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Preface

Welcome to EMNLP-CoNLL 2007, an unprecedented joint meeting of the Conference on Empirical
Methods in Natural Language Processing (EMNLP) and the Conference on Computational Natural
Language Learning (CoNLL).

The conference is a joint effort of SIGDAT and SIGNLL, the ACL Special Interest Groups that usually
organize the annual EMNLP and CoNLL conferences, respectively.

Our field is growing rapidly. This year, EMNLP-CoNLL considered a remarkable 398 submissions,'

accepting 109 of them (for an acceptance rate of 27%). It is startling to realize that even the ACL
conferences were not this large until two years ago.

Only 66 of the accepted papers were scheduled for presentation as talks, and 43 more as posters. We
took pains to ensure that the poster sessions would be leisurely and interactive.

In addition, two sessions of the conference and 22 specially designated short papers in this volume are
devoted to the CoNLL Shared Task competition, an annual tradition. The 2007 competition concerns
dependency parsing, with both a multilingual track and a domain adaptation track.

Several innovations this year have received positive feedback and are worth mentioning:

e To encourage thorough citation of related work, a paper’s References section was not counted
against the 8-page limit for submitted papers or the 9-page limit for camera-ready papers.

(Note that authors were allowed an extra page in the camera-ready version to help them effectively
address reviewers’ comments, following an innovation at EMNLP 2006.)

e The review form was redesigned (starting from the fine review form of EACL 2006) to provide
clearer and more consistent guidance to reviewers, area chairs, and authors. Authors were
directed to consult the review form, which was posted at the conference website, while preparing
their submissions and when interpreting their review scores.

e Some of our submissions (fewer than 1/3) appeared to be revisions of rejected ACL 2007
submissions. Where possible, we tried to conserve valuable information and effort from the
ACL 2007 reviewing process by re-assigning one, though only one, of the ACL reviewers to such
a paper.

Such re-reviewers were instructed to give the new, revised submission the fresh reading that it
deserved, but they were also encouraged to bring up points that still applied from any of the ACL
2007 reviews or discussion.

'Of the original 419 submissions, 17 were withdrawn (usually upon acceptance elsewhere), and 4 more were rejected
without review (for violating the conference’s standards on length, anonymization, or plagiarism).
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e By accepting many posters and presenting them all simultaneously, we hoped to accommodate a
large audience without overcrowding at each poster.

The large number of posters in turn required a long period for poster viewing. With a total of 5
hours spanning two receptions, a conferencegoer can engage with nearly half of the posters for 15
minutes of personalized discussion each. This makes the posters roughly as visible as the talks,
which are split into parallel sessions.

e In addition to the Best Paper Award (see Session 1), we are considering organizing—if logistically
feasible—an “Audience Choice” award for the most worthwhile presentation at the conference.
Such a prize would reward authors who not only produced outstanding research but also
communicated it clearly and enjoyably at the conference meeting.

It is my privilege to thank the many individuals—most of them listed on the following pages—whose
generous efforts have made this conference possible. Foremost are the 16 dedicated area chairs and
370 reviewers, who worked together hard and thoughtfully to select this excellent program and provide
valuable feedback to the authors. Also as part of the technical program, Joakim Nivre chaired the
organization of the CoNLL Shared Task and the resulting short papers; Taku Kudo ably identified ACL
2007 resubmissions (see above); and Hal Daumé III kindly chaired the best paper award committee.
Eric Ringger put a great deal of effort into producing this fine proceedings volume, with support from
Su Jian, the ACL publications chair. Jan Hajic coordinated the many local arrangements, along with
Priscilla Rasmussen, Anna Kotesovcova, Jiri Mirovsky, Pavel Stranak, Zdenek Zabokrtsky, and no
doubt others; we are very grateful to them for making everything run smoothly in Prague. Antal van
den Bosch, Dan Jurafsky, Eric Gaussier, and Ken Church provided much valuable advice over the
past months based on their experience. Finally, let us not forget the hundreds of authors who actually
produced the excellent research in this volume, and the invited speakers who graciously traveled a long
way to enlighten us.

Enjoy the conference!

Jason Eisner
EMNLP-CoNLL Chair
May 2007
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Modelling Compression with Discourse Constraints
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2 Bucclecuch Place, Edinburgh EH8 9LW, UK

jclarke@ed.ac.uk

Abstract

Sentence compression holds promise for
many applications ranging from summarisa-
tion to subtitle generation and subtitle gen-
eration. The task is typically performed on
isolated sentences without taking the sur-
rounding context into account, even though
most applications would operate over entire
documents. In this paper we present a dis-
course informed model which is capable of
producing document compressions that are
coherent and informative. Our model is in-
spired by theories of local coherence and
formulated within the framework of Integer
Linear Programming. Experimental results
show significant improvements over a state-
of-the-art discourse agnostic approach.

Introduction

, mlap@inf.ed.ac.uk

used verbatim due to the rate of speech being too
high (Vandeghinste and Pan 2004). Other applica-
tions include compressing text to be displayed on
small screens (Corston-Oliver 2001) such as mobile
phones or PDAs, and producing audio scanning de-
vices for the blind (Grefenstette 1998).

Most work to date has focused on a rather sim-
ple formulation of sentence compression that does
not allow any rewriting operations, besides word re-
moval. Moreover, compression is performed on iso-
lated sentences without taking into account their sur-
rounding context. An advantage of this simple view
is that it renders sentence compression amenable to
a variety of learning paradigms ranging from in-
stantiations of the noisy-channel model (Galley and
McKeown 2007; Knight and Marcu 2002; Turner
and Charniak 2005) to Integer Linear Programming
(Clarke and Lapata 2006a) and large-margin online
learning (McDonald 2006).

The computational treatment of sentence compres- N this paper we take a closer look at one of
sion has recently attracted much attention in ththe simplifications associated with the compression
literature. The task can be viewed as producing task, namely that sentence reduction can be realised
summary of a single sentence that retains the mo& iselation without making use of discourse-level
important information and remains grammatically”format'on- This is clearly not true — profe§5|onal
correct (Jing 2000). Sentence compression is corfbstracters often rely on contextual cues while creat-

monly expressed as a word deletion problem: givelfd Summaries (Endres-Niggemeyer 1998). Further-
an input sentence of wordd = Wy, Wa, ..., Wy, the MOre, determining what information is important in

aim is to produce a compression by removing an

subset of these words (Knight and Marcu 2002). _ -
Sentence compression can potentially benefigNce introduces new entities or events that have not

many applications. For example, in summarisatior{?ee” mentioned before, and the reader’s background

a compression mechanism could improve the cofnowledge.
ciseness of the generated summaries (Jing 2000;The simplification is also at odds with most appli-

? sentence is influenced by a variety of contextual
a

ctors such as the discourse topic, whether the sen-

Lin 2003). Sentence compression could be alscations of sentence compression which aim to cre-
used to automatically generate subtitles for teleate a shorter document rather than a single sentence.
vision programs; the transcripts cannot usually b&he resulting document must not only be grammat-

1
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ical but also coherent if it is to function as a re-models learn either which constituents to delete or
placement for the original. However, this cannot bevhich words to place adjacently in the compression
guaranteed without knowing how the discourse prosutput. Relatively few approaches dispense with the
gresses from sentence to sentence. To give a simgarallel corpus and generate compressions in an un-
example, a contextually aware compression systesupervised manner using either a scoring function
could drop a word or phrase from the current sen(Clarke and Lapata 2006a; Hori and Furui 2004) or
tence, simply because it is not mentioned anywhemmpression rules that are approximated from a non-
else in the document and is therefore deemed unimarallel corpus such as the Penn Treebank (Turner
portant. Or it could decide to retain it for the sake ofand Charniak 2005).
topic continuity. Our work differs from previous approaches in two
We are interested in creating a compression modkey respects. First, we present a compression model
that is appropriate for documents and sentences. Tat is contextually aware; decisions on whether to
this end, we assess whether discourse-level informeemove or retain a word (or phrase) are informed by
tion is helpful. Our analysis is informed by two pop-its discourse properties (e.g., whether it introduces a
ular models of discourse, Centering Theory (Grospew topic, whether it is semantically related to the
et al. 1995) and lexical chains (Morris and Hirstprevious sentence). Second, we apply our compres-
1991). Both approaches modekal coherence— sion model to entire documents rather than isolated
the way adjacent sentences bind together to formsentences. This is more in the spirit of real-world ap-
larger discourse. Our compression model is an eylications where the goal is to generate a condensed
tension of the integer programming formulation pro-and coherent text. Previous work on summarisation
posed by Clarke and Lapata (2006a). Their approadtas also utilised discourse information (e.g., Barzi-
is conceptually simple: it consists of a scoring funclay and Elhadad 1997; Daumé Ill and Marcu 2002;
tion coupled with a small number of syntactic andMarcu 2000; Teufel and Moens 2002). However, its
semantic constraints. Discourse-related informatioapplication to document compression is novel to our
can be easily incorporated in the form of additionaknowledge.
constraints. We employ our model to perform sen-
tence compression throughout a whole docume@ Discourse Representation

(by compressing sentences sequentially) and evalu- = . . . : .
ate whether the resulting text is understandable arydPtaining an appropriate representation of discourse

informative using a question-answering task. ou the first step towards creating a compression

method yields significant improvements over a O”S[nodel that exploits contextual information. In this
prk we focus on the role of local coherence as

course agnostic state-of-the-art compression mod%(f _ site f o lobal coh

(McDonald 2006). this is prerequisite for maintaining g obal coherence.
Ideally, we would like our compressed document to

2 Related Work maintain the dlscour_se flow of the original. For this
reason, we automatically annotate the source docu-

Sentence compression has been extensively stUgent with discourse_—level information which is sub-
ied across different modelling paradigms and hagéduently used to inform our compression proce-
received both generative and discriminative formudure. We first describe our algorithms for obtaining
lations. Most generative approaches (Galley ang!scourse annotations and then present our compres-
McKeown 2007; Knight and Marcu 2002; TurnerSion model.

and Charniak 2005) are instantiations of the noisy-
channel model, whereas discriminative formulationg’
include decision-tree learning (Knight and MarcuCentering Theory (Grosz et al. 1995) is an entity-
2002), maximum entropy (Riezler et al. 2003)orientated theory of local coherence and salience.
support vector machines (Nguyen et al. 2004)Although an utterance in discourse may contain sev-
and large-margin learning (McDonald 2006). Theseral entities, it is assumed thatsingle entityis
models are trained on a parallel corpus of longalient or “centered”, thereby representing the cur-
sourcesentences and thdarget compressions. Us- rent focus. One of the main claims underlying cen-
ing a rich feature set derived from parse trees, thiering is that discourse segments in which succes-

.1 Centering Theory

2



sive utterances contain common centers are morel. Extract entities frontJ;.

coherent than segments where the center repeatedl. Create C¢(U;) by ranking the entities in

changes. U; according to their grammatical role
Each utterancéJ; in a discourse segment has a (subjects> objects> others).

list of forward-looking center<Cs(U;) and aunique 3. Find the highest ranked entity i6(U;_1)

backward-looking centeCy,(U;). Ct (U;) represents which occurs inCt(U;), set the entity to
a ranking of the entities invoked By; according beCp(U;).

to their salience. Th&, of the current utterance _ _
Ui, is the highest-ranked element@(U;_;) that is The above procedure involves several automatic
also inU;. TheC, thus linksU; to the previous dis- Steps (named entity recognition, coreference reso-

fromU;_;. unavoidably produce some noisy annotations. So,

there is no guarantee that the rigtg will be iden-
Centering Algorithm  So far we have presented tified or that all sentences will be marked witlCa
centering without explicitly stating how the con-The latter situation also occurs in passages that con-
cepts “utterance”, “entities” and “ranking” are in-tain abrupt changes in topic. In such cases, none of
stantiated. A great deal of research has been devotgf entities realised it; will occur in Cs (Ui_1).
into fleshing these out and many different instantiarRather than accept that discourse information may
tions have been developed in the literature (see Poge absent in a sentence, we turn to lexical chains
sio et al. 2004 for details). Since our aim is to idengs an alternative means of capturing topical content
tify centers in discourse automatically, our paramwithin a document.
eter choice is driven by two considerations, robust-
ness and ease of computation. 3.2 Lexical Chains

We_therefore_ follow previous vyork (eg. M".t' H_exical cohesion refers to the degree of semantic re-
sakaki and Kukich 2000) in assuming that the unit g 2 .
lfahtedness observed among lexical items in a docu-

an utterance is the sentence (i.e., a main clause wi h ined b liid q
accompanying subordinate and adjunct clause rﬂem' The term was coined by Halliday and Hasan

T . . . S( 976) who observed that coherent documents tend
This is in line with our compression task which alsq

to have more related terms or phrases than inco-

qperates over sentences. We deterr_mne which Rerent ones. A number of linguistic devices can be
tities are invoked by a sentence using two meth-

. o .. .. used to signal cohesion; these range from repeti-
ods. First, we perform named entity identification; .
.tion, to synonymy, hyponymy and meronymy. Lexi-

and coreference resolution on each document using . . i )
L . ) | chains are a representation of lexical cohesion as
LingPipé', a publicly available system. Named en-

fities and all remaining nouns are added to e sequences of semantically related words (Morris and

list. Entity matching between sentences is require'EI| Irst 1991) and provide a useful means for describ-

to determine the, of a sentence. This is done using|ng the topic flow in discourse. For instance, a docu-

. . ) e . ment with many different lexical chains will prob-
the named entity's unique identifier (as provided b%\bly contain several topics. And main topics will

i " Send to be represented by dense and long chains.
of nouns not classified as named entities. SR . .
" . . ._Words participating in such chains are important for
Entities are ranked according to their grammatica .
roles; subjects are ranked more highly than ob'ect(s)ur compression task — they reveal what the docu-
) ) . gnly J€CtR ent is about — and in all likelihood should not be
which are in turn ranked higher than other gramma

t-
ical roles (Grosz et al. 1995); ties are broken usingeleted'

left-to-right ordering of the grammatical roles in the| eyjcal Chains Algorithm  Barzilay and Elhadad

sentence (Tetreault 2001). We identify grammaticgh 9g97) describe a technique for text summarisation
roles with RASP (Briscoe and Carroll 2002). Forpased on lexical chains. Their algorithm uses Word-
mally, our centering algorithm is as follows (Whereygt to puild chains of nouns (and noun compounds).

Ui corresponds to sentende These are ranked heuristically by a score based on
lLingPipe can be downloaded fromhttp:/www. their length and homogeneity. A summary is then
alias-i.com/lingpipe/ . produced by extracting sentences corresponding to



strong chaingi.e., chains whose score is two stant Bad weatheﬂ dashed hopes of attempts to halt
dard deviations above the average score. the during what was seen as a Iull n

Like Barzilay and Elhadad (1997), we wish to
determine which lexical chains indicate the mos
prevalent discourse topics. Our assumption is th

terms belonging to these chains are indicative of thef, ; ; e

ava|| piled up behind for six miles;| would
document’s main focus and should therefore be r¢ | : | p _ P _
tained in the compressed output. Barzilay and EJ-bring | debris| cascading down on to t

hadad’s scoring function aims to identify sentence
(for inclusion in a summary) that have a high con

i the momentum. Experts say that eve

1if the eruption stoppegtoday, ), the pressure o

sanyway. Some estimate the volcano is pouring

 one million tons of debris| a(day, |, at a(rate )

2N
f

out

centration of chain members. In contrast, we are in- .. .
) ) ' of 15 ft3 | per| second |, from a fissure that opened
terested in chains that span several sentences. Wg miepce P

thus score chains according to the number of se
tences their terms occur in. For example, the cha
{house, home, loft;, houseg} (where word, de-

notesword occurring in sentencg would be given gy re 1: Excerpt of document from our test set with
a score of two as the terms only occur in two SeNgiscourse annotations. Centers are in double boxes;
tences. We assume that a chain signals a prevalggtms occurring in lexical chains are in oval boxes.
discourse topic if it occurs throughout more senyyqrqs with the same subscript are members of the

tences than the average chain. The scoring algorithgy me chain (e.gtoday, day, seconclyesterday
is outlined more formally below: ’

"The Italian Arm detonated 400Ib of

ndynamite 3,500 feet up Mount Etna’s slopes.

1. Compute the lexical chains for the document.

2. ScoréChain) = Sentencgghain).

3. Discard chains iScorédChain) < Avg(Scors.

4. Mark terms from the remaining chains as bein
the focus of the document.

tion. The latter is essentially a language model cou-
pled with a few constraints ensuring that the re-
sulting output is grammatical. The language model
%nd the constraints are encoded as linear inequal-
ities whose solution is found using Integer Linear
We use the method of Galley and McKeown (2003Programming (ILP, Vanderbei 2001; Winston and
to compute lexical chains for each documéiithis  Venkataramanan 2003).
is an improved version of Barzilay and Elhadad’'s \We selected this model for several reasons. First
(1997) original algorithm. it does not require a parallel corpus and thus can be
Before compression takes place, all documengsorted across domains and text genres, whilst de-
are pre-processed using the centering and lexiciering state-of-the-art results (see Clarke and La-
chain algorithms described above. In each sentengata 2006a for details). Second, discourse-level in-
we mark the centeCy(U;) if one exists. Words (or formation can be easily incorporated by augment-
phrases) that are present in the current sentence ang the constraint set. This is not the case for other
function as the center in the next sente@€Ji,1) approaches (e.g., those based on the noisy channel
are also flagged. Finally, words are marked if theynodel) where compression is modelled by gram-
are part of a prevalent chain. An example of our dismar rules indicating which constituents to delete in a
course annotation is given in Figure 1. syntactic context. Third, the ILP framework delivers
a globally optimal solution by searching over the en-
tire compression spateavithout employing heuris-

Our model is an extension of the approach put fort-ICS or approximations during decoding.

ward in Clarke and Lapata (2006a). Their work tack- \(/jVe begin b2y recapping the formulation gf Clarke
les sentence compression as an optimisation prof” Lapatasc 006;".)'th - \.Nlﬁwz"“’W” enote
lem. Given a long sentence, a compression is forméd Sentence for which we wish to generate a com-

by retaining the words that maximise a scorin funcpression. A set of binary decision .variablesf repre-
y g g sent whether each workg should be included in the

4 The Compression Model

2The software
columbia.edu/"galley/

is available fromhttp://wwwl.cs. -
3For a sentence of length there are 2 compressions.



compression or not. Let: 4.1 Significance Score

The significance score is an attempt at capturing the
" c[1l...n] gist of a sentence. It gives more weight to content
words that appear in the deepest level of embed-

. ing in the syntactic tree representing the source
A trigram language model forms the backbone Ogenqtence' y P g

the compression model. The language model is for- [ Fa

mulated as an integer program with the introduction H(wi) = N’ f logﬁ 3)

of extra decision varlabl_es indicating whiatord The score is computed over a large corpus where

sequenceshould be retained or dropped from theIS a content word (i.e., a noun or verth,andF; are

compression. Let: the frequencies ofy; in the document and corpus
respectively, andr, is the sum of all content words

e [1...n] in the corpusl is the number of clause constituents
abovew;, andN is the deepest level of embedding.

| 1 ifwisinthe compressio
Y'=1 0 otherwise

|1 if w; starts the compressi
' 7 )0 otherwise

1 if sequencev;, w; ends 4.2 Sentential Constraints
gij = the compression Vie[l...n—1] The model
0 otherwise Vieli+1...n

also contains a small number of
sentence-level constraints. Their aim is to preserve
the meaning and structure of the original sentence
as much as possible. The majority of constraints
revolve around modification and argument struc-
ture and are defined over parse trees or gram-
The objective function is expressed in Equamatical relations. For example, the following con-
tion (1). It is the sum of all possible trigrams mul-straint template disallows the inclusion of modifiers
tiplied by the appropriate decision variable. The obte.g., nouns, adjectives) without their head words:
jective function also includes a significance score for yi—yi >0 @
each word multiplied by the decision variable for . b=
that word (see the last summation term in (1)). This Vi, j : wj modifiesw;

score highlights important content words in a senother constraints force the presence of modifiers

1 if sequencav;,wj,w Vie [1...n—2]
Xijk =< isinthe compressioVj e [i+1...n—1]
0 otherwise vke[j+1...n|

tence and is defined in Section 4.1. when the head is retained in the compression. This
n way, it is ensured that negation will be preserved in
maxz — Zpi - P(w;|star) the compressed output:
| n—2n-1 n Yi—yj=0 (®)
+ Z z Z Xijk * P(Wk‘Wi,Wj) Vi, LW modifiesw; A wj = not
i=1 j=1+1k=]+1

1 on Argument structure constraints make sure that
+ Z) Z Gij - P(endwi, w;) the resulting compression has a canonical argument
= rE] structure. For instance a constraint ensures that if a

n verb is present in the compression then so are its ar-
+ Zl)/i -1 (wi) (1) guments:
i=
subject to: Yi—yj=0 (6)
Yi, Pi, Gij, Xijk =0orl 2) Vi, j - w;j € subject/object of veri;

Finally, Clarke and Lapata (2006a) propose one
scourse constraint which forces the system to pre-
serve personal pronouns in the compressed output:

A set of sequentialconstraint$ are added to the di
problem to only allow results which combine valid

trigrams.

— _ . - yi=1 Q)
We have omitted sequential constraints due to space limi- .

tations. The full details are given in Clarke and Lapata )0 Vi:w; € personal pronouns

5



4.3 Discourse Constraints 4.4 Applying the Constraints

In addition to the constraints described above, ouDur compression system is given a (sentence sepa-
model includes constraints relating to the centeringated) document as input. The ILP model just pre-
and lexical chains representations discussed in Segented is then applied sequentially to all sentences
tion 3. Recall that after some pre-processing, eaad generate a compressed version of the original. We
sentence is marked with: its own cen@j(U;), the  thus create and solve an ILP for every sentehbre.
centerCy(Uj;1) of the sentence following it and the formulation of Clarke and Lapata (2006a) a sig-
words that are members of high scoring chains conificance score (see Section 4.1) highlights which
responding to the document’s focus. We introduc@ouns and verbs to include in the compression. As
two new types of constraints based on these addir as nouns are concerned, our discourse constraints
tional knowledge sources. perform a similar task. Thus, when a sentence con-

The first constraint is the centering constraintains discourse annotations, we are inclined to trust
which operates over adjacent sentences. It ensurd®em more and only calculate the significance score
that theCy, identified in the source sentence is refor verbs.

tained in the target compression. If present, the en- During development it was observed that apply-
tity realised as th&, in the following sentence is ing all discourse constraints simultaneously (see

also retained: Equations (7)—(9)) results in relatively long com-
pressions. To counter this, we employ these con-

yi=1 (8) straints using a back-off strategy that relies on pro-

Vi i w; € {Cp(Ui),Co(Uit1)} gressively less reliable information. Our back-off

model works as follows: if centering information is
Consider for example the discourse in Figure 1. Thgresent, we apply the appropriate constraints (Equa-

constraints generated from Equation (8) will requir({'or_1 (8)). If no centers are present, we'back-off to the
the compression to retaiava in the first two sen- exical chain information using Equation (9), and in
tences andlebrisin sentences two and three the absence of the latter we back-off to the pronoun

. . : . constraint (Equation (7)). Finally, if discourse infor-
Ii\é\éeo?lllsioaggu?]slev)\(/ﬁiiLc;r?r;nz(r)]:]bsérraslr;tf -I;Zilsaleel: Pmation is entirely absent from the sentence, we de-
P y P nftault to the significance score. Sentential constraints

chains: (see Section 4.2) are applied throughout irrespec-
tively of discourse constraints. In our test data (see

yi=1 (9 section 5 for details), the centering constraint was

Vi :w; € document focus lexical chain used in 68.6% of the sentences. The model backed

off to lexical chains for 13.7% of the test sentences,
This constraint is complementary to the centeringvhereas the pronoun constraint was applied in 8.5%.
constraint; the sentences it applies to do not have tdgnally, the noun and verb significance score was
be adjacent and the entities under consideration assed on the remaining 9.2%. An example of our sys-
not restricted to a specific syntactic role (e.g., sudem’s output for the text in Figure 1 is given in Fig-
ject or object). See for instance the worftisv and ure 2.
rate in Figure 1 which are members of the same
chain (marked with subscript one). According tog Experimental Set-up
constraint (9) both words must be included in the

compressed document. In this section we present our experimental set-up.
The constraints just described ensure that th@/e briefly introduce the model used for compar-

compressed document will retain the discourse floygon with our approach and give details regarding

of the original and will preserve terms indicativeour compression corpus and parameter estimation.

of important topics. We argue that these constraintsinally, we describe our evaluation methodology.
will additionally benefit sentence-level compres-

sion, as words which are not signalled as discourse syye yse the publicly availablép_solve solver fittp:/
relevant can be dropped. www.geocities.com/Ipsolve/ ).



Bad weather dashed hopes to halt the flow dufinga compression corpus derived automatically from
what was seen as lull in lava’s momentum. EX- document-abstract pairs (Knight and Marcu 2002).
perts say that even if eruption stopped, the pres-Unfortunately, this corpus is not suitable for our
sure of lava piled would bring debris cascading. purposes since it consists of isolated sentences. We
Some estimate volcano is pouring million tons|of thus created a document-based compression corpus
debris from fissure opened in mid-December. Themanually. Following Clarke and Lapata (2006a), we
Army yesterday detonated 400Ib of dynamite. | asked annotators to produce compressions for 82
) ) stories (1,629 sentences) from the BNC and the LA
Figure 2: System output on excerpt from Figure 1-Times Washington Po&t48 documents (962 sen-
tences) were used for training, 3 for development (63

Comparison with state-of-the-art An obvious Sentences), and 31 for testing (604 sentences).
evaluation experiment would involve comparing L
the ILP model without any discourse constraintd 2rameter Estimation Our parameters for the

against the discourse informed model presented [y> Model followed closely Clarke and Lapata
this work. Unfortunately, the two models obtain(2006_a_)' We used a language mode! trained on
markedly different compression rafewhich ren- 25 million tokens from the North American News

ders the comparison of their outputs problematic. TGP'PUS- The significance score was based on 25
put the comparison on an equal footing, we evalyMilion tokens from the same corpus. Our re-

ated our approach against a state-of-the-art modgiPlementation of McDonald (2006) used an identi-

that achieves a compression rate similar to oun%al feature set, and aslllghtly modified loss function

without taking discourse-level information into ac-1© €hcourage compression on our dateset.

count. McDonald (2006) formalises sentence COMEaluation  Previous studies evaluate how well-

pression in a discriminative large-margin Iearninq . : :
e R, ormed the automatically derived compressions are
framework as a classification task: pairs of words

o ) %|.1t of context. The target sentences are typi-
from the source sentence are classified as being ad- , : . ,
cally rated by naive subjects on two dimensions,

jacent or not in the target compression. A large o : .
. rammaticality and importance (Knight and Marcu
number of features are defined over words, par . .
002). Automatic evaluation measures have also

of speech, phrase structure trees and dependen- .
cies. These are gathered over adjacent words in t g proposed. Riezler et al. (2003) compare the

i . . r%rammatical relations found in the system output
compression and the words in-between which we . . )
against those found in a gold standard using F-score

Itis important to note that McDonald (2006) is notWh.ICh Clque and L.apata (2006b) show correlates
reliably with human judgements.

a straw-man system. It achieves highly competitive . .
y gny P Following previous work, sentence-based com-

performance compared with Knight and Marcu’s . luated aut ticall ing F
(2002) noisy channel and decision tree models. pJyessions Wef[red cevaluated au tgm|a |c|a ty usm%_ h-
to its discriminative nature, the model is able to usgCOre computed over grammatical refations whic

a large feature set and to optimise compression ag-e obtained by RASP (Briscoe and Carroll 2002).

curacy directly. In other words, McDonald's model esides individual sentences, our goal was to evalu-

has a head start against our own model which do e the compressed document as whole. Our evalu-

ation methodology was motivated by two questions:

not utilise a parallel corpus and has only a few con
. : ?
straints. The comparison of the two systems allovz%l) are the documents readable? and (2) how much

us to investigate whether discourse information is r _?éulrr:(e)rr]rtnzagnitftgrre:frcvjncql tr):;vsvig(re]r’; 3\‘/2 Zgg;‘;ﬁe
dundant when using a powerful sentence compreg 9 P '

sion model.

ere that the compressed document is to function as
a replacement for the original. We can thus measure
Corpus Previous work on sentence compresthe extent to which the compressed version can be
sion has used almost exclusively the Ziff-Davis

- "The corpus is available frorhttp:/homepages.inf.

6The discourse agnostic ILP model has a compression ragg.ac.uk/s0460084/data/
of 81.2%; when discourse constraints are include the ratesdr 8McDonald’s (2006) results are reported on the Ziff-Davis
to 65.4%. corpus.



What is posing a threat to the town? (lava) Model CompR| F-Score
What hindered attempts to stop the lava flow? McDonald 60.1% | 36.09%
(bad weather) Discourse ILP| 65.4% | 39.6%
What did the Army do first to stop the lava flow Gold Standard 70.3% —_—
(detonate explosives)

~J

Table 1: Compression results: compression rate and
Figure 3: Example questions with answer key. relation-based F-scor€; sig. diff. from Discourse
ILP (p < 0.05 using the Studenttest).

used to find answers for questions which are derived Model Readability] Q&A
from the original and represent its core content. McDonald 26 53.7%
We therefore employed a question-answering Discourse ILP 3.0 68.3%
evaluation paradigm which has been previously used | Gold Standard 5.5 80.7%

for summarisation evaluation and text comprehen- _
sion (Mani et al. 2002; Morris et al. 1992). TheTable 2: Human Evaluation Results: average read-

overall objective of our Q&A task is to determine ability ratings and average percentage of questions
how accurate each document (generated by diffepnswered correctly.: sig. diff. from Gold Standard;
ent compression systems) is at answering questions Sig- diff. from Discourse ILP.

For this we require a methodology for constructing

Q&A pairs and for scoring 'each document.. from seeing two different compressions of the same
Two annotators were independently instructedocyment.

to create Q&A pairs for the original documents The study was conducted remotely over the In-

in the test set. Each annotator read the documeplhqy participants were presented with a set of in-
and then drlafted no more than ten questions ang,qtions that explained the Q&A task and provided
answers related to its content. ANnotators Werg, ,mples Subjects were first asked to read the com-

asked to create factual-based questions which rgresqeq document and rate its readability. Questions
quired an unambiguous answer; these were typicallya e then presented one at a time and participants

who/what/where/when/how style questions. ANNOge e aliowed to consult the document for the an-

tators then compared and revised their questionser once a participant had provided an answer
answer pairs to create a common agreed upon Sgley \ere not allowed to modify it. Thirty unpaid
Revisions typically involved merging questions, rey,q;nteers took part in our Q&A study. All were self
wording and simplifying questions, and in Somereported native English speakers.

cases splitting a question into multiple questions. The answers provided by the participants were

O.f SIX docgments with between five to eight CONvyvas considered a right answer to the first question
cise questions per document. Some example qu

: . . Tom Figure 3. A compressed document receives a
tions corresponding to the document from Figure

. i Tull score if subjects have answered all questions re-
are given in Figure 3; correct answers are shown 'L):\ting to it correctly
parentheses. '

Compressed documents and their accompanying Results

guestions were presented to human subjects who

were asked to provide answers as best they coulds a sanity check, we first assessed the compres-
We elicited answers for six documents in three comsions produced by our model and McDonald (2006)
pression conditions: gold standard, using the ILBn a sentence-by-sentence basis without taking the
discourse model, and McDonald’s (2006) modeldocuments into account. There is no hope for gener-
Each participant was also asked to rate the readabdting shorter documents if the compressed sentences
ity of the compressed document on a seven poirtre either too wordy or too ungrammatical. Table 1
scale. A Latin Square design prevented participanshows the compression rates (CompR) for the two

8



systems and evaluates the quality of their output ugtuistically motivated constraints. Our discourse con-
ing F-score based on grammatical relations. As castraints aim to capture local coherence and are in-
be seen, the Discourse ILP compressions are slightypired by centering theory and lexical chains. We
longer than McDonald (65.4% vs. 60.1%) but closeshowed that our model can be successfully em-
to the human gold standard (70.3%). This is not suployed to produce compressed documents that pre-
prising, the Discourse ILP model takes the entirserve most of the original’'s core content.
document into account, and compression decisions Our approach to document compression differs
will be slightly more conservative. The Discoursefrom most summarisation work in that our sum-
ILP’s output is significantly better than McDonald inmaries are fairly long. However, we believe this is
terms of F-score, indicating that discourse-level inthe first step into understanding how compression
formation is generally helpful. Both systems coulccan help summarisation. In the future, we will in-
use further improvement as inter-annotator agregerface our compression model with sentence ex-
ment on this data yields an F-score of 65.8%. traction. The discourse annotations can help guide
Let us now consider the results of our documentthe extraction method into selecting topically re-
based evaluation. Table 2 shows the mean readaldited sentences which can consequently be com-
ity ratings obtained for each system and the pepressed together. The compression rate can be tai-
centage of questions answered correctly. We uséared through additional constraints which act on
an Analysis of Variance (AovA) to examine the ef- the output length to ensure precise word limits are
fect of compression type (McDonald, Discourse ILPpbeyed.
Gold Standard). The RoOVA revealed a reliable ef- We also plan to study the effect of global dis-
fect on both readability and Q&A. Post-hoc Tukeycourse structure (Daumé Il and Marcu 2002) on the
tests showed that McDonald and the Discourse ILBompression task. In general, we will assess the im-
model do not differ significantly in terms of read-pact of discourse information more systematically
ability. However, they are significantly less read-by incorporating it into generative and discrimina-
able than the gold standard & 0.05). For the Q&A tive modelling paradigms.

task we observe that our system is significantly bet-
ter than McDonaldd < 0.05) and not significantly ACknowledgements We are grateful to Ryan Mc-
worse than the gold standard. Donald for his help with the re-implementation of

These results indicate that the automatic systen}{'éS system and our annotator; Vasilis Karaiskos
lag behind the human gold standard in terms o?nd Sgrah Luger. Thankg to Simone Teufgl, Alex
readability. When reading entire documents, Su$ascar|d_es_, Sebastian Riedel, and Bon_nle web-
jects are less tolerant of ungrammatical constru ver for insightful comments and suggestions. La-
tions. We also find out that despite relatively lonPata acknowledges the support of EPSRC (grant
readability, the documents are overall understanaG-R/TO454O/Ol)'

_able. Thg discourse informed model generates MORaferences

informative documents — the number of questions

answered correctly increases by 15% in comparisoBarzilay, R. and M. Elhadad. 1997. Using lexical
to McDonald. This is an encouraging result suggest- chains for text summarization. Rroceedings of
ing that there may be advantages in developing com- the Intelligent Scalable Text Summarization Work-
pression models that exploit contextual information. shop (ISTS), ACL-97

Briscoe, E. J. and J. Carroll. 2002. Robust accurate
statistical annotation of general text. Pmoceed-

In this paper we proposed a novel method for au- ings of the 3rd International Conference on Lan-
tomatic sentence compression. Central in our ap- 9U29¢ Resources and Evaluation (LREC-2002)

proach is the use of discourse-level information LasPalmas, Gran Canaria, pages 1499-1504.

which we argue is an important prerequisite for docClarke, James and Mirella Lapata. 2006a.
ument (as opposed to sentence) compression. OurConstraint-based sentence compression: An
model uses integer programming for inferring glob- integer programming approach. Rroceedings
ally optimal compressions in the presence of lin- of the COLING/ACL 2006 Main Conference

7 Conclusions and Future Work
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Abstract

Shallow semantic parsing, the automatic
identification and labeling of sentential con-
stituents, has recently received much atten-
tion. Our work examines whether seman-
tic role information is beneficial to question
answering. We introduce a general frame-
work for answer extraction which exploits
semantic role annotations in the FrameNet
paradigm. We view semantic role assign-
ment as an optimization problem in a bipar-
tite graph and answer extraction as an in-
stance of graph matching. Experimental re-
sults on the TREC datasets demonstrate im-
provements over state-of-the-art models.

1 Introduction

Recent years have witnessed significant progress in
developing methods for the automatic identification
and labeling of semantic roles conveyed by senten-
tial constituents.! The success of these methods, of-
ten referred to collectively as shallow semantic pars-
ing (Gildea and Jurafsky, 2002), is largely due to the
availability of resources like FrameNet (Fillmore et
al., 2003) and PropBank (Palmer et al., 2005), which
document the surface realization of semantic roles in
real world corpora.

More concretely, in the FrameNet paradigm, the
meaning of predicates (usually verbs, nouns, or ad-
jectives) is conveyed by frames, schematic repre-
sentations of situations. Semantic roles (or frame

I'The approaches are too numerous to list; we refer the inter-
ested reader to Carreras and Marquez (2005) for an overview.
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elements) are defined for each frame and corre-
spond to salient entities present in the evoked situ-
ation. Predicates with similar semantics instantiate
the same frame and are attested with the same roles.
The FrameNet database lists the surface syntactic
realizations of semantic roles, and provides anno-
tated example sentences from the British National
Corpus. For example, the frame Commerce_Sell has
three core semantic roles, namely Buyer, Goods, and
Seller — each expressed by an indirect object, a di-
rect object, and a subject (see sentences (1a)—(1c)).
It can also be attested with non-core (peripheral)
roles (e.g., Means, Manner, see (1d) and (le)) that
are more generic and can be instantiated in sev-
eral frames, besides Commerce_Sell. The verbs sell,
vend, and retail can evoke this frame, but also the
nouns sale and vendor.

sold a textbook

(D) a. [to

[Leelgeiier

AbbYlpyyer:
b.  [Kim]g,,; sold [the sweater] 5,045
[My company]g,;,, has sold [more

than three million copies] ;o qs-
d.  [Abby]g,jser sold [the car]s,,q¢ [for

cashlpsoans-
e. [Helgpjjeor [reluctanctly]lpys,nner sold
[his rock] G ods-

By abstracting over surface syntactic configura-
tions, semantic roles offer an important first step to-
wards deeper text understanding and hold promise
for a range of applications requiring broad cover-
age semantic processing. Question answering (QA)
is often cited as an obvious beneficiary of semantic

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 12-21, Prague, June 2007. (©)2007 Association for Computational Linguistics



role labeling (Gildea and Jurafsky, 2002; Palmer et
al., 2005; Narayanan and Harabagiu, 2004). Faced
with the question Q: What year did the U.S. buy
Alaska? and the retrieved sentence S: .. .before Rus-
sia sold Alaska to the United States in 1867, a hypo-
thetical QA system must identify that United States
is the Buyer despite the fact that it is attested in one
instance as a subject and in another as an object.
Once this information is known, isolating the correct
answer (i.e., 1867) can be relatively straightforward.

Although conventional wisdom has it that seman-
tic role labeling ought to improve answer extraction,
surprising little work has been done to this effect
(see Section 2 for details) and initial results have
been mostly inconclusive or negative (Sun et al.,
2005; Kaisser, 2006). There are at least two good
reasons for these findings. First, shallow semantic
parsers trained on declarative sentences will typi-
cally have poor performance on questions and gen-
erally on out-of-domain data. Second, existing re-
sources do not have exhaustive coverage and recall
will be compromised, especially if the question an-
swering system is expected to retrieve answers from
unrestricted text. Since FrameNet is still under de-
velopment, its coverage tends to be more of a prob-
lem in comparison to other semantic role resources
such as PropBank.

In this paper we propose an answer extraction
model which effectively incorporates FrameNet-
style semantic role information. We present an auto-
matic method for semantic role assignment which is
conceptually simple and does not require extensive
feature engineering. A key feature of our approach
is the comparison of dependency relation paths at-
tested in the FrameNet annotations and raw text. We
formalize the search for an optimal role assignment
as an optimization problem in a bipartite graph. This
formalization allows us to find an exact, globally op-
timal solution. The graph-theoretic framework goes
some way towards addressing coverage problems re-
lated with FrameNet and allows us to formulate an-
swer extraction as a graph matching problem. As a
byproduct of our main investigation we also exam-
ine the issue of FrameNet coverage and show how
much it impacts performance in a TREC-style ques-
tion answering setting.

In the following section we provide an overview
of existing work on question answering systems that

13

exploit semantic role-based lexical resources. Then
we define our learning task and introduce our ap-
proach to semantic role assignment and answer ex-
traction in the context of QA. Next, we present our
experimental framework and data. We conclude the
paper by presenting and discussing our results.

2 Related Work

Question answering systems have traditionally de-
pended on a variety of lexical resources to bridge
surface differences between questions and potential
answers. WordNet (Fellbaum, 1998) is perhaps the
most popular resource and has been employed in
a variety of QA-related tasks ranging from query
expansion, to axiom-based reasoning (Moldovan et
al., 2003), passage scoring (Paranjpe et al., 2003),
and answer filtering (Leidner et al., 2004). Besides
WordNet, recent QA systems increasingly rely on
syntactic information as a means of abstracting over
word order differences and structural alternations
(e.g., passive vs. active voice). Most syntax-based
QA systems (Wu et al., 2005) incorporate some
means of comparison between the tree representing
the question with the subtree surrounding the answer
candidate. The assumption here is that appropriate
answers are more likely to have syntactic relations
in common with their corresponding question. Syn-
tactic structure matching has been applied to pas-
sage retrieval (Cui et al., 2005) and answer extrac-
tion (Shen and Klakow, 2006).

Narayanan and Harabagiu (2004) were the first
to stress the importance of semantic roles in an-
swering complex questions. Their system identifies
predicate argument structures by merging semantic
role information from PropBank and FrameNet. Ex-
pected answers are extracted by performing proba-
bilistic inference over the predicate argument struc-
tures in conjunction with a domain specific topic
model. Sun et al. (2005) incorporate semantic analy-
sis in their TRECO5 QA system. They use ASSERT
(Pradhan et al., 2004), a publicly available shallow
semantic parser trained on PropBank, to generate
predicate-argument structures which subsequently
form the basis of comparison between question and
answer sentences. They find that semantic analysis
does not boost performance due to the low recall
of the semantic parser. Kaisser (2006) proposes a
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Figure 1: Architecture of answer extraction

question paraphrasing method based on FrameNet.
Questions are assigned semantic roles by matching
their dependency relations with those attested in the
FrameNet annotations. The assignments are used to
create question reformulations which are submitted
to Google for answer extraction. The semantic role
assignment module is not probabilistic, it relies on
strict matching, and runs into severe coverage prob-
lems.

In line with previous work, our method exploits
syntactic information in the form of dependency re-
lation paths together with FrameNet-like semantic
roles to smooth lexical and syntactic divergences be-
tween question and answer sentences. Our approach
is less domain dependent and resource intensive than
Narayanan and Harabagiu (2004), it solely employs
a dependency parser and the FrameNet database. In
contrast to Kaisser (2006), we model the semantic
role assignment and answer extraction tasks numer-
ically, thereby alleviating the coverage problems en-
countered previously.

3 Problem Formulation

We briefly summarize the architecture of the QA
system we are working with before formalizing the
mechanics of our FrameNet-based answer extraction
module. In common with previous work, our over-
all approach consists of three stages: (a) determining
the expected answer type of the question, (b) retriev-
ing passages likely to contain answers to the ques-
tion, and (c) performing a match between the ques-
tion words and retrieved passages in order to extract
the answer. In this paper we focus on the last stage:
question and answer sentences are normalized to a
FrameNet-style representation and answers are re-
trieved by selecting the candidate whose semantic
structure is most similar to the question.

The architecture of our answer extraction mod-
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ule is shown in Figure 1. Semantic structures for
questions and sentences are automatically derived
using the model described in Section 4 (Model I). A
semantic structure SemStruc = (p,Set(SRA)) con-
sists of a predicate p and a set of semantic role as-
signments Set(SRA). p is a word or phrase evok-
ing a frame F of FrameNet. A semantic role assign-
ment SRA is a ternary structure (w,SR,s), consist-
ing of frame element w, its semantic role SR, and
score s indicating to what degree SR qualifies as a
label for w.

For a question g, we generate a semantic struc-
ture SemStruc?. Question words, such as what, who,
when, etc., are considered expected answer phrases
(EAPs). We require that EAPs are frame elements
of SemStruci. Likely answer candidates are ex-
tracted from answer sentences following some pre-
processing steps detailed in Section 6. For each
candidate ac, we derive its semantic structure
SemStruc® and assume that ac is a frame ele-
ment of SemStruc®. Question and answer seman-
tic structures are compared using a model based on
graph matching detailed in Section 5 (Model II).
We calculate the similarity of all derived pairs
(SemStruc?, SemStruc®) and select the candidate
with the highest value as an answer for the question.

4 Semantic Structure Generation

Our method crucially exploits the annotated sen-
tences in the FrameNet database together with the
output of a dependency parser. Our guiding assump-
tion is that sentences that share dependency rela-
tions will also share semantic roles as long as they
evoke the same or related frames. This is motivated
by much research in lexical semantics (e.g., Levin
(1993)) hypothesizing that the behavior of words,
particularly with respect to the expression and in-
terpretation of their arguments, is to a large ex-
tent determined by their meaning. We first describe
how predicates are identified and then introduce our
model for semantic role labeling.

Predicate Identification Predicate candidates are
identified using a simple look-up procedure which
compares POS-tagged tokens against FrameNet en-
tries. For efficiency reasons, we make the simplify-
ing assumption that questions have only one predi-
cate which we select heuristically: (1) verbs are pre-



ferred to other parts of speech, (2) if there is more
than one verb in the question, preference is given to
the verb with the highest level of embedding in the
dependency tree, (3) if no verbs are present, a noun
is chosen. For example, in Q: Who beat Floyd Pat-
terson to take the title away?, beat, take away, and
title are identified as predicate candidates and beat
is selected the main predicate of the question. For
answer sentences, we require that the predicate is ei-
ther identical or semantically related to the question
predicate (see Section 5).

In the example given above, the predicate beat
evoques a single frame (i.e., Cause_harm). However,
predicates often have multiple meanings thus evo-
quing more than one frame. Knowing which is the
appropriate frame for a given predicate impacts the
semantic role assignment task; selecting the wrong
frame will unavoidably result in erroneous semantic
roles. Rather than disambiguiting polysemous pred-
icates prior to semantic role assignment, we perform
the assignment for each frame evoqued by the pred-
icate.

Semantic Role Assignment Before describing
our approach to semantic role labeling we define
dependency relation paths. A relation path R is a
relation sequence (ry,ra,...,rz), in which r; (I =
1,2,...,L) is one of predefined dependency relations
with suffix of traverse direction. An example of a
relation path is R = (subjy,objp), where the sub-
scripts U and D indicate upward and downward
movement in trees, respectively. Given an unanno-
tated sentence whose roles we wish to label, we as-
sume that words or phrases w with a dependency
path connecting them to p are frame elements. Each
frame element is represented by an unlabeled depen-
dency path R,, which we extract by traversing the
dependency tree from w to p. Analogously, we ex-
tract from the FrameNet annotations all dependency
paths Rgg that are labeled with semantic role infor-
mation and correspond to p. We next measure the
compatibility of labeled and unlabeled paths as fol-
lows:

@) s(w,SR) =

MaxpgeeeM [szm (RW’RSR) : P(RSR)]

where M is the set of dependency relation paths
for SR in FrameNet, sim (R,,, Rsg) the similarity be-
tween paths R, and Rsg weighted by the relative
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Figure 2: Sample original bipartite graph (a) and its
subgraph with edge covers (b). In each graph, the
left partition represents frame elements and the right
partition semantic roles.

frequency of Rgg in FrameNet (P(Rsg)). We con-
sider both core and non-core semantic roles instan-
tiated by frames with at least one annotation in
FrameNet. Core roles tend to have more annotations
in Framenet and consequently are considered more
probable.

We measure sim (R,,,Rsg), by adapting a string
kernel to our task. Our hypothesis is that the more
common substrings two dependency paths have,
the more similar they are. The string kernel we
used is similar to Leslie (2002) and defined as
the sum of weighted common dependency rela-
tion subsequences between R,, and Rgsg. For effi-
ciency, we consider only unigram and bigram sub-
sequences. Subsequences are weighted by a metric
akin to ¢ f - id f which measures the degree of asso-
ciation between a candidate SR and the dependency
relation r present in the subsequence:

3) weightsg(r) = f,-log (1 + r]j)

r

where f is the frequency of » occurring in SR; N is
the total number of SRs evoked by a given frame;
and n, is the number of SRs containing r.

For each frame element we thus generate a set
of semantic role assignments Set(SRA). This initial
assignment can be usefully represented as a com-
plete bipartite graph in which each frame element
(word or phrase) is connected to the semantic roles
licensed by the predicate and vice versa. (see Fig-
ure 2a). Edges are weighted and represent how com-
patible the frame elements and semantic roles are
(see equation (2)). Now, for each frame element w



Q: Who discovered prions?
S:1997: Stanley B. Prusiner, United States, discovery of prions, ...

Semstruc Semstruc °° (ac: Stanley B. Prusiner)

p: discover p: discovery
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Figure 3: Semantic structures induced by our model
for a question and answer sentence

we could simply select the semantic role with the
highest score. However, this decision procedure is
local, i.e., it yields a semantic role assignment for
each frame element independently of all other ele-
ments. We therefore may end up with the same role
being assigned to two frame elements or with frame
elements having no role at all. We remedy this short-
coming by treating the semantic role assignment as
a global optimization problem.

Specifically, we model the interaction between all
pairwise labeling decisions as a minimum weight
bipartite edge cover problem (Eiter and Mannila,
1997; Cormen et al., 1990). An edge cover is a sub-
graph of a bipartite graph so that each node is linked
to at least one node of the other partition. This yields
a semantic role assignment for all frame elements
(see Figure 2b where frame elements and roles are
adjacent to an edge). Edge covers have been success-
fully applied in several natural language processing
tasks, including machine translation (Taskar et al.,
2005) and annotation projection (Pad6é and Lapata,
2006).

Formally, optimal edge cover assignments are so-
lutions of following optimization problem:

s(nd” , nd®)
nd" ndSR)eE

4) max
E is edge cover

where, s(nd",nd®R) is the compatibility score be-
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tween the frame element node nd" and semantic role
node ndSR. Edge covers can be computed efficiently
in cubic time using algorithms for the equivalent
linear assignment problem. Our experiments used
Jonker and Volgenant’s (1987) solver.?

Figure 3 shows the semantic role assignments
generated by our model for the question Q: Who
discovered prions? and the candidate answer sen-
tence S: 1997: Stanley B. Prusiner, United States,
discovery of prions... Here we identify two predi-
cates, namely discover and discovery. The expected
answer phrase (EAP) who and the answer candi-
date Stanley B. Prusiner are assigned the COGNIZER
role. Note that frame elements can bear multiple se-
mantic roles. By inducing a soft labeling we hope to
render the matching of questions and answers more
robust, thereby addressing to some extent the cover-
age problems associated with FrameNet.

S Semantic Structure Matching

We measure the similarity between a question and
its candidate answer by matching their predicates
and semantic role assignments. Since SRs are frame-
specific, we prioritize frame matching to SR match-
ing. Two predicates match if they evoke the same
frame or one of its hypernyms (or hyponyms). The
latter are expressed by the Inherits From and Is In-
herited By relations in the frame definitions. If the
predicates match, we examine whether the assigned
semantic roles match. Since we represent SR assign-
ments as graphs with edge covers, we can also for-
malize SR matching as a graph matching problem.
The similarity between two graphs is measured
as the sum of similarities between their subgraphs.
We first decompose a graph into subgraphs consist-
ing of one frame element node w and a set of SR
nodes connected to it. The similarity between two
subgraphs SubG, and SubGj is then formalized as:

®) Sim(SubG,SubG,) =

1
> SR SR
ndSRESubGl‘S(ndW7nd[ ) _S(ndwandz )‘ +1
nd%R € SubGy
nd‘IR = ndgk
where, nde and nng are semantic role nodes con-
nected to a frame element node nd" in SubG; and

2The software is available from http://www.magiclogic.
com/assignment .html
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SubG, respectively. s(nd"',nd{") and s(nd",nd>X)
are edge weights between two nodes in correspond-
ing subgraphs (see (2)). Our intuition here is that
the more semantic roles two subgraphs share for a
given frame element, the more similar they are and
the closer their corresponding edge weights should
be. Edge weights are normalized by dividing by the
sum of all edges in a subgraph.

