



syntactic patterns and discourse markers. In ad-
dition to the patterns, the discourse markers added
information to express discourse relations, which
in turn may indicate the specific semantic relation
between the two words in a word pair. For ex-
ample, contrast relations might indicate antonymy,
whereas elaborations may indicate synonymy or
hyponymy.

Michael Roth, the first author of R&SiW, kindly
computed the relation classification results of the
pattern—discourse model for our test sets. The
weights between marker-based and pattern-based
models were tuned on the validation sets; other hy-
perparameters were set exactly as described by the
R&SiW method.

4.2 Distributed Baseline

The SP method proposed by Schwartz et al. (2015)
uses symmetric patterns for generating word em-
beddings. In this work, the authors applied an un-
supervised algorithm for the automatic extraction
of symmetric patterns from plain text. The sym-
metric patterns were defined as a sequence of 3-5
tokens consisting of exactly two wildcards and 1-
3 words. The patterns were filtered based on their
frequencies, such that the resulting pattern set con-
tained 11 patterns. For generating word embed-
dings, a matrix of co-occurrence counts between
patterns and words in the vocabulary was com-
puted, using positive point-wise mutual informa-
tion. The sparsity problem of vector representa-
tions was addressed by smoothing. For antonym
representation, the authors relied on two patterns
suggested by Lin et al. (2003) to construct word
embeddings containing an antonym parameter that
can be turned on in order to represent antonyms as
dissimilar, and that can be turned off to represent
antonyms as similar.

To apply the SP method to our data, we make
use of the pre-trained SP embeddings® with 500
dimensions®. We calculate the cosine similarity
of word pairs and then use a Support Vector Ma-
chine with Radial Basis Function kernel to classify
antonyms and synonyms.

2http://homes.cs.washington.edu/~roysch/papers/
sp_embeddings/sp_embeddings.html

3The 500-dimensional embeddings outperformed the
300-dimensional embeddings for our data.
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5 Experiments

5.1 Dataset

For training the models, neural networks require a
large amount of training data. We use the existing
large-scale antonym and synonym pairs previously
used by Nguyen et al. (2016). Originally, the data
pairs were collected from WordNet (Miller, 1995)
and Wordnik*.

In order to induce patterns for the word pairs in
the dataset, we identify the sentences in the cor-
pus that contain the word pair. Thereafter, we ex-
tract all patterns for the word pair. We filter out all
patterns which occur less than five times; and we
only take into account word pairs that contain at
least five patterns for training, validating and test-
ing. For the proportion of positive and negative
pairs, we keep a ratio of 1:1 positive (antonym) to
negative (synonym) pairs in the dataset. In order
to create the sets of training, testing and valida-
tion data, we perform random splitting with 70%
train, 25% test, and 5% validation sets. The final
dataset contains the number of word pairs accord-
ing to word classes described in Table 1. More-
over, Table 2 shows the average number of pat-
terns for each word pair in our dataset.

Word Class Train Test Validation Total
Adjective 5562 1986 398 7946
Verb 2534 908 182 3624
Noun 2836 1020 206 4062
Table 1: Our dataset.
Word Class Train Test Validation
Adjective 135 131 141
Verb 364 332 396
Noun 110 132 105

Table 2: Average number of patterns per word pair
across word classes.

5.2 Experimental Settings

We use the English Wikipedia dump® from June
2016 as the corpus resource for our methods
and baselines.  For parsing the corpus, we
rely on spaCy®. For the lemma embeddings,
we rely on the word embeddings of the dLCE

4http://www.wordnik.com

5https://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages—articles.xml.bz2

6https://spacy.io



Adjective Verb Noun
Model P R F, | P R F, | P R T
SP baseline 0.730 0.706 0.718 | 0.560 0.609 0.584 | 0.625 0.393 0.482
R&SiW baseline 0.717 0.717 0.717 | 0.789 0.787 0.788 | 0.833 0.831 0.832
Pattern-based AntSynNET | 0.764 0.788 0.776* | 0.741 0.833 0.784 | 0.804 0.851 0.827
Combined AntSynNET 0.763 0.807 0.784* | 0.743 0.815 0.777 | 0.816 0.898 0.855**

Table 3: Performance of the AntSynNET models in comparison to the baseline models.

Adjective Verb Noun
Feature Model P i{ Fy P R Fy P R Fy
Direction Pattern-based | 0.752 0.755 0.753 0.734 0.819 0.774 | 0.800 0.825 0.813
Combined 0.754 0.784 0.769 0.739 0.793 0.765 | 0.829 0.810 0.819
Distance Pattern-based | 0.764 0.788 0.776 0.741 0.833 0.784 | 0.804 0.851 0.827
Combined 0.763 0.807 0.784** | 0.743 0.815 0.777 | 0.816 0.898 0.855**

Table 4: Comparing the novel distance feature with Schwarz et al.’s direction feature, across word classes.

model’ (Nguyen et al., 2016) which is the state-
of-the-art vector representation for distinguishing
antonyms from synonyms. We re-implemented
this cutting-edge model on Wikipedia with 100 di-
mensions, and then make use of the dLCE word
embeddings for initialization the lemma embed-
dings. The embeddings of POS tags, dependency
labels, distance labels, and out-of-vocabulary lem-
mas are initialized randomly. The number of
dimensions is set to 10 for the embeddings of
POS tags, dependency labels and distance labels.
We use the validation sets to tune the number of
dimensions for these labels. For optimization,
we rely on the cross-entropy loss function and
Stochastic Gradient Descent with the Adadelta up-
date rule (Zeiler, 2012). For training, we use the
Theano framework (Theano Development Team,
2016). Regularization is applied by a dropout of
0.5 on each of component’s embeddings (dropout
rate is tuned on the validation set). We train the
models with 40 epochs and update all embeddings
during training.

5.3 Overall Results

Table 3 shows the significant® performance of our
models in comparison to the baselines. Concern-
ing adjectives, the two proposed models signif-
icantly outperform the two baselines: The per-
formance of the baselines is around .72 for Fj,
and the corresponding results for the combined
AntSynNET model achieve an improvement of
>.06. Regarding nouns, the improvement of the
new methods is just .02 F} in comparison to the

7https ://github.com/nguyenkh/AntSynDistinction
St-test, *p < 0.05, *¥p < 0.1
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R&SiW baseline, but we achieve a much better
performance in comparison to the SP baseline, an
increase of .37 Fj. Regarding verbs, we do not
outperform the more advanced R&SiW baseline
in terms of the Fj score, but we obtain higher re-
call scores. In comparison to the SP baseline, our
models still show a clear F; improvement.

Overall, our proposed models achieve compar-
atively high recall scores compared to the two
baselines. This strengthens our hypothesis that
there is a higher possibility for the co-occurrence
of antonymous pairs in patterns over synonymous
pairs within a sentence. Because, when the pro-
posed models obtain high recall scores, the mod-
els are able to retrieve most relevant information
(antonymous pairs) corresponding to the patterns.
Regarding the low precision in the two proposed
models, we sampled randomly 5 pairs in each pop-
ulation: true positive, true negative, false positive,
false negative. We then compared the overlap of
patterns for the true predictions (true positive pairs
and true negative pairs) and the false predictions
(false positive pairs and false negative pairs). We
found out that there is no overlap between patterns
of true predictions; and the number overlap be-
tween patterns of false predictions is 2, 2, and 4
patterns for noun, adjective, and verb classes, re-
spectively. This shows that the low precision of
our models stems from the patterns which repre-
sent both antonymous and synonymous pairs.

5.4 Effect of the Distance Feature

In our models, the novel distance feature is suc-
cessfully integrated along the syntactic path to
represent lexico-syntactic patterns. The intu-



Model Word Embeddings P Ad_];Cthe Fy P Vi:b F, P N(;;ln Fy
Pattern-based Model GloVe 0.763 0.770 0.767 | 0.705 0.852 0.772 | 0.789 0.849 0.818
dLCE 0.764 0.788 0.776 | 0.741 0.833 0.784 | 0.804 0.851 0.827
Combined Model Glove 0.750 0.798 0.773 | 0.717 0.826 0.768 | 0.807 0.827 0.817
dLCE 0.763 0.807 0.784 | 0.743 0.815 0.777 | 0.816 0.898 0.855

Table 5: Comparing pre-trained GloVe and dLCE word embeddings.

ition behind the distance feature exploits prop-
erties of trees in graph theory, which show that
there exist differences in the degree of relation-
ship between the parent node and the child nodes
(distance 1) and in the degree of relation-
ship between the ancestor node and the descendant
nodes (distance > 1). Hence, we use the distance
feature to effectively capture these relationships.

In order to evaluate the effect of our novel dis-
tance feature, we compare the distance feature to
the direction feature proposed by Shwartz et al.
(2016). In their approach, the authors combined
lemma, POS, dependency, and direction features
for the task of hypernym detection. The direc-
tion feature represented the direction of the depen-
dency label between two nodes in a path from X to
Y.

For evaluation, we make use of the same infor-
mation regarding dataset and patterns as in Sec-
tion 5.3, and then replace the distance feature by
the direction feature. The results are shown in Ta-
ble 4. The distance feature enhances the perfor-
mance of our proposed models more effectively
than the direction feature does, across all word
classes.

5.5 Effect of Word Embeddings

Our methods rely on the word embeddings of the
dLCE model, state-of-the-art word embeddings
for antonym-synonym distinction. Yet, the word
embeddings of the dLCE model, i.e., supervised
word embeddings, represent information collected
from lexical resources. In order to evaluate the ef-
fect of these word embeddings on the performance
of our models, we replace them by the pre-trained
GloVe word embeddings’ with 100 dimensions,
and compare the effects of the GloVe word em-
beddings and the dLCE word embeddings on the
performance of the two proposed models.

Table 5 illustrates the performance of our two
models on all word classes. The table shows that
the dLCE word embeddings are better than the

9http ://www-nlp.stanford.edu/projects/glove/
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pre-trained GloVe word embeddings, by around
.01 Fy for the pattern-based AntSynNET model
and the combined AntSynNET model regarding
adjective and verb pairs. Regarding noun pairs,
the improvements of the dLCE word embeddings
over pre-trained GloVe word embeddings achieve
around .01 and .04 F7 for the pattern-based model
and the combined model, respectively.

6 Conclusion

In this paper, we presented a novel pattern-
based neural method AntSynNET to distinguish
antonyms from synonyms. We hypothesized that
antonymous word pairs co-occur with each other
in lexico-syntactic patterns within a sentence more
often than synonymous word pairs.

The patterns were derived from the simple paths
between semantically related words in a syntac-
tic parse tree. In addition to lexical and syntactic
information, we suggested a novel path distance
feature. The AntSynNET model consists of two
approaches to classify antonyms and synonyms.
In the first approach, we used a recurrent neural
network with long short-term memory units to en-
code the patterns as vector representations; in the
second approach, we made use of the distribution
and encoded patterns of the target pairs to gener-
ate combined vector representations. The result-
ing vectors of patterns in both approaches were fed
into the logistic regression layer for classification.

Our proposed models significantly outper-
formed two baselines relying on previous work,
mainly in terms of recall. Moreover, we demon-
strated that the distance feature outperformed a
previously suggested direction feature, and that
our embeddings outperformed the state-of-the-art
GloVe embeddings. Last but not least, our two
proposed models only rely on corpus data, such
that the models are easily applicable to other lan-
guages and relations.
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Abstract

The current trend in NLP is the use of
highly opaque models, e.g. neural net-
works and word embeddings. While
these models yield state-of-the-art results
on a range of tasks, their drawback is
poor interpretability. On the example
of word sense induction and disambigua-
tion (WSID), we show that it is possi-
ble to develop an interpretable model that
matches the state-of-the-art models in ac-
curacy. Namely, we present an unsuper-
vised, knowledge-free WSID approach,
which is interpretable at three levels: word
sense inventory, sense feature representa-
tions, and disambiguation procedure. Ex-
periments show that our model performs
on par with state-of-the-art word sense
embeddings and other unsupervised sys-
tems while offering the possibility to jus-
tify its decisions in human-readable form.

1 Introduction

A word sense disambiguation (WSD) system takes
as input a target word ¢ and its context C'. The sys-
tem returns an identifier of a word sense s; from
the word sense inventory {s1, ..., s, } of ¢, where
the senses are typically defined manually in ad-
vance. Despite significant progress in methodol-
ogy during the two last decades (Ide and Véronis,
1998; Agirre and Edmonds, 2007; Moro and Nav-
igli, 2015), WSD is still not widespread in appli-
cations (Navigli, 2009), which indicates the need
for further progress. The difficulty of the prob-
lem largely stems from the lack of domain-specific
training data. A fixed sense inventory, such as the
one of WordNet (Miller, 1995), may contain irrel-
evant senses for the given application and at the
same time lack relevant domain-specific senses.
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Word sense induction from domain-specific cor-
pora is a supposed to solve this problem. How-
ever, most approaches to word sense induction and
disambiguation, e.g. (Schiitze, 1998; Li and Juraf-
sky, 2015; Bartunov et al., 2016), rely on cluster-
ing methods and dense vector representations that
make a WSD model uninterpretable as compared
to knowledge-based WSD methods.

Interpretability of a statistical model is impor-
tant as it lets us understand the reasons behind its
predictions (Vellido et al., 2011; Freitas, 2014; Li
et al., 2016). Interpretability of WSD models (1)
lets a user understand why in the given context one
observed a given sense (e.g., for educational appli-
cations); (2) performs a comprehensive analysis of
correct and erroneous predictions, giving rise to
improved disambiguation models.

The contribution of this paper is an interpretable
unsupervised knowledge-free WSD method. The
novelty of our method is in (1) a technique to dis-
ambiguation that relies on induced inventories as
a pivot for learning sense feature representations,
(2) a technique for making induced sense repre-
sentations interpretable by labeling them with hy-
pernyms and images.

Our method tackles the interpretability issue of
the prior methods; it is interpretable at the lev-
els of (1) sense inventory, (2) sense feature rep-
resentation, and (3) disambiguation procedure. In
contrast to word sense induction by context clus-
tering (Schiitze (1998), inter alia), our method
constructs an explicit word sense inventory. The
method yields performance comparable to the
state-of-the-art unsupervised systems, including
two methods based on word sense embeddings.
An open source implementation of the method fea-
turing a live demo of several pre-trained models is
available online.'

"http://www. jobimtext.org/wsd
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2 Related Work

Multiple designs of WSD systems were pro-
posed (Agirre and Edmonds, 2007; Navigli,
2009). They vary according to the level of su-
pervision and the amount of external knowledge
used. Most current systems either make use of
lexical resources and/or rely on an explicitly an-
notated sense corpus.

Supervised approaches use a sense-labeled
corpus to train a model, usually building one sub-
model per target word (Ng, 1997; Lee and Ng,
2002; Klein et al., 2002; Wee, 2010). The IMS
system by Zhong and Ng (2010) provides an im-
plementation of the supervised approach to WSD
that yields state-of-the-art results. While super-
vised approaches demonstrate top performance in
competitions, they require large amounts of sense-
labeled examples per target word.

Knowledge-based approaches rely on a lexi-
cal resource that provides a sense inventory and
features for disambiguation and vary from the
classical Lesk (1986) algorithm that uses word
definitions to the Babelfy (Moro et al., 2014) sys-
tem that uses harnesses a multilingual lexical-
semantic network. Classical examples of such ap-
proaches include (Banerjee and Pedersen, 2002;
Pedersen et al., 2005; Miller et al., 2012). More
recently, several methods were proposed to learn
sense embeddings on the basis of the sense in-
ventory of a lexical resource (Chen et al., 2014;
Rothe and Schiitze, 2015; Camacho-Collados et
al., 2015; Iacobacci et al., 2015; Nieto Pifia and
Johansson, 2016).

Unsupervised knowledge-free approaches
use neither handcrafted lexical resources nor hand-
annotated sense-labeled corpora. Instead, they in-
duce word sense inventories automatically from
corpora. Unsupervised WSD methods fall into
two main categories: context clustering and word
ego-network clustering.

Context clustering approaches, e.g. (Pedersen
and Bruce, 1997; Schiitze, 1998), represent an in-
stance usually by a vector that characterizes its
context, where the definition of context can vary
greatly. These vectors of each instance are then
clustered. Multi-prototype extensions of the skip-
gram model (Mikolov et al., 2013) that use no pre-
defined sense inventory learn one embedding word
vector per one word sense and are commonly fit-
ted with a disambiguation mechanism (Huang et
al., 2012; Tian et al., 2014; Neelakantan et al.,
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2014; Bartunov et al., 2016; Li and Jurafsky, 2015;
Pelevina et al., 2016). Comparisons of the Ada-
Gram (Bartunov et al., 2016) to (Neelakantan et
al., 2014) on three SemEval word sense induction
and disambiguation datasets show the advantage
of the former. For this reason, we use AdaGram as
a representative of the state-of-the-art word sense
embeddings in our experiments. In addition, we
compare to SenseGram, an alternative sense em-
bedding based approach by Pelevina et al. (2016).
What makes the comparison to the later method
interesting is that this approach is similar to ours,
but instead of sparse representations the authors
rely on word embeddings, making their approach
less interpretable.

Word ego-network clustering methods (Lin,
1998; Pantel and Lin, 2002; Widdows and Dorow,
2002; Biemann, 2006; Hope and Keller, 2013)
cluster graphs of words semantically related to the
ambiguous word. An ego network consists of a
single node (ego) together with the nodes they are
connected to (alters) and all the edges among those
alters (Everett and Borgatti, 2005). In our case,
such a network is a local neighborhood of one
word. Nodes of the ego-network can be (1) words
semantically similar to the target word, as in our
approach, or (2) context words relevant to the tar-
get, as in the UoS system (Hope and Keller, 2013).
Graph edges represent semantic relations between
words derived using corpus-based methods (e.g.
distributional semantics) or gathered from dictio-
naries. The sense induction process using word
graphs is explored by (Widdows and Dorow, 2002;
Biemann, 2006; Hope and Keller, 2013). Disam-
biguation of instances is performed by assigning
the sense with the highest overlap between the in-
stance’s context words and the words of the sense
cluster. Véronis (2004) compiles a corpus with
contexts of polysemous nouns using a search en-
gine. A word graph is built by drawing edges be-
tween co-occurring words in the gathered corpus,
where edges below a certain similarity threshold
were discarded. His HyperLex algorithm detects
hubs of this graph, which are interpreted as word
senses. Disambiguation is this experiment is per-
formed by computing the distance between con-
text words and hubs in this graph.

Di Marco and Navigli (2013) presents a com-
prehensive study of several graph-based WSI
methods including Chinese Whispers, HyperLex,
curvature clustering (Dorow et al., 2005). Besides,



authors propose two novel algorithms: Balanced
Maximum Spanning Tree Clustering and Squares
(B-MST), Triangles and Diamonds (SquaT++).
To construct graphs, authors use first-order and
second-order relations extracted from a back-
ground corpus as well as keywords from snippets.
This research goes beyond intrinsic evaluations of
induced senses and measures impact of the WSI in
the context of an information retrieval via cluster-
ing and diversifying Web search results. Depend-
ing on the dataset, HyperLex, B-MST or Chinese-
Whispers provided the best results.

Our system combines several of above ideas
and adds features ensuring interpretability. Most
notably, we use a word sense inventory based
on clustering word similarities (Pantel and Lin,
2002); for disambiguation we rely on syntactic
context features, co-occurrences (Hope and Keller,
2013) and language models (Yuret, 2012).

Interpretable approaches. The need in meth-
ods that interpret results of opaque statistical mod-
els is widely recognised (Vellido et al., 2011; Vel-
lido et al., 2012; Freitas, 2014; Li et al., 2016;
Park et al., 2016). An interpretable WSD sys-
tem is expected to provide (1) a human-readable
sense inventory, (2) human-readable reasons why
in a given context ¢ a given sense s; was de-
tected. Lexical resources, such as WordNet, solve
the first problem by providing manually-crafted
definitions of senses, examples of usage, hyper-
nyms, and synonyms. The BabelNet (Navigli and
Ponzetto, 2010) integrates all these sense repre-
sentations, adding to them links to external re-
sources, such as Wikipedia, topical category la-
bels, and images representing the sense. The un-
supervised models listed above do not feature any
of these representations making them much less
interpretable as compared to the knowledge-based
models. Ruppert et al. (2015) proposed a system
for visualising sense inventories derived in an un-
supervised way using graph-based distributional
semantics. Panchenko (2016) proposed a method
for making sense inventory of word sense embed-
dings interpretable by mapping it to BabelNet.

Our approach was inspired by the knowledge-
based system Babelfy (Moro et al., 2014). While
the inventory of Babelfy is interpretable as it relies
on BabelNet, the system provides no underlying
reasons behind sense predictions. Our objective
was to reach interpretability level of knowledge-
based models within an unsupervised framework.
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3 Method: Unsupervised Interpretable
Word Sense Disambiguation

Our unsupervised word sense disambiguation
method consist of the five steps illustrated in Fig-
ure 1: extraction of context features (Section 3.1);
computing word and feature similarities (Section
3.2); word sense induction (Section 3.3); labeling
of clusters with hypernyms and images (Section
3.4), disambiguation of words in context based on
the induced inventory (Section 3.5), and finally in-
terpretation of the model (Section 3.6). Feature
similarity and co-occurrence computation steps
(drawn with a dashed lines) are optional, since
they did not consistently improve performance.

3.1 Extraction of Context Features

The goal of this step is to extract word-feature
counts from the input corpus. In particular, we ex-
tract three types of features:

Dependency Features. These feature represents
a word by a syntactic dependency such as
“nn(e,writing)” or “prep_at(sit,s)”, extracted from the
Stanford Dependencies (De Marneffe et al., 2006)
obtained with the the PCFG model of the Stan-
ford parser (Klein and Manning, 2003). Weights
are computed using the Local Mutual Information
(LMID) (Evert, 2005). One word is represented
with 1000 most significant features.

Co-occurrence Features. This type of features
represents a word by another word. We extract
the list of words that significantly co-occur in a
sentence with the target word in the input cor-
pus based on the log-likelihood as word-feature
weight (Dunning, 1993).

Language Model Feature. This type of features
are based on a trigram model with Kneser-Ney
smoothing (Kneser and Ney, 1995). In particu-
lar, a word is represented by (1) right and left
context words, e.g. “office_e_and”, (2) two pre-
ceding words “new _office_e”, and (3) two succeed-
ing words, e.g. “e_and_chairs”. We use the con-
ditional probabilities of the resulting trigrams as
word-feature weights.

3.2 Computing Word and Feature
Similarities
The goal of this step is to build a graph of word

similarities, such as (table, chair, 0.78). We used
the JoBimText framework (Biemann and Ried],
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Figure 1: Outline of our unsupervised interpretable method for word sense induction and disambiguation.

2013) as it yields comparable performance on se-
mantic similarity to state-of-the-art dense repre-
sentations (Mikolov et al., 2013) compared on the
WordNet as gold standard (Riedl, 2016), but is in-
terpretable as word are represented by sparse in-
terpretable features. Namely we use dependency-
based features as, according to prior evaluations,
this kind of features provides state-of-the-art se-
mantic relatedness scores (Padé and Lapata, 2007;
Van de Cruys, 2010; Panchenko and Morozova,
2012; Levy and Goldberg, 2014).

First, features of each word are ranked using the
LMI metric (Evert, 2005). Second, the word rep-
resentations are pruned keeping 1000 most salient
features per word and 1000 most salient words per
feature. The pruning reduces computational com-
plexity and noise. Finally, word similarities are
computed as a number of common features for two
words. This is again followed by a pruning step in
which only the 200 most similar terms are kept
to every word. The resulting word similarities are
browsable online.

Note that while words can be characterized with
distributions over features, features can vice versa
be characterized by a distribution over words. We
use this duality to compute feature similarities us-
ing the same mechanism and explore their use in
disambiguation below.

3.3 Word Sense Induction

We induce a sense inventory by clustering of ego-
network of similar words. In our case, an inven-
tory represents senses by a word cluster, such as
“chair, bed, bench, stool, sofa, desk, cabinet” for
the “furniture” sense of the word “table”.

The sense induction processes one word ¢ of the
distributional thesaurus T per iteration. First, we
retrieve nodes of the ego-network GG of ¢ being the
N most similar words of ¢ according to T' (see

2Select the “JoBimViz” demo and then the “Stanford (En-
glish)” model: http://www. jobimtext.org.

&9

Figure 2 (1)). Note that the target word ¢t itself
is not part of the ego-network. Second, we con-
nect each node in G to its n most similar words
according to T'. Finally, the ego-network is clus-
tered with Chinese Whispers (Biemann, 2006), a
non-parametric algorithm that discovers the num-
ber of senses automatically. The n parameter reg-
ulates the granularity of the inventory: we experi-
ment with n € {200, 100,50} and N = 200.

The choice of Chinese Whispers among other
algorithms, such as HyperLex (Véronis, 2004) or
MCL (Van Dongen, 2008), was motivated by the
absence of meta-parameters and its comparable
performance on the WSI task to the state-of-the-
art (Di Marco and Navigli, 2013).

3.4 Labeling Induced Senses with
Hypernyms and Images

Each sense cluster is automatically labeled to
improve its interpretability. First, we ex-
tract hypernyms from the input corpus using
Hearst (1992) patterns. Second, we rank hy-
pernyms relevant to the cluster by a product
of two scores: the hypernym relevance score,
calculated as ) ;... sim(t,w)freq(w, h),
and the hypernym coverage score, calculated
as Y ccuster MiN(freq(w,h),1).  Here the
sim(t,w) is the relatedness of the cluster word
w to the target word ¢, and the freq(w,h) is the
frequency of the hypernymy relation (w, h) as ex-
tracted via patterns. Thus, a high-ranked hyper-
nym h has high relevance, but also is confirmed
by several cluster words. This stage results in a
ranked list of labels that specify the word sense,
for which we here show the first one, e.g. “table
(furniture)” or “table (data)”.

Faralli and Navigli (2012) showed that web
search engines can be used to bootstrap sense-
related information. To further improve inter-
pretability of induced senses, we assign an image
to each word in the cluster (see Figure 2) by query-



ing the Bing image search API® using the query
composed of the target word and its hypernym,
e.g. ‘“jaguar car”. The first hit of this query is
selected to represent the induced word sense.

Algorithm 1: Unsupervised WSD of the word
t based on the induced word sense inventory I.

input : Word ¢, context features C, sense inventory I,
word-feature table F', use largest cluster
back-off LC' B, use feature expansion F'E.

output: Sense of the target word ¢ in inventory I and
confidence score.

S < getSenses (I, t)

if F'E then

| C « featureExpansion(C')

end

foreach (sense, cluster) € S do

alsense] + {}

foreach w € cluster do

foreach c € C' do
| afsense] < afsense] U F(w,c)
end

end

(- R 7 I R R S

-
-

end
if maxsensecs mean(afsense]) = 0 then
if LC B then
| return arg max _ ., eryes|cluster|
else
| return—1// reject to classify
end

e e
N U R W

—
®

else
| return argmax ., . yesmean(a[sense])
end

[ ST
= S e

3.5 Word Sense Disambiguation with
Induced Word Sense Inventory

To disambiguate a target word ¢ in context, we ex-
tract context features C' and pass them to Algo-
rithm 1. We use the induced sense inventory I and
select the sense that has the largest weighted fea-
ture overlap with context features or fall back to
the largest cluster back-off when context features
C do not match the learned sense representations.

The algorithm starts by retrieving induced sense
clusters of the target word (line 1).  Next,
the method starts to accumulate context feature
weights of each sense in a[sense]. Each word
w in a sense cluster brings all its word-feature
counts F'(w,c): see lines 5-12. Finally, a sense
that maximizes mean weight across all context
features is chosen (lines 13-21). Optionally, we
can resort to the largest cluster back-off (LCB)
strategy in case if no context features match sense
representations.

*https://azure.microsoft.com/en-us/
services/cognitive-services/search
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Note that the induced inventory [ is used as
a pivot to aggregate word-feature counts F'(w, c¢)
of the words in the cluster in order to build fea-
ture representations of each induced sense. We
assume that the sets of similar words per sense
are compatible with each other’s context. Thus,
we can aggregate ambiguous feature representa-
tions of words in a sense cluster. In a way, oc-
currences of cluster members form the training set
for the sense, i.e. contexts of {chair, bed, bench,
stool, sofa, desk, cabinet}, add to the represen-
tation of “table (furniture)” in the model. Here,
ambiguous cluster members like “chair” (which
could also mean “chairman’) add some noise, but
its influence is dwarfed by the aggregation over all
cluster members. Besides, it is unlikely that the
target (“table”) and the cluster member (“chair”)
share the same homonymy, thus noisy context fea-
tures hardly play a role when disambiguating the
target in context. For instance, for scoring us-
ing language model features, we retrieve the con-
text of the target word and substitute the target
word one by one of the cluster words. To close
the gap between the aggregated dependency per
sense a[sense] and dependencies observed in the
target’s context C', we use the similarity of fea-
tures: we expand every feature ¢ € C' with 200 of
most similar features and use them as additional
features (lines 2-4).

We run disambiguation independently for each
of the feature types listed above, e.g. dependencies
or co-occurrences. Next, independent predictions
are combined using the majority-voting rule.

3.6 Interpretability of the Method

Results of disambiguation can be interpreted by
humans as illustrated by Figure 2. In particular,
our approach is interpretable at three levels:

1. Word sense inventory. To make induced
word sense inventories interpretable we display
senses of each word as an ego-network of its se-
mantically related words. For instance, the net-
work of the word “table” in our example is con-
structed from two tightly related groups of words
that correspond to “furniture” and “data” senses.
These labels of the clusters are obtained automati-
cally (see Section 3.4).

While alternative methods, such as AdaGram,
can generate sense clusters, our approach makes
the senses better interpretable due to hypernyms
and image labels that summarize senses.
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Figure 2: Interpretation of the senses of the word “table” at three levels by our method: (1) word sense
inventory; (2) sense feature representation; (3) results of disambiguation in context. The sense labels
(“furniture” and “data”) are obtained automatically based on cluster labeling with hypernyms. The im-
ages associated with the senses are retrieved using a search engine:“table data” and “table furniture”.

2. Sense feature representation. FEach sense
in our model is characterized by a list of sparse
features ordered by relevance to the sense. Fig-
ure 2 (2) shows most salient dependency features
to senses of the word “table”. These feature repre-
sentations are obtained by aggregating features of
sense cluster words.

In systems based on dense vector representa-
tions, there is no straightforward way to get the
most salient features of a sense, which makes the
analysis of learned representations problematic.

3. Disambiguation method. To provide the rea-
sons for sense assignment in context, our method
highlights the most discriminative context features
that caused the prediction. The discriminative
power of a feature is defined as the ratio between
its weights for different senses.

LR INT3

In Figure 2 (3) words “information”, “cookies”,
“deployed” and “website” are highlighted as they
are most discriminative and intuitively indicate on
the “data” sense of the word “table” as opposed
to the “furniture” sense. The same is observed for
other types of features. For instance, the syntactic
dependency to the word “information” is specific
to the “data” sense.

Alternative unsupervised WSD methods that
rely on word sense embeddings make it difficult
to explain sense assignment in context due to the
use of dense features whose dimensions are not in-
terpretable.
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4 Experiments

We use two lexical sample collections suitable for
evaluation of unsupervised WSD systems. The
first one is the Turk Bootstrap Word Sense In-
ventory (TWSI) dataset introduced by Biemann
(2012). It is used for testing different configu-
rations of our approach. The second collection,
the SemEval 2013 word sense induction dataset by
Jurgens and Klapaftis (2013), is used to compare
our approach to existing systems. In both datasets,
to measure WSD performance, induced senses are
mapped to gold standard senses. In experiments
with the TWSI dataset, the models were trained on
the Wikipedia corpus* while in experiments with
the SemEval datasets models are trained on the
ukWaC corpus (Baroni et al., 2009) for a fair com-
parison with other participants.

4.1 TWSI Dataset
4.1.1 Dataset and Evaluation Metrics

This test collection is based on a crowdsourced re-
source that comprises 1,012 frequent nouns with
2,333 senses and average polysemy of 2.31 senses
per word. For these nouns, 145,140 annotated sen-
tences are provided. Besides, a sense inventory
is explicitly provided, where each sense is rep-
resented with a list of words that can substitute
target noun in a given sentence. The sense dis-
tribution across sentences in the dataset is highly

*We use a Wikipedia dump from September 2015:
http://doi.org/10.5281/zenodo.229904



skewed as 79% of contexts are assigned to the
most frequent senses. Thus, in addition to the full
TWSI dataset, we also use a balanced subset fea-
turing five contexts per sense and 6,166 sentences
to assess the quality of the disambiguation mech-
anism for smaller senses. This dataset contains no
monosemous words to completely remove the bias
of the most frequent sense. Note that de-biasing
the evaluation set does not de-bias the word sense
inventory, thus the task becomes harder for the bal-
anced subset.

For the TWSI evaluation, we create an explicit
mapping between the system-provided sense in-
ventory and the TWSI word senses: senses are
represented as the bag of words, which are com-
pared using cosine similarity. Every induced sense
gets assigned at most one TWSI sense. Once the
mapping is completed, we calculate Precision, Re-
call, and F-measure. We use the following base-
lines to facilitate interpretation of the results: (1)
MEFS of the TWSI inventory always assigns the
most frequent sense in the TWSI dataset; (2) LCB
of the induced inventory always assigns the largest
sense cluster; (3) Upper bound of the induced vo-
cabulary always selects the correct sense for the
context, but only if the mapping exists for this
sense; (4) Random sense of the TWSI and the in-
duced inventories.

4.1.2 Discussion of Results

The results of the TWSI evaluation are presented
in Table 1. In accordance with prior art in word
sense disambiguation, the most frequent sense
(MFS) proved to be a strong baseline, reaching
an F-score of 0.787, while the random sense over
the TWSI inventory drops to 0.536. The upper
bound on our induced inventory (F-score of 0.900)
shows that the sense mapping technique used prior
to evaluation does not drastically distort the evalu-
ation scores. The LCB baseline of the induced in-
ventory achieves an F-score of 0.691, demonstrat-
ing the efficiency of the LCB technique.

Let us first consider models based on single
features. Dependency features yield the highest
precision of 0.728, but have a moderate recall of
0.343 since they rarely match due to their spar-
sity. The LCB strategy for these rejected con-
texts helps to improve recall at cost of precision.
Co-occurrence features yield significantly lower
precision than the dependency-based features, but
their recall is higher. Finally, the language model
features yield very balanced results in terms of
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both precision and recall. Yet, the precision of the
model based on this feature type is significantly
lower than that of dependencies.

Not all combinations improve results, e.g. com-
bination of three types of features yields infe-
rior results as compared to the language model
alone. However, a combination of the language
model with dependency features does provide an
improvement over the single models as both these
models bring strong signal of complementary na-
ture about the semantics of the context. The de-
pendency features represent syntactic information,
while the LM features represent lexical informa-
tion. This improvement is even more pronounced
in the case of the balanced TWSI dataset. This
combined model yields the best F-scores overall.

Table 2 presents the effect of the feature expan-
sion based on the graph of similar features. For
a low-recall model such the one based on syntac-
tic dependencies, feature expansion makes a lot of
sense: it almost doubles recall, while losing some
precision. The gain in F-score using this technique
is almost 20 points on the full TWSI dataset. How-
ever, the need for such expansion vanishes when
two principally different types of features (precise
syntactic dependencies and high-coverage trigram
language model) are combined. Both precision
and F-score of this combined model outperforms
that of the dependency-based model with feature
expansion by a large margin.

Figure 3 illustrates how granularity of the in-
duced sense inventory influences WSD perfor-
mance. For this experiment, we constructed three
inventories, setting the number of most similar
words in the ego-network n to 200, 100 and 50.
These settings produced inventories with respec-
tively 1.96, 2.98 and 5.21 average senses per target
word. We observe that a higher sense granularity
leads to lower F-scores. This can be explained be-
cause of (1) the fact that granularity of the TWSI
is similar to granularity of the most coarse-grained
inventory; (2) the higher the number of senses,
the higher the chance to make a wrong sense as-
signment; (3) due to the reduced size of individual
clusters, we get less signal per sense cluster and
noise becomes more pronounced.

To summarize, the best precision is reached by
a model based on un-expanded dependencies and
the best F-score can be obtained by a combination
of models based on un-expanded dependency fea-
tures and language model features.



