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Message from the Organizers

These are the conference proceedings of IWCS 2023, the 15th edition of the International Conference
on Computational Semantics. This conference is supported by the Laboratoire Lorrain de recherche en
informatique et ses applications (LORIA), the Institut des Sciences du Digital Management et Cognition
(IDMC), the CNRS, Inria, Université de Lorraine, Göteborgs universitet, the Métropole du Grand Nancy,
the Atelier du vélo de Maxéville, and Erdil.

This edition of IWCS takes place after a fully remote edition of the conference in Groningen 2021.
In order to promote the community getting together IRL after the pandemic IWCS 2023 is held in an
in-person format. However, recordings of all talks are available on the iwcs2023.loria.fr http://
iwcs2023.loria.fr/ website. IWCS 2023 spans three days – 21 - 23 June – with an additional
day of satellite workshops before the conference:

• DMR 2023: The Fourth International Workshop on Designing Meaning Representation
• InqBnB4: Inquisitiveness Below and Beyond the Sentence Boundary
• ISA-19: 19th Joint ACL – ISO Workshop on Interoperable Semantic Annotation
• NALOMA’23: Natural Logic meets Machine Learning 2023

55 submissions were made to the main conference (31 long and 24 short). Each paper was reviewed by
three reviewers. 20 long papers were accepted, one of which was withdrawn. This results in 19 long
and 14 short papers with a final acceptance rate of 60 % (61 % for long and 58 % for short papers). The
final programme is diverse with topics ranging from semantic parsing, question answering, knowledge
extraction, semantics representation and Large Language Models. The programme also features two
keynotes given by Rachel Fernandez (University of Amsterdam) and Lucia Donatelli (Vrije Universiteit
in Amsterdam). We thank them for participating in IWCS 2023! Abstracts of their contributions are
available in this volume.

In keeping with IWCS tradition, an unconference event was also organised, to provide an opportunity
for open discussion on subjects proposed by conference participants. It’s a vital time to take stock of
the issues facing the community and to structure ourselves better. Among the topics were ethical issues,
compositionality and shared tasks, and closed-source models in NLP. Once again, the discussions proved
to be extremely interesting and opened up new avenues for future developments.

We take the opportunity to congratulate the best paper awards:

• Best short paper award goes to Dmitry Nikolaev and Sebastian Padó for their article and poster
“The Universe of Utterances According to BERT”.

• Best long paper award goes to Jonghyuk Park, Alex Lascarides and Subramanian Ramamoorthy
for their article “Interactive Acquisition of Fine-grained Visual Concepts by Exploiting Semantics
of Generic Characterizations in Discourse”.

Don’t hesitate to watch the recordings of their presentations!

This edition of IWCS, which brought participants together in the Octroi hall for the social event, could
not have been held without the unfailing help of the local team known as the red t-shirts team. They
did an incredible job to make sure everything was ready and running smoothly. We’d like to thank them
for their time and energy. We would also like to thank our Programme Committee members for their
detailed and helpful reviews.

We hope that IWCS2023 has been an exciting edition of the conference series that will have inspired the
computational semantics community to continue discussions while integrating many new themes.

Maxime Amblard and Ellen Breitholtz
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Invited Speakers

Raquel Fernandez, Institute for Logic, Language & Computation, University of Amsterdam

Common Ground and Audience Design in Referential Games

In conversation, we decide what to say and how to say it on the basis of what we share with
our dialogue partner. Yet, it is an open question how such accommodation can be modelled in
computational agents. Taking a visually grounded referential game as test bed, in this talk I
will present recent work where we use computational methods to analyse repeated references
exhibiting lexical entrainment and model audience-aware adaptation between agents with
asymmetric knowledge.

Lucia Donatelli, Computational Linguistics and Text Mining Lab (CLTL), Vrije Universiteit

Compositionality and Its Discontents

How do we bridge the gap between compositional semantics and broader notions ofmeaning
in computational linguistics? In this talk, I will address this question from several angles. First,
I will look at the challenge of adequately representing semantic structure when designing
meaning representations, given distinct theoretical and practical considerations. I will present
a semantic parsing methodology for normalizing discrepancies between representations at the
compositional level to better understand which design differences are semantically rooted and
which are superficial. Next, I will present work discussing how representting compositional
structure helps on tasks such as cross-lingual parsing and compositional generalization.
Finally, I will discuss implications of structured representations and models for generalizing
to applications such as situated dialogue and interaction, where compositional semantics
alone seems insufficient for robust performance.
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Abstract

Compared to English, German word order is
freer and therefore poses additional challenges
for natural language inference (NLI). We cre-
ate WOGLI (Word Order in German Language
Inference), the first adversarial NLI dataset for
German word order that has the following prop-
erties: (i) each premise has an entailed and a
non-entailed hypothesis; (ii) premise and hy-
potheses differ only in word order and nec-
essary morphological changes to mark case
and number. In particular, each premise and
its two hypotheses contain exactly the same
lemmata. Our adversarial examples require
the model to use morphological markers in
order to recognise or reject entailment. We
show that current German autoencoding mod-
els fine-tuned on translated NLI data can strug-
gle on this challenge set, reflecting the fact
that translated NLI datasets will not mirror
all necessary language phenomena in the tar-
get language. We also examine performance
after data augmentation as well as on related
word order phenomena derived from WOGLI.
Our datasets are publically available at https:
//github.com/ireinig/wogli.

1 Introduction

German is endowed with a rather free word or-
der (Bader and Portele, 2019), especially when
it comes to ordering nominal arguments in a sen-
tence. Currently, large German NLI datasets are
only available as translations from other languages.
For example, the training portion (392k pairs) of
the German XNLI dataset (Conneau et al., 2018)
is a machine translation of the English MultiNLI
training set (Williams et al., 2018). The testing por-
tion of German XNLI is a manual translation of 5k
English premise-hypothesis pairs that were newly
created by the authors of XNLI. Such translated
sets do not necessarily mirror all German-specific
linguistic phenomena, such as the freer German

word order.
We construct a new German challenge set named

WOGLI (Word Order in German Language Infer-
ence). This dataset is handcrafted and does not
stem from translation. It contains 16k premises
where each premise is accompanied by one en-
tailed (E) and one non-entailed (NE) hypothesis
that both contain the same lemmata as the premise
but change argument order. Morphological markers
are indicative of subject and (direct) object, thus
informing about the hypothesis’ entailment rela-
tionship to the premise. In other words, WOGLI
serves as a test bed for current language models’
capabilities to distinguish subject from object in
the context of German word order.

Our contributions are as follows:

1. We propose the first NLI dataset that specifi-
cally targets German word order phenomena.

2. We show that current German autoencoding
models fine-tuned on the translated XNLI
dataset can struggle on our proposed chal-
lenge set (Sections 4 and 5), tending to always
predict entailment for both hypotheses.

3. We show that data augmentation can help per-
formance on WOGLI but needs a considerable
number of examples to work (Section 6).

4. We derive generalization sets including sim-
ilar word order phenomena to WOGLI to in-
vestigate how the augmented models transfer
to these datasets and show that German word
order remains challenging in NLI (Section 7).

All our datasets are publically available1.

2 German Word Order

The topological model. The topological model
(Drach, 1937) describes regularities in German

1https://github.com/ireinig/wogli
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Clause Order Prefield L brack. Middlefield R brack. Count (% of accus.)
Main SO Peter sieht den Mann 231 (86%)

Peter sees the manACC

Peter sees the man
OS Den Mann sieht Peter 38 (14%)

The manACC sees Peter
Peter sees the man

Emb. SO dass Peter den Mann sieht 546 (99%)
that Peter the manACC sees
that Peter sees the man

OS dass den Mann Peter sieht 6 (1%)
that the manACC Peter sees
that Peter sees the man

Table 1: Examples for word order in declarative, active German main and embedded clauses with subject and
(accusative) direct object arguments, with corpus statistics from Bader and Häussler (2010). As in the remainder of
this paper, the subject is always bold. Transliterations and translations (in italics) are provided below each example.

word order, dependent on the concepts of prefield
and middlefield for constituent positioning. In this
model, so-called left and right brackets form “[t]he
skeleton of the sentence” (Bader and Häussler,
2010, p. 719), while other fields are defined accord-
ing to the position of the verb (Dürscheid, 2012).

Declarative main clauses, such as Peter sieht den
Mann at the top of Table 1, have a verb-second
order. The left bracket contains the finite verb and
the prefield is filled with one constituent (Bader
and Häussler, 2010; Dürscheid, 2012). In contrast,
embedded clauses, such as dass Peter den Mann
sieht in the bottom half of Table 1, have a verb-
last order. In verb-last clauses, the left bracket is
occupied by a subjunction, the right bracket by a
finite verb or a verb complex, and other constituents
are placed in the middlefield (Dürscheid, 2012).

While subject followed by object (SO) is viewed
as the canonical word order, it is possible to place
the object before the subject (OS) in both embed-
ded and main clauses (Table 1). In the main clause
either the subject or object is placed in the pre-
field, in embedded clauses both are placed in the
middlefield but in varying order.

OS acceptability and minimal pairs. The
marked OS order is more frequent in main clauses
involving the prefield (Bader and Häussler, 2010)
(around 14% of main clauses with accusative di-
rect object) and in the active voice (Bader et al.,
2017) (see data and examples in Table 1). There-
fore, we construct our challenge set using only such
clauses to raise acceptability of the marked OS
word order examples. Even in the prefield, OS or-

der can vary in acceptability dependent on relative
constituent weight (Siewierska, 1993) (shorter be-
fore longer), discourse properties such as givenness
(Bader and Portele, 2019) (given before new) and
semantic properties such as agency (Siewierska,
1993; Bader and Häussler, 2010) (animate before
inanimate). As we focus on simple grammatical
examples without further interference, however,
all our constituents are short and all premises and
hypotheses are single sentences. To ensure that en-
tailed and non-entailed sentences are semantically
plausible, all our constituents refer to persons.

German word order in XNLI. We extract hy-
potheses in the training portion of the translated
German XNLI (henceforth, GXNLI-train) that are
declarative main clauses with a length between 4
and 9 tokens. The 38,090 extracted clauses are in
active voice and contain one subject NP and one
direct object NP in accusative case. We exclude
clauses that start with prepositions or adverbs to
limit ourselves to prefield cases. Only 1.8% (698
clauses) of the extracted clauses are in OS order,
compared to the 14% to be expected in a German
corpus according to Bader and Häussler (2010).
Additionally, a vast majority of the 698 OS clauses
start with the same demonstrative pronoun object
das/this, e.g. Das werde ich tun/This I will do, thus
offering little variety. The extreme prevalence of
the SO order in GXNLI-train hypotheses may be
due to its translated nature.
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3 WOGLI construction

Verb Collection. We collected 50 frequent Ger-
man transitive verb types including agentive (such
as warnen/warn), object-experiencer (such as er-
schrecken/startle) and subject-experiencer (such as
lieben/love) verbs. All verbs can take animate (hu-
man) subjects as well as animate (human) direct
objects, and all objects take the accusative case.
All verbs are not symmetric, meaning that they do
not lead to bidirectional entailments.2 In addition,
none of the verbs need to split prefixes when used
in main clauses so that the resulting premises have
a very simple SVO structure. All verbs occur at
least 70 times in GXNLI-train. Consequently, any
difficulties that a language model will experience
are unlikely to be due to verb rarity.

Noun Collection. We collected 144 noun types
describing humans that function as direct object or
subject in our premises/hypotheses. These include
38 masculine common nouns such as Gast/guest,
each of which was seen at least 10 times in GXNLI-
train and 24 feminine common nouns such as
Lehrerin/(female) teacher. We collected feminine
common nouns by searching for the suffix in in
GXNLI-train, which often indicates female persons
in German. The unbalanced masculine-feminine
split is due to the automatic translation of GXNLI-
train as gender-neutral English job descriptions, for
example doctor, are most frequently translated via
the German male form, e.g. Arzt instead of the
female form Ärztin3. We also collected 41 female
and 41 male first names that occur at least 10 times
in GXNLI-train. The 144 noun types yield 181 dif-
ferent noun surface forms (nominative/accusative,
plural/singular).

Premise and Hypothesis Generation. We auto-
matically generated German premises as declara-
tive, present tense, main clauses in the active voice
with SVO structure (see lines 1 and 5) in Table 2).
Each SVO premise is accompanied by two hypothe-
ses. H1-SO (NE) exchanges object and subject
including changing S/O case markers and poten-
tially verb number markers. Therefore, similarly
to English, this change leads to non-entailment, as

2For example, for the symmetric verb heiraten/marry, X
marries Y would entail Y marries X, which would not allow
us to automatically derive non-entailed hypotheses.

3We could have made up the shortfall by including more
feminine forms, even if they do not occur in GXNLI-train, but
we consider it more important for this study to keep lexical
differences to the fine-tuning set minimal.

the premise The doctor warns the client and the
corresponding H1 The client warns the doctor il-
lustrate. We call this subset WOGLI-SO, as the
new subject precedes the object. H2-OS (E) simply
swaps argument order but keeps case and number
markers intact, leading to a sentence synonymous
to the premise but with marked OS word order.
The resulting set of entailed hypotheses is called
WOGLI-OS. Table 2 shows two full examples with
case and number marking.

We have 17 patterns due to combinations of dif-
ferent argument NPs, including masculine and fem-
inine proper names and common nouns as well as
singular and plural arguments. Subjects/objects
are either a simple proper name (such as Maria)
or consist of an article4 and a common noun, e.g.
der Arzt/the doctor. Consequently, each sentence
always has a length of four or five words. A list
of all 17 patterns is provided in Table 6 in the Ap-
pendix; we exclude the patterns in Table 7 in the
Appendix as they generate ambiguous hypotheses,
due to the absence of disambiguating morpholog-
ical markers. The 17 patterns in WOGLI can be
divided into two groups: 5 all-singular patterns
that combine two singular nominal arguments (see
first example in Table 2) and 12 singular-plural
patterns in which one argument is singular and the
other one is plural (see second example in Table 2).
In all 9 patterns involving a masculine singular NP,
(i) masculine determiners and (ii) masculine com-
mon nouns belonging to the weak declension type5

carry morphological markers of case. Proper nouns
never change surface forms. Additionally, in all
singular-plural patterns, verb number agreement
with the subject always leads to a change in the
verb’s surface form between E and NE hypotheses.

WOGLI statistics. We generate 1,000 premises
per pattern by randomly selecting an appropriate
subject/object and verb from our lists, leading to
17,000 possible premises. As in random generation,
some premises are generated twice, we deduplicate
and are left with 16,971 premises. H1-SO (NE) and
H2-OS (E) are deterministically generated from the
premises, leading to 33,942 sentence pairs.

4We used the articles ein (indef.), der (def.) and dieser
(demonstrative), as well as their feminine and plural forms.

5The six masculine common nouns in WOGLI that
belong to the weak declension type are Kunde/Kunden/client,
Student/Studenten/student, Journalist/Journalisten/journalist,
Patient/Patienten/patient, Soldat/Soldaten/soldier and
Zeuge/Zeugen/witness. The remaining masculine nouns,
e.g. Anwalt/lawyer, maintain the same surface forms in
nominative and accusative.
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Premise Der/Dieser/EinNOM−SG−M Arzt warntSG den/diesen/einenACC−SG−M Kunden†

The/This/ANOM−SG−M doctor warnsSG the/this/aACC−SG−M client
The/This/A doctor warns the/this/a client

H1-SO (NE) Der/Dieser/EinNOM−SG−M Kunde† warntSG den/diesen/einenACC−SG−M Arzt
The/This/ANOM−SG−M client warnsSG the/this/aACC−SG−M doctor
The/This/A client warns the/this/a doctor

H2-OS (E)* Den/Diesen/EinenACC−SG−M Kunden† warntSG der/dieser/einNOM−SG−M Arzt
The/This/AACC−SG−M client warnsSG the/this/aNOM−SG−M doctor
The/This/A doctor warns the/this/a client

H3-OS (NE)* Den/Diesen/EinenACC−SG−M Arzt warntSG der/dieser/einNOM−SG−M Kunde†
The/This/AACC−SG−M doctor warnsSG the/this/aNOM−SG−M client
The/This/A client warns the/this/a doctor

Premise Der/Dieser/EinNOM−SG−M Minister empfiehltSG die/dieseACC−PL−F Autorinnen
The/This/ANOM−SG−M minister recommendsSG the/theseACC−PL−F authors
The/This/A minister recommends the/these authors

H1-SO (NE) Die/DieseNOM−PL−F Autorinnen empfehlenPL den/diesen/einenACC−SG−M Minister
The/TheseNOM−PL−F authors recommendPL the/this/aACC−SG−M minister
The/These authors recommend the/this/a minister

H2-OS (E)* Die/DieseACC−PL−F Autorinnen empfiehltSG der/dieser/einNOM−SG−M Minister
The/TheseACC−PL−F authors recommendsSG the/this/aNOM−SG−M minister
The/This/A minister recommends the/these authors

H3-OS (NE)* Den/Diesen/EinenACC−SG−M Minister empfehlenPL die/dieseNOM−PL−F Autorinnen
The/This/AACC−SG−M minister recommendPL the/theseNOM−PL−F authors
The/These authors recommend the/this/a minister

Table 2: Two examples of WOGLI premise-hypothesis pairs, one for the pattern sing masc v sing masc and
one for the pattern sing masc v pl fem. Underlined words have different surface forms in NE and E hypotheses
and carry distinguishing morphological markers of case and/or number. Nouns belonging to the weak declension
type are identified by †. Hypotheses H3 are not part of WOGLI proper but will be used in a generalization set called
WOGLI-OS-hard as they demand to both process marked OS word order as well as recognising non-entailment in
the face of high word overlap. As in the remainder of this paper, hypotheses with a marked word order are identified
by an asterisk.

All word lists with GXNLI-train frequencies and
translations can be found in our Github repository.
Each of the 50 verb types appears between 308
and 383 times (mean: 339.4 times) in the 16,971
premises. They also appear 20 times on average per
pattern in the premises. Table 8 in the Appendix
gives noun statistics for WOGLI.

4 Experiments on WOGLI

Models. We use two German models and one
multilingual BERT model:

• BERT-base6 is a cased base BERT model pre-
trained by the MDZ Digital Library team on
16GB of German-language text.

• GBERT-large7 is a BERT model pre-trained
on 163.4GB of data (Chan et al., 2020), using
the same cased vocabulary as BERT-base.8

6https://huggingface.co/dbmdz/
bert-base-german-cased

7https://huggingface.co/deepset/
gbert-large

8Other large-scale German language models such as Gott-

• mBERT-base9 is a cased BERT model pre-
trained on 104 languages (Devlin et al., 2019).

Since models were fine-tuned on GXNLI-train in
a three-class setting, we merge contradiction and
neutral into non-entailed predictions for evaluations
on WOGLI. Fine-tuning details are provided in
Section C of the Appendix.

Results (see Table 3). As a sanity check, we first
test our models on GXNLI-test. Our models’ per-
formances on GXNLI-test are broadly in line with
published work. Conneau et al. (2020) achieve an
accuracy of 81.2% on GXNLI-test with a monolin-
gual BERT-base model, higher than our 76.67%.
However, their model uses a larger vocabulary (40k,
ours: 31k) and was pre-trained on a larger corpus
(up to 60GB, ours: 16GB). This particular model is
unfortunately not available. Other prior work con-
centrates on multilingual models: GBERT-large’s

BERT (Scheible et al., 2020) and GELECTRA (Chan et al.,
2020) are of similar size and downstream performance. Thus,
we use GBERT-large as a representative.

9https://huggingface.co/
bert-base-multilingual-cased
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size is smaller than mT5-base (580m parameters)
by Xue et al. (2021), but its performance of 84.65%
on GXNLI-test exceeds the one reported for mT5-
base (81.6%). Devlin et al. (2019) achieve an accu-
racy of 75.9% with mBERT-base (Translate Train
Cased)10, in line with ours.

On WOGLI, both base models completely
fail, labeling almost all instances as entailments.
GBERT-large performs a bit better, suggesting that
the language model’s scale plays a role in its ability
on WOGLI. However, it still shows a strong ten-
dency for the entailment class and the results are
not robust across runs. Our vocabulary is frequent
and present in GXNLI-train and our sentences have
a very simple grammar. Therefore, the models’
poor performances on WOGLI suggest that not all
German-specific linguistic phenomena are repre-
sented in the translated GXNLI-train, similar to our
GXNLI word order analysis in Section 2.11

5 Error analysis

All analyses in this section are carried out on en-
semble predictions (majority vote of the 5 runs) of
the strongest model in Table 3, GBERT-large. The
ensemble model reaches an accuracy of 57.82% on
WOGLI and 27.41% on WOGLI-SO.

5.1 Fluency

We measure the correlation of model performance
and linguistic acceptability, approximating the lat-
ter via pseudo-loglikelihood (Salazar et al., 2020).
WOGLI premises have an average PLL of −30.54
(SD: 8.318). H1-SO (NE) hypotheses have an av-
erage PLL of −30.56 (SD: 8.287), while H2-OS
(E) hypotheses are less fluent due to marked word
order, with an average PLL of −36.53 (SD: 8.535).
GBERT-large performs worse on SO (NE) pairs
than on the less fluent OS (E) pairs; fluency thus
does not play an important role in the model’s per-
formance on WOGLI. Instead, the lexical overlap
heuristic (Naik et al., 2018; McCoy et al., 2019;
Gururangan et al., 2018) is a possible reason for
the degradation on non-entailed pairs.

10Results on XNLI are provided in the corre-
sponding GitHub repository: https://github.
com/google-research/bert/blob/master/
multilingual.md#results.

11One question that arises is whether even larger models or
models pretrained on substantially more data will solve the
problem. Other monolingual models for German are sparse.
We therefore ran two large, publically available, multilingual
model checkpoints fine-tuned on XNLI on WOGLI. They also
do not perform well (see Section D in the Appendix).

5.2 Performance by subject and object
properties

We now focus on WOGLI-SO (NE) only as this is
the part of the dataset where the models fail.

Gender. Regarding the gender of arguments in
WOGLI, we formulate the following hypothesis:

A1 SO hypotheses with masculine subjects (ob-
jects) are easier to classify than the ones with
feminine subjects (objects).

A1 can be explained by (a) the presence of gender
bias due to translation in GXNLI-train (see Sec-
tion 3) or (b) morphological differences between
masculine and feminine NPs.

Performance on instances in WOGLI-SO (NE)
with masculine common noun subjects is indeed
significantly higher than for feminine common
noun subjects. The same holds for common noun
objects (see also Table 10 in the Appendix). How-
ever, this does not transfer to proper names. Gender
bias in GXNLI-train (a) as an explanation for A1
is therefore unlikely.

Morphological differences between feminine
and masculine NPs (b), however, are a possible
explanation for A1. Feminine articles and com-
mon nouns have the same surface forms in ac-
cusative/nominative. Masculine articles and com-
mon nouns, however, can bear morphological case
markers. The masculine singular articles der, ein
and dieser are the only articles in WOGLI to
change surface forms in the accusative to den, einen
and diesen. Additionally, singular masculine com-
mon nouns belonging to the weak declension type
also carry case markers. Morphological markers in
some masculine NPs could thus be helpful for the
model to distinguish subject from object.

Referential properties of subjects/objects. In
prefield SO sentences, definite NPs tend to precede
indefinite NPs (Weber and Müller, 2004), proba-
bly because indefinite constituents are often new
and definite constituents are often given (Chafe,
1976). Although XNLI and WOGLI do not con-
tain discourse context, preference for SO sentences
with definite before indefinite NPs might be encap-
sulated in pretraining data. We thus hypothesize
that:

A2 SO hypotheses in which a definite NP pre-
cedes an indefinite NP are easier to classify.
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Evaluation set BERT-base (110m) GBERT-large (335m) mBERT-base (172m)
GXNLI-test 76.65 (0.41) 84.65 (0.163) 75.16 (0.552)
WOGLI 50.16 (0.133) 57.68 (1.86) 50.01 (0.015)
WOGLI-SO (NE) 0.33 (0.269) 27.42 (7.828) 0.02 (0.029)
WOGLI-OS (E)* 100 (0.005) 87.94 (4.171) 100 (0.0)

Table 3: Accuracies for two German and one multilingual model on GXNLI-test and WOGLI, averaged over 5 runs.
All are trained on GXNLI-train. Accuracies are computed for 3 classes in GXNLI-test and 2 classes in WOGLI.