6 Experimental Setup

Data All our experiments were performed on the
TREC02-05 factoid questions. We excluded NIL
questions since TREC doesn’t supply an answer for
them. We used the FrameNet V1.3 lexical database.
It contains 10,195 predicates grouped into 795 se-
mantic frames and 141,238 annotated sentences.
Figure 4 shows the number of annotated sentences
available for different predicates. As can be seen,
there are 3,380 predicates with no annotated sen-
tences and 1,175 predicates with less than 5 anno-
tated sentences. All FrameNet sentences, questions,
and answer sentences were parsed using MiniPar
(Lin, 1994), a robust dependency parser.

As mentioned in Section 4 we extract depen-
dency relation paths by traversing the dependency
tree from the frame element node to the predicate
node. We used all dependency relations provided
by MiniPar (42 in total). In order to increase cov-
erage, we combine all relation paths for predicates
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that evoke the same frame and are labeled with the
same POS tag. For example, found and establish
are both instances of the frame Intentionally_create
but the database does not have any annotated sen-
tences for found.v. In default of not assigning any
role labels for found.v, our model employs the rela-
tion paths for the semantically related establish.v.

Preprocessing Here we summarize the steps of
our QA system preceding the assignment of seman-
tic structure and answer extraction. For each ques-
tion, we recognize its expected answer type (e.g., in
Q: Which record company is Fred Durst with? we
would expect the answer to be an ORGANIZA-
TION). Answer types are determined using classi-
fication rules similar to Li and Roth (2002). We also
reformulate questions into declarative sentences fol-
lowing the strategy proposed in Brill et al. (2002).

The reformulated sentences are submitted as
queries to an IR engine for retrieving sentences with
relevant answers. Specifically, we use the Lemur
Toolkit?, a state-of-the-art language model-driven
search engine. We work only with the 50 top-ranked
sentences as this setting performed best in previ-
ous experiments of our QA system. We also add to
Lemur’s output gold standard sentences, which con-
tain and support an answer for each question. Specif-
ically, documents relevant for each question are re-
trieved from the AQUAINT Corpus* according to
TREC supplied judgments. Next, sentences which
match both the TREC provided answer pattern and
at least one question key word are extracted and their
suitability is manually judged by humans. The set of
relevant sentences thus includes at least one sentence
with an appropriate answer as well as sentences that
do not contain any answer specific information. This
setup is somewhat idealized, however it allows us to
evaluate in more detail our answer extraction mod-
ule (since when an answer is not found, we know it
is the fault of our system).

Relevant sentences are annotated with their
named entities using Lingpipe’, a MUC-based
named entity recognizer. When we successfully
classify a question with an expected answer type

3See http://www. lemurproject .org/ for details.

4This corpus consists of English newswire texts and is used
as the main document collection in official TREC evaluations.

SThe software is available from www.alias—1i.com/
lingpipe/



(e.g., ORGANIZATION in the example above), we
assume that all NPs attested in the set of relevant
sentences with the same answer type are candidate
answers; in cases where no answer type is found
(e.g., as in Q: What are prions made of?), all NPs
in the relevant answers set are considered candidate
answers.

Baseline We compared our answer extraction
method to a QA system that exploits solely syntac-
tic information without making use of FrameNet or
any other type of role semantic annotations. For each
question, the baseline identifies key phrases deemed
important for answer identification. These are verbs,
noun phrases, and expected answer phrases (EAPs,
see Section 3). All dependency relation paths con-
necting a key phrase and an EAP are compared to
those connecting the same key phrases and an an-
swer candidate. The similarity of question and an-
swer paths is computed using a simplified version
of the similarity measure® proposed in Shen and
Klakow (2006).

Our second baseline employs Shalmaneser (Erk
and Padd, 2006), a publicly available shallow se-
mantic parser’, for the role labeling task instead of
the graph-based model presented in Section 4. The
software is trained on the FrameNet annotated sen-
tences using a standard feature set (see Carreras and
Marquez (2005) for details). We use Shalmaneser
to parse questions and answer sentences. The parser
makes hard decisions about the presence or absence
of a semantic role. Unfortunately, this prevents us
from using our method for semantic structure match-
ing (see Section 5) which assumes a soft labeling.
We therefore came up with a simple matching strat-
egy suitable for the parser’s output. For question
and answer sentences matching in their frame as-
signment, phrases bearing the same semantic role as
the EAP are considered answer candidates. The lat-
ter are ranked according to word overlap (i.e., iden-
tical phrases are ranked higher than phrases with no

6Shen and Klakow (2006) use a dynamic time warping al-
gorithm to calculate the degree to which dependency relation
paths are correlated. Correlations for individual relations are es-
timated from training data whereas we assume a binary value (1
for identical relations and O otherwise). The modification was
necessary to render the baseline system comparable to our an-
swer extraction model which is unsupervised.

TThe software is available from http://ww.coli.
uni-saarland.de/projects/salsa/shal/
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overlap at all).

7 Results

Our evaluation was motivated by the following ques-
tions: (1) How does the incompleteness of FrameNet
impact QA performance on the TREC data sets? In
particular, we wanted to examine whether there are
questions for which in principle no answer can be
found due to missing frame entries or missing an-
notated sentences. (2) Are all questions and their
corresponding answers amenable to a FrameNet-
style analysis? In other words, we wanted to assess
whether questions and answers often evoke the same
or related frames (with similar roles). This is a pre-
requisite for semantic structure matching and ulti-
mately answer extraction. (3) Do the graph-based
models introduced in this paper bring any perfor-
mance gains over state-of-the-art shallow semantic
parsers or more conventional syntax-based QA sys-
tems? Recall that our graph-based models were de-
signed especially for the QA answer extraction task.

Our results are summarized in Tables 1-3. Table 1
records the number of questions to be answered for
the TRECO02-05 datasets (Total). We also give infor-
mation regarding the number of questions which are
in principle unanswerable with a FrameNet-style se-
mantic role analysis.

Column NoFrame shows the number of questions
which don’t have an appropriate frame or predicate
in the database. For example, there is currently no
predicate entry for sponsor or sink (e.g., Q: Who
is the sponsor of the International Criminal Court?
and Q: What date did the Lusitania sink?). Column
NoAnnot refers to questions for which no semantic
role labeling is possible because annotated sentences
for the relevant predicates are missing. For instance,
there are no annotations for win (e.g., Q: What divi-
sion did Floyd Patterson win?) or for hit (e.g., Q:
What was the Beatles’ first number one hit?). This
problem is not specific to our method which admit-
tedly relies on FrameNet annotations for performing
the semantic role assignment (see Section 4). Shal-
low semantic parsers trained on FrameNet would
also have trouble assigning roles to predicates for
which no data is available.

Finally, column NoMatch reports the number of
questions which cannot be answered due to frame



Data Total NoFrame NoAnnot NoMatch Rest
TRECO02 | 444 | 87 (19.6) 29 (6.5) 176 (39.6) 152 (34.2)
TRECO3 | 380 | 55 (14.5) 30 (7.9) 183 (48.2) 112 (29.5)
TRECO04 | 203 | 47 23.1) 14 (6.9) 67 (33.0) 75 (36.9)
TRECO5 | 352 | 70 (19.9) 23 (6.5) 145 41.2) 114 (32.4)

Table 1: Number of questions which cannot be answered using a FrameNet style semantic analysis; numbers
in parentheses are percentages of Total (NoFrame: frames or predicates are missing; NoAnnot: annotated
sentences are missing, NoMatch: questions and candidate answers evoke different frames.

mismatches. Consider Q: What does AARP stand Model TRECO02|TRECO03| TREC04| TRECO05
for? whose answer is found in S: The American SemParse | 13.16 8.92 | 17.33 13.16
Association of Retired Persons (AARP) quality for SynMatch | 35.53* | 33.04* | 40.00* | 36.84*
discounts. ... The answer and the question evoke dif- SemMatch| 53.29*7| 49.11*7| 54.67*7| 59.65*

ferent frames; in fact here a semantic role analysis is
not relevant for locating the right answer. As can be
seen NoMatch cases are by far the most frequent.
The number of questions remaining after excluding
NoFrame, NoAnnot, and NoMatch are shown under
the Rest heading in Table 1.

Table 2: System Performance on subset of TREC
datasets (see Rest column in Table 1); *: signifi-
cantly better than SemParse; ': significantly better
than SynMatch (p < 0.01, using a % test).

These results indicate that FrameNet-based se- Model TRECO02 TRECO3 TREC04 TRECOS
mantic role analysis applies to approximately 35% |SynMatch 32.88" | 30.70" | 35.95" | 34.38"
of the TREC data. This means that an extraction [+SemParse | 25.23 | 23.68 | 28.57 |26.70
module relying solely on FrameNet will have poor ~|+SemMatch 38.96"" | 35.53*"| 42.36"" | 41.76"

performance, since it will be unable to find answers
for more than half of the questions beeing asked. We
nevertheless examine whether our model brings any
performance improvements on this limited dataset
which is admittedly favorable towards a FrameNet
style analysis. Table 2 shows the results of our an-
swer extraction module (SemMatch) together with
two baseline systems. The first baseline uses only
dependency relation path information (SynMatch),
whereas the second baseline (SemParse) uses Shal-
maneser, a state-of-the-art shallow semantic parser
for the role labeling task. We consider an answer
correct if it is returned with rank 1. As can be seen,
SemMatch is significantly better than both Syn-
Match and SemParse, whereas the latter is signifi-
cantly worse than SynMatch.

Although promising, the results in Table 2 are not
very informative, since they show performance gains
on partial data. Instead of using our answer extrac-
tion model on its own, we next combined it with the
syntax-based system mentioned above (SynMatch,
see also Section 6 for details). If FrameNet is indeed
helpful for QA, we would expect an ensemble sys-
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Table 3: System Performance on TREC datasets (see
Total column in Table 1); *: significantly better than
+SemParse; ': significantly better than SynMatch
(p < 0.01, using a ? test).

tem to yield better performance over a purely syn-
tactic answer extraction module. The two systems
were combined as follows. Given a question, we first
pass it to our FrameNet model; if an answer is found,
our job is done; if no answer is returned, the ques-
tion is passed on to SynMatch. Our results are given
in Table 3. +SemMatch and +SemParse are ensem-
ble systems using SynMatch together with the QA
specific role labeling method proposed in this pa-
per and Shalmaneser, respectively. We also compare
these systems against SynMatch on its own.

We can now attempt to answer our third ques-
tion concerning our model’s performance on the
TREC data. Our experiments show that a FrameNet-
enhanced answer extraction module significantly
outperforms a similar module that uses only syn-
tactic information (compare SynMatch and +Sem-
Match in Table 3). Another interesting finding is that



the shallow semantic parser performs considerably
worse in comparison to our graph-based models and
the syntax-based system. Inspection of the parser’s
output highlights two explanations for this. First, the
shallow semantic parser has difficulty assigning ac-
curate semantic roles to questions (even when they
are reformulated as declarative sentences). And sec-
ondly, it tends to favor precision over recall, thus re-
ducing the number of questions for which answers
can be found. A similar finding is reported in Sun et
al. (2005) for a PropBank trained parser.

8 Conclusion

In this paper we assess the contribution of semantic
role labeling to open-domain factoid question an-
swering. We present a graph-based answer extrac-
tion model which effectively incorporates FrameNet
style role semantic information and show that it
achieves promising results. Our experiments show
that the proposed model can be effectively combined
with a syntax-based system to obtain performance
superior to the latter when used on its own. Fur-
thermore, we demonstrate performance gains over a
shallow semantic parser trained on the FrameNet an-
notated corpus. We argue that performance gains are
due to the adopted graph-theoretic framework which
is robust to coverage and recall problems.

We also provide a detailed analysis of the appro-
priateness of FrameNet for QA. We show that per-
formance can be compromised due to incomplete
coverage (i.e., missing frame or predicate entries
as well as annotated sentences) but also because of
mismatching question-answer representations. The
question and the answer may evoke different frames
or the answer simply falls outside the scope of a
given frame (i.e., in a non predicate-argument struc-
ture). Our study shows that mismatches are rela-
tively frequent and motivates the use of semantically
informed methods in conjunction with syntax-based
methods.

Important future directions lie in evaluating the
contribution of alternative semantic role frameworks
(e.g., PropBank) to the answer extraction task and
developing models that learn semantic roles di-
rectly from unannotated text without the support
of FrameNet annotations (Grenager and Manning,
2006). Beyond question answering, we also plan to
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investigate the potential of our model for shallow
semantic parsing since our experience so far has
shown that it achieves good recall.
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Abstract

This paper presents a syntax-driven ap-
proach to question answering, specifically
the answer-sentence selection problem for
short-answer questions. Rather than us-
ing syntactic features to augment exist-
ing statistical classifiers (as in previous
work), we build on the idea that ques-
tions and their (correct) answers relate to
each other via loose but predictable syntac-
tic transformations. We propose a prob-
abilistic quasi-synchronous grammar, in-
spired by one proposed for machine trans-
lation (D. Smith and Eisner, 2006), and pa-
rameterized by mixtures of a robust non-
lexical syntax/alignment model with a(n
optional) lexical-semantics-driven log-linear
model. Our model learns soft alignments as
a hidden variable in discriminative training.
Experimental results using the TREC dataset
are shown to significantly outperform strong
state-of-the-art baselines.

1 Introduction and Motivation

Open-domain question answering (QA) is a widely-
studied and fast-growing research problem. State-
of-the-art QA systems are extremely complex. They
usually take the form of a pipeline architecture,
chaining together modules that perform tasks such
as answer type analysis (identifying whether the
correct answer will be a person, location, date,
etc.), document retrieval, answer candidate extrac-
tion, and answer reranking. This architecture is so
predominant that each task listed above has evolved
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into its own sub-field and is often studied and evalu-
ated independently (Shima et al., 2006).

At a high level, the QA task boils down to only
two essential steps (Echihabi and Marcu, 2003). The
first step, retrieval, narrows down the search space
from a corpus of millions of documents to a fo-
cused set of maybe a few hundred using an IR en-
gine, where efficiency and recall are the main fo-
cus. The second step, selection, assesses each can-
didate answer string proposed by the first step, and
finds the one that is most likely to be an answer
to the given question. The granularity of the tar-
get answer string varies depending on the type of
the question. For example, answers to factoid ques-
tions (e.g., Who, When, Where) are usually single
words or short phrases, while definitional questions
and other more complex question types (e.g., How,
Why) look for sentences or short passages. In this
work, we fix the granularity of an answer to a single
sentence.

Earlier work on answer selection relies only on
the surface-level text information. Two approaches
are most common: surface pattern matching, and
similarity measures on the question and answer, rep-
resented as bags of words. In the former, pat-
terns for a certain answer type are either crafted
manually (Soubbotin and Soubbotin, 2001) or ac-
quired from training examples automatically (Itty-
cheriah et al., 2001; Ravichandran et al., 2003;
Licuanan and Weischedel, 2003). In the latter,
measures like cosine-similarity are applied to (usu-
ally) bag-of-words representations of the question
and answer. Although many of these systems have
achieved very good results in TREC-style evalua-
tions, shallow methods using the bag-of-word repre-
sentation clearly have their limitations. Examples of
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cases where the bag-of-words approach fails abound
in QA literature; here we borrow an example used by
Echihabi and Marcu (2003). The question is “Who
is the leader of France?”, and the sentence “Henri
Hadjenberg, who is the leader of France ’s Jewish
community, endorsed ...” (note tokenization), which
is not the correct answer, matches all keywords in
the question in exactly the same order. (The cor-
rect answer is found in “Bush later met with French
President Jacques Chirac.”)

This example illustrates two types of variation
that need to be recognized in order to connect this
question-answer pair. The first variation is the
change of the word “leader” to its semantically re-
lated term “president”. The second variation is the
syntactic shift from “leader of France” to “French
president.” It is also important to recognize that
“France” in the first sentence is modifying “com-
munity”, and therefore “Henri Hadjenberg” is the
“leader of ... community” rather than the “leader of
France.” These syntactic and semantic variations oc-
cur in almost every question-answer pair, and typi-
cally they cannot be easily captured using shallow
representations. It is also worth noting that such
syntactic and semantic variations are not unique to
QA; they can be found in many other closely related
NLP tasks, motivating extensive community efforts
in syntactic and semantic processing.

Indeed, in this work, we imagine a generative
story for QA in which the question is generated
from the answer sentence through a series of syn-
tactic and semantic transformations. The same story
has been told for machine translation (Yamada and
Knight, 2001, inter alia), in which a target language
sentence (the desired output) has undergone seman-
tic transformation (word to word translation) and
syntactic transformation (syntax divergence across
languages) to generate the source language sen-
tence (noisy-channel model). Similar stories can
also be found in paraphrasing (Quirk et al., 2004;
Wu, 2005) and textual entailment (Harabagiu and
Hickl, 2006; Wu, 2005).

Our story makes use of a weighted formalism
known as quasi-synchronous grammar (hereafter,
QQG), originally developed by D. Smith and Eisner
(2006) for machine translation. Unlike most syn-
chronous formalisms, QG does not posit a strict iso-
morphism between the two trees, and it provides
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an elegant description for the set of local configura-
tions. In Section 2 we situate our contribution in the
context of earlier work, and we give a brief discus-
sion of quasi-synchronous grammars in Section 3.
Our version of QG, called the Jeopardy model, and
our parameter estimation method are described in
Section 4. Experimental results comparing our ap-
proach to two state-of-the-art baselines are presented
in Section 5. We discuss portability to cross-lingual
QA and other applied semantic processing tasks in
Section 6.

2 Related Work

To model the syntactic transformation process, re-
searchers in these fields—especially in machine
translation—have developed powerful grammatical
formalisms and statistical models for representing
and learning these tree-to-tree relations (Wu and
Wong, 1998; Eisner, 2003; Gildea, 2003; Melamed,
2004; Ding and Palmer, 2005; Quirk et al., 2005;
Galley et al., 2006; Smith and Eisner, 2006, in-
ter alia). We can also observe a trend in recent work
in textual entailment that more emphasis is put on
explicit learning of the syntactic graph mapping be-
tween the entailed and entailed-by sentences (Mac-
Cartney et al., 2006).

However, relatively fewer attempts have been
made in the QA community. As pointed out by
Katz and Lin (2003), most early experiments in
QA that tried to bring in syntactic or semantic
features showed little or no improvement, and it
was often the case that performance actually de-
graded (Litkowski, 1999; Attardi et al., 2001). More
recent attempts have tried to augment the bag-of-
words representation—which, after all, is simply a
real-valued feature vector—with syntactic features.
The usual similarity measures can then be used on
the new feature representation. For example, Pun-
yakanok et al. (2004) used approximate tree match-
ing and tree-edit-distance to compute a similarity
score between the question and answer parse trees.
Similarly, Shen et al. (2005) experimented with de-
pendency tree kernels to compute similarity between
parse trees. Cui et al. (2005) measured sentence
similarity based on similarity measures between de-
pendency paths among aligned words. They used
heuristic functions similar to mutual information to



assign scores to matched pairs of dependency links.
Shen and Klakow (2006) extend the idea further
through the use of log-linear models to learn a scor-
ing function for relation pairs.

Echihabi and Marcu (2003) presented a noisy-
channel approach in which they adapted the IBM
model 4 from statistical machine translation (Brown
etal., 1990; Brown et al., 1993) and applied it to QA.
Similarly, Murdock and Croft (2005) adopted a sim-
ple translation model from IBM model 1 (Brown et
al., 1990; Brown et al., 1993) and applied it to QA.
Porting the translation model to QA is not straight-
forward; it involves parse-tree pruning heuristics
(the first two deterministic steps in Echihabi and
Marcu, 2003) and also replacing the lexical trans-
lation table with a monolingual “dictionary” which
simply encodes the identity relation. This brings us
to the question that drives this work: is there a statis-
tical translation-like model that is natural and accu-
rate for question answering? We propose Smith and
Eisner’s (2006) quasi-synchronous grammar (Sec-
tion 3) as a general solution and the Jeopardy model
(Section 4) as a specific instance.

3 Quasi-Synchronous Grammar

For a formal description of QG, we recommend
Smith and Eisner (2006). We briefly review the cen-
tral idea here. QG arose out of the empirical obser-
vation that translated sentences often have some iso-
morphic syntactic structure, but not usually in en-
tirety, and the strictness of the isomorphism may
vary across words or syntactic rules. The idea is that,
rather than a synchronous structure over the source
and target sentences, a tree over the target sentence
is modeled by a source-sentence-specific grammar
that is inspired by the source sentence’s tree.! This
is implemented by a “sense”—really just a subset
of nodes in the source tree—attached to each gram-
mar node in the farget tree. The senses define an
alignment between the trees. Because it only loosely
links the two sentences’ syntactic structure, QG is
particularly well-suited for QA insofar as QA is like
“free” translation.

A concrete example that is easy to understand
is a binary quasi-synchronous context-free grammar

!'Smith and Eisner also show how QG formalisms generalize
synchronous grammar formalisms.
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(denoted QCFG). Let Vg be the set of constituent to-
kens in the source tree. QCFG rules would take the
augmented form

(X,81) — (Y,82)(Z,83)
<X,81> — W

where X, Y, and Z are ordinary CFG nonterminals,
each 8; € 2Vs (subsets of nodes in the source tree
to which the nonterminals align), and w is a target-
language word. QG can be made more or less “lib-
eral” by constraining the cardinality of the 8; (we
force all |§;| = 1), and by constraining the relation-
ships among the §; mentioned in a single rule. These
are called permissible “configurations.” An example
of a strict configuration is that a target parent-child
pair must align (respectively) to a source parent-
child pair. Configurations are shown in Table 1.
Here, following Smith and Eisner (2006), we use
a weighted, quasi-synchronous dependency gram-
mar. Apart from the obvious difference in appli-
cation task, there are a few important differences
with their model. First, we are not interested in the
alignments per se; we will sum them out as a hid-
den variable when scoring a question-answer pair.
Second, our probability model includes an optional
mixture component that permits arbitrary features—
we experiment with a small set of WordNet lexical-
semantics features (see Section 4.4). Third, we ap-
ply a more discriminative training method (condi-
tional maximum likelihood estimation, Section 4.5).

4 The Jeopardy Model

Our model, informally speaking, aims to follow the
process a player of the television game show Jeop-
ardy! might follow. The player knows the answer
(or at least thinks he knows the answer) and must
quickly turn it into a question.? The question-answer
pairs used on Jeopardy! are not precisely what we
have in mind for the real task (the questions are not
specific enough), but the syntactic transformation in-
spires our model. In this section we formally define

2A round of Jeopardy! involves a somewhat involved and
specific “answer” presented to the competitors, and the first
competitor to hit a buzzer proposes the “question” that leads to
the answer. For example, an answer might be, This Eastern Eu-
ropean capital is famous for defenestrations. In Jeopardy! the
players must respond with a queston: What is Prague?



this probability model and present the necessary al-
gorithms for parameter estimation.

4.1 Probabilistic Model

The Jeopardy model is a QG designed for QA. Let
q = (q1, ..., ¢n) be a question sentence (each ¢; is a
word), and let a = (ay, ..., a,,) be a candidate an-
swer sentence. (We will use w to denote an abstract
sequence that could be a question or an answer.) In
practice, these sequences may include other infor-
mation, such as POS, but for clarity we assume just
words in the exposition. Let A be the set of can-
didate answers under consideration. Our aim is to
choose:

D

a=argmaxp(a|q)
acA

At a high level, we make three adjustments. The
first is to apply Bayes’ rule, p(a | q) x p(q |
a) - p(a). Because A is known and is assumed to
be generated by an external extraction system, we
could use that extraction system to assign scores
(and hence, probabilities p(a)) to the candidate an-
swers. Other scores could also be used, such as
reputability of the document the answer came from,
grammaticality, etc. Here, aiming for simplicity, we
do not aim to use such information. Hence we treat
p(a) as uniform over A.?

The second adjustment adds a labeled, directed
dependency tree to the question and the answer.
The tree is produced by a state-of-the-art depen-
dency parser (McDonald et al., 2005) trained on
the Wall Street Journal Penn Treebank (Marcus et
al., 1993). A dependency tree on a sequence w =
(w1, ..., wy) is a mapping of indices of words to in-
dices of their syntactic parents and a label for the
syntactic relation, 7 : {1,....k} — {0,...,k} x L.
Each word w; has a single parent, denoted w ;. par-
Cycles are not permitted. wy is taken to be the invis-
ible “wall” symbol at the left edge of the sentence; it
has a single child (|[{7 : 7(¢) = 0}| = 1). The label
for wj is denoted 7(7).lab.

The third adjustment involves a hidden variable
X, the alignment between question and answer

3The main motivation for modeling p(q | a) is that it is eas-
ier to model deletion of information (such as the part of the sen-
tence that answers the question) than insertion. Our QG does
not model the real-world knowledge required to fill in an an-
swer; its job is to know what answers are likely to look like,
syntactically.
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words. In our model, each question-word maps to
exactly one answer-word. Let z : {1,..,n} —
{1,...,m} be a mapping from indices of words in q
to indices of words in a. (It is for computational rea-
sons that we assume |x(7)| = 1; in general = could
range over subsets of {1,...,m}.) Because we de-
fine the correspondence in this direction, note that it
is possible for multple question words to map to the
same answer word.

Why do we treat the alignment X as a hidden vari-
able? In prior work, the alignment is assumed to be
known given the sentences, but we aim to discover
it from data. Our guide in this learning is the struc-
ture inherent in the QG: the configurations between
parent-child pairs in the question and their corre-
sponding, aligned words in the answer. The hidden
variable treatment lets us avoid commitment to any
one z mapping, making the method more robust to
noisy parses (after all, the parser is not 100% ac-
curate) and any wrong assumptions imposed by the
model (that |z(i)| = 1, for example, or that syntactic
transformations can explain the connection between
q and a at all).*

Our model, then, defines

p(q, Tq |a,7a) = Zp(q’ Tq) T la,7a) (2)
xT

where 74 and 7, are the question tree and answer
tree, respectively. The stochastic process defined by
our model factors cleanly into recursive steps that
derive the question from the top down. The QG de-
fines a grammar for this derivation; the grammar de-
pends on the specific answer.

Let T‘fv refer to the subtree of 7y, rooted at w;. The
model is defined by:

p(Tcll | QiaTq(i)vx(i)aTa) =
pukias([{7 : 7q(J) = 4,7 < i}| | @i, left)
X Dakids ({7 : 7q(4) = 1,5 > i}| | qi, right)

CIIX

J:ma(7)=i z(§)=0

3)

pkid(%’ TQ(j)'lab ’ di, Tq(i>7 x(z)v x(])? Ta)

Xp(Té ’ qj, Tq(j),l‘(j),Ta)

*“If parsing performance is a concern, we might also treat the
question and/or answer parse trees as hidden variables, though
that makes training and testing more computationally expen-
sive.



Note the recursion in the last line. While the above
may be daunting, in practice it boils down only to
defining the conditional distribution py;4, since the
number of left and right children of each node need
not be modeled (the trees are assumed known)—
P4kids 18 included above for completeness, but in the
model applied here we do not condition it on ¢; and
therefore do not need to estimate it (since the trees
are fixed).

Priq defines a distribution over syntactic children
of g; and their labels, given (1) the word ¢;, (2) the
parent of g;, (3) the dependency relation between
¢; and its parent, (4) the answer-word ¢; is aligned
to, (5) the answer-word the child being predicted is
aligned to, and (6) the remainder of the answer tree.

4.2 Dynamic Programming

Given q, the score for an answer is simply p(q, 74 |
a, 7). Computing the score requires summing over
alignments and can be done efficiently by bottom-up
dynamic programming. Let S(7, £) refer to the score
of Té, assuming that the parent of g;, 74(j).par, is
aligned to ay. The base case, for leaves of 74, is:

S(j,[) = 4)
Pakids (0 | @7, left) X purias(0 | qj, right)

XY pria(q5,7q () 1ab | gro;) . £k, Ta)
k=0

Note that £ ranges over indices of answer-words to
be aligned to g;. The recursive case is

S(i,f) = 5
Pakids ({17 2 7q(J) = 1,5 < i} | g, left)
Xpypkids ({7 : 7q(J) = 4,5 > i}| | q;, right)

X Zpkid(%ﬂ—q(i)'lab | QTq(i)7£’ k;77_a)
k=0
S A
Jirq(§)=i

Solving these equations bottom-up can be done
in O(nm?) time and O(nm) space; in practice this
is very efficient. In our experiments, computing the
value of a question-answer pair took two seconds on

26

average.” We turn next to the details of p;g, the core
of the model.

4.3 Base Model
Our base model factors pg;q into three conditional
multinomial distributions.

Pl (i> Ta(0).10b | Grgi), € Ky Ta) =
p(gi-pos | ax.pos) X p(gi.ne | ag.ne)

Xp(1q(%).lab | config(Tq, Ta, 1)) (6)

where ¢;.pos is question-word ¢’s POS label and
g;-ne is its named-entity label.  config maps
question-word ¢, its parent, and their alignees to
a QG configuration as described in Table 1; note
that some configurations are extended with addi-
tional tree information. The base model does not
directly predict the specific words in the question—
only their parts-of-speech, named-entity labels, and
dependency relation labels. This model is very sim-
ilar to Smith and Eisner (2006).

Because we are interested in augmenting the QG
with additional lexical-semantic knowledge, we also
estimate pg;; by mixing the base model with a
model that exploits WordNet (Miller et al., 1990)
lexical-semantic relations. The mixture is given by:

Pria(e | ®) = apiii(e | o)+(1—a)piy(e | o) (7)

4.4 Lexical-Semantics Log-Linear Model

The lexical-semantics model pﬁji 4 1s defined by pre-
dicting a (nonempty) subset of the thirteen classes
for the question-side word given the identity of
its aligned answer-side word. These classes in-
clude WordNet relations: identical-word, synonym,
antonym (also extended and indirect antonym), hy-
pernym, hyponym, derived form, morphological
variation (e.g., plural form), verb group, entailment,
entailed-by, see-also, and causal relation. In ad-
dition, to capture the special importance of Wh-
words in questions, we add a special semantic re-
lation called “g-word” between any word and any
Wh-word. This is done through a log-linear model
with one feature per relation. Multiple relations may
fire, motivating the log-linear model, which permits
“overlapping” features, and, therefore prediction of

SExperiments were run on a 64-bit machine with 2x 2.2GHz
dual-core CPUs and 4GB of memory.



any of the possible 2'3 — 1 nonempty subsets. It

is important to note that this model assigns zero
probability to alignment of an answer-word with
any question-word that is not directly related to it
through any relation. Such words may be linked in
the mixture model, however, via p,ﬁ?je.f’

(It is worth pointing out that log-linear models
provide great flexibility in defining new features. It
is straightforward to extend the feature set to include
more domain-specific knowledge or other kinds of
morphological, syntactic, or semantic information.
Indeed, we explored some additional syntactic fea-
tures, fleshing out the configurations in Table 1 in
more detail, but did not see any interesting improve-
ments.)

parent-child Question parent-child pair align respec-
tively to answer parent-child pair. Aug-
mented with the q.-side dependency la-

bel.

child-parent Question parent-child pair align respec-
tively to answer child-parent pair. Aug-
mented with the q.-side dependency la-

bel.

grandparent-child | Question parent-child pair align respec-
tively to answer grandparent-child pair.
Augmented with the g.-side dependency

label.

same node Question parent-child pair align to the

same answer-word.

siblings Question parent-child pair align to sib-
lings in the answer. Augmented with
the tree-distance between the a.-side sib-

lings.

c-command The parent of one answer-side word is
an ancestor of the other answer-side

word.

other A catch-all for all other types of config-

urations, which are permitted.

Table 1: Syntactic alignment configurations are par-
titioned into these sets for prediction under the Jeop-
ardy model.

4.5 Parameter Estimation

The parameters to be estimated for the Jeopardy
model boil down to the conditional multinomial
distributions in pz‘jje, the log-linear weights in-

side of pl,, and the mixture coefficient o.” Stan-

81t is to preserve that robustness property that the models are
mixed, and not combined some other way.

"In our experiments, all log-linear weights are initialized to
be 1; all multinomial distributions are initialized as uniform dis-
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dard applications of log-linear models apply con-
ditional maximum likelihood estimation, which for
our case involves using an empirical distribution p
over question-answer pairs (and their trees) to opti-
mize as follows:

mgmx Z ﬁ(qv Tq, A, Ta) 1Og Do (q7 Tq ‘ a, Ta)

q,7q,,T:
TaTe Zmpe(qy’rq@‘a»’fa)

(®)
Note the hidden variable x being summed out; that
makes the optimization problem non-convex. This
sort of problem can be solved in principle by condi-
tional variants of the Expectation-Maximization al-
gorithm (Baum et al., 1970; Dempster et al., 1977;
Meng and Rubin, 1993; Jebara and Pentland, 1999).
We use a quasi-Newton method known as L-BFGS
(Liu and Nocedal, 1989) that makes use of the gra-
dient of the above function (straightforward to com-
pute, but omitted for space).

5 Experiments

To evaluate our model, we conducted experiments
using Text REtrieval Conference (TREC) 8-13 QA
dataset.’

5.1 Experimental Setup

The TREC dataset contains questions and answer
patterns, as well as a pool of documents returned by
participating teams. Our task is the same as Pun-
yakanok et al. (2004) and Cui et al. (2005), where
we search for single-sentence answers to factoid
questions. We follow a similar setup to Shen and
Klakow (2006) by automatically selecting answer
candidate sentences and then comparing against a
human-judged gold standard.

We used the questions in TREC 8-12 for training
and set aside TREC 13 questions for development
(84 questions) and testing (100 questions). To gen-
erate the candidate answer set for development and
testing, we automatically selected sentences from
each question’s document pool that contains one or
more non-stopwords from the question. For gen-
erating the training candidate set, in addtion to the
sentences that contain non-stopwords from the ques-
tion, we also added sentences that contain correct
tributions; « is initialized to be 0.1.

8We thank the organizers and NIST for making the dataset
publicly available.



answer pattern. Manual judgement was produced
for the entire TREC 13 set, and also for the first 100
questions from the training set TREC 8-12.° On av-
erage, each question in the development set has 3.1
positive and 17.1 negative answers. There are 3.6
positive and 20.0 negative answers per question in
the test set.

We tokenized sentences using the standard tree-
bank tokenization script, and then we performed
part-of-speech tagging using MXPOST tagger (Rat-
naparkhi, 1996). The resulting POS-tagged sen-
tences were then parsed using MSTParser (McDon-
ald et al., 2005), trained on the entire Penn Treebank
to produce labeled dependency parse trees (we used
a coarse dependency label set that includes twelve
label types). We used BBN Identifinder (Bikel et al.,
1999) for named-entity tagging.

As answers in our task are considered to be sin-
gle sentences, our evaluation differs slightly from
TREC, where an answer string (a word or phrase
like 1977 or George Bush) has to be accompanied
by a supporting document ID. As discussed by Pun-
yakanok et al. (2004), the single-sentence assump-
tion does not simplify the task, since the hardest part
of answer finding is to locate the correct sentence.
From an end-user’s point of view, presenting the
sentence that contains the answer is often more in-
formative and evidential. Furthermore, although the
judgement data in our case are more labor-intensive
to obtain, we believe our evaluation method is a bet-
ter indicator than the TREC evaluation for the qual-
ity of an answer selection algorithm.

To illustrate the point, consider the example ques-
tion, “When did James Dean die?” The correct an-

“More human-judged data are desirable, though we will ad-
dress training from noisy, automatically judged data in Sec-
tion 5.4. It is important to note that human judgement of an-
swer sentence correctness was carried out prior to any experi-
ments, and therefore is unbiased. The total number of questions
in TREC 13 is 230. We exclude from the TREC 13 set questions
that either have no correct answer candidates (27 questions), or
no incorrect answer candidates (19 questions). Any algorithm
will get the same performance on these questions, and therefore
obscures the evaluation results. 6 such questions were also ex-
cluded from the 100 manually-judged training questions, result-
ing in 94 questions for training. For computational reasons (the
cost of parsing), we also eliminated answer candidate sentences
that are longer than 40 words from the training and evaluation
set. After these data preparation steps, we have 348 positive
Q-A pairs for training, 1,415 Q-A pairs in the development set,
and 1,703 Q-A pairs in the test set.
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swer as appeared in the sentence “In 1955, actor
James Dean was killed in a two-car collision near
Cholame, Calif.” is 1955. But from the same docu-
ment, there is another sentence which also contains
1955: “In 1955, the studio asked him to become a
technical adviser on Elia Kazan’s ‘East of Eden,
starring James Dean.” If a system missed the first
sentence but happened to have extracted 71955 from
the second one, the TREC evaluation grants it a “cor-
rect and well-supported” point, since the document
ID matches the correct document ID—even though
the latter answer does not entail the true answer. Our
evaluation does not suffer from this problem.

We report two standard evaluation measures com-
monly used in IR and QA research: mean av-
erage precision (MAP) and mean reciprocal rank
(MRR). All results are produced using the standard
trec_eval program.

5.2 Baseline Systems

We implemented two state-of-the-art answer-finding
algorithms (Cui et al., 2005; Punyakanok et al.,
2004) as strong baselines for comparison. Cui et
al. (2005) is the answer-finding algorithm behind
one of the best performing systems in TREC eval-
uations. It uses a mutual information-inspired score
computed over dependency trees and a single align-
ment between them. We found the method to be brit-
tle, often not finding a score for a testing instance
because alignment was not possible. We extended
the original algorithm, allowing fuzzy word align-
ments through WordNet expansion; both results are
reported.

The second baseline is the approximate tree-
matching work by Punyakanok et al. (2004). Their
algorithm measures the similarity between 74 and 7,
by computing tree edit distance. Our replication is
close to the algorithm they describe, with one subtle
difference. Punyakanok et al. used answer-typing in
computing edit distance; this is not available in our
dataset (and our method does not explicitly carry out
answer-typing). Their heuristics for reformulating
questions into statements were not replicated. We
did, however, apply WordNet type-checking and ap-
proximate, penalized lexical matching. Both results
are reported.



development set test set

training dataset model MAP | MRR | MAP | MRR
100 manually-judged | TreeMatch 0.4074 | 0.4458 | 0.3814 | 0.4462
+WN | 0.4328 | 0.4961 | 0.4189 | 0.4939

Cui et al. 0.4715 | 0.6059 | 0.4350 | 0.5569

+WN | 0.5311 | 0.6162 | 0.4271 | 0.5259

Jeopardy (base only) | 0.5189 | 0.5788 | 0.4828 | 0.5571

Jeopardy 0.6812 | 0.7636 | 0.6029 | 0.6852

+2,293 noisy Cui et al. 0.2165 | 0.3690 | 0.2833 | 0.4248
+WN | 0.4333 | 0.5363 | 0.3811 | 0.4964

Jeopardy (base only) | 0.5174 | 0.5570 | 0.4922 | 0.5732

Jeopardy 0.6683 | 0.7443 | 0.5655 | 0.6687

Table 2: Results on development and test sets. TreeMatch is our implementation of Punyakanok et al.
(2004); +WN modifies their edit distance function using WordNet. We also report our implementation of
Cui et al. (2005), along with our WordNet expansion (+WN). The Jeopardy base model and mixture with
the lexical-semantics log-linear model perform best; both are trained using conditional maximum likelihood
estimation. The top part of the table shows performance using 100 manually-annotated question examples
(questions 1-100 in TREC 8-12), and the bottom part adds noisily, automatically annotated questions 101—
2,393. Boldface marks the best score in a column and any scores in that column not significantly worse

under a a two-tailed paired ¢-test (p < 0.03).

5.3 Results

Evaluation results on the development and test sets
of our model in comparison with the baseline algo-
rithms are shown in Table 2. Both our model and
the model in Cui et al. (2005) are trained on the
manually-judged training set (questions 1-100 from
TREC 8-12). The approximate tree matching algo-
rithm in Punyakanok et al. (2004) uses fixed edit dis-
tance functions and therefore does not require train-
ing. From the table we can see that our model signif-
icantly outperforms the two baseline algorithms—
even when they are given the benefit of WordNet—
on both development and test set, and on both MRR
and MAP.

5.4 Experiments with Noisy Training Data

Although manual annotation of the remaining 2,293
training sentences’ answers in TREC 8-12 was too
labor-intensive, we did experiment with a simple,
noisy automatic labeling technique. Any answer
that had at least three non-stop word types seen in
the question and contains the answer pattern defined
in the dataset was labeled as “correct” and used in
training. The bottom part of Table 2 shows the re-
sults. Adding the noisy data hurts all methods, but
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the Jeopardy model maintains its lead and consis-
tently suffers less damage than Cui et al. (2005).
(The TreeMatch method of Punyakanok et al. (2004)
does not use training examples.)

5.5 Summing vs. Maximizing

Unlike most previous work, our model does not try
to find a single correspondence between words in the
question and words in the answer, during training or
during testing. An alternative method might choose
the best (most probable) alignment, rather than the
sum of all alignment scores. This involves a slight
change to Equation 3, replacing the summation with
a maximization. The change could be made during
training, during testing, or both. Table 3 shows that
summing is preferable, especially during training.

6 Discussion

The key experimental result of this work is that
loose syntactic transformations are an effective way
to carry out statistical question answering.

One unique advantage of our model is the mix-
ture of a factored, multinomial-based base model
and a potentially very rich log-linear model. The
base model gives our model robustness, and the log-



test set
training | decoding | MAP | MRR
by X 0.6029 | 0.6852
by max 0.5822 | 0.6489
max by 0.5559 | 0.6250
max max 0.5571 | 0.6365

Table 3: Experimental results on comparing sum-
ming over alignments (32) with maximizing (max)
over alignments on the test set. Boldface marks the
best score in a column and any scores in that column
not significantly worse under a a two-tailed paired ¢-
test (p < 0.03).

linear model allows us to throw in task- or domain-
specific features. Using a mixture gives the advan-
tage of smoothing (in the base model) without hav-
ing to normalize the log-linear model by summing
over large sets. This powerful combination leads
us to believe that our model can be easily ported
to other semantic processing tasks where modeling
syntactic and semantic transformations is the key,
such as textual entailment, paraphrasing, and cross-
lingual QA.

The traditional approach to cross-lingual QA is
that translation is either a pre-processing or post-
processing step done independently from the main
QA task. Notice that the QG formalism that we have
employed in this work was originally proposed for
machine translation. We might envision transfor-
mations that are performed together to form ques-
tions from answers (or vice versa) and to translate—
a Jeopardy! game in which bilingual players must
ask a question in a different language than that in
which the answer is posed.

7 Conclusion

We described a statistical syntax-based model that
softly aligns a question sentence with a candidate
answer sentence and returns a score. Discrimina-
tive training and a relatively straightforward, barely-
engineered feature set were used in the implementa-
tion. Our scoring model was found to greatly out-
perform two state-of-the-art baselines on an answer
selection task using the TREC dataset.
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Abstract

Previous machine learning techniques for
answer selection in question answering
(QA) have required question-answer train-
ing pairs. It has been too expensive and
labor-intensive, however, to collect these
training pairs. This paper presents a novel
unsupervised support vector machine (U-
SVM) classifier for answer selection, which
is independent of language and does not re-
quire hand-tagged training pairs. The key
ideas are the following: 1. unsupervised
learning of training data for the classifier by
clustering web search results; and 2. select-
ing the correct answer from the candidates
by classifying the question. The compara-
tive experiments demonstrate that the pro-
posed approach significantly outperforms
the retrieval-based model (Retrieval-M), the
supervised SVM classifier (S-SVM), and the
pattern-based model (Pattern-M) for answer
selection. Moreover, the cross-model com-
parison showed that the performance rank-
ing of these models was: U-SVM > Pattern-
M > S-SVM > Retrieval-M.

1 Introduction

The purpose of answer selection in QA is to se-
lect the exact answer to the question from the ex-
tracted candidate answers. In recent years, many
supervised machine learning techniques for answer
selection in open-domain question answering have
been investigated in some pioneering studies [Itty-
cheriah et al. 2001; Ng et al. 2001; Suzuki et al.
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2002; Sasaki, et al. 2005; and Echihabi et al. 2003].
Compared with retrieval-based [Yang et al. 2003],
pattern-based [Ravichandran et al. 2002 and Soub-
botin et al. 2002], and deep NLP-based [Moldovan
et al. 2002, Hovy et al. 2001; and Pasca et al. 2001]
answer selection, machine learning techniques are
more effective in constructing QA components from
scratch. These techniques suffer, however, from the
problem of requiring an adequate number of hand-
tagged question-answer training pairs. It is too ex-
pensive and labor intensive to collect such training
pairs for supervised machine learning techniques.

To tackle this knowledge acquisition bottleneck,
this paper presents an unsupervised SVM classifier
for answer selection, which is independent of lan-
guage and question type, and avoids the need for
hand-tagged question-answer pairs. The key ideas
are as follows:

1. Regarding answer selection as a kind of classi-
fication task and adopting an SVM classifier;

2. Applying unsupervised learning of pseudo-
training data for the SVM classifier by cluster-
ing web search results;

3. Training the SVM classifier by using three
types of features extracted from the pseudo-
training data; and

4. Selecting the correct answer from the candidate
answers by classifying the question. Note that
this means classifying a question into one of
the clusters learned by clustering web search
results. Therefore, our classifying the question
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Figure 1: Web Question Answering Architecture

is different from conventional question classifi-
cation (QC) [Li et al. 2002] that determines the
answer type of the question.

The proposed approach is fully unsupervised and
starts only from a user question. It does not require
richly annotated corpora or any deep linguistic tools.
To the best of our knowledge, no research on this
kind of study we discuss here has been reported.
Figure 1 illustrates the architecture of our web QA
approach. The S-SVM and Pattern-M models are
included for comparison.

Because the focus of this paper just evaluates the
answer selection part, our approach requires knowl-
edge of the answer type to the question in order to
find candidate answers, and that the answer must be
a NE for convenience in candidate extraction. Ex-
periments using Chinese versions of the TREC 2004
and 2005 test data sets show that our approach sig-
nificantly outperforms the S-SVM for answer selec-
tion, with a top_1 score improvement of more than
20%. Results obtained with the test data set in [Wu
et al. 2004] show that the U-SVM increases the
top_1/mrr_5/top_5 scores by 5.95%/6.06%/8.68%
as compared with the Pattern-M. Moreover, our
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cross-model comparison demonstrates that the per-
formance ranking of all models considered is: U-
SVM > Pattern-M > S-SVM > Retrieval-M.

2 Comparison among Models

Related researches on answer selection in QA can be
classified into four categories. The retrieval-based
model [Yang et al. 2003] selects a correct answer
from the candidates according to the distance be-
tween a candidate and all question keywords. This
model does not work, however, if the question and
the answer-bearing sentences do not match on the
surface. The pattern-based model [Ravichandran
et al. 2002 and Soubbotin et al. 2002] first clas-
sifies the question into predefined categories, and
then extracts the exact answer by using answer pat-
terns learned off-line. Although the pattern-based
model can obtain high precision for some prede-
fined types of questions, it is difficult to define ques-
tion types in advance for open-domain question an-
swering. Furthermore, this model is not suitable for
all types of questions. The deep NLP-based model
[Moldovan et al. 2002; Hovy et al. 2001; and Pasca
et al. 2001] usually parses the user question and an
answer-bearing sentence into a semantic represen-
tation, and then semantically matches them to find
the answer. This model has performed very well at
TREC workshops, but it heavily depends on high-
performance NLP tools, which are time consuming
and labor intensive for many languages. Finally, the
machine learning-based model has also been inves-
tigated. current models of this type are based on su-
pervised approaches [Ittycheriah et al. 2001; Ng et
al. 2001; Suzuki et al. 2002; and Sasaki et al. 2005]
that are heavily dependent on hand-tagged question-
answer training pairs, which not readily available.
In response to this situation, this paper presents
the U-SVM for answer selection in open-domain
web question answering system. Our U-SVM has
the following advantages over supervised machine
learning techniques. First, the U-SVM classifies
questions into a question-dependent set of clusters,
and the answer is the name of a question cluster.
In contrast, most previous models have classified
candidates into positive and negative. Second, the
U-SVM automatically learns the unique question-
dependent clusters and the pseudo-training for each



Table 1: Comparison of Various Machine Learning Techniques

System \ Model | Key Idea | Training Data

[Ittycheriah et al. 2001] | ME Classifier | Classifying candidates into positive | 5,000 English
and negative Q-A pairs

[Suzuki et al. 2002] SVM Classifier | Classifying candidates into positive | 1358 Japanese
and negative Q-A pairs

[Echihabi et al. 2003] N-C Model Selecting correct answer by aligning | 90,000 English
guestion with sentences Q-A pairs

[Sasaki et al. 2005] ME Classifier | Classifying words in sentences into an- | 2,000 Japanese
swer and non-answer words Q-A pairs

Our U-SVM Model SVM Classifier | Classifying question into a set of | No Q-A pairs
question-dependent clusters

question. This differs from the supervised tech-
niques, in which a large number of hand-tagged
training pairs are shared by all of the test ques-
tions. In addition, supervised techniques indepen-
dently process the answer-bearing sentences, so the
answers to the questions may not always be ex-
tractable because of algorithmic limitations. On the
other hand, the U-SVM can use the interdependence
between answer-bearing sentences to select the an-
swer to a question.

Table 1 compares the key idea and training data
used in the U-SVM with those used in the supervised
machine learning techniques. Here, ME means the
maximum entropy model, and N-C means the noisy-
channel model.

3 TheU-SVM

The essence of the U-SVM is to regard answer selec-
tion as a kind of text categorization-like classifica-
tion task, but with no training data available. In the
U-SVM, the steps of "clustering web search results”,

"classifying the question”, and "training SVM clas-

sifier” play very important roles.

3.1 Clustering Web Search Results

Web search results, such as snippets returned by
Google, usually include a mixture of multiple
subtopics (called clusters in this paper) related to
the user question. To group the web search results
into clusters, we assume that the candidate answer in
each Google snippet can represent the "signature” of
its cluster. In other words, the Google snippets con-
taining the same candidate are regarded as aligned
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snippets, and thus belong to the same cluster. Web
search results are clustered in two phases.

e A first-stage Google search (FGS) is ap-
plied to extract n candidate answers
{c1,¢c9,...,¢,} from the top m Google
snippets  {s1,s2,...,5m} by a NER tool
[Wu et al. 2005]. Those snippets containing
the candidates {c;} and at least one ques-

tion keyword {g¢;} are retained.  Finally,
the retained snippets {si,so,...,s,} are
clustered into n clusters {C1,Cy,...,Ch}

by clustering web search results, that is,
If a snippet includes L different candidates,
the snippet belongs to L different clusters.
If the candidates of different snippets are
the same, these snippets belong to the same
clusters.

Consequently, the number of clusters {C;} is
fully determined by the number of candidates
{¢;}, and the cluster name of a cluster C; is the
candidate answer ¢;. Up to this point, we have
obtained clusters and sample snippets for each
cluster that will be used as training data for the
SVM classifier. Because this training data is
learned automatically, rather than hand-tagged,
we call it pseudo-training data.

e A second-stage Google search (SGS) is ap-
plied to resolve data sparseness in the pseudo-
training samples learned through the FGS. The
FGS data may have very few training snip-
pets in some clusters, so more snippets must
be collected. Note that this step just learns new



Google snippets into the clusters learned by the
FGS, but does not add new clusters.

For each candidate answer c;:
Combine the original query ¢ = {¢;} and
the candidate c¢; to form a new query ¢/ =
{Qa Ci}'
Submit ¢/ to Google and download the top
50 Google snippets.
Retain the snippets containing the candi-
date ¢; and at least one keyword ¢;.
Group the retained snippets into n clusters
to form the new pseudo-training data.
End

Here, we give an example illustrating the prin-
ciple of clustering web search results in the
FGS. In submitting TREC 2004 test question 1.1
"when was the first Crip gang started?” to Google
(http://Amww.google.com/apis), we extract n(= 8)
different candidates from the top m(= 30) Google
snippets. The Google snippets containing the same
candidates are aligned snippets, and thus the 12 re-
tained snippets are grouped into 8 clusters, as listed
in Table 2. This table roughly indicates that the snip-
pets with the same candidate answers contain the
same sub-meanings, so these snippets are considered
as aligned snippets. For example, all Google ship-
pets that contain the candidate answer 1969 express
the time of establishment of "the first Crip gang”.