Full TWSI Sense-Balanced TWSI
Model #Senses | Prec. Recall F-score | Prec. Recall F-score
MFS of the TWSI inventory 231 | 0787  0.787 0.787 | 0.373 0373  0.373
Random Sense of the TWSI inventory 231 | 0536 0534 0.535 | 0.160 0.160  0.160
Upper bound of the induced inventory 1.96 | 1.000  0.819  0.900 | 1.000  0.598 0.748
Largest Cluster Back-Off (LCB) of the induced inventory ~ 1.96 | 0.691 0.690 0.691 | 0.371 0.371  0.371
Random sense of the induced inventory 1.96 | 0.559 0558 0.558 | 0325  0.324 0.324
Dependencies 196 | 0.728 0343  0.466 | 0432 0.190 0.263
Dependencies + LCB 1.96 | 0.689  0.680 0.684 | 0.388  0.385  0.387
Co-occurrences (Cooc) 1.96 | 0570 0563  0.566 | 0.336 0333  0.335
Language Model (LM) 1.96 | 0.685 0.677 0.681 | 0.416 0412 0414
Dependencies + LM + Cooc 1.96 | 0.644 0.636 0.640 | 0.388  0.386  0.387
Dependencies + LM 1.96 | 0.689  0.681 0.685 | 0.426  0.422 0.424

Table 1: WSD performance of different configurations of our method on the full and the sense-balanced
TWSI datasets based on the coarse inventory with 1.96 senses/word (N = 200, n = 200).

Model \ Precision Recall F-score \ Precision Recall F-score
Dependencies 0.728 0.343 0.466 0.432 0.190 0.263
Dependencies Exp. 0.687 0.633 0.659 0.414 0.379 0.396
Dependencies + LM 0.689 0.681 0.685 0.426 0.422 0.424
Dependencies Exp. + LM 0.684 0.676 0.680 0.412 0.408 0.410

Table 2: Effect of the feature expansion: performance on the full (on the left) and the sense-balanced (on
the right) TWSI datasets. The models were trained on the Wikipedia corpus using the coarse inventory
(1.96 senses per word). The best results overall are underlined.

4.2 SemkEval 2013 Task 13 Dataset
4.2.1 Dataset and Evaluation Metrics

The task of word sense induction for graded and
non-graded senses provides 20 nouns, 20 verbs
and 10 adjectives in WordNet-sense-tagged con-
texts. It contains 20-100 contexts per word, and
4,664 contexts in total with 6,73 sense per word
in average. Participants were asked to cluster in-
stances into groups corresponding to distinct word
senses. Instances with multiple senses were la-
beled with a score between 0 and 1.

Performance is measured with three measures
that require a mapping of inventories (Jaccard In-
dex, Tau, WNDCG) and two cluster comparison
measures (Fuzzy NMI, Fuzzy B-Cubed).

4.2.2 Discussion of Results

Table 3 presents results of evaluation of the
best configuration of our approach trained on the
ukWaC corpus. We compare our approach to
four SemEval participants and two state-of-the-art
systems based on word sense embeddings: Ada-
Gram (Bartunov et al., 2016) based on Bayesian
stick-breaking process® and SenseGram (Pelevina
et al., 2016) based on clustering of ego-network

‘https://github.com/sbos/AdaGram. j1
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generated using word embeddings®. The AI-KU
system (Baskaya et al., 2013) directly clusters test
contexts using the k-means algorithm based on
lexical substitution features. The Unimelb sys-
tem (Lau et al., 2013) uses one hierarchical topic
model to induce and disambiguate senses of one
word. The UoS system (Hope and Keller, 2013)
induces senses by building an ego-network of a
word using dependency relations, which is sub-
sequently clustered using the MaxMax clustering
algorithm. The La Sapienza system (Jurgens and
Klapaftis, 2013), relies on WordNet for the sense
inventory and disambiguation.

In contrast to the TWSI evaluation, the most
fine-grained model yields the best scores, yet the
inventory of the task is also more fine-grained than
the one of the TWSI (7.08 vs. 2.31 avg. senses per
word). Our method outperforms the knowledge-
based system of La Sapienza according to two of
three metrics metrics and the SenseGram system
based on sense embeddings according to four of
five metrics. Note that SenseGram outperforms
all other systems according to the Fuzzy B-Cubed
metric, which is maximized in the “All instances,
One sense” settings. Thus this result may be due to

*https://github.com/tudarmstadt-1t/
sensegram
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Figure 3: Impact of word sense inventory granularity on WSD performance: the TWSI dataset.

Model Jacc. Ind. Tau WNDCG ‘ Fuzzy NMI  Fuzzy B-Cubed
All Instances, One sense 0.192  0.609 0.288 0.000 0.623
1 sense per instance 0.000 0.953 0.000 0.072 0.000
Most Frequent Sense 0.552  0.560 0.412 - -
AI-KU 0.197 0.620 0.387 0.065 0.390
AI-KU (remove5-add1000) 0.245 0.642 0.332 0.039 0.451
Unimelb (50k) 0.213  0.620 0.371 0.060 0.483
UoS (top-3) 0.232 0.625 0.374 0.045 0.448
La Sapienza (2) 0.149 0.510 0.383 - -
AdaGram, o = 0.05, 100 dim. vectors 0.274 0.644 0.318 0.058 0.470
SenseGram, 100 dim., CBOW, weight, sim., p = 2 0.197 0.615 0.291 0.011 0.615
Dependencies + LM (1.96 senses/word) 0.239 0.634 0.300 0.041 0.513
Dependencies + LM (2.98 senses/word) 0.242 0.634 0.300 0.041 0.504
Dependencies + LM (5.21 senses/word) 0.253 0.638 0.300 0.041 0.479

Table 3: WSD performance of the best configuration of our method identified on the TWSI dataset as
compared to participants of the SemEval 2013 Task 13 and two systems based on word sense embeddings
(AdaGram and SenseGram). All models were trained on the ukWaC corpus.

difference in granularities: the average polysemy
of the SenseGram model is 1.56, while the poly-
semy of our models range from 1.96 to 5.21.

Besides, our system performs comparably to the
top unsupervised systems participated in the com-
petition: It is on par with the top SemEval sub-
missions (A/-KU and UoS) and the another system
based on embeddings (AdaGram), in terms of four
out of five metrics (Jaccard Index, Tau, Fuzzy B-
Cubed, Fuzzy NMI).

Therefore, we conclude that our system yields
comparable results to the state-of-the-art unsuper-
vised systems. Note, however, that none of the
rivaling systems has a comparable level of inter-
pretability to our approach. This is where our
method is unique in the class of unsupervised
methods: feature representations and disambigua-
tion procedure of the neural-based AdaGram and
SenseGram systems cannot be straightforwardly
interpreted. Besides, inventories of the existing
systems are represented as ranked lists of words
lacking features that improve readability, such as
hypernyms and images.
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5 Conclusion

In this paper, we have presented a novel method
for word sense induction and disambiguation that
relies on a meta-combination of dependency fea-
tures with a language model. The majority of
existing unsupervised approaches focus on opti-
mizing the accuracy of the method, sacrificing its
interpretability due to the use of opaque models,
such as neural networks. In contrast, our approach
places a focus on interpretability with the help
of sparse readable features. While being inter-
pretable at three levels (sense inventory, sense rep-
resentations and disambiguation), our method is
competitive to the state-of-the-art, including two
recent approaches based on sense embeddings, in
a word sense induction task. Therefore, it is pos-
sible to match the performance of accurate, but
opaque methods when interpretability matters.
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Abstract

Word Sense Disambiguation is a long-
standing task in Natural Language Pro-
cessing, lying at the core of human lan-
guage understanding. However, the evalu-
ation of automatic systems has been prob-
lematic, mainly due to the lack of a re-
liable evaluation framework. In this pa-
per we develop a unified evaluation frame-
work and analyze the performance of
various Word Sense Disambiguation sys-
tems in a fair setup. The results show
that supervised systems clearly outper-
form knowledge-based models. Among
the supervised systems, a linear classi-
fier trained on conventional local features
still proves to be a hard baseline to beat.
Nonetheless, recent approaches exploit-
ing neural networks on unlabeled corpora
achieve promising results, surpassing this
hard baseline in most test sets.

1 Introduction

Word Sense Disambiguation (WSD) has been a
long-standing task in Natural Language Process-
ing (NLP). It lies at the core of language under-
standing and has already been studied from many
different angles (Navigli, 2009; Navigli, 2012).
However, the field seems to be slowing down
due to the lack of groundbreaking improvements
and the difficulty of integrating current WSD sys-
tems into downstream NLP applications (de La-
calle and Agirre, 2015). In general the field does
not have a clear path, partially owing to the fact
that identifying real improvements over existing
approaches becomes a hard task with current eval-
uation benchmarks. This is mainly due to the
lack of a unified framework, which prevents di-
rect and fair comparison among systems. Even
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though many evaluation datasets have been con-
structed for the task (Edmonds and Cotton, 2001;
Snyder and Palmer, 2004; Navigli et al., 2007;
Pradhan et al., 2007; Agirre et al., 2010a; Nav-
igli et al.,, 2013; Moro and Navigli, 2015, in-
ter alia), they tend to differ in format, construc-
tion guidelines and underlying sense inventory. In
the case of the datasets annotated using WordNet
(Miller, 1995), the de facto sense inventory for
WSD, we encounter the additional barrier of hav-
ing text annotated with different versions. These
divergences are in the main solved individually by
using or constructing automatic mappings. The
quality check of such mapping, however, tends to
be impractical and this leads to mapping errors
which give rise to additional system inconsisten-
cies in the experimental setting. This issue is di-
rectly extensible to the training corpora used by
supervised systems. In fact, results obtained by
supervised or semi-supervised systems reported in
the literature are not completely reliable, because
the systems may not necessarily have been trained
on the same corpus, or the corpus was prepro-
cessed differently, or annotated with a sense inven-
tory different from the test data. Thus, together,
the foregoing issues prevent us from drawing reli-
able conclusions on different models, as in some
cases ostensible improvements may have been ob-
tained as a consequence of the nature of the train-
ing corpus, the preprocessing pipeline or the ver-
sion of the underlying sense inventory, rather than
of the model itself. Moreover, because of these
divergences, current systems tend to report results
on a few datasets only, making it hard to perform
a direct quantitative confrontation.

This paper offers two main contributions. First,
we provide a complete evaluation framework for
all-words Word Sense Disambiguation overcom-
ing all the aforementioned limitations by (1) stan-
dardizing the WSD datasets and training corpora
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into a unified format, (2) semi-automatically con-
verting annotations from any dataset to WordNet
3.0, and (3) preprocessing the datasets by consis-
tently using the same pipeline. Second, we use
this evaluation framework to perform a fair quanti-
tative and qualitative empirical comparison of the
main techniques proposed in the WSD literature,
including the latest advances based on neural net-
works.

2 State of the Art

The task of Word Sense Disambiguation consists
of associating words in context with the most suit-
able entry in a pre-defined sense inventory. De-
pending on their nature, WSD systems are divided
into two main groups: supervised and knowledge-
based. In what follows we summarize the current
state of these two types of approach.

2.1 Supervised WSD

Supervised models train different features ex-
tracted from manually sense-annotated corpora.
These features have been mostly based on the in-
formation provided by the surroundings words of
the target word (Keok and Ng, 2002; Navigli,
2009) and its collocations. Recently, more com-
plex features based on word embeddings trained
on unlabeled corpora have also been explored
(Taghipour and Ng, 2015b; Rothe and Schiitze,
2015; Iacobacci et al., 2016). These features are
generally taken as input to train a linear classifier
(Zhong and Ng, 2010; Shen et al., 2013). In ad-
dition to these conventional approaches, the latest
developments in neural language models have mo-
tivated some researchers to include them in their
WSD architectures (Kagebdck and Salomonsson,
2016; Melamud et al., 2016; Yuan et al., 2016).
Supervised models have traditionally been able
to outperform knowledge-based systems (Navigli,
2009). However, obtaining sense-annotated cor-
pora is highly expensive, and in many cases such
corpora are not available for specific domains.
This is the reason why some of these supervised
methods have started to rely on unlabeled corpora
as well. These approaches, which are often clas-
sified as semi-supervised, are targeted at overcom-
ing the knowledge acquisition bottleneck of con-
ventional supervised models (Pilehvar and Nav-
igli, 2014). In fact, there is a line of research
specifically aimed at automatically obtaining large
amounts of high-quality sense-annotated corpora
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(Taghipour and Ng, 2015a; Raganato et al., 2016;
Camacho-Collados et al., 2016a).

In this work we compare supervised systems
and study the role of their underlying sense-
annotated training corpus. Since semi-supervised
models have been shown to outperform fully
supervised systems in some settings (Taghipour
and Ng, 2015b; Baskaya and Jurgens, 2016;
Iacobacci et al.,, 2016; Yuan et al., 2016),
we evaluate and compare models using both
manually-curated and automatically-constructed
sense-annotated corpora for training.

2.2 Knowledge-based WSD

In contrast to supervised systems, knowledge-
based WSD techniques do not require any sense-
annotated corpus. Instead, these approaches rely
on the structure or content of manually-curated
knowledge resources for disambiguation. One of
the first approaches of this kind was Lesk (1986),
which in its original version consisted of calcu-
lating the overlap between the context of the tar-
get word and its definitions as given by the sense
inventory. Based on the same principle, vari-
ous works have adapted the original algorithm by
also taking into account definitions from related
words (Banerjee and Pedersen, 2003), or by cal-
culating the distributional similarity between def-
initions and the context of the target word (Basile
et al., 2014; Chen et al., 2014). Distributional sim-
ilarity has also been exploited in different settings
in various works (Miller et al., 2012; Camacho-
Collados et al., 2015; Camacho-Collados et al.,
2016b). In addition to these approaches based on
distributional similarity, an important branch of
knowledge-based systems found their techniques
on the structural properties of semantic graphs
from lexical resources (Agirre and Soroa, 2009;
Guo and Diab, 2010; Ponzetto and Navigli, 2010;
Agirre et al., 2014; Moro et al., 2014; Weissenborn
et al., 2015; Tripodi and Pelillo, 2016). Gener-
ally, these graph-based WSD systems first create
a graph representation of the input text and then
exploit different graph-based algorithms over the
given representation (e.g., PageRank) to perform
WSD.

3 Standardization of WSD datasets

In this section we explain our pipeline for trans-
forming any given evaluation dataset or sense-
annotated corpus into a preprocessed unified for-
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Figure 1: Pipeline for standardizing any given WSD dataset.

mat. In our pipeline we do not make any dis-
tinction between evaluation datasets and sense-
annotated training corpora, as the pipeline can be
applied equally to both types. For simplicity we
will refer to both evaluation datasets and training
corpora as WSD datasets.

Figure 1 summarizes our pipeline to standardize
a WSD dataset. The process consists of four steps:

1. Most WSD datasets in the literature use a
similar XML format, but they have some di-
vergences on how to encode the information.
For instance, the SemEval-15 dataset (Moro
and Navigli, 2015) was developed for both
WSD and Entity Linking and its format was
especially designed for this latter task. There-
fore, we decided to convert all datasets to a
unified format. As unified format we use the
XML scheme used for the SemEval-13 all-
words WSD task (Navigli et al., 2013), where
preprocessing information of a given corpus
is also encoded.

2. Once the dataset is converted to a unified for-
mat, we map the sense annotations from its
original WordNet version to 3.0, which is the
latest version of WordNet used in evaluation
datasets. This mapping is carried out semi-
automatically. First, we use automatically-
constructed WordNet mappings! (Daude et
al., 2003). These mappings provide confi-
dence values which we use to initially map
senses whose mapping confidence is 100%.
Then, the annotations of the remaining senses
are manually checked, and re-annotated or re-
moved whenever necessary’. Additionally,
in this step we decided to remove all annota-
tions of auxiliary verbs, following the anno-
tation guidelines of the latest WSD datasets.

3. The third step consists of preprocessing
the given dataset. We used the Stanford

'"http://nlp.lsi.upc.edu/tools/
download—-map.php

2This manual correction involved less than 10% of all in-
stances for the datasets for which this step was performed.

CoreNLP toolkit (Manning et al., 2014) for
Part-of-Speech (PoS) tagging® and lemmati-
zation. This step is performed in order to
ensure that all systems use the same prepro-
cessed data.

4. Finally, we developed a script to check that
the final dataset conforms to the aforemen-
tioned guidelines. In this final verification we
also ensured that the sense annotations match
the lemma and the PoS tag provided by Stan-
ford CoreNLP by automatically fixing all di-
vergences.

4 Data

In this section we summarize the WSD datasets
used in the evaluation framework. To all these
datasets we apply the standardization pipeline de-
scribed in Section 3. First, we enumerate all the
datasets used for the evaluation (Section 4.1). Sec-
ond, we describe the sense-annotated corpora used
for training (Section 4.2). Finally, we show some
relevant statistics extracted from these resources
(Section 4.3).

4.1 WSD evaluation datasets

For our evaluation framework we considered five
standard all-words fine-grained WSD datasets
from the Senseval and SemEval competitions:

e Senseval-2 (Edmonds and Cotton, 2001).
This dataset was originally annotated with
WordNet 1.7. After standardization, it con-
sists of 2282 sense annotations, including
nouns, verbs, adverbs and adjectives.

e Senseval-3 task 1 (Snyder and Palmer,
2004). The WordNet version of this dataset
was 1.7.1. It consists of three documents
from three different domains (editorial, news
story and fiction), totaling 1850 sense anno-
tations.

3In order to have a standard format which may be used by

languages other than English, we provide coarse-grained PoS
tags as given by the universal PoS tagset (Petrov et al., 2011).



#Docs | #Sents #Tokens || #Annotations | #Sense types | #Word types | Ambiguity
Senseval-2 3 242 5,766 2,282 1,335 1,093 54
Senseval-3 3 352 5,541 1,850 1,167 977 6.8
SemEval-07 3 135 3,201 455 375 330 8.5
SemEval-13 13 306 8,391 1,644 827 751 4.9
SemEval-15 4 138 2,604 1,022 659 512 55
SemCor 352 | 37,176 802,443 226,036 33,362 22,436 6.8
OMSTI - | 813,798 | 30,441,386 911,134 3,730 1,149 8.9

Table 1: Statistics of the WSD datasets used in the evaluation framework (after standardization).

e SemEval-07 task 17 (Pradhan et al., 2007).
This is the smallest among the five datasets,
containing 455 sense annotations for nouns
and verbs only. It was originally annotated
using WordNet 2.1 sense inventory.

e SemEval-13 task 12 (Navigli et al., 2013).
This dataset includes thirteen documents
from various domains. In this case the origi-
nal sense inventory was WordNet 3.0, which
is the same as the one that we use for all
datasets. The number of sense annotations is
1644, although only nouns are considered.

e SemEval-15 task 13 (Moro and Navigli,
2015). This is the most recent WSD dataset
available to date, annotated with WordNet
3.0. It consists of 1022 sense annotations
in four documents coming from three het-
erogeneous domains: biomedical, mathemat-
ics/computing and social issues.

4.2 Sense-annotated training corpora

We now describe the two WordNet sense-
annotated corpora used for training the supervised
systems in our evaluation framework:

e SemCor (Miller et al., 1994). SemCor* is
a manually sense-annotated corpus divided
into 352 documents for a total of 226,040
sense annotations. It was originally tagged
with senses from the WordNet 1.4 sense
inventory. SemCor is, to our knowledge,
the largest corpus manually annotated with
WordNet senses, and is the main corpus used
in the literature to train supervised WSD sys-
tems (Agirre et al., 2010b; Zhong and Ng,
2010).

“We downloaded the SemCor 3.0 version at web . eecs .
umich.edu/~mihalcea/downloads.html
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e OMSTI (Taghipour and Ng, 2015a). OM-
STI (One Million Sense-Tagged Instances) is
a large corpus annotated with senses from
the WordNet 3.0 inventory. It was auto-
matically constructed by using an alignment-
based WSD approach (Chan and Ng, 2005)
on a large English-Chinese parallel corpus
(Eisele and Chen, 2010, MultiUN corpus).
OMSTT has already shown its potential as
a training corpus by improving the perfor-
mance of supervised systems which add it
to existing training data (Taghipour and Ng,
2015a; Iacobacci et al., 2016).

4.3 Statistics

Table 1 shows some statistics® of the WSD
datasets and training corpora which we use in the
evaluation framework. The number of sense an-
notations varies across datasets, ranging from 455
annotations in the SemEval-07 dataset, to 2,282
annotations in the Senseval-2 dataset. As regards
sense-annotated corpora, OMSTI is made up of
almost 1M sense annotations, a considerable in-
crease over the number of sense annotations of
SemCor. However, SemCor is much more bal-
anced in terms of unique senses covered (3,730
covered by OMSTI in contrast to over 33K cov-
ered by SemCor). Additionally, while OMSTI
was constructed automatically, SemCor was man-
ually built and, hence, its quality is expected to be
higher.

Finally, we calculated the ambiguity level of
each dataset, computed as the total number of can-

3In this paper we refer to the portion of sense-annotated
data from the MultiUN corpus as OMSTI. Note that OMSTI
was released along with SemCor.

SStatistics included in Table 1: number of documents
(#Docs), sentences (#Sents), tokens (#Tokens), sense anno-
tations (#Annotations), sense types covered (#Sense types),
annotated lemma types covered (#Word types), and ambigu-
ity level (Ambiguity). There was no document information in
the OMSTI data released by Taghipour and Ng (2015a).



didate senses (i.e., senses sharing the surface form
of the target word) divided by the number of sense
annotations. The highest ambiguity is found on
OMSTI, which, despite being constructed auto-
matically, contains a high coverage of ambigu-
ous words. As far as the evaluation competition
datasets are concerned, the ambiguity may give a
hint as to how difficult a given dataset may be. In
this case, SemEval-07 displays the highest ambi-
guity level among all evaluation datasets.

5 Evaluation

The evaluation framework consists of the WSD
evaluation datasets described in Section 4.1. In
this section we use this framework to perform an
empirical comparison among a set of heteroge-
neous WSD systems. The systems used in the
evaluation are described in detail in Section 5.1,
the results are shown in Section 5.2 and a detailed
analysis is presented in Section 5.3.

5.1 Comparison systems

We include three supervised (Section 5.1.1) and
three knowledge-based (Section 5.1.2) all-words
WSD systems in our empirical comparison.

5.1.1 Supervised

To ensure a fair comparison, all supervised sys-
tems use the same corpus for training: SemCor
and Semcor+OMSTI’ (see Section 4.2). In the
following we describe the three supervised WSD
systems used in the evaluation:

o IMS (Zhong and Ng, 2010) uses a Support
Vector Machine (SVM) classifier over a set
of conventional WSD features. IMS? is built
on a flexible framework which allows an easy
integration of different features. The default
implementation includes surrounding words,
PoS tags of surroundings words, and local
collocations as features.

IMS+embeddings (Taghipour and Ng,
2015b; Rothe and Schiitze, 2015; Iacobacci
et al., 2016). These approaches have shown
the potential of using word embeddings on
the WSD task. Iacobacci et al. (2016) carried

7As already noted by Taghipour and Ng (2015a), super-
vised systems trained on only OMSTI obtain lower results
than when trained along with SemCor, mainly due to OM-
STI’s lack of coverage in target word types.

8We used the original implementation available at ht tp :
//www.comp.nus.edu.sg/~nlp/software.html
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out a comparison of different strategies for
integrating word embeddings as a feature in
WSD. In this paper we consider the two best
configurations in lacobacci et al. (2016)°:
using all IMS default features including and
excluding surrounding words (IMS+emb
and IMS_+emb, respectively). In both
cases word embeddings are integrated using
exponential decay (i.e., word weights drop
exponentially as the distance towards the
target word increases). Likewise, we use
Tacobacci et al.’s suggested learning strategy
and hyperparameters to train the word em-
beddings: Skip-gram model of Word2Vec!?
(Mikolov et al., 2013) with 400 dimensions,
ten negative samples and a window size of
ten words. As unlabeled corpus to train the
word embeddings we use the English ukWaC
corpus11 (Baroni et al., 2009), which is made
up of two billion words from paragraphs
extracted from the web.

Context2Vec (Melamud et al., 2016). Neural
language models have recently shown their
potential for the WSD task (Kagebick and
Salomonsson, 2016; Yuan et al., 2016). In
this experiment we replicated the approach
of Melamud et al. (2016, Context2Vec), for
which the code'? is publicly available. This
approach is divided in three steps. First, a
bidirectional LSTM recurrent neural network
is trained on an unlabeled corpus (we con-
sidered the same ukWaC corpus used by the
previous comparison system). Then, a con-
text vector is learned for each sense annota-
tion in the training corpus. Finally, the sense
annotation whose context vector is closer to
the target word’s context vector is selected as
the intended sense.

Finally, as baseline we included the Most Fre-
quent Sense (MFS) heuristic, which for each tar-
get word selects the sense occurring the highest
number of times in the training corpus.

"We used the implementation available at https://
github.com/iiacobac/ims_wsd_emb

Vcode.google.com/archive/p/word2vec/

Uhttp://wacky.sslmit.unibo.it/doku.
php?id=corpora

Phttps://github.com/orenmel/
context2vec



5.1.2 Knowledge-based

In this section we describe the three knowledge-
based WSD models used in our empirical compar-
ison:

o Lesk (Lesk, 1986) is a simple knowledge-
based WSD algorithm that bases its calcu-
lations on the overlap between the defini-
tions of a given sense and the context of the
target word. For our experiments we repli-
cated the extended version of the original al-
gorithm in which definitions of related senses
are also considered and the conventional
term frequency-inverse document frequency
(Jones, 1972, tf-idf) is used for word weight-
ing (Banerjee and Pedersen, 2003, Leskex;).
Additionally, we included the enhanced ver-
sion of Lesk in which word embeddings'? are
leveraged to compute the similarity between
definitions and the target context (Basile et
al., 2014, Leskey+emb) 4.

UKB (Agirre and Soroa, 2009; Agirre et al.,
2014) is a graph-based WSD system which
makes use of random walks over a seman-
tic network (WordNet graph in this case).
UKB' applies the Personalized Page Rank
algorithm (Haveliwala, 2002) initialized us-
ing the context of the target word. Unlike
most WSD systems, UKB does not back-off
to the WordNet first sense heuristic and it
is self-contained (i.e., it does not make use
of any external resources/corpora). We used
both default configurations from UKB: us-
ing the full WordNet graph (UKB) and the
full graph including disambiguated glosses as
connections as well (UKB_gloss).

Babelfy (Moro et al., 2014) is a graph-based
disambiguation approach which exploits ran-
dom walks to determine connections between
synsets. Specifically, Babelfy!® uses ran-
dom walks with restart (Tong et al., 2006)
over BabelNet (Navigli and Ponzetto, 2012),
a large semantic network integrating Word-
Net among other resources such as Wikipedia

*We used the same word embeddings described in Section
5.1.1 for IMS+emb.

4We used the implementation from https://github.
com/pippokill/lesk-wsd—dsm. In this implementa-
tion additional definitions from BabelNet are considered.

SWe used the last implementation available at
http://ixa2.si.ehu.es/ukb/

1We used the Java API from http://babelfy.org
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or Wiktionary. Its algorithm is based on a
densest subgraph heuristic for selecting high-
coherence semantic interpretations of the in-
put text. The best configuration of Babelfy
takes into account not only the target sen-
tence in which the target word occurs, but
also the whole document.

As knowledge-based baseline we included the
WordNet first sense. This baseline simply selects
the candidate which is considered as first sense
in WordNet 3.0. Even though the sense order
was decided on the basis of semantically-tagged
text, we considered it as knowledge-based in this
experiment as this information is already avail-
able in WordNet. In fact, knowledge-based sys-
tems like Babelfy include this information in their
pipeline. Despite its simplicity, this baseline has
been shown to be hard to beat by automatic WSD
systems (Navigli, 2009; Agirre et al., 2014).

5.2 Results

Table 2 shows the F-Measure performance of all
comparison systems on the five all-words WSD
datasets. Since not all test word instances are
covered by the corresponding training corpora,
supervised systems have a maximum F-Score
(ceiling in the Table) they can achieve. Never-
theless, supervised systems consistently outper-
form knowledge-based systems across datasets,
confirming the results of Pilehvar and Navigli
(2014). A simple linear classifier over conven-
tional WSD features (i.e., IMS) proves to be ro-
bust across datasets, consistently outperforming
the MFS baseline. The recent integration of word
embeddings as an additional feature is beneficial,
especially as a replacement of the feature based
on the surface form of surrounding words (i.e.,
IMS_j+emb). Moreover, recent advances on neu-
ral language models (in the case of Context2Vec a
bi-directional LSTM) appear to be highly promis-
ing for the WSD task according to the results, as
Context2Vec outperforms IMS in most datasets.
On the other hand, it is also interesting to note
the performance inconsistencies of systems across
datasets, as in all cases there is a large performance
gap between the best and the worst performing
dataset. As explained in Section 4.3, the ambi-
guity level may give a hint as to how difficult the
corresponding dataset may be. In fact, WSD sys-
tems obtain relatively low results in SemEval-07,
which is the most ambiguous dataset (see Table 1).



Tr. Corpus System Senseval-2 | Senseval-3 | SemEval-07 | SemEval-13 | SemEval-15
IMS 70.9 69.3 61.3 65.3 69.5
IMS+emb 71.0 69.3 60.9 67.3 71.3
SemCor IMS _+emb 72.2 70.4 62.6 65.9 71.5
Context2Vec 71.8 69.1 61.3 65.6 71.9
Supervised MFS 65.6 66.0 54.5 63.8 67.1
Ceiling 91.0 94.5 93.8 88.6 90.4
MS 72.8 69.2 60.0 65.0 69.3
IMS+emb 70.8 68.9 58.5 66.3 69.7
SemCor + " 1vig remb | 733 69.6 61.1 66.7 70.4
OMSTI  FeohextoVee | 723 682 615 672 717
MFS 66.5 60.4 52.3 62.6 64.2
Ceiling 91.5 94.9 94.7 89.6 91.1
Leskex; 50.6 44.5 32.0 53.6 51.0
Leskex+emb 63.0 63.7 56.7 66.2 64.6
Knowledge i UKB 56.0 51.7 39.0 53.6 55.2
UKB_gloss 60.6 54.1 42.0 59.0 61.2
Babelfy 67.0 63.5 51.6 66.4 70.3
WN 1% sense 66.8 66.2 55.2 63.0 67.8

Table 2: F-Measure percentage of different models in five all-words WSD datasets.

Nouns | Verbs | Adj. | Adv. | All
#Instances | 4,300 | 1,652 | 955 | 346 | 7,253
Ambiguity 4.8 104 | 3.8 | 3.1 5.8

Table 3: Number of instances and ambiguity level
of the concatenation of all five WSD datasets.

However, this is the dataset in which supervised
systems achieve a larger margin with respect to
the MFS baseline, which suggests that, in general,
the MFS heuristic does not perform accurately on
highly ambiguous words.

5.3 Analysis

To complement the results from the previous sec-
tion, we additionally carried out a detailed analysis
about the global performance of each system and
divided by PoS tag. To this end, we concatenated
all five datasets into a single dataset. This resulted
in a large evaluation dataset of 7,253 instances to
disambiguate (see Table 3). Table 4 shows the F-
Measure performance of all comparison systems
on the concatenation of all five WSD evaluation
datasets, divided by PoS tag. IMS_j+emb trained
on SemCor+OMSTTI achieves the best overall re-
sults, slightly above Context2Vec trained on the
same corpus. In what follows we describe some of
the main findings extracted from our analysis.

Training corpus. In general, the results of
supervised systems trained on SemCor only
(manually-annotated) are lower than training
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simultaneously on both SemCor and OMSTI
(automatically-annotated). This is a promising
finding, which confirms the results of previous
works (Raganato et al., 2016; lacobacci et al.,
2016; Yuan et al., 2016) and encourages further
research on developing reliable automatic or semi-
automatic methods to obtain large amounts of
sense-annotated corpora in order to overcome the
knowledge-acquisition bottleneck. For instance,
Context2Vec improves 0.4 points overall when
adding the automatically sense-annotated OMSTI
as part of the training corpus, suggesting that more
data, even if not perfectly clean, may be beneficial
for neural language models.

Knowledge-based vs. Supervised. One of the
main conclusions that can be taken from the evalu-
ation is that supervised systems clearly outperform
knowledge-based models. This may be due to the
fact that in many cases the main disambiguation
clue is given by the immediate local context. This
is particularly problematic for knowledge-based
systems, as they take equally into account all the
words within a sentence (or document in the case
of Babelfy). For instance, in the following sen-
tence, both UKB and Babelfy fail to predict the
correct sense of state:

In sum, at both the federal and state government
levels at least part of the seemingly irrational
behavior voters display in the voting booth may
have an exceedingly rational explanation.



Tr. Corpus System Nouns | Verbs | Adjectives | Adverbs || All

IMS 70.4 56.1 75.6 82.9 68.4

IMS+emb 71.8 55.4 76.1 82.7 69.1

SemCor IMS_+emb 71.9 56.9 75.9 84.7 69.6

Context2Vec 71.0 57.6 75.2 82.7 69.0

Supervised MFS 67.6 49.6 73.1 80.5 64.8
Ceiling 89.6 95.1 91.5 96.4 91.5

IMS 70.5 56.9 76.8 82.9 68.8

IMS+emb 71.0 53.3 77.1 82.7 68.3

SemCor + s temb | 720 | 565 | 76.6 847 | 697

OMSTL  =e hiexaVee | 717 | 558 | 772 827 || 69.4

MFS 65.8 459 72.7 80.5 62.9

Ceiling 90.4 95.8 91.8 96.4 92.1

Leskext 54.1 27.9 54.6 60.3 48.7

Leske+emb | 69.8 51.2 51.7 80.6 63.7

Knowledge ) UKB 56.7 39.3 63.9 44.0 53.2
UKB _gloss 62.1 38.3 66.8 66.2 57.5

Babelfy 68.6 49.9 73.2 79.8 65.5

WN 1% sense | 67.6 50.3 74.3 80.9 65.2

Table 4: F-Measure percentage of different models on the concatenation of all five WSD datasets.

In this sentence, state is annotated with its ad-
ministrative districts of a nation sense in the gold
standard. The main disambiguation clue seems
to be given by its previous and immediate subse-
quent words (federal and government), which tend
to co-occur with this particular sense. However,
knowledge-based WSD systems like UKB or Ba-
belfy give the same weight to all words in con-
text, underrating the importance of this local dis-
ambiguation clue in the example. For instance,
UKB disambiguates state with the sense defined
as the way something is with respect to its main at-
tributes, probably biased by words which are not
immediately next to the target word within the sen-
tence, e.g., irrational, behaviour, rational or ex-
planation.

Low overall performance on verbs. As can be
seen from Table 4, the F-Measure performance of
all systems on verbs is in all cases below 58%.
This can be explained by the high granularity of
verbs in WordNet. For instance, the verb keep con-
sists of 22 different meanings in WordNet 3.0, six
of them denoting “possession and transfer of pos-
session”!”. In fact, the average ambiguity level of
all verbs in this evaluation framework is 10.4 (see

"https://wordnet .princeton.edu/man/
lexnames.5WN.html
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Table 3), considerably greater than the ambiguity
on other PoS tags, e.g., 4.8 in nouns. Nonetheless,
supervised systems manage to comfortably out-
perform the MFS baseline, which does not seem
to be reliable for verbs given their high ambiguity.

Influence of preprocessing. As mentioned in
Section 3, our evaluation framework provides
a preprocessing of the corpora with Stanford
CoreNLP. This ensures a fair comparison among
all systems but may introduce some annotation in-
accuracies, such as erroneous PoS tags. However,
for English these errors are minimal'®. For in-
stance, the global error rate of the Stanford PoS
tagger in all disambiguation instances is 3.9%,
which were fixed as explained in Section 3.

Bias towards the Most Frequent Sense. After
carrying out an analysis on the influence of MFS in
WSD systems!?, we found that all supervised sys-
tems suffer a strong bias towards the MFS, with all
IMS-based systems disambiguating over 75% of
instances with their MFS. Context2Vec is slightly
less affected by this bias, with 71.5% (SemCor)
and 74.7% (SemCor+OMSTI) of answers corre-

'8Even if preprocessing plays a minimal role for English,
it may be of higher importance for other languages, e.g., mor-
phologically richer languages (Eger et al., 2016).

YSee Postma et al. (2016) for an interesting discussion on
the bias of current WSD systems towards the MFS.



sponding to the MFS. Interestingly, this MFS bias
is also present in graph knowledge-based systems.
In fact, Calvo and Gelbukh (2015) had already
shown how the MFS correlates strongly with the
number of connections in WordNet.