We separate WOGLI constituents into definite and
indefinite following Prince (1992): definite and
demonstrative articles, as well as proper names
are markers of definiteness, while indefinite ar-
ticles point to indefiniteness. We then separate
WOGLI-SO (16,971 pairs) into two groups: pre-
ferred (14,671 pairs) and dispreferred (2,300
pairs). Pairs in the dispreferred group are opposed
to the aforementioned discourse hierarchy in that
indefinite constituents precede definite constituents
in the SO hypothesis. Pairs in the preferred group
form the three other possible cases: definite pre-
cedes indefinite, definite precedes definite and in-
definite precedes indefinite; these cases are not in
opposition to the hierarchy.

GBERT-large achieves an accuracy of 29.85%
on the SO pairs in the preferred group but only
11.78% on the dispreferred group (difference sig-
nificant at 1% significance level, z-test for propor-
tions). Therefore we can confirm A2.

Number. Lastly, we analyse the role of verb num-
ber agreement in classifying WOGLI-SO (NE)
instances. As explained in Section 3, WOGLI
patterns either combine only singular arguments
(all-singular) or a singular and a plural argument
(singular-plural). Only in the latter group of pat-
terns, subject-verb agreement leads to a change in
the verb’s surface form from the premise to the H1-
SO (NE) hypothesis (see empfehlen/recommendPL

vs. empfiehlt/recommendsSG in the second exam-
ple in Table 2). We investigate the importance of
verb number agreement for classifier performance
by separating WOGLI-SO (16,971 pairs) into two
groups, all-singular (4,997 pairs) and singular-
plural (11,974 pairs).

GBERT-large achieves an accuracy of 36.66%
on the SO pairs in the all-singular group and
23.54% on the singular-plural group (difference
significant at 1% significance level, z-test for pro-
portions). Thus the number switch in the verb oc-
curring in singular-plural SO hypotheses is not a
particularly helpful cue for the classifier.

6 Data augmentation

Following McCoy et al. (2019) and Min et al.
(2020) on data augmentation with challenge sets,
we hypothesize that augmenting GXNLI-train with
a WOGLI subset can be helpful.

We sample 1,037 premises and their correspond-
ing E/NE hypotheses from WOGLI, resulting in
2,074 training instances. Each of the 17 patterns oc-
curs 61 times. All 50 verb lemmas are represented,
each appearing between 18 and 25 times. All 181
noun forms appear at least once.12

We concatenate these WOGLI instances with
GXNLI-train, name the resulting augmented train-
ing set GXNLI+1037 and shuffle it before fine-
tuning GBERT-large 10 times on this augmented
training set. We evaluate on the remaining 31,868
WOGLI instances, named WOGLI-test-1037. This
augmented training set allows GBERT-large to clas-
sify WOGLI almost perfectly, while maintaining
its performance on GXNLI-test (Table 4).

Smaller augmentation size. We fine-tune
GBERT-large on a shuffled concatenation of
GXNLI-train and only 102 WOGLI premises
sampled in a stratified manner from the afore-
mentioned 1,037 premises along with both their
corresponding NE and E hypotheses. Each one
of the 17 patterns appears 6 times and each one
of the 50 verb lemmas appears at least once and
at most 4 times. Due to the small augmentation
size, it is not possible to ensure representation of
all 181 nouns, with 73 not appearing. We evaluate
on the remaining 33,738 WOGLI pairs, named
WOGLI-test-102. The smaller augmentation
size yields a model that performs worse and less
robustly on WOGLI test instances (Table 4).

7 Generalization experiments

McCoy et al. (2019) investigate whether augmented
models improved by simply memorizing the seen

12The nouns occur in varying frequencies due to the small
size of the augmentation set.
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Evaluation set GXNLI+1037
GXNLI-test 84.7 (0.301)
WOGLI-test-1037 99.98 (0.016)
WOGLI-SO-test-1037 (NE) 99.99 (0.008)
WOGLI-OS-test-1037 (E)* 99.97 (0.03)

(a) Larger augmentation

Evaluation set GXNLI+102
GXNLI-test 84.78 (0.244)
WOGLI-test-102 86.04 (4.091)
WOGLI-SO-test-102 (NE) 87.57 (6.428)
WOGLI-OS-test-102 (E)* 84.52 (4.45)

(b) Smaller augmentation

Table 4: Accuracy for GBERT-large fine-tuned on GXNLI-train augmented with WOGLI instances. Results are
averaged over 10 runs and computed in a 3-class (GXNLI-test) or a 2-class (WOGLI-test) setting.

templates. To do so, they evaluate them on pairs
from unseen patterns. Inspired by this setup, we
study the models’ generalization capabilities by
evaluating them on four new evaluation sets that
share structural and lexical similarities with the
WOGLI pairs that were seen during fine-tuning.

7.1 Construction of generalization sets

Pronoun subjects: WOGLI-p-subject. We re-
place the premise subject in WOGLI by a personal
pronoun (He warns the client). Correspondingly,
the H1-SO (NE) hypothesis then has the pronoun
as the object (The client warns him) whereas the en-
tailed H2-OS (E) hypothesis just swaps word order
with regards to the premise (The client warns he)
(see also Table 11 in the Appendix). To focus on
the pronominalization change, the same 17 patterns,
verb lemmas, proper nouns and common nouns are
also used in WOGLI-p-subject. In addition to the
previously mentioned morphological markers of
case and/or verb number occurring in WOGLI sen-
tences (Section 3), the masculine singular pronoun
er/he (nominative) in WOGLI-p-subject changes
surface form in the accusative case (ihn/him). Femi-
nine and plural pronouns (sie/she/her/they/them) in
WOGLI-p-subject, however, do not change surface
form. Some WOGLI premises can become dupli-
cates after replacing the subject by a personal pro-
noun. Consider the two premises Die Ärzte warnen
den Kunden/The doctorsmasc warn the client and
Die Ärztinnen warnen den Kunden/The doctorsfem
warn the client. After replacing the subject, both
premises lead to the new premise Sie warnen den
Gast/They warn the guest, since plural masculine
and plural feminine nominative personal pronouns
have the same surface form in German. We keep
only one version for such duplicates. The new gen-
eralization set contains 13,802 unique premises, or
a total of 27,604 pairs.

Dative: WOGLI-dative. We collect a new list
of 22 transitive verbs that require dative instead of
accusative objects. All verbs are not symmetric,
which ensures that NE hypotheses always have the
correct gold label. Each verb lemma appears at
least 17 times in GXNLI-train. We use the same
144 noun types as in WOGLI to generate new in-
stances. The premises again have SVO structure,
and H1 has SO (NE) and H2 has OS (E) structure.
Therefore the instances are completely parallel to
WOGLI apart from the case of the object.

In these dative constructions, 24 patterns are
possible (Table 6 in the Appendix). Each pat-
tern appears 150 times in WOGLI-dative and each
verb lemma appears between 132 and 182 times
in the premises. All possible noun surface forms
appear between 6 and 81 times in the premises.
We generate 3,600 premises, or 7,200 pairs in to-
tal. Table 12 in the Appendix shows an example.
In WOGLI-dative, all determiners (singular and
plural, feminine and masculine) change surface
forms by case. Additionally, plural masculine com-
mon nouns change surface forms in the dative if
they do not end with -n in the nominative13. As in
WOGLI, singular masculine nouns of the weak de-
clension type and verbs in singular-plural patterns
also change surface forms.

Ditransitive verbs. We collect 21 ditransitive
verbs (such as schicken/send and verheim-
lichen/conceal), each of which appears at least
6 times in GXNLI-train. Verbs are grouped
into 5 semantic categories (giving, taking,
sending, communication, secret).
Subjects and indirect objects of the verbs are
compatible with the semantic class human, so that
we can reuse the 144 noun types from WOGLI.

13Masculine nouns ending with -n in plural nominative are:
Kunden/clients, Professoren/professors, Studenten/students,
Mentoren/mentors, Patienten/patients, Soldaten/soldiers, Jour-
nalisten/journalists, Zeugen/witnesses. These nouns maintain
the same surface forms in plural dative.
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For direct objects, we use a new list of 54 common
nouns, appearing at least 15 times in GXNLI-
train. They are grouped with the verb semantic
categories so that resulting premises/hypotheses
are meaningful (thus, you can combine the direct
object Identität/identity with secret verbs but
not with sending verbs). The direct object is
always preceded by a definite article.

Ditransitive premises follow the preferred
word order SiO: subject-verb-IndirectObject-
DirectObject (The waitresses give the merchant
the cake). Very similar to WOGLI, the not-entailed
H1 hypothesis swaps the underlying arguments of
subject and indirect object, adapting case and num-
ber (The merchant gives the waitresses the cake)
whereas the entailed H2 hypothesis reorders subject
and indirect object into the marked iOS word order
without changing the meaning by keeping case and
number markers intact (The merchant give the wait-
resses the cake). The direct object is not affected.
An example is shown in Table 13 in the Appendix.
With respect to morphological markers, WOGLI-
ditransitive follows the same surface form changes
between E and NE hypotheses as WOGLI-dative,
since indirect objects in WOGLI-ditransitive are in
dative case.

Ditransitives allow for 24 unique patterns. We
allow each pattern to appear 1,000 times leading to
12,000 premises or 24,000 pairs.

WOGLI-OS-hard (NE). Neither WOGLI nor
the previous generalization datasets contain in-
stances where the marked OS word order leads
to non-entailment, i.e. where you have to recognise
non-entailment in the face of high word overlap
while at the same time processing a rare word or-
der. Therefore we create a third hypothesis H3-OS
(NE) for each WOGLI premise where we similar to
H1 invert the underlying arguments but present this
changed meaning in OS word order. Two examples
are given as H3-OS (NE) in Table 2. This is pos-
sible for all 17 WOGLI patterns. Pairing H3 with
each WOGLI premise leads to 16,971 new non-
entailed pairs. All premises as well as all lexical
items have been seen in normal WOGLI.

7.2 Generalization results

We evaluate GBERT-large fine-tuned on GXNLI
without augmentation (GXNLI+0) as well as fine-
tuned on GXNLI+1037 and on GXNLI+102 on our
four generalization sets. Results are in Table 5.

GXNLI+1037 transfers very well to WOGLI-p-

subject, while GXNLI+102 reaches an accuracy of
only 59.03% on SO instances and is less robust.
Thus, even for simple pronoun replacement a rela-
tively large augmentation size is needed. A similar
picture emerges for WOGLI-dative. Since WOGLI-
dative contains more patterns than WOGLI, we in-
vestigate whether GXNLI+102’s poor performance
is only observable in patterns that were not seen
during fine-tuning but find no preference for seen
or unseen patterns.

With respect to ditransitive pairs, GXNLI+1037
has almost perfect accuracy and GXNLI+102
reaches its best generalization set performance,
reaching similar results as on standard WOGLI.

We hypothesized that generalization to H3-OS
(NE) in WOGLI-OS-hard is the most difficult
as it contains both marked word order and non-
entailment, whereas (i) in GXNLI, the marked
word order is very rare (see Section 2) and (ii) in
WOGLI, the marked word order has always been
seen with the entailment class, potentially tripping
up an augmented model that could have learnt this
hypothesis-only fact. This turns out to be true:
GXNLI+0 classifies basically all WOGLI-OS-hard
(NE) examples wrongly as entailment and performs
even worse than the same model on the original
WOGLI-SO (NE) non-entailed examples (see the
27.42% in Table 3). With substantial augmentation
(GXNLI+1037), performance is slightly better but
the results are still both very low and unstable.

Our generalization experiments show that (i) the
augmentation set needs to be sufficiently large for
successful generalization to new NLI pairs that are
structurally similar to WOGLI and (ii) models ex-
posed to WOGLI do not necessarily generalize well
to some related datasets at all. As German word
order is quite intricate and will have additional vari-
ations for embedded or non-declarative clauses this
means training datasets need to be very large and
varied to learn German word order.

8 Related work

Many English adversarial NLI datasets have been
proposed. Some of these (Dasgupta et al., 2018;
Kim et al., 2018; Nie et al., 2019; McCoy et al.,
2019), like us, include minimal pairs with a high
word overlap between premise and hypotheses.
Kim et al. (2018), for example, change argument
order to generate non-entailments so that “under-
standing” word order is necessary to solve these.
However, in WOGLI, changes in argument order
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Evaluation set GXNLI+0 GXNLI+102 GXNLI+1037
WOGLI-p-subject-test 53.23 (1.715) 77.97 (6.653) 98.89 (0.957)
WOGLI-p-subject-SO-test (NE) 7.34 (4.16) 59.03 (13.353) 97.78 (1.916)
WOGLI-p-subject-OS-test (E)* 99.12 (0.74) 96.91 (1.822) 99.99 (0.008)
WOGLI-dative-test 58.11 (2.789) 79.4 (5.446) 94.72 (0.565)
WOGLI-dative-SO-test (NE) 17.76 (6.223) 60.87 (11.227) 91.49 (1.421)
WOGLI-dative-OS-test (E)* 98.47 (0.776) 97.93 (0.534) 97.96 (0.504)
WOGLI-ditransitive-test 73.93 (6.327) 92.59 (4.634) 99.58 (0.143)
WOGLI-ditransitive-SiO-test (NE) 50.23 (13.11) 86.55 (9.41) 99.62 (0.261)
WOGLI-ditransitive-iOS-test (E)* 97.63 (0.635) 98.63 (0.591) 99.55 (0.276)
WOGLI-OS-hard (NE)* 0.15 (0.082) 0.77 (0.75) 23.45 (15.985)

Table 5: Accuracy on generalization sets, averaged over 5 runs for GXNLI+0 and over 10 runs for remaining models

generate entailed and non-entailed hypotheses, de-
pending on keeping or changing corresponding
morphology. The more fixed English word order
does not allow for flexibility to that degree.

Regarding adversarial NLI datasets for German,
Hartmann et al. (2021) investigate negation but do
not work on word order. Tikhonova et al. (2022)
propose NLI diagnostic datasets for French, Ger-
man and Swedish. Sentence pairs are manually
translated from the Russian TERRa dataset (Shav-
rina et al., 2020) as well as from the diagnostic
dataset of GLUE (Wang et al., 2018). We inspected
a random 100 hypotheses of the German TERRa
dataset, none of which were in marked word order.
The translated GLUE benchmark is annotated with
linguistic features relevant for entailment such as
lexical semantics, logic, and predicate-argument
structure. Only the predicate-argument structure
examples include a handful where word order of
arguments has been inverted between premise and
hypothesis. However, resulting hypotheses were
often ambiguous and — in our opinion — wrongly
annotated as not-entailed. Consider the premise
John zerbrach das Fenster/John broke the win-
dow and the hypothesis Das Fenster hat John
eingeschlagen, which is ambiguous between The
windowNOM broke JohnACC (SO order, NE) OR
The windowACC broke JohnNOM (OS order, E).
This is annotated as non-entailment in the dataset,
assuming SO order with an implausible semantic
reading, whereas the marked word order with a
plausible semantic reading leads to entailment.

Unlike us, both datasets do not emphasise word
order. They are also based on translations and there-
fore rarely contain OS hypotheses.

9 Conclusion

We created WOGLI, a new NLI challenge set, in
order to examine the challenges brought by the
freer German word order. Premises, entailed and
not-entailed hypotheses contain exactly the same
lemmata; the two hypotheses differ only in word
order and morphological changes but change label.
Three current BERT-based models fine-tuned on
GXNLI-train struggle on WOGLI pairs. This poor
performance mirrors the fact that translated NLI
training sets such as GXNLI do not incorporate
all required linguistic phenomena that are specific
to the target language, German. We find that the
number of WOGLI pairs for augmentation during
fine-tuning must be sufficiently high in order to (i)
learn WOGLI and (ii) generalize to other WOGLI-
like pairs. Even with a larger augmentation set and
a large pretrained model, a generalization set that
differs more from WOGLI, such as WOGLI-OS-
hard (NE) , remains difficult.

In future experiments, we will expand WOGLI
datasets to contain additional variation, such as
tense variation, more complex sentence structure
(additional arguments and adjuncts, active/passive),
more complex constituent structure and other sen-
tence types (non-declarative, embedded). This will
also allow us to conduct more fine-grained error
analyses regarding the hierarchies that influence
the linearization of arguments and thus word order.
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Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wallace Chafe. 1976. Givenness, constrastiveness, def-
initeness, subjects, topics, and point of view, pages
25–55. Academic Press, New York.

Branden Chan, Stefan Schweter, and Timo Möller. 2020.
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A SVO patterns

Table 6 lists the patterns that we use to build
WOGLI and generalization sets. Table 7 lists the 8
patterns that we exclude from WOGLI. The noun
phrases in the SO and OS form have the same mor-
phological surface form and the verb also has the
same form in both word orders. Therefore, SO and
OS meaning are not distinguishable.

B WOGLI statistics

Table 8 shows counts and ratios for the subject
and object roles in WOGLI. The different noun
categories shown in the first column generally take
the subject role as often as they take the object role.

C Fine-tuning details

The input sequence, consisting of the premise-
hypothesis pair, is encoded using the given BERT
model. The final hidden state of the special
[CLS] token constitutes the aggregate representa-
tion of the input sequence, following Devlin et al.
(2019). This representation is then passed through
a dropout layer and a linear classification layer,
which maps it to the three-label classification space.
All models were fine-tuned for three epochs, with
linear warmup over 6% of the first steps and a max-
imum sequence length of 128. BERT-base and
mBERT-base were fine-tuned with a batch size of
16 and a learning rate of 5e−5. GBERT-large was
fine-tuned with a batch size of 32 and a learning
rate of 5e−6. Regarding mBERT-base, fine-tuning
on the translated training set is comparable to the
Translate Train setup in Conneau et al. (2018).
We also experimented with fine-tuning mBERT-
base on the English MNLI training set, similarly to
the Zero Shot setup in Conneau et al. (2018), but
found better validation set accuracy using the trans-
lated training set. GBERT-large was fine-tuned on
one NVIDIA A6000 GPU. Base models were fine-
tuned on one NVIDIA T4 GPU. Fine-tuning took
approximately 2 hours per run.

D WOGLI results for other models

Table 9 shows results on WOGLI for publi-
cally available checkpoints (single runs) of two
larger multilingual models: XLM-RoBERTa-
large14 (Conneau et al., 2020) (XLM-R) and the

14https://huggingface.co/joeddav/
xlm-roberta-large-xnli

generative encoder-decoder model mT5-large15

(Xue et al., 2021). These two models have con-
siderably more parameters than GBERT-large. Ac-
cording to the respective model cards:

• XLM-R was fine-tuned on the concatenation
of the MNLI training set and the XNLI vali-
dation and test sets.

• mT5-large was fine-tuned on the MNLI and
the XTREME XNLI16 (Hu et al., 2020) train-
ing sets.

Both large models perform much better than
the two base models (see Table 3 in the paper),
which suggests again that model scale is rele-
vant on WOGLI. However, they do not achieve
higher overall accuracies than GBERT-large (aver-
age: 57.68%). Interestingly, mT5-large performs
best on WOGLI-SO, but struggles substantially
on WOGLI-OS, often labeling these pairs as non-
entailments.

ChatGPT: discussion. In a small-scale experi-
ment, we evaluate the ability of the recently made
available research preview for the chatbot ChatGPT
(February 13 version) by OpenAI17 on WOGLI.
This chatbot is based on the autoregressive GPT-3
model (Brown et al., 2020), as opposed to autoen-
coding models such as BERT, and has recently
drawn a lot of attention in the AI community. We
attempted to obtain classifications from ChatGPT
on a WOGLI subset consisting of of 51 WOGLI-
SO and 51 WOGLI-OS pairs. However, we ob-
served (i) a strong prompt-dependence (Suzgun
et al., 2022), as even minor changes in the prompt’s
phrasing lead to different answers by the chatbot
and (ii) overall inconsistent results across multiple
instances of showing the model the same sets of
pairs. Due to the inconsistency of these preliminary
results, we leave it to future work to assess Chat-
GPT’s capabilities on WOGLI in a more systematic
manner and for a range of different prompt styles.

E Error analysis: performance by gender

Table 10 provides more detailed results for the anal-
ysis discussed in Section 5.2.

15https://huggingface.
co/alan-turing-institute/
mt5-large-finetuned-mnli-xtreme-xnli

16This version of the XNLI dataset contains different
machine translations than the original XNLI dataset:
https://www.tensorflow.org/datasets/
catalog/xtreme_xnli

17https://openai.com/blog/chatgpt

12



Dative, Ditransitive WOGLI, WOGLI-OS-hard (NE)
pnoun v sing masc pnoun v sing masc
pnoun v plural masc pnoun v plural masc
pnoun v plural fem pnoun v plural fem
pnoun v sing fem
plural masc v pnoun plural masc v pnoun
plural masc v sing masc plural masc v sing masc
plural masc v sing fem plural masc v sing fem
plural masc v plural fem
plural masc v plural masc
plural fem v sing masc plural fem v sing masc
plural fem v sing fem plural fem v sing fem
plural fem v pnoun plural fem v pnoun
plural fem v plural fem
plural fem v plural masc
sing masc v sing masc sing masc v sing masc
sing masc v plural masc sing masc v plural masc
sing masc v plural fem sing masc v plural fem
sing masc v sing fem sing masc v sing fem
sing masc v pnoun sing masc v pnoun
sing fem v sing masc sing fem v sing masc
sing fem v plural fem sing fem v plural fem
sing fem v plural masc sing fem v plural masc
sing fem v pnoun
sing fem v sing fem

Table 6: Exhaustive list of patterns used to build WOGLI-dative, WOGLI-ditransitive (24 patterns) and WOGLI (17
patterns). WOGLI-OS-hard (NE) uses the same patterns as WOGLI.

F Generalization sets

Tables 11, 12 and 13 provide examples for pairs
created for generalization sets.
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Pattern Premise Hypothesis Label
sing fem v pnoun Die Freundin begrüßt David . David begrüßt die Freundin . ?

The friendCASE?−SING−FEM greets
DavidCASE?−SING−MASC

DavidCASE?−SING−MASC greets the
friendCASE?−SING−FEM

pnoun v sing fem David begrüßt die Freundin . Die Freundin begrüßt David . ?
DavidCASE?−SING−MASC greets the
friendCASE?−SING−FEM

The friendCASE?−SING−FEM greets
DavidCASE?−SING−MASC

pnoun v pnoun Walter begrüßt David . David begrüßt Walter . ?
WalterCASE?−SING−MASC greets
DavidCASE?−SING−MASC

DavidCASE?−SING−MASC greets
WalterCASE?−SING−MASC

sing fem v sing fem Die Mitbewohnerin begrüßt die Freundin . Die Freundin begrüßt die Mitbewohnerin . ?
The flatmateCASE?−SING−FEM greets
the friendCASE?−SING−FEM

The friendCASE?−SING−FEM greets the
flatmateCASE?−SING−FEM

plural fem v plural fem Die Freundinnen begrüßen die Mitbe-
wohnerinnen .

Die Mitbewohnerinnen begrüßen die Fre-
undinnen .

?

The friendsCASE?−PL−FEM greet the
flatmatesCASE?−PL−FEM

The flatmatesCASE?−PL−FEM greet the
friendsCASE?−PL−FEM

plural masc v plural masc Die Freunde begrüßen die Mitbewohner . Die Mitbewohner begrüßen die Freunde . ?
The friendsCASE?−PL−MASC greet the
flatmatesCASE?−PL−MASC

The flatmatesCASE?−PL−MASC greet the
friendsCASE?−PL−MASC

plural masc v plural fem Die Freunde begrüßen die Mitbewohnerin-
nen .

Die Mitbewohnerinnen begrüßen die Fre-
unde .

?

The friendsCASE?−PL−MASC greet the
flatmatesCASE?−PL−FEM

The flatmatesCASE?−PL−FEM greet the
friendsCASE?−PL−MASC

plural fem v plural masc Die Freundinnen begrüßen die Mitbe-
wohner .

Die Mitbewohner begrüßen die Freundin-
nen .

?