In summary, the U-SVM uses the result of "clus-
tering web search results” as the pseudo-training
data of the SVM classifier, and then classifies user
question into one of the clusters for answer selec-
tion. On the one hand, the clusters and their names
are based on candidate answers to question; on the
other hand, candidates are dependent on question.
Therefore, the clusters are question-dependent.

3.2 Classifying Question

Using the pseudo-training data obtained by cluster-
ing web search results to train the SVM classifier,
we classify user questions into a set of question-
dependent clusters and assume that the correct an-
swer is the name of the question cluster that is as-
signed by the trained U-SVM classifier. For the
above example, if the U-SVM classifier, trained on
the pseudo-training data listed in Table 2, classifies
the above test question into a cluster whose name is
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1969, then the cluster name 1969 is the answer to
the question.

This paper selects LIBSVM toolkit! to implement
the SVM classifier. The kernel is the radical basis
function with the parameter v = 0.001 in the exper-
iments.

3.3 Feature Extraction

To classify the question into a question-dependent
set of clusters, the U-SVM classifier extracts three
types of features.

e A similarity-based feature set (SBFS) is
extracted from the Google snippets. The SBFS
attempts to capture the word overlap between
a question and a snippet. The possible values
range from O to 1.

SBFS Features

percentage of matched keywords (KWs)
percentage of mismatched KWs
percentage of matched bi-grams of KWs
percentage of matched thesauruses
normalized distance between candidate and
KWs
To compute the matched thesaurus feature, we
adopt TONGYICICILIN 2 in the experiments.

e A Boolean match-based feature set (BMFS) is
also extracted from the Google snippets. The
BMFS attempts to capture the specific key-
word Boolean matches between a question and
a snippet. The possible values are true or false.

BMFS Features

person names are matched or not

location names are matched or not
organization names are matched or not

time words are matched or not

number words are matched or not

root verb is matched or not

candidate has or does not have bi-gram in
snippet matching bi-gram in question
candidate has or does not have desired
named entity type

e A window-based word feature set (WWFS)
is a set of words consisting of the words

http://www.csie.ntu.edu.tw/ cjlin/libsvm/
2A Chinese Thesaurus Lexicon



Table 2: Clustering Web Search Results

Cluster Name \

Google Snippet

WWES features can be regarded as a kind of
relevant snippets-based question keywords ex-
pansion. By extracting the WWFS feature set,
the feature space in the U-SVM becomes ques-
tion dependent, which may be more suitable for
classifying the question. The number of classi-
fication features in the S-SVM must be fixed,
however, because all questions share the same
training data. This is one difference between
the U-SVM and the supervised SVM classifier
for answer selection. Each word feature in the
WWES is weighted using its ISF value.

N(w;)+0.5

ISF(w;, C;) = (1)

where N(w;) is the total number of the
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1969 It is believed that the first Crip gang was formed in late 1969. During this time in
Los Angeles there were ...
... the first Bloods and Crips gangs started forming in Los Angeles in late 1969, the
Island Bloods sprung up in north Pomona ...
. formed by 16 year old Raymond Lee Washington in 1969. Williams joined
Washington in 1971 ... had come to be called the Crips. It was initially started to
eliminate all street gangs ...
August 8, 2005 | High Country News — August 8, 2005: The Gangs of Zion
2004 2004 main 1 Crips 1.1 FACTOID When was the first Crip gang started? 1.2 FAC-
TOID What does the name mean or come...
1972 One of the first-known and publicized killings by Crip gang members occurred at
the Hollywood Bowl in March 1972.
1971 Williams joined Washington in 1971, forming the westside faction of what had
come to be called the Crips.
The Crips gang formed as a kind of community watchdog group in 1971 after the
demise of the Black Panthers. ...
. formed by 16 year old Raymond Lee Washington in 1969. Williams joined
Washington in 1971 ... had come to be called the Crips. It was initially started to
eliminate all street gangs ...
1982 Oceanside police first started documenting gangs in 1982, when five known gangs
were operating in the city: the Posole Locos...
mid-1990s Street Locos; Deep Valley Bloods and Deep Valley Crips. By the mid-1990s, gang
violence had ...
1970s The Blood gangs started up as opposition to the Crips gangs, also in the 1970s, and
the rivalry stands to this day ...
preceding {w;_5,...,w;—1} and following snippets containing word feature w;, and
{wit1,...,wits} the candidate answer. The N(wj, C;) is the number of snippets in cluster

C; containing word feature w;.

When constructing question vector, we assume
that the question is an ideal question that con-
tains all the extracted WWFS words. There-
fore, the values of the WWFS word features in
question vector are 1. Similarly, the values of
the SBFS and BMFS features in question vec-
tor are also estimated by self-similarity calcu-
lation.

4 Experiments

4.1 Data Sets

For the experiments, no English named entity recog-
nition (NER) tool is in our hand at the time of
the experiments; therefore, we validate the U-SVM



in terms of Chinese web QA using three test data
sets, which will be published with this paper3. Al-
though the U-SVM is independent of the question
types, for convenience in candidate extraction, only
those questions whose answers are named entities
are selected. The three test data sets are CTREC04,
CTRECO05 and CTESTO05. CTRECO04 is a set of
178 Chinese questions translated from TREC 2004
FACTOID testing questions. CTRECO05 is a set of
279 Chinese questions translated from TREC 2005
FACTOID testing questions. CTESTOS is a set of
178 Chinese questions found in [Wu et al. 2004]
that are similar to TREC testing questions except
that they are written in Chinese. Figure 2 breaks
down the types of questions (manually assigned) in
the CTRECO04 and CTRECO05 data sets. Here, PER,
LOC, ORG, TIM, NUM, and CR refer to questions
whose answers are a person, location, organization,
time, number, and book or movie, respectively.

80 7
68 OcTrec04 BCTrec05 1
70 —

60
50

40
30
20
10

0

Figure 2: Statistics of CTESTO05

To collect the question-answer training data for
the S-SVM, we submitted 807 Chinese questions to
Google and extracted the candidates for each ques-
tion from the top 50 Google snippets. We then man-
ually selected the snippets containing the correct
answers as positive snippets, and designated all of
the other snippets as negative snippets. Finally, we
collected 807 hand-tagged Chinese question-answer
pairs as the training data of S-SVM called CTRAIN-
DATA.

4.2 Evaluation Method

In the experiments, the top m (= 50) Google snip-
pets are adopted to extract candidates by using a

3Currently no public testing question set for simplifi ed Chi-
nese QA isavailable.
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Chinese NER tool [Wu et al. 2005]. The number of
the candidates extracted from the top m (= 50) snip-
pets, n, is adaptive for different questions but it does
not exceed 30. The results are evaluated in terms
of two scores, top_n and mrr_5. Here, top_n is the
rate at which at least one correct answer is included
in the top n answers, while mrr _5 is the average re-
ciprocal rank (1/n) of the highest rank n(n < 5) of
a correct answer to each question.

4.3 U-SVM vs. Retrieval-M

The Retrieval-M selects the candidate with the short-
est distances to all question keywords as the cor-
rect answer. In this experiment, the Retrieval-M
is implemented based on the snippets returned by
Google, while the U-SVM is based on the SGS data,
the SBFS and BMFS feature. Table 3 summarizes
the comparative performance.

Table 3: Comparison of Retrieval-M and U-SVM

Retrieval-M | U-SVM

top_1 27.84% 53.61%

CTRECO04 | mrr 5 43.67% 66.25%
top_5 71.13% 88.66%

top_1 34.00% 50.00%

CTRECO05 | mrr5 48.20% 62.38%
top_5 71.33% 82.67%

The table shows that the U-SVM greatly improves
the performance of the Retrieval-M: the top_1 im-
provements for CTREC04 and CTRECO05 are about
25.8% and 16.0%, respectively. This experiment
demonstrates that the assumptions used here in clus-
tering web search results and in classifying the ques-
tion are effective in many cases, and that the U-SVM
benefits from these assumptions.

44 U-SVM vs SSVM

To explore the effectiveness of our unsupervised
model as compared with the supervised model, we
conduct a cross-model comparison of the S-SVM
and the U-SVM with the SBFS and BMFS feature
sets. The U-SVM results are compared with the S-
SVM results for CTREC04 and CTRECO5 in Ta-
bles 4 and 5, respectively. The S-SVM is trained
on CTRAINDATA.
These tables show the following:



Table 4: Comparison of U-SVM and S-SVM on
CTREC04

| [ FGS | SGS |

top_1

S-SVM
U-SVM

30.93%
45.36%

39.18%
53.61%

mrr_1

S-SVM
U-SVM

45.36%
57.44%

53.54%
66.25%

top_5

S-SVM

71.13%

79.38%

U-SVM | 76.29% | 88.66%

Table 5: Comparison of U-SVM and S-SVM on
CTRECO05

sons for this improvement are: the data sparse-
ness in FGS data is partially resolved; and the
use of the Web to introduce data redundancy
is helpful. [Clarke et al. 2001; Magnini et al.
2002; and Dumais et al. 2002].

In the S-SVM, all of the test questions share the
same hand-tagged training data, so the WWFS fea-
tures cannot be easily used [Ittycheriah et al. 2002;
Suzuki, et al. 2002]. Tables 6 and 7 compare
the performances of the U-SVM with the (SBFS +
BMFS) features, the WWEFS features, and combina-
tion of three types of features for the CTREC04 and

‘ ‘ FGS ‘ SGS ‘ CTRECOS test data sets, respectively.

top-1 | S-SVM | 30.00% | 33.33%

U-SVM | 48.00% | 50.00% Table 6: Performances of U-SVM for Different Fea-
mrr.l | S-SVM | 45.59% | 48.67% tures on CTRECO04

U-SVM | 58.01% | 62.38% ‘ SBFS+BMFS ‘ WWES ‘ Combination ‘
top.5 | S-SVM | 72.00% | 74.67% top_1 53.61% 46.39% 60.82%

U-SVM | 75.33% | 82.67% mrr_5b 66.25% 59.19% 71.31%

top_5 88.66% 81.44% 88.66%

e The proposed U-SVM significantly outper-
forms the S-SVM for all measurements and
all test data sets. For the CTRECO04 test data
set, the top; improvements for the FGS and
SGS data are about 14.5% and 14.4%, respec-
tively. For the CTRECO5 test data set, the top;
score for the FGS data increases from 30.0%
to 48.0%, and the top_1 score for the SGS data
increases from 33.3% to 50.0%. Note that the
SBFS and BMFS features here is fewer than the
features in [lttycheriah et al. 2001; Suzuki et
al. 2002], but the comparison is still effective
because the models are compared in terms of
the same features. In the S-SVM, all questions
share the same training data, while the U-SVM
uses the unique pseudo-training data for each
question. This is the main reason why the U-
SVM performs better than the S-SVM does.

e The SGS data is greatly helpful for both
the U-SVM and the S-SVM. Compared with
the FGS data, the top_1/mrr5/top5 im-
provements for the S-SVM and the U-SVM
on CTREC04 are 8.25%/8.18%/8.25% and
7.25%/8.81%/12.37%. The SGS can be re-
garded as a kind of query expansion. The rea-
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Table 7: Performances of U-SVM for Different Fea-
tures on CTRECOQ05

| SBFS+BMFS | WWFS | Combination |

top-1 50.00% 49.33% 57.33%
mrr_b 62.38% 59.26% 65.61%
top-b 82.67% 74.00% 80.00%

These tables report that combining three types
of features can improve the performance of
the U-SVM. Using a combination of features
with the CTRECO04 test data set results in the
best performances: 60.82%/71.31%/88.66% for
top_1/mrr_5/top_5. Similarly, as compared with
using the (SBFS + BMFS) and WWEFS features, the
improvements from using a combination of features
with the CTRECOS test data set are 7.33%/3.23%/-
2.67% and 8.00%/6.35%/6.00%, respectively. The
results also demonstrate that the (SBFS + BMFS)
features are more important than the WWFS fea-
tures.

These comparative experiments indicate that the
U-SVM performs better than the S-SVM does, even
though the U-SVM is an unsupervised technique and
no hand-tagged training data is provided. The aver-



age top_1 improvements for both test data sets are
both more than 20%.

45 U-SVM vs. Pattern-M vs. SSSVM

To compare the U-SVM with the Pattern-M and
the S-SVM, we use the CTESTO5 data set, shown
in Figure 3. The CTESTO5 includes 14 different
question types, for example, Inventor_Stuff (with
question like "Who invented telephone?”), Event-
Day (with question like "when is World Day for Wa-
ter?”), and so on. The Pattern-M uses the depen-
dency syntactic answer patterns learned in [Wu et
al. 2007] to extract the answer, and named entities
are also used to filter noise from the candidates.

60

) 1 = _i_ﬂ_[L;Dm

Figure 3: Statistics of CTEST05

Table 8 summarizes the performances of the U-
SV M, Pattern-M, and S-SVM models on CTESTO5.

Table 8: Comparison of U-SVM, Pattern-M and S-
SVM on CTESTO05

| S-SVM | Pattern-M | U-SVM |
top_1 | 44.89% | 53.14% 59.09%
mrr_5 | 56.49% | 61.28% 67.34%
top b | 74.43% 73.14% 81.82%

The results in the table show that the U-SVM
significantly outperforms the S-SVM and Pattern-
M, while the S-SVM underperforms the Pattern-
M. Compared with the Pattern-M, the U-SVM in-
creases the top_1/mrr_5/top_5 scores by 5.95%/
6.06%/8.68%, respectively. The reasons may lie in
the following:

e The Chinese dependency parser influences de-
pendency syntactic answer-pattern extraction,
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and thus degrades the performance of the
Pattern-M model.

e The imperfection of Google snippets affects
pattern matching, and thus adversely influences
the Pattern-M model. From the cross-model
comparison, we conclude that the performance
ranking of these models is: U-SVM > Pattern-
M > S-SVM > Retrieval-M.

5 Conclusion and Future Work

This paper presents an unsupervised machine learn-
ing technique (called the U-SVM) for answer selec-
tion that is validated in Chinese open-domain web
QA. Regarding answer selection as a kind of classifi-
cation task, the U-SVM automatically learns clusters
and pseudo-training data for each cluster by cluster-
ing web search results. It then selects the correct
answer from the candidates according to classifying
the question. The contribution of this paper is that
it presents an unsupervised machine learning tech-
nique for web QA that starts with only a user ques-
tion. The results of our experiments with three test
data sets are encouraging. As compared with the
S-SVM, the top_1 performances of the U-SVM for
the CTREC04 and CTRECO05 data sets are signifi-
cantly improved, at more than 20%. Moreover, the
U-SVM performs better than the Retrieval-M and
the Pattern-M.

These experiments have only validated the U-
SVM on named entity types of questions that ac-
count for about 82% of all TREC2004 and 2005
FACTOID test questions. In fact, our technique is
independent of question types only if the candidates
can be extracted. In the future, we will explore the
effectiveness of our technique for the other types of
questions. The web search results clustering in the
U-SVM defines that a candidate in a Google snip-
pet can represent the "signature” of its cluster. This
definition, however, is not always effective. To fil-
ter noise in the pseudo-training data, we will extract
relations between the candidates and the keywords
as the cluster signatures of Google snippets. More-
over, applying the U-SVM to QA systems in other
languages, like English and Japanese, will also be
included in our future work.
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Abstract
We describe an approach to improve
Statistical Machine Translation (SMT)

performance using multi-lingual, parallel,
sentence-aligned corpora in several bridge
languages. Our approach consists of a sim-
ple method for utilizing a bridge language to
create a word alignment system and a proce-
dure for combining word alignment systems
from multiple bridge languages. The final
translation is obtained by consensus de-
coding that combines hypotheses obtained
using all bridge language word alignments.
We present experiments showing that mul-
tilingual, parallel text in Spanish, French,
Russian, and Chinese can be utilized in
this framework to improve translation
performance on an Arabic-to-English task.

1 Introduction

Word Alignment of parallel texts forms a cru-
cial component of phrase-based statistical machine
translation systems. High quality word alignments
can yield more accurate phrase-pairs which improve
quality of a phrase-based SMT system (Och and
Ney, 2003; Fraser and Marcu, 2006b).

Much of the recent work in word alignment has
focussed on improving the word alignment quality
through better modeling (Och and Ney, 2003; Deng
and Byrne, 2005; Martin et al., 2005) or alternative
approaches to training (Fraser and Marcu, 2006b;
Moore, 2005; Ittycheriah and Roukos, 2005). In
this paper we explore a complementary approach to
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improve word alignments using multi-lingual, par-
allel (or multi-parallel) corpora. Two works in the
literature are very relevant to our approach. Borin
(2000) describes a non-statistical approach where a
pivot alignment is used to combine direct translation
and indirect translation via a third language. Filali
and Bilmes (2005) present a multi-lingual extension
to the IBM/HMM models. Our current approach dif-
fers from this latter work in that we propose a sim-
ple framework to combine word alignments from
any underlying statistical alignment model without
the need for changing the structure of the model.
While both of the above papers focus on improv-
ing word alignment quality, we demonstrate that
our approach can yield improvements in transla-
tion performance. In particular, we aim to improve
an Arabic-to-English (Ar-En) system using multi-
parallel data from Spanish (Es), French (Fr), Rus-
sian (Ru) and Chinese (Zh). The parallel data in
these languages X € {Es, F'r, Ru, Zh} is used to
generate word alignments between Arabic-X and
X-English. These alignments are then combined to
obtain multiple word alignments for Arabic-English
and the final translation systems.

The motivation for this approach is two-fold.
First, we believe that parallel corpora available
in several languages provide a better training ma-
terial for SMT systems relative to bilingual cor-
pora. Such multi-lingual parallel corpora are be-
coming widely available; examples include proceed-
ings of the United Nations in six languages (UN,
2006), European Parliament (EU, 2005; Koehn,
2003), JRC Acquis corpus (EU, 2007) and religious
texts (Resnik et al., 1997). Word alignment systems
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trained on different language-pairs (e.g. French-
English versus Russian-English) make errors which
are somewhat orthogonal. In such cases, incorrect
alignment links between a sentence-pair can be cor-
rected when a translation in a third language is avail-
able. Thus it can help resolve errors in word align-
ment. We combine word alignments using several
bridge languages with the aim of correcting some
of the alignment errors. The second advantage of
this approach is that the word alignment from each
bridge language can be utilized to build a phrase-
based SMT system. This provides a diverse collec-
tion of translation hypotheses for MT system com-
bination (Bangalore et al., 2002; Sim et al., 2007;
Matusov et al., 2006; Macherey and Och, 2007). Fi-
nally, a side benefit of this paper is that it provides a
study that compares alignment qualities and BLEU
scores for models in different languages trained on
parallel text which is held identical across all lan-
guages.

We show that parallel corpora in multiple lan-
guages can be exploited to improve the translation
performance of a phrase-based translation system.
This paper gives specific recipes for using a bridge
language to construct a word alignment and for com-
bining word alignments produced by multiple statis-
tical alignment models.

The rest of this paper is organized as follows: Sec-
tion 2 gives an overview of our framework for gen-
erating word alignments in a single language-pair.
In Section 3, we describe how a bridge language
may be used for producing word alignments. In Sec-
tion 4, we describe a scheme to combine word align-
ments from several bridge languages. Section 5 de-
scribes our experimental setup and reports the align-
ment and translation performance. A final discus-
sion is presented in Section 6.

2  Word Alignment Framework

A statistical translation model (Brown et al., 1993;
Och and Ney, 2003) describes the relationship be-
tween a pair of sentences in the source and target
languages (f = f{,e = el) using a translation
probability P(f|e). Alignment models introduce a
hidden alignment variable a = a{ to specify a map-
ping between source and target words; a; = 1 in-

dicates that the j** source word is linked to the i
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target word. Alignment models assign a probabil-
ity P(f,ale) to the source sentence and alignment
conditioned on the target sentence. The transla-
tion probability is related to the alignment model as:
P(fle) = >, Py(f,ale), where 0 is a set of param-
eters.

Given a sentence-pair (f,e), the most likely
(Viterbi) word alignment is found as (Brown et al.,
1993): a = argmax, P(f,ale). An alternate cri-
terion is the Maximum A-Posteriori (MAP) frame-
work (Ge, 2004; Matusov et al., 2004). We use a
refinement of this technique.

Given any word alignment model, posterior prob-
abilities can be computed as (Brown et al., 1993)

P(aj =ile,f) =) P(alf,e)d(i,a;), (D)

where i € {0,1,...,I}. The assignment a; = 0
corresponds to the NULL (empty) alignment. These
posterior probabilities form a matrix of size (I+1) x
J, where entries along each column sum to one.

The MAP alignment for each source position j €
{1,2, ..., J} is then computed as

ariap(j) = argmax P(a; = ile.f). ()

We note that these posterior probabilities can be
computed efficiently for some alignment models
such as the HMM (Vogel et al., 1996; Och and Ney,
2003), Models 1 and 2 (Brown et al., 1993).

In the next two sections, we describe how poste-
rior probabilities can be used to a) construct align-
ment systems from a bridge language, and b) merge
several alignment systems.

3 Constructing Word Alignment Using a
Bridge Language

We assume here that we have triples of sentences
that are translations of each other in languages F, E,
and the bridge language G: f = f{,e = el, g =
gf( . Our goal is to obtain posterior probability es-
timates for the sentence-pair in FE: (f, e) using the
posterior probability estimates for the sentence pairs
in FG: (f,g) and GE: (g, e). The word alignments
between the above sentence-pairs are referred to as
al'’f af'G and aCF respectively; the notation al'l
indicates that the alignment maps a position in F to
a position in E.



We first express the posterior probability as a sum
over all possible translations g in G and hidden
alignments /.

P(afE = ile, )

= > P(af" =i glef)
g

= ZP(afE = i,g,afG = ke, f)
g.k

= Y {P(gle.H)P(a]® = klg,e.f)
g.k

xP(alP = ilal% = k, g, e, f)} 3)
We now make some assumptions to simplify the

above expression. First, there is exactly one trans-

lation g in bridge language G corresponding to the

sentence-pair f, e. Since aaGfG =4 = af E we can

J

express

P(afE = i|afG =k,g,f,e) = P(alF = ilg,e).

Finally, alignments in FG do not depend on E.
Under these assumptions, we arrive at the final ex-

pression for the posterior probability FE in terms of

posterior probabilities for GF and EG

P(af? =ile,f) = (4)

K
3" P(afY = klg,f)P(af” = ilg, e)
k=0

The above expression states that the posterior prob-
ability matrix for FE can be obtained using a simple
matrix multiplication of posterior probability ma-
trices for GE and FG. In this multiplication, we
prepend a column to the GE matrix corresponding
to k = 0. This probability P(a{'” = i) when k = 0
is not assigned by the alignment model; we set it as
follows

s

The parameter e controls the number of empty align-
ments; a higher value favors more empty alignments
and vice versa. In our experiments, we set € = 0.5.

P(ag” =ilk =0) = { e

4 Word Alignment Combination Using
Posterior Probabilities

We next show how Word Alignment Posterior Prob-
abilities can be used for combining multiple word
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alignment systems. In our context, we use this pro-
cedure to combine word alignments produced using
multiple bridge languages.

Suppose we have translations in bridge languages
G1,Ga, ...,GN, we can generate a posterior prob-
ability matrix for FE using each of the bridge lan-
guages. In addition, we can always generate a poste-
rior probability matrix for FE with the FE alignment
model directly without using any bridge language.
These N + 1 posterior matrices can be combined as
follows. Here, the variable B indicates the bridge
language. B € {Gy, G, ..., GN}; Gy indicates the
case when no bridge language is used.

P(af® = ile,f) 5)

P(B=Gya " =ilef)

1= I1]=

P(B = Gl)P(afE = ’L'|Glaea f)a

N
Il
o

where P(afE =i|Gy, j, e, f) is the posterior proba-
bility when bridge language B = G;. The probabili-
ties P(B = G;) sumto one over [ € {0,1,2,..., N}
and represent the prior probability of bridge lan-
guage [. In our experiments, we use a uniform prior
P(B=@G)) = ﬁ Equation 5 provides us a way
to combine word alignment posterior probabilites
from multiple bridge languages. In our alignment
framework (Section 2), we first interpolate the pos-
terior probability matrices (Equation 5) and then ex-
tract the MAP word alignment (Equation 2) from the

resulting matrix.

S Experiments

We now present experiments to demonstrate the ad-
vantages of using bridge languages. Our experi-
ments are performed in the open data track of the
NIST Arabic-to-English (A-E) machine translation
task !.

5.1 Training and Test Data

Our approach to word alignment (Section 3) requires
aligned sentences in multiple languages. For train-
ing alignment models, we use the ODS United Na-

'nttp://www.nist.gov/speech/tests/mt/



Set # of Ar words (K)  # of sentences
devl 48.6 2007
dev2 11.4 498

test 37.8 1610
blind 36.5 1797

Table 1: Statistics for the test data.

tions parallel data (UN, 2006) which contains par-
liamentary documents from 1993 onwards in all six
official languages of the UN: Arabic (Ar), Chinese
(Zh), English (En), French (Fr), Russian (Ru), and
Spanish (Es).

We merge the NIST 2001-2005 Arabic-English
evaluation sets into a pool and randomly sam-
ple this collection to create two development sets
(devl,dev2) and a test set (test) with 2007, 498, and
1610 sentences respectively. Our blind test (blind)
set is the NIST part of the NIST 06 evaluation set
consisting of 1797 sentences. The GALE portion of
the 06 evaluation set is not used in this paper. We re-
port results on the test and blind sets. Some statistics
computed on the test data are shown in Table 1.

5.2 Alignment Model Training

For training Arabic-English alignment models, we
use Chinese, French, Russian and Spanish as bridge
languages. We train a model for Ar-En and 4 mod-
els each for Ar-X and X-En, where X is the bridge
language. To obtain aligned sentences in these lan-
guage pairs, we train 9 sentence aligners. We then
train alignment models for all 9 language-pairs us-
ing a recipe consisting of 6 Model-1 iterations and
6 HMM iterations. Finally, Word Alignment Poste-
rior Probabilities are generated over the bitext. In
Table 2, we report the perplexities of the alignment
models for the translation directions where either
Arabic or English is predicted. There are 55M Ara-
bic tokens and 58M English tokens. We observe
that the alignment model using Spanish achieves the
lowest perplexity; this value is even lower than the
perplexity of the direct Arabic-English model. Per-
plexity is related to the hardness of the word align-
ment; the results suggest that bridge languages such
as Spanish make alignment task easier while others
do not. We stress that perplexity is not related to the
alignment or the translation performance.
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Bridge Perplexity
Lang | — Ar —En
None 113.8  26.1

Es 99.0 229
Fr 138.6  30.2
Ru 1283 275
Zh 126.1  34.6

Table 2: Perplexities of the alignment models.

5.3 Bridge Language Word Alignments

Each of the 4 bridge languages is utilized for con-
structing a word alignment for Arabic-English. Us-
ing each bridge language X, we obtain Arabic-
English word alignments in both translation direc-
tions (AE and EA). The posterior matrix for AE is
obtained using AX and XE matrices while the EA
matrix is obtained from EX and XA matrices (Equa-
tion 4). The AE (EA) matrices from the bridge
languages are then interpolated with the AE (EA)
matrix obtained from the alignment model trained
directly on Arabic-English (Section 4). The MAP
word alignment for AE (EA) direction is computed
from the AE (EA) matrix. We next outline how these
word alignments are utilized in building a phrase-
based SMT system.

5.4 Phrase-based SMT system

Our phrase-based SMT system is similar to the
alignment template system described in Och and
Ney (2004). We first extract an inventory of phrase-
pairs up to length 7 from the union of AE and EA
word alignments. Various feature functions (Och
and Ney, 2004) are then computed over the entries
in the phrase table. 5-gram word language models
in English are trained on a variety of monolingual
corpora (Brants et al., 2007). Minimum Error Rate
Training (MERT) (Och, 2003) under BLEU crite-
rion is used to estimate 20 feature function weights
over the larger development set (devl).

Translation is performed using a standard dy-
namic programming beam-search decoder (Och and
Ney, 2004). Decoding is done in two passes. An ini-
tial list of 1000-best hypotheses is generated by the
decoder. This list is then rescored using Minimum
Bayes-Risk (MBR) decoding (Kumar and Byrne,
2004). The MBR scaling parameter is tuned on the
smaller development set (dev2).



Bridge Metrics(%)
Language AE EA

Prec Rec AER | Prec Rec AER
None 741 739 260 | 673 577 379
Es 61.7 563 41.1 | 500 402 554
Fr 529 480 49.7 | 423 33.6 625
Ru 574 508 46.1 | 40.2 316 64.6
Zh 443 393 583|397 299 659
AC1 70.0 65.0 326 | 56.8 464 489

Table 3: Alignment Performance with Bridge Lan-
guages

5.5 Alignment Results

We first report alignment performance (Table 3) of
the alignment models obtained using the bridge lan-
guages. Alignment results are reported in terms
of Precision (Prec), Recall (Rec) and Alignment
Error Rate (AER). We report these numbers on
a 94-sentence test set with translations in all six
languages and human word alignments in Arabic-
English. Our human word alignments do not dis-
tinguish between Sure and Probable links (Och and
Ney, 2003).

In these experiments, we first identify the com-
mon subset of sentences which have translations in
all six languages. Each of the 9 alignment models
is then trained on this subset. We report Alignment
performance in both translation directions: Arabic-
to-English (AE) and English-to-Arabic (EA). The
first row (None) gives the results when no bridge
language is used.

Among the bridge languages, Spanish gives the
best alignment for Arabic-English while Chinese re-
sults in the worst. This might be related to how dif-
ferent the bridge language is relative to either En-
glish or Arabic. The last row (AC1) shows the per-
formance of the alignment obtained by combining
None/Es/Fr/Ru/Zh alignments. This alignment out-
performs all bridge alignments but is weaker than
the alignment without any bridge language. Our
hypothesis is that a good choice of interpolation
weights (Equation 5) would reduce AER of the AC1
combination. However, we did not investigate these
choices in this paper. We report alignment error rates
here to give the readers an idea of the vastly differ-
ent alignment performance using each of the bridge
languages.
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5.6 Translation Results

We now report translation performance of our tech-
niques. We measure performance using the NIST
implementation of case sensitive BLEU-4 on true-
cased translations. We observed in experiments
not reported here that results are almost identical
with/without Minimum Error Rate Training ; we
therefore report the results without the training. We
note that the blind set is the NIST subset of the 2006
NIST evaluation set. The systems reported here are
for the Unlimited Data Track in Arabic-to-English
and obtain competitive performance relative to the
results reported on the NIST official results page >

We present three sets of experiments. In Table 4,
we describe the first set where all 9 alignment mod-
els are trained on nearly the same set of sentences
(1.9M sentences, 57.5M words in English). This
makes the alignment models in all bridge languages
comparable. In the first row marked None, we do not
use a bridge language. Instead, an Ar-En alignment
model is trained directly on the set of sentence pairs.
The next four rows give the performance of align-
ment models trained using the bridge languages Es,
Fr, Ru and Zh respectively. For each language, we
use the procedure (Section 3) to obtain the posterior
probability matrix for Arabic-English from Arabic-
X and X-English matrices. The row AC1 refers to
alignment combination using interpolation of poste-
rior probabilities described in Section 4. We com-
bine posterior probability matrices from the systems
in the first four rows: None, Es, Ru and Zh. We
exclude the Zh system from the AC1 combination
because it is found to degrade the translation perfor-
mance by 0.2 points on the test set.

In the final six rows of Table 4, we show the per-
formance of a consensus decoding technique that
produces a single output hypothesis by combin-
ing translation hypotheses from multiple systems;
this is an MBR-like candidate selection procedure
based on BLEU correlation matrices and is de-
scribed in Macherey and Och (2007). We first report
performance of the consensus output by combining
None systems with/without MERT. Each of the fol-
lowing rows provides the results from consensus de-
coding for adding an extra system both with/without
MERT. Thus, the final row (TC1) combines transla-

2h[[p://WWW,nist,gov/speech/lesls/m[/mlOGevaLofﬁcialJesults.html



tions from 12 systems: None, Es, Fr, Ru, Zh, AC1
with/without MERT. All entries marked with an as-
terisk are better than the None baseline with 95%
statistical significance computed using paired boot-
strap resampling (Koehn, 2004).
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Figure 1: 100-AER (%) vs. BLEU(%) on the blind
set for 6 systems from Table 3.

Figure 1 shows the plot between 100-AER% (av-
erage of EA/AE directions) and BLEU for the six
systems in Table 3. We observe that AER is loosely
correlated to BLEU (p = 0.81) though the re-
lation is weak, as observed earlier by Fraser and
Marcu (2006a). Among the bridge languages, Span-
ish gives the lowest AER/highest BLEU while Chi-
nese results in highest AER/lowest BLEU. We can
conclude that Spanish is closest to Arabic/English
while Chinese is the farthest. All the bridge lan-
guages yield lower BLEU/higher AER relative to the
No-Bridge baseline. Therefore, our estimate of the
posterior probability (Equation 4) is always worse
than the posterior probability obtained using a di-
rect model. The alignment combination (AC1) be-
haves differently from other bridge systems in that it
gives a higher AER and a higher BLEU relative to
None baseline. We hypothesize that AC1 is differ-
ent from the bridge language systems since it arises
from a different process: interpolation with the di-
rect model (None).

Both system combination techniques give im-
provements relative to None baseline: alignment
combination AC1 gives a small gain (0.2 points)
while the consensus translation TC1 results in a
larger improvement (0.8 points). The last 4 rows
of the table show that the performance of the hy-
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pothesis consensus steadily increases as systems get
added to the None baseline. This shows that while
bridge language systems are weaker than the di-
rect model, they can provide complementary sources
of evidence. To further validate this hypothesis,
we compute inter-system BLEU scores between
None/es and all the systems in Table 5. We observe
that the baseline (None) is very dissimilar from the
rest of the systems. We hypothesize that the baseline
system has an alignment derived from a real align-
ment model while the rest of the bridge systems are
derived using matrix multiplication. The low inter-
system BLEU scores show that the bridge systems
provide diverse hypotheses relative to the baseline
and therefore contribute to gains in consensus de-
coding.

Bridge Lang | #Msents [ BLEU (%)
test blind

None 1.9 52.1 40.1

Es 1.9 51.7 39.8

Fr 1.9 51.2 39.5

Ru 1.9 50.4 38.7

Zh 1.9 48.4 37.1

AC1 1.9 52.1 40.3

Hypothesis Consensus

None 1.9 51.9 39.8

+Es 1.9 522 40.0
+Fr 1.9 52.4*  40.5"
+Ru 1.9 52.8%  40.7"
+Zh 1.9 52.6* 40.6
+AC1 =TCl1 1.9 53.0°  40.9"

Table 4: Translation Experiments for Set 1; Results
are reported on the test and blind set: (NIST portion
of 2006 NIST eval set).

Ref None es fr ru zh ACl1
None | 100.0 60.0 598 59.7 59.5 58.7
es 596 1000 799 693 674 705

Table 5: Inter-system BLEU scores (%) between
None/es and all systems in Table 3.

To gain some insight about how the bridge sys-
tems help in Table 4, we present an example in Ta-
ble 6. The example shows the consensus Transla-
tions and the 12 input translations for the consensus
decoding. The example suggests that the inputs to
the consensus decoding exhibit diversity.

Table 7 reports the second and third sets of ex-
periments. For both sets, we first train each bridge
language system X using all aligned sentences avail-



System MERT

Hypothesis

None N The President of the National Conference Visit Iraqi Kurdistan Iraqi

None Y President of the Iragi National Conference of Iraqi Kurdistan Visit
Es N President of the Iraqi National Congress to Visit Iraqi Kurdistan
Es Y President of the Iraqi National Congress to Visit Iraqi Kurdistan
Fr N President of the Iragi National Conference Visits Iraqi Kurdistan
Fr Y Chairman of the Iraqi National Conference Visits Iraqi Kurdistan
Ru N The Chairman of the Iraqi National Conference Visits Iraqi Kurdistan
Ru Y Chairman of the Iraqi National Conference Visit the Iraqi Kurdistan
Zh N The Chairman of the Iraqi National Conference Visits Iraqi Kurdistan
Zh Y The Chairman of the Iraqi National Conference Visit Iraqi Kurdistan

ACl1 N President of the Iraqi National Congress to Visit Iraqi Kurdistan

AC1 Y Chairman of the Iraqi National Congress to Visit Iraqi Kurdistan
TCl1 - The Chairman of the Iraqi National Conference Visits Iraqi Kurdistan
Ref - Head of Iraqi National Congress Visits Iraqi Kurdistan

Table 6: An example showing the Consensus Translation (TC1) and the 12 inputs for consensus decoding.

The final row shows the reference translation.

able in Ar, En and X. In Set 2, the first row (Union)
is an alignment model trained on all sentence-pairs
in Ar-En which are available in at least one bridge
language X. AC2 refers to alignment combination
using bridge languages Es/Fr/Ru and Union. TC2
refers to the translation combination from 12 sys-
tems: Es/Fr/Ru/Zh/Union/AC2 with/without Mini-
mum Error Rate training. Finally, the goal in Set 3
(last 3 rows) is to improve the best Arabic-English
system that can be built using all available sen-
tence pairs from the UN corpus. The first row
(Direct) gives the performance of this Ar-En sys-
tem; AC3 refers to alignment combination using
Es/Fr/Ru and Direct. TC3 merges translations from
Es/Fr/Ru/Zh/Direct/AC3. All entries marked with
an asterisk (plus) are better than the Union (Direct)
baseline with 95% statistical significance computed
using paired bootstrap resampling (Koehn, 2004).
The motivation behind Sets 2 and 3 is to train all
bridge language systems on as much bitext as possi-
ble. As a consequence, these systems give better re-
sults than the corresponding systems in Table 4. The
Union system outperforms None by 1.7/1.4 BLEU
points and provides a better baseline. We show un-
der this scenario that system combination techniques
AC2 and TC2 can still give smaller improvements
(0.3/0.5 and 1.0/0.7 points) relative to this baseline.
As mentioned earlier, our approach requires
sentence-aligned corpora. In our experiments, we
use a single sentence aligner for each language pair
(total of 9 aligners). Since these aligners make inde-
pendent decisions on sentence boundaries, we end
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up with a smaller pool of sentences (1.9M) that is
common across all language pairs. In contrast, a
sentence aligner that makes simultaneous decisions
in multiple languages would result in a larger set of
common sentence pairs (close to 7M sentence pairs).
Simard (1999) describes a sentence aligner of this
type that improves alignment on a trilingual paral-
lel text. Since we do not currently have access to
such an aligner, we simulate that situation with Sets
2 and 3: AC2/AC3 do not insist that a sentence-pair
be present in all input word alignments. We note that
Set 2 is a data scenario that falls between Sets 1 and
3.

Set 3 provides the best baseline for Arabic-
English based on the UN data by training on
all parallel sentence-pairs. In this situation, sys-
tem combination with bridge languages (AC3/TC3)
gives reasonable improvements in BLEU on the test
set (0.4/1.0 points) but only modest improvements
(0.1/0.4 points) on the blind set. However, this does
show that the bridge systems continue to provide or-
thogonal evidence at different operating points.

6 Discussion

We have described a simple approach to improve
word alignments using bridge languages. This in-
cludes two components: a matrix multiplication to
assemble a posterior probability matrix for the de-
sired language-pair FE using a pair of posterior
probability matrices FG and GE relative to a bridge
language G. The second component is a recipe for
combining word alignment systems by linearly in-



Bridge Lang | # Msents BLEU (%)
test blind
Es 4.7 53.7 40.9
Fr 4.7 532 40.7
Ru 4.5 52.4 39.9
Zh 34 49.7 37.9
Set 2
Union 7.2 53.8 41.5
AC2 7.2 54.1 42.0*
TC2 - 54.8% 422
Set 3
Direct 7.0 53.9 42.2
AC3 9.0 5437 423
TC3 - 5497 4267

Table 7: Translation performance for Sets 2 and 3 on
test and blind:NIST portion of 2006 NIST eval set.

terpolating posterior probability matrices from dif-
ferent sources. In our case, these sources are multi-
ple bridge languages. However, this method is more
generally applicable for combining posterior matri-
ces from different alignment models such as HMM
and Model-4. Such an approach contrasts with the
log-linear HMM/Model-4 combination proposed by
Och and Ney (2003).

There has been recent work by Ayan and Dorr
(2006) on combining word alignments from differ-
ent alignment systems; this paper describes a maxi-
mum entropy framework for this combination. Their
approach operates at the level of the alignment links
and uses maximum entropy to decide whether or
not to include an alignment link in the final out-
put. In contrast, we use posterior probabilities as the
interface between different alignment models. An-
other difference is that this maxent framework re-
quires human word aligned data for training feature
weights. We do not require any human word aligned
data to train our combiner.

Another advantage of our approach is that it is
based on word alignment posterior probability ma-
trices that can be generated by any underlying align-
ment model. Therefore, this method can be used to
combine word alignments generated by fairly dis-
similar word alignment systems as long as the sys-
tems can produce posterior probabilities.

Bridge languages have been used by NLP re-
searchers as a means to induce translation lexicons
between distant languages without the need for par-
allel corpora (Schafer and Yarowsky, 2002; Mann
and Yarowsky, 2001). Our current approach differs
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from these efforts in that we use bridge languages to
improve word alignment quality between sentence
pairs. Furthermore, we do not use linguistic insight
to identify bridge languages. In our framework, a
good bridge language is one that provides the best
translation performance using the posterior matrix
multiplication. Our experiments show that Spanish
is a better bridge language relative to Chinese for
Arabic-to-English translation. We speculate that if
our approach was carried out on a data set with hun-
dreds of languages, we might be able to automati-
cally identify language families.

A downside of our approach is the requirement
for exact sentence-aligned parallel data. Except for
a few corpora such as UN, European Parliament etc,
such a resource is hard to find. One solution is to cre-
ate such parallel data by automatic translation and
then retaining reliable translations by using confi-
dence metrics (Ueffing and Ney, 2005).

Our approach to using bridge languages is ex-
tremely simple. Despite its simplicity, the system
combination gives improvements in alignment and
translation performance. In future work, we will
consider several extensions to this framework that
lead to more powerful system combination strategies
using multiple bridge languages. We recall that the
present approach trains bridge systems (e.g. Arabic-
to-French, French-to-English) until the alignment
stage and then uses these for constructing Arabic-
to-English word alignment. An alternate scenario
would be to build phrase-based SMT systems for
Arabic-to-Spanish and Spanish-to-English, and then
obtain Arabic-to-English translation by first trans-
lating from Arabic into Spanish and then Spanish
into English. Such end-to-end bridge systems may
lead to an even more diverse pool of hypotheses that
could further improve system combination.
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Abstract

Word alignment is the problem of annotating
parallel text with translational correspon-
dence. Previous generative word alignment
models have made structural assumptions
such as the 1-to-1, 1-to-N, or phrase-based
consecutive word assumptions, while previ-
ous discriminative models have either made
such an assumption directly or used features
derived from a generative model making one
of these assumptions. We present a new gen-
erative alignment model which avoids these
structural limitations, and show that it is
effective when trained using both unsuper-
vised and semi-supervised training methods.

1 Introduction

Several generative models and a large number of
discriminatively trained models have been proposed
in the literature to solve the problem of automatic
word alignment of bitexts. The generative propos-
als have required unrealistic assumptions about the
structure of the word alignments. Two assumptions
are particularly common. The first is the 1-to-N as-
sumption, meaning that each source word generates
zero or more target words, which requires heuristic
techniques in order to obtain alignments suitable for
training a SMT system. The second is the consec-
utive word-based “phrasal SMT” assumption. This
does not allow gaps, which can be used to particular
advantage by SMT models which model hierarchi-
cal structure. Previous discriminative models have
either made such assumptions directly or used fea-
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tures from a generative model making such an as-
sumption. Our objective is to automatically produce
alignments which can be used to build high quality
machine translation systems. These are presumably
close to the alignments that trained bilingual speak-
ers produce. Human annotated alignments often
contain M-to-N alignments, where several source
words are aligned to several target words and the re-
sulting unit can not be further decomposed. Source
or target words in a single unit are sometimes non-
consecutive.

In this paper, we describe a new generative model
which directly models M-to-N non-consecutive
word alignments. The rest of the paper is organized
as follows. The generative story is presented, fol-
lowed by the mathematical formulation. Details of
the unsupervised training procedure are described.
The generative model is then decomposed into fea-
ture functions used in a log-linear model which is
trained using a semi-supervised algorithm. Experi-
ments show improvements in word alignment accu-
racy and usage of the generated alignments in hier-
archical and phrasal SMT systems results in an in-
creased BLEU score. Previous work is discussed
and this is followed by the conclusion.

2 LEAF: a generative word alignment
model

2.1 Generative story

We introduce a new generative story which enables
the capture of non-consecutive M-to-N alignment
structure. We have attempted to use the same la-
bels as the generative story for Model 4 (Brown et

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 51-60, Prague, June 2007. (©)2007 Association for Computational Linguistics



al., 1993), which we are extending.

Our generative story describes the stochastic gen-
eration of a target string f (sometimes referred to
as the French string, or foreign string) from a source
string e (sometimes referred to as the English string),
consisting of [ words. The variable m is the length
of f. We generally use the index ¢ to refer to source
words (e; is the English word at position 7), and j to
refer to target words.

Our generative story makes the distinction be-
tween different types of source words. There are
head words, non-head words, and deleted words.
Similarly, for target words, there are head words,
non-head words, and spurious words. A head word
18 linked to zero or more non-head words; each non-
head word is linked to from exactly one head word.
The purpose of head words is to try to provide a ro-
bust representation of the semantic features neces-
sary to determine translational correspondence. This
is similar to the use of syntactic head words in sta-
tistical parsers to provide a robust representation of
the syntactic features of a parse sub-tree.

A minimal translational correspondence consists
of a linkage between a source head word and a target
head word (and by implication, the non-head words
linked to them). Deleted source words are not in-
volved in a minimal translational correspondence, as
they were “deleted” by the translation process. Spu-
rious target words are also not involved in a min-
imal translational correspondence, as they sponta-
neously appeared during the generation of other tar-
get words.

Figure 1 shows a simple example of the stochas-
tic generation of a French sentence from an English
sentence, annotated with the step number in the gen-
erative story.

1. Choose the source word type.

for each ¢« = 1,2,...,] choose a word type
xi = —1 (non-head word), x; = 0 (deleted
word) or x; = 1 (head word) according to the
distribution g(;|e;)

let xo =1
2. Choose the identity of the head word for each
non-head word.

for each ¢ = 1,2,...,1 if x; = —1 choose a
“linked from head word” value p; (the position

52

of the head word which e; is linked to) accord-
ing to the distribution w_1 (p; — i|class,(e;))

foreach: =1,2,....lif x;, =1letu, =1
foreach: =1,2,....lif xy; =0letu; =0
foreachi = 1,2,...,lif x,, # 1 return “fail-

L3

ure

. Choose the identity of the generated target head

word for each source head word.

for each i = 1,2,...,1 if x; = 1 choose 7;;
according to the distribution ¢ (741 |e;)

. Choose the number of words in a target cept

conditioned on the identity of the source head
word and the source cept size (vy; is 1 if the cept
size is 1, and 2 if the cept size is greater).

for each: = 1,2,...,1 if x; = 1 choose a For-
eign cept size 1); according to the distribution

s(vilei, vi)
foreachi =1,2,....[if y; <1llety; =0

. Choose the number of spurious words.

choose 1y according to the distribution

so(ol D2, ¥i)
let m = g + Zizl Wy

. Choose the identity of the spurious words.

for each k = 1,2, ..., 1 choose 1y; according
to the distribution ¢ (7o)

. Choose the identity of the target non-head

words linked to each target head word.

for each ¢« = 1,2,...,] and for each k =
2,3, ...,1; choose T, according to the distribu-
tion t~1(7ix|e;, classy (741))

. Choose the position of the target head and non-

head words.

for each ¢« = 1,2,...,] and for each k =
1,2, ...,%; choose a position 7;;, as follows:

o if k = 1 choose m;; accord-
ing to the distribution di(m; —
Cp;|classe(ep, ), class ¢(71))

e if k£ = 2 choose ;2 according to the dis-
tribution dy (72 — m;1|class ¢(751))



source absolutely [comma] they do not want to spend that money
word type (1) DEL. DEL. HEAD non—WEAD HEAD non-head HEAD HEAD HEAD
linked from (2) THEY do NOT WANT to SPEND THAT MONEY
head(3) ILS PAS  DESIRENT DEPENSER CET ARGENT
cept size(4) 1 2 1 1 1 1
num spurious(5) 1
spurious(6)  aujourd’hui
non-head(7) ILS PAS ne DESIRENT DEPENSER CET ARGENT
placement(8)  aujourd’hui ILS ne DESIRENT  PAS DEPENSER CET ARGENT
spur. placement(9) ILS ne DESIRENT  PAS DEPENSER CET ARGENT aujourd’hui

Figure 1: Generative story example, (number) indicates step number

e if £ > 2 choose 7;; according to the dis-
tribution d~o (7, — mik—1|class (1))

if any position was chosen twice, return “fail-

k2]

ure

Choose the position of the spuriously generated
words.

for each k = 1,2, ..., 1y choose a position my
from 1)y — k + 1 remaining vacant positions in
1,2, ..., m according to the uniform distribution

let f be the string fm;, = Tk

We note that the steps which return “failure” are
required because the model is deficient. Deficiency
means that a portion of the probability mass in the
model is allocated towards generative stories which
would result in infeasible alignment structures. Our
model has deficiency in the non-spurious target word
placement, just as Model 4 does. It has addi-
tional deficiency in the source word linking deci-
sions. (Och and Ney, 2003) presented results sug-
gesting that the additional parameters required to en-
sure that a model is not deficient result in inferior
performance, but we plan to study whether this is
the case for our generative model in future work.

Given e, f and a candidate alignment a, which
represents both the links between source and tar-
get head-words and the head-word connections of
the non-head words, we would like to calculate
p(f,ale). The formula for this is:
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l
p(frale) =[[ [ g(xiles)]

=1

l
[T 60 —Dw-1(ps — ilclasse(es))]
=1

l

[ To0 Dt (raled)]

i=1

!
006 Vs(ilei, )]
=1
!
[s0(vo] > )]
=1

o
[H to(Tor)]
k=1

I i

T I t>1(rirles, classp(rin))]

1=1 k=2

U 9
T I Do (in)]

i=1 k=1

where:

d(i,4") is the Kronecker delta function which is
equal to 1 if + = ¢/ and 0 otherwise.

p; 1s the position of the closest English head word
to the left of the word at ¢ or O if there is no such
word.



class, (e;) is the word class of the English word at
position i, class¢( f;) is the word class of the French
word at position j, classy(f;) is the word class of
the French head word at position j.

po and p; are parameters describing the proba-
bility of not generating and of generating a target
spurious word from each non-spurious target word,

po+p1 =1

l
m' =" (1)
=1

so(volm') = <Zo>p81'_w°p§"° (2)

di(j — cp;|classc(ep, ), class ¢(Tik))

ifk=1
. do(j — i1 |class ¢(T;

d>2(j — ﬂ'ik_l‘ClaSSf(Tik))

ifk>2
3)
l
i =min(2, > 8y, ) )
i'=1
! 0 ify; =0

The alignment structure used in many other mod-
els can be modeled using special cases of this frame-
work. We can express the 1-to-N structure of mod-
els like Model 4 by disallowing x; = —1, while for
1-to-1 structure we both disallow y; = —1 and de-
terministically set ¥; = ;. We can also specialize
our generative story to the consecutive word M-to-N
alignments used in “phrase-based” models, though
in this case the conditioning of the generation deci-
sions would be quite different. This involves adding
checks on source and target connection geometry to
the generative story which, if violated, would return
“failure”; naturally this is at the cost of additional
deficiency.