Knowledge-based systems. For knowledge-
based systems the WN first sense baseline proves
still to be extremely hard to beat. The only
knowledge-based system that overall manages
to beat this baseline is Babelfy, which, in fact,
uses information about the first sense in its
pipeline. Babelfy’s default pipeline includes a
confidence threshold in order to decide whether
to disambiguate or back-off to the first sense. In
total, Babelfy backs-off to WN first sense in 63%
of all instances. Nonetheless, it is interesting
to note the high performance of Babelfy and
Leskex+emb on noun instances (outperforming
the first sense baseline by 1.0 and 2.2 points,
respectively) in contrast to their relatively lower
performance on verbs, adjectives? and adverbs.
We believe that this is due to the nature of the
lexical resource used by these two systems, i.e.,
BabelNet. BabelNet includes Wikipedia as one of
its main sources of information. However, while
Wikipedia provides a large amount of semantic
connections and definitions for nouns, this it not
the case for verbs, adjectives and adverbs, as they
are not included in Wikipedia and their source of
information mostly comes from WordNet only.

6 Conclusion and Future Work

In this paper we presented a unified evaluation
framework for all-words WSD. This framework is
based on evaluation datasets taken from Senseval
and SemEval competitions, as well as manually
and automatically sense-annotated corpora. In this
evaluation framework all datasets share a com-
mon format, sense inventory (i.e., WordNet 3.0)
and preprocessing pipeline, which eases the task
of researchers to evaluate their models and, more
importantly, ensures a fair comparison among all
systems. The whole evaluation framework?!, in-
cluding guidelines for researchers to include their
own sense-annotated datasets and a script to vali-
date their conformity to the guidelines, is available
athttp://lcl.uniromal.it/wsdeval.

The poor performance of Leskeq+emb on adjective in-
stances is particularly noticeable.

2'We have additionally set up a CodaLab competition
based on this evaluation framework.
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We used this framework to perform an empirical
comparison among a set of heterogeneous WSD
systems, including both knowledge-based and su-
pervised ones. Supervised systems based on neu-
ral networks achieve the most promising results.
Given our analysis, we foresee two potential re-
search avenues focused on semi-supervised learn-
ing: (1) exploiting large amounts of unlabeled
corpora for learning word embeddings or train-
ing neural language models, and (2) automatically
constructing high-quality sense-annotated corpora
to be used by supervised WSD systems. As far as
knowledge-based systems are concerned, enrich-
ing knowledge resources with semantic connec-
tions for non-nominal mentions may be an impor-
tant step towards improving their performance.

For future work we plan to further extend
our unified framework to languages other than
English, including SemEval multilingual WSD
datasets, as well as to other sense inventories
such as Open Multilingual WordNet, BabelNet
and Wikipedia, which are available in different
languages.
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Abstract

As one of the most important test of China,
Gaokao is designed to be difficult enough
to distinguish the excellent high school
students. In this work, we detailed the
Gaokao History Multiple Choice Ques-
tions(GKHMC) and proposed two differ-
ent approaches to address them using var-
ious resources. One approach is based on
entity search technique (IR approach), the
other is based on text entailment approach
where we specifically employ deep neu-
ral networks(NN approach). The result of
experiment on our collected real Gaokao
questions showed that they are good at
different categories of questions, i.e. IR
approach performs much better at entity
questions(EQs) while NN approach shows
its advantage on sentence questions(SQs).
Our new method achieves state-of-the-art
performance and show that it’s indispens-
able to apply hybrid method when partici-
pating in the real-world tests.

1 Introduction

Gaokao, namely the National College Entrance
Examination, is the most important examination
for Chinese senior high school students. Ev-
ery college in China, no matter it is Topl0 or
Top100, would only accept the exam-takers whose
Gaokao score is higher than its threshold score.
As there are almost 10 million students take the
examination every year, Gaokao needs to be dif-
ficult enough to distinguish the excellent students.
Therefore, it includes various types of questions
such as multiple-choice questions, short-answer

T Both of the two authors contributed equally to this paper.
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After the World War I, U.S. and Soviet Union are fighting against each other in politics,
economics and military. To promote the development of economics in Socialist Countries,
Soviet Union establish The Council for Mutual Economic Assistance. This is against

A. Truman Doctrine B. Marshall Plan

C. NATO D. Federal Republic of Germany

Entity Question

From Qin and Han Dynasties to Ming Dynasty, businessmen are always at the bottom of
hierarchy. One reason for this is that the ruling class thought the businessmen

A. are not engaged in production B. do not respect Confucianism

C. do not respect the clan D. do not pay tax

Sentence Question

Figure 1: Examples of questions and their types.
The upper one is an entity question. The lower
one is a sentence question.

questions and essays and it covers several dif-
ferent subjects, like Chinese, Math, History and
etc. In this work, we focus on Gaokao History
Multiple Choice questions which is denoted as
GKHMC. Both of the factoid question answering
task and reading comprehension task are similar to
GKHMC. But, the GKHMC questions have their
own characteristics.

A multiple-choice question in GKHMC such
as the examples shown in Figure 1 is composed
of a question stem and four candidates. Our
goal is to figure out the only one correct candi-
date. But, there are certain obstacles to achieve it.
First, several background sentencess and a lead-in
sentence conjointly constitutes the question stem,
which makes these questions more complicated
than former one-sentence-long factoid questions
that can be handled by the existing approaches,
like (Kolomiyet and Moens, 2011; Kwiatkowski
et al., 2013; Berant and Liang, 2014; Yih et al.,
2015). Secondly, the background sentences gener-
ally contain various clues to figure out the histori-
cal events or personages which may be the perdue
key to answer the question. These clues may in-
clude Tang poem and Song iambic verse, domain-
specific expressions, even some mixture of mod-

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 111-120,
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Question Type | Candidate Type | Count
EQ Entities 160
SQ Sentence 584
ALL Whatever 744

Table 1: The GKHMC dataset.

ern Chinese and excerpt from ancient books and
etc. The dependence of background knowledge
makes the models that are designed for read-
ing comprehension such as (Penas et al., 2013;
Richardson et al., 2013) fail. Thirdly, the diver-
sity of candidates’ granularity, i.e. candidates can
either be entities or sentences, makes it harder
to match the candidate and stem. So, the an-
swer selection is disparate from the former ap-
proaches whose candidates are usually just enti-
ties. Lastly, as the candidates are already given,
the answer generation step in former neural net-
work approaches based question answering sys-
tem is no longer necessary.

As mentioned above and shown in Figure
1, in accordance with candidates’ granularity,
the GKHMC questions can be divided into two
types: entity questions(EQs) and sentence ques-
tions(SQs). Entity questions are those whose can-
didates are all entities, no matter they are peo-
ple, dynasties, warfares or something else. And,
sentence questions are those whose candidates are
all sentences. We observe that such two types of
questions have their own specific characteristics.
Most of background sentences in EQs are descrip-
tion of the right candidate, so it may be partic-
ularly suitable to apply information retrieval like
approach to handle them. Meanwhile, as the back-
ground sentences and lead-in sentences in SQs are
more like the entailing text, these questions aren’t
appropriate to be addressed by lexically searching
and matching. Therefore, it seems that it’s more
resonable to resolve SQs by using textual reason-
ing techniques.

In this paper, we wonder about which kind of
approach is more effective for GKHMC. Further-
more, whether we should select specific method to
work out different types of questions. In terms of
various characteristics of GKHMC questions, we
introduce two independent approaches to address
them. One is based on entity search technique (IR
approach) and the other is based on a text entail-
ment approach where we specifically employ deep
neural networks (NN approach). In IR approach,
we use the key entities and relationships extracted

1
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from questions to form a query, then inquire this
query in all the text resources to get the most rele-
vant candidate. In NN approach, we take the ques-
tion text and every candidate to form four state-
ments respectively, then judge how possible every
statement is right so that we can figure out which
is most likely to be the correct answer.

To test the two approaches’ performance, we
collected and classified the multiple-choice ques-
tions in Gaokao test papers from 2011 to 2015 all
over the country, and they are released. From the
result, we find that the performance of two ap-
proaches are significantly discrepant at each kind
of questions. That is, IR approach shows notice-
able advantages on EQs, while NN approach per-
forms much better on SQs. This will be further
discussed in Section 4.4.

In this paper, our contributions are as follows:

e We gave a detailed description of the Gaokao
History Multiple Choice Questions task and
showed its importance and difficulty.

We released a dataset' for this task. The
dataset is manually collected and classified.
All questions in the dataset are real Gaokao
quesitons from 2011 to 2015.

e We introduced two different approaches for
this task. Each approach achieved a promis-
ing results. We also compared this two ap-
proaches and found that they are complemen-
tary, i.e. they are good at different types of
questions.

e We introduced permanent provisional mem-
ory network(PPMN) to model the joint back-
ground knowledge and sentences in question
stem, and it beats existing memory networks
on SQs.

2 Dataset

As described in the Introduction, we collected the
historical multiple-choice questions from Gaokao
all over the country in rencent five years. However,
quite a lot contain graphs or tables which require
the techniques beyond natural language process-
ing(NLP). So, we filter out this part of questions
and manually classified the left into two parts:
EQs and SQs. The number of different kinds of
questions are listed in Table 1. The examples of

https://github.com/IACASNLPIR/GKHMC/tree/master/data



different types of questions translated into English
are shown in Figure 1.

It is worth mentioning that there is a special type
of questions on test papers named sequential ques-
tions. The candidates of this kind of questions are
just some ordered numbers. Every number stands
for a certain content which is given in question
stem. We simply replace every sequential number
in candidates with their corresponding contents.
Then, we can classify these questions as EQs or
SQs according to the type of contents.

We also collected a wide diversity of re-
sources including Baidu Encyclopedia, textbooks
and practice questions as our external knowledge
when inquiring the generated query. Baidu En-
cyclopedia which is also known as Baidu Baike,
is something like Wikipedia, but the content of
it is written in Chinese. We denote this resource
as BAIKE. The textbooks resource contains three
compulsory history textbooks published by Peo-
ple’s Education Press. We denote them as BOOK.
And we gathered about 50,000 practice questions
and their answers, and this is denoted as TIKU.

3 Approaches’

3.1 IR Approach

The GKHMC questions require figuring out the
most relevant candidate to the question stem from
the four given candidates. Our IR approach is in-
spired by this observation. The diagram of IR ap-
proach is illustrated in Figure 2.

The pipeline of IR approach is: (1) use the clas-
sifier to automatically classify the question and
select the weights according to the classification
result; (2) calculate the relevance scores for ev-
ery candidate(we introduce three different meth-
ods with seven score functions to calculate the rel-
evance scores) and combine them together with
specific weights; (3) choose the candidate with
highest score as right answer. Despite the simplic-
ity of it, IR approach achieves a promising result
in experiment.

3.1.1 Naive Bayes Classifier

We build a naive bayes classifier to classify ques-
tions. Using length of candidates, entity number
of candidates and verb number of candidates as
features, every question is classified as EQ or SQ.
When building the classifier, we do 10-folder cross

The codes of this project can be obtained at

https://github.com/TACASNLPIR/GKHMC
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Figure 2: Pipeline of IR approach.

validation on the GKHMC dataset and the results
are 90.00% precision and 84.38% recall in EQs
and 95.79% precision and 97.43% recalls in SQs.

3.1.2 Score Functions

To calculate the relevance between question stem
and candidates, we introduce three different meth-
ods with seven score functions, which are summa-
rized in Table 2.

Lexical Matching Score: Since the correct can-
didate usually directly related to question stem,
it’s reasonable to assume that the facts in question
stem may appear in documents related to them,
together with the correct candidate. Here we in-
troduce our lexical matching score functions, tak-
ing BAIKE as our external resource. The four
queries are formed by each candidate and ques-
tion stem separately. Then we retrieval every
query and sum up the scores of the top three re-
turned documents as the lexical matching score.
We use scoreqqp, to denote the score of the top i-
th returned documents. scoreq,p, is calculated by
Lucene’s TFIDFSimilarity function®. The lexical
matching score Scorejeyicq(candidatey,) is cal-
culated as

3
Scorejeical(candidatey) = Z(scoretopi ).

i=1
(D
We build indices for BAIKE with different
grains. The index built for every BAIKE docu-
ment is denoted as BAIKE Document Index(BDI).
The index built for every paragraph in BAIKE is
denoted as BAIKE Paragraph Index(BPI). And,
the index built for every sentence in BAIKE is
called BAIKE Sentence Index(BSI).

https://lucene.apache.org/core/



We denote the lexical matcing score function

using BDI, BPI and BSI as Scoreppy, Scoreppr
and Scorepgy respectively.
Entity Co-Occurrence Score: We also con-
sider the relevance of entities in co-occurrence
aspect. If two entities often appearing together,
we assume that they are revelent. We use nor-
malized google distance(Cilibrasi and Vitanyi,
2007) to calculate the entity co-occurrence score
Scoreqo(candidatey,).

Mazx(e;, e;) — log f(e;, e;)

NGD(ei, e5) = log N — Min(e;, €;)
(2)
Maz(e;, e;) = max{log f(e;),log f(e;)}
3)
Min(e;, ej) = min{log f(e;),log f(e;)}
“4)
Scoreco(candidate) = —log(NGD(e;, €5))
&)
where

€; € Estem; €; € Ecandidatek-

In which, e; is entity; f(e;) is the number of
parts which contain entity e;; f(e;, e;) is the num-
ber of parts which contain both entity e; and e;;
Estem and Ecqndidate, denotes the entities in ques-
tion stem and candidate.

The entity co-occurrence could be in document,

paragraph or sentence, and they are donated as
Scoreppc, Scoreppc and Scorepsc respec-
tively.
Page Link Score: Inspired from PageRank al-
gorithm(Page et al., 1999), we assume that enti-
ties have links to each other are relevant. Here
we introduce the page link score function. We
use Link(e;,e;) to denote the number of links
between entities e; and e;. The link score
Scorepink(candidatey,) could be calculated as:

Scorejink(candidatey,) = max(Link(e;, e;))

(6)
where
€ € Estem, €; € Ecandidatek~

We only count the number of links between
BAIKE documents, and it is denoted as Scoregpr,
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Function Description
Scoregpr Scorejegicqr using BDI
Scoregpr Scorejepical Using BPI
Scorepsy Scorejepica; Using BSI
Scoregpc document level Score,,
Scoregpc paragraph level Score,,
Scorepsc sentence level Score.,
Scoregpr, | document link score function

Table 2: Summarization of score functions.

3.1.3 Training Weights

Since we have seven score functions, we need

combine them together with different weights.
For a given question, we calculate the score of

every candidate as follows:

7

— Z(wl * fi(candidatey)) (7)

=1

SCOT €candidatey,

where k € {1,2,3,4}, f; is one of the seven score
functions and w; is the corresponding weight.
Then we normalize the scores of all candidates:

®)

SCOT €candidatey,

Z?:l (scorecandidatei )

scorey =

We suppose that the true answer of a question is
the n-th candidate, where n € {1,2,3,4}. The
loss of it is

lossquesiton = —log(1 — scorey,) 9)

Now we can calculate the total loss of the dataset

with M questions:

M
loss = E (ZOSSquestioni)

i

(10)

All operations are derivable so that we can use
gradient descent algorithm to train the weights.

3.2 NN Approach

As deep neural networks are widely used in natu-
ral language processing tasks and has gained great
success, it’s naturally to come up with building
deep neural networks to handle GKHMC task. So,
we built several deep neural networks in different
structures. And, we used both TIKU and BOOK
to train these models, in order to teach models not
only how to answer the questions but also the his-
torical knowledge.

To handle the joint inference between back-
ground knowledge and question stems in GKHMC
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questions, we introduce permanent-provisional
memory network(PPMN). As illuminated in Fig-
ure 3, our PPMN is composed by the following
components:

1. Permanent Memory Module that plays the
same role as a knowledge base and stores the
original text from history textbooks or other

relevant resource.

Provisional Memory Module that generates
some contents based on the current word in
background sentences, permanent knowledge
and the lead-in sentence.

. Input Module that reads the words sequen-
tially in background sentences and maps
them into high-dimensional vector space.

Similarity Judger that scores the similarity
between the output of provisional memory
and the vector representations of answer can-
didates.

Sentence Encoder that encodes lead-in sen-
tence, sentences in permanent memory and
answer candidates.

Permanent Memory Module: We denote the
sentences encoded by sentence encoder in this
module as {ki, ko, ..., kx }, where K is the scale
of permanent memory. The permanent memory is
a constant matrix composed by the concatenation
of representation vectors of these sentences,
namely [k1; ko; k3; ...; kx]. Considering the time
complexity of training PPMN, we only take the
syllabus of all history courses including 198
sentences, i.e. K 198, as the permanent
memory. If necessary, all of the history text books
can be taken into the permanent memory.
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Provisional Memory Module: It first inquires
the current word of background sentences in the
permanent memory, then use an attention vector
generated by current word and lead-in sentence as
well as the following words to decide how to ad-
just itself. The update equations are as follow:

he =GRU (wy, hy_1) (11)

p =softmax(pWPhy) (12)
K

M, =" piki (13)
i=1

x =[hy, My, 1, hy ol, My ol, hy o My, (14)

\he = U, [My — 1], [y — My]
g =o(W9tanh(W'z + b*) + %) 15)
my =g o M+ (1 —g)omy_ (16)

In the above equations, w; denotes the ¢-th word
in the background sentences, GRU is defined in
equation (19-22), h;—; and h; are the hidden rep-
resentation of w;_; and w; respectively, [ stands
for the lead-in sentence encoded by the sentence
encoder, o is element-wise multiplication and m;
is the computational result of current step. The
final output of this module is the last provisional
memory vector m, where n is the length of
background sentences.

Input Module: This module takes the same
weight matrices in sentence encoder and calcu-
lates the hidden states of every word sequentially.
All the words in background sentences are first
mapped into the hidden states in this module and
then can be taken as input by other modules.
The calculation of hidden states are the same as
equation(19-22).



Similarity Judger: This module takes the con-
catenation of the output from provisional memory
and representation of answer candidate as input
and use a classifier based on logistic regression to
score it. The judging procedure is defined as fol-
low:

O’(Wl[m[(; al + bl)

softmaz(p) m

a7)

3>

score (1 8)

where W is a matrix that can map the concate-
nation vector [mg;al into a vector p of length 2
and a stands for the answer candidate encoded by
sentence encoder.

Sentence Encoder: We experimented several re-
current neural networks with different structures
as the sentence encoder. Both of Long-Short Term
Momery (LSTM)(Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (GRU)(Cho et
al., 2014) perform much better than the standard
tanh RNN. However, considering that the com-
putation of LSTM is more complicated and time-
consuming, we choose GRU as the sentence en-
coder. The calculation of GRU denoted as h;
GRU (wy, hy—1) is as follow:

z = o(W?wy + UPwy + b%) (19)
r = o(Whw+ UPw, +0") (20)
s = tanh(Wwy + U?(r o hy—1) + b°121)
hiy = (1—z)os+zoh_ (22)

In the above equations, w; is extracted from
a word embedding matrix W, initialized by
word2vec(Mikolov et al., 2013) through an id
number that indicates which word it is.

Loss Function: Intuitively, as we want to encour-
age the score as same to the true score (0 or 1) as
possible, a negative log-likelihood loss function is
introduced:

L

(23)

—log(py)

where 3 would be [0 1]" if a is the right answer
or [1 0] otherwise.

Optimization Algorithm: We use the AdaDelta
introduced by (Zeiler, 2012) to minimize the loss
L, and use back propagation through time to opti-
mize the calculation results of intermediate results.
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Accuracy
49.38%
28.60%

EQ-WEkq
SQ-Wsq

Table 3: Accuracy of SQs and EQs with their cor-
responding best weights.

4 Experiment

4.1 Experiments of IR Approach

To find the best weights for EQ and SQ, We
use TIKU as the training dataset. Using gradi-
ent descent to optimize parameters, we get the best
weights for EQs and SQs separately, that is, Wgq
is the weight best for EQs and W is the weight
best for SQs. We test the weights on EQs and SQs
of GKHMC with their corresponding weights, and
result is shown in Table 3. As we can see, with
these weights, we achieve promising result.

We use GKHMC as the dataset to test the per-
formance of IR approach with naive bayes classi-
fier. The precision of EQs and SQs are 48.75%,
28.42% respectively. It’s clear that the accuracy of
both EQs and SQs decreased with automatic clas-
sification. But still, IR approach achieves much
better results on EQs than SQs.

4.2 Results of NN Approach

We take some other neural network models
with memory capability as our baseline models
including the standard tanh recurrent neu-
ral network(RNN), long-short term memory
network(LSTM)(Hochreiter and  Schmidhu-
ber, 1997), gated recurrent unite(GRU)(Cho
et al, 2014), end-to-end memory net-
work(MemNN)(Sukhbaatar et al., 2015) and
dynamic memory network(DMN)(Kumar et al.,
2016). As for our PPMN, we summarize the
syllabus of all history textbooks for senior school
students to cover as much knowledge points as
possible and we get 198 sentences which are
taken into the permanent memory module. For
all the above models, we used rmsprop(Hinton
et al.,, 2012) with 0.001 as the learning rate to
train them, the size of hidden units as well as
the size of memory were both set to 400 and the
size of batches were set to 1000. Also, we used
dropout(Srivastava et al., 2014) to prevent the
models from overfitting and the probability of it
was set to 0.5. We test all these models and the
results are shown in Table 4.

From the result, we observe that our PPMN



Model EQs SQs All
RNN 36.25% 29.74% 31.18%
LSTM | 40.63% 40.41% 40.46%
GRU 40.63% 40.24% 40.32%
MemNN | 43.75% 36.13% 37.77%
DMN | 44.38% 4538% 45.16%
PPMN | 45.63% 45.72% 45.70%
Random | 25.00% 25.00% 25.00%

Table 4: Results of all neural network models.

gains best performance on all kinds of GKHMC
questions and all memory-capable neural network
models beat RNN. It’s interesting that MemNN
performs much worse than other memory-capable
models on SQs whereas it shows promising capa-
bility on EQs.

4.3 Combine IR Approach and NN Approach

It can be easily observed from the above experi-
ments that IR approach and NN approach are some
kind of complementary, namely they performs bet-
ter to each other on different categories of ques-
tions. So, we combine the two approaches to-
gether via a weights matrix W¢ € R2*2 as fol-
lows:

score

scorepg = W |:800?”€]f[i[:| (24)
score

scoregg = Wy, |:800T€]f[i[:| (25)

where the W7 means the ¢-th row of W*° and
scorerr, scoreyy are the scores calculated by
IR and NN approaches respectively. Here, the
categories of questions are given by the naive
bayes classifier. The performance of combined
model and its comparison to the two individual ap-

proaches are illustrated in Figure 4.

4.4 Discussion

From the global aspect, it can be easily ob-
served that IR approach are more proficient on
EQs(49.38% vs 40.63%), whereas NN approach
expand superior to it on SQs(28.60% vs 40.24%).
And the hybrid method composed by two ap-
proaches get the best performance(42.60%).

As for the IR approach itself, the performance
on EQs is much better than on SQs. This may be-
cause that IR approach is based on the relevance
between candidates and question stem. In EQs,
the information given by the question stem is usu-
ally the description of the key entity which only

disappeared in the right candidate. So it’s easy for
the correct candidate to achieve a higher relevance
score than others. And, that’s why IR approach
achieves promising result on EQs. Whereas, in
SQs, the key entity doesn’t appear in any candi-
date. And, it needs to be inferred out from ques-
tion stem. No matter in aspect of lexical match-
ing, entity co-occurrence or page link, the rele-
vance between question stem and correct candi-
date may be as low as other candidates. There-
for, it’s not surprised that IR approach is not suffi-
cient to figure out the right choice on SQs. After
adding the classifier in IR approach, we notice the
decrease of accuracy on both EQs and SQs. This is
because of the misclassification on the questions,
which demonstrates that the weights Wgg, Wsq
are particularly efficient on EQs, SQs.

The experiment of NN approach declared that
our PPMN does show its advantages on GKHMC
questions. During the training, the performance
of RNN model is labile, i.e. the precision are
still variational when loss is convergent. In con-
trast, other model’s performance is more stable.
Hence, we consider that the memory mechanism
helps model to “remember” the knowledge that
appeared in the training data. Compared with the
“inside”* memory of LSTM and GRU, the spe-
cially designed memory component in MemNN,
DMN and PPMN are more powerful to find out
the relationships between the question stem and
answer candidates in GKHMC questions. How-
ever, the limited performance of MemNN on SQs
indicates that the sequences of words in GKHMC
questions are especially important for questions
containing no distinct entities. Last but not least,
the best performance of PPMN may due highly on
the novel permanent memory module which can
helps finding the implicit relationships with the
stored background knowledge.

The state-of-the-art performance of hybrid
method indicates that combination of IR approach
and NN approach is the best strategy to address
the GKHMC questions. As illustrated in Figure
4, the combined method shows its enormous ad-
vantage on EQs. This may because both character
and word embedding are more sufficient to cover
the lexical meaning. And, some of EQs may be
more suitable to be handled as SQs. Compared to
the NN approach separately, the hybrid way does
We consider that the memory of LSTM and

GRU are kind of stored inside the weight
matrices.
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Figure 4: Result of different methods.

a little poorly on SQs, which may caused by the
loss of classification.

5 Related Work

Answering real world questions in various sub-
jects already gained attention from the beginning
of this century. The ambitious Project Halo (Fried-
land et al., 2004) was proposed to create a ’digital”
Aristotle that can encompass most of the worlds’s
scientific knowledge and be capable of address-
ing complex problems with novel answers. In
this project, (Angele et al., 2003) employed hand-
crafted rule to answer chemistry questions, (Gun-
ning et al., 2010) took the physics and biology into
account. Another important trial is solving the
mathematical questions. (Mukherjee and Garain,
2008) attempted to answer them via transform-
ing the natural language description into formal
queries with hand-crafted rules, whereas recent
works (Hosseini et al., 2014) started to employ-
ing learning techniques. However, none of these
methods are suitable for history questions which
requires large background knowledge, the same to
the Aristo Challenge(Clark, 2015) focused on El-
ementary Grade Tests which is for 6-11 year olds.

The Todai Robot Project(Fujita et al,
2014)aims to build a system that can pass
the University of Tokyo’s entrance examination.
As parts of this project, (Kanayama et al., 2012)
mainly focus on addressing the yes-no questions
via determining the correctness of the original
proposition, and (Miyao et al., 2012) mainly
focus on recognizing textual entailment between
a description in Wikipedia and each option of
question. But, these two methods are separated
for different kinds of questions and none of them
introduced neural network approach.

It’s inevitable to compare the GKHMC with the
factoid questions. (Berant and Liang, 2014) takes

118

the question as a kind of semantic parsing which
can not handle the specific expressions with lots
of background knowledge. Although (Yih et al.,
2015) employed knowledge base, but still failed
on multiple sentences questions which is beyond
the scope of semantic parsing. However, the diver-
sity of candidates in GKHMC makes these mod-
els fail to match the question with the right candi-
date. Another nonnegligible task is machine com-
prehension, also called reading comprehension.
Although in several different datasets introduced
by (Smith et al., 2008; Richardson et al., 2013;
Weston et al., 2015), questions are open-domain
and candidates may be entities or sentences, un-
derstanding these questions don’t require as much
background knowledge as in GKHMC and these
models cannot handle the joint inference between
the background knowledge and words in ques-
tions.

We are not the first to take up the Gaokao chal-
lenge, but former information retrieval approach
doesn’t fit to part of the questions in GKHMC
and resources in their system are limited. In con-
trast, we introduced two different approaches to
this task, compared their performance on different
types of questions, combined them and gained a
state-of-the-art result.

6 Conclusion and Future Work

In this work, we detailed the multiple choice ques-
tions in subject History of Gaokao, present two
different approaches to address them and com-
pared these approaches’ performance on all cat-
egories of questions. We find that the IR approach
are more sufficient on EQs cause the words in
these questions are usually the description of right
answer, whereas the NN approach performs much
better on SQs, and this may because neural net-
work models can find out the semantic relationship
between questions and candidates. When combin-
ing them together, we get the state-of-the-art per-
formance on GKHMC, better than any individual
approach. This points out that combining different
approaches may be a better method to deal with
the real-world questions.

In future work, we will explore whether key-
value memory network proposed by (Miller et
al., 2016) can help improve the performance of
PPMN, what content in textbook or encyclopedia
should be taken into the permanent memory, how
to mathematically organize the permanent mem-



ory to make it can be reasoned on as well as
whether transforming the knowledge described in
natural language into formal representation is ben-
eficial. As along-term goal, it’s necessary to intro-
duce discourse analysis, semantic parsing to help
the model truly understand the material sentences,
questions and candidates.
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Abstract

We show that a neural approach to the task
of non-factoid answer reranking can ben-
efit from the inclusion of tried-and-tested
handcrafted features. We present a novel
neural network architecture based on a
combination of recurrent neural networks
that are used to encode questions and an-
swers, and a multilayer perceptron. We
show how this approach can be combined
with additional features, in particular, the
discourse features presented by Jansen et
al. (2014). Our neural approach achieves
state-of-the-art performance on a public
dataset from Yahoo! Answers and its per-
formance is further improved by incorpo-
rating the discourse features. Additionally,
we present a new dataset of Ask Ubuntu
questions where the hybrid approach also
achieves good results.

1 Introduction

The task of Question Answering (QA) is arguably
one of the oldest tasks in Natural Language Pro-
cessing (NLP), attracting high levels of interest
from both industry and academia. The QA track at
the Text Retrieval Evaluation Conference (TREC)
was introduced in 1999 and since then has encour-
aged many research studies by providing a plat-
form for evaluation and making labeled datasets
available. However, most research has focused
on factoid questions, e.g. the TREC questions
What is the name of the managing director of
Apricot Computer? and What was the monetary
value of the Nobel Prize in 19897 The TREC QA
track organizers took care to “select questions with
straightforward, obvious answers” (Voorhees and
Tice, 1999) to facilitate manual assessment. In
contrast, research on answering non-factoid (NF)

questions, such as manner, reason, difference and
opinion questions, has been rather piecemeal. This
was largely due to the absence of available labeled
data for the task. This is changing, however, with
the growing popularity of Community Question
Answering (CQA) websites, such as Quora,' Ya-
hoo! Answers? and the Stack Exchange? family of
forums.

One of the main components of a non-factoid
question answering system is the answer reranking
module. Given a question, it aims to rearrange the
answers in order to boost the community-selected
best answer to the top position. Most previous
attempts to perform non-factoid answer rerank-
ing on CQA data are supervised, feature-based,
learning-to-rank approaches (Jansen et al., 2014;
Fried et al., 2015; Sharp et al., 2015). These meth-
ods represent the candidate answers as meaningful
handcrafted features based on syntactic, seman-
tic and discourse parses (Surdeanu et al., 2011;
Jansen et al., 2014), web correlation (Surdeanu
et al., 2011), and translation probabilities (Fried
et al., 2015; Surdeanu et al., 2011). The result-
ing feature vectors are then passed to a supervised
ranking algorithm, such as SVMrank (Joachims,
2006), which ranks the candidates.

There has been a recent shift in Natural Lan-
guage Processing towards neural approaches in-
volving minimal feature engineering. Several re-
cent studies present purely neural approaches to
answer reranking, with most of them focusing on
the task of passage-level answer selection (dos
Santos et al., 2016; Tan et al., 2015), rather than
answer reranking in CQA websites (Bogdanova
and Foster, 2016). These neural approaches aim
to obviate the need for any feature engineering and
instead focus on developing a neural architecture

"http://quora.com
http://answers.yahoo.com
Shttp://stackexchange.com

121

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 121-131,
Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics



that learns the representations and the ranking.
However, while it is possible to view a purely neu-
ral approach as an alternative to machine learning
involving domain knowledge in the form of hand-
crafted features, there is no reason why the two
approaches cannot be applied in tandem. In this
paper we show that handcrafted features which en-
code information about discourse structure can be
used to improve the performance of a neural ap-
proach to CQA answer reranking.

First, we present a novel neural approach to an-
swer reranking that achieves competitive results
on a public dataset of Yahoo! Answers (YA) that
was previously introduced by Jansen et al. (2014)
and later used in several other studies (Fried et al.,
2015; Sharp et al., 2015; Bogdanova and Foster,
2016). Our approach is based on a combination of
recurrent neural networks (RNN) and a multilayer
perceptron (MLP) that receives the encodings pro-
duced by the RNNs and interaction transforma-
tion features that are based on the outputs of the
RNNs and which aim to represent the semantic in-
teraction between the encoded sequences. We also
show how this approach can be combined with dis-
course features previously shown to be beneficial
for the task of answer reranking.

The previous best result on the YA dataset —
37.17 P@1 and 56.82 MRR - is reported by
Bogdanova and Foster (2016). Our approach
achieves similar performance — 37.13 P@1 and
57.56 MRR. In contrast to the (Bogdanova and
Foster, 2016) approach, which is also purely neu-
ral but requires a large in-domain corpus for pre-
training, our model requires only a relatively small
training set and no pretraining. The hybrid ap-
proach that includes the discourse features outper-
forms the neural approach on the same dataset and
achieves 38.74 P@1 and 58.37 MRR. We also re-
port experiments on a new dataset of Ask Ubuntu*
questions and answers. The model shows good
performance on this dataset too, with the hybrid
approach being about 2% more accurate in terms
of P@1 than the neural approach on its own. Our
error analysis provides insights into the main chal-
lenges posed by answer reranking in CQAs. These
are the subjective nature of both the questions and
the user choice of the best answer.

The main contributions of this paper are as fol-
lows: 1) we propose a novel neural approach for
non-factoid answer reranking that achieves state-

*nttp://askubuntu.com

122

of-the-art performance on a public dataset of Ya-
hoo! Answers; 2) we combine this approach with
an approach based on discourse features that was
introduced by Jansen et al. (2014), with the hy-
brid approach outperforming the neural approach
and the previous state-of-the-art; 3) we introduce a
new dataset of Ask Ubuntu questions and answers.

This paper is organized as follows: an overview
of previous work on non-factoid question answer-
ing is provided in Section 2, our neural archi-
tecture is introduced in Section 3, the discourse
features that are incorporated into our neural ap-
proach are described in Section 4, the results of
our experiments with these new models are pre-
sented and analysed in Section 5, and suggestions
for further research are provided in Section 6.

2 Related Work

Previous work on supervised non-factoid answer
reranking on CQA datasets focused mainly on
feature-rich approaches. Surdeanu et al. (2011)
show that CQAs such as Yahoo! Answers are a
good source of knowledge for non-factoid QA.
They employ four types of features in their an-
swer reranking model: (1) similarity features: the
similarity between a question and an answer based
on the length-normalized BM25 formula (Robert-
son et al., 1994); (2) translation features: prob-
ability of the question being a translation of the
answer computed using IBM’s Model 1 (Brown et
al., 1993); (3) features measuring frequency and
density of the question terms in the answer, such
as the number of non-stop question words in the
answer, the number of non-stop nouns, verbs and
adjectives in the answer that do not appear in the
question and tree kernel values for question and
answer syntactic structures; (4) web correlation
features based on Corrected Conditional Probabil-
ity (Magnini et al., 2002) between the question and
the answer. They explore these features both sep-
arately and in combination and find that the com-
bination of all four feature types is most beneficial
for answer reranking models.

Jansen et al. (2014) describe answer reranking
experiments on YA using a diverse range of lexi-
cal, syntactic and discourse features. In particular,
they show how discourse information can comple-
ment distributed lexical semantic information ob-
tained with a skip-gram model (Mikolov et al.,
2013). In this paper we use their features (dis-
cussed in detail in Section 4) in combination with



a neural approach. Fried et al. (2015) improve on
the lexical semantic models of Jansen et al. (2014)
by exploiting indirect associations between words
using higher-order models.

Methods based purely on neural models have
gained popularity in various areas of NLP in re-
cent years. The main advantage of these mod-
els is that they are often able to achieve state-of-
the-art results while obviating the need for man-
val feature engineering. These approaches have
been successful in the area of question answer-
ing. Several studies proposed models based on
convolution neural networks (Severyn and Mos-
chitti, 2015; Tymoshenko et al., 2016; Feng et
al., 2015) for answer sentence selection for factoid
question answering and models based on combi-
nations of convolutional and recurrent neural net-
works for the task of passage-level non-factoid an-
swer reranking (Tan et al., 2015; dos Santos et
al., 2016). Recurrent neural networks and mem-
ory networks were successfully applied to the task
of reading comprehension (Xiong et al., 2016;
Sukhbaatar et al., 2015; Weston et al., 2015). A
simple purely neural approach to non-factoid an-
swer reranking in CQAs was proposed by Bog-
danova and Foster (2016). The question-answer
pairs are represented with Paragraph Vector (Le
and Mikolov, 2014) distributed representations,
and a multilayer perceptron is used to estimate
the probability of the answer being good for the
given question. The approach achieves state-of-
the-art results. However, it requires unsupervised
pretraining of the Paragraph Vector model on a rel-
atively big in-domain dataset.