The friendsCASE?−PL−FEM greet the
flatmatesCASE?−PL−MASC

The flatmatesCASE?−PL−MASC greet the
friendsCASE?−PL−FEM

Table 7: The 8 patterns that we exclude from WOGLI and WOGLI-OS-hard (NE)

Noun # types Subject count Object count Subject/Object ratio
Mean Min Max Mean Min Max Mean Median Min Max

Masc
pnoun

41 36.8
(4.22)

27 49 36.5
(6.89)

25 53 1.05 1.0 0.58 1.72

Fem
pnoun

41 36.3
(5.71)

27 52 36.5
(6.18)

23 49 1.02 1.0 0.63 1.57

Masc
sing.
cnoun

38 131.4
(12.23)

108 163 131.5
(10.38)

114 158 1.01 1.0 0.78 1.38

Masc
pl.
cnoun

38 78.7
(9.23)

60 97 78.8
(8.86)

53 99 1.01 1.01 0.75 1.36

Fem
sing.
cnoun

24 124.8
(11.05)

103 143 124.7
(7.90)

109 137 1.01 1.0 0.81 1.25

Fem pl.
cnoun

24 124.7
(12.08)

100 144 124.8
(12.40)

101 145 1.01 0.98 0.77 1.29

Table 8: Average counts and subject to object ratios for different groups of nouns in WOGLI. For example,
masculine proper nouns are subjects 36.8 times and objects 36.5 times on average. Values in parentheses are
standard deviations.

Evaluation set XLM-R (550m) mT5-large (1.2b)
WOGLI 55.42 52.26
WOGLI-SO (NE) 46.2 68.7
WOGLI-OS (E)* 64.64 35.82

Table 9: Accuracies on WOGLI for two larger multilingual models. Results are for single runs.
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Constituent Argument Conditional probability Signif.
Premise Hypo (SO) Definition Value (%)

Common noun Subject Object
p(correct | SO,m. cnoun psubj) 28.17

95%
p(correct | SO, f. cnoun psubj) 26.22

Common noun Object Subject
p(correct | SO,m. cnoun pobj) 33.11

99%
p(correct | SO, f. cnoun pobj) 22.42

Proper noun Subject Object
p(correct | SO,m. pnoun psubj) 27.50

n.s.
p(correct | SO, f. pnoun psubj) 27.98

Proper noun Object Subject
p(correct | SO,m. pnoun pobj) 23.25

n.s.
p(correct | SO, f. pnoun pobj) 21.06

Table 10: Conditional probabilities for the correctness of predictions given the subject’s or the object’s gender. The
rightmost column indicates a significant difference between compared proportions at the 99% or 95% confidence
level, or no significance (n.s.), using a z-test for the equality of two proportions.

Premise ErNOM−SG−M warntSG denACC−SG−M Gast
HeNOM−SG−M warnsSG theACC−SG−M guest
He warns the guest

H1-SO (NE) DerNOM−SG−M Gast warntSG ihnACC−SG−M

TheNOM−SG−M guest warnsSG himACC−SG−M

The guest warns him
H2-OS (E)* DenACC−SG−M Gast warntSG erNOM−SG−M

TheACC−SG−M guest warnsSG heNOM−SG−M

He warns the guest

Table 11: Examples of WOGLI-p-subject pairs. Just as in WOGLI, the entailed hypothesis has a marked word order.

Premise EinNOM−SG−M Richter gratuliertSG diesenDAT−PL−M Beratern
ANOM−SG−M judge congratulatesSG theseDAT−PL−M consultants
A judge congratulates these consultants

H1-SO (NE) DieseNOM−PL−M Berater gratulierenPL einemDAT−SG−M Richter
TheseNOM−PL−M consultants congratulatePL aDAT−SG−M judge
The consultants congratulate a judge

H2-OS (E)* DiesenDAT−PL−M Beratern gratuliertSG einNOM−SG−M Richter
TheseDAT−PL−M consultants congratulatesSG aNOM−SG−M judge
A judge congratulates these consultants

Table 12: Examples of WOGLI-dative pairs. Just as in WOGLI, the entailed hypothesis has a marked word order.

Premise DieNOM−PL−F Kellnerinnen gebenPL einemDAT−SG−M Händler den Kuchen
TheNOM−PL−F waitresses givePL aDAT−SG−M merchant the cake
The waitresses give the cake to a merchant

H1-SiO (NE) EinNOM−SG−M Händler gibtSG denDAT−PL−SG Kellnerinnen den Kuchen
ANOM−SG−M merchant givesSG theDAT−PL−SG waitresses the cake
A merchant gives the cake to the waitresses

H2-iOS (E)* EinemDAT−SG−M Händler gebenPL dieNOM−PL−F Kellnerinnen den Kuchen
ADAT−SG−M merchant givePL theNOM−PL−F waitresses the cake
The waitresses give the cake to a merchant

Table 13: Examples of WOGLI-ditransitive pairs. Just as in WOGLI, the entailed hypothesis has a marked word
order.
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Abstract

A large amount of literature on conceptual ab-
straction has investigated the differences in con-
textual distribution (namely contextual vari-
ability) between abstract and concrete concept
words (joy vs. apple), showing that abstract
words tend to be used in a wide variety of lin-
guistic contexts. In contrast, concrete words
usually occur in a few very similar contexts.
However, these studies do not take into account
another process that affects both abstract and
concrete concepts alike: specificity, that is, how
inclusive a category is (ragdoll vs. mammal).
We argue that the more a word is specific, the
more its usage is tied to specific domains, and
therefore its contextual variability is more lim-
ited compared to generic words.

In this work, we used distributional semantic
models to model the interplay between contex-
tual variability measures and i) concreteness, ii)
specificity, and iii) the interaction between the
two variables. Distributional analyses on 662
Italian nouns showed that contextual variability
is mainly explainable in terms of specificity or
by the interaction between concreteness and
specificity1. In particular, the more specific a
word is, the more its contexts will be close to it.
In contrast, generic words have less related con-
texts, regardless of whether they are concrete
or abstract.

1 Introduction

In the study of lexical semantic representation, an
extensive debate focuses on explaining the differ-
ences between words referring to concrete and ab-
stract concepts. According to the Dual Coding The-
ory (Paivio, 1991), concrete words are represented
in two different systems, one language-based and
one image-based, while abstract words are primar-
ily or exclusively represented in the former system.

1Data available at https://osf.io/2qm5e/?view
_only=fce6b4bb895a41658ed97512afa65ae3

The Context Availability Hypothesis (Schwanen-
flugel, 2013) instead argues that all word meanings
are represented in a single verbal code, but con-
crete words have stronger and denser associations
to contextual knowledge than abstract ones. Both
theories agree on two points: i) the meaning of
abstract words is essentially acquired via language,
for instance, through distributional statistics ex-
tracted from the linguistic input, and ii) concrete
words are “semantically richer” than abstract ones,
thereby explaining their processing advantage, the
so-called concreteness effect (Jessen et al., 2000).

The investigation of the distributional properties
of concrete and abstract concepts and words has
taken different paths, implementing different met-
rics to measure how words behave in context (see
Section 2.1). We hereby use the general term con-
textual variability (Hoffman, 2016) as an ‘umbrella’
that includes all proposed metrics of contextual be-
haviors, described in the next section. Overall, the
previous works on contextual variability showed
that words referring to concrete concepts occur in a
few but very similar syntagmatic contexts, depend-
ing on the fact that their meanings are tied to a fixed
class of objects or events in the environment. On
the other hand, abstract concepts are characterized
by a greater degree of variability across contexts,
commonly attributed to their association with less
well-defined, intangible experiences or properties.

Notwithstanding, it is worth noting that prior in-
vestigations have mainly focused on the divergence
between concrete and abstract concepts, while po-
tentially overlooking any discrepancies in speci-
ficity, that is, the level of inclusivity in the referen-
tial category. This can be problematic because it
may lead to comparisons between very specific con-
crete concepts like muffler and very generic abstract
concepts like manner, or very generic concrete con-
cepts like substance and very specific abstract con-
cepts like sorrow. Crucially, generic and specific
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words may have different contextual distributions:
specific words may tend to be used in limited sets
of contexts because they denote precise entities oc-
curring in texts characterized by high-resolution
semantics. Conversely, generic words may be used
in a wider range of diverse contexts because they
are less precise and, therefore, more easily applica-
ble to different contexts; generic words may occur
in texts characterized by low-resolution semantics
and, therefore, may occur with a wider range of
shallowly-related contexts.

With the present study, we tackle the following
questions:

• How does concreteness explain the variation
in contextual distributions of nouns?

• How does specificity explain the variation in
contextual distributions of nouns?

• How does the interaction between concrete-
ness and specificity explain the variation in
contextual distributions of nouns?

These questions are addressed through a series of
regression studies in which the concreteness ratings
Montefinese et al. (2014) and specificity ratings
Bolognesi and Caselli (2022) of 662 Italian nouns
are modeled with a set of corpus-based indices
representing their context variability.

2 Related works

2.1 Operationalizations of Contextual
Variability

When investigating how concrete and abstract con-
cepts are processed in the mind, researchers have
endeavored to relate such differences to the differ-
ences between the contexts of occurrence (a.k.a.
contextual variability) of concrete and abstract
words (Hoffman, 2016, for a review).

The Context Availability hypothesis, for in-
stance, notes that concrete words tend to have more
robust and intricate contextual associations than ab-
stract ones. This notion is supported by Schwanen-
flugel and Shoben (1983) ’s early research, which
found that speakers find it easier to imagine a con-
text for concrete words compared to abstract words.
Schwanenflugel et al. demonstrated that when an
explicit context was provided for concrete and for
abstract words alike, the processing advantage of
concrete over abstract words disappeared. The au-
thors concluded that abstract words were more dif-
ficult to process because participants struggled to

place them in a meaningful context, but this dif-
ficulty was reduced when an explicit context was
provided.

Hoffman et al. (2013) employed the term seman-
tic diversity to describe the average similarity be-
tween the contexts in which a word appears. They
discovered that concrete words are used in a lim-
ited, closely interconnected set of contexts. For
instance, the term ”spinach” typically occurs only
in contexts related to cooking and eating which
are similar to one another. On the other hand, ab-
stract words (e.g., ”life”) are used in a more diverse
range of unrelated contexts, resulting in high se-
mantic diversity values. Moreover, Recchia and
Jones (2012) introduced two contextual measures
related to abstract and concrete concepts. The first
measure, contextual dispersion (CD), refers to the
number of different content areas (or domains) in
which a word appears, as proposed by Pexman
et al. (2008). The second measure is the number
of semantic neighbors (NSN), which measures the
number of words that appear within a particular
radius of a high-dimensional semantic space. The
authors found that NSN is higher for abstract than
for concrete words, and this peculiarity facilitated
the processing of abstract concepts in lexical deci-
sion tasks.

Overall, cognitive studies tend to indicate that
abstract words are more likely to be used in a wider
variety of linguistic contexts, shallowly related to
the target word. Concrete words tend to be used in
tighter networks of similar contexts, and this may
facilitate their retrieval.

2.2 Computational Models of Abstraction

In the last decade, several computational models
have been suggested to automatically validate the
cognitive assumptions about the contextual differ-
ence between abstract and concrete concepts.

Similarly to Recchia and Jones (2012), Hill et al.
(2014) quantitatively analyzed the different pat-
terns of association for words varying in concrete-
ness, providing possible cognitive underpinnings
for the differences observed. The authors showed
that abstract concepts occur in a broader range of
contexts and are organized according to associative
principles; concrete concepts instead have few spe-
cific contexts of occurrence, and they tend to be
organized according to (semantic) similarity princi-
ples. Recently, Frassinelli et al. (2017) investigated
the degree of concreteness of co-occurring con-
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texts for concrete and abstract English words. They
built a vector space model for nouns from the Brys-
baert et al. (2014) concreteness norms; to retain
concreteness scores of contexts and distributional
neighbors, they restricted the vocabulary to nouns
attested in the dataset (that is, they built a symmet-
ric co-occurrence matrix in which all targets and
context words are from concreteness norms). The
authors reported that the more a noun is concrete,
the more it tends to appear with other concrete
nouns and has a more extensive range of concrete-
ness scores; on the contrary, the more a word is ab-
stract, the more it occurs with other abstract words.
While this outcome aligns with multiple studies in
the literature, the methodological choice of restrict-
ing the number of contexts to the words attested in
Brysbaert et al. (2014) may have biased the actual
distributional pattern of these words.

Working on Italian, Lenci et al. (2018) observed
that abstract words, which according to some stud-
ies tend to be characterized by a heavier emotional
load compared to concrete words (Vigliocco et al.,
2014, i.a.) tend also to co-occur with contexts
with an overall higher emotive load. This has been
observed based on affective statistical indices esti-
mated as distributional similarity with a restricted
number of seed words strongly associated with a
set of basic emotions. This study provides addi-
tional empirical evidence to support the tendency
for more concrete words to be associated with
higher contextual richness. Overall, previous stud-
ies indicated that concrete words tend to have less
diverse but more compact and strongly associated
distributional neighbors than abstract words.

While a variety of computational models have
been focusing on the contextual properties of con-
crete and abstract words, there are virtually no
computational models focused on the contextual
variability of specific and generic words due to
the challenges associated with comparing these
two variables. One major obstacle is the lack of
human ratings available for measuring specificity.
Notably, Schulte im Walde and Frassinelli (2022)
offer a unique exception to this trend. The authors
tested how various distributional measures repre-
sent abstract-concrete and general-specific word
pairs (represented as hypernym-hyponym pairs
from WordNet, Miller and Fellbaum (1991)). Anal-
yses revealed that the distributional similarity of
contextual words surrounding a target (i.e., neigh-
borhood density) predicts word concreteness: the

higher the similarity, the more concrete the word
tends to be, albeit this effect is more pronounced for
nouns than for verbs. Nevertheless, this measure
is not useful for correctly predicting the specificity
of a word, which depends on frequency and word
entropy. To the best of our knowledge, they are the
first to include both Concreteness and Specificity
in this type of investigation. However, there are
two limits to this approach. First, as mentioned
above, they operationalized word specificity as a
binary property (rather than a continuous variable)
extracted from WordNet. Arguably, such binary
distinction does not capture the fine-grained in-
formation encoded in a continuous variable. In a
second stance, the authors keep concreteness and
specificity separated without considering the inter-
action between the two variables in relation to their
context variability.

3 Materials and Methods

3.1 Concreteness and Specificity datasets

For our study, we employed the Bolognesi and
Caselli (2022) dataset (henceforth, BC), a col-
lection of human-generated specificity ratings for
1049 Italian words. Specificity ratings were col-
lected online adopting the Best-Worst Scaling
method (Louviere et al., 2015); given 4-word tu-
ples (belonging to the same POS), participants had
to select the most specific and the least specific
word within each tuple. The words used to col-
lect specificity ratings with this methodology are
the same used to collect concreteness ratings by
Montefinese et al. (2014). Bolognesi and Caselli
investigated the relation between human-generated
concreteness and specificity ratings and reported
a low positive and significant correlation of 0.316
(Spearman correlation coefficient; p < 0.05), cor-
responding to an R2 of 0.1. This result is evidence
that Concreteness and Specificity capture differ-
ent aspects of abstraction, which are only partially
correlated with one another.

The entire BC dataset contains 771 nouns, 220
adjectives, and 59 verbs. Our study focused only
on nouns, the larger group among the three parts of
speech (Figure 1).

3.2 Italian Distributional Semantic Spaces

For our experiment, we built a Distributional Se-
mantic Space (DSM) for Italian words. We ex-
tracted the textual information from La Repub-
blica (Baroni et al., 2004) and itWaC (Baroni et al.,
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Figure 1: Distribution of the 662 nouns used in the analy-
sis. To approximate the four prototypical types of words
different colors are hereby used, although concreteness
and specificity have been analyzed as continuous and
not as categorical variables.

2009), two pos-tagged and dependency-parsed cor-
pora of Italian. Specifically, we selected a list of
nouns, verbs, and adjectives (lemmas used as con-
texts) with a frequency ≥200 and collected their
co-occurrences within a 2- and 10-word symmetric
window centered on the target word, which was
a noun. We filtered out <target, context> pairs
with a frequency of less than 202. The resulting
co-occurrence counts were used to i) extract the
most associated contexts of a word, using Positive
Pointwise Mutual Information (PPMI3) score, and
ii) built a count-based matrix4 with PPMI weights
and reduced it to 300 dimensions by applying the
Singular Value Decomposition (SVD) transforma-
tion (Landauer and Dumais, 1997). While we are
aware that there are more recent and sophisticated
methods, we rely on more stable and explicable
representations for the aim of this investigation.
We obtained two semantic spaces depending on the
context window: ITAw2 selects nearby words (±2
lemmas surrounding the target word) and contains
19,054 lemmas; ITAw10 considers a wide contex-
tual window (±10 words) and includes 65,532 lem-
mas. ITAw10 covers most of the nouns of the BC
dataset (754/771), while ITAw2 includes only 662
nouns.

We performed qualitative analyses of the top
contexts (CX) and nearest neighbors (NN) for
words exemplifying the four prototypical configu-

2We tested different values for the filter hyper-parameters
and selected the combination that best balances coverage with
parser noise.

3This is the standard Pointwise Mutual Information, but
with negative values raised to 0.

4We employed DISSECT toolkit (Dinu et al., 2013).

rations of concreteness and specificity: abitazione
(‘house’; generic concrete), ambulanza (‘ambu-
lance’; specific concrete), fantasia (‘fantasy’;
generic abstract), and bancarotta (‘bankrupt’; spe-
cific abstract). Tables 1,2, 3, and 4 report the top
neighbors (NNs) ordered by cosine similarity, and
the top contexts (CXs) ranked by their PPMI with
the target word. Comparing the values reported
in the tables reveals differences in the contexts
extracted using different window sizes. As ex-
pected, verbs and adjectives are the most associated
contexts within a ±2-word window. Considering
a larger context, top contexts are mostly nouns
for concrete words (abitazione, ‘house’ and ambu-
lanza, ‘ambulance’; Table 1 and 2); some verbs are
however highly associated to abstract words (fanta-
sia, ‘fantasy’ and bancarotta, ‘bankrupt’; Table 3
and 4). While the contexts selected are pretty dif-
ferent, the resulting spaces are coherently similar:
the neighbors produced by the two spaces overlap
a lot, specifically for abitazione (‘house’; Table 1)
and bancarotta (‘bankrupt’; Table 4). However,
similarity scores are considerably lower for ITAw2,
indicating that the space is less dense than ITAw10,
probably because of the lower number of lemmas
and occurrences used to build the DSM.

3.3 Distributional Measures of Contextual
Variability

The outcome provided by previous empirical mod-
els is that the more abstract a word is, the higher
the number of contexts in which it occurs. Con-
versely, the more concrete a word is, the lower
should be the number of its contexts. As introduced
above, several computational measures have been
proposed to operationalize contextual variability,
i.e., how close a word and its contexts are, by rely-
ing on DSMs. Given the variety of formulas and
terminology, we decided to re-implement previous
measures of contextual variability, distinguishing
between two subgroups: neighborhood density and
contextual richness.

Neighborhood density quantifies how dense the
distributional space is near a target word, that is,
how close its paradigmatic neighbors are. Looking
at a different angle, the higher the average similar-
ity between a word and its neighbors means that
many words have a similar contextual distribution.
Following Schulte im Walde and Frassinelli (2022),
we provide two measures of neighborhood density,
Target-Neighbors (TN) similarity and Neighbors-
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CX NN
w2 w10 w2 w10

dibire-v 10.82 censimenti-n 10.07 appartamento-n 0.87 alloggio-n 0.8
‘adhibit-v’ ‘census-n’ ‘apartment-n’ ‘lodging-n’
perquisire-v 10.44 furti-n 9.34 alloggio-n 0.7 appartamento-n 0.79
‘search-v’ ‘thefts-n’ ‘lodging-n’ ‘apartment-n’
irruzione-n 9.17 enfiteusi-n 9.16 edificio-n 0.63 fabbricato-n 0.78
‘raid-n’ ‘emphyteusis-n’ ‘building-n’ ‘building-n’
perquisizione-n 8.80 pertinenziali-n 8.97 immobile-n 0.61 abitativo-a 0.76
‘search-n’ ‘appurtenant-n’ real ‘estate-n’ ‘housing-a’
lussuoso-a 8.54 sfitto-a 8.85 villa-n 0.6 condominio-n 0.74
‘luxurious-a’ ‘vacant-a’ ‘villa-n’ ‘condominium-n’
situare-v 8.24 unifamiliare-a 8.68 albergo-n 0.58 edificio-n 0.72
‘situate-v’ ‘single-family-a’ ‘hotel-n’ ‘building-n’

Table 1: Top 6 contexts (CX) and nearest neighbors (NN) of abitazione (‘house’; spec:2.2, conc:4.63).

CX NN
w2 w10 w2 w10

sirena-n 12.28 automedica-n 14.95 pullman-n 0.66 autoambulanza-n 0.86
‘siren-s’ ambulance ‘car-s’ ‘bus-s’ ambulance ‘car-s’
autista-n 11.20 barellieri-n 14.93 trafelato-a 0.62 soccorrere-v 0.81
‘driver-s’ ‘stretcher bearers-n’ ‘breathless-a’ ‘rescue-v’
attrezzare-v 10.51 suem-n 13.52 taxi-n 0.61 pompiere-n 0.8
‘equip-v’ ‘Medical Service acronym’ ‘taxi-n’ ‘firefighter-n’
caricare-v 9.86 bonura-n 13.22 autoambulanza-n 0.61 elisoccorso-n 0.78
‘load-v’ - ‘ambulance-n’ ‘helicopter-n’
trasportare-v 9.73 voltolini-n 12.84 barella-n 0.6 soccorso-n 0.78
‘transport-v’ ‘private ambulance service’ ‘stretcher-n’ ‘rescue-n’
croce-n 8.85 elisoccorso-n 12.45 autobus-n 0.59 soccorritore-n 0.78
‘cross-n’ ‘helicopter rescue-n’ ‘bus-n’ ‘rescuer-n’

Table 2: Top 6 contexts (CX) and nearest neighbors (NN) of ambulanza (‘ambulance’; spec: 4.14, conc:4.75).

CX NN
w2 w10 w2 w10

inventivo-a 12.37 juvenilia-n 11.48 immaginazione-n 0.7 immaginazione-n 0.81
‘inventive-a’ ‘juvenilia-n’ ‘imagination-n’ ‘imagination-n’
fervido-a 12.21 hamill-n 10.68 invenzione-n 0.58 fantastico-a 0.78
‘fervid-a’ ‘hamill-n’ ‘invention-n’ ‘fantastic-a’
stuzzicare-v 12.00 sbizzarrire-v 10.27 intelligenza-n 0.54 emozione-n 0.76
‘tease-v’ ‘indulge-v’ ‘intelligence-n’ ‘emotion-n’
guizzo-n 11.12 solleticare-v 9.57 immaginario-n 0.54 fascino-n 0.76
‘leer-n’ ‘tickle-v’ ‘imaginary-n’ ‘charm-n’
scatenato-a 10.83 pindarico-a 9.21 estro-n 0.52 passione-n 0.75
‘unbridled-a’ ‘pindaric-a’ ‘whimsical-n’ ‘passion-n’
sfrenato-a 10.56 trezzano-n 9.13 passione-n 0.5 invenzione-n 0.75
‘unbridled-a’ ‘trezzano-n’ ‘passion-n’ ‘invention-n’

Table 3: Top 6 contexts (CX) and nearest neighbors (NN) of fantasia (‘fantasy’; spec:1.62, conc: 1.66).

CX NN
w2 w10 w2 w10

fraudolento-a 15.03 fraudolento-a 13.51 falso-n 0.8 concussione-n 0.88
‘fraudulent-a’ ‘fraudulent-a’ ‘false-n’ ‘concussion-n’
orlo-n 11.53 pluriaggravato-a 13.29 peculato-n 0.79 peculato-n 0.86
‘hemming-n’ ‘aggravated-a’ ‘embezzlement-n’ ‘embezzlement-n’
concorrere-v 10.02 orlo-n 10.78 appropriazione-n 0.78 fraudolento-a 0.85
‘concur-v’ ‘hem-n’ ‘embezzlement-n’ ‘fraudulent-a’
concorso-n 9.36 crac-n 9.71 concussione-n 0.76 aggiotaggio-n 0.84
‘conspiracy-n’ ‘crac-n’ ‘concussion-n’ ‘agiotage-n’
truffa-n 7.90 bancarotta-n 9.64 ricettazione-n 0.75 crac-n 0.82
‘fraud-n’ ‘bankruptcy-n’ ‘fencing-n’ ‘cracking-n’
falso-n 7.25 delinquere-v 9.36 truffa-n 0.75 truffa-n 0.81
‘forgery-n’ ‘delinquency-v’ ‘swindling-n’ ‘fraud-n’

Table 4: Top 6 contexts (CX) and nearest neighbors (NN) of bancarotta (‘bankrupt’; spec: 4, conc: 2.27).
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Neighbors similarity (NN):

• TN: the average vector-space distance be-
tween t and its k nearest neighbors.