2.2 Unsupervised Parameter Estimation

We can perform maximum likelihood estimation of
the parameters of this model in a similar fashion
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to that of Model 4 (Brown et al., 1993), described
thoroughly in (Och and Ney, 2003). We use Viterbi
training (Brown et al., 1993) but neighborhood es-
timation (Al-Onaizan et al., 1999; Och and Ney,
2003) or “pegging” (Brown et al., 1993) could also
be used.

To initialize the parameters of the generative
model for the first iteration, we use bootstrapping
from a 1-to-N and a M-to-1 alignment. We use the
intersection of the 1-to-N and M-to-1 alignments
to establish the head word relationship, the 1-to-N
alignment to delineate the target word cepts, and the
M-to-1 alignment to delineate the source word cepts.

In bootstrapping, a problem arises when we en-
counter infeasible alignment structure where, for in-
stance, a source word generates target words but no
link between any of the target words and the source
word appears in the intersection, so it is not clear
which target word is the target head word. To ad-
dress this, we consider each of the N generated tar-
get words as the target head word in turn and assign
this configuration 1/N of the counts.

For each iteration of training we search for the
Viterbi solution for millions of sentences. Evidence
that inference over the space of all possible align-
ments is intractable has been presented, for a sim-
ilar problem, in (Knight, 1999). Unlike phrase-
based SMT, left-to-right hypothesis extension using
a beam decoder is unlikely to be effective because in
word alignment reordering is not limited to a small
local window and so the necessary beam would be
very large. We are not aware of admissible or inad-
missible search heuristics which have been shown to
be effective when used in conjunction with a search
algorithm similar to A* search for a model predict-
ing over a structure like ours. Therefore we use
a simple local search algorithm which operates on
complete hypotheses.

(Brown et al., 1993) defined two local search op-
erations for their 1-to-N alignment models 3, 4 and
5. All alignments which are reachable via these
operations from the starting alignment are consid-
ered. One operation is to change the generation de-
cision for a French word to a different English word
(move), and the other is to swap the generation de-
cision for two French words (swap). All possible
operations are tried and the best is chosen. This is
repeated. The search is terminated when no opera-



tion results in an improvement. (Och and Ney, 2003)
discussed efficient implementation.

In our model, because the alignment structure is
richer, we define the following operations: move
French non-head word to new head, move English
non-head word to new head, swap heads of two
French non-head words, swap heads of two English
non-head words, swap English head word links of
two French head words, link English word to French
word making new head words, unlink English and
French head words. We use multiple restarts to try to
reduce search errors. (Germann et al., 2004; Marcu
and Wong, 2002) have some similar operations with-
out the head word distinction.

3 Semi-supervised parameter estimation

Equation 6 defines a log-linear model. Each feature
function h,, has an associated weight \,,. Given
a vector of these weights A, the alignment search
problem, i.e. the search to return the best alignment
a of the sentences e and f according to the model, is
specified by Equation 7.

CXP(Zm )\mhm(av €, f))
a f! exp(Zm Amhm(ac €, f/))
(6)

p)x(fv a|e) = Z

G = argmax Z Amhm (f, a,e) @)

We decompose the new generative model pre-
sented in Section 2 in both translation directions
to provide the initial feature functions for our log-
linear model, features 1 to 10 and 16 to 25 in Table
1.

We use backoffs for the translation decisions (fea-
tures 11 and 26 and the HMM translation tables
which are features 12 and 27) and the target cept size
distributions (features 13, 14, 28 and 29 in Table 1),
as well as heuristics which directly control the num-
ber of unaligned words we generate (features 15 and
30 in Table 1).

We use the semi-supervised EMD algorithm
(Fraser and Marcu, 2006b) to train the model. The
initial M-step bootstraps parameters as described in
Section 2.2 from a M-to-1 and a 1-to-N alignment.
We then perform the D-step following (Fraser and
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Figure 2: Two alignments with the same transla-
tional correspondence

Marcu, 2006b). Given the feature function param-
eters estimated in the M-step and the feature func-
tion weights A determined in the D-step, the E-step
searches for the Viterbi alignment for the full train-
ing corpus.

We use 1 — F-Measure as our error criterion.
(Fraser and Marcu, 2006a) established that it is im-
portant to tune « (the trade-off between Precision
and Recall) to maximize performance. In working
with LEAF, we discovered a methodological prob-
lem with our baseline systems, which is that two
alignments which have the same translational cor-
respondence can have different F-Measures. An ex-
ample is shown in Figure 2.

To overcome this problem we fully interlinked the
transitive closure of the undirected bigraph formed
by each alignment hypothesized by our baseline
alignment systems!. This operation maps the align-
ment shown to the left in Figure 2 to the alignment
shown to the right. This operation does not change
the collection of phrases or rules extracted from a
hypothesized alignment, see, for instance, (Koehn et
al., 2003). Working with this fully interlinked rep-
resentation we found that the best settings of o were
a = 0.1 for the Arabic/English task and @ = 0.4 for
the French/English task.

4 Experiments

4.1 Data Sets

We perform experiments on two large alignments
tasks, for Arabic/English and French/English data
sets. Statistics for these sets are shown in Table 2.
All of the data used is available from the Linguis-
tic Data Consortium except for the French/English

'All of the gold standard alignments were fully interlinked
as distributed. We did not modify the gold standard alignments.



1 | chi(x:les) source word type
2 | p(Ai|classe(e;)) choosing a head word
t1(f;]e:) head word translation

s(tiles, v:) ¥; is number of words in target cept
so(vo| Y, :) number of unaligned target words

(S, SN ON]

to(f;) identity of unaligned target words

t>1(f;|es, classp (7:1)) non-head word translation
di(Ajclasse(ep), class¢(f;)) movement for target
head words

e BEN o)

16-30

9 d2(Ajlclassg(f;)) movement for left-most target
non-head word

10 d>2(Aj|classf(f;)) movement for subsequent target
non-head words

11 t(f;j|es) translation without dependency on word-type
12 t(f;|e;) translation table from final HMM iteration

13 s(i|y:) target cept size without dependency on
source head word e

14 s(1i|e;) target cept size without dependency on ;

15 target spurious word penalty

(same features, other direction)

Table 1: Feature functions

gold standard alignments which are available from
the authors.

4.2 Experiments

To build all alignment systems, we start with 5 iter-
ations of Model 1 followed by 4 iterations of HMM
(Vogel et al., 1996), as implemented in GIZA++
(Och and Ney, 2003).

For all non-LEAF systems, we take the best per-
forming of the “union”, “refined” and “intersection”
symmetrization heuristics (Och and Ney, 2003) to
combine the 1-to-N and M-to-1 directions resulting
in a M-to-N alignment. Because these systems do
not output fully linked alignments, we fully link the
resulting alignments as described at the end of Sec-
tion 3. The reader should recall that this does not
change the set of rules or phrases that can be ex-
tracted using the alignment.

We perform one main comparison, which is of
semi-supervised systems, which is what we will use
to produce alignments for SMT. We compare semi-
supervised LEAF with a previous state of the art
semi-supervised system (Fraser and Marcu, 2006b).
We performed translation experiments on the align-
ments generated using semi-supervised training to
verify that the improvements in F-Measure result in
increases in BLEU.

We also compare the unsupervised LEAF sys-
tem with GIZA++ Model 4 to give some idea of
the performance of the unsupervised model. We
made an effort to optimize the free parameters of
GIZA++, while for unsupervised LEAF there are
no free parameters to optimize. A single iteration
of unsupervised LEAF? is compared with heuristic

Unsupervised LEAF is equivalent to using the log-linear
model and setting A\,,, = 1 form = 1to 10 and m = 16 to 25,
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symmetrization of GIZA++’s extension of Model 4
(which was run for four iterations). LEAF was boot-
strapped as described in Section 2.2 from the HMM
Viterbi alignments.

Results for the experiments on the French/English
data set are shown in Table 3. We ran GIZA++
for four iterations of Model 4 and used the “re-
fined” heuristic (line 1). We ran the baseline semi-
supervised system for two iterations (line 2), and in
contrast with (Fraser and Marcu, 2006b) we found
that the best symmetrization heuristic for this sys-
tem was “union”, which is most likely due to our
use of fully linked alignments which was discussed
at the end of Section 3. We observe that LEAF
unsupervised (line 3) is competitive with GIZA++
(line 1), and is in fact competitive with the baseline
semi-supervised result (line 2). We ran the LEAF
semi-supervised system for two iterations (line 4).
The best result is the LEAF semi-supervised system,
with a gain of 1.8 F-Measure over the LEAF unsu-
pervised system.

For French/English translation we use a state of
the art phrase-based MT system similar to (Och and
Ney, 2004; Koehn et al., 2003). The translation test
data is described in Table 2. We use two trigram lan-
guage models, one built using the English portion of
the training data and the other built using additional
English news data. The BLEU scores reported in
this work are calculated using lowercased and tok-
enized data. For semi-supervised LEAF the gain of
0.46 BLEU over the semi-supervised baseline is not
statistically significant (a gain of 0.78 BLEU would
be required), but LEAF semi-supervised compared
with GIZA++ is significant, with a gain of 1.23
BLEU. We note that this shows a large gain in trans-

while setting A,,, = 0O for other values of m.



ARABIC/ENGLISH FRENCH/ENGLISH
A | E F | E
SENTS 6,609,162 2,842,184
TRAINING WORDS | 147,165,003 168,301,299 | 75,794,254 67,366,819
VOCAB 642,518 352,357 149,568 114,907
SINGLETONS 256,778 158,544 60,651 47,765
SENTS 1,000 110
ALIGN DISCR. WORDS 26,882 37,635 1,888 1,726
LINKS 39,931 2,292
SENTS 83 110
ALIGN TEST WORDS 1,510 2,030 1,899 1,716
LINKS 2,131 2,176
TRANS. DEV SENTS 728 (4 REFERENCES) 833 (1 REFERENCE)
) WORDS 18,255 22.0K TO 24.6K 20,562 17,454
TRANS. TEST SENTS 1,056 (4 REFERENCES) 2,380 (1 REFERENCE)
’ WORDS 28,505 35.8K 10 38.1K 58,990 49,182

Table 2: Data sets

lation quality over that obtained using GIZA++ be-
cause BLEU is calculated using only a single refer-
ence for the French/English task.

Results for the Arabic/English data set are also
shown in Table 3. We used a large gold standard
word alignment set available from the LDC. We ran
GIZA++ for four iterations of Model 4 and used the
“union” heuristic. We compare GIZA++ (line 1)
with one iteration of the unsupervised LEAF model
(line 2). The unsupervised LEAF system is worse
than four iterations of GIZA++ Model 4. We be-
lieve that the features in LEAF are too high dimen-
sional to use for the Arabic/English task without the
backoffs available in the semi-supervised models.
The baseline semi-supervised system (line 3) was
run for three iterations and the resulting alignments
were combined with the “union” heuristic. We ran
the LEAF semi-supervised system for two iterations.
The best result is the LEAF semi-supervised system
(line 4), with a gain of 5.4 F-Measure over the base-
line semi-supervised system.

For Arabic/English translation we train a state of
the art hierarchical model similar to (Chiang, 2005)
using our Viterbi alignments. The translation test
data used is described in Table 2. We use two tri-
gram language models, one built using the English
portion of the training data and the other built using
additional English news data. The test set is from the
NIST 2005 translation task. LEAF had the best per-
formance scoring 1.43 BLEU better than the base-
line semi-supervised system, which is statistically
significant.
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5 Previous Work

The LEAF model is inspired by the literature on gen-
erative modeling for statistical word alignment and
particularly by Model 4 (Brown et al., 1993). Much
of the additional work on generative modeling of 1-
to-N word alignments is based on the HMM model
(Vogel et al., 1996). (Toutanova et al., 2002) and
(Lopez and Resnik, 2005) presented a variety of re-
finements of the HMM model particularly effective
for low data conditions. (Deng and Byrne, 2005)
described work on extending the HMM model us-
ing a bigram formulation to generate 1-to-N align-
ment structure. The common thread connecting
these works is their reliance on the 1-to-N approx-
imation, while we have defined a generative model
which does not require use of this approximation, at
the cost of having to rely on local search.

There has also been work on generative models
for other alignment structures. (Wang and Waibel,
1998) introduced a generative story based on ex-
tension of the generative story of Model 4. The
alignment structure modeled was “consecutive M
to non-consecutive N”. (Marcu and Wong, 2002)
defined the Joint model, which modeled consec-
utive word M-to-N alignments. (Matusov et al.,
2004) presented a model capable of modeling 1-to-
N and M-to-1 alignments (but not arbitrary M-to-
N alignments) which was bootstrapped from Model
4. LEAF directly models non-consecutive M-to-N
alignments.

One important aspect of LEAF is its symmetry.
(Och and Ney, 2003) invented heuristic symmetriza-



FRENCH/ENGLISH ARABIC/ENGLISH
SYSTEM F-MEASURE (o« = 0.4) | BLEU | F-MEASURE (o« = 0.1) | BLEU
GIZA++ 73.5 30.63 75.8 51.55
(FRASER AND MARCU, 2006B) 74.1 31.40 79.1 52.89
LEAF UNSUPERVISED 74.5 72.3
LEAF SEMI-SUPERVISED 76.3 31.86 84.5 54.34

Table 3: Experimental Results

tion of the output of a 1-to-N model and a M-to-1
model resulting in a M-to-N alignment, this was ex-
tended in (Koehn et al., 2003). We have used in-
sights from these works to help determine the struc-
ture of our generative model. (Zens et al., 2004)
introduced a model featuring a symmetrized lexi-
con. (Liang et al., 2006) showed how to train two
HMM models, a 1-to-N model and a M-to-1 model,
to agree in predicting all of the links generated, re-
sulting in a 1-to-1 alignment with occasional rare 1-
to-N or M-to-1 links. We improve on these works by
choosing a new structure for our generative model,
the head word link structure, which is both sym-
metric and a robust structure for modeling of non-
consecutive M-to-N alignments.

In designing LEAF, we were also inspired by
dependency-based alignment models (Wu, 1997;
Alshawi et al., 2000; Yamada and Knight, 2001;
Cherry and Lin, 2003; Zhang and Gildea, 2004). In
contrast with their approaches, we have a very flat,
one-level notion of dependency, which is bilingually
motivated and learned automatically from the paral-
lel corpus. This idea of dependency has some sim-
ilarity with hierarchical SMT models such as (Chi-
ang, 2005).

The discriminative component of our work is
based on a plethora of recent literature. This lit-
erature generally views the discriminative modeling
problem as a supervised problem involving the com-
bination of heuristically derived feature functions.
These feature functions generally include the predic-
tion of some type of generative model, such as the
HMM model or Model 4. A discriminatively trained
1-to-N model with feature functions specifically de-
signed for Arabic was presented in (Ittycheriah and
Roukos, 2005). (Lacoste-Julien et al., 2006) created
a discriminative model able to model 1-to-1, 1-to-
2 and 2-to-1 alignments for which the best results
were obtained using features based on symmetric
HMMs trained to agree, (Liang et al., 2006), and
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intersected Model 4. (Ayan and Dorr, 2006) de-
fined a discriminative model which learns how to
combine the predictions of several alignment algo-
rithms. The experiments performed included Model
4 and the HMM extensions of (Lopez and Resnik,
2005). (Moore et al., 2006) introduced a discrimi-
native model of 1-to-N and M-to-1 alignments, and
similarly to (Lacoste-Julien et al., 2006) the best re-
sults were obtained using HMMs trained to agree
and intersected Model 4. LEAF is not bound by
the structural restrictions present either directly in
these models, or in the features derived from the
generative models used. We also iterate the gener-
ative/discriminative process, which allows the dis-
criminative predictions to influence the generative
model.

Our work is most similar to work using discrim-
inative log-linear models for alignment, which is
similar to discriminative log-linear models used for
the SMT decoding (translation) problem (Och and
Ney, 2002; Och, 2003). (Liu et al., 2005) presented
a log-linear model combining IBM Model 3 trained
in both directions with heuristic features which re-
sulted in a 1-to-1 alignment. (Fraser and Marcu,
2006b) described symmetrized training of a 1-to-
N log-linear model and a M-to-1 log-linear model.
These models took advantage of features derived
from both training directions, similar to the sym-
metrized lexicons of (Zens et al., 2004), including
features derived from the HMM model and Model
4. However, despite the symmetric lexicons, these
models were only able to optimize the performance
of the 1-to-N model and the M-to-1 model sepa-
rately, and the predictions of the two models re-
quired combination with symmetrization heuristics.
We have overcome the limitations of that work by
defining new feature functions, based on the LEAF
generative model, which score non-consecutive M-
to-N alignments so that the final performance crite-
rion can be optimized directly.



6 Conclusion

We have found a new structure over which we can
robustly predict which directly models translational
correspondence commensurate with how it is used
in hierarchical SMT systems. Our new generative
model, LEAF, is able to model alignments which
consist of M-to-N non-consecutive translational cor-
respondences. Unsupervised LEAF is comparable
with a strong baseline. When coupled with a dis-
criminative training procedure, the model leads to
increases between 3 and 9 F-score points in align-
ment accuracy and 1.2 and 2.8 BLEU points in trans-
lation accuracy over strong French/English and Ara-
bic/English baselines.
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Abstract

We show for the first time that incorporating
the predictions of a word sense disambigua-
tion system within a typical phrase-based
statistical machine translation (SMT) model
consistently improves translation quality
across all three different IWSLT Chinese-
English test sets, as well as producing sta-
tistically significant improvements on the
larger NIST Chinese-English MT task—
and moreover never hurts performance on
any test set, according not only to BLEU
but to all eight most commonly used au-
tomatic evaluation metrics. Recent work
has challenged the assumption that word
sense disambiguation (WSD) systems are
useful for SMT. Yet SMT translation qual-
ity still obviously suffers from inaccurate
lexical choice. In this paper, we address
this problem by investigating a new strat-
egy for integrating WSD into an SMT sys-
tem, that performs fully phrasal multi-word
disambiguation. Instead of directly incor-
porating a Senseval-style WSD system, we
redefine the WSD task to match the ex-
act same phrasal translation disambiguation
task faced by phrase-based SMT systems.
Our results provide the first known empir-
ical evidence that lexical semantics are in-
deed useful for SMT, despite claims to the
contrary.

*This material is based upon work supported in part by
the Defense Advanced Research Projects Agency (DARPA)
under GALE Contract No. HR0011-06-C-0023, and by the
Hong Kong Research Grants Council (RGC) research grants

61

1 Introduction

Common assumptions about the role and useful-
ness of word sense disambiguation (WSD) models
in full-scale statistical machine translation (SMT)
systems have recently been challenged.

On the one hand, in previous work (Carpuat and
Wu, 2005b) we obtained disappointing results when
using the predictions of a Senseval WSD system in
conjunction with a standard word-based SMT sys-
tem: we reported slightly lower BLEU scores de-
spite trying to incorporate WSD using a number
of apparently sensible methods. These results cast
doubt on the assumption that sophisticated dedicated
WSD systems that were developed independently
from any particular NLP application can easily be
integrated into a SMT system so as to improve trans-
lation quality through stronger models of context
and rich linguistic information. Rather, it has been
argued, SMT systems have managed to achieve sig-
nificant improvements in translation quality without
directly addressing translation disambiguation as a
WSD task. Instead, translation disambiguation deci-
sions are made indirectly, typically using only word
surface forms and very local contextual information,
forgoing the much richer linguistic information that
WSD systems typically take advantage of.

On the other hand, error analysis reveals that the
performance of SMT systems still suffers from inac-
curate lexical choice. In subsequent empirical stud-
ies, we have shown that SMT systems perform much
worse than dedicated WSD models, both supervised

RGC6083/99E, RGC6256/00E, and DAGO03/04.EG09. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the Defense Advanced Research
Projects Agency.

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 61-72, Prague, June 2007. (©)2007 Association for Computational Linguistics



and unsupervised, on a Senseval WSD task (Carpuat
and Wu, 2005a), and therefore suggest that WSD
should have a role to play in state-of-the-art SMT
systems. In addition to the Senseval shared tasks,
which have provided standard sense inventories and
data sets, WSD research has also turned increasingly
to designing specific models for a particular applica-
tion. For instance, Vickrey et al. (2005) and Specia
(2006) proposed WSD systems designed for French
to English, and Portuguese to English translation re-
spectively, and present a more optimistic outlook for
the use of WSD in MT, although these WSD sys-
tems have not yet been integrated nor evaluated in
full-scale machine translation systems.

Taken together, these seemingly contradictory re-
sults suggest that improving SMT lexical choice ac-
curacy remains a key challenge to improve current
SMT quality, and that it is still unclear what is
the most appropriate integration framework for the
WSD models in SMT.

In this paper, we present first results with a
new architecture that integrates a state-of-the-art
WSD model into phrase-based SMT so as to per-
form multi-word phrasal lexical disambiguation,
and show that this new WSD approach not only
produces gains across all available Chinese-English
IWSLTO06 test sets for all eight commonly used au-
tomated MT evaluation metrics, but also produces
statistically significant gains on the much larger
NIST Chinese-English task. The main difference
between this approach and several of our earlier ap-
proaches as described in Carpuat and Wu (2005b)
and subsequently Carpuat et al. (2006) lies in the
fact that we focus on repurposing the WSD system
for multi-word phrase-based SMT. Rather than us-
ing a generic Senseval WSD model as we did in
Carpuat and Wu (2005b), here both the WSD train-
ing and the WSD predictions are integrated into the
phrase-based SMT framework. Furthermore, rather
than using a single word based WSD approach to
augment a phrase-based SMT model as we did in
Carpuat et al. (2006) to improve BLEU and NIST
scores, here the WSD training and predictions oper-
ate on full multi-word phrasal units, resulting in sig-
nificantly more reliable and consistent gains as eva-
luted by many other translation accuracy metrics as
well. Specifically:
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e Instead of using a Senseval system, we redefine
the WSD task to be exactly the same as lexi-
cal choice task faced by the multi-word phrasal
translation disambiguation task faced by the
phrase-based SMT system.

e Instead of using predefined senses drawn from
manually constructed sense inventories such as
HowNet (Dong, 1998), our WSD for SMT sys-
tem directly disambiguates between all phrasal
translation candidates seen during SMT train-
ing.

e Instead of learning from manually annotated
training data, our WSD system is trained on the
same corpora as the SMT system.

However, despite these adaptations to the SMT
task, the core sense disambiguation task remains
pure WSD:

e The rich context features are typical of WSD
and almost never used in SMT.

e The dynamic integration of context-sensitive
translation probabilities is not typical of SMT.

e Although it is embedded in a real SMT sys-
tem, the WSD task is exactly the same as in
recent and coming Senseval Multilingual Lexi-
cal Sample tasks (e.g., Chklovski ef al. (2004)),
where sense inventories represent the semantic
distinctions made by another language.

We begin by presenting the WSD module and
the SMT integration technique. We then show that
incorporating it into a standard phrase-based SMT
baseline system consistently improves translation
quality across all three different test sets from the
Chinese-English IWSLT text translation evaluation,
as well as on the larger NIST Chinese-English trans-
lation task. Depending on the metric, the individual
gains are sometimes modest, but remarkably, incor-
porating WSD never hurts, and helps enough to al-
ways make it a worthwile additional component in
an SMT system. Finally, we analyze the reasons for
the improvement.



2 Problems in context-sensitive lexical
choice for SMT

To the best of our knowledge, there has been no pre-
vious attempt at integrating a state-of-the-art WSD
system for fully phrasal multi-word lexical choice
into phrase-based SMT, with evaluation of the re-
sulting system on a translation task. While there
are many evaluations of WSD quality, in particular
the Senseval series of shared tasks (Kilgarriff and
Rosenzweig (1999), Kilgarriff (2001), Mihalcea et
al. (2004)), very little work has been done to address
the actual integration of WSD in realistic SMT ap-
plications.

To fully integrate WSD into phrase-based SMT,
it is necessary to perform lexical disambiguation
on multi-word phrasal lexical units; in contrast,
the model reported in Cabezas and Resnik (2005)
can only perform lexical disambiguation on sin-
gle words. Like the model proposed in this paper,
Cabezas and Resnik attempted to integrate phrase-
based WSD models into decoding. However, al-
though they reported that incorporating these predic-
tions via the Pharaoh XML markup scheme yielded
a small improvement in BLEU score over a Pharaoh
baseline on a single Spanish-English translation data
set, we have determined empirically that applying
their single-word based model to several Chinese-
English datasets does not yield systematic improve-
ments on most MT evaluation metrics (Carpuat and
Wu, 2007). The single-word model has the disad-
vantage of forcing the decoder to choose between
the baseline phrasal translation probabilities versus
the WSD model predictions for single words. In ad-
dition, the single-word model does not generalize
to WSD for phrasal lexical choice, as overlapping
spans cannot be specified with the XML markup
scheme. Providing WSD predictions for phrases
would require committing to a phrase segmenta-
tion of the input sentence before decoding, which
is likely to hurt translation quality.

It is also necessary to focus directly on translation
accuracy rather than other measures such as align-
ment error rate, which may not actually lead to im-
proved translation quality; in contrast, for example,
Garcia-Varea et al. (2001) and Garcia-Varea et al.
(2002) show improved alignment error rate with a
maximum entropy based context-dependent lexical
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choice model, but not improved translation accu-
racy. In contrast, our evaluation in this paper is con-
ducted on the actual decoding task, rather than in-
termediate tasks such as word alignment. Moreover,
in the present work, all commonly available auto-
mated MT evaluation metrics are used, rather than
only BLEU score, so as to maintain a more balanced
perspective.

Another problem in the context-sensitive lexical
choice in SMT models of Garcia Varea ef al. is that
their feature set is insufficiently rich to make much
better predictions than the SMT model itself. In
contrast, our WSD-based lexical choice models are
designed to directly model the lexical choice in the
actual translation direction, and take full advantage
of not residing strictly within the Bayesian source-
channel model in order to benefit from the much
richer Senseval-style feature set this facilitates.

Garcia Varea et al. found that the best results are
obtained when the training of the context-dependent
translation model is fully incorporated with the EM
training of the SMT system. As described below,
the training of our new WSD model, though not in-
corporated within the EM training, is also far more
closely tied to the SMT model than is the case with
traditional standalone WSD models.

In contrast with Brown et al. (1991), our ap-
proach incorporates the predictions of state-of-the-
art WSD models that use rich contextual features for
any phrase in the input vocabulary. In Brown et al.’s
early study of WSD impact on SMT performance,
the authors reported improved translation quality on
a French to English task, by choosing an English
translation for a French word based on the single
contextual feature which is reliably discriminative.
However, this was a pilot study, which is limited to
words with exactly two translation candidates, and it
is not clear that the conclusions would generalize to
more recent SMT architectures.

3 Problems in translation-oriented WSD

The close relationship between WSD and SMT has
been emphasized since the emergence of WSD as
an independent task. However, most of previous re-
search has focused on using multilingual resources
typically used in SMT systems to improve WSD ac-
curacy, e.g., Dagan and Itai (1994), Li and Li (2002),



Diab (2004). In contrast, this paper focuses on the
converse goal of using WSD models to improve ac-
tual translation quality.

Recently, several researchers have focused on de-
signing WSD systems for the specific purpose of
translation. Vickrey et al. (2005) train a logistic re-
gression WSD model on data extracted from auto-
matically word aligned parallel corpora, but evaluate
on a blank filling task, which is essentially an eval-
uation of WSD accuracy. Specia (2006) describes
an inductive logic programming-based WSD sys-
tem, which was specifically designed for the purpose
of Portuguese to English translation, but this system
was also only evaluated on WSD accuracy, and not
integrated in a full-scale machine translation system.

Ng et al. (2003) show that it is possible to use
automatically word aligned parallel corpora to train
accurate supervised WSD models. The purpose of
the study was to lower the annotation cost for su-
pervised WSD, as suggested earlier by Resnik and
Yarowsky (1999). However this result is also en-
couraging for the integration of WSD in SMT, since
it suggests that accurate WSD can be achieved using
training data of the kind needed for SMT.

4 Building WSD models for phrase-based
SMT

4.1 WSD models for every phrase in the input
vocabulary

Just like for the baseline phrase translation model,
WSD models are defined for every phrase in the in-
put vocabulary. Lexical choice in SMT is naturally
framed as a WSD problem, so the first step of inte-
gration consists of defining a WSD model for every
phrase in the SMT input vocabulary.

This differs from traditional WSD tasks, where
the WSD target is a single content word. Sense-
val for instance has either lexical sample or all word
tasks. The target words for both categories of Sen-
seval WSD tasks are typically only content words—
primarily nouns, verbs, and adjectives—while in the
context of SMT, we need to translate entire sen-
tences, and therefore have a WSD model not only
for every word in the input sentences, regardless of
their POS tag, but for every phrase, including tokens
such as articles, prepositions and even punctuation.
Further empirical studies have suggested that includ-
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ing WSD predictions for those longer phrases is a
key factor to help the decoder produce better trans-
lations (Carpuat and Wu, 2007).

4.2 WSD uses the same sense definitions as the
SMT system

Instead of using pre-defined sense inventories, the
WSD models disambiguate between the SMT trans-
lation candidates. In order to closely integrate WSD
predictions into the SMT system, we need to formu-
late WSD models so that they produce features that
can directly be used in translation decisions taken
by the SMT system. It is therefore necessary for the
WSD and SMT systems to consider exactly the same
translation candidates for a given word in the input
language.

Assuming a standard phrase-based SMT system
(e.g., Koehn er al. (2003)), WSD senses are thus ei-
ther words or phrases, as learned in the SMT phrasal
translation lexicon. Those “sense” candidates are
very different from those typically used even in ded-
icated WSD tasks, even in the multilingual Senseval
tasks. Each candidate is a phrase that is not neces-
sarily a syntactic noun or verb phrase as in manually
compiled dictionaries. It is quite possible that dis-
tinct “senses” in our WSD for SMT system could be
considered synonyms in a traditional WSD frame-
work, especially in monolingual WSD.

In addition to the consistency requirements for in-
tegration, this requirement is also motivated by em-
pirical studies, which show that predefined trans-
lations derived from sense distinctions defined in
monolingual ontologies do not match translation
distinction made by human translators (Specia et al.,
2006).

4.3 'WSD uses the same training data as the
SMT system

WSD training does not require any other resources
than SMT training, nor any manual sense annota-
tion. We employ supervised WSD systems, since
Senseval results have amply demonstrated that su-
pervised models significantly outperform unsuper-
vised approaches (see for instance the English lexi-
cal sample tasks results described by Mihalcea et al.
(2004)).

Training examples are annotated using the phrase
alignments learned during SMT training. Every in-



put language phrase is sense-tagged with its aligned
output language phrase in the parallel corpus. The
phrase alignment method used to extract the WSD
training data therefore depends on the one used by
the SMT system. This presents the advantage of
training WSD and SMT models on exactly the same
data, thus eliminating domain mismatches between
Senseval data and parallel corpora. But most impor-
tantly, this allows WSD training data to be gener-
ated entirely automatically, since the parallel corpus
is automatically phrase-aligned in order to learn the
SMT phrase bilexicon.

4.4 The WSD system

The word sense disambiguation subsystem is mod-
eled after the best performing WSD system in the
Chinese lexical sample task at Senseval-3 (Carpuat
et al., 2004).

The features employed are typical of WSD and
are therefore far richer than those used in most
SMT systems. The feature set consists of position-
sensitive, syntactic, and local collocational fea-
tures, since these features yielded the best results
when combined in a naive Bayes model on several
Senseval-2 lexical sample tasks (Yarowsky and Flo-
rian, 2002). These features scale easily to the bigger
vocabulary and sense candidates to be considered in
a SMT task.

The Senseval system consists of an ensemble of
four combined WSD models:

The first model is a naive Bayes model, since
Yarowsky and Florian (2002) found this model to be
the most accurate classifier in a comparative study
on a subset of Senseval-2 English lexical sample
data.

The second model is a maximum entropy model
(Jaynes, 1978), since Klein and Manning (Klein
and Manning, 2002) found that this model yielded
higher accuracy than naive Bayes in a subsequent
comparison of WSD performance.

The third model is a boosting model (Freund
and Schapire, 1997), since boosting has consistently
turned in very competitive scores on related tasks
such as named entity classification. We also use the
Adaboost.MH algorithm.

The fourth model is a Kernel PCA-based model
(Wu et al., 2004). Kernel Principal Component
Analysis or KPCA is a nonlinear kernel method for
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extracting nonlinear principal components from vec-
tor sets where, conceptually, the n-dimensional in-
put vectors are nonlinearly mapped from their origi-
nal space R" to a high-dimensional feature space F'
where linear PCA is performed, yielding a transform
by which the input vectors can be mapped nonlin-
early to a new set of vectors (Scholkopf et al., 1998).
WSD can be performed by a Nearest Neighbor Clas-
sifier in the high-dimensional KPCA feature space.
All these classifiers have the ability to handle
large numbers of sparse features, many of which
may be irrelevant. Moreover, the maximum entropy
and boosting models are known to be well suited to
handling features that are highly interdependent.

4.5 Integrating WSD predictions in
phrase-based SMT architectures

It is non-trivial to incorporate WSD into an existing
phrase-based architecture such as Pharaoh (Koehn,
2004), since the decoder is not set up to easily ac-
cept multiple translation probabilities that are dy-
namically computed in context-sensitive fashion.

For every phrase in a given SMT input sentence,
the WSD probabilities can be used as additional fea-
ture in a loglinear translation model, in combina-
tion with typical context-independent SMT bilexi-
con probabilities.

We overcome this obstacle by devising a calling
architecture that reinitializes the decoder with dy-
namically generated lexicons on a per-sentence ba-
sis.

Unlike a n-best reranking approach, which is lim-
ited by the lexical choices made by the decoder us-
ing only the baseline context-independent transla-
tion probabilities, our method allows the system to
make full use of WSD information for all competing
phrases at all decoding stages.

5 Experimental setup

The evaluation is conducted on two standard Chi-
nese to English translation tasks. We follow stan-
dard machine translation evaluation procedure us-
ing automatic evaluation metrics. Since our goal is
to evaluate translation quality, we use standard MT
evaluation methodology and do not evaluate the ac-
curacy of the WSD model independently.



Table 1: Evaluation results on the IWSLTO06 dataset:

integrating the WSD translation predictions improves

BLEU, NIST, METEOR, WER, PER, CDER and TER across all 3 different available test sets.

Test Exper. BLEU | NIST | METEOR | METEOR | TER | WER | PER | CDER

Set (no syn)

Test 1 | SMT 42.21 | 7.888 | 65.40 63.24 40.45 | 45.58 | 37.80 | 40.09
SMT+WSD | 42.38 | 7.902 | 65.73 63.64 3998 | 45.30 | 37.60 | 39.91

Test2 | SMT 41.49 | 8.167 | 66.25 63.85 4095 | 46.42 | 37.52 | 40.35
SMT+WSD | 41.97 | 8.244 | 66.35 63.86 40.63 | 46.14 | 37.25 | 40.10

Test3 | SMT 4991 | 9.016 | 73.36 70.70 35.60 | 40.60 | 32.30 | 35.46
SMT+WSD | 51.05 | 9.142 | 74.13 71.44 34.68 | 39.75 | 31.71 | 34.58

Table 2: Evaluation results on the NIST test set: integrating the WSD translation predictions improves
BLEU, NIST, METEOR, WER, PER, CDER and TER

Exper. BLEU | NIST | METEOR | METEOR | TER | WER | PER | CDER
(no syn)
SMT 20.41 | 7.155 | 60.21 56.15 76.76 | 88.26 | 61.71 | 70.32
SMT+WSD | 20.92 | 7.468 | 60.30 56.79 71.34 | 83.87 | 57.29 | 67.38
5.1 Data set Pharaoh (Koehn, 2004) trained on the IWSLT train-

Preliminary experiments are conducted using train-
ing and evaluation data drawn from the multilin-
gual BTEC corpus, which contains sentences used in
conversations in the travel domain, and their transla-
tions in several languages. A subset of this data was
made available for the IWSLT06 evaluation cam-
paign (Paul, 2006); the training set consists of 40000
sentence pairs, and each test set contains around 500
sentences. We used only the pure text data, and not
the speech transcriptions, so that speech-specific is-
sues would not interfere with our primary goal of un-
derstanding the effect of integrating WSD in a full-
scale phrase-based model.

A larger scale evaluation is conducted on the stan-
dard NIST Chinese-English test set (MT-04), which
contains 1788 sentences drawn from newswire cor-
pora, and therefore of a much wider domain than the
IWSLT data set. The training set consists of about 1
million sentence pairs in the news domain.

Basic preprocessing was applied to the corpus.
The English side was simply tokenized and case-
normalized. The Chinese side was word segmented
using the LDC segmenter.

5.2 Baseline SMT system

Since our focus is not on a specific SMT architec-
ture, we use the off-the-shelf phrase-based decoder
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ing set. Pharaoh implements a beam search decoder
for phrase-based statistical models, and presents
the advantages of being freely available and widely
used.

The phrase bilexicon is derived from the inter-
section of bidirectional IBM Model 4 alignments,
obtained with GIZA++ (Och and Ney, 2003), aug-
mented to improve recall using the grow-diag-final
heuristic. The language model is trained on the Eng-
lish side of the corpus using the SRI language mod-
eling toolkit (Stolcke, 2002).

The loglinear model weights are learned using
Chiang’s implementation of the maximum BLEU
training algorithm (Och, 2003), both for the base-
line, and the WSD-augmented system. Due to
time constraints, this optimization was only con-
ducted on the IWSLT task. The weights used in the
WSD-augmented NIST model are based on the best
IWSLT model. Given that the two tasks are quite
different, we expect further improvements on the
WSD-augmented system after running maximum
BLEU optimization for the NIST task.

6 Results and discussion

Using WSD predictions in SMT yields better trans-
lation quality on all test sets, as measured by all
eight commonly used automatic evaluation metrics.



Table 3: Translation examples with and without WSD for SMT, drawn from IWSLT data sets.

Input R

Ref. Please transfer to the Chuo train line.

SMT Please turn to the Central Line.

SMT+WSD | Please transfer to Central Line.

Input EEEEEXE Y

Ref. Do I pay on the bus?

SMT Please get on the bus?

SMT+WSD | Ibuy a ticket on the bus?

Input LN

Ref. Do I need a reservation?

SMT I need a reservation?

SMT+WSD | Do I need a reservation?

Input HE B I —F X oK Y WiT,

Ref. I want to reconfirm this ticket.

SMT I would like to reconfirm a flight for this ticket.
SMT+WSD | I would like to reconfirm my reservation for this ticket.
Input 17 Al L)l A 7

Ref. Can I get there on foot?

SMT Is there on foot?

SMT+WSD | Can I get there on foot?

Input KA BN =1 A%, FlliE R,

Ref. I have another appointment, so please hurry.

SMT I have an appointment for a, so please hurry.
SMT+WSD | I have another appointment, so please hurry.

Input XA . IR BE &R 0E B0 R Bg g ?
Ref. Excuse me. Could you tell me the way to Broadway?
SMT Could you tell me the way to Broadway? I am sorry.
SMT+WSD | Excuse me, could you tell me the way to Broadway?
Input WRR, BT A K

Ref. Excuse me, I want to open an account.

SMT Excuse me, I would like to have an account.
SMT+WSD | Excuse me, I would like to open an account.

The results are shown in Table 1 for IWSLT and Ta-
ble 2 for the NIST task. Paired bootstrap resampling
shows that the improvements on the NIST test set
are statistically significant at the 95% level.
Remarkably, integrating WSD predictions helps
all the very different metrics. In addition to the
widely used BLEU (Papineni et al., 2002) and NIST
(Doddington, 2002) scores, we also evaluate trans-
lation quality with the recently proposed Meteor
(Banerjee and Lavie, 2005) and four edit-distance
style metrics, Word Error Rate (WER), Position-
independent word Error Rate (PER) (Tillmann et
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al., 1997), CDER, which allows block reordering
(Leusch et al., 2006), and Translation Edit Rate
(TER) (Snover et al., 2006). Note that we report
Meteor scores computed both with and without us-
ing WordNet synonyms to match translation candi-
dates and references, showing that the improvement
is not due to context-independent synonym matches
at evaluation time.

Comparison of the 1-Best decoder output with
and without the WSD feature shows that the sen-
tences differ by one or more token respectively for
25.49%, 30.40% and 29.25% of IWSLT test sets 1,



Table 4: Translation examples with and without WSD for SMT, drawn from the NIST test set.

Input A EA W IR RO i,

SMT Without any congressmen voted against him.

SMT+WSD | No congressmen voted against him.

Input WTE TR AT WY BOR DUR X il BK fF AT E By S E 2 v EE E.

SMT Russia’s policy in Chechnya and CIS neighbors attitude is even more worried that the
United States.

SMT+WSD | Russia’s policy in Chechnya and its attitude toward its CIS neighbors cause the United
States still more anxiety.

Input ZF EE 1 ABCRK B ?

SMT As for the U.S. human rights conditions?

SMT+WSD | As for the human rights situation in the U.S.?

Input KB HERAT K BAR P NFE 5 R,

SMT The purpose of my visit to Japan is pray for peace and prosperity.

SMT+WSD | The purpose of my visit is to pray for peace and prosperity for Japan.

Input ) BGE RMIES) , SIZEL BT R T BT ARA B TR RE .

SMT In order to prevent terrorist activities Los Angeles, the police have taken unprecedented
tight security measures.

SMT+WSD | In order to prevent terrorist activities Los Angeles, the police to an unprecedented tight
security measures.

2 and 3, and 95.74% of the NIST test set.

Tables 3 and 4 show examples of translations
drawn from the IWSLT and NIST test sets respec-
tively.

A more detailed analysis reveals WSD predic-
tions give better rankings and are more discrimi-
native than baseline translation probabilities, which
helps the final translation in three different ways.

e The rich context features help rank the correct
translation first with WSD while it is ranked
lower according to baseline translation proba-
bility scores .

e Even when WSD and baseline translation prob-
abilities agree on the top translation candidate,
the stronger WSD scores help override wrong
language model predictions.

e The strong WSD scores for phrases help the
decoder pick longer phrase translations, while
using baseline translation probabilities often
translate those phrases in smaller chunks that
include a frequent (and incorrect) translation
candidate.

For instance, the top 4 Chinese sentences in Ta-
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ble 4, are better translated by the WSD-augmented
system because the WSD scores help the decoder
to choose longer phrases. In the first example,
the phrase “3% 5 {FfA[” is correctly translated as
a whole as “No” by the WSD-augmented system,
while the baseline translates each word separately
yielding an incorrect translation. In the following
three examples, the WSD system encourages the de-
coder to translate the long phrases “5 & 4 &
HL, “EEH B AR CRE”, and “H7 3K HA 1Y
K 5. 8:22” as single units, while the baseline in-
troduces errors by breaking them down into shorter
phrases.

The last sentence in the table shows an example
where the WSD predictions do not help the base-
line system. The translation quality is actually much
worse, since the verb “3Z Hy” is incorrectly trans-
lated as “to”, despite the fact that the top candidate
predicted by the WSD system alone is the much bet-
ter translation “has taken”, but with a relatively low
probability of 0.509.

7 Conclusion

We have shown for the first time that integrating
multi-word phrasal WSD models into phrase-based



SMT consistently helps on all commonly available
automated translation quality evaluation metrics on
all three different test sets from the Chinese-English
IWSLTO06 text translation task, and yields statisti-
cally significant gains on the larger NIST Chinese-
English task. It is important to note that the WSD
models never hurt translation quality, and always
yield individual gains of a level that makes their in-
tegration always worthwile.

We have proposed to consistently integrate WSD
models both during training, where sense definitions
and sense-annotated data are automatically extracted
from the word-aligned parallel corpora from SMT
training, and during testing, where the phrasal WSD
probabilities are used by the SMT system just like
all the other lexical choice features.

Context features are derived from state-of-the-art
WSD models, and the evaluation is conducted on the
actual translation task, rather than intermediate tasks
such as word alignment.

It is to be emphasized that this approach does not
merely consist of adding a source sentence feature
in the log linear model for translation. On the con-
trary, it remains a real WSD task, defined just as
in the Senseval Multilingual Lexical Sample tasks
(e.g., Chklovski ef al. (2004)). Our model makes use
of typical WSD features that are almost never used
in SMT systems, and requires a dynamically created
translation lexicon on a per-sentence basis.

To our knowledge this constitues the first attempt
at fully integrating state-of-the-art WSD with con-
ventional phrase-based SMT. Unlike previous ap-
proaches, the WSD targets are not only single words,
but multi-word phrases, just as in the SMT sys-
tem. This means that WSD senses are unusually
predicted not only for a limited set of single words
or very short phrases, but for all phrases of arbitrar-
ily length that are in the SMT translation lexicon.
The single word approach, as we reported in Carpuat
et al. (2006), improved BLEU and NIST scores
for phrase-based SMT, but subsequent detailed em-
pirical studies we have performed since then sug-
gest that single word WSD approaches are less suc-
cessful when evaluated under all other MT metrics
(Carpuat and Wu, 2007). Thus, fully phrasal WSD
predictions for longer phrases, as reported in this pa-
per, are particularly important to improve translation
quality.
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The results reported in this paper cast new light on
the WSD vs. SMT debate, suggesting that a close
integration of WSD and SMT decisions should be
incorporated in a SMT model that successfully uses
WSD predictions. Our objective here is to demon-
strate that this technique works for the widest pos-
sible class of models, so we have chosen as the
baseline the most widely used phrase-based SMT
model. Our positive results suggest that our ex-
periments could be tried on other current statistical
MT models, especially the growing family of tree-
structured SMT models employing stochastic trans-
duction grammars of various sorts (Wu and Chiang,
2007). For instance, incorporating WSD predictions
into an MT decoder based on inversion transduction
grammars (Wu, 1997)—such as the Bracketing ITG
based models of Wu (1996), Zens et al. (2004), or
Cherry and Lin (2007)—would present an intriguing
comparison with the present work. It would also be
interesting to assess whether a more grammatically
structured statistical MT model that is less reliant
on an n-gram language model, such as the syntactic
ITG based “grammatical channel” translation model
of (Wu and Wong, 1998), could make more effective
use of WSD predictions.
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Abstract

This paper presents a tree-to-tree transduc-
tion method for text rewriting. Our model
is based on synchronous tree substitution
grammar, a formalism that allows local dis-
tortion of the tree topology and can thus
naturally capture structural mismatches. We
describe an algorithm for decoding in this
framework and show how the model can
be trained discriminatively within a large
margin framework. Experimental results on
sentence compression bring significant im-
provements over a state-of-the-art model.

1 Introduction

Recent years have witnessed increasing interest in
text-to-text generation methods for many natural
language processing applications ranging from text
summarisation to question answering and machine
translation. At the heart of these methods lies the
ability to perform rewriting operations according to
a set of prespecified constraints. For example, text
simplification identifies which phrases or sentences
in a document will pose reading difficulty for a given
user and substitutes them with simpler alternatives
(Carroll et al., 1999). Sentence compression pro-
duces a summary of a single sentence that retains the
most important information while remaining gram-
matical (Jing, 2000).

Ideally, we would like a text-to-text rewriting sys-
tem that is not application specific. Given a parallel
corpus of training examples, we should be able to
learn rewrite rules and how to combine them in order
to generate new text. A great deal of previous work
has focused on the rule induction problem (Barzilay
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and McKeown, 2001; Pang et al., 2003; Lin and Pan-
tel, 2001; Shinyama et al., 2002), whereas relatively
little emphasis has been placed on the actual gen-
eration task (Quirk et al., 2004). A notable excep-
tion is sentence compression for which end-to-end
rewriting systems are commonly developed (Knight
and Marcu, 2002; Turner and Charniak, 2005; Gal-
ley and McKeown, 2007; Riezler et al., 2003; Mc-
Donald, 2006). The appeal of this task lies in its
simplified formulation as a single rewrite operation,
namely word deletion (Knight and Marcu, 2002).

Solutions to the compression task have been cast
mostly in a supervised learning setting (but see
Clarke and Lapata (2006a), Hori and Furui (2004),
and Turner and Charniak (2005) for unsupervised
methods). Rewrite rules are learnt from a parsed
parallel corpus and subsequently used to find the
best compression from the set of all possible com-
pressions for a given sentence. A common assump-
tion is that the tree structures representing long sen-
tences and their compressions are isomorphic. Con-
sequently, the models are not generally applicable
to other text rewriting problems since they cannot
readily handle structural mismatches and more com-
plex rewriting operations such as substitutions or
insertions. A related issue is that the tree structure
of the compressed sentences is often poor; most al-
gorithms delete words or constituents without pay-
ing too much attention to the structure of the com-
pressed sentence. However, without an explicit gen-
eration mechanism that allows tree transformations,
there is no guarantee that the compressions will have
well-formed syntactic structures. And it will not be
easy to process them for subsequent generation or
analysis tasks.

In this paper we present a text-to-text rewriting
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model that scales to non-isomorphic cases and can
thus naturally account for structural and lexical di-
vergences. Our approach is inspired by synchronous
tree substitution grammar (STSG, Eisner (2003))
a formalism that allows local distortion of the tree
topology. We show how such a grammar can be in-
duced from a parallel corpus and propose a large
margin model for the rewriting task which can be
viewed as a weighted tree-to-tree transducer. Our
learning framework makes use of the algorithm put
forward by Tsochantaridis et al. (2005) which ef-
ficiently learns a prediction function to minimise a
given loss function. Experiments on sentence com-
pression show significant improvements over the
state-of-the-art. Beyond sentence compression and
related text-to-text generation problems (e.g., para-
phrasing), our model is generally applicable to tasks
involving structural mapping. Examples include ma-
chine translation (Eisner, 2003) or semantic parsing
(Zettlemoyer and Collins, 2005).

2 Related Work

Knight and Marcu (2002) proposed a noisy-channel
formulation of sentence compression based on syn-
chronous context-free grammar (SCFG). The lat-
ter is a generalisation of the context-free grammar
(CFG) formalism to simultaneously produce strings
in two languages. In the case of sentence compres-
sion, the grammar rules have two right hand sides,
one corresponding to the source (long) sentence and
the other to its target compression. The synchronous
derivations are learnt from a parallel corpus and their
probabilities are estimated generatively.

Given a long sentence, /, the aim is to find the
corresponding compressed sentence, s, which max-
imises P(s)P(I|s) (here P(s) is the source model
and P(l|s) the channel model.) Modifications of this
model are reported in Turner and Charniak (2005)
and Galley and McKeown (2007) with improved re-
sults. The channel model is limited to tree deletion
and does not allow any type of tree re-organisation.

Non-isomorphic tree structures are common when
translating between languages. It is therefore not
surprising that most previous work on tree rewrit-
ing falls within the realm of machine translation.
Proposals include Eisner’s (2003) synchronous tree
substitution grammar (STSG), Melamed’s (2004)
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multitext grammar, and Graehl and Knight’s (2004)
tree-to-tree transducers. Despite differences in for-
malism, all these approaches model the translation
process using tree-based probabilistic transduction
rules. The grammar induction process requires EM
training which can be computationally expensive es-
pecially if all synchronous rules are considered.

Our work formulates sentence compression in the
framework of STSG (Eisner, 2003). We propose a
novel grammar induction algorithm that does not
require EM training and is coupled with a sepa-
rate large margin training process (Tsochantaridis
et al., 2005) for weighting each rule. McDonald
(2006) also presents a sentence compression model
that uses a discriminative large margin algorithm.
However, we differ in two important respects. First,
our generation algorithm is more powerful, perform-
ing complex tree transformations, whereas McDon-
ald only considers simple word deletion. Being tree-
based, the generation algorithm is better able to pre-
serve the grammaticality of the compressed output.
Second, our model can be tuned to a wider range of
loss functions (e.g.,tree-based measures).