Recently, the Wide and Deep learning model for
recommendation systems was proposed (Cheng et
al., 2016). This model trains a wide linear model
based on sparse features alongside a deep neural
model, thus combining the benefits of memoriza-
tion provided by the former part and the general-
ization provided by the latter.

In this paper, we propose a hybrid approach to
answer reranking. Similarly to the wide and deep
model, it combines traditional feature-based and
deep neural approaches. However, in this paper
we enhance the neural model with discourse chunk
features that were previously found useful for this
task. The features are combined with a neural
model that consists of two bidirectional RNNs that
encode the question and the answer and a multi-
layer perceptron that receives the neural encodings
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and the discourse features and makes the final pre-
diction.

3 Learning to rank answers with RNNs
and MLP

We illustrate our approach to answer reranking in
Figure 1. Following previous research on neural
answer reranking (Severyn and Moschitti, 2015;
Bogdanova and Foster, 2016), we employ the
pointwise approach to ranking, i.e. we cast the
ranking task as a classification task. Given a ques-
tion ¢ and an answer a, we first use two separate
bidirectional RNNs> to encode the question and
the answer. Let (w{,wi, ..., w]) be the sequence
of question words and (w{, w3, ..., wy) be the se-
quence of answer words.® The first RNN encodes
the sequence of question words into the sequence
of context vectors (h{, ki, ..., hl), ie.

Frnn (W], 0q) = hi

where 6, denote the trainable parameters of the
network. More specifically, the bidirectional RNN
consists of two RNNs: the forward RNN that reads
the question starting from the first word until the
last word and encodes it as a sequence of forward

()

context vectors (h? , h@, - h?;), and the reverse
RNN that encodes the question (siarting from the

—
last word until the first word: (h},h{ |, ..., h{).
The resulting context vectors are concatenations
of the forward and reverse context vectors at each
step, i.e. h! = [h},h]]. As the encoded vector
representation of the question, we use the concate-
nation of the context vectors, i.€.

2

enc? = [, ..., h]]

The second bidirectional RNN encodes the answer
in the same way:

3)

fann (Wi, 0q) = hi

C))

where 6, denote the trainable parameters of the
network. We also want to optionally explicitly en-
code the interaction between the question’s con-
text vectors and the answer’s context vectors. To

enc® = [hY, ..., hy]

We use an RNN with Gated Recurrent Units
(GRU) (Bahdanau et al., 2015). Using an LSTM instead
provides similar results.

The questions and answers have to be padded to k and p
words respectively.



Figure 1: Our model takes a question-answer pair as an input and encodes them using separate RNNs
denoted as f}, v and f%, . Then a similarity matrix S over the encodings is computed and optionally
concatenated with external features x.,;, the result is passed to a multilayer perceptron f;r, p that outputs

the final prediction.

do this we apply the interaction transformation to
the context vectors. More specifically, let H, de-
note the matrix composed of the outputs of the
question encoder RNN:

q q q
hi4 h1,2 hl,k
q q q
h2,1 h2,2 hQ,k
H, = i
q q q
hd,l hd,2 hd,k

and H, denote the matrix composed of the outputs
of the answer RNN:

a a a
hi, hi, 1p
a a a
h31 hgs h3,
Ha - . . .
a a a
d,1 d,2 hd,p

d is a dimensionality parameter to be experimen-
tally tuned. We calculate the similarity matrix S
between H, and H,, so that each element s;; of
the S matrix is a dot product between the corre-
sponding encodings:

ot pe
sij = hi - hj
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The similarity matrix .S is unrolled and passed to
the multilayer perceptron along with the question
and answer encodings. They are optionally con-
catenated with external features xo.;:

®)

Yy = fMLP([S7 encq> enca7 xe:ctL 95)

where 0, denote the trainable parameters of the
network. The network is trained by minimizing
cross-entropy:

L(y,0) = —ylog(y) — (1 — §)log(1 — y)

where ¢ are all network’s parameters, i.e. 0, 0,, 05
and ¥ is the true label:

|

4 Discourse Features

1

0 otherwise

if a is the best answer of the question ¢

Based on the intuition that modelling question-
answer structure both within and across sentences
could be useful, Jansen et al. (2014) propose an an-
swer reranking model based on discourse features



Q: How did Darth Vader eat?

A: Vader doesn’t enjoy eating but he forces himself. He could eat with his mouth only inside a hyperbaric chamber.

QOSEG but OTHER (SRO)

I |

QSEG only OTHER (SRO)

J

|

QSEG but QSEG (SR1)

J

L

QSEG only QSEG

(SR1)

J

Figure 2: Feature generation for the discourse marker model of Jansen et al. (2014): first, the answer
is searched for the discourse markers (in bold). For each discourse marker, there are several features
that represent if there is an overlap (QSEG) with the question before and after the discourse marker. The
features are extracted for sentence range from O (the same range) to 2 (two sentences before and after). .

combined with lexical semantics. We experimen-
tally evaluate these discourse features — added to
our model described in Section 3 (the additional
features z..;) and on their own. We reuse their dis-
course marker model (DMM) combined with their
lexical semantics model (LS). The DMM model
is based on the findings of Marcu (1998), who
showed that certain cue phrases indicate bound-
aries between elementary textual units with suffi-
cient accuracy. These cue phrases are further re-
ferred to as discourse markers. For English, these
markers include by, as, because, but, and, for and
of — the full list can be found in Appendix B in
(Marcu, 1998).

We illustrate the feature extraction process of
Jansen et al. (2014) in Figure 2. First, the an-
swer is searched for discourse markers. Each
marker divides the text into two arguments: pre-
ceding and following the marker. Both argu-
ments are searched for words overlapping with
the question. Each feature denotes the discourse
marker and whether there is an overlap with the
question (QSEG) or not (OTHER) in the two ar-
guments defined by the marker. The sentence
range (SR) denotes the length (in sentences) of
the marker’s arguments. For example, QSEG by
OTHER SRO means that in the sentence contain-
ing the by marker there is an overlap with the ques-
tion before the marker and there is no overlap with
the question after the marker. This results in 1384
different features. To assign values to each fea-
ture, the similarity between the question and each
of the two arguments is computed, and the aver-
age similarity is assigned as the value of the fea-
ture. Jansen et al. (2014) use cosine similarity over
tf.idf and over the vector space built with a skip-
gram model (Mikolov et al., 2013). Further details
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can be found in (Jansen et al., 2014).

5 Experiments

5.1 Data

In our experiments, we use two datasets from
different CQAs. For comparability, we use the
dataset created by Jansen et al. (2014) which con-
tains 10K how questions from Yahoo! Answers.
50% of it is used for training, 25% for develop-
ment and 25% for testing. Each question in this
dataset contains at least four user-generated an-
swers. Some examples can be found in Table 1.
Further details about this dataset can be found
in (Jansen et al., 2014).

To evaluate our approach on a more technical
domain, we create a dataset of Ask Ubuntu (AU)
questions containing 13K questions, of which 10K
are used for training, 0.5K for development and
2.5K for testing. The Ask Ubuntu community is a
part of the Stack Exchange family of forums. Fo-
rums of this family share the same interface and
guidelines. They allow users to post questions and
answers and to vote them up and down, resulting
in every question and every answer having a score
representing the votes it received. The author of
the question may select the best answer to their
question. We create the AU dataset in the same
way as the YA dataset was created: for each ques-
tion, we only rank answers provided in response
to this question, and the answer labelled as the
best by the question’s author is considered to be
the correct answer. We make sure that the dataset
contains only questions that have at least three
user-provided answers and have the best answer
selected, and that this answer has a non-negative
score. Example questions from this dataset can be



Question: how do you cut onions without crying?

Gold: Use a sharp knife because if the onions are cut cleanly instead of slightly torn (because of a dull knife) they will release
less of the chemical that makes you cry. Lighting a candle also helps with this, ( ... ) I hope this helps.

Other Answers:

- Watch a comedy.

- Put onion in the chop blender

- close ur eyes...

- Sprinkle the surrounding area with lemon juice.

- Choose one of the followings after cutting the head and tail of the onion, split in half and peel off the skin. 1. Keep on
chopping with your knife 2. Cut in quarters and put in choppers.

Table 1: Example question from the Yahoo! Answers dataset.

Question: Can’t shutdown through terminal. When ever i use the following sudo shutdown now;

sudo reboot;

sudo shutdown -h my laptop goes on halt ( ... ) is there something wrong with my installation?

Gold: Try the following code sudo shutdown —P now (...) -P Requests that the system be powered off after it has
been brought down. -c Cancels a running shutdown. -k Only send out the warning messages and disable logins, do not

actually bring the system down.
Other Answers:

-Try sudo shutdown -h now command to shutdown quickly.

-Try init O init process shutdown all of the spawned processes/daemons as written in the init files
Table 2: Example question from the Ask Ubuntu dataset.
found in Table 2. and hyperparameter selection. We tune the hyper-

There are significant differences between the
two datasets. While the Yahoo! Answers dataset
has very short questions (10.8 on average) and rel-
atively long answers (50.5 words), Ask Ubuntu
questions can be very long, as they describe non-
trivial problems rather than just ask questions.
The average length of the Ask Ubuntu questions
is 112.14 words, with the average answer being
about 95 words long.

5.2 Experimental Setup

Following Jansen et al. (2014) and Fried et al.
(2015), we implement two baselines: the base-
line that selects an answer randomly and the can-
didate retrieval (CR) baseline. The CR baseline
uses the same scoring as in Jansen et al. (2014):
the questions and the candidate answers are rep-
resented using #f-idf over lemmas; the candidate
answers are ranked according to their cosine simi-
larity to the respective question. Additionally, we
evaluate the discourse features described in Sec-
tion 4 alone: we use them as the representation of
the question-answer pairs that are then used as the
input to a multilayer perceptron with five hidden
layers. On the YA dataset, we also compare our
results to the ones reported by Jansen et al. (2014)
and by Bogdanova and Foster (2016).

The model described in Section 3 is regular-
ized with L2-regularization and dropout. The de-
velopment sets are used solely for early stopping
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parameters (learning rate, L2 regularization rate,
dropout probabilities, dimensionality of the em-
beddings, the network architecture (the number of
hidden layers and units, the use of GRU versus
LSTM)) on the development sets. All neural net-
works use the rectified linear activation function
(ReLU). The word embeddings are initialized ran-
domly, no pretrained embeddings are used. We
use the software provided by Jansen et al. (2014)’
to extract the discourse features described in Sec-
tion 4 and referred to as x.,; in Section 3. These
discourse features require that word embeddings
be trained in order to calculate the similarity. Fol-
lowing Jansen et al. (2014), we train them using
the skip-gram model (Mikolov et al., 2013) We use
the L6 Yahoo dataset® to train the skip-gram model
for the YA dataset and the Ask Ubuntu September
2015 data dump for the AU dataset. The neural
model described in Section 3 does not require pre-
training of word embeddings, the embeddings are
used only to extract external discourse features.
To evaluate all the models, we use standard im-
plementations of P@1 and mean reciprocal rank
(MRR).

5.3 Results
We experimentally evaluate the following models:

"http://nlp.sista.arizona.edu/
releases/acl2014/
8http ://webscope.sandbox.yahoo.com/



e MLP-discourse: The discourse features are
extracted as described in Section 4, an MLP
is used to produce the ranking;

e GRU-MLP: The system described in Sec-
tion 3 without the interaction matrix S and
any other external features (z¢y; in Section 3
and in Figure 1);

e GRU-MLP-Sim: The system described in
Section 3 with the interaction matrix S and
no external features;

¢ GRU-MLP-Sim-Discourse: The system de-
scribed in Section 3 with the interaction ma-
trix S and the discourse features as the exter-
nal features x.;

Table 3 reports the answer reranking P@1 and
MRR of the described models along with the re-
sults of the baseline systems. The models were
frozen on their best development epoch, the test
set had been used neither for model selection nor
for parameter tuning.’

Table 3 shows that the discourse features on
their own with an MLP (MLP-Discourse) outper-
form the random and the CR baselines for both
datasets. They also perform better than the ap-
proach of Jansen et al. (2014) who used SVMrank
with a linear kernel. This might be due to the abil-
ity of the MLP to model non-linear dependencies.
Nonetheless, the MLP-Discourse approach per-
forms worse than the approach of Bogdanova and
Foster (2016), which is based on distributed repre-
sentations of documents, which probably capture
more information relevant to the task.

The system described in Section 3 with no in-
teraction transformation (only the encodings are
passed to the MLP) and without any external fea-
tures (xez¢ in Section 3 and in Figure 1), referred
to as GRU-MLP, outperforms the CR and the Ran-
dom baselines and the systems based on the dis-
course features. However, it performs slightly
worse than the approach of (Bogdanova and Fos-
ter, 2016). One possible reason is that the latter
uses a large corpus for unsupervised pretraining.

“We report the results obtained with a bidirectional RNN
with GRU cell, MLP with 5 hidden layers (with 5120, 2048,
1024, 512, 128 units), batch size 100, learning rate 0.01,
weight decay 0.0005, dropout keep probability 0.6, and the
word embedding dimensionalities and RNN outputs set to
100. The questions and answers are padded: the lengths are
set to 15 words for the question and 100 words for the answer
in the YA dataset and 200 and 150 words for the AU dataset.

Yahoo! Answers

Model P@1 MRR
Random Baseline 15.74 37.40
CR Baseline 22.63 | 47.17
Jansen et al. (2014) 30.49 | 51.89
Bogdanova and Foster (2016) | 37.17 | 56.82
MLP-Discourse 32.72° | 53.54"
GRU-MLP 36.12" | 56.63"
GRU-MLP-Sim 37.13" | 57.56
GRU-MLP-Sim-Discourse 38.74" | 58.37"
Ask Ubuntu
Model P@1 MRR
Random Baseline 26.60 53.64
CR Baseline 35.36 | 60.17
MLP-Discourse 37.80° | 61.75"
GRU-MLP 38.56" | 62.537
GRU-MLP-Sim 39.28" | 62.64"
GRU-MLP-Sim-Discourse | 41.40" | 64.42"

Table 3: The systems results versus the base-
lines. * The improvements over the CR and Ran-
dom baselines are statistically significant with p <
0.05. All significance tests are performed with
one-tailed bootstrap resampling with 10,000 iter-
ations.

The GRU-MLP systems does not use any external
data, and learns only from the small training set.

The system enriched with the interaction ma-
trix, GRU-MLP-Sim, clearly outperforms all the
baselines on both datasets, including the MLP-
Discourse system. On the YA dataset, the re-
sults are better than Jansen et al. (2014) and very
similar to Bogdanova and Foster (2016). On the
AU dataset the improvement over the CR and the
MLP-discourse systems is less remarkable, yet
statistically significant. This indicates the bene-
fit of explicitly providing the interaction features
to the MLP.

The same approach with the additional dis-
course features described in Section 4, referred to
as GRU-MLP-Sim-Discourse in Table 3, achieves
the highest P@1 and MRR on the YA dataset and
the AU dataset. Surprisingly, the discourse fea-
tures are very helpful on the AU dataset which is
highly technical, with significant parts of the in-
formation represented as commands and code.

Even though the results achieved on both
datasets are similar in absolute values, the datasets
are very different and the errors might be of a dif-
ferent nature. We provide some insights into the
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Pets (127)

Home & Garden (189)
Beauty & Style (118)
Society & Culture (135)

Health (253)

Category (# questions)

Business & Finance (130)
Family & Relationships (494)
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P@1

Random baseline

45

Il GRU-MLP-Sim-Discourse

Figure 3: Average P@1 of the GRU-MLP-Sim-
Discourse versus the Random baseline on the test
questions from most common YA categories.

challenges raised by the two datasets in the next
section.

5.4 Error Analysis

By conducting an error analysis on the YA dataset
we were able to pinpoint the main causes of error
as follows:

1. Despite containing only how questions, the
dataset contains a large amount of questions
asking for an opinion or advice , e.g. How
should I do my eyes?, How do I look? or
How do you tell your friend you're in love
with him? rather than information, e.g. How
do you make homemade lasagna? and how
do you convert avi to mpg? About half of
the questions where the best system was still
performing incorrectly were of the opinion-
seeking nature. This is a problem for auto-
matic answer reranking, since the nature of
the question makes it very hard to predict the
quality of the answers.

The choice of the best answer purely relies
on the user. Inspection of the data reveals
that these user-provided gold labels are not
always reliable. In many cases the users tend
to select as the best those answers that are
most sympathetic (see (Q1) in Table 4) or
funny (see (Q2) and (Q3) in Table 4), rather
than the ones providing more useful informa-
tion.

In order to gain more insights into the reasons
behind errors on the YA data, we calculated av-
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erage P@1 per category.'® Figure 3 shows aver-
age P@1 of the GRU-MLP-Sim-Discourse system
versus the Random baseline for the most common
categories. From this figure it is clear that the most
challenging category for answer reranking is Fam-
ily & Relationships. This category is also the most
frequent in the dataset, with 494 out of 2500 ques-
tions belonging to it. Our system achieves about
4% lower P@1 on the questions from Family &
Relationships category than on the whole test set,
while the random baseline performs as well as
on the whole test set (the average number of an-
swers per question in this category does not dif-
fer much from the dataset average). The low P@1
on this category is related to the reasons pointed
out above: most questions in this category are of
an opinion-seeking nature: How do I know if my
boyfriend really loves me?, How do I fix my rela-
tionship?, How do I find someone that loves me?,
making it hard to assess the quality of the answers.

The Ask Ubuntu dataset is rather different. In
contrast to the YA dataset, which contains many
subjective questions, most Ask Ubuntu questons
relate to a complex technology and usually require
deep domain knowledge to be answered. More-
over, many questions and answers contain code,
screenshots and links to external resources. Reli-
ably reranking such answers based on textual in-
formation alone might be an unattainable goal.
The technical complexity of the questions can give
rise to ambiguity. For instance, in (Q2) in Table 5
itis not clear if the question refers to the metapack-
age ubuntu-desktop or to ubuntu default packages
in general. Another potential source of difficulty
comes from the fact that the technologies being
discussed on Ask Ubuntu change rapidly: some
answers selected as best might be outdated (see
(Q1) in Table 5).

6 Conclusions and Future Work

In this paper we presented a neural approach to
open-domain non-factoid answer reranking. Pre-
vious studies in this area have either been feature-
based or purely neural approaches that require no
manual feature engineering. We show that these
two approaches can be successfully combined. We
propose a novel neural architecture whereby the
question-answer pairs are first encoded using two

1%We first mapped the low-level categories provided in the
dataset to the 26 high-level YA categories. We only consider
categories that contained at least 100 questions.



(Q1) How does someone impress a person during a conversation that u are as good as an oxford/harvard grad.?

(Gold) i think you’re chasing down the wrong path. but hell, what do i know?

(Prediction) There are two parts. Understanding your area well, and being creative. The understanding allows you the
material for your own opinions to have heft and for you to analyse the opinions of others. After that, it’s just good
vocabulary which comes from reading a great deal and speaking with others. Like many other endeavors practice is what
makes your performance improve.

(Q2) How to get my mom to stop smoking?

(Gold) Throw a glass of water on her every time she sparks one up

(Prediction) Never nag her. Instead politely insist on your right to stay free of all the risks associated with another
person’s
smoking. For example, do not allow her to smoke inside the car, the house or anywhere near you ( ... )

(Gold) Basically, you shake what your mother gave you.

(Prediction) Listen to previous freestyle flows and battles by great artists ( ... ) Understand the techniques those
artists use to flow and battle ( ... )

Table 4: Example incorrect predictions of the system on the Yahoo! Answers dataset.

(Q1) How do I add the kernel PPA? I can get Ubuntu mainline kernels from this kernel PPA - is there a way to add it to
my repository list the same as regular Launchpad PPAs?

(Gold) Warning : This answer is outdated. As of writing this warning (6.10.2013) the kernel-ppa used here is no longer
updated. Please disregard this answer. sudo apt-add-repository ppa:kernel-ppa/ppa sudo apt-get
update sudo apt-get install PACKAGENAME

(Prediction) Since the kernel ppa is not really maintained anymore, here’s a semi-automatic script:
https://github.com/medigeek/kmp-downloader

(Q2) Which language is ubuntu-desktop mostly coded in? I heard it is Python

(Gold) Poked around in Launchpad: ubuntu-desktop to and browsed the source for a few mins. It appears to be a mix of
Python and shell scripts.

(Prediction) I think the question referred to the language used to write the applications running on the default installation.
It’s hard to say which language is used the most, but i would guess C or C++. This is just a guess and since all languages
are pretty equal in terms of outcome, it doesn’t really matter.

Table 5: Example incorrect predictions of the system on the Ask Ubuntu dataset.

recurrent neural networks, then the interaction ma-
trix is calculated, concatenated with external fea-
tures, and passed as an input to a multilayer per-
ceptron. As external features, we evaluate the dis-
course features that were found useful for this task
by Jansen et al. (2014). The combined approach
achieves new state-of-the-art results on two CQA
datasets.

However, despite these encouraging results, the
P@1 is still below 40%. As the error analysis
shows, this is due to the nature of the dataset: the
user choice of the best answer is not always reli-
able and the questions are often seeking opinions
rather than information. The ceiling for this task
could be very low. Manual annotation of CQA
data might help in determining the upper bound.

Future work should aim to create more reliable
gold standards for this task. As we show in this pa-
per, the CQAs contain various types of question:
some of which are seeking information and some
not. Existing corpora of opinion questions, such as
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the OpQA corpus (Stoyanov et al., 2005), could be
used in future research to distinguish those from
the information-seeking questions. Another possi-
ble direction for future work is in combining the
neural approach with other external features, such
as features based on web correlation between the
question and the answer, and similarities between
their syntactic structures.
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Abstract

Our goal is to combine the rich multi-
step inference of symbolic logical rea-
soning with the generalization capabili-
ties of neural networks. We are par-
ticularly interested in complex reasoning
about entities and relations in text and
large-scale knowledge bases (KBs). Nee-
lakantan et al. (2015) use RNNs to obtain
dense representations of multi-hop paths
in KBs; however for multiple reasons,
the approach lacks accuracy and practi-
cality. This paper proposes three signifi-
cant modeling advances: (1) we learn to
jointly reason about relations, entities, and
entity-types; (2) we use neural attention
modeling to incorporate multiple paths;
(3) we learn to share strength in a sin-
gle RNN that represents logical compo-
sition across all relations. On a large-
scale Freebase+ClueWeb prediction task,
we achieve 25% error reduction, and a
53% error reduction on sparse relations.
On chains of reasoning in WordNet we re-
duce error in mean quantile by 84% versus
the previous state of the art.!.

1 Introduction

There is a rising interest in extending neural net-
works to perform more complex reasoning, for-
merly addressed only by symbolic and logical rea-
soning systems. So far this work has mostly fo-
cused on small or synthetic data (Grefenstette,
2013; Bowman et al., 2014; Rocktidschel and
Riedel, 2016). Our interest is primarily in reason-
ing about large knowledge bases (KBs) with di-
verse semantics, populated from text. One method

"The code and data are available at

https://rajarshd.github.io/ChainsofReasoning/
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i. place.birth(a, b) < ‘was_born_in’(a,z)A
‘commonly_known_as’(x,b)

ii. location.contains(a, b) < nationality~*(a, )
A place.birth(zx, b)

iii. book.characters(a, b) < ‘aka’(a, x) A
(theater.character.plays) ! (z, b)

iv. cause.death(a, b) «‘contracted’(a,b)

Table 1: Several highly probable clauses learnt
by our model. The textual relations are shown in
quotes and italicized. Our model has the ability to
combine textual and schema relations. r~! is the
inverse relation 7, i.e. r(a, b) < r~1(b, a).

for populating a KB from text (and for repre-
senting diverse semantics in the KB) is Universal
Schema (Riedel et al., 2013; Verga et al., 2016),
which learns vector embeddings of relation types
- the union of all input relation types, both from
the schemas of multiple structured KBs, as well as
expressions of relations in natural language text.

An important reason to populate a KB is to
support not only look-up-style question answer-
ing, but reasoning on its entities and relations in
order to make inferences not directly stored in
the KB. KBs are often highly incomplete (Min
et al., 2013), and reasoning can fill in these
missing facts. The “matrix completion” mecha-
nism that underlies the common implementation
of Universal Schema can thus be seen as a sim-
ple type of reasoning, as can other work in ten-
sor factorization (Nickel et al., 2011; Bordes et
al., 2013; Socher et al., 2013). However these
methods can be understood as operating on sin-
gle pieces of evidence: for example, inferring that
Microsoft—located-in—Seattle implies Microsoft—
HQ-in-Seattle.

A highly desirable, richer style of reasoning

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 132—-141,

Valencia, Spain, April 3-7, 2017. (©2017 Association for Computational Linguistics
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Figure 1: The nodes in the knowledge graphs represent entities and the labeled edges represent relations.
(a) A path between ‘Melinda’ and ‘Seattle’ combining relations from two different documents. (b) There
are multiple paths between entities in a knowledge graph. The top two paths are predictive of the fact
that Melinda may ‘live in’ Seattle, but the bottom (fictitious) path isn’t.

makes inferences from Horn clauses that form
multi-hop paths containing three or more enti-
ties in the KB’s entity-relation graph. For ex-
ample, we may have no evidence directly link-
ing Melinda Gates and Seattle. However, we may
infer with some likelihood that Melinda—/ives-in—
Seattle, by observing that the KB contains the
path Melinda—spouse—Bill-chairman—Microsoft—
HQ-in-Seattle (Fig. 1a).

Symbolic rules of this form are learned by the
Path Ranking Algorithm (PRA) (Lao et al., 2011).
Dramatic improvement in generalization can be
obtained by reasoning about paths, not in terms
of relation-symbols, but Universal Schema style
relation-vector-embeddings. This is done by Nee-
lakantan et al. (2015), where RNNs compose the
per-edge relation embeddings along an arbitrary-
length path, and output a vector embedding repre-
senting the inferred relation between the two enti-
ties at the end-points of the path. This approach
thus represents a key example of complex rea-
soning over Horn clause chains using neural net-
works. However, for multiple reasons detailed be-
low it is inaccurate and impractical.

This paper presents multiple modeling advances
that significantly increase the accuracy and prac-
ticality of RNN-based reasoning on Horn clause
chains in large-scale KBs. (1) Previous work, in-
cluding (Lao et al., 2011; Neelakantan et al., 2015;
Guu et al., 2015) reason about chains of relations,
but not the entities that form the nodes of the path.
In our work, we jointly learn and reason about
relation-types, entities, and entity-types. (2) The
same previous work takes only a single path as ev-
idence in inferring new predictions. However, as
shown in Figure 1b, multiple paths can provide ev-
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idence for a prediction. In our work, we use neu-
ral attention mechanisms to reason about multiple
paths. We use a pooling function which does soft
attention during gradient step and find it to work
better. (3) The most problematic impracticality of
the above previous work? for application to KBs
with broad semantics is their requirement to train
a separate model for each relation-type to be pre-
dicted. In contrast, we train a single, high-capacity
RNN that can predict all relation types. In addi-
tion to efficiency advantages, our approach signif-
icantly increases accuracy because the multi-task
nature of the training shares strength in the com-
mon RNN parameters.

We evaluate our new approach on a large
scale dataset of Freebase entities, relations and
ClueWeb text. In comparison with the previous
best on this data, we achieve an error reduction of
25% in mean average precision (MAP). In an ex-
periment specially designed to explore the benefits
of sharing strength with a single RNN, we show a
54% error reduction in relations that are available
only sparsely at training time. We also evaluate on
a second data set, chains of reasoning in WordNet.
In comparison with previous state-of-the-art (Guu
et al., 2015) our model achieves a 84% reduction
in error in mean quantile.

2 Background

In this section, we introduce the compositional
model (Path-RNN) of Neelakantan et al. (2015).
The Path-RNN model takes as input a path
between two entities and infers new relations
between them. Reasoning is performed non-

2with exception of (Guu et al., 2015)
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Figure 2: At each step, the RNN consumes both entity and relation vectors of the path. The entity
representation can be obtained from its types. The path vector y is the last hidden state. The parameters

of the RNN and relation embeddings are shared across all query relations.

The dot product between

the final representation of the path and the query relation gives a confidence score, with higher scores
indicating that the query relation exists between the entity pair.

atomically about conjunctions of relations in an
arbitrary length path by composing them with a
recurrent neural network (RNN). The representa-
tion of the path is given by the last hidden state of
the RNN obtained after processing all the relations
in the path.

Let (es,e:) be an entity pair and S denote
the set of paths between them. The set S is
obtained by doing random walks in the knowl-
edge graph starting from eg till e;. Let 7
{es,r1,€1,72,..., Tk, €} € S denote a path be-
tween (es, e;). The length of a path is the num-
ber of relations in it, hence, (len(w) = k). Let
yr, € R? denote the vector representation of r;.
The Path-RNN model combines all the relations
in 7 sequentially using a RNN with an intermedi-
ate representation hy € R at step ¢ given by

hy = f(Whnhe—1 + WiLyr, ) (D

Wiy, € R?>h and Wi, € R4*" are the param-
eters of the RNN. Here r denotes the query rela-
tion. Path-RNN has a specialized model for pre-
dicting each query relation r, with separate param-
eters (yr,, Wiy, Wi,) for each 7. f is the sig-
moid function. The vector representation of path
7 (yr) is the last hidden state hy. The similarity of
yr with the query relation vector y, is computed
as the dot product between them:

2)

Pairs of entities may have several paths connect-
ing them in the knowledge graph (Figure 1b). Let
{s1, 82, ...,sn} be the similarity scores (Equation

score(m,r) =y - Vr
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2) for N paths connecting an entity pair (es, €¢).
Path-RNN computes the probability that the entity
pair (es, e¢) participates in the query relation (7)
by,

(3)

o(max(s1,$2,.--,SN))

P(rles, er) =
where o is the sigmoid function.

Path-RNN and other models such as the Path
Ranking Algorithm (PRA) and its extensions (Lao
et al., 2011; Lao et al., 2012; Gardner et al., 2013;
Gardner et al., 2014) makes it impractical to be
used in downstream applications, since it requires
training and maintaining a model for each relation
type. Moreover, parameters are not shared across
multiple target relation types leading to large num-
ber of parameters to be learned from the training
data.

In (3), the Path-RNN model selects the maxi-
mum scoring path between an entity pair to make a
prediction, possibly ignoring evidence from other
important paths. Not only is this a waste of com-
putation (since we have to compute a forward pass
for all the paths anyway), but also the relations in
all other paths do not get any gradients updates
during training as the max operation returns zero
gradient for all other paths except the maximum
scoring one. This is especially ineffective during
the initial stages of the training since the maxi-
mum probable path will be random.

The Path-RNN model and other multi-hop
relation extraction approaches (such as Guu
et al. (2015)) ignore the entities in the path.
Consider the following paths JFK-locatedIn—



NYC-locatedIn-NY and Yankee Stadium—
locatedIn-NYC—locatedIn-NY. To predict the
airport_serves relation, the Path-RNN model
assigns the same scores to both the paths even
though the first path should be ranked higher. This
is because the model does not have information
about the entities and just uses the relations in the
path for prediction.

3 Modeling Approach

3.1 Shared Parameter Architecture

Previous section discussed the problems associ-
ated with per-relation modeling approaches. In re-
sponse, we share the relation type representation
and the composition matrices of the RNN across
all target relations enabling lesser number of pa-
rameters for the same training data. We refer to
this model as Single-Model. Note that this is just
multi-task learning (Caruana, 1997) among pre-
diction of target relation types with an underlying
shared parameter architecture. The RNN hidden
state in (1) is now given by:

hy = f(Whnhe—1 + Winyr,)- 4)

Readers should take note that the parameters here
are independent of each target relation r.

Model Training

We train the model using existing observed facts
(triples) in the KB as positive examples and un-
observed facts as negative examples. Let R =
{7,72,--.,7n} denote the set of all query rela-
tion types that we train for. Let A;E, A% denote
the set of positive and negative triples for all the
relation types in R. The parameters of the model
are trained to minimize the negative log-likelihood
of the data.

. 1
L(O,A%,A%) = =57 ), logP(rlese)
es,et,reA;%
+ D> log(1—P(|és, ér))
és,6t,FEAL

)

Here M is the total number of training examples
and © denotes the set of all parameters of the
model (lookup table of embeddings (shared) and
parameters of the RNN (shared)). It should be
noted that the Path-RNN model has a separate loss
function for each relation r € R which depends
only on the relevant subset of the data.
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3.2 Score Pooling

In this section, we introduce new methods of score
pooling that takes into account multiple paths be-
tween an entity pair. Let {sq,s2,...,sn} be the
similarity scores (Equation 2) for N paths con-
necting an entity pair (es,e;). The probability
for entity pair (es, ;) to participate in relation r
(Equation 3) is now given by,

1. Top-(k): A straightforward extension of the
‘max’ approach in which we average the top
k scoring paths. Let /C denote the indices of
top-k scoring paths.

1
P(r|es,er) = of

EZS]'),V]'E’C

J

. Average: Here, the final score is the average
of scores of all the paths.

1
N -
2

M=

P(rles,er) = of Si)

1

LogSumExp: In this approach the pooling
layer is a smooth approximation to the ‘max’
function - LogSumExp (LSE). Given a vector
of scores, the LSE is calculated as

LSE(s1,82,...,8N) = log(z exp(s;))

and hence the probability of the triple is,

P(r|e1,e2) = o(LSE(s1, 82, ...,5N))

The average and the LSE pooling functions apply
non-zero weights to all the paths during inference.
However only a few paths between an entity pair

are predictive of a query relation. LSE has another
JLSE _ _exp(si) :

7 = S exp(s)” This

means that during the back-propagation step, ev-

ery path will receive a share of the gradient pro-
portional to its score and hence this is a kind of
attention during the gradient step. In contrast, for
averaging, every path will receive equal (%) share
of the gradient. Top-(k) (similar to max) receives
sparse gradients.

desirable property since

3.3 Incorporating Entities

A straightforward way of incorporating entities is
to include entity representations (along with re-
lations) as input to the RNN. Learning separate



representations of entity, however has some disad-
vantages. The distribution of entity occurrence is
heavy tailed and hence it is hard to learn good rep-
resentations of rarely occurring entities. To allevi-
ate this problem, we use the entity types present in
the KB as described below.

Most KBs have annotated types for entities and
each entity can have multiple types. For exam-
ple, Melinda Gates has types such as CEO, Duke
University Alumni, Philanthropist, American Cit-
izen etc. We obtain the entity representation by a
simple addition of the entity type representations.
The entity type representations are learned during
training. We limit the number of entity types for
an entity to 7 most frequently occurring types in
the KB. Let ye, € R™ denote the representation
of entity e;, then 4 now becomes

h¢ = f(Wnnht—1 + Winyr, + WenYe,) (6)

Weon € R™% is the new parameter matrix

for projecting the entity representation. Figure
2 shows our model with an example path be-
tween entities (Microsoft, USA) with country-
OfHQ (country of head-quarters) as the query re-
lation.

4 Related Work

Two early works on extracting clauses and rea-
soning over paths are SHERLOCK (Schoenmack-
ers et al., 2010) and the Path Ranking Algorithm
(PRA) (Lao et al., 2011). SHERLOCK extracts
purely symbolic clauses by exhaustively explor-
ing relational paths of increasing length. PRA re-
places exhaustive search by random walks. Ob-
served paths are used as features for a per-target-
relation binary classifier. Lao et al. (2012) extend
PRA by augmenting KB-schema relations with
observed text patterns. However, these methods do
not generalize well to millions of distinct paths ob-
tained from random exploration of the KB, since
each unique path is treated as a singleton, where
no commonalities between paths are modeled. In
response, pre-trained vector representations have
been used in PRA to tackle the feature explo-
sion (Gardner et al., 2013; Gardner et al., 2014)
but still rely on a classifier using atomic path fea-
tures. Yang et al. (2015) also extract horn rules,
but they restrict it to a length of 3 and the liter-
als are restricted to schema types in the knowledge
base. Zeng et al. (2016) show improvements in re-
lation extraction by incorporating sentences which
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Stats #

# Freebase relation types 27,791
# textual relation types 23,599
# query relation types 46

# entity pairs 3.22M
# unique entity types 2218
Avg. path length 4.7
Max path length 7
Total # paths 191M

Table 2: Statistics of the dataset.

contain one entity.