• NN: the average vector-space distance be-
tween the k nearest neighbors of t.

Vector-space distance is computed as the cosine
similarity between two word vectors.

Conversely, context richness looks at the syn-
tagmatic contexts in which a word occurs. It con-
siders the strength of a target noun with its most
associated contexts and looks at their respective
similarity (similar to semantic diversity). In this
case, the highest the value, the more the top con-
texts have similar vectorial representations, so they
refer to similar objects and events; on the contrary,
lower scores represent a high variability in the con-
texts. We implemented several measures of con-
text richness. Target-Contexts similarity (TC) and
Contexts-Contexts (CC) similarity are derived from
Schulte im Walde and Frassinelli (2022), while Dis-
tributional of Context Richness (DCR) index was
proposed by Lenci et al. (2018):

• TC: the average vector-space distance be-
tween t and its k top contexts.

• CC: the average vector-space distance be-
tween the k top contexts of t.

• DCR: the mean of the PPMI scores of the k
top contexts of the target noun t.

Additionally, we computed the contextual entropy,
or average information content (Shannon, 1948),
which is a classic measure in computational lin-
guistics and is used as an estimate of context infor-
mativeness. The assumption is that the higher the
entropy, the more uncertain a word is, or a word
is less expected given the linguistic contexts. This
measure has been previously introduced as a mea-
sure of hypernymy prediction (Santus et al., 2014;
Shwartz et al., 2017). We calculated the word en-
tropy (H) considering all the probability between a
word and the contexts selected to create the vector
space:

H(w) = −
∑

c

p(c|w) ∗ log2(p(c|w) (1)

where p(c|w) is obtained through the ratio between
the frequency of < w, c > and the total frequency
of w.

ITAw10 ITAw2
M St.dev M St.dev

TN 5 0.771 0.069 0.648 0.133
TN 10 0.741 0.069 0.610 0.133
TN 20 0.706 0.069 0.566 0.131
TN 50 0.651 0.067 0.498 0.122
NN 5 0.694 0.110 0.609 0.214
NN 10 0.653 0.104 0.558 0.216
NN 20 0.606 0.099 0.496 0.210
NN 50 0.535 0.091 0.392 0.182
TC 5 0.457 0.174 0.239 0.171
TC 10 0.433 0.159 0.225 0.158
TC 20 0.406 0.145 0.208 0.144
TC 50 0.364 0.133 0.191 0.131
CC 5 0.434 0.206 0.277 0.251
CC 10 0.392 0.171 0.231 0.200
CC 20 0.351 0.134 0.191 0.154
CC 50 0.306 0.100 0.154 0.113
DCR 6.009 2.158 5.979 3.476
H 4.783 1.003 4.641 1.065

Table 5: Descriptive statistics of CV measures.

Neighborhood density and context richness are
complementary aspects of contextual variability;
however, we keep them separated to avoid theoreti-
cal and methodological misinterpretations. Formu-
las are reported in Appendix A.

4 Experimental investigations

Given the 662 nouns attested both in ITAw2 and
ITAw10 spaces, we computed all the contextual
variability metrics introduced above. We per-
formed the computation with different values of k
(5, 10, 20, 50) to see how many contexts/neighbors
influence the overall score. Table 5 summarizes
all computed measures’ mean and standard devi-
ation. We observed that the higher the number of
contexts/neighbors we select, the lower the overall
mean. Moreover, the DCR metric has a high stan-
dard deviation, indicating that PPMI scores are not
well distributed. The low PPMI scores could be
the cause of this issue (see the qualitative analyses
above), probably a consequence of the small dimen-
sion of the corpora used to extract co-occurrences.
This issue is also partially reflected in the entropy
measure, with a standard deviation of around 1.

Subsequently, we ran a series of regression
analyses5 aimed at understanding the relations be-
tween contextual variability metrics and concrete-
ness/specificity scores. In detail, we ran linear re-
gressions having a context variability metric as the
dependent variable; as the independent variable, we
consider i) only the Concreteness score, ii) only the
Specificity score, and iii) the interaction between

5We ran linear models in R (v. 3.6.3) with stats package.
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(a) ITAw10 (b) ITAw2

Figure 2: Summary of the linear models using Concreteness, Specificity, Concreteness*Specificity as independent
variables, and various context density measures as the dependent variable. Cells report Adjusted R2 values and
p-values. ‘.’=p < 0.1, *=p < .05, **=p < .01, and ***=p < .001.

Concreteness and Specificity. The results of the
models are reported in Figure 2. The values in the
cells correspond to the coefficient of determination
R2, which represents the proportion of the total
variation in the dependent variable y accounted for
by the regression model. Values of R2 closer to
1 (darker colors) imply that the regression model
explains a large portion of the variance in context
variability.

4.1 Main study
The analysis below focuses on interpreting the dis-
tributional measures of contextual variability com-
puted on the larger vector space, that is, ITAw10
(Figure 2a).

Concreteness effects Linear models with Con-
creteness as the independent variable are generally
significant, but Concreteness ratings only explain
between 1.3% and 5% of contextual variability
scores (left column). This outcome reveals that
contextual variability metrics vary as a function
of concreteness, but the effect of concreteness on
contextual variability is not very high.

Specificity effects Conversely, Specificity ex-
plains the variability of contextual variability val-
ues (middle column): TN and NN neighborhood
density (around 11-13%), TC context richness
(27%), and entropy (34%). However, it does not
explain CC metrics. In detail, Specificity explains
most of the TC 10 and entropy variance, achiev-
ing the highest R2 scores. The scatterplot in Fig-
ure 3 reveals a positive correlation between the

two scores (Spearman’s ρ = 0.516, p < 0.001).
Vice versa, entropy is negatively correlated with
Specificity (Spearman’s ρ = -0.617, p < 0.001):
the lower the entropy, the higher the Specificity
of a word (Figure 4). The two measures reflect
the same situation that we can interpret as follows:
more specific words occur in similar contexts,
so they are strongly related to one another, and
the word is more expected. Contrariwise, more
generic words are used in a variety of contexts
that are not tightly bonded to the target, so a
word is more uncertain for the given context.

We performed a qualitative analysis to corrob-
orate the observed trend. Let us consider the
contexts of hamburger (spec: 4.5, conc: 4.1,
TC 10: 0.7), a very specific and concrete word.
Its contexts are highly similar, and all indicate
other kinds of food, such as ketchup-n, patatina-n
(‘fries’), polpetta-n (‘meatball’), panino-n (‘sand-
wich’), manzo-n (‘beef’). Besides, abstract words
with high specificity scores have similar associ-
ated contexts. Given collera (‘rage’; spec: 2.9,
conc: 2.8, TC 10:0.71), its contexts are other kinds
of emotions, like lussuria-n (‘lust’), cupidigia-n (‘
cupidity’), insaziabile-a (‘voracious l’), brama-n
(‘eagerness ’), avidità-n (‘greed’).

On the contrary, generic words (i.e., with a low
Specificity score) have more heterogeneous con-
texts, causing a drop in the TC values. For in-
stance, acqua (‘water’) is concrete but also quite
generic (spec: 2.7, conc: 4.7, TC 10: 0.04), and
this is reflected in the variety of less related con-
texts, such as canaletti-n (‘channels’), cascatelle-n
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Figure 3: Correlation plots between Specificity and
TC 10 measure computed in the ITAw10 space.

Figure 4: Correlation plots between Specificity and
entropy (H) measure computed in the ITAw10 space.

(‘cascade’), gocciolina-n (‘drip’), refrigeratore-n
(‘chiller’), rigonfiare-v (‘swell’). Similarly, tempo
(‘time’; spec: 1.6, conc: 1.6, TC 10: 0.05) has
contexts related to the weather, time-traveling,
verbal mode, rhythm, and epoch: viaggiatori-n
(‘traveler’), zeitgeist-s, trapassato-a (‘past-tense’),
tiranno-a (‘tyrant’), tiranneggiare-v (‘tyranny’).

It is worth noticing that verbs are more associ-
ated with general contexts than specific ones. Qual-
itative analysis reveals that the difference in the
contextual distribution does not overlap with the
distinction between abstract and concrete nouns:
Contexts vary depending on the specificity of a
word, and this phenomenon is independent of
their concreteness.

Interaction effects Finally, we investigated the
interaction between Specificity and Concreteness
(right column). Similar to the Specificity models,
the interaction explains TC 10 contextual richness
(28.7% of the variance) and entropy measures (37%
of the variance). However, it has a limited effect
on CC measures and is not significant for neigh-
borhood density metrics. Figure 5 illustrates the
marginal effects of the interaction of the two terms

over TC 10. We can interpret this plot as follows:
words with low specificity scores (red line) have
lower context richness (TC), but within this group,
the more words are concrete, the more they tend
to have higher TC scores. However, this effect is
reversed for highly specific words (blue line): TC
scores tend to decrease for more concrete words.

A similar outcome is observed for the entropy
measure (Figure 6). Generic words, both con-
crete and abstract, have a high entropy (pink line),
meaning that these words are little expected given
the context words. Conversely, specific words
(green line) have a low entropy value, with abstract-
specific words having lower entropy than concrete-
specific words, meaning that abstract words are
more predictable from context than concrete words.

Figure 5: Interaction plot showing the relationship be-
tween Concreteness and TC 10 for different levels of
Specificity (see also Appendix B).

Figure 6: Interaction plot showing the relationship be-
tween Concreteness and entropy for different levels of
Specificity.

The interaction models reveal a scenario that
diverges from previous works: contextual variabil-
ity does not depend on the dichotomy concrete-
abstract, but more on the specificity of the word
itself. Surprisingly, abstract-specific words like
‘bankruptcy’ have lower contextual variability than
concrete-specific words like ‘hamburger’; that is,
abstract and specific words occur in a more

23



limited and predictable number of selected con-
texts.

4.2 General observations

Comparing the linear models for the two spaces,
the heatmaps in Figure 2 show that regression mod-
els are similar for neighborhood density (top of the
heatmaps). This suggests that the two distributional
spaces, while relying on different co-occurrence
patterns, tend to build similar word representations.
However, coefficients differ for context richness.
High R2 values are obtained considering the av-
erage cosine similarity between the target word
and its context (TC) for the ITAw10 space in both
Specificity and Interaction models, and average
context-context (CC) similarity explains part of the
variance in the Interaction model. Interestingly,
ITAw2 shows an opposite trend: TC scores are
not significant (Specificity and Interaction models),
and a small variance is explained for CC values
by the Specificity model. This outcome seems to
confirm that a 2-word window is too small to ex-
tract useful distributional information. Overall, the
analyses suggest that distributional measures are
helpful for investigating cognitive assumptions, but
the choice of the model could influence the final
outcome.

We also run correlations across contextual vari-
ability measures in order to see how they overlap
and complement each other. The main outcome
is that TC 10 and entropy are strongly negatively
correlated (Spearman’s ρ = -0.713, p < 0.001), but
only for ITAw10 space. As observed in the “Speci-
ficity effects” section, they represent the same dis-
tributional signature of a word but from a different
perspective. Moreover, entropy negatively corre-
lates with neighborhood density scores for both
spaces. For instance, the correlation between en-
tropy and TN 50 is ρ = -0.513 (ITAw10) and ρ =
-0.472 (ITAw10), p < 0.001. In contrast, we see
low or no correlations between neighborhood den-
sity and context richness measures. Correlation
matrices are reported in Appendix C.

To conclude, while neighborhood density mea-
sures capture some information related to both Con-
creteness and Specificity, entropy and TC 10 are
the best contextual variability metrics associated
with Specificity. It is worth noticing that TC 10
was the best measure reported by Schulte im Walde
and Frassinelli (2022), but for predicting the con-
creteness of a word in a pair.

5 Discussion and Conclusion

These analyses provide an enriched view of the re-
lationship between abstraction and contextual vari-
ability compared to previous research. In partic-
ular, by adding a neglected aspect of abstraction,
namely categorical Specificity, we observed that
the difference in contextual variability is actually
more dependent on Specificity than on Concrete-
ness. These analyses provide an enriched view of
the relationship between abstraction and contextual
variability compared to previous research. In par-
ticular, by adding a neglected aspect of abstraction,
namely categorical Specificity, we observed that
the difference in contextual variability is actually
more dependent on Specificity than on Concrete-
ness. In particular: similar and targeted contexts oc-
cur with specific words, while generic words (both
abstract and concrete) are associated with more ex-
tensive and heterogeneous contexts. To answer our
initial research questions, therefore: concreteness
explains part of the variation in contextual variabil-
ity of nouns, but more variation is explained by
specificity and by the interaction between the two
variables.

Three key points that the current study makes:
First, it revises various terminologies related to
contextual variability. Second, it is the first study
to directly explore contextual variability using the
relationship between specificity and concreteness
operationalized through human-generated ratings.
Finally, it is the first study to conduct this analy-
sis within the context of the Italian language. The
outcomes hereby reported corroborate Bolognesi
et al. (2020)’s argument: Categorical abstraction
(specificity) is a variable that is deeply affected
by language rather than by perceptual information,
and therefore it has a stronger relationship with
how words are used in context (contextual variabil-
ity). Conversely, concreteness is less shaped by the
patterns of linguistic occurrences, and arguably it
is more deeply affected by perceptual experience.

Future investigations could focus on fine-grained
analyses of different types of nouns, as well as on
adjectives and verbs. Co-occurrence patterns differ
across part-of-speech, but given the limited number
of verbs (less than 60), we preferred to focus on
nouns only. The present study opens the way to
a new line of research in cognitive and computa-
tional linguistics and provides a promising different
perspective on the analysis of concepts at different
levels of abstraction.
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A Contextual Variability Measures

Measures of neighborhood density:

• TN: the average vector-space distance be-
tween t and its k nearest neighbors.

TN(t) =
1

k

k∑

i=1

similarity(t, i) (2)

• NN: the average vector-space distance be-
tween the k nearest neighbors of t.

NN(t) =
1

k

k∑

i=1

k∑

j=1

similarity(i, j) (3)

where i ̸= j

Measures of context richness:

• TC: the average vector-space distance be-
tween t and its k top contexts.

TC(t) =
1

k

k∑

c=1

PPMI(t, ci) (4)

• CC: the average vector-space distance be-
tween the k top contexts of t.

CC(t) =
1

k

k∑

i=1

k∑

j=1

similarity(i, j) (5)

where i ̸= j

• DCR: the mean of the PPMI scores of the k
top contexts of the target noun t.

DCR(t) =
1

k

k∑

i=1

PPMI(t, i) (6)

B Interaction plot

The plot reported in Figure 5 offers a graphical
representation of the interaction (or relationship)
between two continuous predictors, namely Con-
creteness and Specificity. In detail, we displayed
the fitted values of the dependent variable (TC 10)
on the y-axis and the values of the first factor (Con-
creteness) on the x-axis. The second factor (Speci-
ficity) is represented through lines on the chart –
each possible value of the second factor gets its own
line. As representative values of Specificity, we ar-
bitrarily chose to plot only the two extreme values
(1, 4.49 of the Specificity predictor. However, we
could have plotted more values of Specificity (see
Figure 7).

Figure 7: Interaction plot showing the relationship be-
tween Concreteness and TC0 for five different levels of
Specificity.
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C Correlations Between Measures

Figure 8: Spearman’s ρ correlations among contextual
variability measures for ITAw10.

Figure 9: Spearman’s ρ correlations among contextual
variability measures for Itaw2.
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Abstract

In this research, we investigate whether BERT
can differentiate between modal verb senses
and sentence modalities and whether it per-
forms equally well on different varieties of En-
glish. We fit probing classifiers under two con-
ditions: contextualised embeddings of modal
verbs and sentence embeddings. We also inves-
tigate BERT’s ability to predict masked modal
verbs. Additionally, we classify separately for
each modal verb to investigate whether BERT
encodes different representations of senses for
each individual verb. Lastly, we employ clas-
sifiers on data from different varieties of En-
glish to determine whether non-American En-
glish data is an additional hurdle. Results indi-
cate that BERT has different representations for
distinct senses for each modal verb, but does
not represent modal sense independently from
modal verbs. We also show that performance in
different varieties of English is not equal, point-
ing to a necessary shift in the way we train large
language models towards more linguistic diver-
sity. We make our annotated dataset of modal
sense in different varieties of English available
at https://github.com/wagner-jonas/VEM.

1 Introduction

Work on contextualised embeddings learned by
large bidirectional language models such as BERT
(Devlin et al., 2019) indicates that they may cap-
ture senses of lexical items (Loureiro et al., 2021).
This has the potential to greatly accelerate varia-
tionist research, for example by finding community-
specific senses of words (Lucy and Bamman, 2021)
or tracing contact-induced semantic shifts (Miletic
et al., 2021). Modal sense1 variation has been an
area of interest for variationist researchers (see, e.g.

1Linguists often differentiate between modality, which is
analysed on sentence level, and modal verb sense for indi-
vidual modal verbs. As we investigate both, we use the term
“modal sense” where we refer to both.

Collins et al., 2014, Hansen, 2018, or Loureiro-
Porto, 2019), but has, so far, received comparably
little attention in NLP. In this paper, we investigate
to what extent modal sense is encoded in BERT
embeddings across varieties of English, and if so,
at which layer(s) and in what form.

Modality is generally analysed on sentence level
(Portner, 2009, 2–6) and is primarily expressed in
English by the use of modal verbs (Portner, 2009,
4), with each verb potentially evoking different
senses. Consider must in the following two sen-
tences: “You must complete all tasks for course
credit” and “You must be tired after the long jour-
ney”. In the first sentence, must has deontic sense,
i.e. it is used to express orders or recommendations,
which can also be expressed by e.g. should. In the
second sentence, must has epistemic sense, i.e. a
qualification of certainty. This can be expressed
by many modal verbs, such as may, can, could,
or might. In addition to these two, there are also
concessive (granting or denying permission, e.g.
may and can) and dynamic (expressing ability, e.g.
can) sense.2 The modal verb therefore affects the
interpretation of the sentence as a whole: swapping
must and may in “You must/may leave now” clearly
affects more than only the meaning of the modal
verbs themselves.

How often each modal verb expresses which
sense is prone to variation and at times starkly
differs between varieties of English. This has
been researched in-depth. For example, Collins
et al. (2014) investigate domain-specific variation
of modal verb sense distribution in Philippine En-
glish and compare it to American and British En-
glish. Hansen (2018) provides what is probably the
most comprehensive treatment of modal verb sense
in varieties of English, finding that e.g. British and
Indian English have high incidences of epistemic

2Other senses exist, but will not be discussed in this work;
see also Ruppenhofer and Rehbein (2012).

28



must, while Hong Kong and Singapore English
have higher incidences of deontic must.

Most of these studies remain small in scale. They
investigate only a small number of varieties, a small
number of modal verbs, or small corpora. This is
unsurprising, as modal verb sense annotation is
largely done manually. Large-scale computational
investigations in this area would be a valuable con-
tribution, but these different distributions of modal
senses may pose a challenge for pre-trained lan-
guage models, which are often not trained on di-
verse data and may struggle with other varieties’
different modal verbs being usage.

These simple facts about modal sense raise ques-
tions regarding BERT’s potential to capture modal
sense which have not been addressed in recent work
on probing BERT’s abilities to encode lexical se-
mantics, cf. among others, Aina et al. (2019); Pile-
hvar and Camacho-Collados (2019); Vulić et al.
(2020); Garí Soler and Apidianaki (2021). Ideally,
BERT would capture modal sense both at sentence
(in the [CLS] token) and word level (in modal verbs’
embeddings). The latter needs more differentiation:
representation could be independent from the in-
dividual verbs (e.g. epistemic must and epistemic
may share encoded epistemic sense) or different
modal senses are only represented for each indi-
vidual verb (epistemic and deontic must encode
different senses, but these would not be shared by
epistemic and deontic should). Further, it should
show systematic encodings of lexical and sentential
modal sense across different layers, in light of other
work showing linguistic systematicity in process-
ing different aspects of linguistic knowledge across
layers (Aina et al., 2019; Pilehvar and Camacho-
Collados, 2019; Vulić et al., 2020; Garí Soler and
Apidianaki, 2021). And, last but not least, it should
encode modal sense in a way that is robust to dis-
tributional differences of modal senses and verbs
across varieties of English.

Beyond accelerating variationist research, cor-
rect classification of modal sense also has relevance
for NLP tasks. Modal sense classification has been
used in connection with sentiment analysis (Liu
et al., 2014), hedging and detection of hypotheses
and speculation (Morante and Daelemans, 2009;
Vincze et al., 2008; Malhotra et al., 2013),3 and
factuality detection (Saurí and Pustejovsky, 2012),
among others. These are key tasks that, ideally,

3While Vincze et al. (2008) do not explicitly mention
modal sense, they do point to the importance of modal auxil-
iaries in uncertainty detection.

should function in different varieties of English –
not just majority varieties.

We conduct a series of experiments to investigate
if, and how, BERT encodes modal sense. We train
probing classifiers on annotated datasets (see Sec-
tion 3 for our data) and classify modal sense. We
do this for modal verbs’ embeddings as well as sen-
tence embeddings (experiment 1, Section 4). We
also train separate classifiers for each modal verb
(experiment 2, Section 5); we extend this method-
ology to data from several different varieties of
English (experiment 4, Section 7). We also test
whether BERT can predict masked modal verbs,
even if it cannot classify modal sense (experiment
3, Section 6).

2 Background

2.1 Semantic knowledge encoded in BERT

While BERT (Devlin et al., 2019) has been used to
investigate many facets of the semantic meanings
of words (e.g. Wiedemann et al., 2019; Vulić et al.,
2020; Zhang et al., 2020; Bhardwaj et al., 2021;
Garí Soler and Apidianaki, 2021; Lucy and Bam-
man, 2021; Miletic et al., 2021; Apidianaki, 2023
among others), some aspects of meaning cannot be
captured by BERT embeddings. Ettinger (2020)
found that BERT does not appear to process nega-
tion at all: both a robin is a and a robin is not a
are predicted to most likely end with bird or robin.
Therefore, more research into the kinds of meaning
contained in BERT embeddings is necessary.

Simultaneously, previous research on classifying
modal senses with static embeddings indicates that
contextualised word embeddings may be useful to
improve modal sense classification. Li et al. (2019)
use static embeddings for modal sense classifica-
tion, but adjust each embedding’s weight based on
distance from the modal verb and POS-tag, which
improves results. Marasović et al. (2016) present
one of the most comprehensive studies on modal
sense classification to date, and point to the impor-
tance of lexical features of embedded verbs and
the subject in the sentence as giving cues to the
modal verbs’ meanings. Their experiments also
analyze the effect of variation in the distribution of
modal senses in different datasets and genres. In
more recent work, Pyatkin et al. (2021) go beyond
Marasović et al. (2016)’s setup that is restricted to
modal verbs and propose a more complex modality
detection task involving a broader set of modality
triggers and the detection of events associated with
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them. As our work aims for a controlled analysis of
the representation of modal verb sense across vari-
eties of English, we follow Marasović et al. (2016)
and leave the exploration of further modality trig-
gers to future work.

2.2 Variationist NLP research

There has been some NLP research into variation
within English. For example, Lucy and Bamman
(2021) successfully use contextualised BERT em-
beddings to find community-specific meanings of
words like python, which may refer to a program-
ming language or a fictional spaceship. Similarly,
Miletic et al. (2021) use contextualised BERT em-
beddings to find contact-induced semantic shift in
English in Quebec. These studies demonstrate that
BERT can be used to study variation within En-
glish, even between different varieties. But we see
two issues with them. Firstly, much World En-
glishes research focuses types of sense variation
other than homonymy, such as the different distri-
butions of modal senses. Secondly, by using BERT
to investigate variation, the authors inherently as-
sume that BERT can capture such variation. While
their results support this assumption, this does not
mean that BERT is an adequate tool to measure all
kinds of differences between varieties of English.