3 Problem Formulation

We formulate sentence compression as an instance
of the general problem of learning a mapping from
input patterns x € X to discrete structured objects
y € . Our training sample consists of a parallel
corpus of input (uncompressed) and output (com-
pressed) pairs (x1,y1)...(%n,y,) € X X 9 and our
task is to predict a target labelled tree y from a
source labelled tree x. As we describe below, y is
not precisely a target tree, but instead derivations
which generate both the source and the target tree.
We model the dependency between x and y as a
weighted STSG. Grammar rules are of the form
(X,Y) — (y,a,B) where y and a are elementary
trees composed of a mixture of terminal and non-
terminals rooted with non-terminals X and Y respec-
tively, and P is a set of variable correspondences
between pairs of frontier non-terminals in y and o
A grammar rule specifies that we can substitute the
trees Y and o for corresponding X and Y nodes in the
source and target trees respectively. For example, the
rule:

(NP, NP) — ([DTy ADJP NNg|np, [DT i NNg|np)



allows adjective phrases to be dropped from the
source tree within an NP. The indices  are used to
specify the variable correspondences, 3.

Each grammar rule has a score from which the
overall score of a compression y for sentence x
can be derived. These scores are learnt discrimina-
tively using the large margin technique proposed by
Tsochantaridis et al. (2005). The synchronous rules
are combined using a chart-based parsing algorithm
(Eisner, 2003) to generate the derivation (i.e., com-
pressed tree) with the highest score.

We begin by describing our STSG generation al-
gorithm in Section 3.1. We next explain how a syn-
chronous grammar is induced from a parallel corpus
of original sentences and their compressions (Sec-
tion 3.2) and give the details of our learning frame-
work (Section 3.3).

3.1 Generation

Generation aims to find the best target tree for a
given source tree using the transformations specified
by the synchronous grammar. (We discuss how we
obtain this grammar in the following section.)

y" =maxscore(X,y;w) (D
yey

where y ranges over all target derivations (and there-
fore trees), w is a parameter vector and score(-) is
an objective function measuring the quality of the
derivation. In common with many parsing methods,
we encounter a problem with spurious ambiguity:
i.e., there may be many derivations (sequences of
rule applications) which produce the same target
tree. Ideally we would sum up the scores over all
these derivations, however for the sake of tractability
we instead take the maximum score. This allows us
to pose the maximisation problem over derivations
rather than target trees.

The generation algorithm uses a dynamic pro-
gram defined over the constituents in the source
tree as shown in Figure 1 (see also Eisner (2003)).
The algorithm makes the assumption that the scor-
ing function decomposes with the derivation, such
that a partial score can be evaluated at each step,
i.e., score(x,y;w) = Y,y score(r;w) where r are
the rules used in the derivation. This method builds
a chart of the best scoring partial derivation for
each source subtree headed by a given target non-
terminal. The inductive step is applied recursively
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! Cpesy = argmax,.chart{root,c|
: find best derivation using back-pointers from (root, cpes )

T: for all nodes, n, in source tree (bottom-up) do

2:  for all rules, r with left side matching node, n, = n do
3 s = score(r)

4: for all variables v in » do

5: score = score + chart[ny, ¢y

6: end for

7: update chart[n,c,] with score, s, if better than current
8:  end for

9: end for

0

1

—_—

Figure 1: Generation algorithm to find the best
derivation. n, and n, are the source nodes indexed
by the rule’s source side (root and variable), while
¢, and ¢, are the non-terminal categories of the rule’s
target side (root and variable).
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Figure 2: Example of a rule application during gen-

eration. The dashed area shows a matching rule for
the VP node.
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bottom-up, and involves applying a grammar rule
to a node in the source tree. Rules with substitution
variables in their frontier are scored with reference
to the chart for the matching nodes and target non-
terminal categories. Once the process is complete,
we can read the best score from the chart cell for the
root node, and the best derivation can be constructed
by traversing back-pointers also stored in the chart.
This is illustrated in Figure 2 where the rule
(VPVP) — ([lisaux ADJPg]vp CCVPlyp, fisaux NPglve) 18
applied to the top VP node. The score of the result-
ing tree would reference the chart to calculate the
score for the best target tree at the ADJP node with
syntactic category NP.

3.2 Grammar Induction

Our induction algorithm automatically finds gram-
mar rules from a word-aligned parsed parallel cor-
pus. The rules are pairs of elementary trees (i.e., tree
fragments) whose leaf nodes are linked by the word
alignments. These leaves can be either terminal or
non-terminal symbols. Initially, the algorithm ex-



tracts tree pairs from word aligned text by choos-
ing aligned constituents in the source and the tar-
get. These pairs are then generalised using subtrees
which are also extracted, resulting in synchronous
rules with variable nodes. The set of aligned tree
pairs are extracted using the alignment template
method (Och and Ney, 2004), constrained to syntac-
tic constituent pairs:

C = {(ns,nr), (3(s,1) € ANs € Y(ng) At €Y(nr))A
(A(s,t) € AN(s €Y (ns) Yt €Y (n7)))}

where ng and nr are source and target tree nodes
(subtrees), 4 = {(s,t)} is the set of word alignments
(pairs of word-indices), Y (-) returns the yield span
for a subtree and V is the exclusive-or operator.

The next step is to generalise the candidate pairs
by replacing subtrees with variable nodes. We could
fully trust the word alignments and adopt a strat-
egy in which the rules are generalised as much as
possible and thus include little lexicalisation. Fig-
ure 3 shows a simple sentence pair and the result-
ing synchronous rules according to this generalisa-
tion strategy. Alternatively, we could extract every
possible rule by including unlexicalised rules, lexi-
calised rules and their combination. The downside
here is that the total number of possible rules is fac-
torial in the size of the candidate set. We address this
problem by limiting the number of variables and the
recursion depth, and by filtering out singleton rules.

There is no guarantee that the induced rules will
generalise well to a testing set. For example, the test-
ing data may have a rule which was not seen in the
training set (e.g., a new terminal or non terminal).
In this case no rule can be applied and subsequently
generation fails. For this reason we allow the model
to duplicate any CFG production from the source
tree, and uses a feature to flag that this rule was un-
seen in training. These SCFG rules are then merged
with the induced rules and fed into the feature detec-
tion module (see Section 3.3 for details).

3.3 The Large Margin Model

We now describe how the parameters of our STSG
generation system are fit to a supervised training set.
For a given source tree, the space of sister target
trees implied by the synchronous grammar is often
very large, and the majority of these trees are un-
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(S,8) — ([NPE] VPg .]S, [NPE] VPg .]S)
(NP,NP) — (DT NNEﬂNPa [NN.]NP>
(NN,NN) — (documentationyy, Documentationyy)
(VP,VP) — (VP CC VP,V Pq)
(VP.VP) — (AUX[ ADJ P, AUX[ ADJ Prz)
(AUX,AUX) — (isaux,isaux)
(ADJP,ADJP) — {[RBq JJg]apsp: [RBm Jaansp)
(RB,RB) — (very gy, verygs)
(JJ,J7) — (good,p;, goodpy)
D=

(o -

Figure 3: Induced synchronous grammar from a sen-
tence pair using a strategy that extracts general rules.

grammatical or are poor compressions. The train-
ing procedure learns weights such that the model
can discriminate between these trees and predict a
good target tree. For this we develop a discriminative
training process which learns a weighted tree-to-tree
transducer. Our model is based on Tsochantaridis et
al.’s (2005) framework for learning Support Vector
Machines (SVMs) with structured output spaces, us-
ing the SVM*"““! implementation.! We briefly sum-
marise the approach below; for a more detailed de-
scription we refer the interested reader to Tsochan-
taridis et al. (2005).

Traditionally SVMs learn a linear classifier that
separates two or more classes with the largest pos-
sible margin. Analogously, structured SVMs at-
tempt to separate the correct structure from all other

Thttp://svmlight.joachims.org/svm_struct.html



structures with a large margin. Given an input in-
stance x, we search for the optimum output y under
the assumption that x and y can be adequately de-
scribed using a combined feature vector representa-
tion ¥(x,y). Recall that x are the source trees and y
are synchronous derivations which generate both x
and a target tree.

f(x;w) = argmax(w, ¥(x,y)) ()
yey
The goal of the training procedure is to find a param-
eter vector w such that it satisfies the condition:

VBV)’ € y\yl : <W7T<Xi7yi) _T(Xiay» >0 (3)

where x;,y; are the ith training source tree and tar-
get derivation. To obtain a unique solution — there
will be several parameter vectors w satisfying (3)
if the training instances are linearly separable —
Tsochantaridis et al. (2005) select the w that max-
imises the minimum distance between y; and the
closest runner-up structure.

The framework also incorporates a loss function.
This property is particularly appealing in the context
of sentence compression and generally text-to-text
generation. For example, a compression that differs
from the gold standard with respect to one or two
words should be treated differently from a compres-
sion that bears no resemblance to it. Another impor-
tant factor is the length of the compression. Com-
pressions whose length is similar to the gold stan-
dard should be be preferable to longer or shorter
output. A loss function A(y;,y) quantifies the accu-
racy of prediction y with respect to the true output
value y;. We give details of the loss functions we
employed for the compression task below.

We are now ready to state the learning objective
for the structured SVM. We use the soft-margin for-
mulation which allows errors in the training set, via
the slack variables &;:

1, C{
— “VE E>0 4
rg}élz\lvv\l +ni§:13‘;z, & > )
&

A(yi,y)

Slack variables &; are introduced here for each train-
ing example x;, C is a constant that controls the
trade-off between training error minimisation and

Vi,Vy € \yi: (w,8¥(y)) > 1 -
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margin maximisation, and 8¥(y) is a shorthand for
Y(x;,y:) — P(x;,y) (see (3)). Note that slack vari-
ables are rescaled with the inverse loss incurred in
each of the linear constraints.’

The optimisation problem in (4) is approximated
using a polynomial time cutting plane algorithm
(Tsochantaridis et al., 2005). This optimisation cru-
cially relies on finding the constraint incurring the
maximum cost. The cost function for slack rescaling
can be formulated as:

H(y) = (1—(8¥i(y),w))A(y:,y) ®)

In order to adapt this framework to our genera-
tion problem, we must provide the feature map-
ping ¥(x,y), a loss function A(y;,y), and a max-
imiser § = argmaxy., H(y) (see (5)). The following
sections describe how these are instantiated in the
sentence compression task.

Feature Mapping We devised a general feature
set suitable for compression and paraphrasing. Our
feature space is defined over source trees (x) and
target derivations (y). All features apply to a single
grammar rule; a feature vector for a derivation is ex-
pressed as the sum of the feature vectors for each
rule in this derivation.

We make use of syntactic, lexical, and com-
pression specific features. Our simplest syntac-
tic feature is the identity of a synchronous rule.
Specifically, we record its source tree, its target
tree and their combination. We also include rule
frequencies O(target|source), ¢(source|target) and
O(source,target). Another feature records the fre-
quencies of the CFG productions used in the tar-
get side of a rule. This allows the model to learn
the weights of a CFG generation grammar, as a
proxy for a language model. Using scores from a
pre-trained CFG grammar or an n-gram language
model might be preferable when the training sample
is small, however we leave this as future work. Our
last syntactic feature keeps track of the source root
and the target root non-terminals. Our lexical fea-
tures contain the list of tokens in the source yield,
target yield, and both. We also use words as features.

2 Alternatively, the loss function can be used to rescale the
margin. This approach is less desirable as it is not scale invari-
ant (Tsochantaridis et al., 2005). We also found empirically that

slack-rescaling slightly outperforms margin rescaling on our
compression task.



Finally, we have implemented a set of
compression-specific features. These include a
feature that detects if the yield of the target side
of a synchronous rule is a subset of the yield of
its source. We also take note of the edit operations
(i.e., removal, insertion) required to transform the
source side into the target. Edit operations are
recorded separately for trees and their yields. In
order to encourage compression, we also count the
number of words on the target, the number of rules
used in the derivation and the number of dropped
variables.

Loss Functions The large margin configuration
sketched above is quite modular and in theory a wide
range of loss functions could be specified. Examples
include edit-distance, precision, F-score, BLEU and
tree-based measures. In practice, the loss function
should be compatible with our maximisation algo-
rithm which requires the objective function to de-
compose along the same lines as the tree derivation.’

Given this restriction, we define a loss based
on position-independent unigram precision (Prec)
which penalises errors in the yield independently
for each word. Although fairly intuitive, this loss
is far from ideal. First, it maximally rewards re-
peatedly predicting the same word if the latter is
in the reference target tree. Secondly, it may bias
towards overly short output which drops core in-
formation — one-word compressions will tend to
have higher precision than longer output. To coun-
teract this, we introduce two brevity penalty mea-
sures (BP) inspired by BLEU (Papineni et al., 2002)
which we incorporate into the loss function, using a
product, loss = 1 — Prec - BP:

BP1 = exp(1 — max(1,)) 6)

c
BP2 =exp(l — max(E, K))
r’c

where r is the reference length and c is the candidate
length.

BP1 is asymmetric, it has value one when ¢ > r
and decays to zero when ¢ < r. Note that precision
should decay when ¢ > r as extra output will often
not match the reference. BP2 is two-sided: it has

30Optimising non-decompositional loss functions compli-

cates the objective function, which then cannot be solved ef-
ficiently using a dynamic program.
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value one when ¢ = r and decays towards zero for
¢ <r and ¢ >r. In both cases, brevity is assessed
against the gold standard target (not the source) to
allow the system to learn the correct degree of com-
pression from the training data.

Maximisation Algorithm Our algorithm finds the
maximising derivation for H(y) in (5). This deriva-
tion will have a high loss and a high score under the
model, and therefore represents the most-violated
constraint which is then added to the SVM'’s work-
ing set of constraints (see (4)).

The standard generation method from Section 3.1
cannot be used without modification to find the best
scoring derivation since it does not account for the
loss function or the gold standard derivation. In-
stead, we stratify the generation chart with the num-
ber of true and false positive tokens predicted, as de-
scribed in Joachims (2005). These contingency val-
ues allow us to compute the precision and brevity
penalty (see (6)) for each complete derivation. This
is then combined with the derivation score and the
gold standard derivation score to give H(y).

The gold standard derivation features, W¥(x;,y;),
must be calculated from a derivation linking the
source tree to the gold target tree. As there may
be many such derivations, we find a unique deriva-
tion using the smallest rules possible (for maximum
generality). This is done using a dynamic program,
similar to the inside-outside algorithm used in pars-
ing. Other strategies are also possible, however we
leave this to future work. Finally, we can find the
global maximum H(y) by maximising over all the
root chart entries.

4 Evaluation Set-up

In this section we present our experimental set-up
for assessing the performance of the max margin
model described above. We give details of the cor-
pora used, briefly introduce McDonald’s (2006) sen-
tence compression model used for comparison with
our approach, and explain how system output was
evaluated.

Corpora We evaluated our system on two dif-
ferent corpora. The first is the compression cor-
pus of Knight and Marcu (2002) derived automati-
cally from the document-abstract pairs of the Ziff-



Davis corpus. Previous compression work has al-
most exclusively used this corpus. Our experiments
follow Knight and Marcu’s partition of training, test,
and development sets (1,002/36/12 instances). We
also present results on Clarke and Lapata’s (2006a)
Broadcast News corpus.* This corpus was created
manually (annotators were asked to produce com-
pressions for 50 Broadcast news stories) and poses
more of a challenge than Ziff-Davis. Being a speech
corpus, it often contains incomplete and ungram-
matical utterances and speech artefacts such as dis-
fluencies, false starts and hesitations. Furthermore,
spoken utterances have varying lengths, some are
very wordy whereas others cannot be reduced any
further. Thus a hypothetical compression system
trained on this domain should be able to leave some
sentences uncompressed. Again we used Clarke and
Lapata’s training, test, and development set split
(882/410/78 instances).

Comparison with State-of-the-art We evaluated
our approach against McDonald’s (2006) discrimi-
native model. This model is a good basis for compar-
ison for several reasons. First, it achieves compet-
itive performance with Knight and Marcu’s (2002)
decision tree and noisy channel models. Second, it
also uses large margin learning. Sentence compres-
sion is formulated as a string-to-substring mapping
problem with a deletion-based Hamming loss. Re-
call that our formulation involves a tree-to-tree map-
ping. Third, it uses a feature space complementary to
ours. For example features are defined between ad-
jacent words, and syntactic evidence is incorporated
indirectly into the model. In contrast our model re-
lies on synchronous rules to generate valid compres-
sions and does not explicitly incorporate adjacency
features. We used an implementation of McDonald
(2006) for comparison of results (Clarke and Lapata,
2007).

Evaluation Measures In line with previous work
we assessed our model’s output by eliciting hu-
man judgements. Participants were presented with
an original sentence and its compression and asked
to rate the latter on a five point scale based on the in-
formation retained and its grammaticality. We con-
ducted two separate elicitation studies, one for the

4The corpus can be downloaded from http://homepages.
inf.ed.ac.uk/s0460084/data/.
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O: Ijust wish my parents and my other teachers could
be like this teacher, so we could communicate.

: I wish my teachers could be like this teacher.
I wish my teachers could be like this, so we could
communicate.
I wish my parents and other teachers could be like
this, so we could communicate.
Earlier this week, in a conference call with analysts,
the bank said it boosted credit card reserves by $350
million.

: Earlier said credit card reserves by $350 million.
In a conference call with analysts, the bank boosted
card reserves by $350 million.

G: In a conference call with analysts the bank said it

boosted credit card reserves by $350 million.

v

o @

2=

Table 1: Compression examples from the Broadcast
news corpus (O: original sentence, M: McDonald
(20006), S: STSG, G: gold standard)

Ziff-Davis and one for the Broadcast news dataset.
In both cases our materials consisted of 96 source-
target sentences. These included gold standard com-
pressions and the output of our system and Mc-
Donald’s (2006). We were able to obtain ratings on
the entire Ziff-Davis test set as it has only 32 in-
stances; this was not possible for Broadcast news
as the test section consists of 410 instances. Conse-
quently, we randomly selected 32 source-target sen-
tences to match the size of the Ziff-Davis test set.’
We collected ratings from 60 unpaid volunteers, all
self reported native English speakers. Both studies
were conducted over the Internet. Examples of our
experimental items are given in Table 1.

We also report results using F1 computed over
grammatical relations (Riezler et al., 2003). We
chose F1 (as opposed to accuracy or edit distance-
based measures) as Clarke and Lapata (2006b) show
that it correlates reliably with human judgements.

S Experiments

The framework presented in Section 3 is quite flex-
ible. Depending on the grammar induction strategy,
choice of features, loss function and maximisation
algorithm, different classes of models can be de-
rived. Before presenting our results in detail we dis-
cuss the specific model employed in our experiments
and explain how its parameters were instantiated.

In order to build a compression model we need

5 A Latin square design ensured that subjects did not see two
different compressions of the same sentence.
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Figure 4: Compression rate vs. grammatical rela-
tions F1 using unigram precision alone and in com-
bination with two brevity penalties.

a parallel corpus of syntax trees. We obtained syn-
tactic analyses for source and target sentences with
Bikel’s (2002) parser. Our corpora were automat-
ically aligned with Giza++ (Och et al., 1999) in
both directions between source and target and sym-
metrised using the intersection heuristic (Koehn et
al., 2003). Each word in the lexicon was also aligned
with itself. This was necessary in order to inform
Giza++ about word identity. Unparseable sentences
and those longer than 50 tokens were removed from
the data set.

We induced a synchronous tree substitution gram-
mar from the Ziff-Davis and Broadcast news cor-
pora using the method described in Section 3.2. We
extracted all maximally general synchronous rules.
These were complemented with more specific rules
from conjoining pairs of general rules. The specific
rules were pruned to remove singletons and those
rules with more than 3 variables. Grammar rules
were represented by the features described in Sec-
tion 3.3.

An important parameter for our compression task
is the appropriate choice of loss function. Ideally, we
would like a loss function that encourages compres-
sion without overly aggressive information loss. Fig-
ure 4 plots compression rate against grammatical re-
lations F1 using each of the loss functions presented
in Section 3.3 on the Ziff-Davis development set.
As can be seen with unigram precision alone (Prec)

6We obtained a similar plot for the Broadcast News corpus
but omit it due to lack of space.
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Ziff-Davis CompR ‘ RelF1 ‘

McDonald06 66.2 45.8
STSG 56.8 54.3
Gold standard 57.2 —

Broadcast News | CompR \ RelF1 \

McDonald06 68.6 47.6
STSG 73.7 53.4*
Gold standard 76.1 —

Table 2: Results using grammatical relations F1
(*: sig. diff. from McDonald06; p < 0.01 using the
Student ¢ test)

the system produces overly short output, whereas
the one-sided brevity penalty (BP1) achieves the op-
posite effect. The two-sided brevity penalty (BP2)
seems to strike the right balance: it encourages com-
pression while achieving good F-scores. This sug-
gests that important information is retained in spite
of significant compression. We also varied the regu-
larisation parameter C (see (4)) over a range of val-
ues on the development set and found that setting it
to 0.01 yields overall good performance across cor-
pora and loss functions.

We now present our results on the test set. These
were obtained with a model that uses slack rescal-
ing and a precision-based loss function with a two-
sided brevity penalty (C = 0.01). Table 2 shows the
average compression rates (CompR) for McDonald
(2006) and our model (STSG) as well as their perfor-
mance according to grammatical relations F1. The
row ‘Gold standard’ displays human-produced com-
pression rates. Notice that our model obtains com-
pression rates similar to the gold standard, whereas
McDonald tends to compress less on Ziff-Davis and
more on Broadcast news. As far as F1 is concerned,
we see that STSG outperforms McDonald on both
corpora. The difference in F1 is statistically signifi-
cant on Broadcast news but not on Ziff-Davis (which
consists solely of 32 sentences).

Table 3 presents the results of our elicitation
study. We carried out an Analysis of Variance
(ANOVA) to examine the effect of system type (Mc-
Donald06, STSG, Gold standard) on the compres-
sion ratings. The ANOVA revealed a reliable effect
on both corpora. We used post-hoc Tukey tests to



Model Ziff-Davis | Broadcast news ‘

McDonald06 2.827 2.16"
STSG 3.207* 2.63*
Gold standard 3.72 3.05

Table 3: Mean ratings on compression output
elicited by humans (*: sig. diff. from McDon-
ald06 (o < 0.05); 7 sig. diff. from Gold standard
(o0 < 0.01); using post-hoc Tukey tests)

examine whether the mean ratings for each sys-
tem differed significantly. The Tukey tests showed
that STSG is perceived as significantly better than
McDonald06. There is no significant difference be-
tween STSG and the gold standard compressions on
the Broadcast news; both systems are significantly
worse than the gold standard on Ziff-Davis.

These results are encouraging, indicating that our
highly expressive framework is a good model for
sentence compression. Under several experimental
conditions we obtain better performance than previ-
ous work. Importantly, the model described here is
not compression-specific, it could be easily adapted
to other tasks, corpora or languages (for which
syntactic analysis tools are available). Being su-
pervised, our model learns to fit the compression
rate of the training data. In this sense, it is some-
what inflexible as it cannot easily adapt to a spe-
cific rate given by a user or imposed by an appli-
cation (e.g., when displaying text on small screens).
Compression rate can be indirectly manipulated by
adopting loss functions that encourage or discourage
compression (see Figure 4), but admittedly in other
frameworks (e.g., Clarke and Lapata (2006a)) the
length of the compression can be influenced more
naturally.

In our formulation of the compression problem,
a derivation is characterised by a single inventory
of features. This entails that the feature space can-
not in principle distinguish between derivations that
use the same rules, applied in a different order. Al-
though, this situation does not arise often in our
dataset, we believe that it can be ameliorated by in-
tersecting a language model with our generation al-
gorithm (Chiang, 2005).
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6 Conclusions and Future Work

In this paper we have presented a novel method
for sentence compression cast in the framework of
structured learning. We develop a system that gener-
ates compressions using a synchronous tree substi-
tution grammar whose weights are discriminatively
trained within a large margin model. We also de-
scribe an appropriate algorithm than can be used in
both training (i.e., learning the model weights) and
decoding (i.e., finding the most plausible compres-
sion under the model). The proposed formulation al-
lows us to capture rewriting operations that go be-
yond word deletion and can be easily tuned to spe-
cific loss functions directly related to the problem at
hand. We empirically evaluate our approach against
a state-of-the art model (McDonald, 2006) and show
performance gains on two compression corpora.

Future research will follow three directions. First,
we will extend the framework to incorporate po-
sition dependent loss functions. Examples include
the Hamming distance or more sophisticated func-
tions that take the tree structure of the source and
target sentences into account. Such functions can
be supported by augmenting our generation algo-
rithm with a beam search. Secondly, the present pa-
per used a relatively simple feature set. Our inten-
tion was to examine our model’s performance with-
out extensive feature engineering. Nevertheless, im-
provements should be possible by incorporating fea-
tures defined over n-grams and dependencies (Mc-
Donald, 2006). Finally, the experiments presented
in this work use a grammar acquired from the train-
ing corpus. However, there is nothing inherent in our
formalisation that restricts us to this particular gram-
mar. We therefore plan to investigate the potential
of our method with unsupervised or semi-supervised
grammar induction techniques for additional rewrit-
ing tasks including paraphrase generation and ma-
chine translation.
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Abstract

Many emerging applications require doc-
uments to be repeatedly updated. Such
documents include newsfeeds, webpages,
and shared community resources such as
Wikipedia. In this paper we address the
task of inserting new information into exist-
ing texts. In particular, we wish to deter-
mine the best location in a text for a given
piece of new information. For this process
to succeed, the insertion algorithm should
be informed by the existing document struc-
ture. Lengthy real-world texts are often hier-
archically organized into chapters, sections,
and paragraphs. We present an online rank-
ing model which exploits this hierarchical
structure — representationally in its features
and algorithmically in its learning proce-
dure. When tested on a corpus of Wikipedia
articles, our hierarchically informed model
predicts the correct insertion paragraph more
accurately than baseline methods.

1 Introduction

Many emerging applications require documents to
be repeatedly updated. For instance, newsfeed ar-
ticles are continuously revised by editors as new in-
formation emerges, and personal webpages are mod-
ified as the status of the individual changes. This re-
vision strategy has become even more prevalent with
the advent of community edited web resources, the
most notable example being Wikipedia. At present
this process involves massive human effort. For in-
stance, the English language version of Wikipedia
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averaged over 3 million edits' per month in 2006.
Even so, many articles quickly become outdated.
A system that performs such updates automatically
could drastically decrease maintenance efforts and
potentially improve document quality.

Currently there is no effective way to automati-
cally update documents as new information becomes
available. The closest relevant text structuring tech-
nique is the work on sentence ordering, in which a
complete reordering of the text is undertaken. Pre-
dictably these methods are suboptimal for this new
task because they cannot take advantage of existing
text structure.

We introduce an alternative vision of text struc-
turing as a process unfolding over time. Instead of
ordering sentences all at once, we start with a well-
formed draft and add new information at each stage,
while preserving document coherence. The basic
operation of incremental text structuring is the inser-
tion of new information. To automate this process,
we develop a method for determining the best loca-
tion in a text for a given piece of new information.

The main challenge is to maintain the continuity
and coherence of the original text. These proper-
ties may be maintained by examining sentences ad-
jacent to each potential insertion point. However, a
local sentence comparison method such as this may
fail to account for global document coherence (e.g.
by allowing the mention of some fact in an inappro-
priate section). This problem is especially acute in
the case of lengthy, real-world texts such as books,
technical reports, and web pages. These documents

"http://stats.wikimedia.org/EN/
TablesWikipediaEN.htm
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are commonly organized hierarchically into sections
and paragraphs to aid reader comprehension. For
documents where hierarchical information is not ex-
plicitly provided, such as automatic speech tran-
scripts, we can use automatic segmentation methods
to induce such a structure (Hearst, 1994). Rather
than ignoring the inherent hierarchical structure of
these texts, we desire to directly model such hierar-
chies and use them to our advantage — both repre-
sentationally in our features and algorithmically in
our learning procedure.

To achieve this goal, we introduce a novel method
for sentence insertion that operates over a hierarchi-
cal structure. Our document representation includes
features for each layer of the hierarchy. For ex-
ample, the word overlap between the inserted sen-
tence and a section header would be included as an
upper-level section feature, whereas a comparison
of the sentence with all the words in a paragraph
would be a lower-level paragraph feature. We pro-
pose a linear model which simultaneously considers
the features of every layer when making insertion
decisions. We develop a novel update mechanism
in the online learning framework which exploits the
hierarchical decomposition of features. This mecha-
nism limits model updates to those features found at
the highest incorrectly predicted layer, without un-
necessarily disturbing the parameter values for the
lower reaches of the tree. This conservative update
approach maintains as much knowledge as possible
from previously encountered training examples.

We evaluate our method using real-world data
where multiple authors have revised preexisting doc-
uments over time. We obtain such a corpus from
Wikipedia articles,> which are continuously updated
by multiple authors. Logs of these updates are pub-
licly available, and are used for training and testing
of our algorithm. Figure 1 shows an example of a
Wikipedia insertion. We believe this data will more
closely mirror potential applications than synthetic
collections used in previous work on text structur-
ing.

Our hierarchical training method yields signifi-
cant improvement when compared to a similar non-
hierarchical model which instead uses the standard

"Data and code used in this paper are available at
http://people.csail.mit.edu/edc/emnlp07/
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perceptron update of Collins (2002). We also report
human performance on the insertion task in order to
provide a reasonable upper-bound on machine per-
formance. An analysis of these results shows that
our method closes the gap between machine and hu-
man performance substantially.

In the following section, we provide an overview
of existing work on text structuring and hierarchi-
cal learning. Then, we define the insertion task and
introduce our hierarchical ranking approach to sen-
tence insertion. Next, we present our experimental
framework and data. We conclude the paper by pre-
senting and discussing our results.

2 Related Work

Text Structuring The insertion task is closely re-
lated to the extensively studied problem of sentence
ordering.> Most of the existing algorithms repre-
sent text structure as a linear sequence and are driven
by local coherence constraints (Lapata, 2003; Kara-
manis et al., 2004; Okazaki et al., 2004; Barzi-
lay and Lapata, 2005; Bollegala et al., 2006; El-
sner and Charniak, 2007). These methods induce
a total ordering based on pairwise relations between
sentences. Researchers have shown that identifying
precedence relations does not require deep semantic
interpretation of input sentences: shallow distribu-
tional features are sufficient for accurate prediction.
Our approach employs similar features to represent
nodes at the lowest level of the hierarchy.

The key departure of our work from previous re-
search is the incorporation of hierarchical structure
into a corpus-based approach to ordering. While in
symbolic generation and discourse analysis a text is
typically analyzed as a tree-like structure (Reiter and
Dale, 1990), a linear view is prevalent in data-driven
methods to text structuring.* Moving beyond a lin-
ear representation enables us to handle longer texts
where a local view of coherence does not suffice. At
the same time, our approach does not require any
manual rules for handling tree insertions, in contrast
to symbolic text planners.

*Independently and simultaneously with our work, Elsner
and Charniak (2007) have studied the sentence insertion task in
a different setting.

“Though statistical methods have been used to induce such
trees (Soricut and Marcu, 2003), they are not used for ordering
and other text-structuring tasks.



Education

Administration, Karachi.

Career

In 2001, Mr Aziz was declared 'Finance Minister of the Year’ by
Euromoney and Banker’s Magazine.

Shaukat Aziz (born March 6, 1949, Karachi, Pakistan) has been the Finance Minister of Pakistan since November 1999.
He was nominated for the position of Prime Minister after the resignation of Zafarullah Khan Jamali on June 6, 2004.

Aziz attended Saint Patrick’s school, Karachi and Abbottabad Public School. He graduated with a Bachelor of Science degree
from Gordon College, Rawalpindi, in 1967. He obtained an MBA Degree in 1969 from the Institute of Business

In November, 1999, Mr. Aziz became Pakistan’s Minister of Finance. As Minister of finance, Mr. Aziz also heads the
Economic Coordination Committee of the Cabinet, and the Cabinet Committee on Privatization.

Mr. Aziz was named as Prime Minister by interim Prime Minister Chaudhry Shujaat Hussain after the resignation of Zafarullah
Khan Jamali on June 6, 2004. He is expected to retain his position as Minister of Finance.

J/

Figure 1: An example of Wikipedia insertion.

Hierarchical Learning There has been much re-
cent research on multiclass hierarchical classifica-
tion. In this line of work, the set of possible la-
bels is organized hierarchically, and each input must
be assigned a node in the resulting tree. A pro-
totype weight vector is learned for each node, and
classification decisions are based on all the weights
along the path from node to root. The essence of
this scheme is that the more ancestors two nodes
have in common, the more parameters they are
forced to share. Many learning methods have been
proposed, including SVM-style optimization (Cai
and Hofmann, 2004), incremental least squares es-
timation (Cesa-Bianchi et al., 2006b), and percep-
tron (Dekel et al., 2004).

This previous work rests on the assumption that a
predetermined set of atomic labels with a fixed hi-
erarchy is given. In our task, however, the set of
possible insertion points — along with their hierar-
chical organization — is unique to each input docu-
ment. Furthermore, nodes exhibit rich internal fea-
ture structure and cannot be identified across docu-
ments, except insofar as their features overlap. As
is commonly done in NLP tasks, we make use of a
feature function which produces one feature vector
for each possible insertion point. We then choose
among these feature vectors using a single weight
vector (casting the task as a structured ranking prob-
lem rather than a classification problem). In this
framework, an explicit hierarchical view is no longer
necessary to achieve parameter tying. In fact, each
parameter will be shared by exactly those insertion
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points which exhibit the corresponding feature, both
across documents and within a single document.
Higher level parameters will thus naturally be shared
by all paragraphs within a single section.

In fact, when the perceptron update rule of (Dekel
et al., 2004) — which modifies the weights of every
divergent node along the predicted and true paths —
is used in the ranking framework, it becomes virtu-
ally identical with the standard, flat, ranking percep-
tron of Collins (2002).> In contrast, our approach
shares the idea of (Cesa-Bianchi et al., 2006a) that
“if a parent class has been predicted wrongly, then
errors in the children should not be taken into ac-
count.” We also view this as one of the key ideas
of the incremental perceptron algorithm of (Collins
and Roark, 2004), which searches through a com-
plex decision space step-by-step and is immediately
updated at the first wrong move.

Our work fuses this idea of selective hierarchical
updates with the simplicity of the perceptron algo-
rithm and the flexibility of arbitrary feature sharing
inherent in the ranking framework.

3 The Algorithm

In this section, we present our sentence inser-
tion model and a method for parameter estima-
tion. Given a hierarchically structured text com-
posed of sections and paragraphs, the sentence in-
sertion model determines the best paragraph within

>The main remaining difference is that Dekel et al. (2004)
use a passive-aggressive update rule (Crammer et al., 2006) and
in doing so enforce a margin based on tree distance.



which to place the new sentence. To identify the
exact location of the sentence within the chosen
paragraph, local ordering methods such as (Lapata,
2003) could be used. We formalize the insertion task
as a structured ranking problem, and our model is
trained using an online algorithm. The distinguish-
ing feature of the algorithm is a selective correction
mechanism that focuses the model update on the rel-
evant layer of the document’s feature hierarchy.

The algorithm described below can be applied to
any hierarchical ranking problem. For concreteness,
we use the terminology of the sentence insertion
task, where a hierarchy corresponds to a document
with sections and paragraphs.

3.1 Problem Formulation

In a sentence insertion problem, we are
given a training sequence of instances
(sL, T4 08, .. (s™, T™ ™). Each instance

contains a sentence s, a hierarchically structured
document 7, and a node ¢ representing the correct
insertion point of s into 7. Although ¢ can generally
be any node in the tree, in our problem we need
only consider leaf nodes. We cast this problem in
the ranking framework, where a feature vector is as-
sociated with each sentence-node pair. For example,
the feature vector of an internal, section-level node
may consider the word overlap between the inserted
sentence and the section title. At the leaf level,
features may include an analysis of the overlap
between the corresponding text and sentence. In
practice, we use disjoint feature sets for different
layers of the hierarchy, though in theory they could
be shared.

Our goal then is to choose a leaf node by taking
into account its feature vector as well as feature vec-
tors of all its ancestors in the tree.

More formally, for each sentence s and hierarchi-
cally structured document 7, we are given a set of
feature vectors, with one for each node: {¢(s,n) :
n € T}. We denote the set of leaf nodes by £(7)
and the path from the root of the tree to a node n
by P(n). Our model must choose one leaf node
among the set £(7) by examining its feature vec-
tor ¢(s, ¢) as well as all the feature vectors along its

path: {¢(s,n) :n € P({)}.
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Input : (s*, 7504, ... (s™,T™ (™).
Initialize : Set w! =0
Loop: Fort=1,2,.... N :

1. Get a new instance s’, 7°.

2. Predict £ = arg maxc (1) w' - ®(s', 0).
3. Get the new label /¢,
4,

If it = ¢t
Wt—’_1 «— Wt
Else:

i* — max{i : P()" = P(£*)'}
a — fp(gt)i*—i-l
b — fp(ét)i*—&-l
W wl + (s, a) — 6(s, b)

Output : wVt1,

Figure 2: Training algorithm for the hierarchical
ranking model.

3.2 The Model

Our model consists of a weight vector w, each
weight corresponding to a single feature. The fea-
tures of a leaf are aggregated with the features of all
its ancestors in the tree. The leaf score is then com-
puted by taking the inner product of this aggregate
feature vector with the weights w. The leaf with the
highest score is then selected.

More specifically, we define the aggregate feature
vector of a leaf ¢ to be the sum of all features found
along the path to the root:

(I)(5>€): Z (Z)(Svn) (1)

neP(L)

This has the effect of stacking together features
found in a single layer, and adding the values of fea-
tures found at more than one layer.

Our model then outputs the leaf with the highest
scoring aggregate feature vector:

arg éénﬁz%)w - (s, 0) @)

Note that by using this criterion, our decoding
method is equivalent to that of the standard linear
ranking model. The novelty of our approach lies in
our training algorithm which uses the hierarchical
feature decomposition of Equation 1 to pinpoint its
updates along the path in the tree.



Figure 3: An example of a tree with the correspond-
ing model scores. The path surrounded by solid lines
leads to the correct node /1. The path surrounded by
dotted lines leads to /3, the predicted output based
on the current model.

3.3 Training

Our training procedure is implemented in the online
learning framework. The model receives each train-
ing instance, and predicts a leaf node according to its
current parameters. If an incorrect leaf node is pre-
dicted, the weights are updated based on the diver-
gence between the predicted path and the true path.
We trace the paths down the tree, and only update
the weights of the features found at the split point.
Updates for shared nodes along the paths would of
course cancel out. In contrast to the standard rank-
ing perceptron as well as the hierarchical perceptron
of (Dekel et al., 2004), no features further down the
divergent paths are incorporated in the update. For
example, if the model incorrectly predicts the sec-
tion, then only the weights of the section features
are updated whereas the paragraph feature weights
remain untouched.

More formally, let / be the predicted leaf node and
let ¢ # { be the true leaf node. Denote by P(¢)¢ the
i" node on the path from the root to £. Let i* be
the depth of the lowest common ancestor of £ and
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l (ie., i* = max{i : P({)) = P({)'}). Then the
update rule for this round is:

S—— (S,P(z)i*“) ! <s,7>(£)i*+1) 3)

Full pseudo-code for our hierarchical online training
algorithm is shown in Figure 2.

We illustrate the selective update mechanism on
the simple example shown on Figure 3. The cor-
rect prediction is the node ¢; with an aggregate path
score of 5, but ¢3 with the higher score of 6 is pre-
dicted. In this case, both the section and the para-
graph are incorrectly predicted. In response to this
mistake, the features associated with the correct sec-
tion, no, are added to the weights, and the features of
the incorrectly predicted section, n3, are subtracted
from the weights. An alternative update strategy
would be to continue to update the feature weights
of the leaf nodes, ¢; and ¢3. However, by identifying
the exact source of path divergence we preserve the
previously learned balance between leaf node fea-
tures.

4 Features

Features used in our experiments are inspired by
previous work on corpus-based approaches for dis-
course analysis (Marcu and Echihabi, 2002; Lapata,
2003; Elsner et al., 2007). We consider three types
of features: lexical, positional, and temporal. This
section gives a general overview of these features
(see code for further details.)

Lexical Features Lexical features have been
shown to provide strong cues for sentence position-
ing. To preserve text cohesion, an inserted sentence
has to be topically close to its surrounding sentences.
At the paragraph level, we measure topical over-
lap using the TF*IDF weighted cosine similarity be-
tween an inserted sentence and a paragraph. We also
use a more linguistically refined similarity measure
that computes overlap considering only subjects and
objects. Syntactic analysis is performed using the
MINIPAR parser (Lin, 1998).

The overlap features are computed at the section
level in a similar way. We also introduce an addi-
tional section-level overlap feature that computes the
cosine similarity between an inserted sentence and
the first sentence in a section. In our corpus, the
opening sentence of a section is typically strongly



indicative of its topic, thus providing valuable cues
for section level insertions.

In addition to overlap, we use lexical features
that capture word co-occurrence patterns in coherent
texts. This measure was first introduced in the con-
text of sentence ordering by Lapata (2003). Given
a collection of documents in a specific domain, we
compute the likelihood that a pair of words co-occur
in adjacent sentences. From these counts, we in-
duce the likelihood that two sentences are adjacent
to each other. For a given paragraph and an in-
serted sentence, the highest adjacency probability
between the inserted sentence and paragraph sen-
tences is recorded. This feature is also computed
at the section level.

Positional Features These features aim to cap-
ture user preferences when positioning new infor-
mation into the body of a document. For instance,
in the Wikipedia data, insertions are more likely to
appear at the end of a document than at its begin-
ning. We track positional information at the section
and paragraph level. At the section level, we record
whether a section is the first or last of the document.
At the paragraph level, there are four positional fea-
tures which indicate the paragraph’s position (i.e.,
start or end) within its individual section and within
the document as a whole.

Temporal Features The text organization may be
influenced by temporal relations between underly-
ing events. In temporally coherent text, events that
happen in the same time frame are likely to be de-
scribed in the same segment. Our computation of
temporal features does not require full fledged tem-
poral interpretation. Instead, we extract these fea-
tures based on two categories of temporal cues: verb
tense and date information. The verb tense feature
captures whether a paragraph contains at least one
sentence using the same tense as the inserted sen-
tence. For instance, this feature would occur for the
inserted sentence in Figure 1 since both the sentence
and chosen paragraph employ the past tense.

Another set of features takes into account the re-
lation between the dates in a paragraph and those in
an inserted sentence. We extract temporal expres-
sions using the TIMEX2 tagger (Mani and Wilson,
2000), and compute the time interval for a paragraph
bounded by its earliest and latest dates. We record
the degree of overlap between the paragraph time in-
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Section | Paragraph | Tree Dist
T1 | J1 | 0.575 0.5 1.85
2 0.7 0.525 1.55
T2 | J3 | 0.675 0.55 1.55
J4 1 0.725 0.55 1.45
Table 1: Accuracy of human insertions compared

against gold standard from Wikipedia’s update log.
T1 is a subset of the data annotated by judges J1 and
J2, while T2 is annotated by J3 and J4.

terval and insertion sentence time interval.

5 Experimental Set-Up

Corpus Our corpus consists of Wikipedia articles
that belong to the category “Living People.” We
focus on this category because these articles are
commonly updated: when new facts about a person
are featured in the media, a corresponding entry in
Wikipedia is likely to be modified. Unlike entries
in a professionally edited encyclopedia, these arti-
cles are collaboratively written by multiple users,
resulting in significant stylistic and content varia-
tions across texts in our corpus. This property dis-
tinguishes our corpus from more stylistically homo-
geneous collections of biographies used in text gen-
eration research (Duboue and McKeown, 2003).

We obtain data on insertions® from the update log
that accompanies every Wikipedia entry. For each
change in the article’s history, the log records an ar-
ticle before and after the change. From this informa-
tion, we can identify the location of every inserted
sentence. In cases where multiple insertions occur
over time to the same article, they are treated in-
dependently of each other. To eliminate spam, we
place constraints on inserted sentences: (1) a sen-
tence has at least 8 tokens and at most 120 tokens;
(2) the MINIPAR parser (Lin, 1998) can identify a
subject or an object in a sentence.

This process yields 4051 insertion/article pairs,
from which 3240 pairs are used for training and 811
pairs for testing. These insertions are derived from
1503 Wikipedia articles. Relative to other corpora
used in text structuring research (Barzilay and Lee,
2004; Lapata, 2003; Karamanis et al., 2004), texts in

®Insertion is only one type of recorded update, others in-
clude deletions and sentence rewriting.



our collection are long: an average article has 32.9
sentences, organized in 3.61 sections and 10.9 para-
graphs. Our corpus only includes articles that have
more than one section. When sentences are inserted
between paragraphs, by convention we treat them as
part of the previous paragraph.

Evaluation Measures We evaluate our model us-
ing insertion accuracy at the section and paragraph
level. This measure computes the percentage of
matches between the predicted location of the in-
sertion and the true placement. We also report the
tree distance between the predicted position and the
true location of an inserted sentence. Tree distance
is defined as the length of the path through the tree
which connects the predicted and the true paragraph
positions. This measure captures section level errors
(which raise the connecting path higher up the tree)
as well as paragraph level errors (which widen the
path across the tree).

Baselines Our first three baselines correspond to
naive insertion strategies. The RANDOMINS method
randomly selects a paragraph for a new sentence,
while FIRSTINS and LASTINS insert a sentence into
the first and the last paragraph, respectively.

We also compare our HIERARCHICAL method
against two competitive baselines, PIPELINE and
FLAT. The PIPELINE method separately trains two
rankers, one for section selection and one for para-
graph selection. During decoding, the PIPELINE
method first chooses the best section according to
the section-layer ranker, and then selects the best
paragraph within the chosen section according to the
paragraph-layer ranker. The FLAT method uses the
same decoding criterion as our model (Equation 2),
thus making use of all the same features. However,
FLAT is trained with the standard ranking percep-
tron update, without making use of the hierarchical
decomposition of features in Equation 1.

Human Performance To estimate the difficulty
of sentence insertion, we conducted experiments
that evaluate human performance on the task. Four
judges collectively processed 80 sentence/article
pairs which were randomly extracted from the test
set. Each insertion was processed by two annotators.

Table 1 shows the insertion accuracy for each
judge when compared against the Wikipedia gold
standard. On average, the annotators achieve 66%
accuracy in section placement and 53% accuracy
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Section | Paragraph | Tree Dist
RANDOMINS | 0.318%* 0.134% 3.10%
FIRSTINS 0.250* 0.136* 3.23%
LASTINS 0.305%* 0.215% 2.96%*
PIPELINE 0.579 0.314* 2.21%
FLAT 0.593 0.313* 2.19%*
HIERARCHY | 0.598 0.383 2.04

Table 2: Accuracy of automatic insertion meth-
ods compared against the gold standard from
Wikipedia’s update log. The third column gives tree
distance, where a lower score corresponds to bet-
ter performance. Diacritic * (p < 0.01) indicates
whether differences in accuracy between the given
model and the Hierarchical model is significant (us-
ing a Fisher Sign Test).

in paragraph placement. We obtain similar re-
sults when we compare the agreement of the judges
against each other: 65% of section inserts and 48%
of paragraph inserts are identical between two anno-
tators. The degree of variability observed in this ex-
periment is consistent with human performance on
other text structuring tasks such as sentence order-
ing (Barzilay et al., 2002; Lapata, 2003).

6 Results

Table 2 shows the insertion performance of our
model and the baselines in terms of accuracy and
tree distance error. The two evaluation measures are
consistent in that they yield roughly identical rank-
ings of the systems. Assessment of statistical sig-
nificance is performed using a Fisher Sign Test. We
apply this test to compare the accuracy of the HIER-
ARCHICAL model against each of the baselines.
The results in Table 2 indicate that the naive inser-
tion baselines (RANDOMINS, FIRSTINS, LASTINS)
fall substantially behind the more sophisticated,
trainable strategies (PIPELINE, FLAT, HIERARCHI-
CAL). Within the latter group, our HIERARCHI-
CAL model slightly outperforms the others based on
the coarse measure of accuracy at the section level.
However, in the final paragraph-level analysis, the
performance gain of our model over its counterparts
is quite significant. Moreover, according to tree dis-
tance error, which incorporates error at both the sec-
tion and the paragraph level, the performance of the



HIERARCHICAL method is clearly superior. This
result confirms the benefit of our selective update
mechanism as well as the overall importance of joint
learning.

Viewing human performance as an upper bound
for machine performance highlights the gains of our
algorithm. We observe that the gap between our
method and human performance at the paragraph
level is 32% smaller than that between the PIPELINE
model and human performance, as well as the FLAT
model and human performance.

Sentence-level Evaluation Until this point, we
have evaluated the accuracy of insertions at the para-
graph level, remaining agnostic as to the specific
placement within the predicted paragraph. We per-
form one final evaluation to test whether the global
hierarchical view of our algorithm helps in deter-
mining the exact insertion point. To make sentence-
level insertion decisions, we use a local model in
line with previous sentence-ordering work (Lapata,
2003; Bollegala et al., 2006). This model examines
the two surrounding sentences of each possible in-
sertion point and extracts a feature vector that in-
cludes lexical, positional, and temporal properties.
The model weights are trained using the standard
ranking perceptron (Collins, 2002).

We apply this local insertion model in two dif-
ferent scenarios. In the first, we ignore the global
hierarchical structure of the document and apply the
local insertion model to every possible sentence pair.
Using this strategy, we recover 24% of correct inser-
tion points. The second strategy takes advantage of
global document structure by first applying our hier-
archical paragraph selection method and only then
applying the local insertion to pairs of sentences
within the selected paragraph. This approach yields
35% of the correct insertion points. This statistically
significant difference in performance indicates that
purely local methods are insufficient when applied
to complete real-world documents.

7 Conclusion and Future Work

We have introduced the problem of sentence inser-
tion and presented a novel corpus-based method for
this task. The main contribution of our work is the
incorporation of a rich hierarchical text representa-
tion into a flexible learning approach for text struc-
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turing. Our learning approach makes key use of
the hierarchy by selecting to update only the layer
found responsible for the incorrect prediction. Em-
pirical tests on a large collection of real-world inser-
tion data confirm the advantage of this approach.

Sentence ordering algorithms too are likely to
benefit from a hierarchical representation of text.
However, accounting for long-range discourse de-
pendencies in the unconstrained ordering framework
is challenging since these dependencies only appear
when a particular ordering (or partial ordering) is
considered. An appealing future direction lies in si-
multaneously inducing hierarchical and linear struc-
ture on the input sentences. In such a model, tree
structure could be a hidden variable that is influ-
enced by the observed linear order.

We are also interested in further developing our
system for automatic update of Wikipedia pages.
Currently, our system is trained on insertions in
which the sentences of the original text are not mod-
ified. However, in some cases additional text revi-
sions are required to guarantee coherence of the gen-
erated text. Further research is required to automat-
ically identify and handle such complex insertions.
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Automatically Identifying the Arguments of Discourse
Connectives
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Abstract

In this paper we consider the problem of
automatically identifying the arguments
of discourse connectives (e.g., and, be-
cause, nevertheless) in the Penn Dis-
course TreeBank(PDTB). Rather than
identifying the full eztents of these argu-
ments as annotated in the PDTB, how-
ever, we re-cast the problem to that of
identifying the argument heads, effec-
tively side-stepping the problem of dis-
course segmentation. We demonstrate
significant gains using features derived
from a dependency parse representation
over those derived from a constituent-
based tree parse. By also capturing inter-
argument dependencies using a log-linear
re-ranking model we identify both argu-
ments correctly for over 74% of the con-
nectives on held-out test data using gold-
standard parses.

1 Introduction

The study of discourse is concerned with ana-
lyzing how phrase, clause or sentence-level units
of text are related to each other within a larger
unit of text (e.g., a document). Long recognized
as important in dialog and text generation, this
level of analysis is important generally for appli-
cations needing to place events and propositions
in their proper context such as scenario-level in-
formation extraction, question answering, sum-
marization, sentiment analysis and others.

In line with much of the NLP research agenda,
recently a number of annotated corpora have
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emerged which encode discourse-level phenom-
ena, making it possible to apply supervised,
empirically-driven techniques to identifying dis-
course relations. Such corpora include the RST
Discourse Treebank (Carlson et al., 2003) (based
on Rhetorical Structure Theory), the Discourse
GraphBank (Wolf and Gibson, 2005) (based on
the relations of Hobbs (1985)) and the Penn
Discourse Treebank (Miltsakaki et al., 2004b).
While these corpora differ in many ways, they
all more or less encode problems involving: 1)
identifying/segmenting the basic units of dis-
course (e.g., clauses, phrases), 2) determining
for which pairs of segments (or segment groups)
a discourse relation exists, and 3) characteriz-
ing the type of relation (cause, elaboration, etc.)
between segment pairs.