Guu et al. (2015) introduce new compositional
techniques by modeling additive and multiplica-
tive interactions between relation matrices in the
path. However they model only a single path be-
tween an entity pair in-contrast to our ability to
consider multiple paths. Toutanova et al. (2016)
improves upon them by additionally modeling the
intermediate entities in the path and modeling
multiple paths. However, in their approach they
have to store scores for intermediate path length
for all entity pairs, making it prohibitive to be used
in our setting where we have more than 3M en-
tity pairs. They also model entities as just a scalar
weight whereas we learn both entity and type rep-
resentations. Lastly it has been shown by Nee-
lakantan et al. (2015) that non-linear composition
function out-performs linear functions (as used by
them) for relation extraction tasks.

The performance of relation extraction meth-
ods have been improved by incorporating entity
types for their candidate entities, both in sentence
level (Roth and Yih, 2007; Singh et al., 2013) and
KB relation extraction (Chang et al., 2014), and
in learning entailment rules (Berant et al., 2011).
Serban et al. (2016) use RNNs to generate factoid
question from Freebase.

5 Results

Data and Experimental Setup

We apply our models to the dataset released
by Neelakantan et al. (2015), which is a sub-
set of Freebase enriched with information from
ClueWeb. The dataset is comprised of a set of
triples (e1, 7, e2) and also the set of paths con-
necting the entity pair (ej,e2) in the knowledge
graph. The triples extracted from ClueWeb con-
sists of sentences that contain entities linked to
Freebase (Orr et al., 2013). The raw text between
the two entities in the sentence forms the relation



type. To limit the number of textual relations, we
retain the two following words after the first en-
tity and two words before the second entity. We
also collect the entity type information from Free-
base. Table 2 summarizes some important statis-
tics. For the PathQA experiment, we use the same
train/dev/test split of WordNet dataset released by
Guu et al. (2015) and hence our results are directly
comparable to them. The WordNet dataset has just
22 relation types and 38194 entities which is order
of magnitudes less than the dataset we use for re-
lation extraction tasks.

The dimension of the relation type representations
and the RNN hidden states are d, h = 250 and the
entity and type embeddings have m = 50 dimen-
sions. The Path-RNN model has sigmoid units
as their activation function. However, we found
rectifier units (ReL.U) to work much better (Le et
al., 2015), even when compared to LSTMs (73.2
vs 72.4 in MAP). For the path-query experiment,
the dimension of entity, relation embeddings and
hidden units are set to 100 (as used by Guu et al.
(2015)). As our evaluation metric, we use the aver-
age precision (AP) to score the ranked list of entity
pairs. The MAP score is the mean AP across all
query relations. AP is a strict metric since it pe-
nalizes when an incorrect entity is ranked higher
above correct entities. Also MAP approximates
the area under the Precision Recall curve (Man-
ning et al., 2008). We use Adam (Kingma and
Ba, 2014) for optimization for all our experiments
with the default hyperparameter settings (learning
rate = le ™3, 81 = 0.9, B = 0.999, ¢ = 1e7®).
Statistical significance for scores reported in Table
3 were done with a paired-t test.

5.1 Effect of Pooling Techniques

Section 1 of Table 3 shows the effect of the various
pooling techniques presented in section 3.2. It is
encouraging to see that LogSumExp gives the best
results. This demonstrates the importance of con-
sidering information from all the paths. However,
Avg. pooling performs the worst, which shows
that it is also important to weigh the paths scores
according to their values. Figure 3 plots the train-
ing loss w.r.t gradient update step. Due to non-zero
gradient updates for all the paths, the LogSumExp
pooling strategy leads to faster training vs. max
pooling, which has sparse gradients. This is es-
pecially relevant during the early stages of train-
ing, where the argmax path is essentially a random
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Figure 3: Comparison of the training loss w.r.t
gradient update steps of various pooling meth-
ods. The loss of LogSumExp decreases the fastest
among all pooling methods and hence leads to
faster training.

guess. The scores of max and LSE pooling are sig-
nificant with (p < 0.02).

5.2 Comparison with multi-hop models

We next compare the performance of the Single-
Model with two other multi-hop models - Path-
RNN and PRA(Lao et al., 2011). Both of these ap-
proaches train an individual model for each query
relation. We also experiment with another exten-
sion of PRA that adds bigram features (PRA +
Bigram). Additionally, we run an experiment re-
placing the max-pooling of Path-RNN with Log-
SumExp. The results are shown in the second
section of Table 3. It is not surprising to see
that the Single-Model, which leverages parame-
ter sharing improves performance. It is also en-
couraging to see that LogSumExp makes the Path-
RNN baseline stronger. The scores of Path-RNN
(with LSE) and Single-Model are significant with
(p < 0.005).

5.3 Effect of Incorporating Entities

Next, we provide quantitative results supporting
our claim that modeling the entities along a KB
path can improve reasoning performance. The last
section of Table 3 lists the performance gain ob-
tained by injecting information about entities. We
achieve the best performance when we represent
entities as a function of their annotated types in
Freebase (Single-Model + Types) (p < 0.005).
In comparison, learning separate representations
of entities (Single-Model + Entities) gives slightly
worse performance. This is primarily because we
encounter many new entities during test time, for



Model Performance (%MAP) Pooling
Single-Model 68.77 Max
Single-Model 55.80 Avg.
Single-Model 68.20 Top(k)
Single-Model 70.11 LogSumExp

PRA 64.43 n/a

PRA + Bigram 64.93 n/a

Path-RNN 65.23 Max
Path-RNN 68.43 LogSumExp
Single-Model 70.11 LogSumExp

PRA + Types 64.18 n/a
Single-Model 70.11 LogSumExp
Single-Model + Entity 71.74 LogSumExp
Single-Model + Types 73.26 LogSumExp
Single-Model + Entity + Types 72.22 LogSumExp

Table 3: The first section shows the effectiveness of LogSumExp as the score aggregation function. The
next section compares performance with existing multi-hop approaches and the last section shows the
performance achieved using joint reasoning with entities and types.

which our model does not have a learned repre-
sentation. However the relatively limited number
of entity types helps us overcome the problem of
representing unseen entities. We also extend PRA
to include entity type information (PRA + Types),
but this did not yield significant improvements.

5.4 Performance in Limited Data Regime

In constructing our dataset, we selected query re-
lations with reasonable amounts of data. However,
for many important applications we have very lim-
ited data. To simulate this common scenario, we
create a new dataset by randomly selecting 23 out
of 46 relations and removing all but 1% of the pos-
itive and negative triples previously used for train-
ing.

Effectively, the difference between Path-RNN
and Single-Model is that Single-Model does mul-
titask learning, since it shares parameters for dif-
ferent target relation types. Therefore, we expect
it to outperform Path-RNN on this small dataset,
since this multitask learning provides additional
regularization. We also experiment with an exten-
sion of Single-Model where we introduce an addi-
tional task for multitask learning, where we seek to
predict annotated types for entities. Here, parame-
ters for the entity type embeddings are shared with
the Single-Model. Supervision for this task is pro-
vided by the entity type annotation in the KB. We
train with a Bayesian Personalized Ranking loss of
Rendle et al. (2009). The results are listed in Table
4. With Single-Model there is a clear jump in per-
formance as we expect. The additional multitask
training with types gives a very incremental gain.
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Model Performance (%°MAP)
Path-RNN 22.06
Single-Model 63.33
Single-Model + MTL 64.81

Table 4: Model performance when trained with a
small fraction of the data.

5.5 Answering Path Queries

Guu et al. (2015) introduce a task of answering
questions formulated as path traversals in a KB.
Unlike binary fact prediction, to answer a path
query, the model needs to find the set of correct
target entities ‘t’ that can be reached by starting
from an initial entity ‘s’ and then traversing the
path ‘p’. They model additive and multiplicative
interactions of relations in the path. It should be
noted that the compositional Trans-E and Bilinear-
diag have comparable number of parameters to our
model since they also represent relations as vec-
tors, however the Bilinear model learns a dense
square matrix for each relation and hence has a lot
more number of parameters. Hence, we compare
with Trans-E and Bilinear-diag models. Bilinear-
diag has also been shown to outperform Bilinear
models (Yang et al., 2015).

Instead of combining relations using simple ad-
ditions and multiplications, we propose to com-
bine the intermediate hidden representations h;
obtained from a RNN (via (4)) after consum-
ing relation 7; at each step. Let h denote the
sum of all intermediate representations h;. The
score of a triple (s, p,t) by our model is given by
x] diag(h)z, where diag(h) represents a diagonal



Horn Clause (Body) Without Entities With Entities Universal
location.contains(z, a) A location.contains(a, y) 0.9149 0.949 Y
(person.nationality) ! (x, a) A place.birth(a,y) 0.7702 0.9256 N

Table 5: Body of two clauses both of which are predictive of location.contains(z, y). First fact is univer-
sally true but the truth value of the second clause depends on the value of the entities in the clause. The
model without entity parameters cannot discriminate this and outputs a lower overall confidence score.

Model MQ
Comp. Bilinear Diag  90.4
Comp. Trans-E 93.3
Our Model 98.94

Table 6: Performance on path queries in WordNet.

matrix with vector h as its diagonal elements.

We compare to the results reported by Guu et
al. (2015) on the WordNet dataset. It should be
noted that the dataset is fairly small with just 22
relation types and an average path length of 3.07.
More importantly, there are only few unseen paths
during test time and only one path between an en-
tity pair, suggesting that this dataset is not an ideal
test bed for compositional neural models. The re-
sults are shown in table 6. Mean Quantile(MQ) is
the fraction of incorrect entities which have been
scored lower than the correct entity. Our model
achieves a 84% reduction in error when compared
to their best model.

6 Qualitative Analysis

Entities as Existential Quantifiers: Ta-
ble 5 shows the body of two horn clauses.
Both the clauses are predictive of the fact
location.contains(x, b). The first clause is wuni-
versally true irrespective of the entities present
in the chain (transitive property). However the
value of the second clause is only true conditional
on the instantiations of the entities. The score of
the Path-RNN model is independent of the entity
values, whereas our model outputs a different
score based on the entities in the chain. We
average the scores across entities, which are
connected through this path and for which the
relation holds in column 3 (With Entities).

For the first clause, which is independent of en-
tities, both models predict a high score. However
for the second clause, the model without entity in-
formation predicts a lower score because this path
is seen in both positive and negative training ex-
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Figure 4: Length distribution of top-scoring paths

amples and the model cannot condition on the en-
tities to learn to discriminate. However our model
predicts the true relations with high confidence.
This is a first step towards the capturing existen-
tial quantification for logical inference in vector
space.

Length of Clauses: Figure 4 shows the length dis-
tribution of top scoring paths in the test set. The
distribution peaks at lengths= {3, 4,5}, suggest-
ing that previous approaches (Yang et al., 2015)
which restrict the length to 3 might limit perfor-
mance and generalizability.

Limitation: A major limitation of our model is
inability to handle long textual patterns because of
sparsity. Compositional approaches for modeling
text (Toutanova et al., 2015; Verga et al., 2016) are
a right step in this direction and we leave this as
future work.

7 Conclusion

This paper introduces a single high capacity RNN
model which allows chains of reasoning across
multiple relation types. It leverages information
from the intermediate entities present in the path
between an entity pair and mitigates the problem
of unseen entities by representing them as a func-
tion of their annotated types. We also demonstrate
that pooling evidence across multiple paths im-
proves both training speed and accuracy. Finally,
we also address the problem of reasoning about
infrequently occurring relations and show signifi-
cant performance gains via multitasking.



References

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2011. Global learning of typed entailment rules. In
NAACL.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS.

Samuel R. Bowman, Christopher Potts, and Christo-
pher D. Manning. 2014. Recursive neural networks
for learning logical semantics. CoRR.

Rich Caruana.
Learning.

1997. Multitask learning. Machine

Kai-Wei Chang, Wen tau Yih, Bishan Yang, and
Christopher Meek. 2014. Typed tensor decompo-
sition of knowledge bases for relation extraction. In
EMNLP.

Matt Gardner, Partha Pratim Talukdar, Bryan Kisiel,
and Tom M. Mitchell. 2013. Improving learning
and inference in a large knowledge-base using latent
syntactic cues. In EMNLP.

Matt Gardner, Partha Talukdar, Jayant Krishnamurthy,
and Tom Mitchell. 2014. Incorporating vector space
similarity in random walk inference over knowledge
bases. In EMNLP.

Edward Grefenstette. 2013. Towards a formal distri-
butional semantics: Simulating logical calculi with
tensors. Lexical and Computational Semantics.

K. Guu, J. Miller, and P. Liang. 2015. Traversing
knowledge graphs in vector space. In EMNLP.

2014. Adam:
CoRR,

Diederik P. Kingma and Jimmy Ba.
A method for stochastic optimization.
abs/1412.6980.

Ni Lao, Tom Mitchell, and William W. Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In EMNLP, Stroudsburg, PA,
USA.

Ni Lao, Amarnag Subramanya, Fernando Pereira, and
William W. Cohen. 2012. Reading the web
with learned syntactic-semantic inference rules. In
EMNLP.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. CoRR.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schiitze. 2008. Introduction to Information
Retrieval.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for
relation extraction with an incomplete knowledge
base. In NAACL.

140

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space models
for knowledge base completion. In ACL, Beijing,
China.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML.

Dave Orr, Amar Subramanya, Evgeniy Gabrilovich,
and Michael Ringgaard. 2013. 11 bil-

lion clues in 800 million documents: A
web research corpus annotated with freebase
concepts. http://googleresearch.

blogspot.com/2013/07/
ll-billion-clues-in-800-million.
html.

Steffen Rendle, Christoph Freudenthaler, Zeno Gant-
ner, and Lars Schmidt-Thieme. 2009. Bpr:
Bayesian personalized ranking from implicit feed-
back. UAI ’09.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
NAACL.

Tim Rocktédschel and Sebastian Riedel. 2016. Learn-
ing knowledge base inference with neural theorem
provers. In AKBC, NAACL.

Dan Roth and Wen-tau Yih. 2007. Global inference
for entity and relation identification via a linear pro-
gramming formulation. In In Introduction to SRL.

Stefan Schoenmackers, Oren Etzioni, Daniel S. Weld,
and Jesse Davis. 2010. Learning first-order horn
clauses from web text. In EMNLP.

Tulian Vlad Serban, Alberto Garcia-Durdn, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generat-
ing factoid questions with recurrent neural networks:
The 30m factoid question-answer corpus. ACL.

Sameer Singh, Sebastian Riedel, Brian Martin, Jiap-
ing Zheng, and Andrew McCallum. 2013. Joint
inference of entities, relations, and coreference. In
AKBC, CIKM.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
NIPS.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In EMNLP, September.

Kristina Toutanova, Xi Victoria Lin, Scott Wen tau Yih,
Hoifung Poon, and Chris Quirk. 2016. Composi-
tional learning of embeddings for relation paths in
knowledge bases and text. ACL.



Patrick Verga, David Belanger, Emma Strubell, Ben-
jamin Roth, and Andrew McCallum. 2016. Multi-
lingual relation extraction using compositional uni-
versal schema.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. ICLR.

Wenyuan Zeng, Yankai Lin, Zhiyuan Liu, and
Maosong Sun. 2016. Incorporating relation paths
in neural relation extraction. CoRR.

141



Recognizing Mentions of Adverse Drug Reaction in Social Media Using
Knowledge-Infused Recurrent Models

Gabriel Stanovsky*
Bar-Ilan University
Ramat Gan, Israel

gabriel.satanovsky@gmail.com

Abstract

Recognizing mentions of Adverse Drug
Reactions (ADR) in social media is chal-
lenging: ADR mentions are context-
dependent and include long, varied and
unconventional descriptions as compared
to more formal medical symptom ter-
minology. We use the CADEC cor-
pus to train a recurrent neural network
(RNN) transducer, integrated with knowl-
edge graph embeddings of DBpedia, and
show the resulting model to be highly
accurate (93.4 F1). Furthermore, even
when lacking high quality expert annota-
tions, we show that by employing an active
learning technique and using purpose built
annotation tools, we can train the RNN to
perform well (83.9 F1).

1 Introduction

Identifying medical concepts in social media nar-
ratives is the task of recognizing certain phrases in
the context of a user’s post. Each phrase is also
assigned a label from a set of predefined medi-
cal types. For instance, given the sentence “As-
pirin cured my terrible headache, but made me
sleepy”, the following medical concepts can be
identified: “Aspirin” is identified as Drug, “fer-
rible headache” as a Symptom and “made me
sleepy” should be spotted as a Adverse Drug Re-
action.

Having an automatic identification process can
help domain experts examine large quantities of
unstructured data, and quickly identify emerging
trends. For example, associating previously un-
known side effects with a given drug, or identify-
ing an unforeseen impact to a change in the man-
ufacturing process.
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There are several challenges in addressing this
task. First, context is crucial to type assign-
ment. Compare the previous example with “As-
pirin cured my sleepiness but gave me a terrible
headache”, while the medical concepts are simi-
lar, their context determines their particularly as-
sociated type label.

The social media domain poses additional chal-
lenges. User narratives on social platforms tend
to be non-grammatical, use colloquialisms, slang,
and generally informal language. For example,
a user may express sleepiness as “hard time get-
ting some Z’s”. This hinders the use of pre-trained
statistical parsers or simple string matching tech-
niques.

In this work we focus on the identification of
Adverse Drug Reactions (ADR). These are un-
wanted side effects which the user clearly iden-
tifies as caused by the intake of a drug. ADRs
are particularly challenging to spot, as they can be
articulated in a variety of ways and can often be
confounded with the symptoms addressed by the
drug.

Previous work in this field has mainly used care-
fully built lexicons and hand-coded rule based sys-
tems (Igbal et al., 2015). While each individual
system achieves good results in the particular do-
main, porting these rules to another domain is non-
trivial. For example, identifying psychiatric drug
adverse reactions will probably consist of a much
different lexicon than that of cardiac medication.

In this work we address ADR mention recog-
nition by with recurrent neural network (RNN)
transducers (Graves, 2012). We propose a frame-
work which makes novel use of general, non-
task-specific medical knowledge from DBpedia
(Lehmann et al., 2015).

Our contributions are two fold: first, we use
the high-quality annotation of the CSIRO Ad-
verse Drug Event Corpus (CADEC) (Karimi et al.,
2015) to train accurate models, achieving perfor-
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mance of 93.4 F1 on the CADEC test section. An-
alyzing the performance of our models, we show
that the theoretically unbounded memory of the
RNN is good at capturing the context of the nar-
ratives, and that external DBpedia knowledge pro-
vides additional improvements.

Second, in most medical domains there is no
large preexisting collection of expert annotation
(i.e., gold standard test and training data) and
obtaining one is an expensive prospect. We
therefore address the following research question:
“How quickly can our system converge on ‘good
enough’ annotations?”.

For that end, we use only the test portion of
CADEC to test a model trained on non-expert an-
notation. To expedite this process, we use a pur-
pose built annotation tool in conjunction with an
active learning technique to sample the most in-
formative examples to annotate. This approach
achieves reasonable results in a very short time
(83.9 F1 in only one hour of human annotation).
We suggest that this framework is a promising
avenue for researches exploring low-resource do-
mains, alleviating the need to first commit to an
expensive annotation endeavor.

2 Background

In this section we describe the CADEC corpus,
which we use to train and test our model, and DB-
pedia, along with the recent paradigm of knowl-
edge graph embeddings integrated into our RNN.

2.1 CSIRO Adverse Drug Event Corpus

The recently created CSIRO Adverse Drug Event
Corpus (CADEC) (Karimi et al., 2015) contains
medical concepts annotation in posts from Ask
a Patient!, an online forum collecting medi-
cal patient narratives.

For example, a forum entry regarding a certain
drug starts with “I experienced one night of ago-
nising upper stomach pain, diarrhoea and sleep-
lessness”.

CADEC used brat (Stenetorp et al., 2012) to
annotate five types of medical concepts: (1) Drug,
names of medicine or drug, e.g., “Diclofenac”
or “Aspirin”; (2) Adverse Drug Reaction, an un-
wanted reaction which according to the text is
clearly associated with taking the drug, e.g, “acute
stomach pain’; (3) Disease, the reason for tak-
ing the drug, e.g., “insomnia” or “aggression”;

"http://www.askapatient.com
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(4) Symptom, manifestations of the disease, e.g.,
“trouble sleeping” or “constantly angry”; and fi-
nally (5) Finding, a clinical finding that does not
pertain to any of the above categories.

Each annotation consists of a word span (possi-
bly non-contiguous) and a mapping of the marked
span to medical ontologies (SNOMED (Cote et
al., 1977), AMT?2, and MedDRA (Brown et al.,
1999)).

Each post is annotated by either a medical stu-
dent or a computer scientist, screened by the au-
thors of the papers, and finally reviewed by a clin-
ical terminologist. The annotations spanned 1,244
posts relating to 12 drugs divided into two groups
(medications with Diclofenac as an active ingredi-
ent, and Lipitor). Corpus statistics are presented
in Table 1.

In the course of this work we will use the
CADEC Adverse Drug Reaction annotations to
train and test our models.

2.2 DBpedia and Knowledge Graph
Embeddings

DBpedia is a large-scale cross-domain multilin-
gual knowledge base extracted from Wikipedia
(Lehmann et al., 2015). DBpedia uses a schema
with over 320 entity types and 1,600 property
types to describe nearly 4 million entities. Be-
sides the common Person, Location and Organi-
zation entity types, it also includes descriptions of
drugs, diseases, symptoms and disorders, among
others.

Using a knowledge graph such as DBpedia re-
quires an intimate knowledge of its entity and
relation types, as well as its subtle representa-
tion decisions. This creates challenges with using
knowledge graphs in a machine learning (ML) set-
ting, where the signals are coming from different
sources and are often normalized and assimilated
to make the final prediction.

https://goo.gl/xRCGPN

Train  Test All
# Posts 935 309 1244
# Sentences 5723 1874 7597
# Words 95979 31855 127834
# Unique Words 5788 3373 9161

Table 1: Statistics for the CADEC corpus (See
section 2).



In order to allow ML algorithms to make use
of the information encapsulated in such graphs, a
recent line of work (Bordes et al., 2011; Bordes
et al., 2013; Wang et al., 2014; Ji et al., 2016)
has compellingly suggested to embed entities as
d dimensional dense real vectors, and relations as
two projection matrices: R and R™. Simi-
larly to word embedding techniques (Collobert et
al., 2011; Mikolov et al., 2013), a deep learning
model is trained to differentiate between observed
(positive) and non-observed (negative) triples, by
minimizing the following score for positive triples
(Ei, R, Ej)l

HthsEi_RrhsEjH (1)

During training, the model learns the entity and
relation embeddings, desirably encoding some of
the semantics and co-occurrence information of
the original knowledge graph.

3 Recognizing Mentions of Adverse Drug
Reaction

In this section we formally define the task of in-
context recognition of Adverse Drug Reactions
(ADR) mentions and describe our proposed prob-
lem modeling.

3.1 Task Formulation

We follow CADEC’s definition for ADR, as de-
scribed in Section 2.

Formally, we define the ADR mention recogni-
tion task as a sentence level chunking task, where
each word can either be: (1) Beginning of an ADR
span (B); (2) Inside an ADR span (I); or (3) Out-
side of the span of an ADR (O);

For example (tags in subscript):

“l, stopped, taking, Ambien, after, three,
weeks, — it, gave, me, a, terrible; headache,”

This formulation, termed BIO tagging
(Ramshaw and Marcus, 1995; Sang and Veenstra,
1999), is equivalent to noun phrase (NP) chunking
annotation convention with a single type of NP.

While Ratinov and Roth (2009) have shown
that a more elaborate tagging scheme (BILOU)?
improved performance in their experiments in
Named Entity Recognition, those experiments are
out of the scope for this work.

3BILOU uses tags for: Beginning, Inside, Last and Unit
length chunks.
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This task depends heavily upon context, as the
same word span can appear as an ADR in one
text, and as a Symptom in another. For exam-
ple, the first entry in Table 2 mentions several
ADRs (“made me gain 30 Ibs”, “made my BP
go up so high”, “gave me more anxiety”) asso-
ciating each with a different drug (“Klonopin”,
“Lexapro”, etc.), while the second entry in the ta-
ble uses some of the same surface forms to refer to
an addressed Symptoms (e.g., “It helped both my
anxiety and IBS”).

Furthermore, our model will need to cope with
texts from social media which tend to be collo-
quial, non-grammatical, variably spelled and over-
all employ highly informal phrasing. The rest of
the entries in Table 2 present several snippets from
the Ask a Patient corpus, illustrating some
of these challenges.

3.2 Recurrent Neural Networks Transducer

Formulated this way, and given that the sentences
in Ask a Patient are of arbitrary length, it
seems applicable to model the task using Recur-
rent Neural Networks (RNNs). This approach was
proven to be effective in many recent NLP papers.
For a recent and extensive survey of RNNs in NLP
see (Goldberg, 2015).

Specifically, we use a bi-directional LSTM
transducer (Graves, 2012) which outputs a prob-
ability distribution over the three possible labels
(B, I, and O) per word, taking into account arbi-
trary length contexts from both past as well as fu-
ture words.

Pretrained word embeddings It is common in
recent neural networks frameworks to initialize the
model’s word embeddings with pretrained param-
eters, from a much larger (often unsupervised) cor-
pus. We experiment with initializing our word
embeddings from both out of domain (and out of
the box) word embeddings from Google (Mikolov
et al,, 2013), as well as with purpose trained
embeddings utilizing predicate-argument structure
from Open-IE (Etzioni et al., 2008) (following
(Stanovsky et al., 2015)) from the Blekko medical
corpus (a 2GB corpus of web pages categorized as
“medical domain” by the Blekko search engine*).

4 Augmenting RNNs with DBpedia

Despite the original motivation for knowledge
graph embedding, few efforts were made to use

‘nttps://en.wikipedia.org/wiki/Blekko



Text Snippet

Chall

“I've tried Klonopin which gave me nightmarish side effects, Lexapro which made me gain 30 Ibs and that gave
me more anxiety and borderline depression, Effexor which made my BP go up so high I was hospitalized for 4 days

(high bp runs in the family), and Buspar which did n’t even touch my anxiety.”

Long post describing Adverse Drug Reactions caused by various previous
drugs.

“It helped both my anxiety and IBS immensely.”

Describes cure from symptoms (not ADRs).

“After the second pill the same progression of symptoms only now the abdominal gas, cramps and pain would be

with me all day.”

Coordination leads to non-contiguous ADR spans (“abdominal cramps”,
“abdominal pain”).

“I had the usual problems as most people. Driving, buying things online, cooking, eating, sexual activity.”

The qualifier “while asleep” is implied by “as most people” but never explic-
itly stated.

“Short term more loss”

Ungrammatical.

“started having tension headaches. did not relate to Ambien.”

The first sentence implies ADRs, while the second negates them.

Table 2: Examples from the Ask a Patient forum.
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Figure 1: The bi-LSTM transducer, integrated with DBpedia knowledge graph embedding (left). We
experiment with several corpora for training external word embeddings (bottom) and override them for
DBpedia concepts (e.g., “Aspirin”, “dizzy”). See Sections 3 and 4 for details.

such embeddings as components in larger NLP
frameworks. Instead, previous research has fo-
cused on embedding techniques, as outlined in
section 2. In this section we describe a novel
framework which utilizes DBpedia concepts em-
beddings, in addition to the common use of pre-
trained word embeddings. We specifically use
DBpedia due to its good coverage of our do-
main of interest. Furthermore, since it relies on
Wikipedia, it might also be applicable for non-
medical domains. The presented approach, how-
ever, is not limited to any particular knowledge
base and in future work we plan to extend it be-
yond DBpedia.

The motivation for using external knowledge
bases in our case stems from the relatively small
size of the CADEC corpus (see Table 1), in com-
parison with other neural models training corpora.
For example, The Penn Treebank (Marcus et al.,
1993) which is often used for training dependency
parsing algorithms, consists of roughly 7M tokens,
versus only about 95K tokens in CADEC.
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4.1 Overriding Word Embeddings with
DBpedia Concepts

We augment our model with a pretrained knowl-
edge graph embedding of the “Drug” and “Dis-
ease” categories from DBpedia, training as dis-
cussed in Section 2.2. When a word in a CADEC
entry is a lexical match with one of the DB-
pedia entities we override its features with the
DBpedia embeddings. Intuitively, this frame-
work introduces complex semantic relations be-
tween prominent and task relevant words in the
Ask a Patient posts. For example, DBpe-
dia draws “Aspirin” and “Ibuprofen” closer in the
embedding space as both appear under the “Non-
steroidal anti-inflammatory drug” category (a re-
lation which is modeled in DBpedia). While this
changes the embedding of a small subset of the
words, these are meaningful and frequently occur-
ring in our setting (see details in Section 6).

Figure 1 shows the complete architecture of our
model, including the RNN transducer LSTM and
the pretrained word embeddings augmented with
DBpedia entity embeddings. The loss from the
network propagates back to the word embeddings,
allowing them to assimilate task-specific informa-
tion during training.



S Human in the Loop

From our experience, real world applications of-
ten do not have a pre-existing rich gold standard
corpus from which they can efficiently train high
quality models. This lack creates a serious imped-
iment to entering and exploring the opportunities
for text analytics in such domains, due to the high
cost of producing the requisite semantic assets.

The medical domain is one where this is espe-
cially true. Even within a particular specialty, e.g.,
oncology, very different information may need to
be extracted depending on the type of cancer being
explored. In domains where the patient’s verbatim
comments are critical (e.g., psychiatric, physical
rehabilitation) there can be even more variability
and ambiguity. For instance, a comment of feeling
“pins and needles” could be a result of peripheral
neurological issues, or a panic attack, and may be
expressed with multiple misspellings, punctuation
and grammar variations.

To that end, we test our suggested model in a
human-in-the-loop approach to gauge how quickly
an analytic developer might obtain “good enough”
training and test data to develop first generation
code and begin to explore the results.

To simulate this for an experiment, we ignore
the CADEC training annotations and instead in-
terleave adjudication of small batches (100 sen-
tences) with iterations of model training (see Fig-
ure 2). To allow for these fast iterations we need
to provide solutions in several areas. For quicker
annotation, we developed RASCAL (Rapid Adju-
dication of Semantic Classes to Accelerate Learn-
ing), a purpose built annotation tool which expe-
dites the annotation and adjudication process. Fur-
thermore we employ an active learning technique
to focus the human adjudicator’s time on examples
that the model finds most confusing.

This process, as elaborated below, has two out-
comes: (1) Expedited machine-assited production
of an annotated gold standard; and (2) Rapid train-
ing of high precision models due to the active
learning technique.

5.1 Bootstrap

While the learning process can be initiated by
simply beginning to annotate the corpus, we find
a more rapid start up is achieved by employ-
ing an extensive lexicon of Adverse Drug Re-
action phrases. Fortunately, lexicon expansion
techniques (Coden et al., 2012) provide a way to
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Figure 2: Train-Predict-Adjudicate loop

rapidly bootstrap this portion of the problem. Typ-
ically the user provides a few (~ 3) examples of
the type desired, and the system comes back with
dozens of suggestions of potential new phrases.
The user approves or rejects these and the system
repeats with this additional knowledge. The pro-
cess typically generates a couple of hundred can-
didate terms in a few minutes.

5.2 Active Learning

The bootstrap lexicon can then be used to obtain
a preliminary noisy CADEC training set for the
RNN, by marking each occurrence of a lexicon
term as an ADR. After we train our model, we
want to choose informative samples to adjudicate
and refine our training set (and subsequently, our
model) in the next iteration.

A process in which a model chooses its next
training examples is often referred to as active
learning, and is a well researched area of machine
learning (see (Settles, 2010) for an extensive sur-
vey). For our purposes, we use the uncertainty
sampling criterion (Lewis and Gale, 1994). In-
tuitively, this ranks the samples according to the
model’s belief it will mislabel them.

Formally, we sort all samples (x,y) according
to the following measure:

1= Pr (gla) 2)

Where:

§ = argmax Pr (y)) )

ye{B,1,0}

We choose the top 100 samples according to this
metric, and adjudicate them, as described below.
In order to assess the impact of this step we also
perform the same process with random sampling
of 100 sentences at each iteration.



5.3 Adjudication

At this stage, a human adjudicator examines the
sentences chosen in the previous phase. They then
either accept or reject each automatically recog-
nized ADR span in these sentences. Addition-
ally the annotator can mark new spans that were
missed.

While the brat annotator (Stenetorp et al.,
2012) is a popular tool for creating and modifying
annotations, it is a bit cumbersome and error prone
for tasks such as the one outlined in CADEC.

Notably, the CADEC creators mention that the
brat annotations required an additional clean-
ing phase. For example brat annotates character
spans instead of aligning marked spans to the word
level (e.g, an annotator might wrongfully mark
“pai” instead of “pain”). While some of brat’s
more complex features are a good fit for other an-
notation tasks, they reduce agility and do not add
much value in ours. We therefore implemented
a simple rapid adjudication system (code-named
RASCAL) that is tuned to the particular task of
adjudicating and adding annotations in the context
of ADR mention recognition.

RASCAL introduces simplifications such as
single click removal of incorrect annotations, au-
tomatic alignment of the spans to include whole
tokens, and single key “approve and move to next
document” support. This results in very fast an-
notation times. As the system improves its under-
standing of the entity to tag, much of the annota-
tor’s time is spent simply approving annotations,
with about one in four requiring their addition of a
missed span.

Over the 1,100 annotations we found an aver-
age time of about 3 seconds per sentence. In a
controlled experiment comparing the annotation
of 100 sentences in brat versus RASCAL, this
represented at least a four fold improvement over
comparable brat times without pre-annotation.
Since we find brat is slower at removing er-
rors and entering split annotations we anticipate
the discrepancy may be even higher with pre-
annotation.

This improvement does have a cost, however;
RASCAL only allows a single annotation type at
a time, so the annotation of two predefined types
(e.g., Drug and ADR) requires two passes. Sec-
ond, RASCAL does not support non-contiguous
span annotations. This is of especial trouble when
there are coordinated spans (e.g., “my neck and
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back are both spasming” should be “neck spas-
ming” and “back spasming”).

While these were uncommon in our corpus (see
detailed analysis in Section 6), it does suggest that
perhaps performing some of the annotations with
brat after doing the initial ones with RASCAL
might help improve precision if desired.

5.4 Repeat

Given these adjudicated annotations, we can refine
our bootstrap lexicon (with the newly acquired
ADR mentions) and automatically re-annotate the
entire training corpus according to it, generating a
new iteration of the training data which closes the
loop back to training and predicting (Section 5.2).

Knowing when to stop is always a challenge
with learning systems. For the sake of these exper-
iments we chose to stop after an hour of an anno-
tator time (the initial lexicon expansion bootstrap
and annotating/adjudicating 1,100 sentences).

However the human annotator using RASCAL
gets a fairly good sense of what kind of annota-
tions are being spotted and what is being missed.
By looking at the net change in the pre-annotation
to post-annotation spans for an iteration it is possi-
ble to get a sense of when the learning is leveling
off.

In future work, it may also be possible to look
at the total uncertainty the RNN finds in the train-
ing corpus before and after a training session as
a measure of how much more productive learning
there may be left.

6 Evaluation

In this section we evaluate our recurrent neural
transducer in two scenarios: (1) Using the high
quality annotations of the CADEC corpus and (2)
Simulating a task with low resources in an ac-
tive learning scenario and using RASCAL for non-
expert annotations, as described in Section 5. Re-
sults are shown in Table 3.

Label imbalance The CADEC corpus is imbal-
anced between the different labels, assigning the
label “O” (Outside) to 87.34% of the words. This
is due to the fact that most of the text in the Ask
a Patient forum describes background situa-
tion and is not directly related to an ADR (see, for
example, the first entry in Table 2). This poses
a problem for training accuracy oriented models,
as such imbalanced class distribution discourages
the learning process to move from a model which



assigns a constantly higher probability to the Out-
side label, regardless of the input sentence (He and
Garcia, 2009). Subsequently, this leads to triv-
ial solutions which achieve 0% ADR recall (as no
ADRs are retrieved) and 100% ADR precision (as
there are also no false positives).

To address this problem we use the SMOTE
(Synthetic Minority Over-Sampling) technique
(Chawla et al., 2002) which skews the sample dis-
tribution by oversampling the minority classes (B
and I) during training to get a synthetically bal-
anced training set.