The exact nature of BERT’s training data is
opaque, but Devlin et al. (2019) mention that they
use two sources of data for pre-training. These
are the 800 million word BooksCorpus (Zhu et al.,
2015), consisting of 11,038 unpublished books,
and a large 2.5 billion token corpus of Wikipedia
entries. While the exact makeup of who wrote
those texts is unknown, some reasonable guesses
can be made regarding the larger Wikipedia sam-
ple. Wikipedia publishes data on the demographic
makeup of its contributors,4 which indicates that a
plurality of edits are made from the United States,
followed by the United Kingdom and Canada. This
is not a perfect method – just because a user is ac-
cessing Wikipedia from the United States does not
mean that they also speak American English – but
it still provides a basis for the assumption that most
of BERT’s training data comes from the so-called
“Inner Circle” (Kachru, 1985), i.e. those countries
where English is spoken as a first language by most
of the population. This suggests that BERT’s train-

4https://en.wikipedia.org/wiki/
Wikipedia:Who_writes_Wikipedia and https:
//stats.wikimedia.org/wikimedia/squids/
SquidReportPageEditsPerLanguageBreakdown.htm

ing data lacks diversity with regards to varieties
of English, which may adversely affect its ability
to process English produced by speakers of those
under- or unrepresented varieties.

3 Data

We use two existing datasets to test whether BERT
can differentiate modal verb senses and construct
a new one, taking data from the International Cor-
pus of English (ICE). The first is a portion of the
Multi-Perspective Question Answering (MPQA)
dataset that has been annotated for modal sense
(Ruppenhofer and Rehbein, 2012). This consists
of 1,201 sentences taken from news articles dated
June 2001 to May 2002 (Wiebe et al., 2005; Rup-
penhofer and Rehbein, 2012). The second is
the heuristically tagged EPOS-E dataset (Maraso-
vić et al., 2019), based on the EUROPARL and
OpenSubtitles-English datasets, consisting of data
from the European Parliament and film subtitles,
comprising 2,453 sentences. Modal sense is an-
notated for each sentence in both datasets. For
comparability, we do not report results for ought,
as it is not evaluated in previous publications either
(Marasović et al., 2016). We also remove might and
shall from our results due to their low frequency.

The main difference between the two datasets
(besides the annotation methodology) is size, with
EPOS-E being almost twice the size of MPQA.
They also draw their data from different sources,
which is important given the genre effects found
by Marasović et al. (2016). MPQA includes more
senses than EPOS-E, which we discard in our anal-
ysis to maintain comparability. The balancing for
the different senses for each modal verb also varies
between them: the most common sense for must
makes up 92% of instances in MPQA, but only
60% in EPOS-E; for may, this is 74% and 87%; for
can 67% and 84%; for could 65% and 43%; and for
should 92% and 94%. This, naturally, may impact
classification results. As in previous research, we
only investigate the modal verbs that are annotated
in the dataset in cases where there is more than one
modal verb per sentence.

For the last experiment, in which we test a classi-
fier trained on EPOS-E on data from different vari-
eties of English, we use the written components of
eight sub-corpora from the International Corpus of
English (ICE; https://www.ice-corpora.uzh.ch/en.

html), a comparative corpus of varieties of English.
For each variety, the same kinds of documents (like
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student writings or fiction) are used to compile sub-
corpora of about 400,000 written tokens for each
variety (see http://ice-corpora.net/ice/index.html

for more information). We investigate Philippine
(PH), Canadian (CA), Irish (IR), Hong Kong (HK),
Sri Lankan (SL), Jamaican (JA), Nigerian (NI),
and Indian (IN) English. For each modal verb in
each variety, we randomly extract 20 sample sen-
tences that contain the modal verb for a total of
800 sample sentences. Three annotators indepen-
dently annotate these. We discard all instances
where no two annotators agree on one sense, where
the sense is unclear (e.g. due to missing context),
and false positives (e.g. must as a noun instead
of a modal verb). This leaves 782 sentences for
analysis. Agreement between the first and sec-
ond annotator is highest (83.75%), followed by
agreement between the second and third annotator
(79.88%), and between the first and third annota-
tor (78.00%). We use the majority labels as gold
labels. We call this corpus VEM – the Varieties of
English modal sense corpus – and make it available
at https://github.com/wagner-jonas/VEM.

4 Experiment 1

4.1 Methods

In the first experiment, we investigate whether
modal verb sense classification is successful using
the modal verbs’ contextualised embeddings and
sentence embeddings in the form of [CLS] tokens.
We use a logistic regression classifier (from scikit-
learn, version 1.0.2; Pedregosa et al. (2011)) with
elasticnet penalty and the L1-ratio set to 0.5. We
only train one classifier each for the modal verbs’
embeddings and [CLS] token, but report the results
split by modal sense and modal verb.

We replicate the setup from Marasović et al.
(2016): first, we randomly split MPQA into train-
ing (80%) and test (20%) sets. We then train a
logistic regression classifier on the training set and
predict modal senses in the test set. Then, we add
the data from EPOS-E to the MPQA training set –
we borrow the name CL-b

ME for this from Maraso-
vić et al. (2016) – and predict modal senses in the
same test set.

We report accuracy for each layer and sense.
There, the baseline is the sum of frequencies of
modal verbs for which that sense is the most fre-
quent one. That is, if must and shall are both most
frequently deontic, we add up their frequencies to
determine the baseline. Split by modal verb, we do

not report for each layer, as we only use the 12th
layer for classification using modal verb embed-
dings and the 7th layer for classification using the
[CLS] token, since they showed the strongest over-
all performance (see also Figures 1 and 2). Here,
the baseline is the frequency of the verb’s most
frequent sense.

4.2 Results

Classifying modal verb embeddings, we reach over-
all accuracies between 0.70 (can in MPQA) and 1.0
(must in MPQA). We beat our baseline (the most
common sense for each modal verb) for could and
must in both datasets, and additionally for can in
CL-b

ME and may in MPQA. We only dip below our
baseline for should. Marasović et al. (2016) beat
their respective baseline for should and must only.
Taking the mean accuracy for all senses any indi-
vidual verb can express, accuracies vary between
0.25 (may in CL-b

ME) and 1.0 (must in MPQA). In
this case, we beat our baseline for could and must
in MPQA.

Classifying with the [CLS] token instead, we
reach overall accuracies between 0.02 (should in
CL-b

ME) and 0.73 (may in CL-b
ME and could in

MPQA). Here, we only beat our baseline once - for
could in MPQA. In general, precision and recall
are lower than accuracy and results are stronger
for MPQA than for CL-b

ME - drastically so when
classifying using the [CLS] token. For all results,
see Table 1.

Separating the results by sense, MPQA performs
better than CL-b

ME (see Figure 1). Deontic sense is
the only sense which (semi-)consistently performs
above baseline; other senses hardly, if ever, exceed
their baseline. Classifying the [CLS] token (Figure
2), no sense consistently performs above baseline.
Accuracy in CL-b

ME fluctuates between layers, with
one sense usually reaching perfect accuracy and
others at zero accuracy.

4.3 Interpretation

Results of the first experiment suggest that there is
no single layer of the BERT model that captures
modal sense (see Figures 1 – 2). Deontic sense
appears easiest to classify (as it is the only sense
with accuracies above baseline). Overall, modal
sense classification is not successful. It also ap-
pears that no modality information is encoded at
sentence level, at least in the [CLS] token, given
the wild fluctuations between layers (see Figure
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Figure 1: Accuracy of classification of modal
verb embeddings per layer, split by dataset and
sense.

Figure 2: Accuracy of classification of [CLS]
token embeddings per layer, split by dataset
and sense.

2) – though this might be caused by our choice of
classifier.

Viewing individual modal verbs paints a more
interesting picture. Some modal verbs appear to
be easier to classify, like could and must. This
cannot (just) be due to lower baselines (i.e. a more
balanced nature), as could has a baseline of 0.67
while must’s baseline lies at 0.91. Classification is
a lot less successful using the [CLS] token rather
than modal verbs’ embeddings, which serves to
re-affirm the notion that no modality information
is encoded on sentence level.

But human speakers (and annotators) do not pro-
cess modal sense in isolation - they take whichever
modal verb is present into account. Thus, it may
be that modal sense is not encoded as its own cate-
gory, but that differences between senses for each

individual modal verb (e.g. epistemic and deontic
must) are. In the next experiment, we therefore
train classifiers for each individual modal verb.

5 Experiment 2

5.1 Methods

In this experiment, we train logistic regression clas-
sifiers for each modal verb separately, using embed-
dings from the 12th BERT layer. We use the same
parameters as in the first experiment. Note that this
does not use the same train and test data as before;
as we train separate classifiers for each modal verb,
we split data for each modal verb into train and
test sets separately. This means that we randomly
split data from EPOS-E into 80% training and 20%
test data and do the same for MPQA. Note also
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Modal verb could should can must may
Instances 45 57 61 33 33
Baseline 0.67 0.96 0.70 0.91 0.79

Training data MPQA CL-b
ME MPQA CL-b

ME MPQA CL-b
ME MPQA CL-b

ME MPQA CL-b
ME

Modal verb embedding
Mean precision per sense 0.28 0.22 0.44 0.1 0.23 0.23 1.0 0.42 0.22 0.25

Mean recall per sense 0.42 0.33 0.44 0.11 0.33 0.33 1.0 0.5 0.25 0.25
Mean accuracy per sense 0.68 0.67 0.65 0.31 0.46 0.46 1.0 0.5 0.44 0.25

Overall accuracy 0.71 0.69 0.93 0.89 0.70 0.72 1.0 0.94 0.88 0.79
[CLS] embedding

Mean precision per sense 0.09 0.55 0.09 0.33 0.09 0.34 0.16 0.33 0.1 0.12
Mean recall per sense 0.33 0.75 0.11 0.33 0.22 0.5 0.28 0.33 0.12 0.12

Mean accuracy per sense 0.28 0.6 0.28 0.33 0.27 0.34 0.41 0.33 0.2 0.23
Overall accuracy 0.33 0.73 0.82 0.02 0.46 0.07 0.70 0.06 0.64 0.73

Marasović et al (2016)
Overall accuracy 0.72 0.68 0.93 0.92 0.66 0.63 0.94 0.87 0.93 0.90

Baseline 0.65 0.91 0.70 0.94 0.94

Table 1: Results of modal classification of modal verb/[CLS] token embeddings per modal verb. Mean precision,
recall, and accuracy per sense. Bolded accuracies are above respective baseline(s) (most frequent sense for each
verb). Results from (Marasović et al., 2016) use their semantic features (FSem), which generally performed best.

that this is a novel methodology and not directly
comparable to previous research. And since we
train and test on data from MPQA and EPOS-E, re-
spectively, results may skew somewhat positive as
we avoid some of the genre effects that Marasović
et al. (2016) observe.

5.2 Results

For MPQA, classification of sense for each modal
verb shows accuracy between 0.64 (could) and 0.96
(should). We reach the lowest precision and recall
for may (precision = 0.29; recall = 0.35); the high-
est for must (precision = 0.83; recall = 0.94). See
Table 2 for more results.

For EPOS-E, nearly all metrics are higher than
for MPQA. We reach the highest accuracy for may
at 0.98, the lowest for could at 0.84. The lowest
precision and recall are reached for can (precision =
0.33; recall = 0.31). We reach the highest precision
and recall for may (precision = 0.95; recall = 0.97).

Accuracy beats the baseline (the frequency of
each verb’s most common sense) for could and
must in both datasets, additionally for should and
can in MPQA and may in EPOS-E. Mean accura-
cies for each modal verb’s potential senses exceed
the baseline for could, must, and may in EPOS-E.

5.3 Interpretation

The much improved classification results obtained
in this experiment as opposed to the first, where we
used a classifier trained on all modal verbs rather
than a different one for each modal verb, point to

BERT encoding modal verb sense separately for
each modal verb. Classification accuracy in both
datasets meets or beats the baseline of its most
common sense for all verbs. For modal verbs that
are dominated by one sense (like should), we only
rarely exceed the baseline, which is expected, but
we do not dip below it, either. The mean accuracy
across a modal’s possible senses beat the baseline
for could, must, and may. These all share a com-
paratively low baseline, meaning their senses are
more balanced than for other modal verbs (though
note that can, could, and may in MPQA share this
lower baseline but classification is less successful,
indicating that it is not the only factor).

In EPOS-E, must and may see particular suc-
cess, both reaching precision, recall, and accuracy
exceeding 0.93 with baselines of 0.63 and 0.86, re-
spectively. Clearly, BERT does not simply assign
one sense to each of these modal verbs. These re-
sults suggest that representations for e.g. deontic
and epistemic must are different, but that there is
no overall representation for any one sense.

Lastly, BERT was trained to predict masked to-
kens. The final test to ascertain BERT’s ability to
recognise modal sense is therefore masked predic-
tion: can BERT predict masked modal verbs?

6 Experiment 3

6.1 Methods

We mask modal verbs from MPQA and EPOS-
E and let BERT predict them, using the pipeline
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Modal verb could should can must may
Data set MPQA EPOS-E MPQA EPOS-E MPQA EPOS-E MPQA EPOS-E MPQA EPOS-E

Instances 45 19 53 30 75 34 38 218 29 213
Mean precision per sense 0.17 0.52 0.62 0.5 0.21 0.33 0.75 0.47 0.15 0.47

Mean recall per sense 0.28 0.61 0.75 0.5 0.33 0.33 0.83 0.5 0.2 0.5
Mean accuracy per sense 0.44 0.75 0.75 0.5 0.42 0.33 0.83 0.94 0.29 0.95

Overall accuracy 0.64 0.84 0.96 0.97 0.69 0.91 0.95 0.94 0.72 0.98

Baseline 0.62 0.58 0.92 0.97 0.68 0.91 0.87 0.63 0.72 0.86

Table 2: Modal sense classification results, separate training of classifiers for each modal verb. Overall and mean
results by senses. Accuracies that meet or exceed baseline in boldface.

function from huggingface’s transformers library
(version 4.23.1; Wolf et al. 2020).

6.2 Results

Success of masked modal verb prediction depends
on the modal verb. In both datasets (see Table 3),
should is predicted correctly most commonly, with
an accuracy of 0.44 in MPQA for the top prediction
and 0.80 for the top three predictions. In EPOS-E,
this rises to 0.52 and 0.83, respectively. Could and
must also are frequently predicted correctly in both
datasets, though they switch places: must is pre-
dicted correctly more often than could in EPOS-E,
but the reverse is true in MPQA. May is predicted
correctly least often in all layers. Words other than
modal verbs are only predicted rarely: accuracies
lie between 0.87 (EPOS-E, first prediction only)
and 0.98 (MPQA, top 3 predictions) of predictions
are modal verbs.

6.3 Interpretation

This experiment indicates that, as expected from
results of per-modal-verb classification in the sec-
ond experiment (see Section 5), BERT succeeds
at predicting modal verbs where it failed at classi-
fying modal verb sense. May appears most diffi-
cult to predict. Should, despite not being the most
common modal verb, especially in EPOS-E, where
must occurs over seven times as often, is correctly
predicted most frequently. These results are strong
considering the relatively minute semantic differ-
ences between modal verbs – syntactically, any of
them would be an acceptable prediction.

This partially confirms the observations made in
the first and second experiment (Sections 4 and 5).
There, too, classification of must is overall most
successful. Combining this with the results from
the second experiment (Section 5), it appears that

the relatively strong prediction performance may
be unrelated to an overarching representation of
modal sense.

Lastly, the question remains whether BERT em-
beddings encode modal verb sense equally well in
different varieties of English.

7 Experiment 4

7.1 Methods

For each modal verb in the varieties of English
modal sense corpus (VEM, see Section 3), we
train a logistic regression classifier on that verb’s
instances in the EPOS-E dataset, mirroring the
methodology from the second experiment (Section
5). We then predict modal verb senses for that
verb in the Varieties of English modal sense corpus
(VEM) and compare overall accuracy, precision,
and recall for each modal verb and for each variety.

We do not train a separate classifier on each vari-
ety of English. While this will undoubtedly lead to
diminished success for some (or all) varieties, we
believe that this reflects real-world scenarios. By its
nature, the amount of data for minority varieties of
English will be lower than for the varieties present
in EPOS-E. As the point of this experiment is to
see whether automatic modal sense classification
for other varieties of English is viable, we therefore
use the large pre-existing EPOS-E dataset.

7.2 Results

Classification of modal verbs’ senses (see Table
4) is most successful for must (overall accuracy =
0.90; mean accuracy = 0.86). We reach the low-
est overal accuracy for could (0.70) and the low-
est mean accuracy for each verb’s possible senses
(0.32), mean precision (0.33), and mean recall
(0.30) for can.
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Modal verb could should can must may modal rate
Data set MPQA EPOS-E MPQA EPOS-E MPQA EPOS-E MPQA EPOS-E MPQA EPOS-E MPQA EPOS-E

Instances 216 88 254 139 355 154 173 1054 136 1009
acc@1 0.34 0.43 0.44 0.52 0.43 0.60 0.38 0.48 0.35 0.44 0.89 0.87
acc@2 0.59 0.61 0.67 0.72 0.59 0.71 0.58 0.68 0.54 0.61 0.95 0.93
acc@3 0.78 0.75 0.80 0.83 0.69 0.74 0.72 0.78 0.65 0.71 0.98 0.95

Table 3: Results of masked modal verb prediction. The last column shows the rate of modal verbs in the top
predictions.

Modal verb could should can must may

Instances 156 156 154 158 158
Mean precision per sense 0.23 0.50 0.11 0.43 0.25

Mean recall per sense 0.33 0.50 0.22 0.50 0.25
Mean accuracy per sense 0.70 0.50 0.32 0.86 0.50

Overall accuracy 0.70 0.90 0.73 0.90 0.88
Baseline 0.52 0.90 0.79 0.75 0.89

Table 4: Results of modal verb sense classification on varieties of English. Bolded accuracies are above respective
baseline(s) (most frequent sense for each verb).

Variety PH HK NI IN SL JA IR CA

Instances 99 98 99 96 97 98 96 99
Mean precision per modal verb 0.59 0.56 0.57 0.66 0.60 0.59 0.58 0.65

Mean recall per modal verb 0.55 0.54 0.60 0.69 0.60 0.58 0.53 0.61
Mean accuracy per modal verb 0.78 0.76 0.79 0.85 0.85 0.87 0.77 0.91

Overall accuracy 0.78 0.77 0.79 0.85 0.85 0.87 0.77 0.91

Table 5: Results of modal verb sense classification on varieties of English: mean metrics for each variety. Note: we
do not report a baseline since, without separating by modal verbs, this would be meaningless.

We reach the highest overall accuracy for Cana-
dian English (0.91), followed by Jamaican (0.87),
Sri Lankan, and Indian English (both 0.85). We
reach the lowest overall accuracy for Hong Kong
English and Irish English (both 0.77) For more
results, see Table 5.

We choose the Nigerian English results for a
brief example. In Sentence (1), may is predicted
to have deontic sense, when annotators agreed it
should be epistemic. Note the lack of space be-
tween i’m and wrong as well as the (subjectively)
non-standard use of wonder:

(1) I wondered at one point that you may have
forgotten us, but your mail now makes me
think i’mwrong

Conversely, in Example (2), epistemic may was
classified correctly:

(2) Chieftains from the 55 local councils may
be lending moral and financial support to
their counterparts in the two Ibeju-Lekki
councils, sources said

In all correct classifications of may in the Nigerian
English sample, be occurs in the vicinity of may
– at times negated. The reason for incorrect clas-
sification can not be as simple as non-occurrence
of be, as be also occurs in 5 of 15 instances of
misclassified may, such as in Example (3):

(3) He may be very poor, poorer than a church
rat

The instance of may in Example (3) was also classi-
fied incorrectly as deontic. Note that this sentence
appears much less non-standard than the previous
example. It must be kept in mind that classification
in the second experiment (see Section 5) was also
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not perfect, meaning that (at least some) wrong
classification despite no discernible presence of
non-standard language may be caused by general
model errors rather than meaning variation. Genre
variation and register may also play a role: Exam-
ple (1) is taken from a social letter, Example (3)
from a novel; Example (2), in which modal sense
was classified correctly, is taken from press cover-
age, which may be more similar to the parliament
proceedings used in EPOS-E.

7.3 Interpretation

Some of the classification performance differences
between modal verbs are mirrored in the second
experiment (see Section 5), though nearly all per-
formance metrics are lower compared to the second
experiment. This may be due to the different reg-
ister of the texts: while EPOS-E is comprised of
European Parliament proceedings and subtitles, the
ICE corpora consist of various kinds of writings,
none of which include parliamentary writings or
subtitles. This does not account for differences
between the varieties, however.

Sense classification being most successful in
Canadian English is not surprising, as BERT’s train-
ing materials are likely predominantly comprised
of American English, to which Canadian English
bears the greatest similarity (Schneider, 2006; Kytö,
2019). The strong performance reached for Sri
Lankan English may be due to the later collection
date in the 2010s as opposed to the majority of the
ICE corpora, which were collected in the 1990s.
Thus, “colonial lag” (Hundt, 2009) may be causing
this data to be more similar to the EPOS-E data,
though the concept is disputed. The strong perfor-
mances on Jamaican and Indian English (as Outer
Circle varieties; Kachru, 1985) and the poor perfor-
mance on Irish English (as an Inner Circle variety),
are more surprising and warrant further investiga-
tion. While the difference between varieties is not
enormous (overall accuracies range from 0.77 to
0.91), they are not negligible, either.

8 Conclusion and outlook

Our experiments have demonstrated that BERT
does not appear to have any representations of
modal sense as its own category. Classification did
not show satisfactory results for either modal verb
sense the embeddings of modal verbs or modality
in the [CLS] token. However, BERT showed some
ability to predict masked modal verbs, though its

success depends greatly on which modal verb has
been masked, making it unclear whether this is
truly an ability to predict specific modal verbs or
rather prediction of any modal verb. Modality does
not appear to be encoded in the [CLS] token at all,
calling into question whether sentence-level encod-
ings of modality exist in BERT. However, different
classifiers may yield different results, and represen-
tations of sentence meaning other than the [CLS]
token (such as summing up embeddings) may yet
encode modality. Further research is thus necessary
to come to a complete conclusion.

Classification was most successful when done
separately for each individual modal verb. This
indicates that, while BERT may not have repre-
sentations of modal verb sense as its own cate-
gory, it does appear to encode sense differences
for each modal verb. Thus, it can differentiate be-
tween must in sentences like “You must complete
all tasks for course credit” and “You must be tired
after the long journey”, but it also views the de-
ontic modal verbs must and should in a sentence
like “You must/should do your homework” as dif-
ferent. This has some intuitive appeal - clearly, the
actual meanings of the sentence change quite con-
siderably with the strength of deontic obligation
expressed by must and should, respectively.

The results of the last experiment demonstrate
that the difference in modal verb sense use across
different varieties of English may negatively impact
this performance. Some varieties (Canadian, Sri
Lankan, Indian, and Jamaican English) reach com-
paratively good performance, while modal verb
sense classification in Irish English proves difficult.
It is clear that more focus must be put on linguistic
diversity for language models to be more useful for
such (often marginalised) varieties.

Further research into BERT’s representations of
modal sense may focus on non-categorical repre-
sentations of modal sense. Those who have anno-
tated modal sense can attest that it is not always
very clear-cut, and often, more than one interpreta-
tion of modal sense can be perceived as valid. As
BERT embeddings are continuous - only our clas-
sification forces them into categories - researchers
may want to investigate whether non-continuous
BERT embeddings of modal verbs also match hu-
man annotators’ certainties or disagreements.
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Abstract

Understanding inferences from text requires
more than merely recovering surface argu-
ments, adjuncts, or strings associated with the
query terms. As humans, we interpret sen-
tences as contextualized components of a nar-
rative or discourse, by both filling in missing
information, and reasoning about event conse-
quences. In this paper, we define the process
of rewriting a textual expression (lexeme or
phrase) such that it reduces ambiguity while
also making explicit the underlying seman-
tics that is not (necessarily) expressed in the
economy of sentence structure as Dense Para-
phrasing (DP). We apply the DP techniques on
the English procedural texts from the cooking
recipe domain, and provide the scope and de-
sign of the application that involves creating a
graph representation of events and generating
hidden arguments through paraphrasing. We
provide insights on how this DP process can
enrich a source text by showing that the dense-
paraphrased event graph is a good resource to
large LLMs such as GPT-3 to generate reli-
able paraphrases; and by experimenting base-
lines for automatic DP generation. Finally, we
demonstrate the utility of the dataset and event
graph structure by providing a case study on
the out-of-domain modeling and different DP
prompts and GPT models for paraphrasing.