For our experiments in this paper, we use the
Penn Discourse TreeBank (PDTB). The PDTB
differs from most other discourse-level annota-
tion efforts in its bottom-up, lexically-driven
approach. Rather than identifying all possible
discourse relations, the PDTB focuses on an-
notating relations lexicalized by discourse con-
nectives that explicitly occur in the text along
with their two arguments. ! These discourse
connectives include coordinating conjunctions
(e.g., and, or), subordinating conjunctions (e.g.,
because, when, since) and discourse adverbials
(e.g., however, previously, nevertheless).

In this paper we focus on problems (1) and (2)

!The final release of the PDTB, scheduled for release
in August 2007, will annotate the type of the rhetorical
relation holding between arguments of explicit connec-
tives in addition to annotating relations between adjacent
sentences where no lexical connective is present.

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 92-101, Prague, June 2007. (©2007 Association for Computational Linguistics



above. However, rather than explicitly identify-
ing the discourse segments and then deciding for
which pairs a relation exists, we focus on identi-
fying relations between the pairs of head words
that represent the discourse segments. In this
sense, the problem resembles that of predicate-
argument identification where the predicates are
discourse connectives and the arguments are sin-
gle words which serve as anchors for the dis-
course segments.

To address the problem of identifying the ar-
guments of discourse connectives we incorporate
a variety of lexical and syntactic features in a
discriminative log-linear ranking model. To cap-
ture dependencies between the two arguments
of a connective we use a log-linear re-ranking
model to select the best argument pair from a set
of N-best argument pairs provided by the inde-
pendent argument models. Further, we provide
an analysis of the contribution of the various
features demonstrating that features based on
a dependency parse representation outperform
features derived from a constituent tree parse.

2 Overview of the Penn Discourse
Treebank

Discourse arguments in the PDTB represent ab-
stract objects (Asher, 1993) which include facts,
propositions and events. Each argument must
include at least one predicate and can be realized
as: a clause, a VP within VP coordination, a
nominalization (in certain, restricted cases), an
anaphoric expression or a response to a question.
Each connective has two arguments: ARG2 is
the argument syntactically connected to the con-
nective in the same sentence and ARG1 is the
other argument which may lie in the same sen-
tence as the connective or, generally, anywhere
prior in the discourse.

The PDTB contains a total of 18505 ex-
plicit connectives annotated with discourse ar-
guments. The annotations are layered on top
of the Penn TreeBank-II (PTB) parse trees and
cover all 25 Wall Street Journal (WSJ) sections.

2.1 Examples

Below are a few examples from the PDTB. Each
ARG1 is denoted in italics and each ARG2 is de-
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noted in bold. The head-words for each argu-
ment are underlined. We discuss and motivate
the identification of head-words in Section 2.2.

(1) Choose 203 business executives, including,
perhaps, someone from your own staff,
put them out on the streets, to
be deprived for one month of their homes,
families and income.

(1) shows an example of a coordinating con-
nective and and its two arguments. In this case,
the ARG1 lies in the same sentence as the con-
nective. It is also possible for the ARG1 to lie
outside the sentence (usually in the immediately
preceding sentence) when the coordinating con-
nective begins a sentence.

An example of the subordinating connective,
because is shown below in (2). This example
brings up some interesting ambiguities that arise
quite regularly in the data. An alternative read-
ing for this example might only include the ex-
tent to duck liability for the ARG1. That is, the
predicate be able could be read to include the
discourse relation and its two arguments as an
argument.

(2) Drug makers shouldn’t be able to duck lia-
bility people couldn’t identify
precisely which identical drug was
used.

Both coordinating and subordinating con-
nectives are structural (Webber et al., 2003).
Discourse adverbials however, take one argu-
ment, ARG2, structurally but the other can be
anaphoric: its ARGl may be present anywhere
in the current running discourse with little or no
restriction. Example (3) shows the case in which
the ARG1 lies in the previous sentence. In many
cases, however, it resides in the same sentence
as the connective or many sentences prior in the
discourse.

(3) France’s second-largest government-owned
insurance company, Assurances Generales
de France, has been building its own Na-
givation Mizte stake, currently thought to
be between 8% and 10%. Analysts said



they don’t think it is contemplating

a takeover, |however| and its officials

couldn’t be reached.

2.2 Head-Based Representation of the
PDTB

In contrast to other annotations layered on the
PTB such as PropBank and NomBank, the
arguments of a discourse connective generally
do not correspond to a single parse tree con-
stituent. Arguments consist instead of a set
of non-overlapping constituents from the parse
tree (i.e. a forest). This target representation
makes the process of identifying the arguments
to discourse connectives difficult since the space
of candidate arguments extents is considerably
larger than for PropBank parsing, for example.
Even without this added difficulty, discourse
segmentation is one of the most difficult stages
in discourse parsing (Soricut and Marcu, 2003).
While the segments themselves may be useful in
certain contexts, for many applications, if not
most, it will still be necessary to interpret these
segments (e.g. at the predicate-argument level).
As such, we argue that, in general, identifying
the lexical heads of these discourse segments is
sufficient and perhaps even preferable for this
stage of processing. A problem arises, how-
ever, with arguments that consist of sequences
of abstract objects represented as coordinated or
subordinated sequences of VPs, clauses or sen-
tences. What should the head be in such cases?
By convention we designate the extent head as
the head of the first element in the sequence.
In (4), the head of the ARG2 would be went,
but it’s implicit scope includes the second VP
coordinate headed by caught.

(4) Mr. Dozen even related the indignity
suffered |when | he and two colleagues
went on an overnight fishing expe-
dition of the New Jersey shore and
caught nothing.

The problem then becomes how to deter-
mine the end of the sequence of abstract ob-
jects. In many cases, there is a “natural end”
to such sequences based on the syntax. In
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(4), the natural end is simply the end of the
VP coordination. Difficult cases remain, how-
ever, particularly with multi-sentential ARG1s
of anaphoric connectives. Determining the end
of the these arguments seems non-trivial.? Nev-
ertheless, identifying the begininning of the ar-
gument (via its head) is an important step in
modeling these difficult cases.

2.3 Head Identification

Identifying the head of a discourse argument
given its extent (as described by a set of con-
stituent sub-trees in the PTB) consists of two
steps. First, we construct a single syntactic
tree formed by taking all of the sub-trees in
the extent, finding their least common ances-
tor (LCA) node and including all intermediate
nodes from the subtrees to the LCA node. Then,
a slight variation of the head finding algorithm
in (Collins, 1999) is applied to the derived tree
to find the head. Figure 1 provides an exam-
ple indicating the arguments to the connective
“After” and the derived argument heads.

3 Discourse Argument Identification

Identifying the arguments of discourse connec-
tives can be naturally formulated as a binary
classification task where separate classifiers are
trained for each argument — i.e., ARGl and
ARrG2. First, a set of candidate arguments, «;
is gathered for each connective, 7. Training in-
stances, («;, ), are then created for each candi-
date with respect to the connective. A training
instance is positive if «; is the true argument
for 7 and negative otherwise. At decoding time,
the candidate classified positively with the high-
est probability (or score) compared to the other
candidates is selected as the argument.

An alternative to using a standard classifica-
tion approach is to use a ranking model. The
advantage of the ranking model is that candi-
date instances are compared against each other
during training as well as during decoding. In

2There are indications, however, that the end of

the argument sometimes falls out of the (possibly non-
lexicalized) discourse relations local to the argument.
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Figure 1: Syntactic structure and discourse arguments for the connective “After”.

contrast, with a standard classifier, separate in-
stances (i.e. candidates) are trained and clas-
sified as if they were completely independent.
We use a log-linear ranking model. Such mod-
els have been used for a variety of other tasks
including co-reference (Denis and Baldridge,
2007), question answering (Ravichandran et al.,
2003) and parse re-ranking (Charniak and John-
son, 2005). For a given ARG1 candidate, «;,
the probability of that candidate being the ar-
gument given the connective, 7, and the docu-
ment, z, is defined according to the model as:

exp (g M S (i, m,2))
Y. exp (X Mwfilay, m,2))

a; €Cy(m,x)
(1)

where the f; are feature functions, the A\; are
their weights and Cj(w,z) is the set of candi-
date ARGl arguments for the connective 7 in
the document z. The model for ARG2 is defined
analogously, but may in fact use a different set of
features or a different candidate generation func-
tion. At training time, all potential candidates
of a particular type for a given connective are
provided to the ranking model as a distribution:
the correct gold-standard candidate receiving a
probability mass of 1.0 and the other candidates
receiving masses of 0.0. During decoding, we se-
lect candidates in the same way as for training
and produce a distribution over these candidates
according to equation 1, selecting the candidate

Pl(Oéi|7T,iL') =

95

assigned the highest probability by the model as
the argument.

We compared both the above ranking model
and a standard binary Maximum Entropy model
(i.e., logistic regression) and found the ranking
model to have a small but consistent edge over
the classifier. Accordingly, we only report re-
sults here using the ranking model.

3.1 Candidate Selection

Selecting the candidate arguments, «;, is an im-
portant aspect of the problem. There are con-
ceivably very many possible ARG1 candidates
for a given connective stretching back from the
sentence containing the connective to the be-
ginning of the document. We employ two sim-
ple criteria to reduce the space of candidate ar-
gument head words. First, we only consider
argument candidates that have an appropriate
part-of-speech (all verbs, common nouns, adjec-
tives). Second, we only consider candidates that
are within 10 “steps” of the connective where
a single step includes a sentence boundary or
a syntactic dependency link within a sentence
(see Figure 2). Only candidates lying within the
same sentence as the connective are considered
for ARG2.

3.2 Features

We used a variety of features for identifying the
discourse arguments of a connective.

Baseline Features. Our baseline features
included simply the connective and argument



words, where the connective appears in the sen-
tence, whether the argument precedes or follows
the connective and whether the argument is in
the same sentence as the connective or not.

Constituent Path Features. As noted in
work on semantic role labeling, features derived
from the constituent parse of the sentence can be
very helpful for deriving the argument structure
of predicating verbs (Toutanova et al., 2005) and
nouns (Jiang and Ng, 2006). Syntax plays a
strong role in identifying discourse arguments,
too, though even for structural connectives it
by no means “aligns” with the discourse struc-
ture (Dinesh et al., 2005). We introduced a fea-
ture capturing the constituent tree path from
the connective to the candidate argument as well
as variants in which repeated nodes and part-of-
speech nodes are removed from the path. If the
argument lies in a different sentence, the path
from the connective to the argument consists of
the path from the connective to the top node
of its sentence, followed by a series of virtual
SENT nodes for the intervening sentences and
then ending with the path from the top node
of the sentence containing the argument to the
argument head itself.

Dependency Path Features. We exper-
imented with a number of syntactic features
based on a dependency parse representation.
The primary motivation here being that it pro-
vides for a more compact and natural represen-
tation of the syntax, providing for better syntac-
tic features with less data sparseness than con-
stituent path features. The dependency repre-
sentation we use is that put forth in de Marn-
effe et al. (2006) and we apply their approach
to deriving the dependency structure from the
constituent parse. The features used here in-
clude the (shortest) dependency path from the
connective to the prospective argument and two
collapsed versions removing coordination links
as well as repeated links of the same type. For
argument candidates in prior sentences, we in-
troduce SENT links for each intervening sen-
tence.

Connective Features. Different discourse
connectives behave differently depending on
their type. A potentially important feature then
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Figure 2: Dependency structure.

involves capturing the connective type: (coordi-
nating, subordinating or adverbial). We use the
categorized lists of discourse connectives found
in (Knott, 1996); further, any connectives not
appearing in these lists are considered discourse
adverbials. As we would expect different syntax
associated with different connectives we intro-
duce conjunctive features such as the connective
type and syntactic path.

Lexico-Syntactic Features. One of the
prime difficulties in identifying the correct non-
anaphoric argument has to do with attribution.
In this situation the argument is the complement
of a verb indicating attribution of the proposi-
tion denoted by the complement to an individ-
ual other than the writer. Figure 1 provides
an example of this where the ARG1 of “Af-
ter” is the complement of the verb “said” be-
ing attributed to “the Commerce Department”.
To model this situation we introduce features
capturing whether the argument is a poten-
tially attribution-denoting verb, whether it has
a clausal complement, whether it is the clausal
complement of another verb and whether the
complementing verb is attributing.

A full listing of the features used for identify-
ing arguments is shown in Table 1.

4 Experiments with Independent
Argument Identification

For all of our experiments, we use sections 02-
22 for training, sections 00-01 for development
and sections 23-24 for testing. The development
data was used to customize our features and to
tune the Gaussian prior used to prevent over-



Baseline Features

A | Where in the sentence (beginning, middle, end)
the connective resides

B | Whether the argument is in the same sentence as
the connective (yes,no)

C | Connective phrase

D | Downcase connective phrase

E | Argument head word

F | Argument head prior or after connective

G | A&B

Constitutent Features

H | Path from argument to connective through the
constituent tree

I Length of path

J Collapsed path without part-of-speech

K | Collapsed path removing repetitions of the same

node type (e.g. VP-VP-VP — VP)
C&H

Dependency Features

Dependency path from argument to connective
Path + head word of first link from connective
Collapsed path removing coordinating links
Collapsed path removing repetitions of links
C&M

nective Features

o
=}

Hoomozz

coordinating, subordinating or adverbial connec-
tive

A&R

M &R

»

ico-Syntactic Features

Argument is an attributing verb

Argument has a clausal complement

U&V

Argument is a clausal complement of a verb
X & governing verb is an attributing verb

<Kz <dan

Table 1: Feature types for discourse connective
argument identification

fitting in the log-linear models ( at ¢ = 0.25
for both the local and the re-ranking models).
All results are reported on the testing data, sec-
tions 23-24. We report results using both gold-
standard parses and automatic parses using the
Charniak-Johnson parser (Charniak and John-
son, 2005).

For evaluating ARGl and ARG2 argument
identification performance we report accuracy
— i.e., the percentage of arguments correctly
identified. An argument is correct if and only
if it is the same head-word as derived from the
argument extent as annotated in the PDTB (as
described in Section 2.3). We also report Con-
nective Accuracy which is the percentage of con-
nectives for which both arguments were correctly
identified.
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Accuracy
FeatureSet | ARGl | ARG2 | Conn.
A-G 32.7 60.7 21.6
A-L 60.6 85.5 53.6
A-G;M-Q 73.7 94.2 70.2
A-Y 75.0 94.2 71.7
A-Y(auto) | 67.9 | 90.6 62.7
Table 2: Results for argument identification

on the testing data (WSJ sections 23-24) gold
standard parses (with various feature sets) and
Charniak-Johnson parses (auto) for the full fea-
ture set A-Y.

Our results for the task of identifying argu-
ments are shown in Table 4 for various feature
combinations. It is interesting to compare the
performance of the constituent parse features
(A-L) vs. the dependency parse features (A-
G;M-Q). The dependency parse features per-
form markedly better: 70.2 vs. 53.6 Connective
Accuracy with gold-standard parses.

5 Experiments With Re-ranking

A drawback to the above approach is that the
two arguments are identified independently. Ide-
ally, one would like to consider both arguments
and the connective simultaneously, taking into
account global properties such as the pattern of
the argument structure (e.g. Connective-ARG2-
ARG1 vs. ARGl Connective ARG2) or proper-
ties of compatibility between the two arguments
(e.g. agreement in tense). Considering all pairs
of arguments outright, however, presents scala-
bility issues as the number of such pairs can be
very large (especially with anaphoric ARG1s).
Indeed, a huge advantage of the lexicalized ap-
proach taken with the PDTB is that we can
identify arguments independently using the con-
nectives as anchors. Nevertheless, there is obvi-
ous potential gain from modeling pairs of argu-
ments jointly.

One way to model these dependencies in a
tractable fashion is to use a re-ranking ap-
proache (Collins, 2000) which has proven suc-
cessful in a variety of NLP tasks. The basic idea
is to use a model with strong independenc as-



Accuracy
N | Arcl | ArG2 | Conn.
1 74.5 94.5 71.4
5 83.1 97.4 81.8
10 | 90.5 97.9 89.2
20 | 93.8 97.9 92.1
30 | 94.6 97.9 92.9

Table 3: N-best upper-bounds for different val-
ues of N according to a product of independent
argument ranker probabilities with the full fea-
ture set (A-Y)

sumption, GEN(7), in this case based on the
independent argument models described above,
to generate N candidate argument pairs for a
given connective, 7. Then, the re-ranking model
is used to re-rank these candidate pairs; the top-
ranked pair is then selected.

In our setting for a given connective, m, we
define the local probability for a candidate argu-
ment pair, (o, ;) as:

Pioc(0i, aj|m, ) = Paggi(@i|m, ©)-Parce (aj|m, )

Thus, GEN (7) generates the top N argument
pairs according to the Pj,.. In practice, we also
assert that Pj,.(oj, ag|m, ) = 0 when j = k.

For different values of IV, Table 3 shows the
oracle upper bounds on performance - the per-
formance achieved by selecting the correct ar-
gument pair from GEN(x) if it is in the list of
argument pairs and otherwise selecting the first
pair with one correct argument if such a pair ex-
ists. Note that performance on ARG2 plateaus
at 97.9. This is due to 2.1 percent of the ARG2s
not being reachable because they are not consid-
ered candidates (they are more than 10 “parse
steps” away or an invalid part-of-speech).

5.1 Modeling Inter-Argument
Dependencies

The model for re-ranking pairs of arguments is
given by

PT(ai, O‘j|7r"77) =
exp (D oy, Ak fr(ai, o), 7, 7))
ZO{i,O{jEGEN(W) €xp (Zk )‘kfk(ai, Qj, T, '77))
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Following previous work (Collins, 2000;
Toutanova et al., 2005), we mix the local model
into the final score along with the re-ranking
model as:

P(Oli,Otj|7T,l‘) = BOC(aia aj|7r,x)7-Pr(ai,aj|7r,m)

where « indicates the degree to which the local
model influences the final score. Tuning v on
the development data, we set v = 0.4 for all our
re-ranking experiments.

The re-ranking model is able to accommodate
features over both candidate arguments. For ex-
ample, we can test whether the two arguments
are the same predicate or whether they are both
reporting verbs. Another set of features consists
of triples denoting the relative order of the argu-
ments and the connective. For example, the fea-
ture CONN_ARG2_ARG1 indicates the connec-
tive and both arguments lie in the same sentence
with the connective first, followed by ARG2 and
then ARG1. The feature Prev-CONN_ARG2 in-
dicates ARG is in the previous sentence and the
connective precedes ARG2 within the sentence
containing the connective. Other slight vari-
ations capture configurations where the ARG1
candidate lies further back in the discourse. Fi-
nally, we found some utility in comparing the
syntactic arguments (e.g., subject, direct object)
of the candidate argument pairs. For example,
the arguments of the discourse adverbial also
not only frequently involve the same predicate
but also involve the same entities that appear as
arguments to the predicate. Currently, we sim-
ply introduce features testing whether the argu-
ment strings are identitical as a proxy for full
co-reference.

Table 4 shows the results incorporating the
re-ranking model for the different feature sets
described earlier. The re-ranking models in
each case are constructed from the features that
would naturally be available to the re-ranker.
For example, the re-ranking model for feature
set A-Y uses a feature testing whether both can-
didate arguments are reporting verbs, whereas
the re-ranking model for A-L doesn’t.



Accuracy Conn. Freq. | Indep. | Rerank | Err.
Features Arcl | ArGg2 | Conn. | Err. Type Acc. Acc.
A-G 44.1 59.6 30.6 | 11.5% Coord. 662 75.5 78.3 11.4%
A-L 64.7 85.6 58.1 | 9.6% Subord. | 547 87.2 86.8 -3.0%
A-G;M-Q 74.2 94.4 71.8 | 5.4% Adv. 386 42.2 49.0 | 11.8%
A-Y 76.4 95.4 74.2 | 8.8% Total 1595 | 71.7 74.2 8.8%
A-Y(auto) | 69.8 | 90.8 | 64.6 | 5.4%

Table 4: Re-ranking results for argument identi-
fication on the testing data using gold-standard
and Charniak-Johnson parses for the full feature
set, A-Y (auto). The error reduction (Err.) is
relative to the results in Table 2.

5.2 Discussion and Error Analysis

Not surprisingly, performance at identifying
ARG2s is much higher than for ARG1ls as the
former are syntactically bound to the connec-
tive. Indeed, performance for identifying ARG2s
may be at or very close to human levels of perfor-
mance using gold-standard parses. Miltsakaki et
al. (2004a) indicate 94.1% inter-annotator agree-
ment for ARG2, 86.3% on ARG1 and 82.8%
agreement per discourse connective with respect
to the full argument extents for a set of 10
connectives. The disagreement rates, however,
would likely be reduced considerably using our
head-based representation since almost half of
the disagreements reported were due to argu-
ment extent disagreements.

Many of the ARG2 errors we found had to do
with attribution, such as:

(5) ..“We pretty much have a policy of not com-
menting on rumors, I think(?) that
falls in that category.

where the system proposed “think” as the
ARG2 and the annotated argument was “falls”.

The ARG1 errors were much more diverse
with many involving arguments in previous sen-
tences, such as the following case in which the
system proposed owned as the argument yet
the correct argument was completed found three
sentences prior in the discourse.

(6) ..Quantum completed in August an acquisi-
tion of Petrolane... Petrolane is the second-
largest... The largest, Suburban Propane,
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Table 5: Frequency of each connective type and
connective accuracy for the independent and re-
ranking approaches using gold-standard parses
and features (A-Y).

was already owned(?) by Quantum. ,

Quantum has a crisis to get past right now.

An examination of the errors by connective
type is shown in Table 5. The re-ranking model
provides considerable improvement for coordi-
nating and adverbial connectives, but slighly
lowers performance for subordinating connec-
tives. Overall performance on discourse adver-
bials remains below 50% however.

6 Related Work

Given the formulation of discourse relations as
predicate-argument structures anchored on dis-
course connectives, our work here bears some
resemblance to work in semantic role labeling
that has focused on identifying semantic frames
for verbs (Toutanova et al., 2005). The task of
identifying discourse relations is simpler in that
there are only and exactly two arguments for
each predicate; yet it is more difficult due to
many more candidate arguments not contained
within a single sentence.

Within discourse parsing, our work is simi-
lar to that of Soricut and Marcu (2003) but
they focus only on identifying (and labeling
the type of) all intra-sentential discourse re-
lations whereas we attempt to identify dis-
course relations spanning multiple sentences,
provided they are lexicalized by a connec-
tive. While not directly comparable to our re-
sults, they report 73.0 F-measure at identify-
ing intra-sentential discourse relations and seg-
ments using gold-standard parses. With gold-
standard discourse segments provided, their sys-
tem achieves human-levels of performance (96.2



F-measure), broadly comparable to our near-
human levels of performance on identifying
ARG2s with gold-standard parses. Sporleder
and Lapata (2005) address intra-sentential dis-
course modeling with a chunking approach.
They achieve 88.7 F-measure on identifying dis-
course segment boundaries and 76.3 F-measure
when also labeling each segment as a nucleus
or satellite. Webber et al. (2003) provide a
discourse parsing model, DLTAG, which is an
extension of Lexicalized Tree Adjoining Gram-
mars. Baldridge and Lascarides (2005) present a
discourse parser for dialogue in the framework of
SDRT (Asher, 1993) and achieve 67.9 F-measure
on identifying and segmenting discourse rela-
tions.

7 Conclusions and Future Work

We have presented a fully automated system ca-
pable of identifying the arguments of discourse
connectives. Rather than identifying the full ar-
gument extents in the PDTB, we have proposed
here an alternative problem formulation: that of
identifying the heads of discourse arguments. 3
With such a representation our system achieves
74.2% accuracy using gold-standard parses and
64.6% accuracy using automatic parses on the
task of correctly identifying both arguments of
discourse connectives. We found that syntactic
features based on a dependency parse represen-
tation provide more discriminative features over
those based on a constituent tree representation.
Additionally, we found a notable improvement
by exploiting joint features over argument pairs
in a re-ranking model in comparison to modeling
the arguments independently.

We have provided here, to our knowledge,
the first rigorous empirical results on identify-
ing the arguments of discourse connectives in
the PDTB. Accordingly, many avenues remain
for future work. Further feature engineering,
particularly work capturing the lexico-semantic,
attributive and predicate-argument properites

3Software for producing the head-based representa-
tion of the PDTB, an augmented version of the Charniak-
Johnson parser that a produces dependency representa-
tion, and the log-linear ranking code are available at:
http://www.cs.brandeis.edu/wellner /pdtb-emnlp/
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of arguments appears necessary to better iden-
tify the ARG1s of anaphoric discourse adver-
bials, in particular. Introducing separate models
and feature sets for each of the three connective
types may also prove beneficial since phenomena,
involved vary according to connective type.

While we have demonstrated some encourag-
ing results by modeling both arguments jointly,
we hypothesize more gains are possible by mod-
eling inter-connective dependencies. The dis-
course arguments of one connective are not inde-
pendent of other (nearby) connectives and their
arguments. For example, it is very rare to see
crossing argument links. Capturing these inter-
connective dependencies and constraints is likely
to be even more important when considering the
task of identifying the rhetorical types associ-
ated with the connectives or when considering
non-lexicalized relations between adjacent sen-
tences.

Finally, jointly modeling PropBank and the
PDTB is another interesting area we plan to
investigate, something to which the head-based
approach and dependency parse representation
we advocate here would be well-suited.
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Abstract

Approaches to plural reference generation
emphasise descriptive brevity, but often lack
empirical backing. This paper describes
a corpus-based study of plural descrip-
tions, and proposes a psycholinguistically-
motivated algorithm for plural reference
generation. The descriptive strategy is based
on partitioning and incorporates corpus-
derived heuristics. An exhaustive evaluation
shows that the output closely matches hu-
man data.

1 Introduction

Generation of Referring Expressions (GRE) is a
well-studied sub-task of microplanning in Natural
Language Generation. Most algorithms in this area
view GRE as a content determination problem, that
is, their emphasis is on the construction of a se-
mantic representation which is eventually mapped
to a linguistic realisation (i.e. a noun phrase). Con-
tent Determination for GRE starts from a Knowledge
Base (KB) consisting of a set of entities U and a set
of properties [P represented as attribute-value pairs,
and searches for a description D C P which distin-
guishes a referent » € U from its distractors. Under
this view, reference is mainly about identification of
an entitiy in a given context (represented by the KB),
a well-studied pragmatic function of definite noun
phrases in both the psycholinguistic and the compu-
tational literature (Olson, 1970).

For example, the KB in Table 1 represents 8 en-
tities in a 2D visual domain, each with 6 attributes,
including their location, represented as a combina-
tion of horizontal (X) and vertical (Y) numerical co-
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TYPE COLOUR ORIENTATION SIZE X Y
e1 desk red back small 3 1
ez | sofa blue back small 5 2
e3 | desk red back large 1 1
e4 | desk red front large 2 3
es | desk blue right large 2 4
es | sofa red back large 4 1
e7 | sofa red front large 3 3
es | sofa blue back large 3 2

Table 1: A visual domain

ordinates. To refer to an entity an algorithm searches
through values of the different attributes.

GRE has been dominated by Dale and Reiter’s
(1995) Incremental Algorithm (IA), one version
of which, generalised to deal with non-disjunctive
plural references, is shown in Algorithm 1 (van
Deemter, 2002). A non-disjunctive reference to a
set R is possible just in case all the elements of R
can be distinguished using the same attribute-value
pairs. Such a description is equivalent to the logical
conjunction of the properties in question. This al-
gorithm, 1A, initialises a description D and a set
of distractors C' [1.1-1.2], and traverses an ordered
list of properties, called the preference order (PO)
[1.3], which reflects general or domain-specific pref-

Algorithm 1 14,,,,.(R,U,PO

3: for (A:v) € PO do

4 if RC[(A:v)JA[(A:v)]—C #0 then
5 D—DuU{{(a:v)

6: C—Cnl(a:v)]

7 if [ D] = R then

8: return D

9: end if

10: end if

11: end for

12: return D

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 102-111, Prague, June 2007. (©2007 Association for Computational Linguistics



erences for attributes. For instance, with the PO in
the top row of the Table, the algorithm first consid-
ers values of TYPE, then COLOUR, and so on, adding
a property to D if it is true of the intended referents
R, and has some contrastive value, that is, excludes
some distractors [1.4]. The description and the dis-
tractor set C' are updated accordingly [1.5-1.6], and
the description returned if it is distinguishing [1.7].
Given R = {ey, e2}, this algorithm would return the
following description:

(1) (ORIENTATION : back) A (SIZE : small)

This description is overspecified, because ORI-
ENTATION is not strictly necessary to distinguish
the referents ((SIZE : small) suffices). Moreover,
the description does not include TYPE, though it
has been argued that this is always required, as it
maps to the head noun of an Np (Dale and Re-
iter, 1995). We will adopt this assumption here, for
reasons explained below. Due to its hillclimbing
nature, the 1A avoids combinatorial search, unlike
some predecessors which searched exhaustively for
the briefest possible description of a referent (Dale,
1989), based on a strict interpretation of the Gricean
Maxim of Quantity (Grice, 1975). Given that, un-
der the view proposed by Olson (1970) among oth-
ers, the function of a referential NP is to identify, a
strict Gricean interpretation holds that it should con-
tain no more information than necessary to achieve
this goal.

The Incremental Algorithm constitutes a depar-
ture from this view given that it can overspecify
through its use of a PQO. This has been justified
on psycholinguistic grounds. Speakers overspecify
their descriptions because they begin their formula-
tion of a reference without exhaustively scanning a
domain (Pechmann, 1989; Belke and Meyer, 2002).
They prioritise the basic-level category (TYPE) of an
object, and salient, absolute properties like COLOUR
(Pechmann, 1989; Eikmeyer and Ahlsen, 1996), as
well as locative properties in the vertical dimen-
sion (Arts, 2004). Relative attributes like SIZE
are avoided unless absolutely required for identi-
fication (Belke and Meyer, 2002). This evidence
suggests that speakers conceptualise referents as
gestalts (Pechmann, 1989) whose core is their basic-
level TYPE (Murphy, 2002) and some other salient
attributes like COLOUR. For instance, according to
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Schriefers and Pechmann (1988), an NP such as the
large black triangle reflects a conceptualisation of
the referent as a black triangle, of which the SIZE
property is predicated. Thus, the TYPE+COLOUR
combination is not mentally represented as two sep-
arable dimensions.

In what follows, we will sometimes refer to this prin-
ciple as the Conceptual Gestalts Principle. Note that
the TA does not fully mirror these human tendencies,
since it only includes preferred attributes in a de-
scription if they remove some distractors given the
current state of the algorithm, whereas psycholin-
guistic research suggests that people include them
irrespective of contrastiveness (but cf. van der Sluis
and Krahmer (2005)).

More recent research on plural GRE has de-
emphasised these issues, especially in case of dis-
Jjunctive plural reference. Disjunction is required
whenever elements of a set of referents R do not
have identical distinguishing properties. For exam-
ple, {e1,e3} can be distinguished by the following
Conjunctive Normal Form (CNF) description':

(2) (TYPE : desk) A ((COLOUR : red) VV (COLOUR : blue)) A
({ORIENTATION : right) VV (ORIENTATION : back))

Such a description would be returned by a gen-
eralised version of Algorithm 1 proposed by van
Deemter (2002). This generalisation, 1Apy (SO
called because it handles all Boolean operators, such
as negation and disjunction), first tries to find a non-
disjunctive description using Algorithm 1. Failing
this, it searches through disjunctions of properties
of increasing length, conjoining them to the descrip-
tion. This procedure has three consequences:

1. Efficiency: Searching through disjunctive
combinations results in a combinatorial explo-
sion (van Deemter, 2002).

2. Gestalts and content: The notion of a ‘pre-
ferred attribute’ is obscured, since it is dif-
ficult to apply the same reasoning that moti-
vated the PO in the IA to combinations like
(COLOUR V SIZE).

"Note that logical disjunction is usually rendered as linguis-

tic coordination using and. Thus, the table and the desk is the
union of things which are desks or tables.



3. Form: Descriptions can become logically very
complex (Gardent, 2002; Horacek, 2004).

Proposals to deal with (3) include Gardent’s
(2002) non-incremental, constraint-based algorithm
to generate the briefest available description of a
set, an approach extended in Gardent et al. (2004).
An alternative, by Horacek (2004), combines best-
first search with optimisation to reduce logical com-
plexity. Neither approach benefits from empiri-
cal grounding, and both leave open the question of
whether previous psycholinguistic research on sin-
gular reference is applicable to plurals.

This paper reports a corpus-based analysis of plu-
ral descriptions elicited in well-defined domains, of
which Table 1 is an example. This study falls within
arecent trend in which empirical issues in GRE have
begun to be tackled (Gupta and Stent, 2005; Jordan
and Walker, 2005; Viethen and Dale, 2006). We then
propose an efficient algorithm for the generation of
references to arbitrary sets, which combines corpus-
derived heuristics and a partitioning-based proce-
dure, comparing this to 1Ap,;. Unlike van Deemter
(2002), we only focus on disjunction, leaving nega-
tion aside. Our starting point is the assumption that
plurals, like singulars, evince preferences for certain
attributes as predicted by the Conceptual Gestalts
Principle. Based on previous work in Gestalt per-
ception (Wertheimer, 1938; Rock, 1983), we pro-
pose an extension of this to sets, whereby plural de-
scriptions are preferred if (a) they maximise the sim-
ilarity of their referents, using the same attributes to
describe them as far as possible; (b) prioritise salient
(‘preferred’) attributes which are central to the con-
ceptual representation of an object. We address (3)
above by investigating the logical form of plurals in
the corpus. One determinant of logical form is the
basic-level category of objects. For example, to re-
fer to {e1, e2} in the Table, an author has at least the
following options:

3)

(a) the small desk and sofa

(b) the small red desk and the small blue sofa
(c) the small desk and the small blue sofa

(d) the small objects

These descriptions exemplify three possible sources
of variation:

Disjunctive/Non-disjunctive: The last description,
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(3d), is non-disjunctive (i.e. it is logically a conjunc-
tion of properties). This, however, is only achiev-
able through the use of a non-basic level value for
the TYPE of the entities (objects). Using the basic-
level would require the disjunction ((TYPE : desk) V
(TYPE : sofa)), which is the case in (3a—c). Given
that basic-level categories are preferred on indepen-
dent grounds (Rosch et al., 1976), we would expect
examples like (3d) to be relatively infrequent.

Aggregation: If a description is disjunctive, it may
be aggregated, with properties common to all ob-
jects realised as wide-scope modifiers. For instance,
in (3a), small modifies desk and sofa. By contrast,
(3b) is non-aggregated: small occurs twice (modi-
fying each coordinate in the NP). Non-aggregated,
disjunctive descriptions are logically equivalent to a
partition of a set. For instance, (3¢c) partitions the
set R = {ey, ea} into {{e1}, {e2}}, describing each
element separately. Descriptions like (3b) are more
overspecified than their aggregated counterparts due
to the repetition of information.

Paralellism/Similarity: Non-aggregated, disjunc-
tive descriptions (partitions) may exhibit semantic
parallelism: In (3b), elements of the partition are
described using exactly the same attributes (that is,
TYPE, COLOUR, and SIZE). This is not the case in
(3c), which does represent a partition but is non-
parallel. Parallel structures maximise the similarity
of elements of a partition, using the same attributes
to describe both. The likelihood of propagation of an
attribute across disjuncts is probably dependent on
its degree of salience or preference (e.g. COLOUR is
expected to be more likely to be found in a parallel
structure than SIZE).

2 The data

The data for our study is a subset of the TUNA Cor-
pus (Gatt et al., 2007), consisting of 900 references
to furniture and household items, collected via a
controlled experiment involving 45 participants. In
addition to their TYPE, objects in the domains have
COLOUR, ORIENTATION and SIZE (see Table 1). For
each subset of these three attributes, there was an
equal number of domains in which the minimally
distinguishing description (MD) consisted of values
of that subset. For example, Table 1 represents a do-
main in which the intended referents, {e, e2}, can



<DESCRIPTION num=‘pl’>
<DESCRIPTION num=‘sg’>
<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>
<ATTRIBUTE name=‘colour’ value=‘red’>red</ATTRIBUTE>
<ATTRIBUTE name=‘type’ value=‘desk’>desk</ATTRIBUTE>
</DESCRIPTION>
and
<DESCRIPTION num=‘sg’>
<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>
<ATTRIBUTE name=‘colour’ value=‘blue’>blue</ATTRIBUTE>
<ATTRIBUTE name=‘type’ value=‘sofa’>sofa</ATTRIBUTE>
</DESCRIPTION>
</DESCRIPTION>

((SIZE : small) N\ (COLOUR : red) A (TYPE : desk))

\
((SIZE : small) A (COLOUR : blue) A (TYPE : sofa))

Figure 1: Corpus annotation examples

be minimally distinguished using only s1zZE%. Thus,
overspecified usage of attributes can be identified
in authors’ descriptions. Domain objects were ran-
domly placed in a 3 (row) X 5 (column) grid, rep-
resented by X and Y in Table 1. These are relevant
for a subset of descriptions which contain locative
expressions.

Corpus descriptions are paired with an explicit
XML domain representation, and annotated with se-
mantic markup which makes clear which attributes
a description contains. This markup abstracts away
from differences in lexicalisation, making it an ideal
resource to evaluate content determination algo-
rithms, because it is semantically transparent, in
the sense of this term used by van Deemter et al.
(2006). This markup scheme also enables the com-
positional derivation of a logical form from a natural
language description. For example, the XML repre-
sentation of (3b) is shown in Figure 1, which also
displays the LF derived from it. Each constituent NP
in (3b) is annotated as a set of attributes enclosed by
a DESCRIPTION tag, which is marked up as singular
(sg). The two coordinates are further enclosed in
a plural pEscrIPTION; correspondingly, the LF is a
disjunction of (the LFs of) the two internal descrip-
tions.

Descriptions in the corpus were elicited in 7 do-
mains with one referent, and 13 domains with 2
referents. Plural domains represented levels of a
Value Similarity factor. In 7 Value-Similar (VS)
domains, referents were identifiable using identical
values of the minimally distinguishing attributes. In
the remaining 6 Value-Dissimilar (VDS) domains,
the minimally distinguishing values were different.
Table 1 represents a VS domain, where {ej, e2} can

2TYPE was not included in the calculation of MD.
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VS VDS
+Disj —Disj | +Disj —Disj
+aggr 20.2 15.5 2.4 3.7
—aggr 64.3 - 93.9 -
% overall | 84.5 15.5 96.3 3.7

Table 2: % disjunctive and non-disjunctive plurals

be minimally distinguished using the same value of
SIZE (small).

In terms of our introductory discussion, referents
in Value-Similar conditions could be minimally dis-
tinguished using a conjunction of properties, while
Value-Dissimilar referents required a disjunction
since, if two referents could be minimally distin-
guished by different values v and v’ of an attribute
A, then MD had the form (A : v) V (A : v’). How-
ever, even in the VS condition, referents had differ-
ent basic-level types. Thus, an author faced with a
domain like Table 1 had at least the descriptive op-
tions in (3a—d). If they chose to refer to entities using
basic-level values of TYPE, their description would
be disjunctive (e.g. 3a). A non-disjunctive descrip-
tion would require the use of a superordinate value,
as in (3d).

Our analysis will focus on a stratified random
sample of 180 plural descriptions, referred to as PL1,
generated by taking 4 descriptions from each author
(2 each from VS and VDS conditions). We also use
the singular data (SG; N = 315). The remaining
plural descriptions (PLg; N = 405) are used for
evaluation.

3 The logical form of plurals

Descriptions in PL; were first classified according to
whether they were non-disjunctive (cf. 3d) or dis-
junctive (3a—c). The latter were further classified
into aggregated (3a) and non-aggregated (3b). Ta-
ble 2 displays the percentage of descriptions in each
of the four categories, within each level of Value
Similarity. Disjunctive descriptions were a major-
ity in either condition, and most of these were non-
aggregated. As noted in §1, these descriptions cor-
respond to partitions of the set of referents.

Since referents in VS had identical properties ex-
cept for TYPE values, the most likely reason for the
majority of disjunctives in VS is that people’s de-
scriptions represented a partition of a set of refer-
ents induced by the basic-level category of the ob-



Non-Parallel ~ Parallel | x? (p < .001)
overspec. 24.6 75.4 92.467
underspec. 5.3 94.7 42.217
well-spec. 11 89 26

Table 3: Parallelism: % per description type

jects. This is strengthened by the finding that the
likelihood of a description being disjunctive or non-
disjunctive did not differ as a function of Value Sim-
ilarity (x? = 2.56, p > .1). A x? test on overall fre-
quencies of aggregated versus non-aggregated dis-
junctives showed that the non-aggregated descrip-
tions (‘true’ partitions) were a significant major-
ity (x> = 83.63, p < .001). However, the
greater frequency of aggregation in VS compared
to VDS turned out to be significant (X2 = 15.498,
p < .001). Note that the predominance of non-
aggregated descriptions in VS implies that proper-
ties are repeated in two disjuncts (resp. coordinate
NPs), suggesting that authors are likely to redun-
dantly propagate properties across disjuncts. This
evidence goes against some recent proposals for plu-
ral reference generation which emphasise brevity
(Gardent, 2002).

3.1 Conceptual gestalts and similarity

Allowing for the independent motivation for set par-
titioning based on TYPE values, we suggested in §1
that parallel descriptions such as (3b) may be more
likely than non-parallel ones (3c), since the latter
does not use the same properties to describe the two
referents. Similarity, however, should also interact
with attribute preferences.

For this part of the analysis, we focus exclusively
on the disjunctive descriptions in PL; (N = 150) in
both vS and vDS. The descriptions were categorised
according to whether they had parallel or non-
parallel semantic structure. Evidence for Similarity
interacting with attribute preferences is strongest if
it is found in those cases where an attribute is over-
specified (i.e. used when not required for a distin-
guishing description). In those cases where corpus
descriptions do not contain locative expressions (the
X and/or Y attributes), such an overspecified usage
is straightforwardly identified based on the MD of
a domain. This is less straightforward in the case of
locatives, since the position of objects was randomly
determined in each domain. Therefore, we divided
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Actual Predicted

p(A,SG)  p(A,PPS) | p(A,PPS)
COLOUR .680 .835 .61
SIZE .290 .359 .28
ORIENTATION .280 .269 .26
X-DIMENSION .440 B17 .52
Y-DIMENSION .630 .647 .65

Table 4: Actual and predicted usage probabilities

descriptions into three classes, whereby a descrip-
tion is considered to be:

1. underspecified if it does not include a locative
expression and omits some MD attributes;

2. overspecified if either (a) it does not omit any
MD attributes, but includes locatives and/or
non-required visual attributes; or (b) it omits
some MD attributes, but includes both a locative
expression and other, non-required attributes;

3. well-specified otherwise.

Proportions of Parallel and Non-Parallel descrip-
tions for each of the three classes are are shown
in Table 3. In all three description types, there is
an overwhelming majority of Parallel descriptions,
confirmed by a x? analysis. The difference in pro-
portions of description types did not differ between
vs and VDS (x? < 1, p > .8), suggesting that the
tendency to redundantly repeat attributes, avoiding
aggregation, is independent of whether elements of
a set can be minimally distinguished using identical
values.

Our second prediction was that the likelihood
with which an attribute is used in a parallel structure
is a function of its overall ‘preference’. Thus, we
expect attributes such as COLOUR to feature more
than once (perhaps redundantly) in a parallel de-
scription to a greater extent than SIZE. To test this,
we used the SG sample, estimating the overall prob-
ability of occurrence of a given attribute in a singu-
lar description (denoted p(A, SG)), and using this in
a non-linear regression model to predict the likeli-
hood of usage of an attribute in a plural partitioned
description with parallel semantic structure (denoted
p(A, PPS)). The data was fitted to a regression equa-
tion of the form p(A, PPS) = k x p(A, SG)®. The re-
sulting equation, shown in (4), had a near-perfect fit



to the data (R? = .910)°. This is confirmed by com-
paring actual probability of occurrence in the second
column of Table 4, to the predicted probabilities in
the third column, which are estimated from singular
probabilities using (4).

“4)

Note that the probabilities in the Table con-
firm previous psycholinguistic findings. To the ex-
tent that probability of occurrence reflects salience
and/or conceptual importance, an order over the
three attributes COLOUR, SIZE and ORIENTATION
can be deduced (C>>0>>5), which is compatible
with the findings of Pechmann (1989), Belke and
Meyer (2002) and others. The locative attributes
are also ordered (Y>>X), confirming the findings
of Arts (2004) that vertical location is preferred. Or-
derings deducible from the SG data in turn are ex-
cellent predictors of the likelihood of ‘propagating’
an attribute across disjuncts in a plural description,
something which is likely even if an attribute is re-
dundant, modulo the centrality or salience of the at-
tribute in the mental gestalt corresponding to the set.
Together with the earlier findings on logical form,
the data evinces a dual strategy whereby (a) sets
are partitioned based on basic-level conceptual cat-
egory; (b) elements of the partitions are described
using the same attributes if they are easily perceived
and conceptualised. Thus, of the descriptions in (3)
above, it is (3b) that is the norm among authors.

p(A,PPS) = .713 p(A, sG) 12

4 Content determination by partitioning

In this section we describe 1A, a partitioning-
based content determination algorithm. Though pre-
sented as a version of the 1A, the basic strategy is
generalisable beyond it. For our purposes, the as-
sumption of a preference order will be maintained.
IApqrt 18 distinguished from the original 1A and
IApoo (cf. §1) in two respects. First, it induces par-
titions opportunistically based on KB information,
and this is is reflected in the way descriptions are
represented. Second,, the criteria whereby a prop-
erty is added to a description include a consideration
of the overall salience or preference of an attribute,
and its contribution to the conceptual cohesiveness

3A similar analysis using linear regression gave essentially
the same results.
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of the description. Throughout the following discus-
sion, we maintain a running example from Table 1,
in which R = {ej, e2,e5}.

4.1 Partitioned descriptions

1Apqrt generates a partitioned description (D) of
a set R, corresponding to a formula in Disjunctive
Normal Form. D, i8 a set of Description Frag-
ments (DFs). A DF is a triple (Rpg, Tpr, Mpg), where
Rpe C R, Tpr is a value of TYPE, and Mg is a pos-
sibly empty set of other properties. DFs refer to dis-
joint subsets of K. As the representation suggests,
TYPE is given a special status. IA,q¢ starts by se-
lecting the basic-level values of TYPE, partitioning
R and creating a DF for each element of the partition
on this basis. In our example, the selection of TYPE
results in two DFs, with My initialised to empty:

®)

DF1 ({e1,es}, (TYPE : desk), ()
DFy ({e2}, (TYPE : sofa), 0)

Although neither DF is distinguishing, Ry indicates
which referents a fragment is intended to identify.
In this way, the algorithm incorporates a ‘divide-
and-conquer’ strategy, splitting up the referential in-
tention into ‘sub-intentions’ to refer to elements of
a partition. Following the initial step of selecting
TYPE, the algorithm considers other properties in
PO. Suppose (COLOUR : blue) is considered first.
This property is true of es and e5. Since DF3 refers to
es, the new property can be added to Mp,. Since es
is not the sole referent of DFy, the property induces
a further partitioning of this fragment, resulting in a
new DF. This is identical to DF; except that it refers
only to e5 and contains (COLOUR : blue). DF it-
self now refers only to e;. Once (COLOUR : red) is
considered, it is added to the latter, yielding (6).

(6) DF1 ({e1}, (TYPE : desk), {(COLOUR : red)} )
DFy ({e2}, (TYPE : sofa), {(COLOUR : blue)} )
{

DFs ({es}, (TYPE : desk), {(COLOUR : blue)} )

The procedure update Description, which cre-
ates and updates DFs, is formalised in Algorithm 2.
When some property (A : v) is found to be ‘use-
ful’ in relation to R (in a sense to be made precise),
this function is called with two arguments: (A : v)
itself, and R" = [ (A : v) | N R, the referents of
which (A : v) is true. The procedure iterates through



Algorithm 2 update Description({(a : v), R')

1: for (Rpr, Tor, Mor) € Dpart do

2: if R =( then

3: return

4: else if Ry C R’ then

5: MDF<—MDFU{<A:V>}

6: R — R — Ru:

7: else if Rpr N R’ # () then

8: Rypew «— Ror N R’

9: DFpew — <Rnew7TDF7MDFU{<A : V>}>
10: Dp(m‘t — Dpart U {DFnew}
11: RDF — RDF - Rnew
12: R/ — R/ - Rnew
13: end if
14: end for
15: if A = TYPE then
16: Dpart — me"t U {<R/7 <A : V>7 ®>}
17: else
18: Dypart < Dpart U {(R', L, {{a: v)})}
19: end if

the DFs in Dy, adding the property to any DF such
that Rpr N R’ # (), until R’ is empty and all referents
in it have been accounted for [2.2]. As indicated in
the informal discussion, there are two cases to con-
sider for each DF:

1. Rpr C R’ [2.4]. This corresponds to our exam-
ple involving (COLOUR : blue) and DF;. The
property is simply added to My [2.5] and R’
is updated by removing the elements thus ac-
counted for [2.6].

2. Suppose Rpr € R’. If Rpr N R’ is empty, then
(A :v) is not useful. Suppose on the other hand
that Rpr N R’ # () [2.7]. This occurred with
(COLOUR : red) in relation to DF;. The proce-
dure initialises Rjcq, a set holding those refer-
ents in Rpr which are also in R’ [2.8]. A new
DF (D Fjey) is created, which is a copy of the
old DF, except that (a) it contains the new prop-
erty; and (b) its intended referents are Rjeq
[2.9]. The new DF is included in the description
[2.10], while the old DF is altered by removing
Ryew from Rpe [2.11]. This ensures that DFs
denote disjoint subsets of .

Two special cases arise when D¢ is empty, or
there are some elements of R’ for which no DF ex-
ists. Both cases result in the construction of a new
DF. An example of the former case is the initial state
of the algorithm, when TYPE is added. As in exam-
ple (5), the TYPE results in a new DF [2.16]. If a
property is not a TYPE, the new DF has 7' set to null
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(L) and the property is included in M [2.18]*. Note
that this procedure easily generalises to the singular
case, where D)4 would only contain one DF.

4.2 Property selection criteria

IApqr¢’s content determination strategy maximises
the similarity of a set by generating semantically
parallel structures. Though contrastiveness plays a
role in property selection, the ‘preference’ or con-
ceptual salience of an attribute is also considered in
the decision to propagate it across DFs.

Candidate properties for addition need only be
true of at least one element of R. Because of the
partitioning strategy, properties are not equally con-
strastive for all referents. For instance, in (5), eo
needs to be distinguished from the other sofas in Ta-
ble 1, while {ej, e5} need to be distinguished from
the desks. Therefore, distractors are held in an as-
sociative array C, such that for all » € R, C|r]| is
the set of distractors for that referent at a given stage
in the procedure. Contrastiveness is defined via the
following Boolean function:

contrastive((A : v), R) <

IreR: Clrj=[(a:v)]#0 (7

We turn next to salience and similarity. Let
A(Dpqrt) be the set of attributes included in Dy,q+.
A property is salient with respect to Dy,q,¢ if it satis-
fies the following:

salient((A : v), Dpart) <
A € A(Dpart) A (713 p(A,8G6) 12 > 0.5) (8)

that is, the attribute is already included in the de-
scription, and the predicted probability of its be-
ing propagated in more than one fragment of a de-
scription is greater than chance. A potential prob-
lem arises here. Consider the description in (5)
once more. At this stage, 1A,4+ begins to consider
COLOUR. The value red is true of e;, but non-
contrastive (all the desks which are not in R are red).
If this is the first value of COLOUR considered, (8)
returns false because the attribute has not been
used in any part of the description. On later con-
sidering (COLOUR : blue), the algorithm adds it to

*This only occurs if the KB is incomplete, that is, there some

entities have no TYPE, so that R is not fully covered by the
intended referents of the DFs when TYPE is initially added.