6.1 Experimental setup

We implemented the bi-LSTM transducer model
using the Keras framework (Chollet, 2015) with a
TensorFlow backend (Abadi et al., 2015). Open IE
word embeddings (300 dimensions) were trained
on Blekko medical corpus (1 billion tokens) using
Open IE 45 and Word2Vec (Mikolov et al., 2013),
as described in (Stanovsky et al., 2015). For DB-
pedia embeddings (300 dimensions), we used the
code published in (Nickel et al., 2015). We used
the code published in (Lemaitre et al., 2016) for
SMOTE class resampling. Finally, we used the
libact library (Yang et al., 2015) for the active
learning sampling. All models were trained for
100 epochs.

6.2 Results

Several observations can be made based on the re-
sults of our experiments (Table 3):

RASCAL achieves good results at a fraction of
the annotation effort - RASCAL results are ob-
tained after just 11 cycles of annotation by single
annotator (roughly an hour of work), and are then
tested against the independently annotated test set
of CADEC. The performance of RASCAL is a
promising indication that adequately performing
models can be obtained very quickly using our
framework, when moving to a new annotation task
where training data is scarce.

External knowledge improves performance in
both scenarios - As can be seen from the abla-
tion test in Table 3, in both supervised and anno-
tator development settings, our pretrained embed-
dings improve performance by at least 13 points

Shttps://github.com/allenai/
openie-standalone
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in F1, with a significant edge to Blekko embed-
dings. This is in part due to its better cover-
age of the CADEC lexicon, only 408 (7.05% of
the CADEC lexicon) unique words were Out Of
Vocabulary (OOV) using Blekko, compared with
724 (12.51%) OOV words using Google’s em-
bedding. DBpedia provides embeddings for 232
words (4%) and further adds 2-4 points in both re-
call and precision.

Uncertainty sampling boosts the learning rate
Figure 3 shows the progression of the best
performance obtained at each training iteration.
The uncertainty sampling (see Section 5.2) boosts
the learning curve, achieving models performing
around 80 F1 after just 25 minutes of RASCAL
annotation (note the red vertical dotted line).

The relatively small change when increasing the
number of annotated instances from 400 to 800
(i.e., before and after the vertical dotted line) is
probably due to the long tail nature of the prob-
lem: active learning chooses the most prominent
examples first, then there is a sharp decline in the
novelty of the chosen examples. Further experi-
mentation with active learning techniques may im-
prove performance, yet this falls out of the scope
of this paper, and is left as a topic for future re-
search. Overall, it can be seen from Figure 3 that
our active learning technique is indeed already su-
perior to random sampling (notice the brown dot-
ted line indicating performance with random sam-

pling).

Context matters - We tested an oracle ADR
baseline which had access to the lexicon of all of
the ADRs in CADEC. This oracle ignored con-
text and marked every occurrence of a phrase from
the lexicon as an ADR. As can be seen in Table
3 (ADR Oracle), this baseline obviously achieves
100% recall, yet, more interestingly, it achieves
only 55.2% in precision. Thus in 44.8% of the
cases the surrounding context negated the ADR
phrase (for example, see the last entry in Table 2).

6.3 Error analysis

In analyzing the RASCAL model, we find that it
relatively lacks in recall. This is due to our limited
annotation effort having predictably limited cov-
erage. Examining our annotations, we find 449
unique ADRs annotated in RASCAL out of the to-
tal 3685 unique ADR phrases in the full CADEC
annotation. The RNN model is in fact able to
generalize these mentions and find approximately
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Figure 3: Model performance per annotation cycle
(see Section 6). Solid lines represent precision,
recall and F1 for active learning, and the dashed
line represents F1 for random sampling (precision
and recall follow the same trend and are omitted
for clarity).

P R Fl
String matching 78.6 37.0 50.3
RASCAL 64.0 53.8 58.0
RASCAL+ Google 88.4 682 76.8
RASCAL+ Blekko 91.3 70.0 794
RASCAL+ DBpedia+ Blekko 96.2 75.2 83.9
ADR Oracle 552 100 71.1
CADEC 69.6 746 719
CADEC + Google 853 86.2 85.7
CADEC + Blekko 90.5 90.1 90.3
CADEC + DBpedia+ Blekko 92.2 94.5 934

Table 3: Performance of the different baselines
by training from RASCAL annotations (top) vs.
CADEC training data (bottom). See Section 6 for
more details.

75% of the mentions, yet it is likely that having a
larger RASCAL training set would help improve
the coverage of our model. Furthermore, the de-
sign choices made in RASCAL trade annotation
speed with accuracy. As mentioned in Section
5.3 RASCAL is currently unable to annotate non-
contiguous spans, which account for 1005 (15.9%)
of the ADRs annotated in CADEC.

Finally, both of our models predict BIO word la-
bels at the sentence level which in some cases does
not provide enough context to arrive at the correct
label. See, for example, the bottom example in Ta-
ble 2, in which a very probable ADR phrase in the
first sentence (“fension headaches”) is negated in
the second sentence (“did not relate to Ambien™).
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7 Related Work

To the best of our knowledge, there has been no
previous work attempting to recognize in-context
adverse drug reaction mentions on the CADEC
corpus. There are, however, several papers which
addressed the same task on a different corpus, and
others who have used the CADEC corpus for or-
thogonal tasks. In this section we survey two such
recent papers.

Limsopatham and Collier (2016) have used
CADEC for the normalization of medical con-
cepts. They take as input an out-of-context ADR
(e.g., “I couldn’t sleep all night” or “head ex-
plodes”) and predict its normalized form (e.g., “in-
somnia” or “headache”, respectively), based on a
predefined vocabulary. They use an RNN model
and report accuracy of 79.98. This task can be
seen a subsequent task to ours. The ADR spans we
output can serve as an input for ADR normaliza-
tion, giving medical experts a consolidated sum-
mary of the reported adverse events.

Igbal et al. (2015) share our motivation to iden-
tify ADR mentions in the context of electronic
health records (medical correspondence, discharge
letters, etc.), which are more formal, as opposed
to our focus on social media domain. They take a
rule based approach, and come up with an expert
built lexicon, which achieves 85 F1 on their test
set.

While their approach is carefully built to the
specific data set, we show the portability of our
model by testing both in a supervised scenario as
well as in annotation development scenario.

8 Conclusions and Future Work

We presented a novel model which consists of
an LSTM transducer RNN augmented with exter-
nal knowledge from medically oriented Web crawl
and a knowledge graph embedding of medical en-
tities in DBpedia. We showed that the model
achieves good results (93.4 F1) when trained and
tested on the CADEC corpus.

Furthermore, ignoring the CADEC training
data, we showed that through active learning and
a task-dedicated annotation tool we can get a rea-
sonably performing model (83.95 F1 on CADEC’s
test set) with just an hour of annotation effort. This
suggests a promising methodology for researchers
wanting to explore new domain annotations, with-
out first committing to a heavyweight and expen-
sive annotation effort.



Future work may make further use of the
CADEC annotations (e.g., for multi-task learning
or concept normalization), and extend RASCAL
to get better recall and allow for non-contiguous
and multiple label annotations.

Acknowledgments

We would like to thank the IBM Almaden Intel-
ligence Augmentation Team (Alfredo Alba, Linda
Kato, Chris Kau, Joe Terdiman and Steve Welch)
for many fruitful discussions, and the anonymous
reviewers for their helpful comments.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, lan Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-scale
machine learning on heterogeneous systems. Soft-
ware available from tensorflow.org.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Conference on Artifi-
cial Intelligence, number EPFL-CONF-192344.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, pages 2787-2795.

Elliot G. Brown, Louise Wood, and Sue Wood. 1999.
The medical dictionary for regulatory activities
(meddra). Drug Safety, 20(2):109-117.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O.
Hall, and W. Philip Kegelmeyer. 2002. Smote: syn-
thetic minority over-sampling technique. Journal of
artificial intelligence research, 16:321-357.

Francois Chollet. 2015. keras. https://github.
com/fchollet/keras.

Anni Coden, Daniel Gruhl, Neal Lewis, Michael
Tanenblatt, and Joe Terdiman. 2012. Spot the drug!
an unsupervised pattern matching method to extract
drug names from very large clinical corpora. In
Healthcare Informatics, Imaging and Systems Biol-
ogy (HISB), 2012 IEEE Second International Con-
ference on, pages 33-39. IEEE.

150

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493-2537.

Roger A. Cote, College of American Pathologists, et al.
1977. Systematized nomenclature of medicine. Col-
lege of American Pathologists.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S. Weld. 2008. Open information extrac-
tion from the Web. Communications of the ACM,
51(12):68-74.

Yoav Goldberg. 2015. A primer on neural net-
work models for natural language processing. arXiv
preprint arXiv:1510.00726.

Alex Graves. 2012. Sequence transduction
with recurrent neural networks. arXiv preprint
arXiv:1211.3711.

Haibo He and Edwardo A. Garcia. 2009. Learn-
ing from imbalanced data. [EEE Transactions on
knowledge and data engineering, 21(9):1263—-1284.

Ehtesham Igbal, Robbie Mallah, Richard George Jack-
son, Michael Ball, Zina M Ibrahim, Matthew Broad-
bent, Olubanke Dzahini, Robert Stewart, Caroline
Johnston, and Richard JB Dobson. 2015. Identifica-
tion of adverse drug events from free text electronic
patient records and information in a large mental
health case register. PloS one, 10(8):e0134208.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao.
2016. Knowledge graph completion with adaptive
sparse transfer matrix. In Proceedings of AAAIL.

Sarvnaz Karimi, Alejandro Metke-Jimenez, Madonna
Kemp, and Chen Wang. 2015. Cadec: A corpus of
adverse drug event annotations. Journal of biomed-
ical informatics, 55:73-81.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick van
Kleef, Soren Auer, and Christian Bizer. 2015. DB-
pedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web Journal,
6(2):167-195.

Guillaume Lemaitre, Fernando Nogueira, and Chris-
tos K. Aridas. 2016. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in
machine learning. CoRR, abs/1609.06570.

David D. Lewis and William A. Gale. 1994. A se-
quential algorithm for training text classifiers. In
Proceedings of the 17th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 3—12. Springer-Verlag
New York, Inc.

Nut Limsopatham and Nigel Collier. 2016. Normalis-
ing medical concepts in social media texts by learn-
ing semantic representation. ACL.



Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The penn treebank. Compu-
tational linguistics, 19(2):313-330.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2015. Holographic embeddings of knowl-
edge graphs. arXiv preprint arXiv:1510.04935.

Lance A Ramshaw and Mitchell P. Marcus. 1995.
Text chunking using transformation-based learning.
arXiv preprint cmp-1g/9505040.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning, pages 147—
155. Association for Computational Linguistics.

Erik F. Sang and Jorn Veenstra. 1999. Representing
text chunks. In Proceedings of the ninth conference
on European chapter of the Association for Compu-
tational Linguistics, pages 173—179. Association for
Computational Linguistics.

Burr Settles. 2010. Active learning literature survey.
University of Wisconsin, Madison, 52(55-66):11.

Gabriel Stanovsky, Ido Dagan, and Mausam. 2015.
Open IE as an intermediate structure for semantic
tasks. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics (ACL
2015).

Pontus Stenetorp, Sampo Pyysalo, Goran Topic,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102—-107. Association for Computational Lin-
guistics.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI pages 1112-1119.
Citeseer.

Yao-Yuan Yang, Yu-An Chung, Shao-Chuan Lee,
Tung-En Wu, and Hsuan-Tien Lin. 2015. libact:
Pool-based active learning in python. Technical re-
port.

151



Multitask Learning for Mental Health Conditions
with Limited Social Media Data

Adrian Benton
Johns Hopkins University

adrian@cs. jhu.edu

Abstract

Language contains information about the
author’s demographic attributes as well
as their mental state, and has been suc-
cessfully leveraged in NLP to predict ei-
ther one alone. However, demographic
attributes and mental states also interact
with each other, and we are the first to
demonstrate how to use them jointly to im-
prove the prediction of mental health con-
ditions across the board. We model the
different conditions as tasks in a multi-
task learning (MTL) framework, and es-
tablish for the first time the potential of
deep learning in the prediction of men-
tal health from online user-generated text.
The framework we propose significantly
improves over all baselines and single-task
models for predicting mental health con-
ditions, with particularly significant gains
for conditions with limited data. In addi-
tion, our best MTL model can predict the
presence of conditions (neuroatypicality)
more generally, further reducing the error
of the strong feed-forward baseline.

1 Introduction

Mental health conditions, like depression or anx-
iety, are still one of the leading causes of death
worldwide. Suicide, often the direct outcome of
mental health conditions, is the 11th most frequent
cause of death in the US (Anderson, 2001). De-
tecting mental health risk factors early is key to
preventing many of these deaths. Unfortunately,
traditional diagnosis methods require access to
and willingness to talk with a psychologist, and
rely mainly on impressions formed during short
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sessions. Consequently, conditions leading to pre-
ventable suicides can often not be accurately diag-
nosed.

Automated monitoring and risk assessment of
patients’ language have the potential to overcome
the logistic and time constraints associated with
traditional assessment methods. Written text car-
ries implicit information about the author, a re-
lationship that has been exploited in natural lan-
guage processing (NLP) to predict author char-
acteristics, such as age (Goswami et al., 2009;
Rosenthal and McKeown, 2011; Nguyen et al.,
2011; Nguyen et al., 2014), gender (Sarawgi
et al.,, 2011; Ciot et al., 2013; Liu and Ruths,
2013; Alowibdi et al., 2013; Volkova et al., 2015;
Hovy, 2015), personality and stance (Schwartz
et al., 2013b; Schwartz et al., 2013a; Volkova
et al., 2014; Plank and Hovy, 2015; Park et al.,
2015; Preotiuc-Pietro et al., 2015), or occupation
(Preotiuc-Pietro et al., 2015a; Preotiuc-Pietro et
al.,, 2015b). The same signal has also been ef-
fectively used to predict mental health conditions,
such as depression (Coppersmith et al., 2015b;
Schwartz et al., 2014), suicidal ideation (Copper-
smith et al., 2016; Huang et al., 2015), schizophre-
nia (Mitchell et al., 2015) or post-traumatic stress
disorder (PTSD) (Pedersen, 2015), often more ac-
curately than by traditional diagnoses.

However, these studies typically model each
condition in isolation and ignore other author
attributes that can improve prediction, thereby
artificially limiting performance. Existing re-
search, however, indicates that 1) incorporating
demographic attributes can help text classification
(Volkova et al., 2013; Hovy, 2015), and 2) learning
several auxiliary tasks which share common struc-
tures (e.g., part-of-speech tagging, parsing, and
NER) can improve performance, as the learning
implicitly exploits interactions between the tasks
(Caruana, 1993; Sutton et al., 2007; Rush et al.,
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2010; Collobert et al., 2011; Sggaard and Gold-
berg, 2016).

In this paper, we propose such a multitask learn-
ing (MTL) approach to mental health prediction.
The main tasks of our model are predictions of
neurotypicality (i.e., the absence of any mental
health conditions), anxiety, depression, suicide at-
tempt, eating disorder, panic attacks, schizophre-
nia, bipolar disorder, and post-traumatic stress
disorder (PTSD). All of the above, plus gender
prediction, also serve as auxiliary tasks.

The auxiliary tasks reflect the observation that
several conditions frequently occur together (co-
morbidity), and that they correlate with demo-
graphic factors. The MTL framework allows us
to share information across predictions. We use
a neural architecture that enables the inclusion of
several loss functions with a common shared un-
derlying representation. This experimental setup
is flexible enough to extend this model to further
factors than the ones shown here, provided suit-
able data.

We also explore the effect of auxiliary-task se-
lection on model performance for a given predic-
tion task. Similar to Caruana (1996), we find that
choosing auxiliary tasks which are prerequisites or
related to the main task is critical for learning a
strong model.

Our contributions

1. We are the first to apply MTL to predict men-
tal health conditions from user content on
Twitter — a notoriously difficult task (Cop-
persmith et al., 2015a; Coppersmith et al.,
2015b).

We explore the influence of auxiliary-task se-

lection on prediction performance, including

the effect of gender

. We show how to model tasks with a large
number of positive examples to improve the
prediction accuracy of tasks with a small
number of positive examples.

. We increase the True Positive Rate at 10%
false alarms by up to 9.7% absolute (for anx-
iety), a result with direct impact for clinical
applications.

2 Model Architecture

We opt for a neural architecture to exploit the syn-
ergies between mental conditions. Our choice is
based on practical more than ideological reasons:
previous work (Collobert et al., 2011; Caruana,
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1996; Caruana, 1993) has indicated that this is a
promising model architecture, which allows us to
share parameters across tasks, can be trained on
large amounts of data, and accounts for varying
degrees of annotation across tasks.!

Even within the neural model framework,
however, there are many variations to consider.
In the following, we outline some attributes and
decisions.

Previous approaches have shown consider-
able improvements over single task models by
using MTL (Caruana, 1993). The arguments
are convincing:  predicting multiple related
tasks should allow us to exploit any correlations
between the predictions.

However, we note that the benefit of using a
MTL model is only one possible explanation, and
that another, more salient factor might have been
overlooked: the difference in the general model
class, i.e., neural architectures vs. discriminative
or generative models, or, more generally, the ex-
pressivity of the model. Some comparisons might
therefore have inadvertently compared apples to
oranges.

We compare the multitask demographics and
risk prediction with models with equal expressiv-
ity. We evaluate the performance of a standard
logistic regression model (a standard approach to
text-classification problems), a multilayer percep-
tron single-task learning (STL) model, and a neu-
ral MTL model, the latter two with equal numbers
of parameters. This ensures a fair comparison by
isolating the unique properties of MTL from the
dimensionality-reduction aspects of deep architec-
tures in general.

The neural models we evaluate come in two
forms. The first, depicted in plate notation in Fig-
ure 1, is the STL model. These are feedforward
networks with two hidden layers, trained indepen-
dently to predict each task. On the right of Fig-
ure 1 is the MTL model, where the first hidden
layer from the bottom is shared between all tasks.
An additional per-task hidden layer is used to give
the model flexibility to map from the task-agnostic
representation to a task-specific one. Each hidden
layer uses a rectified linear unit as non-linearity.
The output layer uses a logistic non-linearity, since
all tasks are binary predictions.

"We also experimented with a graphical model architec-

ture, but found that it did not scale as well and provided less
traction.
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Figure 1: STL model in plate notation (left): weights trained independently for each task ¢ (e.g., anxiety,
depression) of the 7' tasks. MTL model (right): shared weights trained jointly for all tasks, with task-

specific hidden layers.

Curves in ovals represent the type of activation used at each layer (rectified linear unit or sigmoid).

Hidden layers are shaded.

The MTL model can easily be extended to a
stack of shared hidden layers, allowing for a more
complicated mapping from input to shared space.”

As noted in (Collobert et al., 2011), MTL bene-
fits from mini-batch training, which both allows
optimization to jump out of poor local optima,
and take more stochastic gradient steps in a fixed
amount of time (Bottou, 2012). In that paper, the
authors use a randomized selection over the tasks
to train. In our paper, we create mini-batches by
sampling from the users in our data. Each of these
users has some subset of the mental conditions we
are trying to predict, and may or may not be an-
notated with gender. At each mini-batch gradient
step we update weights for all tasks. This not only
allows for randomization and faster convergence,
it also provides a speed-up over the individual se-
lection process in (Collobert et al., 2011).

One of the advantages of our setup is that we do
not need complete information for every instance:
instead, learning can proceed with asynchronous
updates dependent on what the data in each batch

>We tried training a 4-shared-layer MTL model to predict
targets on a separate dataset, but did not see any gains over
the standard 1-shared-layer MTL model in our application.

has been annotated for, while sharing representa-
tions throughout. This effectively learns a joint
model with a common representation for several
different tasks, and allows the use of several “dis-
joint” data sets, some with limited annotated in-
stances.

Optimization and Model Selection Even in a
relatively simple neural model, there are a num-
ber of parameters that can (and have to) be tuned
to achieve good performance. We perform a line
search for every model we use, sweeping over
Loy regularization and hidden layer width. We
select the best model based on the development
loss. Figure 5 shows the performance on the corre-
sponding test sets (plot smoothed by rolling mean
of 10 for visibility).

In our experiments, we sweep over the L2
regularization constant applied to all weights
in {1074,1073,1072,0.1,0.5, 1.0, 5.0, 10.0}, and
hidden layer width (same for all layers in the net-
work) in {16, 32,64, 128,256,512, 1024, 2048}.
We fix the mini-batch size to 256, and 0.05
dropout on the input layer. We found that choosing
a small mini-batch size and the model with low-
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Task | # of users
Neurotypicality 4820
Anxiety 2407
Depression 1400
Suicide attempt 1208
Eating disorder 749
Schizophrenia 349
Panic disorder 263
Bipolar disorder 234
PTSD 191

Female | Male | 788 | 248
total 9611

Table 1: Number of users with each self-stated
condition and human-annotated gender in the
joined dataset.

est development loss was sufficient to account for
overfitting.

We train each model for 5,000 iterations, jointly
updating all weights in our models. After this ini-
tial joint training, we select each task separately,
and only update the task-specific layers of weights
independently for another 1,000 iterations (select-
ing the set of weights achieving lowest develop-
ment loss for each task individually). Weights are
updated using mini-batch Adagrad (Duchi et al.,
2011) — we found this to converge more quickly
than other optimization schemes we experimented
with. We evaluate the tuning loss every 10 epochs,
and evaluate the model with the lowest tuning loss.

3 Data

We train our models on a union of multiple Twitter
user datasets: 1) users identified as having anxiety,
bipolar disorder, depression, panic disorder, eating
disorder, PTSD, or schizophrenia (Coppersmith et
al., 2015a), 2) those who had attempted suicide
(Coppersmith et al., 2015¢), and 3) those iden-
tified as having either depression or PTSD from
the 2015 Computational Linguistics and Clinical
Psychology Workshop shared task (Coppersmith
et al.,, 2015b), along with neurotypical gender-
matched controls (Twitter users not identified as
having a mental condition). Users were identified
as having one of these conditions if they stated ex-
plicitly they were diagnosed with this condition
on Twitter (verified by a human annotator). For
a subset of 1,101 users, we also have manually-
annotated gender. The final dataset contains 9,611
users in total, with an average of 3521 tweets per

155

user. The number of users with each condition is
included in Table 1. Users in this joined dataset
may be tagged with multiple conditions, thus the
counts in this table do not sum to the total number
of users.

We use the entire Twitter history of each user
as input to the model, and split it into character
1-to-5-grams, which have been shown to capture
more information than words for many Twitter
text classification tasks (Mcnamee and Mayfield,
2004; Coppersmith et al., 2015a). We compute
the relative frequency of the 5,000 most frequent
n-gram features for n € {1,2,3,4,5} in our data,
and then feed this as input to all models. This input
representation is common to all models, allowing
for fair comparison.

4 [Experiments

Our task is to predict any number of mental con-
ditions for each of the users in these data, possibly
using gender prediction as an auxiliary task to im-
prove our prediction performance.

We evaluate three classes of models: a baseline
logistic regression over character n-gram features
(LR), feed-forward multilayer perceptrons trained
to predict each task separately (STL), and a multi-
task network predicting a set of conditions simul-
taneously (MTL). We also perform ablation exper-
iments, to see which subsets of auxiliary tasks help
us learn an MTL model that predicts a particular
mental condition best. For all experiments, data
were divided into five equal-sized folds, three for
training, one for tuning, and one for testing (we
report the performance on this).

All our models are implemented in Keras® with
Theano backend and GPU support. We train the
models for a total of up to 15,000 epochs, using
mini-batches of 256 instances. Training time on
all five training folds ranged from one to eight
hours on a machine with Tesla K40M.

Evaluation Setup We compare the accuracy of
each model at predicting each task separately.

In clinical settings, we are interested in mini-
mizing the number of false positives, i.e., incor-
rect diagnoses, which can cause undue stress to
the patient. We are thus interested in bounding this
quantity. To evaluate the performance, we plot the
false positive rate (FPR) against the true positive
rate (TPR). This gives us a receiver operating char-
acteristics (ROC) curve, allowing us to inspect the

*http://keras.io/



performance of each model on a specific task at
any level of FPR.

While the ROC gives us a sense of how well
a model performs at a fixed true positive rate, it
makes it difficult to compare the individual tasks
at a low false positive rate, which is also im-
portant for clinical application. We therefore re-
port two more measures: the area under the ROC
curve (AUC) and TPR performance at FPR=0.1
(TPR@FPR=0.1). We do not compare our mod-
els to a majority baseline model, since this model
would achieve an expected AUC of 0.5 for all
tasks, and F-score and TPR@FPR=0.1 of O for
all mental conditions — users exhibiting a condi-
tion are the minority, meaning a majority baseline
classifier would achieve zero recall.

5 Results
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Figure 2: F1-score for predicting each condition.

Figure 2 shows the F1-score of each model at
predicting each task separately, Figure 3 shows the
AUC-score, and Figure 4. Precision-recall curves
for each of model/task are in Figure 6.

STL corresponds to a multilayer perceptron
with two hidden layers (with a similar number of
parameters as the proposed MTL model). The
MTL _nogender and MTL models predict all tasks
simultaneously, but are only evaluated on the main
respective task.

MTL often outperforms the LR baseline in
terms of AUC and TPR@F=0.1, but the difference
is less clear when comparing F1-scores.

In terms of AUC and TPR@F=0.1, STL models
do not perform nearly as well as MTLor LR. This
is likely because the neural networks learned by

STL cannot be guided by the inductive bias pro-
vided by MTL training. Note, however, that STL
and MTL are oftentimes comparable in terms of
F1-score.
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Figure 3: AUC for predicting different tasks
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Figure 4: TPR at 0.10 FPR for predicting different
tasks

MTL Leveraging Comorbid Conditions Im-
proves Prediction Accuracy We find that the
prediction of the conditions with the least amount
of data — bipolar disorder and PTSD — are sig-
nificantly improved by forcing the model to also
predict comorbid conditions which have substan-
tially more data: depression and anxiety. We are
able to increase the AUC for predicting PTSD
to 0.786 by MTL, from 0.770 by LR, whereas
STL fails to perform as well with an AUC of

156



Not Neurotypical Anxiety Depression
1.0 — - 1.0 e 10
° 0.8
&
= 0.6
&
o !
Eha 1= T 0.4
‘ — 8TL
ML — STL 02 — STL
0.0 MTL /. MTL
0.0 0.2 0.4 0.6 0.8 1.0 0.0* 0.0"
False Positive Rate 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Suicide Attempt Eating Disorder Panic Attack
1.0 10 1.0
08
0.6
0.4
— LR — LR — LR
0.2 — STL — STL — STL
MTL [ MTL % MTL
0.0 %" 0+ 0.0 #”
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Schizophrenia

0.4 0.6 0.8

Bipolar Disorder

0.4

Post-Traumatic Stress Disorder

1.0

0.8

0.6

0.6 0.8 0.4 0.6 0.8 1.0

Figure 5: ROC curves for predicting each condition. The precision (diagnosed, correctly labeled) is on
the y-axis, while the proportion of false alarms (control users mislabeled as diagnosed) is on the z-axis.
Chance performance is indicated by the dotted diagonal line.

0.667. Similarly for predicting bipolar disorder
(MTL:0.723, LR:0.752, STL:0.552) and panic at-
tack (MTL:0.724, LR:0.713, STL:0.631).

These differences in AUC are significant at p =
0.05 according to bootstrap sampling tests with
5000 samples. The wide difference between MTL
and STL can be explained in part by the increased
feature set size — MTL training may, in this case,
provide a form of regularization that STL cannot
exploit. Further, modeling the common mental
health conditions with the most data (depression,
anxiety) helps in pulling out more rare conditions
that also manifest in these common health condi-
tions.

This is clear evidence that an MTL model pro-
vides strong gains for predicting elusive condi-
tions by using large data for common conditions,
and only a small amount of data for the related,
small-data conditions.

Utility of Authorship Attributes Figures 3 and
4 both suggest that adding gender as an auxil-
iary task leads to more predictive models, even
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though the difference is not statistically significant
for most tasks. This is in line with the sugges-
tions in Volkova et al. (2013), Hovy (2015). Inter-
estingly, though, the MTL model is worse at pre-
dicting gender itself. While this could be a direct
result of data sparsity (recall that we have only a
small subset annotated for gender), which could be
remedied by annotating additional users for gen-
der, this appears unlikely given the other findings
of our experiments, where MTL helped in specifi-
cally these sparse scenarios.

However, it has been pointed out by Caruana
(1996) that not all tasks benefit from a MTL set-
ting in the same way, and that some tasks serve
purely auxiliary functions. Here, gender predic-
tion does not benefit from including mental con-
ditions, but helps vice versa. In other words, pre-
dicting gender is qualitatively different from pre-
dicting mental health conditions: it seems likely
that the signals for anxiety ares much more sim-
ilar to the ones for depression than for, say, be-
ing male, and can therefore add to detecting de-
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Figure 6: Precision-recall curves for predicting each condition.

pression. However, the distinction between cer-
tain conditions does not add information for the
distinction of gender. The effect may also be due
to the fact that these data were constructed with
inferred gender (used to match controls), so there
might be a degree of noise in the data.

Choosing Auxiliary Tasks Although MTL
tends to dominate STL in our experiments, it is not
clear whether auxiliary tasks just introduce a bene-
ficial bias in MTL models in general, or if there ex-
ists a specific subset of auxiliary tasks for predict-
ing each condition. We perform ablation experi-
ments by training MTL models on only a subset
of the tasks, and evaluate them at predicting a sin-
gle target. We focus on four conditions we want to
predict well: anxiety, depression, suicide attempts,
and bipolar disorder. For each task, we vary the
auxiliary tasks we train the MTL model with, and
evaluate how well it predicts the main task. Since
considering all possible subsets of tasks as auxil-
iary tasks is combinatorily unfeasible, we choose
the following task subsets as auxiliary:

e all: all mental conditions along with gender
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all conds: only all mental conditions (gender
omitted)

e neuro: only neurotypicality

neuro+mood: neurotypicality, depression,
and bipolar disorder (mood disorders)
neuro+anx: neurotypicality, anxiety, and
panic attack (anxiety conditions)
neuro+targets: neurotypicality, anxiety, de-
pression, suicide attempt, and bipolar disor-
der

none: no auxiliary tasks, equivalent to STL
model

Table 2 shows AUC for the four prediction tasks
with different subsets of auxiliary tasks. Statisti-
cally significant improvements over the respective
LR baselines are denoted by superscript. Restrict-
ing the auxiliary tasks to a small subset tends to
hurt performance for most tasks. This suggests
that the biases induced by predicting any mental
condition are all mutually beneficial —e.g., models
that predict depression, are also useful at predict-
ing anxiety.

It is thus best not to think of MTL as one single
“black box” model that can predict all mental con-
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all | 0.813*" | 0.752*" | 0.769" | 0.835*T

all conds | 0.786 0.743" | o.772t | 0.833*t
neuro | 0.763 0.740" | 0.759 | 0.797
neuro+mood | 0.756 0.7427 0.761 0.804
neuro+anx | 0.770 0.744" | 0746 | 0.792
neuro+targets | 0.750 0.747% 0.764 0.817
none (STL) | 0.777 0.552 0.749 | 0.810
LR | 0.791 0.723" | 0.763 | 0.817

Table 2: Test AUC when predicting Main Task af-
ter training to predict a subset of auxiliary tasks.
Significant improvement over LR baseline at p =
0.05 is denoted by *, and over no auxiliary tasks
(STL) by .

ditions at the same time, but a framework to ex-
ploit auxiliary tasks as regularization to effectively
combat data paucity and less-than-trustworthy la-
bels.

6 Discussion

Our results indicate that the proposed MTL set-
ting results in significant gains for the prediction
of mental health conditions with limited data, ben-
efiting from predicting related mental conditions
and demographic attributes simultaneously.

We experimented with all the optimizers that
Keras provides, and found that Adagrad seems
to converge fastest to a good optimum, although
all the adaptive learning rate optimizers (such as
Adam, etc.) tend to converge quickly. This indi-
cates that the gradient is significantly steeper along
certain parameters than others. Default stochastic
gradient descent (SGD) was not able to converge
as quickly, since it is not able to adaptively scale
the learning rate for each parameter in the model —
taking too small steps in directions where the gra-
dient is shallow, and too large steps where the gra-
dient is steep. We further note an interesting be-
havior: all of the adaptive learning rate optimizers
yield a strange “step-wise” training loss learning
curve, which hits a plateau, but then drops after
about 900 iterations, only to hit another plateau,
and so on. Obviously, we would prefer to have a
smooth training loss curve. We can indeed achieve
this using SGD, but it takes much longer to con-
verge than, for example, Adagrad. This suggests
that a well-tuned SGD would be the best optimizer

Learning | Loss L2 | Loss | Hidden | Loss
Rate Width
10T | 5.1 1073 | 2.8 32 | 3.0
5%107* | 29 | 5%x107% | 28 64 | 3.0
1073 | 29 1072 | 29 128 | 2.9
5%1073 | 24 | 5%x1072 | 3.1 256 | 2.9
1072 | 23 01| 34 512 | 3.0
51072 | 2.2 05| 4.6 1024 | 3.0
0.1 | 202 1.0 | 49

Table 3: Average dev loss over epochs 990-1000
of joint training on all tasks as a function of dif-
ferent learning parameters. Optimized using Ada-
grad with hidden layer width 256.

for this problem, a step that would require some
more experimentation and is left for future work.

We also found that feature counts have a pro-
nounced effect on the loss curves: relative feature
frequencies yield models that are much easier to
train than raw feature counts.

As indicated by the effect of raw vs. relative
counts, feature representations are another area of
optimization, such as different ranges of character
n-grams (e.g., n > 5) and word unigrams. We de-
cided on character 1-to-5-grams, since we believe
that these features generalize better to a new do-
main (e.g., Facebook) than word unigrams. How-
ever, there is no fundamental reason not to choose
longer character n-grams, other than time con-
straints in regenerating the data, and sufficiently
accounting for overfitting with proper regulariza-
tion.

Initialization is often listed as a decisive fac-
tor in neural models, and Goldberg (2015) rec-
ommends repeated restarts with differing initial-
izations to find the optimal model. In an earlier
experiment, we tried initializing a MTL model (al-
beit without task-specific hidden layers) with pre-
trained word2vec embeddings of unigrams trained
on the Google News n-gram corpus. However, we
did not notice an improvement in F-score. This
could be due to the other factors, though, such as
feature sparsity.

Table 3 displays sweeps over learning param-
eters with hidden layer width 256, training the
MTL model to predict multiple mental conditions
jointly for the Qntfy self-stated data (character tri-
grams as input features). The sweet spots in this
table are probably good starting points for training
models.
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7 Related Work

MTL was introduced by Caruana (1993), based on
the observation that humans rarely learn things in
isolation, and that it is the similarity between re-
lated tasks that helps us get better.

Some of the first works on MTL have been mo-
tivated by medical risk prediction (Caruana et al.,
1996), and it is now being rediscovered for this
purpose (Lipton et al., 2016). The latter use a
long short-term memory (LSTM) structure to pro-
vide several medical diagnoses from health care
features (yet no textual or demographic informa-
tion), and find small, but probably not significant
improvements over a structure similar to the STL
we use here.

However, in both cases, the target was medical
conditions as detected in patient records, not men-
tal health conditions in online data. The main fo-
cus in this work has been on the correlation be-
tween individual conditions and linguistic mark-
ers, to establish the possibility of detecting risk in
written data. While some of the approaches have
looked at more than one condition, none of them
have done so in an MTL framework, foregoing the
possibility of modeling comorbidity and correla-
tion with demographic factors.

The framework proposed by Collobert et al.
(2011) allows for predicting any number of NLP
tasks from a convolutional neural network (CNN)
representation of the input text. The model we
present is much simpler, just a feed-forward net-
work with n-gram input layer. Our contribution
is to show that constraining n-gram embeddings
to be predictive of various mental health condition
also helps. We chose to experiment with a feed-
forward network against independent logistic re-
gression models since this was the simplest way to
test our hypothesis. Comparing more complicated
models is possible, but distracts from the question
whether or not MTL training with extra-linguistic
targets helps us.

8 Conclusion and Future Work

In this paper, we develop neural MTL models for
10 prediction tasks (eight mental health condi-
tions, neurotypicality, and gender). We compare
their performance with STL models trained to pre-
dict each task independently.

Our results show that the most complex MTL
model performs significantly better than inde-
pendent LR models, reaching 0.846 TPR where
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FPR=0.1 and reducing the error rate in identifying
anxiety by up to 11.9%. We also investigate the in-
fluence of the depth of the model, by comparing to
progressively deeper STL feed-forward networks
with the same number of parameters. We find: (1)
Most of the modeling power stems from the ex-
pressiveness conveyed by deep architectures. (2)
Choosing the correct set of auxiliary tasks for a
given mental condition can yield a significantly
more predictive model. (3) The MTL model dra-
matically improves for conditions with the small-
est amount of data. (4) Gender prediction does not
follow the two previous points, but improves per-
formance when added as an auxiliary task.