1 Introduction

Two of the most important components of under-
standing natural languages involve recognizing that
many different textual expressions can correspond
to the same meaning, and detecting those aspects
of meaning that are not present in the surface form
of an utterance or narrative. Together, these in-
volve broadly three kinds of interpretive processes:
(i) recognizing the diverse variability in linguistic

*These authors contributed equally to this work.

forms that can be associated with the same underly-
ing semantic representation (paraphrases); (ii) iden-
tifying semantic factors or variables that accom-
pany or are presupposed by the lexical semantics
of the words present in the text, through “hidden”
arguments (e.g., “stir vigorously.”; the argument of
stir is not in the surface form); and (iii) interpreting
or computing the dynamic consequences of actions
and events in the text (e.g., slicing an onion brings
about onion slices).

The first of these, the problem of paraphrasing,
has been addressed computationally since the early
days of natural language processing (NLP). The
other two mentioned above, however, are more
difficult to model with current machine learning
approaches, which rely heavily on explicit textual
strings to model semantic associations between the
elements in the input. Many Question Answering
(QA) systems, for example, rely on such syntag-
matic forms in the training data for modeling po-
tential associations that contribute to completion
or generation task performance. Hence, if pred-
icates or arguments are missing, implied, or in-
terpreted from context, there is rarely anything to
encode, and consequently little to decode as output,
as well. Consider the following example from the
traditional paraphrasing task. The text difference
between the input and output only comes from a
lexical substitution, rather than the rephrasing or
addition of hidden arguments.

(1) Paraphrasing:
Chop onions, saute until browned. −→
Cut onions, saute until done.

To solve this problem, some recent attempts have
been made to enrich surface forms that are miss-
ing information through “decontextualization” pro-
cedures that textually supply information which
would make the sentence interpretable out of its
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local context (Choi et al., 2021; Elazar et al., 2021;
Wu et al., 2021).

The Focus of the decontextualization is on en-
riching text through anaphora resolution and knowl-
edge base augmentation, which works well on ar-
guments or concepts that can be linked back to
existing knowledge sources, such as Wikipedia.
Consider the following example of the this task. It
is able to decontextualize Barilla sauce in (2a), but
does not reintroduce any semantically hidden argu-
ments from the context in (2b), making inferences
over such sentences difficult or impossible.

(2) Decontextualization:
a. Add Barilla sauce, salt and red pepper flakes. −→
Add Barilla sauce, the tomato sauce, salt and red pep-
per flakes.
b. Simmer 2 minutes over medium heat. −→
Simmer 2 minutes over medium heat.

In this paper, we argue that the problems of para-
phrasing and decontextualization are closely re-
lated for the purpose of clarifying meaning through
verbal, nominal, or structural restatements that pre-
serve (and enhance) meaning (Smaby, 1971; Ka-
hane, 1984; Mel’cuk, 1995; Mel’Čuk, 2012). We
propose Dense Paraphrasing, the process for the
enrichment of the expression through both its lexi-
cal semantics and its dynamic contribution to the
text in the whole narrative, which are less focused
on by other work.

Consider the DPs of the sentences from exam-
ples (1) and (2), illustrated below in (3). Compared
to the aforementioned tasks, DP aims to recover
the semantically hidden arguments that fit the local
context of the event (e.g., pan for the saute event)
or carry a broader view of the context of the text
(e.g., sauted chopped onions shows its transforma-
tion through multiple events).

(3) DP:
Chop onions, saute until browned. −→
Chop onions on a cutting board with a knife to get
chopped onions, saute chopped onions on a pan with
a spatula, resulting in sauted onions until browned.
——————————————————
Add Barilla sauce, salt and pepper to the saucepan. Sim-
mer 2 minutes over medium heat. −→
Add Barilla sauce, salt and pepper to the saucepan by
hand to get sauce mixture. Simmer the sauce mixture
2 minutes in the saucepan over medium heat to get sim-
mered sauce mixture.

We argue that our work can potentially help and
complement these generation tasks by enriching the
source text with information that is not expressed
in the surface structure. Table 1 shows a complete

Passage: Peel and cut apples into wedges. Press apple
wedges partly into batter. Combine sugar and cinnamon.
Sprinkle over apple. Bake at 425 degF for 25 to 30 minutes.
Dense Paraphrased (DP’ed) Passage:
Using peeler, peel apples, resulting in peeled apples; and
using knife on cutting board, cut peeled apples into peeled
wedges.
Using hands, press apple wedges partly into batter in the
cake pan.
Combine sugar and cinnamon in a bowl, resulting in cinna-
mon sugar.
Sprinkle cinnamon sugar over apple wedges in batter in
cake pan, resulting in appelkoek.
In oven, bake appelkoek at 425 degF for 25 to 30 minutes,
resulting in baked appelkoek.

Table 1: Example DP’ed document from our dataset.
Color-coded text spans represent locations of events in
the input text where dense paraphrases are generated to
enrich local context. Underlined text shows the appear-
ance of the ingredient “apple” with transformation in a
chain of events. Hidden arguments are added back to
the text following simple syntactic rules (e.g., using X,
do Y in/on/at Z, resulting in R).

dense paraphrased document that shows how DP is
applied on a multi-sentence level. To show the us-
age of our method, we experiment with baselines of
neural models for text generation tasks that involve
dense paraphrased text, based on datasets that are
heavily annotated with event-participant structures.

In the remainder of the paper, we first review
related work and background (§2), and give more
detailed definitions of the DP schema (§3). We
then apply the DP techniques on a cooking recipe
dataset to show its ability to enrich the raw text with
paraphrases (§4). §5 provide details of experiments
we conducted to validate the utility of the proposed
methodology, along with a discussion of our results.
§6 explores the case studies on applying DP on the
out-of-domain data and the comparison between
GPT models on the paraphrasing task. We then
conclude our work in §7. The source code and data
will be publicly available.

2 Related Work

There is a long history in linguistics, dating back
to the early 1960s, of modeling linguistic syntag-
matic surface form variations in terms of transfor-
mations or sets of constructional variants (Harris,
1954, 1957; Hiż, 1964). (Smaby, 1971) formally
defines this process of preserving the meaning from
lexical, phrasal, or sentential expressions Ei to Ej

as paraphrasing.
For NLP uses, paraphrasing has been a major

part of machine translation and summarization
system performance (Culicover, 1968; Goldman,
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1977; Muraki, 1982; Boyer and Lapalme, 1985;
McKeown, 1983; Barzilay and Elhadad, 1999; Bha-
gat and Hovy, 2013). In fact, statistical and neural
paraphrasing is a robust and richly evaluated com-
ponent of many benchmarked tasks, notably MT
and summarization (Weston et al., 2021), as well
as Question Answering (Fader et al., 2013) and
semantic parsing (Berant and Liang, 2014). To this
end, significant efforts have gone towards the col-
lection and compilation of paraphrase datasets for
training and evaluation.

In addition to the meaning-preserving para-
phrase strategies mentioned above, there are several
directions currently explored that use strategies of
“decontextualization” or “enrichment” of a textual
sequence, whereby missing, elliptical, or under-
specified material is re-inserted into the expression.
The original and target sentences are compared
and judged by an evaluation as a text generation
or completion task (Choi et al., 2021; Elazar et al.,
2021; Gao et al., 2022; Chai et al., 2022; Eisen-
stein et al., 2022; Tu et al., 2022b; Ye et al., 2022;
Katz et al., 2022). Our work applies both strate-
gies of paraphrasing to the procedural text domain,
which is new to the field. Unlike typical paraphrase
generation tasks (Zhou and Bhat, 2021) which para-
phrase full sentences and favor different wording
and structure, our task performs at the entity-level.

Recent studies in procedural texts focus on track-
ing the state of events and entities in artificial cor-
pora from arbitrary domains (Dalvi et al., 2019;
Kazeminejad et al., 2021; Tandon et al., 2020).
Some works also treat recipes as a rich resource for
procedural texts. (Bosselut et al., 2017; Yamakata
et al., 2020) leverage structured representations of
domain-specific action knowledge for modeling a
process of actions and their causal effects on en-
tities. Other works try to resolve the anaphoric
relations between recipe ingredients (Fang et al.,
2022; Jiang et al., 2020). While these works all
create corpora suitable for their own problems, our
work, in contrast, embeds enriched information of
both entities and events in the recipe using dense
paraphrasing.

Enrichment of VerbNet predicates can be seen
as an early attempt to provide a kind of Dense
Paraphrasing for the verb’s meaning. In Im and
Pustejovsky (2009, 2010), the basic logic of Gen-
erative Lexicon’s subevent structure was applied
to VerbNet classes, to enrich the event represen-
tation for inference. The VerbNet classes were

associated with event frames within an Event Struc-
ture Lexicon (ESL), encoding the subevent struc-
ture of the predicate. If the textual form of the
verb is replaced by the subeventual description
itself, classes such as change of location and
change of possession can help encode and de-
scribe event dynamics in the text, as shown in
(Brown et al., 2018; Dhole and Manning, 2021;
Brown et al., 2022). For example, the VerbNet
entry drive is enriched with the ESL subevent struc-
ture below:

(4) drive in John drove to Boston
se1: pre-state: not located in (john,boston)

se2: process: driving (john)

se3: post-state: located in (john,boston)

Such techniques will be utilized as part of our
Dense Paraphrasing strategy to enrich the surface
text available for language modeling algorithms.

3 Method

In this section, we detail the procedure involved in
creating DPs. The DP method can be seen as the
method for creating sets of semantically “enriched,
but consistent” expressions, that can be exploited
by either human consumption (e.g., natural lan-
guage paraphrases) or machine consumption (e.g.,
configurable graphs). Specifically, we currently
adopt a template-based method along with heuris-
tics to generate DPs that account for hidden entities
and entity subevent structure.

Sub-Event Structure DP starts by identifying
events from the text. As mentioned above, ESL
represents an event as having three parts: begin
(Be), inside (Ie), and end (Ee). In our method,
we use this subevent structure not only to track
the begin and end state of an event, but to create
textual redescriptions of the changed event argu-
ments. To illustrate, in Table 1 the peel and cut
events form a two-event sequence through the DP
subevent descriptions of the beginning and ending
entities (apples→ peeled apples→ apple wedges).

Hidden Arguments DP also recovers hidden ar-
guments that are not present in the surface form
of the text to ensure the richness of the subevents.
The changed entities associated with the begin or
end events can be either hidden or explicit. For
example, the bake event from Table 1 has both the
hidden beginning and ending entity. In addition,
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DP also recovers relevant arguments in the same
context of the event (e.g., the bake event occurs in
the oven).

4 Experiment 1: Dense Paraphrasing
from annotation

We use the text data from the subdomain of cooking
recipes to demonstrate the application of the DP.
Compared to texts of news or narratives, procedural
text such as recipes tend to be task-oriented and
highly contextualized, allowing the DP to focus
on the hidden information and changes that are
taking place in the course of a sequence of events
in the narrative. Specifically, we apply the DP
on the existing Coreference under Transformation
Labeling (CUTL) dataset (Rim et al., 2023). CUTL
consists of a subset of 100 cooking recipes from a
larger Recipe-to-Video Questions (R2VQ) dataset
(Tu et al., 2022a). It contains rich annotation of the
cooking-related events and entities (both explicit
and hidden), as well as the coreference relations
between the entities.

4.1 Event structure for Dense Paraphrasing

To prepare the CUTL dataset for the DP, we trans-
form the annotation into a set of “events”, as events
are primary anchors for applying DP. Adapted from
(Rim et al., 2023), we define an event as an event
predicate, a set of cooking-related entities and re-
lations. The ingredient entities are associated with
the begin and end subevents (of the event predicate)
and re-described to show the subevent change. An
example is shown in Figure 1. The entity can be
hidden or explicit, and the entity types include the
EVENT-HEAD, INGREDIENT, TOOL and HABITAT.
The relations include BEGINNING and ENDING for
ingredients, as well as PARTICIPANT-OF for tools
and habitats. Each event has only one predicative
verb (EVENT-HEAD), and all the relations within
the event are linked from corresponding entities to
the predicate. In addition, the event must have at
least one beginning ingredient entity and one end-
ing ingredient entity. Table 2 shows the statistics
of the events in the dataset. The high ratio of the
hidden entities makes it effective to demonstrate
the utility of the DP.

4.2 Paraphrasing Hidden Entities

In this stage, we propose a semi-automatic ap-
proach to paraphrase the hidden entities that are
annotated and represented in text placeholders

(hand) (cake pan) Sprinkle over apple (cinnamon sugar) (applekoek)
TOOL HABITAT EVENT-HEAD INGRE. INGRE. INGRE.

par.-of

par.-of

beginning

beginning

ending

Figure 1: Annotated event example (combined R2VQ
and CUTL annotations). Hidden entities are enclosed
in parenthesis.

Avg. # of entities per recipe Explicit Hidden
EVENT-HEAD 10.6 N/A
TOOL 0.8 2.7
HABITAT 2.1 4.0
INGREDIENT (beginning) 12.0 9.4
INGREDIENT (ending) 1.0 10.4

Table 2: Statistics of the events in the CUTL dataset.

(verb.RES) from the CUTL annotation. For-
mally, it involves two steps: generate text real-
izations of the hidden entities, and paraphrase the
text realization to be useful for DP or other down-
stream tasks. We propose two methods to create
the text realization of hidden entities: prefix para-
phrasing (PP) and subgraph linearization. For the
latter, we apply GPT-3 (Brown et al., 2020) on
the text realizations to generate paraphrases, and
then compare the generated PP paraphrase, the sub-
graph paraphrase, and the PP text directly used as
the paraphrase.

Text Realization PP is a heuristic method intro-
duced by (Tu et al., 2022b) for question generation,
which enriches the textual description of entities to
reflect changes due to actions. We adopt this idea
by first separating all the event predicates appearing
in the data into three categories: TRANSFORMA-
TION, LOCATION-CHANGE, and neither. For trans-
formation events, the paraphrased entity has the
format eventPrefix + entity (e.g. boiled
water, drained soaked peas). For location change
events or neither, the paraphrased entity has the
same text form as the event input.

Given the graphical nature of the coreference
graph from the DP events, we also use linearized
graphs as the text realization, which has shown to
be useful in various tasks such as syntactic parsing
and AMR parsing (Vinyals et al., 2015; Bevilacqua
et al., 2021). Specifically in our task, we extract the
subgraph that is rooted in the hidden entity mention
node, and then linearize it into a string literal. Ex-
amples from text realization methods are presented
in Figure 2. PP converts transformation verbs into
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prefixes (e.g., heated, seasoned) and drops location
change verbs (e.g., place). It also uses the iden-
tity link from the graph to find single entity texts
that can substitute parts of the prefix-paraphrased
text (e.g., chicken breast 2 at the bottom of
fig. 2 replaces the PP text for RES.season in the
target realization.). Subgraph realization, on the
other hand, records all the subevent state changes
relevant to the target entity, and the events are also
typed with the relations based on the verb sense and
the number of beginning and ending ingredients
that are connected to the verb.

Figure 2: Text realization from PP and subgraph. Sub-
graph realization is wrapped and indented for readability.
Event verbs are typed with: AGG (aggregation), TRANS
(transformation), COL (change of location), etc.

Paraphrase Generation We prepare the para-
phrasing data for evaluation by extracting all the
ingredient mention nodes from the graph that sat-
isfy: (1) the node is linked to a begin subevent,
and to another end subevent; (2) the node has ex-
plicit text form. Such a node is connected to its
placeholder text with the IDENTITY relation, as
shown in Figure 2. Then we use the text of such
nodes as the gold paraphrase to the hidden entity
placeholder. In the end, we collected 273 gold
paraphrase pairs from our dataset. Considering
the scarcity of gold paraphrase in the dataset (2.7
pairs per recipe), we formalize the task as few-shot
prompting and apply the GPT-3-davinci model to
generate the paraphrases. Figure 3 shows the ex-
ample prompts used in the GPT-3 paraphrasing
methods. In each prompt, we use a single set of

Paraphrase BERTScore Intrinsic

PREFIXP 81.15 3.08
PREFIXP-GPT 84.45 (±0.46) 3.97 (±0.08)
SUBGRAPH-GPT 86.08 (±0.15) 4.15 (±0.02)

Table 3: Paraphrase generation results on the gold para-
phrase pairs. PREFIXP uses PP realization directly as
the paraphrase; PREFIXP/SUBGRAPH-GPT uses DP/-
subgraph realizations as exemplars in GPT-3 prompting.

eight exemplars from the gold pairs and a human-
created instruction on the task and how to interpret
the input from different text realizations.

Evaluation We use BERTScore (Zhang et al.,
2019) for automatic evaluation and a 5-point Lik-
ert scale as intrinsic evaluation for the correct-
ness, relevance, and appropriateness. For each
type of realization, we perform two rounds of
GPT-3 prompting with different sets of gold ex-
emplars, and present the overall results in Table
3. While ROUGE (Lin, 2004) has been widely
used in text-generation tasks, it is shown that these
token-matching metrics do not align well with hu-
man annotation (Shen et al., 2022), and this finding
aligns with what we observed in our experiments.

The BERTScore from all paraphrases is over 80,
indicating the higher semantic similarity between
the gold and model output. PREFIXP has the low-
est BERTScore due to the text addition from verb
prefixes and the lack of summarization ability over
a list entities in the input. For intrinsic evaluation,
SUBGRAPH-GPT performs better than PREFIXP-
GPT, suggesting that the subgraph realization is
a better resource for GPT-3 to recover and sum-
marize the essential information in paraphrasing.
PREFIXP performs the worst in the intrinsic evalua-
tion. From the summary of annotators’ feedback on
the evaluation, we observe that the PP paraphrase
of the entity from later steps tends to be lengthy and
redundant without signaling the salient entity (aver-
age token numbers of PP paraphrase is 7.4, whereas
it is 2.4 in GPT-generated paraphrases). In addition,
PP paraphrase alone is less natural and less under-
standable to humans.1 At the end, we validate the
paraphrasing results from SUBGRAPH-GPT, and
incorporate them into the following experiments.

1One low-scored example of the DP paraphrase: stirred
egg and water and black pepper and garlic granules.
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Figure 3: GPT-3 Prompt templates for the PREFIXP-GPT (top) and the SUBGRAPH-GPT (bottom).

5 Experiment 2: End-to-end DP

In this section, we present experiments of the task
for automatic generation of the DP text. we ex-
plore baselines from language models and provide
further insights on our data. We formalize DP gen-
eration as the task of identifying textual event men-
tions from cooking recipe text as well as their asso-
ciated hidden entities or text mentions.

Experiment Setup We use the recent sequence-
to-sequence generation model T5 (Raffel et al.,
2020) as the baseline. We set the output sequence
to be ‘label-enclosed’ text with special symbols to
mark up the patterns that can be effectively pro-
cessed by the models (Zhai et al., 2022). An exam-
ple sequence is shown in Figure 4. We randomly
sample 80 recipes for training and hold out 20 for
testing. Model performance was evaluated using
F1-score. We fine-tune the T5-base model on the
training set, and leverage the effect from either us-
ing single sentence or aggregated sentences as the
input sequence, and using additional recipe data
for the augmentation.

Model Details We fine-tune the T5 text genera-
tion model (Raffel et al., 2020) to perform the task
on the training set with a maximum of 512 input
and out tokens. For each experiment run, we fine-

Figure 4: Example of T5 model input and output for
DP generation task. Each cooking role is wrapped by a
pair of curly brackets ({...}). Cooking roles at the same
position are separated by hashtags (#).

tune T5-BASE model for 8 epoches on 4 NVIDIA
Titan Xp GPUs. It took roughly an hour to finish
the training 2. For the augumentation setting, we
map the ingredient entities that are linked with the
PARTICIPANT-OF and RESULT-OF relations from
the R2VQ dataset (Tu et al., 2022a) to the BEGIN-
NING and ENDING subevents. R2VQ didn’t assume
the event participant/result is necessary so the map-
ping can only recover partial annotations under our
subevent definition. In practce, we first use the
entities and mapped relations from the 900 recipes
as the “silver” data to pretrain the T5 model, and
then fine-tune/train the pretrained T5 with the 80
recipes from the CUTL dataset.

2training script adopted from https://huggingfac
e.co/valhalla/t5-base-qa-qg-hl
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SINGLE-T5 AGG.-T5 AGG.+AUG.-T5
Label E. H. E. H. E. H. Count
TOOL 71.42 60.28 72.63 61.59 75.09 64.50 73
HABITAT 73.62 64.28 73.87 64.69 80.93 68.69 129
INGREDIENT (beginning) 81.33 31.92 82.18 32.63 88.22 32.13 405
INGREDIENT (ending) 60.03 44.68 59.13 45.59 59.53 46.19 221
ALL 73.57 42.56 73.89 43.64 78.27 44.43 828

Table 4: DP generation results from T5 under different settings. F1 score is reported for both explicit (E.) and hidden
(H.) entities. SINGLE-T5 uses one sentence as single model input; AGG.-T5 aggregates every three continuous
sentences as single input and only evaluates on the third sentence from each input; AGG.+AUG.-T5 uses the rest of
900 R2VQ recipes as augmented data for training.

Results Table 4 shows the model results on the
DP generation task. Compared to SINGLE-T5,
AGG.-T5 gains a better performance (73.9/43.6
F1), suggesting the importance of contextual in-
formation from previous sentences in procedural
text. AGG.+AUG.-T5 performs the best overall
(78.3/44.3 F1 F1) due to the additional data from
the R2VQ annotation. For individual labels, iden-
tifying hidden entities are still challenging to the
baseline model, especially for the INGREDIENT.
AGG.+AUG.-T5 performs worse on hidden begin-
ning ingredients than explicit ones by a large mar-
gin (53.1 F1). Compared to the hidden TOOL and
HABITAT, hidden INGREDIENT has more variants
from the context of DP events (e.g., onions, onion
slices, sauted onions, etc). In addition, each DP
event can have multiple beginning or ending in-
gredients (e.g., mix water and flour), which also
increases the difficulty of the task.

Overall, the above experiment shows that the
inference and reasoning over all the hidden text
remains a very challenging task to current large lan-
guage models. For our data specifically, the higher
ratio of the hidden entities and the entity variance
from the dense paraphrasing makes it a challenging
task to the model. Attempts to improve the results
may include multi-task learning to generate entity
types and values separately, and iterative training to
utilize the data more efficiently. We further explore
the DP method and data by showing the case study
on out-of-domain DP text generation and GPT-3
paraphrasing.

6 Case Study

6.1 Out-of-Domain DP Modeling
We explore the scenarios that the DP strategy and
datasets can be adapted to raw data in the same
style (e.g., procedural text) but out of the domain
under a transfer learning setting. We show a case

study of the results by applying the DP generation
model that is fine-tuned on our training set to Wiki-
How articles. For this experiment, we use the arti-
cles from the WikiHow corpus curated by (Zhang
et al., 2020) that is originally for the goal-step in-
ference tasks. Specifically, we pick four articles
from different domains and apply the fine-tuned
DP generation model from §5 on these articles.

The generation results on the four unseen Wiki-
How articles are shown in Figure 5. The first article
is an in-domain recipe (shortened in the Figure),
so the model performs very well on identifying the
relations and hidden entities. The ingredient enti-
ties also show the subevent state change through
sentences (e.g., fried arepas to baked arepas). The
results on the second article shows the effectiveness
of the DP strategy being applied to out-of-domain
data. Our defined DP event structure can be natu-
rally transferred to text with clear steps and inter-
mediate goals (e.g., Mix a mild cleaner with warm
water). The model could mispredict the actual val-
ues of the hidden entities due to the limitations from
the domain-specific vocabulary inventory. E.g., the
predicted hidden entity is oil from the sentence

“Scrub down the brush ...”. The subevent entity
paraphrasing, however, is still effective. For exam-
ple, the hidden result ingredient of the event mix is
cleaner water. Similarly in the last sentence, we
are able to generate rinsed brush that carries the
subevent state effectively.