Dyart, since it is contrastive for {e, e5}, but will
have failed to propagate COLOUR across fragments.
As aresult, 1A,,¢ considers values of an attribute in
order of discriminatory power (Dale, 1989), defined
in the present context as follows:

LA INR +[[{a:v]- U= R)
IRCERVN]

Discriminatory power depends on the number of ref-
erents a property includes in its extension, and the
number of distractors (U — R) it removes. By priori-
tising discriminatory values, the algorithm first con-
siders and adds (COLOUR : blue), and subsequently
will include red because (8) returns t rue.

To continue with the example, at the stage repre-
sented by (6), only e5 has been distinguished. ORI-
ENTATION, the next attribute considered, is not con-
trastive for any referent. On considering S1ZE, small
is found to be contrastive for e; and e5, and added to
DF; and DFy. However, SIZE is not added to DFg, in
spite of being present in two other fragments. This
is because the probability function p(SIZE, PPS) re-
turns a value below 0.5 (see Table 4, reflecting the
relatively low conceptual salience of this attribute.
The final description is the blue desk, the small red
desk and the small blue sofa. This example illus-
trates the limits set on semantic parallelism and sim-
ilarity: only attributes which are salient enough are
redundantly propagated across DFs.

®)

4.3 Complexity

An estimate of the complexity of 1A, must ac-
count for the way properties are selected (§4.2) and
the way descriptions are updated (Algorithm 2).
Property selection involves checking properties
for contrastive value and salience, and updating the
ordering of values of each attribute based on dis-
criminatory power (9). Clearly, the number of times
this is carried out is bounded by the number of prop-
erties in the KB, which we denote n,. Every time a
property is selected, the discriminatory power of val-
ues changes (since the number of remaining distrac-
tors changes). Now, in the worst case, all n,, proper-
ties are selected by the algorithm . Each time, the
algorithm must compare the remaining properties
5 Only unique properties need to be considered, as each prop-

erty is selected at most once, though it can be included in more
than one DF.
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Mean Mode PRP

Apoo; +LoC | 7.716 7 7
o0 — LocC | 8.335 7 3.5

A + LoC | 4.345 4 6.8
part | _y0c | 1.93 0 44.7

Table 5: Edit distance scores

pairwise for discriminatory power, a quadratic op-
eration with complexity O(n2). With respect to the
procedure update Description, we need to consider
the number of iterations in the for loop starting at
line [2.1]. This is bounded by n,, = | R| (there can be
no more DFs than there are referents). Once again,
if at most n,, properties are selected, then the algo-
rithm makes at most n, iterations n, times, yield-
ing complexity O(n,n, ). Overall, then, 1A, has a
worst-case runtime complexity O(ngnr).

5 Evaluation

IApqrt Was compared to van Deemter’s 1Apo0 (§1)
against human output in the evaluation sub-corpus
PLy (IV 405). This was considered an ade-
quate comparison, since 1A, shares with the cur-
rent framework a genetic relationship with the 1A.
Other approaches, such as Gardent’s (2002) brevity-
oriented algorithm, would perform poorly on our
data. As shown in §3, overspecification is extremely
common in plural descriptions, suggesting that such
a strategy is on the wrong track (but see §6).

IApart and 1Ay, were each run over the domain
representation paired with each corpus description.
The output logical form was compared to the LF
compiled from the XML representation of an au-
thor’s description (cf. Figure 1). LFs were repre-
sented as and-or trees, and compared using the tree
edit distance algorithm of Shasha and Zhang (1990).
On this measure, a value of 0 indicates identity.

Because only a subset of descriptions con-
tain locative expressions, PLy was divided into
a —+LoC dataset (NN 148) and a —LOC
dataset (IV 257). The preference orders for
both algorithms were (C>>0>>S) for —LOC and
(Y>>C>>X>>S$>>0) for +LOC. These are sug-
gested by the attribute probabilities in Table 4. Ta-
ble 5 displays the mean Edit score obtained by
each algorithm on the two datasets, the modal (most
frequent) value, and the perfect recall percentage
(PRP), the proportion of Edit scores of 0, indicating



perfect agreement with an author.

As the means and modes indicate, 1A+ outper-
formed IAp,, On both datasets, with a consistently
higher PRP (this coincides with the modal score in
the case of —LOC). Pairwise {—tests showed that
the trends were significant in both +LOC (¢(147) =
9.28, p < .001) and —LOC (¢(256) = 10.039,
p < .001).

TApoo; has a higher (worse) mean on —LOC, but a
better PRP than on +LOC. This apparent discrepancy
is partly due to variance in the edit distance scores.
For instance, because the Y attribute was highest in
the preference order for +LOC, there were occasions
when both referents could be identified using the
same value of Y, which was therefore included by
[Apoor at first pass, before considering disjunctions.
Since Y was highly preferred by authors (see Table
4), there was higher agreement on these cases, com-
pared to those where the values of Y were different
for the two referents. In the latter case, Y was only
when disjunctions were considered, if at all. The
worse performance of 1Ay,q-+ on +LOC is due to a
larger choice of attributes, also resulting in greater
variance, and occasionally incurring higher Edit cost
when the algorithm overspecified more than a hu-
man author. This is a potential shortcoming of the
partitioning strategy outlined here, when it is applied
to more complex domains.

Some example outputs are given below, in a do-
main where COLOUR sufficed to distinguish the ref-
erents, which had different values of this attribute
(i.e. an instance of the VDS condition). The formula
returned by 1A,4¢ (10a) is identical to the (LF of)
the human-authored description (with Edit score of
0). The output of 1Ay, is shown in (10b).

(10) (a (ﬂm A green) \Y (sofa A blue)

‘the green fan and the big sofa’

(b) (sofa \/fan) A small N front \ (blue \Y green)
‘the small, blue and green sofa and fan’

As a result of 1A;,,;’s requiring a property or dis-
junction to be true of the the entire set of refer-
ents, COLOUR is not included until disjunctions are
considered, while values of SIZE and ORIENTATION
are included at first pass. By contrast, 1Ay, in-
cludes COLOUR before any other attribute apart from
TYPE. Though overspecification is common in our
data, TAp,,; overspecifies with the ‘wrong’ attributes
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(those which are relatively dispreferred). The ratio-
nale in 1A+ is to overspecify only if a property
will enhance referent similarity, and is sufficiently
salient. As for logical form, the Conjunctive Nor-
mal Form output of 1A;,,; increases the Edit score,
given the larger number of logical operators in (10b)
compared to (10a).

6 Summary and conclusions

This paper presented a study of plural reference,
showing that people (a) partition sets based on the
basic level TYPE or category of their elements and
(b) redundantly propagate attributes across disjuncts
in a description, modulo their salience. Our algo-
rithm partitions a set opportunistically, and incor-
porates a corpus-derived heuristic to estimate the
salience of a property. Evaluation results showed
that these principles are on the right track, with sig-
nificantly better performance over a previous model
(van Deemter, 2002). The partitioning strategy is
related to a proposal by van Deemter and Krah-
mer (2007), which performs exhaustive search for
a partition of a set whose elements can be described
non-disjunctively. Unlike the present approach, this
algorithm is non-incremental and computationally
costly.

1A pqr¢ initially performs partitioning based on the
basic-level TYPE of objects, in line with the evi-
dence. However, later partitions can be induced by
other properties, possible yielding partitions even
with same-TYPE referents (e.g. the blue chair and
the red chair). Aggregation (the blue and red chairs)
may be desirable in such cases, but limits on syntac-
tic complexity of NPs are bound to play a role (Ho-
racek, 2004). Another possible limitation of 1A,
is that, despite strong evidence for overspecifica-
tion, complex domains could yield very lengthy out-
puts. Strategies to avoid them include the utilisation
of other boolean operators like negation (the desks
which are not red) (Horacek, 2004). These issues
are open to future empirical research.
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Abstract

This paper compares a deep and a shallow
processing approach to the problem of clas-
sifying a sentence as grammatically well-
formed or ill-formed. The deep processing
approach uses the XLE LFG parser and En-
glish grammar: two versions are presented,
one which uses the XLE directly to perform
the classification, and another one which
uses a decision tree trained on features con-
sisting of the XLE's output statistics. The
shallow processing approach predicts gram-
maticality based on n-gram frequency statis-
tics: we present two versions, one which
uses frequency thresholds and one which
uses a decision tree trained on the frequen-
cies of the rarest n-grams in the input sen-
tence. We find that the use of a decision tree
improves on the basic approach only for the
deep parser-based approach. We also show
that combining both the shallow and deep
decision tree features is effective. Our eval-
uation is carried out using a large test set of
grammatical and ungrammatical sentences.
The ungrammatical test set is generated au-
tomatically by inserting grammatical errors
into well-formed BNC sentences.

Introduction

grammaticality judgements has uses in the areas of
computer-assisted language learning and grammar
checking. Comparative evaluation of existing error
detection approaches has been hampered by a lack
of large and commonly used evaluation error cor-
pora. We attempt to overcome this by automatically
creating a large error corpus, containing four dif-
ferent types of frequently occurring grammatical er-
rors. We use this corpus to evaluate the performance
of two approaches to the task of automatic error de-
tection. One approach uses low-level detection tech-
nigues based on POS n-grams. The other approach
is a novel parser-based method which employs deep
linguistic processing to discriminate grammatical in-
put from ungrammatical. For both approaches, we
implement a basic solution, and then attempt to im-
prove upon this solution using a decision tree clas-
sifier. We show that combining both methods im-
proves upon the individual methods.

N-gram-based approaches to the problem of error
detection have been proposed and implemented in
various forms by Atwell(1987), Bigert and Knutsson
(2002), and Chodorow and Leacock (2000) amongst
others. Existing approaches are hard to compare
since they are evaluated on different test sets which
vary in size and error density. Furthermore, most of
these approaches concentrate on one type of gram-
matical error only, namely, context-sensitive or real-
word spelling errors. We implement a vanilla n-
gram-based approach which is tested on a very large

This paper is concerned with the task of predicttest set containing four different types of error.
ing whether a sentence contains a grammatical - The idea behind the parser-based approach to er-

*Also affiliated to IBM CAS, Dublin.
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ror. An accurate method for carrying out automati¢, qetection is to use a broad-coverage hand-crafted

precision grammar to detect ungrammatical sen-
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tences. This approach exploits the fact that a preand compared. Section 5 provides a summary and
cision grammar is designed, in the traditional gensuggestions for future work.
erative grammar sense (Chomsky, 1957), to dis-
tinguish grammatical sentences from ungrammat? Background
cal sentences. This is in contrast to treebank-based -
grammars which tend to massively overgenerate a (il1 Precision Grammars
do not generally aim to discriminate between thé precision grammar is a formal grammar designed
two. In order for our approach to work, the coverag#o distinguish ungrammatical from grammatical sen-
of the precision grammars must be broad enough tences. This is in contrast to large treebank-induced
parse a large corpus of grammatical sentences, agtammars which often accept ungrammatical input
for this reason, we choose the XLE (Maxwell andCharniak, 1996). While high coverage is required,
Kaplan, 1996), an efficient and robust parsing syst is difficult to increase coverage without also in-
tem for Lexical Functional Grammar (LFG) (Kaplancreasing the amount of ungrammatical sentences
and Bresnan, 1982) and the ParGram English grartihat are accepted as grammatical by the grammar.
mar (Butt et al., 2002) for our experiments. This sysMost publications in grammar-based automatic error
tem employs robustness techniques, some borrowdgtection focus on locating and categorising errors
from Optimality Theory (OT) (Prince and Smolen-and giving feedback. Existing grammars are re-used
sky, 1993), to parse extra-grammatical input (Frang/andeventer Faltin, 2003), or grammars of limited
etal., 1998), but crucially still distinguishes betweersize are developed from scratch (Reuer, 2003).
optimal and suboptimal solutions. The ParGram English LFG is a hand-crafted
The evaluation corpus is a subset of an unbroad-coverage grammar developed over several
grammatical version of the British National Cor-years with the XLE platform (Butt et al., 2002). The
pus (BNC), a 100 million word balanced corpus ofXLE parser uses OT to resolve ambiguities (Prince
British English (Burnard, 2000). This corpus is ob-and Smolensky, 1993). Grammar constraints re-
tained by automatically inserting grammatical errorsulting in rare constructions can be marked as “dis-
into the original BNC sentences based on an analygieferred” and constraints resulting in common un-

of a manually compiled “real” error corpus. grammatical constructions can be marked as “un-
This paper makes the following contributions togrammatical”. The use of constraint ordering and
the task of automatic error detection: marking increases the robustness of the grammar,

while maintaining the grammatical / ungrammati-
1. A novel deep processing XLE-based approacleal distinction (Frank et al., 1998). The English

2. An effective and novel application of decisionResource Grammar (ERG) is a precision Head-

tree machine learning to both shallow and deepven Phrase Structure Grammar (HPSG) of En-
approaches glish (Copestake and Flickinger, 2000; Pollard and

— Sag, 1994). Its coverage is not as broad as the XLE
3. A noyel combination of deep and shallow pro-English grammar. Baldwin et al. (2004) propose a
cessing method to identify gaps in the grammar. Blunsom
4. An evaluation of an n-gram-based approach ognd Baldwin (2006) report ongoing development.
a wider variety of errors than has previously There has been previous work using the ERG and
been carried out the XLE grammars in the area of computer-assisted
5. A large evaluation error corpus language learning. Bender et al. (2004) use a ver-
sion of the ERG containing mal-rules to parse ill-
The paper is organised as follows: in Section Zormed sentences from the SST corpus of Japanese
we describe previous approaches to the problem &farner English (Emi et al., 2004). They then use
error detection; in Section 3, a description of théhe semantic representations of the ill-formed input
error corpus used in our evaluation experiments i® generate well-formed corrections. Khader et al.
presented, and in Section 4, the two approaches (8004) study whether the ParGram English LFG can
error detection are presented, evaluated, combinbé used for computer-assisted language learning by
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adding additional OT marks for ungrammatical conformation measure in addition to raw frequency of n-
structions observed in a learner corpus. Howevegrams. Apart from this, their ALEK system employs
the evaluation is preliminary, on only 50 test items.other extensions to the basic approach, for exam-
ple frequency counts from both generic and word-
2.2 N-gram Methods specific corpora are used in the measures. It is not
Most shallow approaches to grammar error detectiaeported how much each of these contribute to the
originate from the area of real-word spelling errooverall performance.
correction. A real-word spelling error is a spelling Rather than trying to implement all of the pre-
or typing error which results in a token which is anvious n-gram approaches, we implement the basic
other valid word of the language in question. approach which uses rare n-grams to predict gram-
The (to our knowledge) oldest work in this areamaticality. This property is shared by all previous
is that of Atwell (1987) who uses a POS tagger tghallow approaches. We also test our approach on a
flag POS bigrams that are unlikely according to avider class of grammatical errors.
reference corpus. While he speculates that the bi-
gram frequency should be compared to how ofteB Ungrammatical Data
the same POS bigram is involved in errorsinan error _ _ _ B
corpus, the proposed system uses the raw frequen'E_yth'S section, we dlsc_:uss the notion of an artifi-
with an empirically established threshold to decid&@l €rror corpus (Section 3.1), define the type of
whether a bigram indicates an error. In the sam@ngrammatical language we are dealing with (Sec-
paper, a completely different approach is presentdtpn 3-2), and describe our procedure for creating a
that uses the same POS tagger to consider Spe”igge_artlflmal error corpus derived from the BNC
variants that have a different POS. In the exampl€>€ction 3.3).
sentence am veryhit the POS of the spelling vari-
anthot/JJis added to the list NN-VB-VBD-VBN of
possible POS tags d¢iit. If the POS tagger choosesIn order to meaningfully evaluate a shallow ver-
hit/JJ, the word is flagged and the correctibatis sus deep approach to automatic error detection, a
proposed to the user. Unlike most n-gram-based afarge test set of ungrammatical sentences is needed.
proaches, Atwell's work aims to detect grammar erA corpus of ungrammatical sentences can take the
rors in general and not just real-word spelling errordorm of a learner corpus (Granger, 1993; Emi et al.,
However, a complete evaluation is missing. 2004), i.e. a corpus of sentences produced by lan-
The idea of disambiguating between the elemenguage learners, or it can take the form of a more gen-
of confusion sets is related to word sense disaneral error corpus comprising sentences which are not
biguation. Golding (1995) builds a classifier basediecessarily produced in a language-learning context
on a rich set of context features. Mays et al. (1991gnd which contain competence and performance er-
apply the noisy channel model to the disambiguatiorors produced by native and non-native speakers of
problem. For each candidate correcti6hof the the language (Becker et al., 1999; Foster and Vogel,
input S the probabilityP(S")P(S|S’) is calculated 2004; Foster, 2005). For both types of error corpus,
and the most likely correction selected. This method is not enough to collect a large set of sentences
is re-evaluated by Wilcox-O'Hearn et al. (2006) orwhich are likely to contain an error - it is also neces-
WSJ data with artificial real-word spelling errors. sary to examine each sentence in order to determine
Bigert and Knutsson (2002) extend upon a basighether an error has actually occurred, and, if it has,
n-gram approach by attempting to match n-grams &6 note the nature of the error. Thus, like the cre-
low frequency with similar n-grams in order to re-ation of a treebank, the creation of a corpus of un-
duce overflagging. Furthermore, n-grams crossingrammatical sentences requires time and linguistic
clause boundaries are not flagged and the similariknowledge, and is by no means a trivial task.
measure is adapted in the case of phrase boundarieg\ corpus of ungrammatical sentences which is
that usually result in low frequency n-grams. large enough to be useful can be created auto-
Chodorow and Leacock (2000) use a mutual inmatically by inserting, deleting or replacing words

3.1 An Artificial Error Corpus
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in grammatical sentences. These transformations Was thatin the summer? Was that in the sum-
should be linguistically realistic and should, there-  merin?

fore, be based on an analysis of naturally produceds  yeal-word spelling errors:

grammatical errors. Automatically generated error  ghe couldnot comprehend.> She couldno
corpora have been used before in natural language comprehend.

processing. Bigert (2004) and Wilcox-O’Hearn et
al. (2006), for example, automatically introduce
spelling errors into texts. Here, we generate a large
error corpus by automatically inserting four different
kinds of grammatical errors into BNC sentences. A similar classification was adopted by Nicholls
(1999), having analysed the errors in a learner cor-
pus. Our research is currently limited to the four er-
Following Foster (2005), we define a sentence to ber types given above, i. e. missing word errors, ex-
ungrammatical if all the words in the sentence arga word errors, real-word spelling errors and agree-

well-formed words of the language in question, buinents errors. However, it is possible for it to be ex-
the sentence contains one or more error. This efended to handle a wider class of errors.

ror can take the form of a performance slip which
can occur due to carelessness or tiredness, or a coga3 Automatic Error Creation

petence error which occurs due to a lack of knowlThe error creation procedure takes as input a part-
edge of a particular construction. This definition inof-speech-tagged corpus of sentences which are as-
cludes real-word spelling errors and excludes nosymed to be well-formed, and outputs a corpus of
word spelling errors. It also excludes the abbrevigngrammatical sentences. The automatically intro-
ated informal language used in electronic communyyced errors take the form of the four most com-
cation. USing the above definition as a guideline, fhon error types found in the manually created cor-
20,000 word corpus of ungrammatical English senpys; i. e. missing word errors, extra word errors, real-
tences was collected from a variety of written textsyord spelling errors and agreement errors. For each
including newspapers, academic papers, emails agéntence in the original tagged corpus, an attempt is
website forums (Foster and Vogel, 2004; Fostemade to automatically produce four ungrammatical
2005). The errors in the corpus were carefully anakentences, one for each of the four error types. Thus,

ysed and classified in terms of how they might behe output of the error creation procedure is, in fact,
corrected using the three word-level correction opfour error corpora.

erators: insert, delete and substitute. The following o
frequency ordering of the three word-level correcs-3-1 Missing Word Errors

4. agreement errors:
She steered Melissa round a corner- She
steered Melissa round @orners.

3.2 Commonly Produced Grammatical Errors

tion operators was found: In the manually created error corpus of Foster
substitute(48%) > insert (24%) > delete(17%) > (2005), missing word errors are classified based on
combination(11%) the part-of-speech (POS) of the missing word. 98%

Stemberger (1982) reports the same ordering of thed the missing parts-of-speech come from the fol-
substitution, deletion and insertion correction operdowing list (the frequency distribution in the error
ators in a study of native speaker spoken languagerpus is given in brackets):

slips. Among the grammatical errors which can belet (28%)> verb (23%)> prep (21%)> pro (10%)
corrected by substituting one word for another, the- noun (7%)> “to” (7%) > conj (2%)

most common errors are real-word spelling errorg/e use this information when introducing missing
and agreement errors. In fact, 72% of all errors fallvord errors into the BNC sentences. For each sen-

into one of the following four classes: tence, all words with the above POS tags are noted.
o One of these is selected and deleted. The above

1. missing word errors: frequency ordering is respected so that, for exam-
Whatare the subjects?- What the subjects?  pje missing determiner errors are produced more of-

2. extra word errors: ten than missing pronoun errors. No ungrammatical
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sentence is produced if the original sentence comumber, e.g. demonstratives and the indefinite ar-
tains just one word or if the sentence contains nticle. The procedure would be more productive if

words with parts-of-speech in the above list. applied to a morphologically richer language.
3.3.2 Extra Word Errors 3.3.5 Covert Errors

We introduce extra word errors in the following James (1998) uses the tewovert errorto de-
three ways: scribe a genuine language error which results in a

o o sentence which is syntactically well-formed under

1. Random duplication of any token within a seNsqme interpretation different from the intended one.
tence:That's the waywe we learn here. The prominence of covert errors in our automati-
2. Random duplication of any POS within a sencally created error corpus is estimated by manually

tence:Thereit hewas. inspecting 100 sentences of each error type. The per-
3. Random insertion of an arbitrary token into thecentage of grammatical structures that are inadver-
sentenceJoanna drewas a long breadth. tently produced for each error type and an example

of each one are shown below:
Apart from the case of duplicate tokens, the extra

words are selected from a list of tagged words com- ® Agreement Errors, 7%

piled from a random subset of the BNC. Again, our ~ Mary’s staffinclude Jones,Smith and Murphy
procedure for inserting extra words is based on the > Mary’s staffincludes Jones,Smith and Mur-
analysis of extra word errors in the 20,000 word er- ~ phy

ror corpus of Foster (2005). e Real-Word Spelling Errors, 10%

? 2
3.3.3 Real-Word Spelling Errors Andthen? > Andthem

We classify an error as a real-word spelling er- ¢ _Ex;ra:c_Word Efr:ﬁrsf, 5% id diction in d
ror if it can be corrected by replacing the erroneous :‘?anielaz)r;iﬁeofre:riga;gare;;rzrgic{[(i:olr?ﬂ n de-
word with another word with a Levenshtein distance o
of one from the erroneous word, e.the andthey. e Missing Word Errors, 13%

Based on the analysis of the manually created er- She steeredMelissa round a corner> She
ror corpus (Foster, 2005), we compile a list of com-  Stéered round a corner

mon English real-word spelling error word pairs. pa geeyrrence of thesmvert errorscan be re-

For each BNC sentence, the error creation procgyce py fine-tuning the error creation procedure but

dure records all tokens in the sentence which appe@.rey can never be completely eliminated. Indeed,

as one half of one of these word pairs. One tOKefFley should not be eliminated from the test data,

is selected at random and replaced by the other hgff, .5 ;se ideally, an optimal error detection system
of the pair. The list of common real-word spellinggp,q pe sophisticated enough to flag syntactically

error pairs contains such frequently occurring wordgye|| tormed sentences containing covert errors as
asis anda, and the procedure therefore produces aﬂotentially ill-formed?

ill-formed sentence for most input sentences.

3.3.4 Agreement Errors 4 Error Detection Evaluation

We introduce subject-verb and determiner-nouln this section we present the error detection eval-
number agreement errors into the BNC sentencegation experiments. The experimental setup is ex-
We consider both types of agreement error equall§lained in Section 4.1, the results are presented in
likely and introduce the error by replacing a singulafection 4.2 and they are analysed in Section 4.3.
detgrmlner, noun or verp with |t§ plural counterpart, 1, . o amol example of this is given in the XLE User Documen-
or vice versa. For English, subject-verb agreememdtion (ttp:// ww2. parc. cond i sl / gr oups/ nltt/
errors can only be introduced for present tense verbd,e/ doc/ ). The authors remark that an ungrammatical read-

d det : t | |r{_;g of the sentenckets go to the stor@ which Letsis missing
?n eterminer-noun qgreemep errors can only Q apostrophe, is preferable to the grammatical yet implausible
introduced for determiners which are marked foanalysis in whicH_etsis a plural noun.
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4.1 Experimental Setup Measure | Formula

4.1.1 Test Data and Evaluation Procedure precision| tp/(tp + fp)

i . recall tp/(t
The following steps are carried out to produce p/(tp + fn)

- . : _ f-score | 2pr xre/(pr + re)
training and test data for this experiment: accuracy | (ip + tn)/(tp+ tn + fp+ fn)

1. Speech material, poems, captions and list items . N
are removed from the BNC. 4.2 million Sen_F|gUre 1: Evaluat|0n measures: tp = true pOSItlveS,

tences remain. The order of sentences is raf? = false positives, tn = true negatives, fn = false
domised. negatives, pr = precision, re = recall

2. For the purpose of cross-validation, the corpus
is split into 10 parts. are first optimised for accuracy and then the other

3. Each part is passed to the 4 automatic error ifneasures are taken. Therefore, f-scores below the
sertion modules described in Section 3.3, reartificial 2/3 baseline are meaningful.

sulting in 40 additional sets of varying size. 4 1 5 \ethod 1: Precision Grammar

4. The first 60,000 sentences of each of the 50 According to the XLE documentation, a sentence
sets,zl. e. 3 million sentences, are parsed Witl 4 rked with a star (*) if its optimal solution uses
XLE. a constraint marked as ungrammatical. We use this

5. N-gram frequency information is extracted forstar feature, parser exceptions and zero number of

the first 60,000 sentences of each set. An addbarses to classify a sentence as ungrammatical.
tional 20,000 is extracted as held-out data.
4.1.3 Method 2: POS N-grams

6. 10 sets with mixed error types are produced by o
In each cross-validation run, the full data of the

joining a quarter of each respective error set. - _
7 E h ¢ includi ved remaining 9 sets of step 2 of the data generation
- For each error type (including mixe errors)E)see Section 4.1.1) is used as a reference corpus of

_anfli Crf:jssé'(\)/fz‘)"odoa“o” set, th‘f_ 6?’000t9ramma 7.9 % 4,200,000 = 3,800, 000 assumedly grammat-
ical an , ungrammatical sentences aligal sentences. The

. reference corpora and data sets
joined.

are POS tagged with the IMS TreeTagger (Schmidt,
8. Each cross-validation run uses one set out qf994)_ Frequencies of POS n-grams= 2, ...,7)
the 10 as test data (120,000 sentences) and thgs counted in the reference corpora. A test sentence
remaining 9 sets for training (1,080,000 senis flagged as ungrammatical if it contains an n-gram
tences). below a fixed frequency threshold. Method 2 has

The experiment is a standard binary classificatiotr\lNO parametersn and the frequency threshold.

task. The methods classify the sentences of the testt.4 Method 3: Decision Trees on XLE Output
sets as grammatical or ungrammatical. We use the The x| E parser outputs additional statistics for

standard measures of precision, recall, f-score ang-n sentence that we encode in six features:
accuracy (Figure 1). True positives are understood

to be ungrammatical sentences that are identified ase An integer indicating starredness (0 or 1) and
such. The baseline precision and accuracy is 50% various parser exceptions (-1 for time out, -2
as half of the test data is ungrammatical. If 100%  for exceeded memory, etc.)

of the test data is classified as ungrammatical, re- ¢ The number of optimal parsés

call will be 100% and f'SCOf@/3. Recall shows e The number of unoptima| parses

the accuracy we would get if the grammatical half § The duration of parsing

of the test data was removed. Parametrised methods. The number of subtrees

“We use the XLE commangarse-testfilewith parse- e The number of words
literally set to 1 max xle scratch storageet to 1,000 MBtime-
outto 60 seconds, and the XLE English LFG. Skimming is not *The use of preferred versus dispreferred constraints are
switched on and fragments are. used to distinguish optimal parses from unoptimal ones.
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Training data for the decision tree learner is com- | Error type Pr. | Re.| F-Sc.| Acc.
posed o x 60,000 = 540, 000 feature vectors from Agreement | 66.2| 64.6| 65.4| 65.8
grammatical sentences afid 15,000 = 135,000 Real-word 63.5| 57.3| 60.3| 62.2
feature vectors from ungrammatical sentences of | Extra word 64.4| 59.7| 62.0| 63.4
each error type, resulting in equal amounts of gram- | Missing word | 59.2 | 47.8 | 52.9| 57.4
matical and ungrammatical training data. Mixed errors | 63.5| 57.3| 60.3| 62.2

We choose the weka implementation of machine

learning algorithms for the experiments (Witten andable 1: Classification results with XLE starredness,

Frank, 2000). We use a J48 decision tree learnp@arser exceptions and zero parses (Method 1)

with the default model.

Error type Pr. | Re.| F-Sc.| Acc.

4.1.5 Method 4: Decision Trees on N-grams Agreement | 58.6| 51.7| 55.0| 57.6
Method 4 follows the setup of Method 3. How- Real-word 64.0/ 649| 645 64.2
ever, the features are the frequencies of the rarest| Extra word 64.8| 67.3| 66.0| 65.4
n-grams { = 2,...,7) in the sentence. Therefore, Missing word | 57.2 | 48.8| 52.7| 56.1
the feature vector of one sentence contains 6 num-| Mixed errors | 61.5| 58.2| 59.8| 60.8

bers.

4.1.6 Method 5: Decision Trees on Combined
Feature Sets

This method combines the features of Methods 3

Table 2: Classification results with 5-gram and fre-
qguency threshold 4 (Method 2)

The standard deviation of results across cross-
validation runs is below 0.006 on all measures, ex-
cept for Method 4. Therefore we only report average

e|gercentages. The highest observed standard devia-

Table 1 shows the results for Method 1, which us is 00257 Il of Method 4
XLE starredness, parser exceptibasd zero parses tel(r)rr;rlz ' or recall of Method 4 on agreement

to classi rammaticality. Table 2 shows the re-
Vg y For Methods 3, 4 and 5, the decision tree learner

and 4 for training a decision tree.

4.2 Results

sults for Method 2, the basic n-gram approach. Ta-
ble 3 shows the results for Method 3, which classi-

fies based on a decision tree of XLE features. Th%]cf between precision and recall.
results for Method 4, the n-gram-based decision treg3  Analysis

approach, are shown in Table 4. Finally, Table %
shows the results for Method 5 which combines n-
gram and XLE features in decision trees.

In the case of Method 2, we first have to find opti-

for n and the threshold are reasonable, an exhaust
search is feasible. We considered= 2,...,7 and
frequency thresholds below 20,000. Separate held-

.optimises accuracy and, in doing so, chooses a trade-

oth Method 1 (Table 1) and Method 2 (Table 2)
achieve above baseline accuracy for all error types.
However, Method 1, which uses the XLE starred
feature, parser exceptions and zero parses to de-
i?/ermine whether or not a sentence is grammatical,
sﬁghtly outperforms Method 2, which uses the fre-

out data (400,000 sentences) is used in order to avoid| Error type Pr. | Re.| F-Sc.| Acc.
overfitting. Best accuracy is achieved with 5-grams | Agreement | 67.0| 79.3| 72.6| 70.1
and a threshold of 4. Table 2 reports results with | Real-word 63.4| 67.6| 65.4| 64.3
these parameters. Extra word 63.0| 66.4| 64.7| 63.7

“XLE parsing (see footnote 2 for configuration) runs out M!ssmg word] 9.7 57.8| 58.7| 59.4
of time for 0.7 % and out of memory for 2.5 % of sentences, Mixed errors | 63.4]| 67.8| 65.6| 64.4

measured on training data of the first cross-validation run, i. e.

540,000 grammatical sentence and 135,000 of each error typeape 3: Classification results with decision tree on

14 sentences of 3 million caused the parser to terminate abnqr-
mally.
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Error type Pr. | Re.| F-Sc.| Acc. method, for all error type®. The general improve-
Agreement | 61.2| 53.8| 57.3| 59.9 ment comes from an improvement in recall, mean-
Real-word 65.3| 64.3| 64.8| 65.1 ing that more ungrammatical sentences are actu-
Extra word 66.4| 67.4| 66.9| 66.7 ally flagged as such without compromising preci-
Missingword | 59.1| 49.2| 53.7| 57.5 sion. The improvement is highest for agreement
Mixed errors | 63.3| 58.7| 60.9| 62.3 errors (f-score +7.2). Singular subject with plural

copula errors (e.grhe man argpeak at a recall of
Table 4: Classification results with decision tree 091.0. The Method 3 results indicate that information
vectors of frequency of rarest n-grams (Method 4) on the number of solutions (optimal and unoptimal),

the number of subtrees, the time taken to parse the

Error type Pr | Re.| E-Sc.| Acc. sentence and the number of words can be used to
Agreement | 67.1| 75.2| 70.9| 69.2 predict grammaticality. It would be interesting to
Real-word 65.8| 70.7| 68.1| 67.0 investigate this approach with other parsers.

Extra word 659! 712 685/ 67.2 Method 4, which uses a decision tree with n-
Missing word | 61.2 | 58.0| 59.5| 60.6 gram-based features, confirms the results of Method
Mixed errors | 6521 68.81 66.91 66.0 2. The decision trees’ root nodes are similar or even

identical (depending on cross-validation run) to the
decision rule of Method 2 (5-gram frequency below
Ql). However, the 10 decision trees have between
1,111 and 1,905 nodes and draw from all features,
even bigrams and 7-grams that perform poorly on
their own. The improvements are very small though

quency of POS 5-grams to detect an error. The

XLE deep-processing approach is better than the rz%l_nd they are not significant according the criterion of

non-overlapping cross-validation results. The main
gram-based approach for agreement errors (f-score

+10.4). Examining the various types of agree'c2SO" for the evaluation of Method 4 is to provide

ment errors, we can see that this is especially thaenother reference point for comparison of the final

; ) method.
case for singular subjects followed by plural cop- The overall best results are those for Method 5

ula verbs (recall +37.7) and determiner-noun num- ) . )
( ) t@e combined XLE, n-gram and machine-learning-

ber mismatches (recall +23.6 for singular nouns anb d thod. which outoerf th t best
+18.0 for plural nouns), but not for plural subjects ased method, which outperiorms the next bes

: method, Method 3, on all error types apart from
followed by singular verbs (recall -24.0). The rela-
W y singuiar v ( ) greement errors (f-score -1.7, +2.7, +3.8, +0.8).

tively poor performance of Method 2 on agreemen : .
or agreement errors, it seems that the relatively

errors involving determiners could be due to the lac .
of agreement marking on the Penn Treebank detdf>°" results for n-grams have a negat_lve effecton the
miner tag used by TreeTagger, relatively good result; for the XLE. Figure 2 shows
. that the performance is almost constant on ungram-
Method 1 is outperformed by Method 2 for real-magical data in the important sentence length range
word spelling and extra word errors (f-score -4.2fom 5 to0 40, However, there is a negative correla-
-4.0). Unsurprisingly, Method 2 has an advantaggon of accuracy and sentence length for grammati-
on those real-word spelling errors that change thg,| sentences. Very long sentences of any kind tend
POS (recall -8.8 for Method 1). Both methods periq pe classified as ungrammatical, except for missing

form poorly on missing word errors. For both methyyorq errors which remain close to the 50% baseline
ods there are only very small differences in perforgs ¢in-flipping.

mance between the various missing word error sub- o ail methods missing word errors are the
types (identified by the POS of the deleted word). \yqrst-performing, particularly in recall (i. e. the ac-
Method 3, which uses machine learning to exploit—; - _
The +0.3 increase in average accuracy for extra word errors

all the information returned by the XLE parsgr, im'is not clearly significant as the results of cross-validation runs
proves performance from Method 1, the basic XLEoverlap.

Table 5: Classification results with decision tree o
joined feature set (Method 5)
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Characterizing the Errors of Data-Driven Dependency Parsing Models

Ryan McDonald
Google Inc.
76 Ninth Avenue
New York, NY 10011
ryanmcdl@google.com

Abstract

We present a comparative error analysis
of the two dominant approaches in data-
driven dependency parsing: global, exhaus-
tive, graph-based models, and local, greedy,
transition-based models. We show that, in
spite of similar performance overall, the two
models produce different types of errors, in
a way that can be explained by theoretical
properties of the two models. This analysis
leads to new directions for parser develop-
ment.

1 Introduction

Syntactic dependency representations have a long
history in descriptive and theoretical linguistics and
many formal models have been advanced (Hudson,
1984; Mel’Cuk, 1988; Sgall et al., 1986; Maruyama,
1990). A dependency graph of a sentence repre-
sents each word and its syntactic modifiers through
labeled directed arcs, as shown in Figure 1, taken
from the Prague Dependency Treebank (Bohmova et
al., 2003). A primary advantage of dependency rep-
resentations is that they have a natural mechanism
for representing discontinuous constructions, aris-
ing from long distance dependencies or free word
order, through non-projective dependency arcs, ex-
emplified by the arc from jedna to Z in Figure 1.
Syntactic dependency graphs have recently
gained a wide interest in the computational lin-
guistics community and have been successfully em-
ployed for many problems ranging from machine
translation (Ding and Palmer, 2004) to ontology
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Figure 1: Example dependency graph.

construction (Snow et al., 2004). In this work we
focus on a common parsing paradigm called data-
driven dependency parsing. Unlike grammar-based
parsing, data-driven approaches learn to produce de-
pendency graphs for sentences solely from an anno-
tated corpus. The advantage of such models is that
they are easily ported to any domain or language in
which annotated resources exist.

As evident from the CoNLL-X shared task on de-
pendency parsing (Buchholz and Marsi, 2006), there
are currently two dominant models for data-driven
dependency parsing. The first is what Buchholz and
Marsi (2006) call the “all-pairs” approach, where ev-
ery possible arc is considered in the construction of
the optimal parse. The second is the “stepwise” ap-
proach, where the optimal parse is built stepwise and
where the subset of possible arcs considered depend
on previous decisions. Theoretically, these models
are extremely different. The all-pairs models are
globally trained, use exact (or near exact) inference
algorithms, and define features over a limited history
of parsing decisions. The stepwise models use local
training and greedy inference algorithms, but define
features over a rich history of parse decisions. How-
ever, both models obtain similar parsing accuracies

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 122—131, Prague, June 2007. (©2007 Association for Computational Linguistics



McDonald | Nivre

Arabic 66.91 66.71
Bulgarian 87.57 87.41
Chinese 85.90 86.92
Czech 80.18 78.42
Danish 84.79 84.77
Dutch 79.19 78.59
German 87.34 85.82
Japanese 90.71 91.65
Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68
Overall 80.83 80.75

Table 1: Labeled parsing accuracy for top scoring
systems at CoNLL-X (Buchholz and Marsi, 2006).

on a variety of languages, as seen in Table 1, which
shows results for the two top performing systems in
the CoNLL-X shared task, McDonald et al. (2006)
(“all-pairs™) and Nivre et al. (2006) (“stepwise”).

Despite the similar performance in terms of over-
all accuracy, there are indications that the two types
of models exhibit different behaviour. For example,
Sagae and Lavie (2006) displayed that combining
the predictions of both parsing models can lead to
significantly improved accuracies. In order to pave
the way for new and better methods, a much more
detailed error analysis is needed to understand the
strengths and weaknesses of different approaches.
In this work we set out to do just that, focusing on
the two top performing systems from the CoNLL-X
shared task as representatives of the two dominant
models in data-driven dependency parsing.

2 Two Models for Dependency Parsing

2.1 Preliminaries

Let L = {l1,...,lj5|} be a set of permissible arc
labels. Let x = wq,ws1,...,w, be an input sen-
tence where wo=root. Formally, a dependency graph
for an input sentence x is a labeled directed graph
G = (V, A) consisting of a set of nodes V' and a
set of labeled directed arcs A C V x V x L, i.e., if
(i,4,1) € Afori,j € V and [ € L, then there is an
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arc from node ¢ to node j with label [ in the graph.
A dependency graph G for sentence x must satisfy
the following properties:

1.V ={0,1,...,n}
2. If (i,4,1) € A, then j # 0.

3. If (4,7,1) € A, then for all / € V — {i} and
'elL, (7,5,U)¢ A

4. Forall j € V —{0}, there is a (possibly empty)
sequence of nodes i1,...,%4,€V and labels
li,...,lm, €L such that (0, 11, ll),(il, 29, lg),
coos (im, 7, D€A.

The constraints state that the dependency graph
spans the entire input (1); that the node O is a root
(2); that each node has at most one incoming arc
in the graph (3); and that the graph is connected
through directed paths from the node 0 to every other
node in the graph (4). A dependency graph satisfy-
ing these constraints is a directed tree originating out
of the root node 0. We say that an arc (i, j, ) is non-
projective if not all words k occurring between ¢ and
7 in the linear order are dominated by ¢ (where dom-
inance is the transitive closure of the arc relation).

2.2 Global, Exhaustive, Graph-Based Parsing

For an input sentence, x = wg, w1, . . . , Wy consider
the dense graph G, = (V,,, A;) where:

1. V, ={0,1,...,n}
2. Ay = {(i,j,1) | Vi, j € Vyandl € L}

Let D(G5) represent the subgraphs of graph G,
that are valid dependency graphs for the sentence
x. Since GG, contains all possible labeled arcs, the
set D(G,) must necessarily contain all valid depen-
dency graphs for x.

Assume that there exists a dependency arc scoring
function, s : V' x V x L — R. Furthermore, define
the score of a graph as the sum of its arc scores,

s(G=(V.A)= > sl
(i,5,1)eA
The score of a dependency arc, s(i, j,1) represents
the likelihood of creating a dependency from word
w; to word w; with the label [. If the arc score func-
tion is known a priori, then the parsing problem can
be stated as,



G = argmax s(G) = arg max
GeD(Gy) GeD(Gy) (i,5,1)€A

s(i,7,1)

This problem is equivalent to finding the highest
scoring directed spanning tree in the graph G, origi-
nating out of the root node 0, which can be solved for
both the labeled and unlabeled case in O(n?) time
(McDonald et al., 2005b). In this approach, non-
projective arcs are produced naturally through the
inference algorithm that searches over all possible
directed trees, whether projective or not.

The parsing models of McDonald work primarily
in this framework. To learn arc scores, these mod-
els use large-margin structured learning algorithms
(McDonald et al., 2005a), which optimize the pa-
rameters of the model to maximize the score mar-
gin between the correct dependency graph and all
incorrect dependency graphs for every sentence in a
training set. The learning procedure is global since
model parameters are set relative to the classification
of the entire dependency graph, and not just over sin-
gle arc attachment decisions. The primary disadvan-
tage of these models is that the feature representa-
tion is restricted to a limited number of graph arcs.
This restriction is required so that both inference and
learning are tractable.

The specific model studied in this work is that
presented by McDonald et al. (2006), which factors
scores over pairs of arcs (instead of just single arcs)
and uses near exhaustive search for unlabeled pars-
ing coupled with a separate classifier to label each
arc. We call this system MSTParser, which is also
the name of the freely available implementation. !

2.3 Local, Greedy, Transition-Based Parsing

A transition system for dependency parsing defines

1. aset C of parser configurations, each of which
defines a (partially built) dependency graph G

2. aset T of transitions, each a function ¢t : C — C'

3. for every sentence x = wq, Wy, . . . , Wn,

(a) aunique initial configuration c,,
(b) aset C,, of terminal configurations

"http://mstparser.sourceforge.net
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A transition sequence Cy , = (cg, C1, - . -, ¢m,) fora
sentence z is a sequence of configurations such that
cm € Cy and, for every ¢; (¢; # ¢,), there is a tran-
sition ¢ € T such that ¢; = t(¢;—1). The dependency
graph assigned to x by C,, ,, is the graph G, defined
by the terminal configuration c¢,,.

Assume that there exists a transition scoring func-
tion, s : C x T — R. The score of a transition
t in a configuration ¢, s(c,t), represents the likeli-
hood of taking transition ¢ out of configuration c.
The parsing problem consists in finding a terminal
configuration ¢,, € C,, starting from the initial
configuration c, and taking the optimal transition
t* = arg max;cp s(c, t) out of every configuration
c. This can be seen as a greedy search for the optimal
dependency graph, based on a sequence of locally
optimal decisions in terms of the transition system.

Many transition systems for data-driven depen-
dency parsing are inspired by shift-reduce parsing,
where configurations contain a stack for storing par-
tially processed nodes. Transitions in such systems
add arcs to the dependency graph and/or manipu-
late the stack. One example is the transition system
defined by Nivre (2003), which parses a sentence
T = wp,wr, ..., w, in O(n) time, producing a pro-
jective dependency graph satisfying conditions 1-4
in section 2.1, possibly after adding arcs (0,1, 1,)
for every node ¢ # 0 that is a root in the output
graph (where [, is a special label for root modifiers).
Nivre and Nilsson (2005) showed how the restric-
tion to projective dependency graphs could be lifted
by using graph transformation techniques to pre-
process training data and post-process parser output,
so-called pseudo-projective parsing.

To learn transition scores, these systems use dis-
criminative learning methods, e.g., memory-based
learning or support vector machines. The learning
procedure is local since only single transitions are
scored, not entire transition sequences. The primary
advantage of these models is that features are not re-
stricted to a limited number of graph arcs but can
take into account the entire dependency graph built
so far. The main disadvantage is that the greedy
parsing strategy may lead to error propagation.

The specific model studied in this work is that pre-
sented by Nivre et al. (2006), which uses labeled
pseudo-projective parsing with support vector ma-
chines. We call this system MaltParser, which is also



the name of the freely available implementation.

2.4 Comparison

These models differ primarily with respect to three
important properties.

1. Inference: MaltParser uses a transition-based
inference algorithm that greedily chooses the
best parsing decision based on a trained clas-
sifier and current parser history. MSTParser
instead uses near exhaustive search over a
dense graphical representation of the sentence
to find the dependency graph that maximizes
the score.

2. Training: MaltParser trains a model to make
a single classification decision (choose the next
transition). MSTParser trains a model to maxi-
mize the global score of correct graphs.

3. Feature Representation: MaltParser can in-
troduce a rich feature history based on previ-
ous parser decisions. MSTParser is forced to
restrict the score of features to a single or pair
of nearby parsing decisions in order to make
exhaustive inference tractable.

These differences highlight an inherent trade-off be-
tween exhaustive inference algorithms plus global
learning and expressiveness of feature representa-
tions. MSTParser favors the former at the expense
of the latter and MaltParser the opposite.

3 The CoNLL-X Shared Task

The CoNLL-X shared task (Buchholz and Marsi,
2006) was a large-scale evaluation of data-driven de-
pendency parsers, with data from 13 different lan-
guages and 19 participating systems. The official
evaluation metric was the labeled attachment score
(LAS), defined as the percentage of tokens, exclud-
ing punctuation, that are assigned both the correct
head and the correct dependency label.?

The output of all systems that participated in the
shared task are available for download and consti-
tute a rich resource for comparative error analysis.

Zhttp://w3.msi.vxu.se/users/nivre/research/MaltParser.html

3In addition, results were reported for unlabeled attachment
score (UAS) (tokens with the correct head) and label accuracy
(LA) (tokens with the correct label).
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The data used in the experiments below are the out-
puts of MSTParser and MaltParser for all 13 lan-
guages, together with the corresponding gold stan-
dard graphs used in the evaluation. We constructed
the data by simply concatenating a system’s output
for every language. This resulted in a single out-
put file for each system and a corresponding single
gold standard file. This method is sound because the
data sets for each language contain approximately
the same number of tokens — 5,000. Thus, evalu-
ating system performance over the aggregated files
can be roughly viewed as measuring system perfor-
mance through an equally weighted arithmetic mean
over the languages.

It could be argued that a language by language
comparison would be more appropriate than com-
paring system performance across all languages.
However, as table Table 1 shows, the difference in
accuracy between the two systems is typically small
for all languages, and only in a few cases is this
difference significant. Furthermore, by aggregating
over all languages we gain better statistical estimates
of parser errors, since the data set for each individual
language is very small.

4 Error Analysis

The primary purpose of this study is to characterize
the errors made by standard data-driven dependency
parsing models. To that end, we present a large set of
experiments that relate parsing errors to a set of lin-
guistic and structural properties of the input and pre-
dicted/gold standard dependency graphs. We argue
that the results can be correlated to specific theoreti-
cal aspects of each model — in particular the trade-off
highlighted in Section 2.4.

For simplicity, all experiments report labeled
parsing accuracies. Identical experiments using un-
labeled parsing accuracies did not reveal any addi-
tional information. Furthermore, all experiments are
based on the data from all 13 languages together, as
explained in section 3.

4.1 Length Factors

It is well known that parsing systems tend to have
lower accuracies for longer sentences. Figure 2
shows the accuracy of both parsing models relative
to sentence length (in bins of size 10: 1-10, 11-20,
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Figure 2: Accuracy relative to sentence length.

etc.). System performance is almost indistinguish-
able. However, MaltParser tends to perform better
on shorter sentences, which require the greedy in-
ference algorithm to make less parsing decisions. As
a result, the chance of error propagation is reduced
significantly when parsing these sentences. The fact
that MaltParser has a higher accuracy (rather than
the same accuracy) when the likelihood of error
propagation is reduced comes from its richer feature
representation.

Another interesting property is accuracy relative
to dependency length. The length of a dependency
from word w; to word w; is simply equal to |7 — j|.
Longer dependencies typically represent modifiers
of the root or the main verb in a sentence. Shorter
dependencies are often modifiers of nouns such as
determiners or adjectives or pronouns modifying
their direct neighbours. Figure 3 measures the pre-
cision and recall for each system relative to depen-
dency lengths in the predicted and gold standard de-
pendency graphs. Precision represents the percent-
age of predicted arcs of length d that were correct.
Recall measures the percentage of gold standard arcs
of length d that were correctly predicted.

Here we begin to see separation between the two
systems. MSTParser is far more precise for longer
dependency arcs, whereas MaltParser does better
for shorter dependency arcs. This behaviour can
be explained using the same reasoning as above:
shorter arcs are created before longer arcs in the
greedy parsing procedure of MaltParser and are less
prone to error propagation. Theoretically, MST-
Parser should not perform better or worse for edges
of any length, which appears to be the case. There
is still a slight degradation, but this can be attributed
to long dependencies occurring more frequently in
constructions with possible ambiguity. Note that
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even though the area under the curve is much larger
for MSTParser, the number of dependency arcs with
a length greater than ten is much smaller than the
number with length less than ten, which is why the
overall accuracy of each system is nearly identical.
For all properties considered here, bin size generally
shrinks in size as the value on the x-axis increases.

4.2 Graph Factors

The structure of the predicted and gold standard de-
pendency graphs can also provide insight into the
differences between each model. For example, mea-
suring accuracy for arcs relative to their distance to
the artificial root node will detail errors at different
levels of the dependency graph. For a given arc, we
define this distance as the number of arcs in the re-
verse path from the modifier of the arc to the root.
Figure 4 plots the precision and recall of each sys-
tem for arcs of varying distance to the root. Preci-
sion is equal to the percentage of dependency arcs in
the predicted graph that are at a distance of d and are
correct. Recall is the percentage of dependency arcs
in the gold standard graph that are at a distance of d
and were predicted.

Figure 4 clearly shows that for arcs close to the
root, MSTParser is much more precise than Malt-
Parser, and vice-versa for arcs further away from the
root. This is probably the most compelling graph
given in this study since it reveals a clear distinction:
MSTParser’s precision degrades as the distance to
the root increases whereas MaltParser’s precision in-
creases. The plots essentially run in opposite direc-
tions crossing near the middle. Dependency arcs fur-
ther away from the root are usually constructed early
in the parsing algorithm of MaltParser. Again a re-
duced likelihood of error propagation coupled with
arich feature representation benefits that parser sub-
stantially. Furthermore, MaltParser tends to over-
predict root modifiers, because all words that the
parser fails to attach as modifiers are automatically
connected to the root, as explained in section 2.3.
Hence, low precision for root modifiers (without a
corresponding drop in recall) is an indication that the
transition-based parser produces fragmented parses.