Accuracy of the MTL approach is not yet ready
to be used in isolation in the clinical setting. How-
ever, our experiments suggest this is a promising
direction moving forward. There are strong gains
to be made in using multitask learning to aid clini-
cians in their evaluations, and with further partner-
ships between the clinical and machine learning
community, we foresee improved suicide preven-
tion efforts.

In the future, we plan to explore the possibil-
ity of hierarchical models, encoding the fact that
certain tasks inform others more than vice versa.
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Abstract

Recent work on evaluating representation
learning architectures in NLP has estab-
lished a need for evaluation protocols based
on subconscious cognitive measures rather
than manually tailored intrinsic similarity
and relatedness tasks. In this work, we pro-
pose a novel evaluation framework that en-
ables large-scale evaluation of such archi-
tectures in the free word association (WA)
task, which is firmly grounded in cognitive
theories of human semantic representation.
This evaluation is facilitated by the exis-
tence of large manually constructed reposi-
tories of word association data. In this pa-
per, we (1) present a detailed analysis of the
new quantitative WA evaluation protocol,
(2) suggest new evaluation metrics for the
WA task inspired by its direct analogy with
information retrieval problems, (3) evaluate
various state-of-the-art representation mod-
els on this task, and (4) discuss the relation-
ship between WA and prior evaluations of
semantic representation with well-known
similarity and relatedness evaluation sets.
We have made the WA evaluation toolkit
publicly available.

1 Introduction

The quality of word representations in semantic
models is often measured using intrinsic evalua-
tions that capture particular types of relationships
(typically semantic similarity and relatedness) be-
tween word pairs (Finkelstein et al., 2002; Hill et
al., 2015; Schnabel et al., 2015; Tsvetkov et al.,
2015, inter alia).

Whereas the notions of semantic similarity and
relatedness constitute key concepts in such evalua-
tions, they are in fact vaguely defined (Batchkarov
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et al., 2016; Ettinger and Linzen, 2016). The con-
struction of ground truth evaluation sets that reflect
these relations, such as SimLex-999 (Hill et al.,
2015), SimVerb-3500 (Gerz et al., 2016), MEN
(Bruni et al., 2014) or Rare Words (Luong et al.,
2013), relies on manually constructed guidelines
that trigger subjective human interpretation of the
task at hand. This in turn introduces inter-annotator
variability (Batchkarov et al., 2016) and does not
account for the fact that human similarity judge-
ments are asymmetric by nature (Tversky, 1977).

What is more, given that humans perform lin-
guistic comparisons between concepts on a sub-
conscious level (Kutas and Federmeier, 2011),
it is at least debatable whether current similar-
ity/relatedness evaluation sets fully capture the im-
plicit relational structure underlying human lan-
guage representation and understanding.

As evidenced by recent workshops on evalua-
tion of semantic representations', the community
appears to recognise that current evaluation meth-
ods are inadequate. To fill in this gap, recent work
has proposed using subconscious cognitive mea-
sures of semantic connection instead, as a proxy
for measuring the ability of statistical models to
tackle various problems in human language un-
derstanding (Ettinger and Linzen, 2016; Sggaard,
2016; Mandera et al., 2017).

Motivated by these insights, this work proposes
an evaluation framework based on the word associ-
ation (WA) task, firmly rooted in and described
by the psychology literature, e.g., Nelson et al.
(2000) and Griffiths et al. (2007)?. Word associ-
ations, provided as simple (cue, response) concept
pairs, are naturally asymmetric: they tend to be
given as a repository of ranked lists of concepts col-

'E.g. RepEval, https://sites.google.com/site/repevalacl 16/

>The WA task is a free-association task, in which partici-
pants are asked to produce the first word that came into their
head in response to a cue or query word.
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lected as responses (i.e., assocations) given a target
cue/query concept. The ranking of the response list
is based on the WA strength between the cue and
each generated response. WAs are directly tied to
language use and the memory systems that sup-
port online linguistic processing (Till et al., 1988;
Nelson et al., 1998).

We build our WA evaluation framework around a
large repository of the University of South Florida
(USF) association norms (Nelson et al., 2000; Nel-
son et al., 2004). After post-processing, the repos-
itory contains ~5K queries, and ~70,000 (cue, re-
sponse) pairs, making it one of the largest seman-
tic evaluation databases available (by contrast, the
largest word pair scoring data sets in NLP, SimVerb
and MEN, contain 3,500 and 3,000 word pairs re-
spectively). This new resource enables comprehen-
sive quantitative studies of WA and may be used
to guide the future development of representation
learning architectures.

While parts of the USF data set have been used
for evaluation in NLP before (Michelbacher et al.,
2007; Silberer and Lapata, 2012; Kiela et al., 2014;
Hill and Korhonen, 2014, inter alia), we conduct
the first full study regarding the evaluation on the
quantitative WA task. We compare a wide variety of
different semantic representation models, discuss
various evaluation metrics and analyse the links be-
tween word association and semantic similarity and
relatedness. In summary, the main contributions of
this paper are as follows:3
(C1) We present an end-to-end evaluation frame-
work for the WA task, and provide new evaluation
metrics and detailed guidelines for evaluating se-
mantic models on the WA task.

(C2) We conduct a systematic study and compari-
son of current state-of-the-art representation learn-
ing architectures on the WA task.

(C3) We present a systematic quantitative analy-
sis of the connections between the models’ per-
formance on the subconscious WA task and their
performance on benchmarking similarity and relat-
edness evaluation sets.

2 Motivation: Association and USF

Implicit Cognitive Measures: Means of Seman-
tic Evaluation? Several studies have shown
clear correspondence between implicit cognitive

3 All evaluation scripts and detailed evaluation guidelines
are freely available at:
https://github.com/cambridgeltl/wa-eval/

measures (most notably semantic priming) and se-
mantic relations encountered in vector space mod-
els (VSMs) (McDonald and Brew, 2004; Jones et
al., 2006; Pad6é and Lapata, 2007; Herdagdelen
et al., 2009), suggesting that some of the implicit
relation structure in the human brain is already re-
flected in current statistical models of meaning.

These findings encouraged Ettinger and Linzen
(2016) to propose a preliminary evaluation frame-
work based on semantic priming experiments
(Meyer and Schvaneveldt, 1971).* They demon-
strate the feasibility of such an evaluation using a
subconscious language processing task. They use
the online database of the Semantic Priming Project
(SPP), which compiles priming data for over 6,000
word pairs.

Here, we go one step further and demonstrate
that another subconscious language processing
task, with much more available data, can also be
used to evaluate representations. We construct an
evaluation framework based on the USF free word
association (WA) norms quantifying the strength
of association between cue and response concepts
for more than 70,000 concept pairs.

Word Association WA has been a long-standing
research topic in cognitive psychology, as evi-
denced by the following statement (Deese, 1966):

Are there any more fascinating data in psychology
than tables of association? (Deese, 1966)

Word association still remains one of the funda-
mental questions in cognitive psychology, as em-
phasised by e.g. Griffiths et al. (2007):

Association has been part of the theoretical ar-
mory of cognitive psychologists since Thomas
Hobbes used the notion to account for the struc-
ture of our “trayne of thoughts” in 1651.

These insights illustrate how WA can provide a
useful benchmark for evaluating models of human
semantic representation. WA norms are commonly
used in constructing memory experiments (Dennis
and Humphreys, 2001; Steyvers and Malmberg,
2003), and statistics derived from them have been
shown to be important in predicting cued recall

4Semantic priming measures a response time with a human
subject performing a simple language task (e.g., classifying
strings into words vs. non-words). It was shown that human
subjects are able to solve the task more quickly if the word
to which they are responding is preceded by a semantically
related word. The magnitude of the speed-up can be taken as
the strength of relation between the two concepts.
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CUE RESP #G #P FSG BSG
lunch  dinner 156 42 0.269  0.096
lunch  food 156 32 0.205  0.011
lunch eat 156 13 0.083 0.0

lunch  meal 156 10 0.064 0.063
lunch  box 156 9 0.058 0.0

lunch  sandwich 156 9 0.058 0.037
lunch  noon 156 6 0.038 0.200
noon lunch 150 30 0.200 0.038
noon  twelve 150 22 0.147 0.034
noon  sunshine 150 20 0.133 0.0

food  eat 180 73 0.406  0.409
food drink 180 9 0.050 0.0

Table 1: Example (cue, response) pairs of free word

association from the USF data set. #G stands for
the number of participants serving in the group
norming the word, while #P denotes the number
participants producing a particular response.

and recognition (Nelson et al., 1998), and false
memories (Roediger et al., 2001).°

WA Evaluation Set: USF The USF norms data
set (hereafter USF) is the largest database of free
word association collected for English (Nelson et
al., 2004). It was generated by presenting human
subjects with one of 5,000 cue concepts and ask-
ing them to write the first word coming to their
mind that is associated with that concept. Each cue
concept was normed by at least 100 participants,
resulting in a set of associates (or responses) for
each cue, for a total of ~72,000 (cue, response)
pairs. A sample of the USF data is presented in
Tab. 1. The data are accessible online.’

For each such pair, the proportion of participants
that produced the response w” when presented with
cue word w® can be used as a proxy for the strength
of association between the two words (FSG in
Tab. 1). BSG denotes the backward association
strength, when the roles of a cue and a response are
reversed, shows that the WA relation is inherently
asymmetrical.

>From another viewpoint, the WA evaluation aims to an-
swer a different question than a typical intrinsic evaluation
on data sets such as SimLex-999, MEN, WordSim-353, or
SimVerb-3500. The goal of the latter is to assess the quality of
learned text representations as a proxy towards downstream
NLP tasks. The goal of the former is to assess the capability
of representation learning and NLP architectures to help in ad-
vancing our understanding and modeling of human cognitive
processes (occurring on a sub-conscious level), while at the
same time it could still be used as a proxy evaluation in NLP.

Shttp://w3.usf.edu/Free Association/
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3 Evaluation Protocol

Terminology W°

c
79

{wg, ... "w\CWC|}
denotes a set of |W¢| cue or normed words (more
generally, concepts) in the evaluation set. For each
cue word wy, the data set contains a ranked list
of concepts or responses R; sorted according to
the strength of forward association, from cue to
response (i.e., the FSG field in Tab. 1). The list
R; contains entries of the format w,; : fsgm-,
where w, ; is the ;" most associated concept in
the ranked list, and fsg; ; is the accompanying
strength of forward association between cue wy
and response w;. ;. Let RY refer to the ground truth
ranked list for wy, which contains only responses
where fsg; ; > 0 in the USF data, and R} to the
ranked list retrieved by an automatic system.

The vocabulary or search space from which re-
sponses for all cues are drawn is labeled V. Note
that V" may also contain words from V¢ and that
V" may contain words that do not occur in any of
the ground truth lists RY.

, W

Why Evaluate on Word Association? A stan-
dard evaluation protocol with word pair scoring
evaluation sets such as SimLex-999 or MEN is to
compute Spearman’s p correlations between the
ranking obtained by an automatic system and the
ground truth ranking. This protocol, however, is
not directly applicable to the USF test data. First,
the evaluated relation of WA is asymmetric, and the
pairs (X,Y) and (Y, X) may differ dramatically
in their WA scores (see the difference in FSG and
BSG values from Tab. 1). Second, instead of one
global list of pairs, the data comprises a series of
ranked lists conditioned on the cue/normed word
w® (see Tab. 1 again). Finally, unlike with SimLex-
999 or MEN scores where it is difficult to inter-
pret “what a similarity/relatedness of 7.69 exactly
means” (Batchkarov et al., 2016; Avraham and
Goldberg, 2016), the USF FSG scores have a direct
meaningful interpretation (i.e., F'SG = #P/#GQ).
To fully capture all aspects of the ground truth USF
data set, an evaluation protocol should ideally be
based not only on response rankings, but also on
the actual scores, i.e., the association strength.

In this paper, we propose and investigate two
different families of evaluation metrics on the USF
data: Sect. 3.1 discusses rank correlation evaluation
metrics inspired by recent work on the evaluation
of vector space models in distributional semantics
(Bruni et al., 2014; Hill et al., 2015; Vuli¢ et al.,



2016, inter alia). Sect. 3.2 draws inspiration from
research on evaluation in information retrieval (IR).
We show that the problem of evaluating USF asso-
ciation lists may be naturally framed as an ad-hoc
IR task (Manning et al., 2008). This enables the
application of standard IR evaluation methodology.

3.1 Rank Correlation Evaluation

Averaged Standard Spearman’s Correlation
The first protocol, labeled p-std, first computes
the standard Spearman’s p correlation between R
and R;. The system list R; is pruned so that it con-
tains only those items that also occur in RY. The
two lists are then correlated to obtain the score p;
for cue wy.

Following that, the correlation scores are aver-
aged. First, we apply the Fisher z-transformation
(Fisher, 1915) and then average over the trans-
formed scores:

Zi:lln(l—’_pi
lfpi

2
we

\
Zavg = Z Zi (2)
=1

) = arctanh(p;) (1)

The final output score is obtained by applying the
inverse z-transformation on zq4:

Pavg = tanh(zqug) 3)

Averaged Weighted Spearman’s Correlation
The previous protocol treats all ranks equally, de-
spite the fact that the system should be rewarded
more for getting the strongest responses correct
(and penalised when failing to do so). Therefore,
we also experiment with weighted rank correlation
measures, which weigh the distance between two
ranks, and assign more importance to higher ranks
(i.e., in our setting, to stronger associates).

Several weighted correlation metrics have been
proposed (Blest, 2000; Pinto da Costa and
Soares, 2005; Dancelli et al.,, 2013; Pinto da
Costa, 2015). We show results with the weighted
Spearman’s correlation (further labelled p-w)
from Pinto da Costa (2015).” Let us de-
note Q1 = [Q1,1,Q1,2,...,Q1n] and Q1 =
[Q2,1,Q2.2,...,Q2,] two vectors of ranks ob-
tained on a sample of size n. The weighted rank
correlation p between the vectors is computed as:

"We also experimented with other weighted variants, but
detected similar trends in reported model rankings.

n

6> (Qui— Q2i)((n— Qui +1) + (n— Q2 + 1))

1— i=1

nt+nd—-—n?2—-n

“

We refer the interested reader to the relevant lit-
erature (Pinto da Costa, 2015) for further details,
theoretical implications and property proofs related
to Eq. (4). p; scores for all cue words W€ are then
obtained using Eq. (4), and the averaged score pgy4
is computed as before, see Eq. (1)-Eq. (3).

While the two metrics are intuitive and capture
the ability of models to correctly rank (a subset of)
associates/responses, note that they have deficien-
cies. They only evaluate the rankings of words oc-
curring in RY, which effectively reduces the search
space V" to the small subset {wq, ..., wIRi-’\} C
V". This effectively means that the final score
simply ignores incorrect responses that are ranked
highly by a system but that do not occur in RY. It
also does not take into account the actual strength
of association.

3.2 IR-Inspired Evaluation

Intuition Another set of evaluation metrics is in-
spired by the resemblance of the USF data structure
to the typical output of ad-hoc IR systems (Man-
ning et al., 2008; Pound et al., 2010). That is, each
cue word w® can be thought of as an input query
issued against some farget concept collection V',
where the goal of our association retrieval system
is to rank items from the target collection according
to their relevance (i.e., their association strength)
to the issued query. The output of the system is the
ranked list R} of length |V"|, with ground truth
relevance assessments provided in RY.

MRR and MAP The first two metrics assume
non-weighted or binary relevance: the retrieved re-
sponse is either relevant to the issued cue (labeled
1) or it is non-relevant (0). We assume that all re-
sponses found in the ground truth lists RY where
fsgi; > t are relevant responses, where ¢ is a
threshold.® We label this reduced set of relevant
responses RRY.

The most lenient evaluation metric is Mean Re-
ciprocal Rank (MRR) (Voorhees, 1999; Craswell,

8In our experiments, we impose a simple heuristic and
take responses as relevant if they were generated by at least 3
different human subjects in the USF experiments. This heuris-
tic reduces the noise in human answers and provides a more
coherent set of responses.
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2009). The reciprocal rank of a query response is
the multiplicative inverse of the rank of the first rel-
evant answer, and the final score is then averaged
over all |W¢| queries/cues. More formally:

el

1
el

1
rank;

MRR(W®) = (5)

where rank; is the rank position of the first relevant
response (i.e., the first response found in the set
RRY) for the cue word wf.

Since MRR cannot assess multiple correct an-
swers and their ranking in the retrieved list, an al-
ternative metric is Mean Average Precision (MAP):

A%
c 1 c
MAP(W®) = 7|WL| E AP (wy) (6)
=1
N .
. _, P -irely
AP(w;) = —Zk |1RR9| @)

Here, AP(w{) denotes Average Precision for
query/cue w§, N < |V"| denotes the number of
responses retrieved by the system. P is the preci-
sion at cut-off k£ in the list, and irely, is an indica-
tor function which ’turns on’ only if the response
at rank k is the relevant response (i.e., present in
RRY). The average is computed over all relevant
responses, and the non-retrieved relevant responses
from V" get a precision score of 0. N << |V"| is
typically used (e.g., standard values are N = 100
or NV = 1000) to reduce the execution time of the
evaluation procedure, since it is expected that a
good retrieval system should obtain a majority of
relevant responses in the first N responses.

Compared to measures from Sect. 3.1, MRR and
MAP are better estimators of the model’s ability
to capture word association, as they operate over
the entire search space V" for each cue word. This
effectively means that systems get rewarded if they
are able to consistently rank relevant responses
higher than non-relevant responses. However, these
metrics still rely on binary non-weighted relevance
judgements, and are therefore unable to reward
models that rank highly relevant responses (i.e.,
strongly associated responses, see Tab. 1) higher
than weakly relevant responses.

NDCG@k In other words, the most expressive
evaluation metric should be able to distinguish
that cue-response pairs such as (lunch, dinner) and
(lunch, food) should be ranked higher than weakly
associated pairs such as (lunch, box) or (lunch,
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sandwich). In addition, the metric should still re-
ward models that rank relevant responses higher
than non-relevant ones.

An IR metric which takes all these aspects into
account is Discounted Cumulative Gain (DCG)
(Jarvelin and Kekildinen, 2002). DCG operates
with weighted relevance values: in the USF sce-
nario, these are forward association strengths, i.e.,
scores fsg; ;. The main idea behind using DCG is
that highly relevant responses appearing lower in
a ranked list should be penalised. The penalty is
implemented by reducing the weighted relevance
value logarithmically proportional to the position
of the particular response. We opt for a more re-
cent variant of DCG which puts more emphasis on
retrieving relevant responses (Burges et al., 2005).
DCG @k, the DCG score accumulated at a particu-
lar rank position k is computed as follows:

2w'rel1

-1

log,(i + 1) ®)

k
DCG@k = Z
1=1

wrel; is the graded relevance of the response at
rank ¢ given by the ground truth data, i.e., fsg; ; if
the cue-response pair occurs in RY, or 0 otherwise.
To make results comparable across different
queries, a normalised variant of DCG is typically
used. First, all relevant responses are sorted by their
graded relevance value, producing the maximum
possible DCG at each position k. The score of
the ideal ranking at rank k is called Ideal DCG
(IDCG@k). NDCG @k for a single query is then:

DCGQk

NDCGOk = TheGark

€)
Finally, the mean NDCG @k is produced for the
entire collection WW¢ by averaging over all single
NDCG@k values. In all experiments we rely on a
standard choice for k: NDCG @ 100, while similar
trends are observed with NDCG@10.

4 Experimental Setup and Models

LDA-Based Approach First, we evaluate an ap-
proach based on latent topic modeling, rooted in the
psychology literature (Steyvers et al., 2004; Grif-
fiths et al., 2007; Steyvers and Griffiths, 2007).°
The following quantitative model of word associa-
tion has been proposed (Griffiths et al., 2007):

°Griffiths et al. (2007) also experimented with LSA (Lan-
dauer and Dumais, 1997) and found that their LDA-based
approach consistently outperformed LSA-based approaches.
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P(w"[w®) =" P(w"[to;) P(toi|w®) (10)

i=1
where w€ is a cue word, w" € V" any concept
from the search space, and to; is the i*" latent topic
from the set of M topics induced from the corpus
data (using LDA). We label this model LDA-assoc.
The probability scores P(w" |to;) select words that
are highly descriptive for each particular topic.
P(to;|w®) scores are computed as in prior work, by
assuming topic independence and applying Bayes’
rule on the LDA output per-topic word distributions
P(-|to;) (Steyvers and Griffiths, 2007; Vuli¢ and
Moens, 2013).19 We train LDA with 1,000 topics
using suggested parameters (Griffiths et al., 2007).

Count-Based Models We evaluate the best per-
forming reduced count-based model from (Baroni
et al., 2014). We label this model count-ppmi-
500d.!" For a more detailed description of the
model’s training data and setup we refer the reader
to the original work and supplementary material.

Vector Space Models We also compare the
performance of prominent representation mod-
els on the WA USF task. We include: (1) un-
supervised models that learn from distributional
information in text, including Glove (Penning-
ton et al., 2014) with d 50 and d 300
dimensions (glove-6B-50d and glove-6B-300d),
the skip-gram negative-sampling (SGNS) 300-
dimensional vectors (Mikolov et al., 2013) with var-
ious contexts (bow = bag-of-words; deps = depen-
dency contexts) as in (Levy and Goldberg, 2014)
and (Schwartz et al., 2015) (sgns-pw-bow-w2,
sgns-pw-bow-w5, sgns-pw-deps, sgns-8b-bow-
w2), and the symmetric-pattern based vectors by
Schwartz et al. (2015) (sympat-500d); (2) Models
that rely on linguistic hand-crafted resources or cu-
rated knowledge bases. Here, we use vectors fine-
tuned to a paraphrase database (paragram-25d,

!0The generative model closely resembles the actual pro-
cess in the human brain (Griffiths et al., 2007) - when we
generate responses, we first tend to associate that word with
a related semantic/cognitive concept, i.e., a latent topic (the
factor P(to;|w®)), and then, after establishing the concept,
we output a list of words that we consider the most promi-
nent/descriptive for that concept (words with high scores in
the factor P(w"|to;)).

""We have also experimented with simple count-based
asymmetric association measures proposed by Michelbacher
et al. (2007), estimated using the same corpus as the count-
ppmi-500d model. We do not report the results with these
measures, as they show a very poor performance when com-
pared to all other models in our comparison.
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paragram-300d, (Wieting et al., 2015)) further re-
fined using linguistic constraints (paragram-cf-
300d, (Mrksicé et al., 2016)); (3) Multilingual em-
bedding models from Luong et al. (2015) (biskip-
256d) and Faruqui and Dyer (2014) (bicca-512d).
More detailed descriptions of all VSM models are
available in the listed papers and supplementary
material attached to this work.

USF Data Processing and Parameters Only
USF pairs where both words are single word ex-
pressions were retained, and the rest was discarded.
This yields 4,992 single word queries in total. The
total number of finally retained USF pairs is
70,000. Note that this evaluation set is by an or-
der of magnitude larger than current benchmarking
word pair scoring datasets such as MEN (3000
word pairs in total), SimVerb (3500), SimLex (999)
and Rare Words (2034), and thus allows for a truly
comprehensive evaluation of quantitative WA mod-
els. Only responses generated by at least 3 human
subjects in each list of responses are taken as rele-
vant in all experiments (see Foot. 7 in Sect. 3.2), all
other (cue, response) pairs and pairs not present
in the USF data are considered non-relevant.'?

~
~

5 Results and Discussion

Exp. I: Making the Evaluation Tractable
Computational complexity is not an issue for stan-
dard semantic benchmarks such as SimLex-999
or MEN: these data sets require only Ny sim-
ilarity computations in total, where Ny is the
number of word pairs in each benchmark (999 or
3000). However, complexity plays a major role
in the USF evaluation: the system has to com-
pute |W¢| - |V"| similarity scores, where |W¢| ~
5,000, and |V"| is large for large vocabularies
(typically covering > 100K words). In addition,
each list of |V"| has to be sorted according to the
WA strength: this means that the complexity is
o(wel- (VT +[VT[log [VT]).

Since this is prohibitively expensive, our so-
lution is to restrict the search space V" only to
words (both cues and responses) occurring in USF:
|V"| = 10,070.!3 Besides the gains in evaluation
efficiency, when using the USF vocabulary all mod-
els operate over exactly the same search space:

2For efficiency reasons with IR metrics, we evaluate results
only over the top N = 1000 retrieved responses for each cue.

BPrior work shows that the USF data represents a good
range of distinct semantic phenomena (Hill et al., 2015), which

suggests that the USF vocabulary represents a balanced sample
of the English vocabulary.



V" = 100K V" =USF

Model MRR MAP NDCG MRR MAP NDCG

glove-6B-50d [4988] 0.233 (4) 0.072 (3) 0.190 (3) 0.318 (5) 0.105 (5) 0.249 (5)
glove-6B-300d /4988] 0.303 (1) 0.112 (1) 0.280 (1) 0.473 (1) 0.183 (1) 0.380 (1)
sgns-pw-bow-w2 [4970]  0.177 (6) 0.047 (7) 0.129 (6) 0.315 (6) 0.098 (6) 0.226 (6)
sgns-pw-bow-w5 [4970]  0.235 (3) 0.066 (5) 0.176 (5) 0.372 (3) 0.122 (4) 0.278 (4)
sgns-pw-deps [4953] 0.164 (8) 0.041 (8) 0.107 (8) 0.281 (8) 0.081 (8) 0.187 (8)
sgns-8b-bow-w2 [4982]  0.239 (2) 0.078 (2) 0.218 (2) 0.452 (2) 0.169 (2) 0.358 (2)
paragram-25d [4902] 0.174 (7) 0.048 (6) 0.121 (7) 0.309 (7) 0.092 (7) 0.198 (7)
paragram+cf-300d [4971]  0.221 (5) 0.067 (4) 0.179 (4) 0.371 (4) 0.130 (3) 0.284 (3)

Table 2: The effects of reducing the search space V" to speed up the evaluation process. The numbers in
parentheses are relative rankings of each model (1-8) according to the particular evaluation metric. The
numbers in square brackets report the coverage of each model (the total number of USF queries is 4992).

Model p-std pP-W MRR MAP NDCG
LDA-assoc 0.230 0.221 0.153 0.048 0.128
count-ppmi-500d 0.255 0.249 0.294 0.094 0.226
glove-6B-50d 0.280 0.277 0.318 0.105 0.249
glove-6B-300d 0.337 0.339 0.473 0.183 0.380
sgns-pw-bow-w2 0.263 0.259 0.315 0.098 0.226
sgns-pw-bow-w5 0.283 0.280 0.372 0.122 0.278
sgns-pw-deps 0.240 0.234 0.281 0.081 0.187
sgns-8b-bow-w2 0.322 0.324 0.452 0.169 0.358
sympat-500d 0.194 0.189 0.221 0.069 0.180
paragram-25d 0.222 0.217 0.309 0.092 0.198
paragram-300d 0.302 0.298 0.388 0.138 0.300
paragram+cf-300d ~ 0.265 0.268 0.372 0.067 0.179
biskip-256d 0.255 0.253 0.283 0.091 0.212
bicca-512d 0.311 0.310 0.371 0.132 0.303

Table 3: Results on the USF WA task using differ-
ent evaluation metrics proposed in Sect. 3. V"
USF for all models. The best results per column
are in bold, second best in italic.

therefore, their results are directly comparable as
the data coverage bias should be largely mitigated.

To fully support this choice, we perform a simple
experiment using a subset of models from Sect. 4.
In the first evaluation, V" contains the most fre-
quent 100K words for all models, where frequency
was computed on their respective training data. In
the second evaluation, V" contains only the USF
vocabulary words. The results with IR-style metrics
are shown in Tab. 2, and similar trends are observed
with Spearman’s p correlations.

The results support several conclusions. (i) Cov-
erage over cue words is very high for all models
(the model with the lowest coverage from Tab. 2 has
a coverage of 98.2%). This, along with the same
search space (the USF vocabulary) indicates a fair
comparison of different models. (ii) Different IR
metrics produce consistent model rankings, with a
slight variation in the middle of the rankings. Inter-
estingly, the best scoring model is Glove, a model
which uses document-level co-occurrence, which
steers it towards learning topical similarity. On the
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other hand, the worst performing model relies on
dependency-based contexts which better capture
functional similarity (Levy and Goldberg, 2014)
and outperform other context choices in word sim-
ilarity tasks on SimLex and SimVerb (Melamud
et al., 2016; Gerz et al., 2016). (iii) Most impor-
tantly, the reduction of V" again yields consistent
rankings with all metrics, which are also fairly con-
sistent with the rankings obtained in the ten times
larger 100K search space. Therefore, in all further
experiments we use the USF vocabulary as our
search space.

Exp. II: Results on USF WA  Next, we evaluate
all models from Sect. 3 on the WA task. The results
with different metrics are summarised in Tab. 3.
The results suggest that all proposed evaluation
metrics indeed reflect the ability of different models
to capture WA. We observe strong correlations of
the models’ rankings with all five metrics (Tab. 4).
p-w is a slightly more conservative metric than p-
std on average, but it does not affect model rankings
at all (see also Tab. 4).

Further, the LDA-based WA model (Griffiths et
al., 2007) is largely outperformed by VSM-based
approaches. As expected, similar VSMs with more
dimensions are more expressive and score higher
(e.g., note the scores with glove and paragram mod-
els). Additionally, models trained on larger corpora
are also able to improve the overall results (e.g.,
note the scores with sgns trained on the Polyglot
Wikipedia (PW, 2B tokens) vs. the 8B word2vec
corpus). The paragram models specialised for simi-
larity tasks are unable to match unsupervised VSMs
that train on running text (e.g., paragram+-cf-300d
obtains a SimLex score of 0.74 compared to 0.46
with sgns-8b-bow-w2).

Two models using bilingual training (biskip-
256d and bicca-512d) seem unable to match the
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Figure 1: Influence of the window size on the ability of vector space models to capture Similarity (evaluated
on SimLex-999), Relatedness (MEN), and Association (USF) (a) Spearman’s p-std correlations on all
three data sets; (b) Behaviour of other evaluation metrics used in the USF evaluation. All tested models
are SGNS, d = 300, and the only varied hyper-parameter is the window size.

Association (WA) Similarity Relatedness

MAP MRR NDCG p-std p-W SimLex SimVerb MEN RareWords
MAP 1.0 0.966 0.986 0.958 0.958 0.088 0.169 0.729 0.645
MRR 0.972 1.0 0.933 0.921 0.921 0.076 0.129 0.626 0.701
NDCG 0.986 0.944 1.0 0.975 0.975 -0.012 0.080 0.722 0.544
p-std 0.951 0.923 0.972 1.0 1.0 -0.184 -0.088 0.639 0.425
p-W 0.951 0.923 0.972 1.0 1.0 -0.184 0.088 0.639 0.425
SimLex 0.063 0.098 -0.042 0.203 0.203 1.0 0.975 0.370 0.666
SimVerb 0.140 0.098 0.049 0.111 0.111 0.972 1.0 0.482 0.667
MEN 0.741 0.657 0.741 0.671 0.671 0.342 0.448 1.0 0.591
RareWords ~ 0.643 0.699 0.538 0.433 0.433 0.622 0.608 0.580 1.0

Table 4: Spearman’s p correlations between different evaluation protocols for vector space models divided
into (a) Association, (b) Similarity, and (c) Relatedness. The correlation scores are based on the rankings
of all the evaluated models (see Sect. 4.1) in each experiment. The lower-left part of the table (below the
main diagonal, in lighter gray) reports standard Spearman’s p-std correlations between different model
rankings, while p-w is reported in the upper-right part (in darker gray). We report model rankings based
on the 5 different metrics introduced for the WA USF evaluation. Model rankings for Similarity and
Relatedness experiments are according to the p-std correlation on the respective ground truth data sets.

best performing monolingual models: however, we
plan to further analyse the influence of bilingual
information in the WA task in future work.

Finally, a comparison of sgns-pw-* models
(where the only varied parameter is the context
used in training) reveals that (i) larger windows im-
prove WA scores (we test this phenomenon further
in Exp. III), (i1) sgns-pw-deps, which captures func-
tional similarity through dependency-based con-
texts, yields lower WA scores, while it improves
on SimLex-999 compared to the other two mod-
els. This insight leads us to further investigate this
phenomenon in Exp. IV.

Exp. III: Window Size In the next experiment,
we analysed the effect of the window size on

models’ ability to capture similarity, relatedness,
and association. We train the sgns-pw-bow model
(d = 300) with varying window sizes in the inter-
val [1, 30]. The results on similarity (SimLex-999),
relatedness (MEN), and WA benchmarks (USF)
are presented in Fig. 1(a)-1(b). It is clear that us-
ing larger windows deteriorates the performance
on SimLex-999 as the focus of the model is shifted
from functional to topical similarity. This shift has
been detected in prior work on vector space models
(Kiela and Clark, 2014). However, we also observe
a similar trend with MEN scores, although an op-
posite effect was expected, which questions the
ability of MEN to accurately evaluate relatedness.
The opposite effect is, however, visible with the
WA evaluation, where it is evident that larger win-
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dows (leading to topical similarity) lead to better
WA estimates. This also provides the first hint that
WA and semantic similarity capture two completely
distinct semantic phenomena.

Exp. IV: WA vs. Similarity vs. Relatedness We
delve deeper into this conjecture by computing cor-
relations between model rankings on the WA task
and two prominent similarity and relatedness data
sets. The results from Tab. 4 indicate the following.
First, semantic relatedness and similarity are cor-
related although they clearly refer to two distinct
semantic phenomena as emphasised in prior work
(Hill et al., 2015). The correlations between differ-
ent metrics proposed for the WA task are very high
(e.g., the lowest correlation score among any of
the two is p = 0.921). Second, WA and similarity
capture very distinct relations (this is evident from
low, even negative p correlation scores). Third, WA
and relatedness are strongly correlated,'* but the
correlation is not as high as expected, given that the
two are often considered equivalent, e.g., (Kiela et
al., 2015). Future work should investigate whether
the difference originates from inadequate evalua-
tion data and protocols (see Fig. 1(a)-1(b) again),
or whether the difference is fundamental.

6 Conclusion and Future Work

We have proposed and released a new end-to-end
evaluation framework for the task of free word as-
sociation (WA). We have also provided new evalu-
ation metrics inspired by research in IR, and guide-
lines for evaluating semantic representation models
on the quantitative WA task.

Besides serving as a gold standard in NLP, the
comprehensive WA evaluation resource and accom-
panying evaluation protocol should enable the de-
velopment of data-driven automatic systems that
can capture the notion of word association, and
further analysis on how humans perceive (types
of) semantic relatedness and similarity (Spence
and Owens, 1990; Maki and Buchanan, 2008;
De Deyne et al., 2013). These systems, as discussed
in this paper, may additionally facilitate research in
cognitive psychology pertaining to human semantic
representation and memory.

14 Although it comes as slightly counter-intuitive, research
in statistics has shown that transitivity between correlation
coefficients does not hold in general (Langford et al., 2001;
Castro Sotos et al., 2009). Therefore, the observed behaviour is
possible: Relatedness indeed correlates both with Association
and with Similarity, while at the same time we do not observe
any correlation between Association and Similarity.
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In future work, we plan to test the portability
of the evaluation protocol and apply it to other
repositories of word association data in English
(De Deyne et al., 2016), as well as in other lan-
guages, using existing WA tables in, e.g., German
(Schulte im Walde et al., 2008), Dutch (De Deyne
and Storms, 2008; Brysbaert et al., 2014), Italian
(Guida and Lenci, 2007), Japanese (Joyce, 2005),
or Cantonese (Kwong, 2013).1

In another line of future work, we will experi-
ment with other “cognitively plausible” evaluation
data such as N400 (Kutas and Federmeier, 2011;
Ettinger et al., 2016), and will analyse the similar-
ities and differences between WA and other such
“cognitive” evaluation protocols, as the one relying
on semantic priming (SPP) (Hutchison et al., 2013;
Ettinger and Linzen, 2016).

All evaluation scripts and detailed guidelines
related to this work are freely available at:
github.com/cambridgeltl/wa-eval/
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Supplementary Material

Vector Space Models

We evaluate a suite of pre-trained vector space mod-
els readily accessible online. We note that these
models typically use different training data and
other additional resources, and have a varying cov-
erage of the English lexicon, but the evaluation
score still reveals their ability to effectively capture
word association. As mentioned in the paper, we
have aimed at making the comparison fair by eval-
uating all models using the USF vocabulary as the
search space for each model in our comparison.