Compared to the first two, we find the last two
articles to be more challenging to the model. Al-
though the text is short, the third article involves
rather complex spatial actions (e.g., snap off, peel
downward, etc.) that may confuse the model. The
part-whole relations of entities (e.g., banana vs.
skin vs. stem) can also lead to semantically ambigu-
ous subevent paraphrases such as snapped stem /
banana, peeled skin / banana. The last article is
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Figure 5: DP generation on example WikiHow articles.
The left shows the article title and steps; the right shows
the model output. Green spans mark the entities and
relations; red spans mark the paraphrased entities.

different from the others in the sense that it has a
less clear step-goal structure and the events are not
actions interacting with physical objects. These
differences make texts of this type less suitable to
the proposed method. In general, the case study
shows the usefulness of the DP strategy and the
dataset we created under a transfer learning sce-
nario to procedural texts with the similar format.
Future work includes expanding the DP evaluation
on general procedural texts so that a quantitative
study can be conducted.

6.2 Subgraph for GPT-3 Paraphrasing

We briefly characterize the common differences
in the output paraphrases between PREFIXP-GPT
and SUBGRAPH-GPT, and present several exam-
ples in Table 5. In comparison, PREFIXP-GPT
tends to generate paraphrase as noun-noun compo-
nents, while PREFIXP-GPT tends to generate an
adjectival verb as the modifier to the entity. Score-
wise, both output format are acceptable, but minor
syntactic errors (mushroom[s] slices) and semantic
ambiguity (meat [mixture]) are spotted from the
NN components. PREFIXP-GPT also has a strong
tendency to rewrite or hallucinate new text. This
may be due to the fact that prefix-paraphrase has
no special symbol or text structure to regulate the
generation. Compared to SUBGRAPH-GPT which
preserves the event type and structure in the model
input, PREFIXP-GPT uses the ‘flattened’ text that
may put extra weight on the local event that is clos-
est to the entity to be paraphrased. Consider the
gold salad from the table. Based on the event text
season with salt and pepper, the PREFIXP-GPT
generates the realization such as seasoned pepper

GOLD PREFIXP-GPT SUBGRAPH-GPT

NN Comp.
mushrooms mushrooms slices (4) sliced mushrooms (5)

cooked bacon bacon bites (5) chopped bacon (5)
meat meat mixture (4) sauteed meat (5)

Hallucination
sewian fried noodles (2) fried sewian (5)

meat ground beef (4) minced meat (4)
soup stew (3) vegetable broth (4)

Locality
fish marinated chunks (4) marinated fish (5)

salad vinaigrette (2) salad (5)

Table 5: Common difference between the output para-
phrase from PREFIXP-GPT and SUBGRAPH-GPT, and
their intrinsic scores.

and salt and combined lemon juice and ..., whic
features the latest event and entities. A subgraph
allows one to trace all the visited events and thus
increase the model reasoning capability.

6.3 Does GPT-4 solve everything?
We further explore the performance of different
GPT models on the the task of paraphrase gener-
ation. In table 6, we select five examples which
SUBGRAPH-GPT performs poorly on (with an in-
trinsic score of 3 or lower), and anecdotally com-
pare the results with the paraphrases generated by
the latest GPT-4 (SUBGRAPH-GPT4). In the first
example, both GPT-3 and GPT-4 generate the same
incorrect paraphrase. This might be due to the
model has been trained biased towards a strong con-
nection between the action squeeze and the juice.
GPT-4 also doesn’t generate ideal paraphrase on
the second and the third example due to the noise
from the context, e.g., mussels or peas is a more
salient feature than the water. However, it is able
to provide more details in the paraphrases (cooked
peas v.s. peas). On the last two examples, GPT-4
performs better than GPT-3 by generating more ac-
curate entities (e.g., fillet v.s. fish) and richer states
(seasoned. marinated).

7 Conclusion

In this paper we define Dense Paraphrasing (DP),
the task of enriching a text fragment (lexeme,
phrase, or sentence) such that contextual ambigui-
ties are eliminated, contextual anchors or variables
are supplied, and any implied arguments are made
textually explicit. We outlined our DP procedure
that can be applied to enrich the textual dataset, and
provided insights on the transformer-based mod-
els as baselines for the DP text generation task.
We presented the case study for generating DP un-
der the out-of-domain setting, and the analysis on
paraphrasing from event graphs, which show the
feasibility of modeling DP and the challenges it
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CONTEXT
SUBGRAPH-
GPT

SUBGRAPH-
GPT4 GOLD

Prepared horseradish, squeeze it dry through a kitchen towel to get
[SQUEEZE.RES]. Combine the horseradish, sour cream ... horseradish juice horseradish juice horseradish

Wash mussels and de-beard, bring a pot of water to a boil to get [BOIL.RES]
and cook the mussels ... cooked mussels de-bearded and

cooked mussels boiled water

In a large pot, bring peas and water to boil over high heat and reduce to
simmer until tender to get [SIMMER.RES]. peas cooked peas soup

Add the salt and pepper ... place the fillets under the broiler, about 2 inches
from the heat source and cook for 2 minutes to get [COOK.RES] fish seasoned cooked

fillets
salmon
fillets

Cut chicken thighs in half ...Combine the paste with the chicken and mix
well; refrigerate several hours or overnight to get [REFRIGERATE.RES] chicken patties marinated

chicken chicken

Table 6: Output paraphrase comparison between different GPT models on five examples. Paraphrases are generated
for entities represented as [VERB.RES].

poses to current large language models.
We believe that DP has the potential to help in

a broad range of NLP applications. In particular,
applications and tasks involving abstractive infer-
encing can benefit from the dynamic tracking and
decontextualized redescriptions of entities appear-
ing in a coreference chain. The notion of following
an entity as it changes through a developing narra-
tive or text can be computationally encoded using
the technique described here, giving rise to a his-
tory or biographical model of an entity. We hope to
extend the DP procedure to include creating vector
representations of DP that can be fit into a broader
range of computational models. We also intend
to include reference to the “vertical typing” of an
expression (type inheritance) from online resources
with definitional texts, such as Wikipedia or Word-
Net (e.g., onion ∈ vegetable, poodles ∈ dogs). This
would further enhance the utility of the resulting
DP’ed data for logical inference tasks.
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Abstract
Compositionality and inference are essential
features of human language, and should hence
be simultaneously accessible to a model of
meaning. Despite being theory-grounded, dis-
tributional models can only be directly tested
on compositionality, usually through similarity
judgements, while testing for inference requires
external resources. Recent work has shown
that knowledge graph embeddings (KGE) ar-
chitectures can be used to train distributional
models capable of learning syntax-aware com-
positional representations, by training on syn-
tactic graphs. We propose to expand such work
with Multi-Graphs embedding (MuG) models,
a new set of models learning from syntactic and
knowledge-graphs. Using a phrase-level infer-
ence task, we show how MuGs can simultane-
ously handle syntax-aware composition and in-
ference, and remain competitive distributional
models with respect to lexical and composi-
tional similarity.

1 Introduction

Drawing an inference over structured text is con-
sidered to be a basic aspect of natural language
understanding (Pavlick and Callison-Burch, 2016).
To build structured meaning, humans rely on com-
positionality (Frege, 1892; Mollica et al., 2020).
For this reason, much work has underlined the con-
nection between composition, the construction of
complex meaning from smaller units, and inference
(MacCartney and Manning, 2008; Baroni et al.,
2012; Pavlick and Callison-Burch, 2016; Pavlick
and Kwiatkowski, 2019). With respect to recently
popularised large language models (LLMs) like
BERT (Devlin et al., 2019), the literature has pro-
duced contrasting evidence, both against (Keysers
et al., 2020; Do and Pavlick, 2021; Bertolini et al.,
2022) and in support (Brown et al., 2020; Nie et al.,
2020) of these models being able to simultane-
ously handle composition and inferences with lit-

tle to no supervision. However, most of the work
has focused on sentence-level inference. Multiple
pieces of evidence have shown that, when solv-
ing such tasks, models strongly rely on biases and
spurious correlations in the benchmarks (Poliak
et al., 2018; Dasgupta et al., 2018; McCoy et al.,
2019). To address this issue, authors proposed to
focus on phrase-level tasks (e.g., Yu and Ettinger
(2020, 2021); Bertolini et al. (2022)). In particular,
Bertolini et al. (2022) showed that LLMs learn to
make robust compositional inferences regarding
adjective-noun phrases only with direct supervi-
sion, and linked this ability to non-lexical subword
units. While computationally effective, this solu-
tion is poorly grounded in linguistic and cognitive
theories.

Recently, Bertolini et al. (2021) showed how
training knowledge-graph embedding (KGE) archi-
tectures on syntactic graphs leads to distributional
models able to learn syntax-aware compositional
representations. While these models theoretically
satisfy the compositionality principle (Frege, 1892;
Partee et al., 1995), like LLMs, they still require
external resources or training to be evaluated on
inference. In this work, we propose to expand
syntactic-graphs distributional models (SyG) with
knowledge-graph, and propose Multi-Graph (MuG)
models. We argue that, by training on both data
sources, MuG could inherit compositional abili-
ties from SyGs, and learn to manipulate the hyper-
nym relation from KGE. Thus, MuG models should
be able to handle both composition and inference
simultaneously in the form of compositional en-
tailment, in a fully unsupervised manner. Since
previous results found rotation to better encode
hierarchical relations (Chami et al., 2020) such
as entailment, and reflection to be most suitable
to represent syntactic information (Bertolini et al.,
2021), we hypothesize that an attention-based hy-
brid model will be the best architecture to simulta-
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neously handle compositionality and inference.
Our contributions are four-fold. First, we in-

troduce Multi-Graph (MuG) models, a new set
of embedding models trained on syntactic and
knowledge-graphs. Second, we provide evidence
that, under the correct combination of training
method and architecture, MuG models can tackle
compositional entailment, using a syntax-aware
composition. Third, we propose a detailed analysis
describing the behaviour of the best MuG model,
clearly showing how the three macro classes of
adjectives and the structure of the inference shape
the behaviour of the model. Fourth, we investi-
gate which abilities, in terms of distributional and
knowledge-based, are inherited by MuGs. We show
that MuGs are competitive distributional models,
but struggle under a graph-related task, likely due
to an incompatibility with respect to negative sam-
ples rate during training.

The paper is organised as follows. Section 2, re-
views the related work on compositional entailment
and different embedding models. In Section 3, we
lay out the methodology behind MuG models, in
terms of training methods, compositional entail-
ment predictions, and model’s parameters (such
as the composition strategy). Section 4 describes
training and evaluation datasets, and other imple-
mentation details. In Section 5, we present and
analyse results on compositional entailment, graph
completion and distributional similarity. Section 6
presents a discussion on the overall findings of the
work, and how they fit in the current literature.

2 Background and Related Work

Compositional entailment A niche of work ex-
ists on phrase-level entailment, mostly focusing
on adjective-noun (AN) phrases (e.g., brown dog
entails (|=) animal). Baroni et al. (2012) used non-
intensional adjectives solely in the form of AN
|= N. Kober et al. (2021) used AN phrases as a
data augmentation technique to improve lexical en-
tailment classification. Recently, Bertolini et al.
(2022) introduced PLANE, a benchmark to train
and evaluate models on phrase-level adjective-noun
entailment, which will be used in this work. All in-
stances of the dataset are built out of true (noun (N),
hypernym (h(N))) pairs, modified by an adjective
(A). Items can take three entailment structures (or
inference types (ITs)): AN |= N, AN |= h(N), and
AN |= Ah(N). Instances are then automatically an-
notated using rules defined by the three classes of

English adjectives: intersective (I), subsective (S)
and intensional (O). Table 1 summarises PLANE’s
instances, classes, and annotation schema. The
work showed how LLMs struggle to solve PLANE
without supervision, and that the mechanism sup-
porting out-of-distribution generalisation is poorly
linguistically grounded, as it notably depends on
non-linguistic subword tokens.

Inference Type Intersective Subsective Intensional
1 AN |= N ✓ ✓ ✗

2 AN |= h(N) ✓ ✓ ✗

3 AN |= Ah(N) ✓ ✗ ✓

Table 1: PLANE annotation rules. Schema of how the
interaction between each adjective class and inference
type shapes the positive (✓) - negative (✗) value of a
true noun (N) – hypernym (h(N))) entailment (|=) pair.

Knowledge-graph Embedding (KGE) Models
Multiple ways of encoding hypernymy and other
entailment relationships with different transforma-
tions, including rotation and reflection, have been
investigated (Balažević et al., 2019; Chami et al.,
2020). Proposed models learn representations of
entities and representations that encode a mapping
of entities to their hypernyms. For example, we
can learn representations of the entities dog and
animal and the relationship ISA such that when
the ISA transformation is applied to the represen-
tation of dog, we would expect to be close to the
representation of animal. Among all, hierarchical
relationships such as hypernymy were found to be
best modelled by rotations (Chami et al., 2020).

Bertolini et al. (2021) showed that syntax-
sensitive composition of adjective-noun phrases
can be carried out by modelling syntactic relation-
ships with geometric transformations. To form a
phrase’s encoding, such as brown dog, one or more
of the constituent representations (according to the
syntactic relationship between them) is transformed
before combination. The work also tested multi-
ple transformations, including attention, and found
reflection to best model syntax.

Joint-Embedding models (JEM) Our work
bears resemblances with work merging textual and
KG data (Alsuhaibani et al., 2018; Roy and Pan,
2020; Wang et al., 2020). A more detailed survey of
recent work in this area is provided in Roy and Pan
(2020). Here, we note that Toutanova et al. (2015)
add specific syntactic-triplets extracted from text,
like (Obama,nsubj, P resident) to the original
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KG. These injected triplets are hence used only as
a form of data augmentation. Alsuhaibani et al.
(2018) expand GloVe’s (Pennington et al., 2014)
loss to incorporate knowledge from a KG, creating
a new joint objective function. In contrast to our
work, the scope was to use KG data to enhance
distributional embeddings. Wang et al. (2020) pro-
pose a robust attention-based model that incorpo-
rates textual and KG information in parallel, using
one encoder for each source. A mutual attention
component is then used to combine the outputs of
the two encoders. In this case, similarly to our ex-
perimental setting, the scope was to improve the
performance from the KGE perspective. Shwartz
et al. (2016) propose to augment a hypernym classi-
fication model using a PathLSMT, based on syntac-
tic relations. Vashishth et al. (2019) incorporated
syntactic and semantic graphs using a large graph
convolutional network. However, the two modali-
ties were never mixed within the same architecture,
since joint models produced poor results.

3 Methodology

3.1 Multi-Graph (MuG) Models

Most mixed-sourced approaches use different ar-
chitectures or objectives to model each source of
data. Here, we propose to use the same model to en-
code two types of graphs, syntactic and knowledge-
based. Specifically, we propose the Multi-Graph
(MuG) Model which will be used to simultaneously
encode entailment relationships from knowledge-
graphs and distributional relationships from syntac-
tic corpus data. While previous work has shown
that these relationship types can be encoded inde-
pendently in models based on geometric transfor-
mations (Chami et al., 2020; Bertolini et al., 2021)
we propose a training method which will allow a
single model to encode both types of relationship
and thus use each to generalise the other. For exam-
ple, if a model knows that vehicle is a hypernym of
car, can it learn from the syntactic relationships in
parsed corpus data, what predictions to make about
the hypernyms of red car, small car and fake car?

To investigate which architecture is better suited
to learn a MuG model, we study the three KGE
architectures introduced by Chami et al. (2020),
namely RotE (rotation), RefE (reflections) and
AttE (which uses attention to combine rotations
and reflections). Since rotation was found to best
encode KG relations (Chami et al., 2020), and re-
flection to better model syntax (Bertolini et al.,

2021), we expect that an AttE combining both rota-
tion and reflection will be the best architecture for
a MuG model.

3.2 Training Methods
To train Multi-Graph models (MuGs), we propose
two training methods, static and altern, us-
ing the same architecture and weights, yet sepa-
rately considering the two data sources in the train-
ing phase.

static Straightforwardly, static trains a
MuG model by feeding it first one complete data
source and then the other. Specifically, a selected
model is first trained with syntactic graphs and then
with the knowledge-graph.

altern The altern method takes a dynamic
approach to the training. Training is alternated
at regular intervals between the two different data
sources. This adds an extra hyperparameter to the
model, every, which we have kept stable at 5 sam-
ples, that dictates the frequency with which the two
training data sources alternate. All other model
hyperparameters (e.g., total epochs) are kept sta-
ble and equally distributed across the data sources.
Note that static could be considered as an ex-
treme version of altern where every is set to the
size of the first training data source multiplied by
the number of epochs.

3.3 Predicting compositional entailment
Compositional entailment is framed as a binary
classification task where models have to label
(c1, c2) tuples such as (red car, vehicle). To score
these tuples we propose to make use of each archi-
tecture’s scoring s(head, relation, tail) and sig-
moid (σ(·)) functions. The proposed classification
function is presented in Equation 1:

C(c1, r, c2) =

{
1 if σ(s(c1, r, c2)) >= 0.5

0 else
(1)

s(h, r, t) is the model-specific scoring function (see
Chami et al. (2020); Bertolini et al. (2021)). r
is always considered to be the hyponym relation.
Given the nature of the task, one or both of each
(c1, c2) tuple components can contain a phrase. To
generate these, we use the composition strategies
from Bertolini et al. (2021) (adopting average in-
stead of simple sum):

add simple addition: constructed by averaging the
base representations of the constituent words
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Rh Root-as-head: the syntactic root of the phrase
is seen as the head of the dependency triple
(e.g., <dog,amod,brown>) and is modified
by the geometric transformation in the com-
position process

Rt Root-as-tail: the syntactic root of the phrase is
seen as the tail of the dependency triple (e.g.,
<brown,amod,dog>) and is not modified by
the geometric transformation in the composi-
tion process

BiD Bi-directional: constructed by adding the rep-
resentations obtained using Rh and Rt

3.4 Syntax Modelling
In contrast to Bertolini et al. (2021), we consider
the composition strategy as another interchange-
able aspect of a MuG model. The decision traces
back to the difference between the two forms of the
compositionality principle (Partee et al., 1995). If
syntax is indeed a crucial feature of compositional-
ity, then a model with a syntax-aware composition
will yield better results. Otherwise, no differences
should be observed.

4 Experimental Setup

Our investigation focuses on two main questions.
First, can MuGs in fact manipulate both composi-
tion and inference? To test this, we will compare
MuG and KGE models on a compositional entail-
ment task. Second, what ability, if any, will be
penalised or completely sacrificed, in order for a
model to tackle compositional entailment? To an-
swer this question, MuGs will be compared to KGE
on a standard graph completion task, and to distri-
butional models trained on syntactic graphs (SyGs)
on multiple similarity benchmarks.

4.1 Tasks and Benchmarks
PLANE To test MuG and KGE on compositional
entailment, we sample five validation and test splits
from the portion of PLANE (Bertolini et al., 2022)
that contains items also included in WN18RR (Bor-
des et al., 2013) and text8, available here1. Since
preliminary experiments showed all models heuris-
tically assigned a positive label to items with in-
ference type 3 (e.g. red car |= red vehicle), we
only sampled items with inference types 1 (AN |=
N) and 2 (AN |= h(N)). In each split, the ratio of

1https://github.com/lorenzoscottb/
IWCS_2023

positive and negative items is kept balanced, and so
is each (noun, hypernym) tuple for every adjective.

KG and Similarity Judgements To compare
MuG and KGE models on the uni-gram level, we
adopt a standard filtered graph completion task
(Chami et al., 2020). The performance of SyG
and MuG models is compared using the same
benchmarks from Bertolini et al. (2021). These
include four lexical similarity tasks (Simlex (Hill
et al., 2015), MEN (Bruni et al., 2014), WS353-sim,
WS353-rel (Agirre et al., 2009)), and a composi-
tional one (ML10) (Mitchell and Lapata, 2010), fur-
ther divided into three syntactic classes (Adjective-
Nouns, Verb-Objects, Noun-Nouns).

4.2 Implementation

We adopt the source code from Chami et al. (2020)
to train each model. Using the hyperparame-
ters from Chami et al. (2020) and Bertolini et al.
(2021), we trained a set of three architectures:
AttE, RefE, RotE. As training data for each MuG
model, we follow Bertolini et al. (2021) and adopt
a sense-stripped version of WN18RR as KG, and
a parsed version of text8 as syntactic graph.
We use PLANE validation splits to tune hyperpa-
rameters for each combination of training method
(KGE, MuG-altern, MuG-static), architec-
ture (AttE, RefE and RotE), and composition strat-
egy (add, Rh, Rt, BiD). Best hyperparameters are
presented in Appendix A. Experiments are run on
an NVIDIA GeForce RTX 3090 GPU.

5 Results

5.1 Compositional entailment

Table 2 reports average accuracies (± standard er-
ror) obtained by different models on the five test
sets generated from PLANE. The close-to-random
performance (50%) observed for KGE models —
trained solely with the knowledge-graph — is to
be expected, since the overlap between training
data and PLANE is fairly scarce, especially with
respect to adjectives. Furthermore, Bertolini et al.
(2021) already showed how KGE models perform
poorly on compositional benchmarks, especially
with respect to adjective-noun phrases.

Overall, MuG models perform only marginally
better than KGEs. The best-performing model is
based on the attention architecture, trained with the
altern method and makes use of a syntax-aware
composition strategy (Rh). These results are in
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Figure 1: Models analysis. Break-down of the different AttE-altern models performance (mean accuracy ±
standard error from different test splits), divided by adjective class (hue), composition strategy (columns) and
inference type (IT, x-axis).

Method Model Composition Accuracy

KGE
AttE add 49.8 ± 0.2
RefE add 51.1 ± 0.2
RotE add 50.9 ± 0.2

MuG-altern

AttE

add 53.9 ± 0.4
Rh 56.2 ± 0.5
Rt 50.7 ± 0.1
BiD 49.1 ± 0.2

RefE

add 51.3 ± 0.5
Rh 51.6 ± 0.4
Rt 50.1 ± 0.0
BiD 45.1 ± 0.4

RotE

add 51.1 ± 0.3
Rh 51.7 ± 0.4
Rt 50.2 ± 0.0
BiD 45.2 ± 0.7

MuG-static

AttE

add 51.9 ± 0.4
Rh 53.3 ± 0.3
Rt 51.5 ± 0.3
BiD 47.1 ± 0.3

RefE

add 53.3 ± 0.3
Rh 53.4 ± 0.2
Rt 50.9 ± 0.1
BiD 47.7 ± 0.4

RotE

add 53.6 ± 0.3
Rh 54.2 ± 0.2
Rt 50.7 ± 0.1
BiD 47.4 ± 0.4

Table 2: Compositional entailment results. Accuracy
scores (mean ± standard error) obtained by different
combinations of training methods, architectures and
composition strategies on different test–splits, generated
from PLANE.

line with the two main hypotheses, suggesting that
attention would better handle the two sources of
data and that explicitly modelling syntax leads to
more reliable compositional representations. In-
terestingly, the very same syntax-aware strategy
(Rh) is also used by RotE-static, which seems
to be the second-best performing model. However,
aside from AttE-altern-Rh (and RotE-static-

Rh) MuG models seem to generally struggle to
correctly classify an item for compositional entail-
ment. Hence, we now propose an in-depth analysis
of what seems to be the best MuG model, compar-
ing its behaviour to other AttE-altern models
(i.e., tuned with different composition strategies),
to better understand its prediction processes.

Model analysis Figure 1 breaks down the perfor-
mance of AttE-altern models by composition
strategies (columns), adjective class (hue) and in-
ference type (x-axis). Overall, the figure shows
that aside AttE-altern-Rh, models present a
strongly heuristical behaviour, as suggested by the
widespread lack of per-split variance (error bars).
More specifically, add and Rt models produce al-
most exclusively positive predictions, as suggested
by the very high performance with intersective (I)
and subsective (S) adjectives. AttE-altern-BiD
predictions seem to be slightly affected by the infer-
ence types (IT), fluctuating between random (under
IT 1), and only-negative predictions (under IT 2).
On the contrary, AttE-altern-Rh’s results appear
notably more complex, and suggest a strong inter-
action between inference type and adjective class,
at least with respect to subsective and intensional
adjectives. Recall that, since we have focused on
IT 1 (AN |= N) and 2 (AN |= h(N)), intersective (I)
and subsective (S) adjectives always have a positive
label, while intensionals (O) are always associated
with a negative label. As shown, when dealing with
intersective (I) adjectives, the model is minimally
impacted by the IT. The performance remains well
above chance with items like red car |= car (IT 1)
and a red car |= vehicle (IT 2).