The behaviour of MSTParser is a little trickier to
explain. One would expect that its errors should be
distributed evenly over the graph. For the most part
this is true, with the exception of spikes at the ends
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of the plot. The high performance for root modifica-
tion (distance of 1) can be explained through the fact
that this is typically a low entropy decision — usu-
ally the parsing algorithm has to determine the main
verb from a small set of possibilities. On the other
end of the plot there is a sharp downwards spike for
arcs of distance greater than 10. It turns out that
MSTParser over-predicts arcs near the bottom of the
graph. Whereas MaltParser pushes difficult parsing
decisions higher in the graph, MSTParser appears to
push these decisions lower.

The next graph property we will examine aims to
quantify the local neighbourhood of an arc within
a dependency graph. Two dependency arcs, (i, j,1)
and (7', j',1’) are classified as siblings if they repre-
sent syntactic modifications of the same word, i.e.,
1 = 4/. Figure 5 measures the precision and recall
of each system relative to the number of predicted
and gold standard siblings of each arc. There is
not much to distinguish between the parsers on this
metric. MSTParser is slightly more precise for arcs
that are predicted with more siblings, whereas Malt-
Parser has slightly higher recall on arcs that have
more siblings in the gold standard tree. Arcs closer
to the root tend to have more siblings, which ties this
result to the previous ones.

The final graph property we wish to look at is the
degree of non-projectivity. The degree of a depen-
dency arc from word w to word u is defined here
as the number of words occurring between w and u
that are not descendants of w and modify a word that
does not occur between w and u (Nivre, 2006). In
the example from Figure 1, the arc from jedna to Z
has a degree of one, and all other arcs have a degree
of zero. Figure 6 plots dependency arc precision and
recall relative to arc degree in predicted and gold
standard dependency graphs. MSTParser is more
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precise when predicting arcs with high degree and
MaltParser vice-versa. Again, this can be explained
by the fact that there is a tight correlation between a
high degree of non-projectivity, dependency length,
distance to root and number of siblings.

4.3 Linguistic Factors

It is important to relate each system’s accuracy to a
set of linguistic categories, such as parts of speech
and dependency types. Therefore, we have made
an attempt to distinguish a few broad categories
that are cross-linguistically identifiable, based on the
available documentation of the treebanks used in the
shared task.

For parts of speech, we distinguish verbs (includ-
ing both main verbs and auxiliaries), nouns (includ-
ing proper names), pronouns (sometimes also in-
cluding determiners), adjectives, adverbs, adposi-
tions (prepositions, postpositions), and conjunctions
(both coordinating and subordinating). For depen-
dency types, we distinguish a general root category
(for labels used on arcs from the artificial root, in-
cluding either a generic label or the label assigned
to predicates of main clauses, which are normally
verbs), a subject category, an object category (in-
cluding both direct and indirect objects), and various
categories related to coordination.

Figure 7 shows the accuracy of the two parsers
for different parts of speech. This figure measures
labeled dependency accuracy relative to the part of
speech of the modifier word in a dependency rela-
tion. We see that MaltParser has slightly better ac-
curacy for nouns and pronouns, while MSTParser
does better on all other categories, in particular con-
junctions. This pattern is consistent with previous
results insofar as verbs and conjunctions are often
involved in dependencies closer to the root that span
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longer distances, while nouns and pronouns are typ-
ically attached to verbs and therefore occur lower in
the graph, with shorter distances. Empirically, ad-
verbs resemble verbs and conjunctions with respect
to root distance but group with nouns and pronouns
for dependency length, so the former appears to be
more important. In addition, both conjunctions and
adverbs tend to have a high number of siblings, mak-
ing the results consistent with the graph in Figure 5.

Adpositions and especially adjectives constitute
a puzzle, having both high average root distance
and low average dependency length. Adpositions do
tend to have a high number of siblings on average,
which could explain MSTParser’s performance on
that category. However, adjectives on average occur
the furthest away from the root, have the shortest
dependency length and the fewest siblings. As such,
we do not have an explanation for this behaviour.

In the top half of Figure 8, we consider precision
and recall for dependents of the root node (mostly
verbal predicates), and for subjects and objects. As
already noted, MSTParser has considerably better
precision (and slightly better recall) for the root cat-
egory, but MaltParser has an advantage for the nomi-
nal categories, especially subjects. A possible expla-
nation for the latter result, in addition to the length-
based and graph-based factors invoked before, is that
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MaltParser integrates labeling into the parsing pro-
cess, so that previously assigned dependency labels
can be used as features, which may be important to
disambiguate subjects and objects.

Finally, in the bottom half of Figure 8, we dis-
play precision and recall for coordinate structures,
divided into different groups depending on the type
of analysis adopted in a particular treebank. The cat-
egory CCH (coordinating conjunction as head) con-
tains conjunctions analyzed as heads of coordinate
structures, with a special dependency label that does
not describe the function of the coordinate structure
in the larger syntactic structure, a type of category
found in the so-called Prague style analysis of coor-
dination and used in the data sets for Arabic, Czech,
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and Slovene. The category CCD (coordinating con-
junction as dependent) instead denotes conjunctions
that are attached as dependents of one of the con-
juncts with a label that only marks them as conjunc-
tions, a type of category found in the data sets for
Bulgarian, Danish, German, Portuguese, Swedish
and Turkish. The two remaining categories con-
tain conjuncts that are assigned a dependency label
that only marks them as conjuncts and that are at-
tached either to the conjunction (CJCC) or to an-
other conjunct (CJCJ). The former is found in Bul-
garian, Danish, and German; the latter only in Por-
tuguese and Swedish. For most of the coordination
categories there is little or no difference between the
two parsers, but for CCH there is a difference in both
precision and recall of almost 20 percentage points
to MSTParser’s advantage. This can be explained by
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noting that, while the categories CCD, CJCC, and
CIJCJ denote relations that are internal to the coor-
dinate structure and therefore tend to be local, the
CCH relations hold between the coordinate struc-
ture and its head, which is often a relation that spans
over a greater distance and is nearer the root of the
dependency graph. It is likely that the difference in
accuracy for this type of dependency accounts for a
large part of the difference in accuracy noted earlier
for conjunctions as a part of speech.

4.4 Discussion

The experiments from the previous section highlight
the fundamental trade-off between global training
and exhaustive inference on the one hand and ex-
pressive feature representations on the other. Error
propagation is an issue for MaltParser, which typi-



cally performs worse on long sentences, long depen-
dency arcs and arcs higher in the graphs. But this is
offset by the rich feature representation available to
these models that result in better decisions for fre-
quently occurring arc types like short dependencies
or subjects and objects. The errors for MSTParser
are spread a little more evenly. This is expected,
as the inference algorithm and feature representation
should not prefer one type of arc over another.

What has been learned? It was already known that
the two systems make different errors through the
work of Sagae and Lavie (2006). However, in that
work an arc-based voting scheme was used that took
only limited account of the properties of the words
connected by a dependency arc (more precisely, the
overall accuracy of each parser for the part of speech
of the dependent). The analysis in this work not only
shows that the errors made by each system are dif-
ferent, but that they are different in a way that can be
predicted and quantified. This is an important step
in parser development.

To get some upper bounds of the improvement
that can be obtained by combining the strengths of
each models, we have performed two oracle experi-
ments. Given the output of the two systems, we can
envision an oracle that can optimally choose which
single parse or combination of sub-parses to predict
as a final parse. For the first experiment the oracle
is provided with the single best parse from each sys-
tem, say G = (V, A) and G’ = (V’, A’). The oracle
chooses a parse that has the highest number of cor-
rectly predicted labeled dependency attachments. In
this situation, the oracle accuracy is 84.5%. In the
second experiment the oracle chooses the tree that
maximizes the number of correctly predicted depen-
dency attachments, subject to the restriction that the
tree must only contain arcs from A U A’. This can
be computed by setting the weight of an arc to 1 if
it is in the correct parse and in the set A U A’. All
other arc weights are set to negative infinity. One can
then simply find the tree that has maximal sum of
arc weights using directed spanning tree algorithms.
This technique is similar to the parser voting meth-
ods used by Sagae and Lavie (2006). In this situa-
tion, the oracle accuracy is 86.9%.

In both cases we see a clear increase in accuracy:
86.9% and 84.5% relative to 81% for the individual
systems. This indicates that there is still potential
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for improvement, just by combining the two existing
models. More interestingly, however, we can use
the analysis to get ideas for new models. Below we
sketch some possible new directions:

1. Ensemble systems: The error analysis pre-
sented in this paper could be used as inspiration
for more refined weighting schemes for ensem-
ble systems of the kind proposed by Sagae and
Lavie (2006), making the weights depend on a
range of linguistic and graph-based factors.

2. Hybrid systems: Rather than using an ensem-
ble of several parsers, we may construct a sin-
gle system integrating the strengths of each
parser described here. This could defer to
a greedy inference strategy during the early
stages of the parse in order to benefit from a
rich feature representation, but then default to
a global exhaustive model as the likelihood for
error propagation increases.

3. Novel approaches: The two approaches inves-
tigated are each based on a particular combina-
tion of training and inference methods. We may
naturally ask what other combinations may
prove fruitful. For example, what about glob-
ally trained, greedy, transition-based models?
This is essentially what Daumé III et al. (2006)
provide, in the form of a general search-based
structured learning framework that can be di-
rectly applied to dependency parsing. The ad-
vantage of this method is that the learning can
set model parameters relative to errors resulting
directly from the search strategy — such as error
propagation due to greedy search. When com-
bined with MaltParser’s rich feature represen-
tation, this could lead to significant improve-
ments in performance.

5 Conclusion

We have presented a thorough study of the dif-
ference in errors made between global exhaustive
graph-based parsing systems (MSTParser) and lo-
cal greedy transition-based parsing systems (Malt-
Parser). We have shown that these differences can
be quantified and tied to theoretical expectations of
each model, which may provide insights leading to
better models in the future.
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Abstract

A notable gap in research on statistical de-
pendency parsing is a proper conditional
probability distribution over nonprojective
dependency trees for a given sentence. We
exploit the Matrix Tree Theorem (Tutte,
1984) to derive an algorithm that efficiently
sums the scores of all nonprojective trees
in a sentence, permitting the definition of
a conditional log-linear model over trees.
While discriminative methods, such as those
presented in McDonald et al. (2005b), ob-
tain very high accuracy on standard de-
pendency parsing tasks and can be trained
and applied without marginalization, “sum-
ming trees” permits some alternative tech-
niques of interest. Using the summing al-
gorithm, we present competitive experimen-
tal results on four nonprojective languages,
for maximum conditional likelihood estima-
tion, minimum Bayes-risk parsing, and hid-
den variable training.

1 Introduction

Recently dependency parsing has received renewed
interest, both in the parsing literature (Buchholz
and Marsi, 2006) and in applications like translation
(Quirk et al., 2005) and information extraction (Cu-
lotta and Sorensen, 2004). Dependency parsing can
be used to provide a “bare bones” syntactic struc-
ture that approximates semantics, and it has the addi-
tional advantage of admitting fast parsing algorithms
(Eisner, 1996; McDonald et al., 2005b) with a neg-
ligible grammar constant in many cases.
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The latest state-of-the-art statistical dependency
parsers are discriminative, meaning that they are
based on classifiers trained to score trees, given a
sentence, either via factored whole-structure scores
(McDonald et al., 2005a) or local parsing decision
scores (Hall et al., 2006). In the works cited, these
scores are not intended to be interpreted as proba-
bilistic quantities.

Here we consider weighted dependency parsing
models that can be used to define well-formed con-
ditional distributions p(y | x), for dependency
trees y and a sentence x. Conditional distribu-
tions over outputs (here, trees) given inputs (here,
sentences) have certain advantages. They per-
mit marginalization over trees to compute poste-
riors of interesting sub-events (e.g., the probabil-
ity that two noun tokens bear a relation, regard-
less of which tree is correct). A probability model
permits alternative decoding procedures (Goodman,
1996). Well-motivated hidden variable training
procedures (such as EM and conditional EM) are
also readily available for probabilistic models. Fi-
nally, probability models can be chained together (as
in a noisy channel model), mixed, or combined in a
product-of-experts.

Sequence models, context-free models, and de-
pendency models have appeared in several guises;
a cross-model comparison clarifies the contribution
of this paper. First, there were generative, stochas-
tic models like HMMs, PCFGs, and Eisner’s (1996)
models. Local discriminative classifiers were pro-
posed by McCallum et al. (2000) for sequence mod-
eling, by Ratnaparkhi et al. (1994) for constituent
parsing, and by Hall et al. (2006) (among others) for
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dependencies. Large-margin whole-structure mod-
els were proposed for sequence labeling by Al-
tun et al. (2003), for constituents by Taskar et al.
(2004), and for dependency trees by McDonald et
al. (2005a). In this paper, we propose a model
most similar to the conditional random fields—
interpretable as log-linear models—of Lafferty et al.
(2001), which are now widely used for sequence la-
beling. Log-linear models have been used in pars-
ing by Riezler et al. (2000) (for constraint-based
grammars) and Johnson (2001) and Miyao and Tsu-
jii (2002) (for CFGs). Like McDonald et al., we use
an edge-factored model that permits nonprojective
trees; like Lafferty et al., we argue for an alternative
interpretation as a log-linear model over structures,
conditioned on the observed sentence.

In Section 2 we point out what would be required,
computationally, for conditional training of nonpro-
jective dependency models. The solution to the con-
ditionalization problem is given in Section 3, using a
widely-known but newly-applied Matrix Tree Theo-
rem due to Tutte (1984), and experimental results are
presented with a comparison to the MIRA learning
algorithm used by McDonald et al. (2005a). We go
on to describe and experiment with two useful appli-
cations of conditional modeling: minimum Bayes-
risk decoding (Section 4) and hidden-variable train-
ing by conditional maximum likelihood estimation
(Section 5). Discussion in Section 6 considers the
implications of our experimental results.

Two indepedent papers, published concurrently
with this one, report closely related results to ours.
Koo et al. (2007) and McDonald and Satta (2007)
both describe how the Matrix Tree Theorem can be
applied to computing the sum of scores of edge-
factored dependency trees and the edge marginals.
Koo et al. compare conditional likelihood training
(as here) to the averaged perceptron and a max-
imum margin model trained using exponentiated-
gradient (Bartlett et al., 2004); the latter requires
the same marginalization calculations as conditional
log-linear estimation. McDonald and Satta discuss a
variety of applications (including minimum Bayes-
risk decoding) and give complexity results for non-
edge-factored models. Interested readers are re-
ferred to those papers for further discussion.
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2 Conditional Training for Nonprojective
Dependency Models

Let x = (x1, ..., x,) be a sequence of words (possi-
bly with POS tags, lemmas, and morphological in-
formation) that are the input to a parser. y will refer
to a directed, unlabeled dependency tree, which is a
mapy : {1,...,n} — {0,...,n} from child indices
to parent indices; x is the invisible “wall” symbol.
Let Yy be the set of valid dependency trees for x. In
this paper, Yx is equivalent to the set of all directed
spanning trees over X.!

A conditional model defines a family of probabil-
ity distributions p(y | x), for all x and y € Yx. We
propose that this model take a log-linear form:

0-Fxy)
ATy Zg(x

ey

where f is a feature vector function on parsed sen-
tences and § € R™ parameterizes the model. Fol-
lowing McDonald et al. (2005a), we assume that the
features are edge-factored:

n

Fooy) = flxmi,ay)

i=1

2

In other words, the dependencies between words in
the tree are all conditionally independent of each
other, given the sequence x and the fact that the
parse is a spanning tree. Despite the constraints they
impose on features, edge-factored models have the
advantage of tractable O(n?) inference algorithms
or, with some trickery, O(n?) maximum a posteriori
(“best parse tree”) inference algorithms in the non-
projective case. Exact nonprojective inference and
estimation become intractable if we break edge fac-
toring (McDonald and Pereira, 2006).

We wish to estimate the parameters ] by maxi-
mizing the conditional likelihood (like a CRF) rather

'To be precise, every word has in-degree 1, with the sole
edge pointing from the word’s parent, zy ;) — ;. o has in-
degree 0. By definition, trees are acyclic. The edges need not
be planar and may “cross” in the plane, since we do not have a
projectivity constraint. In some formulations, exactly one node
in x can attach to xo; here we allow multiple nodes to attach
to xo, since this occurs with some frequency in many existing
datasets. Summation over trees where x¢ has exactly one child
is addressed directly by Koo et al. (2007).



than the margin (McDonald et al., 2005a). For an
empirical distribution p given by a set of training ex-
amples, this means:

mgxgy:ﬁ(x,w(@ ¥)- Zp ) log Z(x)

3)

This optimization problem is typically solved us-

ing a quasi-Newton numerical optimization method

such as L-BFGS (Liu and Nocedal, 1989). Such a

method requires the gradient of the objective func-

tion, which for 6y, is given by the following differ-
ence in expectations of the value of feature fj:

0 _
06,
Es;x,v) [fu(X,Y)] —

4
Esx)p;(v1x) [fe(X, Y)]

The computation of Zj(x) and the sufficient
statistics (second expectation in Equation 4) are typ-
ically the difficult parts. They require summing the
scores of all the spanning trees for a given sentence.
Note that, in large-margin training, and in standard
maximum a posteriori decoding, only a maximum
over spanning trees is called for—it is conditional
training that requires Zz(x). In Section 3, we will
show how this can be done exactly in O(n?) time.

3 Exploiting the Matrix Tree Theorem for
Z5(x)

We wish to apply conditional training to estimate
conditional models of nonprojective trees. This re-
quires computing Z;(x) for each training example
(as an inner loop to training). In this section we show
how the summation can be computed and how con-
ditional training performs.

3.1 Kirchoff Matrix

Recall that we defined the unnormalized probability
(henceforth, score) of a dependency tree as a combi-
nation of edge-factored scores for the edges present
in the tree (Eq. 2):

n
exp@f(x,y H 0-f(xi,ty ) — HS (i, y (i
: )

where y (i) denotes the parent of x; iny. s_ (4, ),
then, denotes the (multiplicative) contrlbutlon of the
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edge from child ¢ to parent j to the total score of
the tree, if the edge is present. Define the Kirchoff
matrix K_ ;€ R"*" by

(0)
if mom # kid

if mom = kid.

8] s =

mom,kid

—s_ g(kid, mom)

D s

j€{0,...n}:j#mom

(kid, j)

where mom indexes a parent node and kid a child
node.

K, 7 can be regarded as a special weighted adja-
cency matrix in which the ith diagonal entry is the
sum of edge-scores directed into vertex ¢ (i.e., x; is
the child)—note that the sum includes the score of
attaching x; to the wall xg.

In our notation and in one specific form, the Ma-

trix Tree Theorem (Tutte, 1984) states:2

Theorem 1 The determinant of the Kirchoff matrix

K, ;7 is equal to the sum of scores of all directed
x?

spanning trees in Y« rooted at xo. Formally:

’Kx,a

A proof is omitted; see Tutte (1984).

To compute Zz(x), we need only take the deter-
minant of K_ 5. Wthh can be done in O(n?) time
using the standard LU factorization to compute the
matrix inverse. Since all of the edge weights used
to construct the Kirchoff matrix are positive, it is di-
agonally dominant and therefore non-singular (i.e.,
invertible).

3.2 Gradient

The gradient of Z;(x) (required for numerical opti-
mization; see Eqs. 3—4) can be efficiently computed
from the same matrix inverse. While V log Z;(x)
equates to a vector of feature expectations (Eq. 4),
we exploit instead some facts from linear algebra

*There are proven generalizations of this theorem (Chen,
1965; Chaiken, 1982; Minoux, 1999); we give the most specific
form that applies to our case, originally proved by Tutte in 1948.
Strictly speaking, our K 5 is not the Kirchoff matrix, but rather
a submatrix of the Klrchoff matrix with a leftmost column of
zeroes and a topmost row [0, —s, 5(1,0),..., —s, z(n,0)] re-
moved. Farther afield, Jaakkola et al. (1999) used an undirected
matrix tree theorem for learning tree structures for graphical
models.
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and the chain rule. First, note that, for any weight
Ok

0log Z5(x)
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(We assume s e(Z i) = 0, for simplicity of nota-
tion.) The last line follows from the definition of
sxﬁ(z,]) as exp 0- f(x, xi, x;). Now, since Sxﬂ(’L,])
affects the Kirchoff matrix in at most two cells—

(i,4) and (j,1), the latter only when j > 0O—we
know that
K, gl 0K, gl OK, gl
05 5(i,5) — O[K, glii0s, 5(i.1)
K, 41 OK, glj.
O[K, glji 05, 400, )
8]Kx70~\ 9K, gl
T UK g 0K e

We have now reduced the problem of the gradient
to a linear function of V|Kx7§\ with respect to the
cells of the matrix itself. At this point, we simplify
notation and consider an arbitrary matrix A.
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The minor m;; of a matrix A is the determi-
nant of the submatrix obtained by striking out row
J and column 7 of A; the cofactor c;; of A is then
(—1)"m;,;. Laplace’s formula defines the deter-
minant as a linear combination of matrix cofactors
of an arbitrary row j:

n

= [Aljics,

=1

A ©)
It should be clear that any c; ;. is constant with re-
spect to the cell [A];; (since it is formed by remov-
ing row j of A) and that other entries of A are con-
stant with respect to the cell [A]; ;. Therefore:

O|A|
=cj4 10
oAl (o
The inverse matrix A ! can also be defined in terms
of cofactors: o
A = 1 (1D
YA
Combining Eqgs. 10 and 11, we have:
O|A| 1
= |A|[A7 ] 12
a[A]j,i ‘ H ]ZJ ( )
Plugging back in through Eq. 8 to Eq. 7, we have:
0 log Zy(
L S MW B
=1 j=0
-1 -1
X <[Kx7§} . [K& 5} m)(13)
where [K~1]; ¢ is taken to be 0. Note that the cofac-

tors do not need to be computed directly. We pro-
posed in Section 3.1 to get Z;(x) by computing the
inverse of the Kirchoff matrix (which is known to
exist). Under that procedure, the marginalization is
a by-product of the gradient.



decode train Arabic Czech Danish Dutch
map MIRA 79.9 814 86.6 90.0

CE 80.4 80.2 87.5 90.0 | (Section 3)
mBr MIRA 79.4 80.3 85.0 87.2 | (Section 4)

CE 80.5 80.4 87.5 90.0 | (Sections 3 & 4)

Table 1: Unlabeled dependency parsing accuracy (on test data) for two training methods (MIRA, as in
McDonald et al. (2005b), and conditional estimation) and with maximum a posteriori (map) and minimum
Bayes-risk (mBr) decoding. Boldface scores are best in their column on a permutation test at the .05 level.

3.3 Experiment

We compare conditional training of a nonprojective
edge-factored parsing model to the online MIRA
training used by McDonald et al. (2005b). Four lan-
guages with relatively common nonprojective phe-
nomena were tested: Arabic (Haji¢ et al., 2004),
Czech (Bohmova et al., 2003), Danish (Kromann,
2003), and Dutch (van der Beek et al., 2002). The
Danish and Dutch datasets were prepared for the
CoNLL 2006 shared task (Buchholz and Marsi,
2006); Arabic and Czech are from the 2007 shared
task. We used the same features, extracted by Mc-
Donald’s code, in both MIRA and conditional train-
ing. In this paper, we consider only unlabeled de-
pendency parsing.

Our conditional training used an online gradient-
based method known as stochastic gradient descent
(see, e.g., Bottou, 2003). Training with MIRA and
conditional estimation take about the same amount
of time: approximately 50 sentences per second.
Training proceeded as long as an improvement on
held-out data was evident. The accuracy of the hy-
pothesized parses for the two models, on each lan-
guage, are shown in the top two rows of Tab. 1 (la-
beled “map” for maximum a posteriori, meaning
that the highest-weighted tree is hypothesized).

The two methods are, not surprisingly, close in
performance; conditional likelihood outperformed
MIRA on Arabic and Danish, underperformed
MIRA on Czech, and the two tied on Dutch. Results
are significant at the .05 level on a permutation test.
Conditional estimation is in practice more prone to
over-fitting than maximum margin methods, though
we did not see any improvement using zero-mean
Gaussian priors (variance 1 or 10).

These experiments serve to validate conditional
estimation as a competitive learning algorithm for
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parsing models, and the key contribution of the sum-
ming algorithm that permits conditional estimation.

4 Minimum Bayes-Risk Decoding

A second application of probability distributions
over trees is the alternative decoding algorithm
known as minimum Bayes-risk (mBr) decoding.
The more commonly used maximum a posteriori
decoding (also known as “Viterbi” decoding) that
we applied in Section 3.3 sought to minimize the ex-
pected whole-tree loss:

y = argmax pg(y | x) = argmin E,,_v|x) [-0(y, Y)]
y y

(14
Minimum Bayes-risk decoding generalizes this idea
to an arbitrary loss function ¢ on the proposed tree:
y = arg;nin Ep§(Y|X) [(y,Y)] (15)
This technique was originally applied in speech
recognition (Goel and Byrne, 2000) and translation
(Kumar and Byrne, 2004); Goodman (1996) pro-
posed a similar idea in probabilistic context-free
parsing, seeking to maximize expected recall. For
more applications in parsing, see Petrov and Klein
(2007).
The most common loss function used to evaluate
dependency parsers is the number of attachment er-
rors, so we seek to decode using:

y = arg;_ninEpg(Y\x) [2—5(}’(@')73((@'))]

i=1

= argmaXZp(;(Y(i) =y(i) | x)
y i=1

(16)

To apply this decoding method, we make use of
Eq. 13, which gives us the posterior probabilities



of edges under the model, and the same Chiu-
Liu-Edmonds maximum directed spanning tree al-
gorithm used for maximum a posteriori decoding.
Note that this decoding method can be applied re-
gardless of how the model is trained. It merely re-
quires assuming that the tree scores under the trained
model (probabilistic or not) can be treated as unnor-
malized log-probabilities over trees given the sen-
tence x.

We applied minimum Bayes-risk decoding to the
models trained using MIRA and using conditional
estimation (see Section 3.3). Table 1 shows that,
across languages, minimum Bayes-risk decoding
hurts slightly the performance of a MIRA-trained
model, but helps slightly or does not affect the per-
formance of a conditionally-trained model. Since
MIRA does not attempt to model the distribution
over trees, this result is not surprising; interpreting
weights as defining a conditional log-linear distribu-
tion is questionable under MIRA'’s training criterion.

One option, which we do not test here, is to
use minimum Bayes-risk decoding inside of MIRA
training, to propose a hypothesis tree (or k-best
trees) at each training step. Doing this would more
closely match the training conditions with the test-
ing conditions; however, it is unclear whether there
is a formal interpretation of such a combination, for
example its relationship to McDonald et al.’s “fac-
tored MIRA.”

Minimum Bayes-risk decoding, we believe, will
become important in nonprojective parsing with
non-edge-factored models. Note that minimium
Bayes-risk decoding reduces any parsing problem to
the maximum directed spanning tree problem, even
if the original model is not edge-factored. All that
is required are the marginals pz(Y (i) = y(7) | x),
which may be intractable to compute exactly, though
it may be possible to develop efficient approxima-
tions.

5 Hidden Variables

A third application of probability distributions over
trees is hidden-variable learning. The Expectation-
Maximization (EM) algorithm (Baum and Petrie,
1966; Dempster et al., 1977; Baker, 1979), for
example, is a way to maximum the likelihood of
training data, marginalizing out hidden variables.
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This has been applied widely in unsupervised pars-
ing (Carroll and Charniak, 1992; Klein and Man-
ning, 2002). More recently, EM has been used to
learn hidden variables in parse trees; these can be
head-child annotations (Chiang and Bikel, 2002), la-
tent head features (Matsuzaki et al., 2005; Prescher,
2005; Dreyer and Eisner, 2006), or hierarchically-
split nonterminal states (Petrov et al., 2006).

To date, we know of no attempts to apply hid-
den variables to supervised dependency tree mod-
els. If the trees are constrained to be projective, EM
is easily applied using the inside-outside variant of
the parsing algorithm described by Eisner (1996) to
compute the marginal probability. Moving to the
nonprojective case, there are two difficulties: (a) we
must marginalize over nonprojective trees and (b)
we must define a generative model over (X,Y).

We have already shown in Section 3 how to solve
(a); here we avoid (b) by maximizing conditional
likelihood, marginalizing out the hidden variable,
denoted z:

m@@XZﬁ(x, y)log) pply,z|x)  (U7)
X,y VA

This sort of conditional training with hidden vari-
ables was carried out by Koo and Collins (2005),
for example, in reranking; it is related to the infor-
mation bottleneck method (Tishby et al., 1999) and
contrastive estimation (Smith and Eisner, 2005).

5.1 Latent Dependency Labels

Noting that our model is edge-factored (Eq. 2), we
define our hidden variables to be edge-factored as
well. We can think of the hidden variables as clusters
on dependency tokens, and redefine the score of an
edge to be:

s g1, 9) = Z OFsziw;.2)

Z€Z

(18)

where Z is a set of dependency clusters.

Note that keeping the model edge-factored means
that the cluster of each dependency in a tree is con-
ditionally independent of all the others, given the
words. This is computationally advantageous (we
can factor out the marginalization of the hidden vari-
able by edge), and it permits the use of any cluster-
ing method at all. For example, if an auxiliary clus-
tering model ¢(z | x,y)—perhaps one that did not



make such independence assumptions—were used,
the posterior probability ¢(Z; = z | x,y) could
be a feature in the proposed model. On the other
hand, we must consider carefully the role of the
dependency clusters in the model; if clusters are
learned extrinsic to estimation of the parsing model,
we should not expect them to be directly advanta-
geous to parsing accuracy.

5.2 Experiments

We tried two sets of experiments with clustering. In
one case, we simply augmented all of McDonald
et al.’s edge features with a cluster label in hopes
of improved accuracy. Models were initialized near
zero, with Gaussian noise added to break symmetry
among clusters.

Under these conditions, performance stayed the
same or changed slightly (see Table 2); none of the
improvements are significant. Note that three de-
coders were applied: maximum a posteriori (map)
and minimum Bayes-risk (mBr) as described in Sec-
tion 4, and “max-z,” in which each possible edge
was labeled and weighted only with its most likely
cluster (rather than the sum over all clusters), before
finding the most probable tree.? For each of the three
languages tested, some number of clusters and some
decoding method gave small improvements over the
baseline.

More ambitiously, we hypothesized that many
lexicalized features on edges could be “squeezed”
through clusters to reduce the size of the feature set.
We thus removed all word-word and lemma-lemma
features and all tag fourgrams. Although this re-
duced our feature set by a factor of 60 or more (prior
to taking a cross-product with the clusters), the dam-
age of breaking the features was tremendous, and
performance even with a thousand clusters barely
broke 25% accuracy.

6 Discussion

Noting that adding latent features to nonterminals
in unlexicalized context-free parsing has been very
successful (Chiang and Bikel, 2002; Matsuzaki et
al., 2005; Prescher, 2005; Dreyer and Eisner, 2006;
Petrov et al., 2006), we were surprised not to see a

3Czech experiments were not done, since the number of fea-

tures (more than 14 million) was too high to multiply out by
clusters.
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#cl. decoding Arabic Danish Dutch
none map=max-z 80.4 87.5 90.0
mBr 80.5 87.5 90.0

2 map 80.4 87.5 89.5
mBr 80.6 87.3 89.7
max-z 80.4 86.3 89.4

16 map 80.4 87.6 90.1
mBr 80.4 87.6 90.1
max-z 80.4 87.6 90.2

32 map 80.0 87.6 -
mBr 80.4 87.5 -
max-z 80.0 87.5 -

Table 2: Augmenting edge features with clusters re-
sults in similar performance to conditional training
with no clusters (top two lines). Scores are unla-
beled dependency accuracy on test data.

more substantial performance improvement through
latent features. We propose several interpretations.
First, it may simply be that many more clusters may
be required. Note that the label-set sizes for the la-
beled versions of these datasets are larger than 32
(e.g., 50 for Danish). This has the unfortunate effect
of blowing up the feature space beyond the mem-
ory capacity of our machines (hence our attempts
at squeezing high-dimensional features through the
clusters).

Of course, improved clustering methods may
also improve performance. In particular, a cluster-
learning algorithm that permits clusters to split
and/or merge, as in Petrov et al. (2006) or in Pereira
et al. (1993), may be appropriate.

Given the relative simplicity of clustering meth-
ods for context-free parsing to date (gains were
found just by using Expectation-Maximization), we
believe the fundamental reason clustering was not
particularly helpful here is a structural one. In
context-free parsing, the latent features are (in pub-
lished work to date) on nonterminal states, which are
the stuctural “bridge” between context-free rules.
Adding features to those states is a way of pushing
information—encoded indirectly, perhaps—farther
around the tree, and therefore circumventing the
strict independence assumptions of probabilistic
CFGs.

In an edge-factored dependency model, on the



other hand, latent features on the edges seem to have
little effect. Given that they are locally “summed
out” when we compute the scores of possible at-
tachments, it should be clear that the edge clusters
do not circumvent any independence assumptions.
Three options appear to present themselves. First,
we might attempt to learn clusters in tandem with
estimating a richer, non-edge-factored model which
would require approximations to Zz(x), if condi-
tional training were to be used. Note that the approx-
imations to maximizing over spanning trees with
second-order features, proposed by McDonald and
Pereira (2006), do not permit estimating the clusters
as part of the same process as weight estimation (at
least not without modification). In the conditional
estimation case, a variational approach might be ap-
propriate. The second option is to learn clusters of-
fline, before estimating the parser. (We suggested
how to incorporate soft clusters into our model in
Section 5.1.) This option is computationally ad-
vantageous but loses sight of the aim of learning
the clusters specifically to improve parsing accuracy.
Third, noting that the structural “bridge” between
two coincident edges is the shared vertex (word), we
might consider word token clustering.

We also believe this structural locality issue helps
explain the modesty of the gains using minimum
Bayes-risk decoding with conditional training (Sec-
tion 4). In other dependency parsing scenarios, min-
imum Bayes-risk decoding has been found to offer
significant advantages—why not here? Minimum
Bayes-risk makes use of global statistical dependen-
cies in the posterior when making local decisions.
But in an edge-factored model, the edges are all con-
ditionally independent, given that y is a spanning
tree.

As a post hoc experiment, we compared
purely greedy attachment (attach each word to its
maximum-weighted parent, without any tree con-
straints). Edge scores as defined in the model were
compared to minimum Bayes-risk posterior scores,
and the latter were consistently better (though this
always under-performed optimal spanning-tree de-
coding, unsurprisingly). This comparison serves
only to confirm that minimum Bayes-risk decoding
is a way to circumvent independence assumptions
(here made by a decoder), but only when the trained
model does not make those particular assumptions.
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7 Conclusion

We have shown how to carry out exact marginaliza-
tion under an edge-factored, conditional log-linear
model over nonprojective dependency trees. The
method has cubic runtime in the length of the se-
quence, but is very fast in practice. It can be used
in conditional training of such a model, in minimum
Bayes-risk decoding (regardless of how the model is
trained), and in training with hidden variables. We
demonstrated how each of these techniques gives re-
sults competitive with state-of-the-art existing de-
pendency parsers.
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Abstract

This paper provides an algorithmic frame-
work for learning statistical models involv-
ing directed spanning trees, or equivalently
non-projective dependency structures. We
show how partition functions and marginals
for directed spanning trees can be computed
by an adaptation of Kirchhoff’s Matrix-Tree
Theorem. To demonstrate an application of
the method, we perform experiments which
use the algorithm in training both log-linear
and max-margin dependency parsers. The
new training methods give improvements in
accuracy over perceptron-trained models.

1 Introduction

Learning with structured data typically involves
searching or summing over a set with an exponen-
tial number of structured elements, for example the
set of all parse trees for a given sentence. Meth-
ods for summing over such structures include the
inside-outside algorithm for probabilistic context-
free grammars (Baker, 1979), the forward-backward
algorithm for hidden Markov models (Baum et
al., 1970), and the belief-propagation algorithm for
graphical models (Pearl, 1988). These algorithms
compute marginal probabilities and partition func-
tions, quantities which are central to many meth-
ods for the statistical modeling of complex struc-
tures (e.g., the EM algorithm (Baker, 1979; Baum
et al., 1970), contrastive estimation (Smith and Eis-
ner, 2005), training algorithms for CRFs (Lafferty et
al., 2001), and training algorithms for max-margin
models (Bartlett et al., 2004; Taskar et al., 2004a)).
This paper describes inside-outside-style algo-
rithms for the case of directed spanning trees. These
structures are equivalent to non-projective depen-
dency parses (McDonald et al., 2005b), and more
generally could be relevant to any task that involves
learning a mapping from a graph to an underlying
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spanning tree. Unlike the case for projective depen-
dency structures, partition functions and marginals
for non-projective trees cannot be computed using
dynamic-programming methods such as the inside-
outside algorithm. In this paper we describe how
these quantities can be computed by adapting a well-
known result in graph theory: Kirchhoff’s Matrix-
Tree Theorem (Tutte, 1984). A naive application of
the theorem yields O(n*) and O(n®) algorithms for
computation of the partition function and marginals,
respectively. However, our adaptation finds the par-
tition function and marginals in O(n?) time using
simple matrix determinant and inversion operations.

We demonstrate an application of the new infer-
ence algorithm to non-projective dependency pars-
ing.  Specifically, we show how to implement
two popular supervised learning approaches for this
task: globally-normalized log-linear models and
max-margin models. Log-linear estimation criti-
cally depends on the calculation of partition func-
tions and marginals, which can be computed by
our algorithms. For max-margin models, Bartlett
et al. (2004) have provided a simple training al-
gorithm, based on exponentiated-gradient (EG) up-
dates, that requires computation of marginals and
can thus be implemented within our framework.
Both of these methods explicitly minimize the loss
incurred when parsing the entire training set. This
contrasts with the online learning algorithms used in
previous work with spanning-tree models (McDon-
ald et al., 2005b).

We applied the above two marginal-based train-
ing algorithms to six languages with varying de-
grees of non-projectivity, using datasets obtained
from the CoNLL-X shared task (Buchholz and
Marsi, 2006). Our experimental framework com-
pared three training approaches: log-linear models,
max-margin models, and the averaged perceptron.
Each of these was applied to both projective and
non-projective parsing. Our results demonstrate that
marginal-based training yields models which out-
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perform those trained using the averaged perceptron.
In summary, the contributions of this paper are:

1. We introduce algorithms for inside-outside-
style calculations for directed spanning trees, or
equivalently non-projective dependency struc-
tures. These algorithms should have wide
applicability in learning problems involving
spanning-tree structures.

2. We illustrate the utility of these algorithms in
log-linear training of dependency parsing mod-
els, and show improvements in accuracy when
compared to averaged-perceptron training.

3. We also train max-margin models for depen-
dency parsing via an EG algorithm (Bartlett
et al., 2004). The experiments presented here
constitute the first application of this algorithm
to a large-scale problem. We again show im-
proved performance over the perceptron.

The goal of our experiments is to give a rigorous
comparative study of the marginal-based training al-
gorithms and a highly-competitive baseline, the av-
eraged perceptron, using the same feature sets for
all approaches. We stress, however, that the purpose
of this work is not to give competitive performance
on the CoNLL data sets; this would require further
engineering of the approach.

Similar adaptations of the Matrix-Tree Theorem
have been developed independently and simultane-
ously by Smith and Smith (2007) and McDonald and
Satta (2007); see Section 5 for more discussion.

2 Background
2.1 Discriminative Dependency Parsing

Dependency parsing is the task of mapping a sen-
tence x to a dependency structure y. Given a sen-
tence x with n words, a dependency for that sen-
tence is a tuple (h,m) where h € [0...n] is the
index of the head word in the sentence, and m €
[1...n] is the index of a modifier word. The value
h = 0 is a special root-symbol that may only ap-
pear as the head of a dependency. We use D(x) to
refer to all possible dependencies for a sentence x:
D(x) ={(h,m):he]0...n],m e [1...n]}.

A dependency parse is a set of dependencies
that forms a directed tree, with the sentence’s root-
symbol as its root. We will consider both projective
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Projective Non-projective
Single %
Root ¢ I 2 3 0 I 2 3
root He saw her root He saw her
Multi
Root ¢ 1 2 3 0 1 2 3
root He saw her root He saw her

Figure 1: Examples of the four types of dependency struc-
tures. We draw dependency arcs from head to modifier.

trees, where dependencies are not allowed to cross,
and non-projective trees, where crossing dependen-
cies are allowed. Dependency annotations for some
languages, for example Czech, can exhibit a signifi-
cant number of crossing dependencies. In addition,
we consider both single-root and multi-root trees. In
a single-root tree y, the root-symbol has exactly one
child, while in a multi-root tree, the root-symbol has
one or more children. This distinction is relevant
as our training sets include both single-root corpora
(in which all trees are single-root structures) and
multi-root corpora (in which some trees are multi-
root structures).

The two distinctions described above are orthog-
onal, yielding four classes of dependency structures;
see Figure 1 for examples of each kind of structure.
We use 7,(x) to denote the set of all possible pro-
jective single-root dependency structures for a sen-
tence x, and 7,7 (x) to denote the set of single-root
non-projective structures for x. The sets 7, (x) and
7, (x) are defined analogously for multi-root struc-
tures. In contexts where any class of dependency
structures may be used, we use the notation 7 (x) as
a placeholder that may be defined as 7,7 (x), 7,7,(x),
T, (x) or 7,7 (x).

Following McDonald et al. (2005a), we use a dis-
criminative model for dependency parsing. Fea-
tures in the model are defined through a function
f(x, h,m) which maps a sentence x together with
a dependency (h,m) to a feature vector in R%. A
feature vector can be sensitive to any properties of
the triple (x,h,m). Given a parameter vector w,
the optimal dependency structure for a sentence x is

argmax Z w - f(x,h,m) (1)
YeT(X) (hm)ey

where the set 7 (x) can be defined as 7, (x), 7,7, (x),
7, (x) or 7,77 (x), depending on the type of parsing.

yr(xsw) =



The parameters w will be learned from a train-
ing set {(x;,y;) }}*.; where each x; is a sentence and
each y; is a dependency structure. Much of the pre-
vious work on learning w has focused on training lo-
cal models (see Section 5). McDonald et al. (2005a;
2005b) trained global models using online algo-
rithms such as the perceptron algorithm or MIRA.
In this paper we consider training algorithms based
on work in conditional random fields (CRFs) (Laf-
ferty et al., 2001) and max-margin methods (Taskar
et al., 2004a).

2.2 Three Inference Problems

This section highlights three inference problems
which arise in training and decoding discriminative
dependency parsers, and which are central to the ap-
proaches described in this paper.

Assume that we have a vector 6 with values
Onm € R for all (h,m) € D(x); these values cor-
respond to weights on the different dependencies in
D(x). Define a conditional distribution over all de-
pendency structures y € 7 (x) as follows:

€xp Z m eh,m
Ply|x;6) { Zicol oo
Z(x;0) = > exp{ > ah,m} (3)
y€T (x) (h,m)ey

The function Z(x; @) is commonly referred to as the
partition function.

Given the distribution P(y |x;8), we can define
the marginal probability of a dependency (h, m) as

D

yeT (x): (h,m)€y

Phm (X3 0) = P(y|x;0)

The inference problems are then as follows:

Problem 1: Decoding:
Find argmax,cr(x) 2 (h,m)ey On.m

Problem 2: Computation of the Partition Func-
tion: Calculate Z(x; 0).

Problem 3: Computation of the Marginals:
For all (h, m) € D(x), calculate fi, ,,, (X; 0).

Note that all three problems require a maximiza-
tion or summation over the set 7 (x), which is ex-
ponential in size. There is a clear motivation for
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being able to solve Problem 1: by setting 0y, ,, =
w - f(x,h,m), the optimal dependency structure
y*(x; w) (see Eq. 1) can be computed. In this paper
the motivation for solving Problems 2 and 3 arises
from training algorithms for discriminative models.
As we will describe in Section 4, both log-linear and
max-margin models can be trained via methods that
make direct use of algorithms for Problems 2 and 3.

In the case of projective dependency structures
(i.e., 7(x) defined as 7,7(x) or 7,*(x)), there are
well-known algorithms for all three inference prob-
lems. Decoding can be carried out using Viterbi-
style dynamic-programming algorithms, for exam-
ple the O(n?) algorithm of Eisner (1996). Com-
putation of the marginals and partition function can
also be achieved in O(n?) time, using a variant of
the inside-outside algorithm (Baker, 1979) applied
to the Eisner (1996) data structures (Paskin, 2001).

In the non-projective case (i.e., 7 (x) defined as
7,,(x) or 7,7(x)), McDonald et al. (2005b) de-
scribe how the CLE algorithm (Chu and Liu, 1965;
Edmonds, 1967) can be used for decoding. How-
ever, it is not possible to compute the marginals
and partition function using the inside-outside algo-
rithm. We next describe a method for computing
these quantities in O(n?) time using matrix inverse
and determinant operations.

3 Spanning-tree inference using the
Matrix-Tree Theorem

In this section we present algorithms for computing
the partition function and marginals, as defined in
Section 2.2, for non-projective parsing. We first re-
iterate the observation of McDonald et al. (2005a)
that non-projective parses correspond to directed
spanning trees on a complete directed graph of n
nodes, where n is the length of the sentence. The
above inference problems thus involve summation
over the set of all directed spanning trees. Note that
this set is exponentially large, and there is no obvi-
ous method for decomposing the sum into dynamic-
programming-like subproblems. This section de-
scribes how a variant of Kirchhoff’s Matrix-Tree
Theorem (Tutte, 1984) can be used to evaluate the
partition function and marginals efficiently.

In what follows, we consider the single-root set-
ting (i.e., 7(x) = 7,,,(x)), leaving the multi-root



case (i.e., 7(x) = 7,,(x)) to Section 3.3. For a
sentence x with n words, define a complete directed
graph GG on n nodes, where each node corresponds
to a word in x, and each edge corresponds to a de-
pendency between two words in x. Note that G does
not include the root-symbol h = 0, nor does it ac-
count for any dependencies (0,m) headed by the
root-symbol. We assign non-negative weights to the
edges of this graph, yielding the following weighted
adjacency matrix A(6) € R™*", forh,m =1...n:

0, ifth=m
exp {0y m}, otherwise

Ah,m(e) = {

To account for the dependencies (0, m) headed by
the root-symbol, we define a vector of root-selection
scoresr(0) € R", form=1...n:

rm(0) = exp{Oom}

Let the weight of a dependency structure y € 7,;,(x)
be defined as:

¢(y; 0) = Troot(y) (0)
(h,m)€y: h#0
Here, root(y) = m : (0,m) € y is the child of the

root-symbol; there is exactly one such child, since
y € 7,,,(x). Eq. 2 and 3 can be rephrased as:

Apm(0)

.0
P(y|x;0) %9)) )
Z(x;0) = > (y;0) (5)
y€T5, (%)

In the remainder of this section, we drop the nota-
tional dependence on x for brevity.

The original Matrix-Tree Theorem addressed the
problem of counting the number of undirected span-
ning trees in an undirected graph. For the models
we study here, we require a sum of weighted and
directed spanning trees. Tutte (1984) extended the
Matrix-Tree Theorem to this case. We briefly sum-
marize his method below.

First, define the Laplacian matrix L(6) € R™*"
of G,forh,m=1...n:

22121 Ah’,m<9) ifh=m
—Apm(0) otherwise

Lpm(0) = {

Second, for a matrix X, let X ("™ be the minor of
X with respect to row h and column m; i.e., the
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determinant of the matrix formed by deleting row h
and column m from X. Finally, define the weight of
any directed spanning tree of GG to be the product of
the weights Ay, ,,, (@) for the edges in that tree.
Theorem 1 (Tutte, 1984, p. 140). Let L(0) be the
Laplacian matrix of G. Then L") (8) is equal to
the sum of the weights of all directed spanning trees
of G which are rooted at m. Furthermore, the mi-
nors vary only in sign when traversing the columns
of the Laplacian (Tutte, 1984, p. 150):

Vh,m: (=1)"*mLm) () L™ (g)  (6)

3.1 Partition functions via matrix determinants

From Theorem 1, it directly follows that

Lmmg)y = 3 I Awn)
yeU(m) (h,m)ey: h#£0
where U(m) = {y € T, : root(y) = m}. A

naive method for computing the partition function is

therefore to evaluate
n

> rm(@)L(8)

m=1

Z(6) =

The above would require calculating n determinants,
resulting in O(n*) complexity. However, as we
show below Z(#) may be obtained in O(n?) time
using a single determinant evaluation.

Define a new matrix L () to be L(8) with the first
row replaced by the root-selection scores:

. Tm () h=1
Lnm(0) = {Lh,m(e) h>1

This matrix allows direct computation of the parti-
tion function, as the following proposition shows.
Proposition 1 The partition function in Eq. 5 is
given by Z(0) = |L(8)|.

Proof: Consider the row expansion of |L(0)| with
respect to row 1:

L) = 3 (<)L (0)E0m) ()
m=1
= > DM @)L )
m=1
= S OL(6) = Z(0)
m=1

The second line follows from the construction of
L(0), and the third line follows from Eq. 6. m



3.2 Marginals via matrix inversion

The marginals we require are given by

Y

Phm(0) = ——
: (h,m)€ey

Y(y; )

©) ez

To calculate these marginals efficiently for all values
of (h,m) we use a well-known identity relating the
log partition-function to marginals

0log Z(0)

0) =
,Uhﬂn( ) 89h,m

Since the partition function in this case has a closed-
form expression (i.e., the determinant of a matrix
constructed from @), the marginals can also obtained
in closed form. Using the chain rule, the derivative
of the log partition-function in Proposition 1 is

dlog |L(6
(@) = L0
B 2”: 3 dlog |L(0)| DLy i ()
h=1m'=1 aLh/ /(0) 80}7,,'{77,

To perform the derivative, we use the identity
0log | X| B _N\T
0X N (X )
and the fact that Ly, (0)/6), ,, is nonzero for

only a few h/,m’. Specifically, when h = 0, the
marginals are given by

Hom(0) = 7in(6) [L71(6)]
and for h > 0, the marginals are given by
nm(0) = (1= 01,m)Anm(8) [L71(O)] -

(1= 4,1)Anm(8) [L71(6)] |

m,1

m,h

where 0y, ,, is the Kronecker delta. Thus, the com-
plexity of evaluating all the relevant marginals is
dominated by the matrix inversion, and the total
complexity is therefore O(n?).

3.3 Multiple Roots

In the case of multiple roots, we can still compute
the partition function and marginals efficiently. In
fact, the derivation of this case is simpler than for
single-root structures. Create an extended graph G’
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Plylxw) =

which augments G with a dummy root node that has
edges pointing to all of the existing nodes, weighted
by the appropriate root-selection scores. Note that
there is a bijection between directed spanning trees
of G’ rooted at the dummy root and multi-root struc-
tures y € 7,,7(x). Thus, Theorem 1 can be used to
compute the partition function directly: construct a
Laplacian matrix L(0) for G’ and compute the mi-
nor L(®9)(@). Since this minor is also a determi-
nant, the marginals can be obtained analogously to
the single-root case. More concretely, this technique
corresponds to defining the matrix ﬁ(e) as

L(0) = L(0)+ diag(r(0))

where diag(v) is the diagonal matrix with the vector
v on its diagonal.

3.4 Labeled Trees

The techniques above extend easily to the case
where dependencies are labeled. For a model with
L different labels, it suffices to define the edge
and root scores as Ap ., (0) = SF  exp {Oh.me}
and 7,,(8) = YF exp{fomys}. The partition
function over labeled trees is obtained by operat-
ing on these values as described previously, and
the marginals are given by an application of the
chain rule. Both inference problems are solvable in
O(n3 + Ln?) time.

4 Training Algorithms