(0) We evaluate a traditional count-based repre-
sentation model which uses positive PMI weight-
ing and SVD dimensionality reduction. This is
the best performing reduced count-based model
from (Baroni et al., 2014). The model was trained
on concatenated ukWaC, the English Wikipedia
and the British National Corpus with the window
size 2, and dimensionality after SVD is set to
d = 500. Vectors were obtained online.'® We label
this model count-ppmi-500d.

(1) Two sets of Glove vectors (Pennington et al.,
2014) were used (d = 50 and d = 30) trained
on the 6B corpus of concatenated Wikipedia and
GigaWord:!” glove-6B-50d and glove-6B-300d.

(2) Pre-trained vectors obtained using skip-gram
with negative sampling (SGNS) (Mikolov et al.,
2013). We use SGNS vectors from (Levy and
Goldberg, 2014): sgns-pw-bow-w2 and sgns-pw-
bow-wS5 denote vectors trained with bag-of-words
(BOW) contexts on the Polyglot Wikipedia (PW)
(Al-Rfou et al., 2013) with window sizes 2 and 5,
respectively; sgns-pw-deps denotes vectors trained
with dependency-based contexts. All vectors are
300-dimensional.'® For more details including the
preprocessing procedure and the specification of
the used dependency parser, we refer the reader
to the original work. We evaluate another SGNS-
BOW model trained on a large 8B corpus with the
window size 2 and d = 500 to measure the poten-
tial gains stemming from the use of larger training

http://clic.cimec.unitn.it/composes/semantic-
vectors.html

http:/Mmlp.stanford.edu/projects/glove/

"Bhttps://levyomer.wordpress.com/publications/
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corpora.'® This model was used as a baseline in
(Schwartz et al., 2015): sgns-8b-bow-w2.

(3) A template-based approach to vector space
modeling introduced by Schwartz et al. (2015).
Vectors are trained based on co-occurrence of
words in symmetric patterns (Davidov and Rap-
poport, 2006). We use pre-trained dense vectors
(d = 500) trained on the 8B corpus available on-
line:?° sympat-500d.

(4) Models that use additional linguistic reposi-
tories to build semantically specialised improved
word vectors. Wieting et al. (2015) use the Para-
phrase Database (PPDB) (Ganitkevitch et al., 2013)
to learn word vectors which emphasise para-
phrasability. They do this by fine-tuning, also
known as retro-fitting (Faruqui et al., 2015), SGNS
vectors using an objective function designed to in-
corporate the PPDB semantic similarity constraints.
We test two variants of the Paragram model (d =
25 and d = 300) available online:?>' paragram-
25d and paragram-300d.

Another variant of the fine-tuning procedure
called counter-fitting (CF) was recently proposed by
Mrksié et al. (2016). The model further improves
the Paragram vectors by injecting antonymy con-
straints from PPDB v2.0 (Pavlick et al., 2015) into
the final vector space. d = 300. We label this model
paragram+cf-300d.2>

(5) Two multilingual pre-trained embedding mod-
els, aiming to test whether multilingual supervi-
sion can help in capturing word association the
same way it helps semantic similarity tasks. We use
pre-trained vectors of (Luong et al., 2015) (biskip-
256d) which rely on word-aligned parallel data,?
and CCA-based vectors of Faruqui and Dyer (2014)
(bicca-512d) which require readily available trans-
lation lexicons.?* As bilingual representations are
not the main focus of this work, for further training
details, we refer the reader to the literature.

19 code.google.com/p/word2vec/source/browse/trunk/demo-
train-big-model-v1.sh
2http://mhomes.cs.washington.edu/~roysch/papers/
sp-embeddings/sp-embeddings.html
http://ttic.uchicago.edu/~wieting/
Zhttps://github.com/nmrksic/counter-fitting
Bhttp://stanford.edu/~Imthang/bivec/
*http://www.manaalfaruqui.com/
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Abstract

Research on computational argumentation
faces the problem of how to automatically
assess the quality of an argument or argu-
mentation. While different quality dimen-
sions have been approached in natural lan-
guage processing, a common understand-
ing of argumentation quality is still missing.
This paper presents the first holistic work
on computational argumentation quality in
natural language. We comprehensively sur-
vey the diverse existing theories and ap-
proaches to assess logical, rhetorical, and
dialectical quality dimensions, and we de-
rive a systematic taxonomy from these. In
addition, we provide a corpus with 320 ar-
guments, annotated for all 15 dimensions in
the taxonomy. Our results establish a com-
mon ground for research on computational
argumentation quality assessment.

1 Introduction

What is a good argument? What premises should it
be based on? When is argumentation persuasive?
When is it reasonable? We subsume such ques-
tions under the term argumentation quality; they
have driven logicians, rhetoricians, linguists, and
argumentation theorists since the Ancient Greeks
(Aristotle, 2007). Now that the area of computa-
tional argumentation is seeing an influx of research
activity, the automatic assessment of argumentation
quality is coming into the focus, due to its impor-
tance for envisioned applications such as writing
support (Stab and Gurevych, 2014) and argument
search (Wachsmuth et al., 2017), among others.
Existing research covers the mining of argument
units (Al-Khatib et al., 2016), specific types of evi-
dence (Rinott et al., 2015), and argumentative rela-
tions (Peldszus and Stede, 2015). Other works clas-
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sify argumentation schemes (Feng et al., 2014) and
frames (Naderi and Hirst, 2015), analyze overall
argumentation structures (Wachsmuth et al., 2015),
or generate claims (Bilu and Slonim, 2016). Also,
theories of argumentation quality exist, and some
quality dimensions have been assessed computa-
tionally (see Section 2 for details). Until now, how-
ever, the assertion of O’Keefe and Jackson (1995)
that there is neither a general idea of what consti-
tutes argumentation quality in natural language nor
a clear definition of its dimensions still holds.

The reasons for this deficit originate in the vary-
ing goals of argumentation: persuading audiences,
resolving disputes, achieving agreement, complet-
ing inquiries, and recommending actions (Tindale,
2007). As a result, diverse quality dimensions play
a role, which relate to the logic of arguments, to the
style and rhetorical effect of argumentation, or to
its contribution to a discussion. Consider the fol-
lowing argument against the death penalty:!

Everyone has an inalienable human right to life,
even those who commit murder; sentencing a per-
son to death and executing them violates that right.

Although implicit, the conclusion about the death
penalty seems sound in terms of (informal) logic,
and the argument is clear from a linguistic view-
point. Some people might not accept the first stated
premise, though, especially if emotionally affected
by some legal case at hand. Or, they might not
be persuaded that the stated argument is the most
relevant in the debate on death penalty.

This example reveals three central challenges:
(1) Argumentation quality is assessed on different
levels of granularity; (2) many quality dimensions
are subjective, depending on preconceived opin-
ions; and (3) overall argumentation quality seems
hard to measure, as the impact and interaction of
the different dimensions remain unclear.

!Taken from www.bbc.co.uk/ethics/capitalpunishment.
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This paper does not propose a specific approach
to assess quality; rather it defines a common ground
by providing a so-far-missing holistic view on argu-
mentation quality assessment in natural language.
In particular, we first briefly but comprehensively
survey all major theories and computational approa-
ches for argumentation quality. Following Blair
(2012), we distinguish three main quality aspects,
each associated with several quality dimensions:

e Logical quality in terms of the cogency or
strength of an argument.

® Rhetorical quality in terms of the persuasive
effect of an argument or argumentation.

o Dialectical quality in terms of the reasonable-
ness of argumentation for resolving issues.

We organize the survey along these aspects, dis-
cussing quality at four levels of granularity: (1) ar-
gument unit, i.e., a segment of text that takes the
role of a premise or conclusion; (2) argument, i.e., a
composition of premises and a conclusion, some of
which may be implicit; (3) (monological) argumen-
tation, i.e., a composition of arguments on a given
issue; and (4) (dialogical) debate, i.e., a series of
interacting argumentation on the same issue.

To unify and to consolidate existing research, we
then derive a generally applicable taxonomy of
argumentation quality from the survey. The taxon-
omy systematically decomposes quality assessment
based on the interactions of 15 widely accepted
quality dimensions (including the overall quality).
Moreover, we provide a new annotated corpus with
320 arguments for which three experts assessed all
15 dimensions, resulting in over 14,000 annotations.
Our analysis indicates how the dimensions interact
and which of them are subjective, making the cor-
pus an adequate benchmark for future research.

In summary, the contributions of this paper are:

1. A comprehensive survey of research on argu-
mentation quality assessment (Section 2).

2. A taxonomy of all major quality dimensions of
natural language argumentation, which clari-
fies their roles and dependencies (Section 3).

3. An annotated corpus for computational argu-
mentation quality assessment (Section 4).%

2 Survey of Argumentation Quality

This section briefly surveys all major existing the-
ories and the assessment of natural language argu-

>The corpus is freely available at: http:/www.arguana.com
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mentation quality. While we order the discussions
along the three main quality aspects, we point out
overlaps and interrelations where relevant.

2.1 Theories of Argumentation Quality

We focus on the major fields dealing with argumen-
tation quality in natural language: argumentation
theory and rhetoric. Table 1 gives an overview of
the quality dimensions that we detail below.

Logic Formal argumentation studies the soundness
of arguments, requiring the truth of an argument’s
premises and the deductive validity of inferring
its conclusion. In case of inductive strength, the
conclusion becomes probable given the premises.
While sound arguments exist in natural language,
most are defeasible in nature (Walton, 2006). The
desired property of such arguments is cogency.

A cogent (or logically good) argument has in-
dividually acceptable premises that are relevant to
the argument’s conclusion and, together, sufficient
to draw the conclusion (Johnson and Blair, 2006).
Here, (local) acceptability means that a premise is
rationally worthy of being believed by the target au-
dience of the argument. It replaces truth, which is
often unclear (Hamblin, 1970). A premise’s (local)
relevance refers to the level of support it provides
for the conclusion, and (local) sufficiency captures
whether the premises give enough reason to accept
the conclusion. In the end, sufficiency thus presup-
poses relevance (Blair, 2012). While acceptability
is more dialectical, overall the three dimensions of
cogency are, with slight variations, acknowledged
to cover the logical quality of arguments.

Damer (2009) adds that a good argument also
depends on the rebuttal it gives to anticipated coun-
terarguments (a dialectical property) as well as on
its structural well-formedness, i.e., whether it is in-
trinsically consistent, avoids begging the question,
and uses a valid inference rule. These dimensions
adopt ideas from the argument model of Toulmin
(1958), including rebuttals and warrants, and from
the argumentation schemes of Walton et al. (2008),
whose critical questions are meant to evaluate infer-
ence rules. While not focusing on quality, critical
questions particularly help identify fallacies.

Introduced by Aristotle as invalid arguments, fal-
lacies have been brought back to attention by Ham-
blin (1970). In general, a fallacy has some sort of
error in reasoning (Tindale, 2007). Fallacies range
from resorting to inapplicable evidence types or
irrelevant premises to rhetoric-related errors, such



Aspect Quality Dimension Granularity Sources
Logic Cogency Argument Johnson and Blair (2006), Damer (2009), Govier (2010)

Local relevance Argument (unit) Johnson and Blair (2006), Damer (2009), Govier (2010)
Local sufficiency Argument Johnson and Blair (2006), Damer (2009), Govier (2010)
Well-Formedness Argument Walton et al. (2008), Damer (2009)

Dialectic  Global sufficiency Argument Toulmin (1958), Damer (2009)

Dialectic  Local acceptability Argument (unit) Johnson and Blair (2006), Damer (2009), Govier (2010)
Fallaciousness Argument (unit) Hamblin (1970), Tindale (2007), Walton et al. (2008)
Local relevance Argument (unit) Hamblin (1970), Tindale (2007)
Local sufficiency Argument Hamblin (1970), Tindale (2007)
Validity Argument Hamblin (1970), Tindale (2007)
Well-Formedness Argument Hamblin (1970), Tindale (2007)
Strength Argument Perelman et al. (1969), Tindale (2007), Freeman (2011)

Rhetoric Effectiveness Argument(ation) Perelman et al. (1969), O’Keefe and Jackson (1995)
Arrangement Argumentation Aristotle (2007), Damer (2009)
Appropriateness of style Argumentation Aristotle (2007)
Clarity of style Argumentation Aristotle (2007), Tindale (2007), Govier (2010)
Credibility Argumentation Aristotle (2007)
Emotional appeal Argumentation Aristotle (2007), Govier (2010)

Logic Soundness Argument Aristotle (2007)

Dialectic Convincingness Argumentation Perelman et al. (1969)
Global acceptability Argument(ation) Perelman et al. (1969)
Reasonableness Argumentation, debate van Eemeren and Grootendorst (2004)
Global acceptability Argument(ation) van Eemeren and Grootendorst (2004)
Global relevance Argument(ation) van Eemeren and Grootendorst (2004), Walton (2006)
Global sufficiency Argumentation, debate Cohen (2001)

Table 1: Theoretical treatment of quality dimensions in the referenced sources for the given granularities
of natural language argumentation, grouped by the aspect the bold-faced high-level dimensions refer to.

as unjustified appeals to emotion. They represent
an alternative assessment of logical quality. Fol-
lowing Damer (2009), a fallacy can always be seen
as a violation of one or more dimensions of good
arguments. Fallaciousness negatively affects an
argument’s strength (Tindale, 2007).

Argument strength is often referred to, but its
meaning remains unclear: “Is a strong argument an
effective argument which gains the adherence of
the audience, or is it a valid argument, which ought
to gain it?” (Perelman et al., 1969). Tindale (2007)
sees validity as a possible but not mandatory part
of reasoning strength. Freeman (2011) speaks of
the strength of support, matching the idea of induc-
tive strength. Blair (2012) roughly equates strength
with cogency, and Hoeken (2001) observes correla-
tions between evidence strength and rhetorical per-
suasiveness. Such dependencies are expected, as
the use of true and valid arguments represents one
means of persuasion: logos (Aristotle, 2007).

Rhetoric Aristotle’s work on rhetoric is one of the
most systematic to this day. He defines rhetoric
as the ability to know how to persuade (Aristotle,
2007). Besides logos, the three means of persua-
sion he sees include ethos, referring to the arguer’s
credibility, and pathos, the successful emotional ap-
peal to the target audience. Govier (2010) outlines
how emotions interfere with logic in arguments.

Pathos is not necessarily reprehensible; it just aims
for an emotional state adequate for persuasion.

In overall terms, rhetorical quality is reflected
by the persuasive effectiveness, i.e., the success in
persuading a target audience of a conclusion (Blair,
2012). It has been suggested that what arguments
are considered as effective is subjective (O’Keefe
and Jackson, 1995). Unlike persuasiveness, which
relates to the actual arguments, effectiveness covers
all aspects of an argumentation, including the use
of language (van Eemeren, 2015). In particular, the
three means of persuasion are meant to be realized
by what is said and how (Aristotle, 2007). Several
linguistic quality dimensions are connected to argu-
mentation (examples follow in Section 2.2). While
many of them are distinguished by Aristotle, he
groups them as the clarity and the appropriateness
of style as well as the proper arrangement.

Clarity means the use of correct, unambiguous
language that avoids unnecessary complexity and
deviation from the discussed issue (Aristotle, 2007).
Besides ambiguity, vagueness is a major problem
impairing clarity (Govier, 2010) and can be a cause
of fallacies (Tindale, 2007). So, clarity is a prere-
quisite of logos. Also, it affects credibility, since it
indicates the arguer’s skills. An appropriate style
in terms of the choice of words supports credibil-
ity and emotions. It is tailored to the issue and
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audience (Aristotle, 2007). Arrangement, finally,
addresses the structure of argumentation regarding
the presentation of the issue, pros, cons, and conclu-
sions. Damer (2009) outlines that a proper arrange-
ment is governed by the dimensions of a good argu-
ment. To be effective, well-arranged argumentation
matches the expectations of the target audience and
is, thus, related to dialectic (Blair, 2012).

Dialectic The dialectical view of argumentation tar-
gets the resolution of differences of opinions on the
merit (van Eemeren and Grootendorst, 2004). Qual-
ity is assessed for well-arranged discussions that
seek agreement. In contrast to the subjective nature
of effectiveness, people are good in such an assess-
ment (Mercier and Sperber, 2011). In their pragma-
dialectical theory, van Eemeren and Grootendorst
(2004) develop rules for obtaining reasonableness
in critical discussions. Reasonableness emerges
from two complementary dimensions, intersubjec-
tive (global) acceptability and problem-solving va-
lidity, but effectiveness still remains the underly-
ing goal (van Eemeren, 2015). For argumentation,
global acceptability is given when the stated argu-
ments and the way they are stated are acceptable to
the whole target audience. Problem-solving valid-
ity matches the (global) relevance of argumentation
that contributes to resolution, helping arrive at an
ultimate conclusion (Walton, 2006).

Global relevance implicitly excludes fallacious
moves, so reasonable arguments are cogent (van
Eemeren, 2015). Van Eemeren sees reasonableness
as a precondition for convincingness, the rational
version of persuasiveness. Following Perelman et
al. (1969), persuasive argumentation aims at a parti-
cular audience, whereas convincing argumentation
aims at the universal audience, i.e., all reasonable
beings. This fits the notion that dialectic examines
general rather than specific issues (Aristotle, 2007).

Convincingness needs (global) sufficiency, i.e.,
all objections to an argumentation are countered.
The dilemma here is that the number of objections
could be infinite, but without global sufficiency the
required support seems arbitrary (Blair, 2012). A
solution is the relaxed view of Damer (2009) that
only those counter-arguments that can be antici-
pated are to be rebutted. For debates, Cohen (2001)
speaks of dialectical satisfactoriness, i.e., whether
all questions and objections have been sufficiently
answered. In case a reasonable debate ends up in
either form of global sufficiency, this implies that
the discussed difference of opinion is resolved.

Other Although closely related, critical thinking
(Freeley and Steinberg, 2009) and persuasion re-
search (Zhao et al., 2011) are covered only implic-
itly here; their views on quality largely match with
argumentation theory. We have not discussed de-
liberation, as it is not concerned with the quality
of argumentation primarily but rather with commu-
nicative dimensions of group decision-making, e.g.,
participation and respect (Steenbergen et al., 2003).
Also, we have restricted our view to the logic found
in natural language. For formal and probabilistic
logic, dimensions such as degree of justification
(Pollock, 2001), argument strength (Pfeifer, 2013),
and premise relevance (Ransom et al., 2015) have
been analyzed. As we see below, such logic influ-
enced some practical assessment approaches.

2.2 Approaches to Quality Assessment

As for the theories, we survey the automatic quality
assessment for natural language argumentation. All
discussed approaches are listed in Table 2.

Logic Braunstain et al. (2016) deal with logical ar-
gument quality in community question answering:
Combining relevance-oriented retrieval models and
argument-oriented features, they rank sentence-
level argument units according to the level of sup-
port they provide for an answer. Unlike classical
essay scoring, Rahimi et al. (2014) score an essay’s
evidence, a quality dimension of argumentation: it
captures how sufficiently the given details support
the essay’s thesis. On the dataset of Correnti et al.
(2013) with 1569 student essays and scores from 1
to 4, they find that the concentration and specificity
of words related to the essay prompt (i.e., the state-
ment defining the discussed issue) impacts scoring
accuracy. Similarly, Stab and Gurevych (2017) in-
troduce an essay corpus with 1029 argument-level
annotations of sufficiency, following the definition
of Johnson and Blair (2006). Their experiments
suggest that convolutional neural networks outper-
form feature-based sufficiency classification.

Rhetoric Persing et al. (2010) tackle the proper
arrangement of an essay, namely, its organization
in terms of the logical development of an argu-
ment. The authors rely on manual 7-point score
annotations for 1003 essays from the ICLE cor-
pus (Granger et al., 2009). In their experiments,
sequences of paragraph discourse functions (e.g.,
introduction or rebuttal) turn out to be most effec-
tive. Organization is also analyzed by Rahimi et al.
(2015) on the same dataset used for the evidence
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Aspect  Quality Dimension  Granularity Text Genres Sources
Logic Evidence Argumentation  Student essays Rahimi et al. (2014)
Level of support Argument unit ~ Wikipedia articles Braunstain et al. (2016)
Sufficiency Argument Student essays Stab and Gurevych (2017)

Rhetoric ~ Argument strength Argumentation  Student essays Persing and Ng (2015)

Evaluability Argumentation Law comments Park et al. (2015)

Global coherence Argumentation  Student essays Feng et al. (2014)

Organization Argumentation ~ Student essays Persing et al. (2010), Rahimi et al. (2015)
Persuasiveness Argument Forum discussions Tan et al. (2016), Wei et al. (2016)
Prompt adherence Argumentation  Student essays Persing and Ng (2014)

Thesis clarity Argumentation ~ Student essays Persing and Ng (2013)

Winning side Debate Oxford-style debates Zhang et al. (2016)

Dialectic ~ Acceptability Argument Debate portal arguments ~ Cabrio and Villata (2012)
Convincingness Argument Debate portal arguments ~ Habernal and Gurevych (2016)
Prominence Argument Forum discussions BoltuZzi¢ and Snajder (2015)
Relevance Argument Diverse genres Wachsmuth et al. (2017)

Table 2: Practical assessment of quality dimensions in the referenced sources for the given granularities
and text genres of natural language argumentation, grouped by the aspect the quality dimensions refer to.

approach above. Their results indicate a correlation
between organization and local coherence. Feng
et al. (2014) parse discourse structure to assess
global coherence, i.e., the continuity of meaning in
a text. Lacking ground-truth coherence labels, they
evaluate their approach on sentence ordering and
organization scoring instead. Coherence affects the
clarity of style, as do the thesis clarity and prompt
adherence of essays. Persing and Ng (2013) find
the former to suffer from misspellings, while Pers-
ing and Ng (2014) use prompt-related keywords
and topic models to capture the latter (both for 8§30
ICLE essays like those mentioned above). For com-
ments in lawmaking, Park et al. (2015) develop an
argumentation model that prescribes what informa-
tion users should give to achieve evaluability (e.g.,
testimony evidence or references to resources).

Not only linguistic quality, but also effectiveness
is assessed in recent work: Persing and Ng (2015)
score the argument strength of essays, which they
define rhetorically in terms of how many readers
would be persuaded. Although potentially sub-
jective, their manual 7-point score annotations of
1000 ICLE essays differ by at most 1 in 67% of
the studied cases. Their best features are heuristic
argument unit labels and part-of-speech n-grams.
Recently, Wachsmuth et al. (2016) demonstrated
that the output of argument mining helps in such
argumentation-related essay scoring, obtaining bet-
ter results for argument strength and organization.
Tan et al. (2016) analyze which arguments achieve
persuasiveness in “change my view” forum discus-
sions, showing that multiple interactions with the
view-holder are beneficial as well as an appropriate
style and a high number of participants. On similar
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data, Wei et al. (2016) find that also an author’s rep-
utation impacts persuasiveness. Zhang et al. (2016)
discover for Oxford-style debates that attacking the
opponents’ arguments tends to be more effective
than relying on one’s own arguments. These results
indicate the relation of rhetoric and dialectic.

Dialectic Dialectical quality has been addressed by
Cabrio and Villata (2012). The authors use textual
entailment to find ground-truth debate portal argu-
ments that attack others. Based on the formal ar-
gumentation framework of Dung (1995), they then
assess global argument acceptability. Habernal and
Gurevych (2016) compare arguments in terms of
convincingness. However, the subjective nature of
their crowdsourced labels actually reflects rhetor-
ical effectiveness. Boltuzi¢ and Snajder (2015)
present first steps towards argument prominence.
Prominence may be a product of popularity, though,
making its quality nature questionable, as popular-
ity is often not correlated with merit (Govier, 2010).
In contrast, Wachsmuth et al. (2017) adapt the fa-
mous PageRank algorithm to objectively derive the
relevance of an argument at web scale from what
other arguments refer to the argument’s premises.
On a large ground-truth argument graph, their ap-
proach beats several baselines for the benchmark
argument rankings that they provide.

Other Again, we have left out deliberative quality
(Gold et al., 2015). Also, we omit approaches that
classify argumentation schemes (Feng and Hirst,
2011), evidence types (Rinott et al., 2015), ethos-
related statements (Duthie et al., 2016), and myside
bias (Stab and Gurevych, 2016); their output may
help assess quality assessment, but they do not actu-
ally assess it. The same holds for argument mining,
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Figure 1: The proposed taxonomy of argumentation quality as well as the mapping of existing assessment
approaches to the covered quality dimensions. Arrows show main dependencies between the dimensions.

even if said to aim for argument quality (Swanson
et al., 2015). Much work exists for general text
quality, most notably in the context of readability
(Pitler and Nenkova, 2008) and classical essay scor-
ing. Some scoring approaches derive features from
discourse (Burstein et al., 1998), arguments (Ong et
al., 2014; Beigman Klebanov et al., 2016; Ghosh
et al., 2016), or schemes (Song et al., 2014)—all
this may be indicative of quality. However, our
focus is approaches that target argumentation qual-
ity at heart. Similarly, review helpfulness (Liu et
al., 2008) and deception (Ott et al., 2011) are not
treated, as arguments only partly play a role there.
Also, only few Wikipedia quality flaws relate to ar-
guments, e.g., verifiability (Anderka et al., 2012).

3 A Taxonomy of Argumentation Quality

Given all surveyed quality dimensions, we now pro-
pose a unifying taxonomy of argumentation quality.
The taxonomy decomposes quality assessment sys-
tematically, thus organizing and clarifying the roles
of practical approaches. It does not require a partic-
ular argumentation model, but it rests on the notion
of the granularity levels from Section 1.

3.1 Overview of the Theory-based Taxonomy

Our objective is not to come up with a new theory,
but to provide a unified view of existing theories
that is suitable for quality assessment. We aim for
a common understanding of the dimensions that af-
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fect quality, what interdependencies they have, and
how they interact. Figure 1 illustrates the taxonomy
that we propose for this purpose. The rationale be-
hind its structure and its layout is as follows.

While Section 2 has outlined overlaps and rela-
tions between the three aspects of argumentation,
we have identified one dominant high-level quality
dimension of argumentation quality in theory for
each aspect: logical cogency, rhetorical effective-
ness, and dialectical reasonableness. The latter two
benefit from cogency, and reasonableness depends
on effectiveness, as discussed. Often, only one of
them will be in the focus of attention in practice, or
even only a sub-dimension. In particular, each high-
level dimension has a set of sub-dimensions agreed
upon. The sub-dimensions are shown on the outer
ring in Figure 1, roughly positioned according to
the aspects they refer to, e.g., local acceptability
lies next to the other dialectical dimensions. We
ordered the sub-dimensions by their interrelations
(left implicit for conciseness), e.g., appropriateness
supports credibility and emotional appeal.

Slightly deviating from theory, we match Aris-
totle’s logos dimension with cogency, which better
fits real-world argumentation. Similarly, we omit
those dimensions from Table 1 in the taxonomy
that have unclear definitions, such as strength, or
that are covered by others, such as well-formedness,
which merely refines the acceptability part of co-
gency (Govier, 2010). Convincingness is left out,



as it is close to effectiveness and as both the feasi-
bility and the need of persuading the universal audi-
ence has been questioned (van Eemeren, 2015). In-
stead, we add global sufficiency as part of reason-
ableness. While global sufficiency may be infeasi-
ble, too (Blair, 2012), it forces agreement in critical
discussions and, thereby, reasonableness.

3.2 Definitions of the Quality Dimensions

Cogency is seen as an argument property, whereas
effectiveness and reasonableness are assessed on
the argumentation level usually. For generality, we
give informal literature-based definitions of these
dimensions and all sub-dimensions here for an au-
thor who argues about an issue to a target audience:

Cogency An argument is cogent if it has accept-
able premises that are relevant to its conclusion and
that are sufficient to draw the conclusion.

e Local acceptability: A premise of an argu-
ment is acceptable if it is rationally worthy of
being believed to be true.

e Local relevance: A premise of an argument is
relevant if it contributes to the acceptance or
rejection of the argument’s conclusion.

o Local sufficiency: An argument’s premises are
sufficient if, together, they give enough sup-
port to make it rational to draw its conclusion.

Effectiveness Argumentation is effective if it per-
suades the target audience of (or corroborates agree-
ment with) the author’s stance on the issue.

o Credibility: Argumentation creates credibility
if it conveys arguments and similar in a way

that makes the author worthy of credence.

Emotional Appeal: Argumentation makes a
successful emotional appeal if it creates emo-
tions in a way that makes the target audience
more open to the author’s arguments.

Clarity: Argumentation has a clear style if
it uses correct and widely unambiguous lan-
guage as well as if it avoids unnecessary com-
plexity and deviation from the issue.

e Appropriateness: Argumentation has an ap-
propriate style if the used language supports
the creation of credibility and emotions as
well as if it is proportional to the issue.

e Arrangement: Argumentation is arranged
properly if it presents the issue, the arguments,
and its conclusion in the right order.
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Reasonableness Argumentation is reasonable if it
contributes to the issue’s resolution in a sufficient
way that is acceptable to the target audience.

o Global acceptability: Argumentation is ac-
ceptable if the target audience accepts both
the consideration of the stated arguments for
the issue and the way they are stated.

Global relevance: Argumentation is relevant
if it contributes to the issue’s resolution, i.e.,
if it states arguments or other information that
help to arrive at an ultimate conclusion.

Global sufficiency: Argumentation is suffi-
cient if it adequately rebuts those counter-
arguments to it that can be anticipated.

3.3 Organization of Assessment Approaches

The taxonomy is meant to define a common ground
for assessing argumentation quality, including the
organization of practical approaches. The left and
right side of Figure 1 show where the approaches
surveyed in Section 2.2 are positioned in the taxon-
omy. Some dimensions have been tackled multiple
times (e.g., clarity), others not at all (e.g., credibil-
ity). The taxonomy indicates what sub-dimensions
will affect the same high-level dimension.

4 The Dagstuhl-15512 ArgQuality Corpus

Finally, we present our new annotated Dagstuhl-
15512 ArgQuality Corpus for studying argumenta-
tion quality based on the developed taxonomy, and
we report on a first corpus analysis.>

4.1 Data and Annotation Process

Our corpus is based on the UKPConvArgRank data-
set (Habernal and Gurevych, 2016), which contains
rankings of 25 to 35 textual debate portal arguments
for two stances on 16 issues, such as evolution vs.
creation and ban plastic water bottles. All ranks
were derived from crowdsourced convincingness
labels. For every issue/stance pair, we took the five
top-ranked texts and chose five further via stratified
sampling. Thereby, we covered both high-quality
arguments and different levels of lower quality.
Two example texts follow below in Figure 2.
Before annotating the 320 chosen texts, we car-
ried out a full annotation study with seven authors
of this paper on 20 argumentative comments from
3The corpus and annotation guidelines are available at
http://www.arguana.com. The corpus is named after the Dag-

stuhl Seminar 15512 “Debating Technologies” that initialized
the research in this paper: http://www.dagstuhl.de/15512



(a) Maj. Scores  (b) Agreement (c) Pearson Correlation Coefficients

Quality Dimension 1 2 3 « full maj, Co LALRLS Ef Cr Em Cl Ap Ar Re GA GR GS
Co Cogency 150 131 23 .44 40.1% 91.8% .64 61 .84 81 46 .27 41 32 .55 .78 .64 .71 .70
LA Local acceptability 84 169 51 .46 27.0% 90.8% .64 51 53 .60 .54 30 40 .54 46 .68 .75 46 .45
LR Local relevance 25 155 124 47 32.6% 92.4% .61 .51 .56 .56 .39 27 46 .35 .50 .62 .58 .68 .45
LS Local sufficiency 172 119 13 .44 37.2% 92.8% .84 .53 .56 73 .39 25 37 23 .51 .67 .51 .68 .74
Ef Effectiveness 184 111 9 .45 42.1% 94.4% .81 .60 .56 .73 48 31 35 .34 54 75 .58 .66 .71
Cr Credibility 99 199 6 .37 37.8% 95.7% .46 .54 39 39 48 37 32 .49 37 .52 .52 36 .40
Em Emotional appeal 48 235 21 .26 42.8% 94.4% .27 30 .27 25 .31 .37 .14 .30 .20 .30 .26 .26 .22
Cl Clarity 42 191 71 .35 29.3% 89.8% .41 40 46 37 .35 .32 .14 45 56 44 45 38 27
Ap Appropriateness 43 196 65 .36 17.4% 87.5% .32 .54 35 23 .34 .49 30 .45 48 47 59 20 .20
Ar Arrangement 91 189 24 .39 26.6% 93.4% .55 .46 .50 .51 .54 .37 20 .56 .48 55 .51 .49 48
Re Reasonableness 126 159 19 .50 41.4% 95.7% .78 .68 .62 .67 .75 .52 30 .44 47 .55 .78 .65 .61
GA Global acceptability 88 161 55 .44 31.6% 95.4% .64 .75 58 .51 .58 .52 .26 .45 .59 51 .78 46 43
GR Global relevance 69 167 68 .42 21.7% 90.1% .71 .46 .68 .68 .66 .36 .26 .38 .20 49 .65 .46 .61
GS Global sufficiency 231 72 1 .27 44.7% 98.0% .70 .45 45 .74 71 40 .22 27 20 48 .61 43 .61

Ov Overall quality 152 128 24 .51 44.1% 94.4% .84 .66 .61 74 .81 .52 30 45 42 .59 .86 .71 .70 .68

Table 3: Results for the 304 corpus texts classified as argumentative by all annotators: (a) Distribution of
majority scores for each dimension (2 used in case of full disagreement). (b) Krippendorff’s « of the most
agreeing annotator pair and full/majority agreement of all annotators. (c¢) Correlation for each dimension
pair, averaged over the correlations of all annotators. The highest value in each column is marked bold.

the unshared task dataset of the 3rd Workshop on
Argument Mining.* The annotators assessed all 15
quality dimensions in the taxonomy for each com-
ment (including its overall quality). Due to sim-
ple initial guidelines based on the definitions from
Section 3 and the subjectiveness of the task, the
agreement of all seven annotators was low for all di-
mensions, namely, at most .22 in terms of Krippen-
dorff’s . The three most agreeing annotators for
each dimension achieved much higher a--values be-
tween .23 (clarity) and .60 (credibility), though.5
The study results were discussed by all annota-
tors, leading to a considerably refined version of
the guidelines. We then selected three annotators
for the corpus annotation based on their availability.
They work at two universities and one company in
three countries (two females, one male; two PhDs,
one PhD student). For each text in the corpus, all
annotators first classified whether it was actually
argumentative. If so, they assessed all dimensions
using ordinal scores from 1 (low) to 3 (high).® Ad-
ditionally, “cannot judge” could be chosen.

4.2 Corpus Distribution and Agreement

Table 3(a) lists the majority scores of each dimen-
sion for the 304 corpus texts (95%) that are classi-
fied as argumentative by all annotators, all covering

*Unshared task data found at: http://github.com/UKPLab

SWe use Krippendorff’s « as is suitable for small samples,
multiple ratings, and ordinal scales (Krippendorft, 2007).

SWe chose a 3-point scale to foster clear decisions on the
quality; in the annotation study, we used a 4-point scale but
observed that the annotators only rarely chose score 1 and 4.
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the whole score range. Five dimensions have the
median at score 1, the others at 2. Some seem easier
to master, such as local relevance, which received
the highest majority score 124 times. Others rarely
got score 3, above all global sufficiency. The latter
is explained by the fact that only few texts include
any rebuttal of counter-arguments.

Only one of the over 14,000 assessments made
by the three annotators was “cannot judge” (for glo-
bal relevance), suggesting that our guidelines were
comprehensive. Regarding agreement, we see in
Table 3(b) that the a-values of all logical and di-
alectical quality dimensions except for global suffi-
ciency lie above 0.4 for the most agreeing annotator
pair. As expected, the rhetorical dimensions seem
to be more subjective. The lowest « is observed
for emotional appeal (0.26). The annotators most
agreed on the overall quality (o« = 0.51), possibly
meaning that the taxonomy adequately guides the
assessment. In accordance with the moderate a-
values, full agreement ranges between 17.4% and
44.7% only. On the contrary, we observe high ma-
jority agreement between 87.5% and 98% for all di-
mensions, even where scores are rather evenly dis-
tributed, such as for global acceptability (95.4%).
In case of full disagreement, it makes sense to use
score 2. We hence argue that the corpus is suitable
for evaluating argumentation quality assessment.

Figure 2 shows all scores of each annotator for
two example arguments from the corpus, referring
to the question whether to ban pla