On the other hand, the performance is signifi-
cantly shaped by the inference type when instances
contain subsective (S) or intensional (O) adjectives.
More specifically, the performance of intensional
(O) adjectives, always associated with negative la-
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Figure 2: Distribution of the predicted scores of AttE-altern-Rh, divided by adjective class (columns), inference
type (x-axis), and labels (hue). Dashed lines indicate the decision threshold, as in Equation 1.

bels, jumps from random to 60% moving from IT 1
to IT 2. In other words, the model better identifies
scenarios like fake car ̸|= vehicle than fake car ̸|=
car. The opposite happens for subsective (S) items.
The model is better at classifying instances like big
car |= car than big car |= vehicle. The fact that
intersective (I) and intensional (O) adjectives pro-
duce virtually identical results on IT 2 instances,
despite carrying opposite labels, while subsective’s
(S) performance drops to chance (although having
the same label as intersective’s adjectives) suggests
two conclusions. First, the model’s behaviour is
not random or heuristical. Second, in contrast with
previous evidence (Boleda et al., 2013), the theoret-
ical distinction between adjective classes is likely
reflected in the model’s representations.

To understand if similar results derive from sim-
ilar behaviours, Figure 2 summarises the model’s
prediction distribution after applying the sigmoid
function in Equation 1. The plots of Figure 2 show
two distinct patterns. Considering inference type
1 (i.e., AN |= N), a large number of scores are to-
wards the boundaries of the interval, generating
peaky distributions. Distributions become increas-
ingly bimodal moving through the three adjective
classes (I, S and O). This suggests the model is of-
ten reasonably confident about the decision being
made. On the other hand, the predictions under
IT 2 (i.e., AN |= h(N)) generate notably flatter
distributions. Intersective (I) and intensional (O)
adjectives do maintain a peak towards one of the
boundaries, but the model is much less confident
about decisions on IT 2 for all adjective classes.

We will now investigate if MuG models in gen-
eral (i.e., not just AttE-altern-Rh) remain com-
petitive with their KGE and SyG counterparts, start-
ing with graph completion (Section 5.2), followed
by distributional similarity benchmarks (Sections

5.3 and 5.4).

5.2 Graph completion

Figure 3 compares the performance of KGE and
MuG models on the graph completion task. Er-
ror bars report the standard error obtained from
collapsing MuG models tuned on different com-
position strategies. Overall, KGEs always outper-
form MuG models, while MuGs trained with the
static method appear to notably outperform the
ones trained with the altern method. This sug-
gests that the recency of the KG training (i.e., the
static method) is indeed influential in obtaining
good results in the graph completion task. Figure
6 further breaks down the results, and compares
the performance of MuGs against the amount of
negative samples used in training. For comparison
with the main results (Figure 3), a dashed grey line
reports the best score obtained by a KGE model.

Figure 3: Mean reciprocal rank (MRR) scores of KGE
and MuG models on the graph completion task. Error
bars report standard error, obtained collapsing models
trained with different composition strategies.

The figure shows how the optimal performance
of the two training methods is reached at very dif-
ferent amounts of negative samples. Mug-static
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Figure 4: Spearman ρ for SyG and MuG models on word–level similarity judgement tasks. Error bars report
standard error obtained collapsing models tuned on different composition strategies.

Figure 5: Lexical similarity with respect to the negative samples used during training. For comparison with Figure
4, a dashed black line outlines best results obtained by a SyG model.

Figure 6: Graph completion analysis with respect to
negative samples used during training.

models require few negative samples and are nega-
tively affected by increasing amounts. On the other
hand, the performance of models trained with the
altern method increases with the number of neg-
ative samples used for training. However, other
than a seemingly spurious peak at 20 negative sam-
ples, the performance obtained by alternmodels
remains far from competitive. In line with results
from Chami et al. (2020), RotE and RefE outper-
form AttE with the static method. Lastly, we
note that the best AttE model from Table 1 is not
the outlier observed in Figure 6.

5.3 Lexical similarity

We now consider whether MuGs remain competi-
tive with SyGs (i.e., distributional models trained
with syntactic graphs). Spearman’s ρ is used to

measure the correlation between model’s predic-
tions and human judgements on similairty bench-
marks. The first comparison is presented in Fig-
ure 4. Results are divided with respect to training
methods (x-axis) and trained models (hue). Error
bars reflect the standard error produced by MuG
models tuned with different composition strategies.
Overall, MuGs tend to outperform SyGs, especially
MuG-static, suggesting that KG data helps with
lexical similarity tasks. A notable exception is
WS353-rel, which uses relatedness (e.g., journey
is related to car) rather than similarity. The KG
training data is taken from WordNet, thus includ-
ing many examples of hypernym/hyponym pairs
which one might expect to help more with similar-
ity. However, Bertolini et al. (2021) found a gener-
ally poor performance of KGE models on lexical
similarity tasks. Altogether, these results suggest
that, even in the static training, the KG data
and distributional information were successfully
merged, leading to a performance which cannot be
achieved by one of the data sources on their own.

Similarly to Section 5.2, Figure 5 shows how
the number of negative samples impacts the per-
formance. In this case, both training methods
are positively impacted by higher negative sam-
ples, although the effect remains more marked for
altern models. WS353-rel aside, static mod-
els appear to consistently outperform SyGs and
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Figure 7: Spearman ρ for SyG and MuGs (divided by composition strategy) on the different subsets of the ML10
dataset. Error bars report standard errors obtained collapsing results from different architectures.

Figure 8: Compositional similarity with respect to number of negative samples used during training. For comparison
with Figure 7, a dashed black line outlines best results obtained by a SyG model.

seem notably more robust, while altern models
require a high number of negative samples.

5.4 Compositional similarity

A similar analysis is proposed for compositional
similarity. Figure 7 summarises the results of best-
performing models on PLANE against SyG models
on the ML10 datasets. Results are split between the
adjective-noun (AN), verb-object (VO), and noun-
noun (NN) subsets. In this case, the focus is on
training methods (x-axis) and composition strategy
(hue). Compared to lexical similarity results, MuG
models don’t seem to outperform SyG models, but
they remain a competitive alternative. Contrary to
the previous results, the best performance with re-
spect to MuG models is achieved via the altern
training method. With respect to composition strat-
egy, results seem to support Bertolini et al. (2021)
findings: add and BiD are the best and most stable
composition strategies, with BiD outperforming
add. It is interesting to note that ML10 is based
on bi-gram instances (e.g., how similar hot tea is
to cold water), which is comparable to PLANE
instance having inference type 3 (e.g., hot tea |=
hot liquid), that no model could solve in the compo-
sitional entailment task (see Section 4.1). The fact
that MuG-altern models remain competitive to
SyGs on ML10 suggests that their issue under IT

3 is more related to the manipulation of the hyper-
nym relation, rather than a systematic problem of
each model.

Figure 8 presents a last negative samples analy-
sis. For comparison, a dotted line signals the best
SyGs’ results. As for lexical similarity, results in-
dicate once more that performance improves with
the negative samples’ rate. Note that, contrary to
the results on compositional entailment, Rh’s per-
formance is fairly poor across the board.

6 Discussion

Our work introduced MuGs, a set of embedding
models learnt from multiple graph-based sources.
Under specific and predicted conditions (i.e., using
an attention-based model and syntax-aware com-
position), MuGs can be shown to simultaneously
tackle compositionality and inference with some
success. Experiments revealed that MuGs tuned
for compositional entailment are competitive dis-
tributional models, with respect to both lexical and
compositional similarity, yet struggle with graph
completion. Our analysis suggests that a consid-
erable part of the trade-off can be explained by
the negative samples rate used for training. The
best MuG model at compositional entailment, AttE-
altern-Rh, was tuned on validation data to 35
negative samples. As summarised by the analy-

57



sis in Figures 6, 5, and 8, whilst similarity tasks,
especially compositional ones, also benefit from
high negative samples rate, graph completion tends
to require low negative samples (and the static
training method) to achieve the best performance.

Of note, the compositional entailment experi-
ment presented in this work can also be interpreted
with respect to knowledge-graphs. Despite a differ-
ent evaluation method (accuracy instead of rank),
the proposed task is a type of graph completion.
The evaluation is still binary and requires the ma-
nipulation of hierarchical structures through the hy-
pernym relation. Hence, MuGs can be interpreted
as compositional KGE models.

Indeed, an LLM like BERT can achieve better
results on compositional entailment as defined by
PLANE. However, it can only do so with direct
supervision, and relying on an effective yet not
theoretically-sound mechanism (Bertolini et al.,
2022). Since MuG are trained only with uni-grams,
our approach to phrase-level inference (i.e., com-
positional entailment) is fully unsupervised, re-
quires significantly less training data, and has a
deeper connection with the principle of composi-
tionality (Partee et al., 1995). On each composi-
tional task, linguistically-sound word encodings
composed with a syntax-aware non-linear compo-
sition strategy yielded the best performance. More-
over, when a model does not present a strongly
heuristical behaviour, we found that the three ad-
jective classes pose as many different challenges to
the models, similarly to what already observed in
Bertolini et al. (2022).

7 Conclusions and Future Work

In this work, we introduced Multi-Graph embed-
ding models (MuGs), a set of models trained on
syntactic and knowledge-graphs. Under specific
conditions, MuGs can partially tackle composi-
tional entailment, making use of syntax-aware com-
position, based on attention. We provided evidence
that MuGs are competitive with distributional coun-
terparts on lexical and compositional similarity
benchmarks. Our analysis suggested that compo-
sitionality is supported by a higher number of neg-
ative samples, and connected this evidence to the
low performance of MuGs on graph completion.
Future work will have to primarily focus on devel-
oping a training strategy to overcome the negative
samples issue, able to obtain a better integration
of the two sources of data and produce a more sta-

ble performance across tasks. Lastly, MuG models
will have to be tested on other types of composi-
tional entailment (e.g., noun-noun or verb-object
phrases), as well as full sentences.
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A Hyperparameters

Method Architecture Composition Negative Samples
KGE RefE add 10
KGE RotE add 10
KGE AttE add 10

static RefE add 20
static RefE Rh 20
static RefE Rt 40
static RefE BiD 35
static RotE add 40
static RotE Rh 40
static RotE Rt 35
static RotE BiD 20
static AttE add 30
static AttE Rh 30
static AttE Rt 40
static AttE BiD 10
altern RefE add 40
altern RefE Rh 40
altern RefE Rt 35
altern RefE BiD 40
altern RotE add 40
altern RotE Rh 40
altern RotE Rt 35
altern RotE BiD 15
altern AttE add 40
altern AttE Rh 35
altern AttE Rt 40
altern AttE BiD 35

Table 3: Final hyperparameters for each model.
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Abstract

In this short paper, we combine the semantic
perspective of particular verbs as casting a pos-
itive or negative relationship between their role
fillers with a pragmatic examination of how the
distribution of particular vulnerable role filler
subtypes (children, migrants, etc.) looks like.
We focus on the gender subtype and strive to
extract gender-specific semantic role profiles:
who are the predominant sources and targets of
which polar events - men or women1? Such pro-
files might reveal gender stereotypes or biases
(of the media), but as well could be indicative
of our social reality.

1 Introduction

Some verbs express a positive or negative relation-
ship (a polar relation) between the fillers of their
semantic roles. For example, we can infer from the
sentence “He offended her,” an even, reciprocally
holding, negative relation (e.g. against(he,her).
Moreover, such semantic roles might bear a po-
lar (i.e. positive or negative ) load, e.g. the agent
of cheating might be regarded as a negative ac-
tor, a villain. From a pragmatic point of view, it
might be interesting to take a closer look at the
distribution of particular role fillers or role filler
groups of such verbs indicating a polar relation,
namely vulnerable groups such as children (pe-
dophilia), migrants (xenophobia), people of color
(racist bias), and certain gender identities (gender
bias). This could reveal interesting facts about the
conceptualization and contextualization of these
filler groups in the real world. Such an approach
could be useful for various kinds of monitoring
processes (e.g. discrimination motoring). In this
short paper, we focus on gender. Our goal is to
enable gender-tailored semantic profiling. On a

1Certainly, we do not claim that gender is a binary cate-
gory; but gender-denoting nouns without explicit indications
(e.g. ‘*’) do have a binary reference that we cannot overcome.

micro level, semantic profiling strives to identify
the roles that gender denoting nouns occupy, e.g.
that female nouns occur quite often as patients (tar-
gets) of physical violence, while male denoting
nouns often are filler of the patient role of torture
or accusation. On the macro level, a general, cross-
verb inventory of semantic roles like villain, victim,
benefactor, beneficiary could be used to aggregate
gender-specific conceptualization. Here, we focus
on the micro level.

We introduce a classifier that determines the
grammatical gender of human-denoting German
nouns. We combine this with our rule-based sen-
timent inference system2 (Klenner et al., 2017)
which assigns two types of relations between en-
tities: in favor of, against. Each verb of our verb
lexicon expresses such a polar relation and has a
source (the agent) and a target (the patient, recip-
ient or theme) role. We filtered the output of our
system for cases in which the gender classifier la-
beled at least one of the verb roles as male- or
female-denoting3. With such data, we were able
to filter for polar events in which men are sources
and women targets (and vice versa). On the basis
of statistical tests, cases are found in which female
or male denoting nouns are significantly over- or
underrepresented.

2 Related Work

Currently, gender classification is primarily re-
stricted to predicting the gender of text authors
of blogs, see Mukherjee and Liu (2010), or to find
out whether a headline is about a man or a woman,
see Campa et al. (2019).

Sun and Peng (2021) observe a gender-specific
tendency to combine personal and professional
events in the Wikipedia pages of celebrities, an

2The online version can be found here: https://pub.
cl.uzh.ch/demo/stancer/index.py.

3Thus, there is no need to assign semantic roles explicitely.
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asymmetric association where e.g. women’s per-
sonal events appear more often in the career section
than for men. They also establish higher efficiency
when extracting events (verb denotations) over an-
alyzing raw text for detecting this gender bias.

Bias detection and debiasing, in general, are im-
portant research topics (see Stanczak and Augen-
stein (2021) for a survey). Researchers use met-
rics such as pointwise mutual information (PMI)
to measure the association of words with gender
(Stanczak et al., 2021). We look into cases in which
both grammatical genders co-occur with a verb, i.e.
when PMI cannot be used.

3 Grammatical Gender Classification

The basis for our gender classifier is the freely
available resource (Klenner and Göhring, 2022)
of 13,000 German nouns which were manually
classified as denoting either animate or inanimate
entities4. In order to create a gold standard for
grammatical gender classification, we took a subset
containing animate singular nouns and manually5

selected those that can be used to refer to women
or men (altogether 4,320). Examples of female-
denoting nouns include Schwester, Gastgeberin,
Schauspielerin (Eng. sister, hostess, actress, respec-
tively). We then saw that the data was imbalanced,
namely that there were more male-denoting nouns
(2,830) than female-denoting ones (1,490). As such
a dataset would have produced a biased classifier
with better classification for male-denoting nouns,
we searched for more female-denoting nouns, ulti-
mately expanding this set to 3,700. In German, this
can generally be carried out by adding the suffix in
to the end of male-denoting nouns, e.g. Helfer→
Helferin (Eng. helper). If such a variant is found
in a corpus, it is added to the female list. Since we
found that female nouns in news texts are under-
represented, we decided to keep the whole list of
3,700 female nouns for learning.

In Klenner and Göhring (2022) we tested various
word embeddings (GloVe, BERT,FastText) for the
training of the animacy classifier (MLP, SVM, LR)
and found FastText with logistic regression (LR)
to perform best. Therefore, we used only Fast-
Text embeddings to train a LR model for gender-
aware animacy classification. There was no need
to carry out extensive experiments, since our initial

4download: https://zenodo.org/record/
7630043#.Y-aCU9LMJH4

5The annotation task is straightforward for a native speaker;
thus, only one annotator was needed.

non-actors female male
precision 0.967 0.983 0.973
recall 0.984 0.993 0.927
f1 0.975 0.988 0.949

Table 1: Performance of our three-way, gender-aware
animacy classification model.

model achieved a high accuracy of 97.29%. Table
1 shows the results of a random 75/25 train/test
split. Female-denoting noun identification with a
precision of 98.3% and a recall of 99.3% might
help us to mitigate gender imbalance in news texts.

Note: Not all German female-denoting nouns
possess the “in” ending. In fact, in our list of
female-denoting nouns, 50 have endings other than
“in” (e.g. Frisöse, Eng. hairdresser). A rather
simple (rule-based) method was to classify a word
with an “in” ending as a female-denoting noun. But
that would produce quite some error. In a corpus
of 25 million nouns, we found 67,823 words (to-
kens) ending with “in”. For 36,247 cases of these
“in”-words our classifier predicted female. The re-
maining 31,576 “in”-nouns correspond to 4,035
types. We manually classified 1,000 and found
only 5 female-denoting words. Thus, the classifier
does not base its decision on the suffix, though this
would be a legitimate approach since FastText uses
sub-word splitting. The performance of our classi-
fier with respect to the non-“in” female-denoting
nouns cannot reliably be evaluated at the moment.
We leave it to future work to train models able to
deal with these rarer cases.

4 Statistical Setting

Our question of interest was that of identifying
an imbalance, if any, between men and women,
or some gender-specific behavioral semantic pro-
file, as portrayed in newspaper texts. We focused
on men and women’s roles as positive or nega-
tive actors (sources) or as being positively or nega-
tively affected patients (targets). In particular, we
looked at all polar verb instantiations, with male-
and female-denoting nouns occupying the source
and target roles. Then, we gathered statistics on
how often a positive or negative relation between
two gender-denoting nouns (e.g. a female- and a
male-denoting noun) was found. We performed
this for all gender permutations at the level of a
single verb, but we also accumulated this over all
verbs. To evaluate whether a verb is more biased
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towards male or female roles, the (prior) gender
distribution in the whole data must be taken into
account. In our text corpus, we found a ratio of
male- (1,290,415) to female- (283,952) denoting
nouns (according to the gender classifier) of about
4:1. That is, the maximum likelihood estimated
probability of male denoting nouns is 0.815, that
of female 0.185.

The data is binomially distributed for each role
of a verb frame. For instance, if a transitive (ac-
tive voice) verb has n = 200 instantiations (and
thus 200 sources), of which 20 are female, then
we determine the cumulative probability of up
to 20 cases given 200 trials with p = 0.185 as∑20

i=1 binom(i, 200, 0.185). If this value is below
α = 0.05, then we reject H0 and adopt H1, i.e. we
can conclude that the verb (usage) is biased, and
similarly for the 1 − 0.95% interval. Spelled out,
H0 claims that female (male) denoting nouns oc-
cupy source (target) verb roles according to their
prior probability. If this is for some verbs rather
unlikely, than H1 is adopted saying there is a verb-
role specific bias, for instance that female denoting
nouns are significantly more often targets of (verbs
of) physical violence than male denoting nouns.

We only looked into verbs for which a nor-
mal distribution could be approximately assumed,
which is given if n ∗ p ≥ 5 and n(1 − p) ≥ 5,
where n is the number of cases. In our setting,
this amounts to a frequency threshold of n =
5/0.185 = 27. For each verb above this frequency
threshold, we tested the null hypothesis H0 that
male- and female-denoting nouns occupy the role
of a verb according to their respective distributions
in the whole corpus.

5 Empirical Results

We use data from 3 Swiss newspapers published
between 2004 and 2014. Despite the medium cor-
pus size, the cases in which a verb has 2 animate
role fillers (singular male or female6) at the source
and target positions of that verb are relatively in-
frequent. This low frequency can be attributed to
(1) the abundance of cases written in passive voice
(for which there is quite often no source indicating
PP) and (2) cases in which the source or holder is
a personal pronoun (which, in German, leaves the
animacy status of the referent open). In German,

6We did not take plural nouns into account since German
plural male nouns for a long time have been regarded as being
generic, denoting all genders. The gender reference of such a
noun, thus, cannot be reliably fixed.

relation source target #
+ male male 30
+ male female 5
+ female male 6
+ female female 2
- male male 1273
- male female 707
- female male 221
- female female 63

Table 2: Overview: number of positive (+) and negative
(-) relations between the gender referring nouns.

inanimate objects might have non-neutral grammat-
ical gender, e.g. German Brücke (Eng. bridge)
is feminine. This reduces the number of instanti-
ations, e.g. for the verb töten (Eng. to kill) the
counts shrink from 26,200 to 1,110 (21,000 passive
cases, 4,100 pronouns). As gender classification is
done after sentiment inference, another 800 cases
disappear since no or only one gender-denoting
noun was found, ultimately leaving 302 cases of
töten.

5.1 1st Experiment: Source Imbalance

From the output of the sentiment inference system
for these texts, 132 verb types display cases of an
animate source and target. Only 20 verbs pass
the strict threshold (≥ 27), and of these, 10 have
a gender-specific imbalance. Table 2 shows the
overall statistics. We can see that negative relations
from a male-denoting noun (as source) to a female-
denoting noun (as target) occur about 3 times as
often as the other way around (in bold).

If we observe the most frequent verbs of these
two bidirectional cases, it turns out that they are
gender-specific. Among verbs whose sources are
female-denoting nouns, the most frequent are (in
ascending order) coerce, deceive, threaten, accuse;
for male-denoting noun sources: attack, kill, rape.

Table 3 shows the list of 10 verbs with gender-
specific source-role imbalance. For 7 of these verbs,
male-denoting nouns take on the source role sig-
nificantly more often than expected (the error risk
α is 5%). A letter f (m) in a column ≤ means that
the probability of #f (#m) female (male) sources
for the verb is less than or equal to α.

In order to quantify the noise in our empirical
analysis, we manually inspected all cases from Ta-
ble 3. We looked for gender classification and senti-
ment relation errors. The last column (#e) in Table
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verb ≤ ≥ #f+m #f #m #e
attack f m 62 5 57 7
harass m f 76 31 45 1
fire f m 157 17 140 5
shot dead f m 194 25 169 1
critizice f m 33 1 32 3
kill (töten) f m 302 23 279 20
kill f - 62 6 56 1
rape f m 46 2 44 3
indict - f 30 9 21 0
assault f m 60 5 55 6

Table 3: Gender specific source role imbalance
(f=female, m=male, ≤ means ≤ α,≥ means ≥ 1− α,
e=prediction error

3 shows the error counts. E.g. attack was associ-
ated with 5 cases of animals in the source role and 2
cases of generic male plural nouns, which can also
be used as a feminine singular noun (Unbekann-
te, Eng. unknown females). A manual analysis
revealed an error rate of 4.6% (47 out of 1022).

5.2 2nd Experiment: Target Imbalance
As stated, the low frequencies shown in Table 2 are
partly due to the high number of passive sentences,
in which typically only a target can be found. How-
ever, we can also perform statistical tests with tar-
gets only, which would help us determine whether
men and women are significantly less or more of-
ten targets than their respective distributions sug-
gest. We found 793,246 instantiations of 233 verbs
in passive voice, 66 for which we found gender-
specific patterns. For instance, men are more of-
ten target of torture (line foltern in the appendix),
verwunden (Eng. injury), verdächtigen (Eng. sus-
pect), and anklagen (Eng. accuse) than women,
who more often are targets of vergewaltigen (Eng.
rape), zwingen (Eng. coerce), benachteiligen (Eng.
discriminate), and erniedrigen (Eng. humiliate).

5.3 3rd Experiment: Inanimate Targets
We also tried to identify the inanimate objects (tar-
gets) toward which men and women hold a favor-
able or opposing view ( e.g. lies in She detests
lies). At the token level, we have: 3,180 +f, 1,477
-f, 22,689 +m and 9,935 -m (e.g. 9,935 negative
attitudes of male towards something). At the type
level: 1,857 +f, 1,030 -f, 7,258 +m, 4,564 -m. Still,
the ratio of men:women is imbalanced: there are far
more male- than female-denoting sources. Table 4
shows the word-level intersection percentage of the

target topics that we found. The intersection is not
high. A close inspection might reveal interesting
differences; we leave this for future work.

f m ∩ %
+ 1857 7258 944 10.3
- 1030 4564 500 8.9

Table 4: Men and women: likes (+) and dislikes (-) (∩
=intersection)

5.4 4th Experiment: Polar Targets

One final experiment again deals with inanimate
targets, but this time we look how often men and
women are in favor of something positive or neg-
ative, and correspondingly for the against rela-
tion. For this task, we use our polarity lexicon
Clematide and Klenner (2010)7, albeit without NP
sentiment composition; only words are used. Table
5 shows the results. For instance, there are 1,242
cases in which men are against something positive
(− →pos), e.g. decriminalization or democracy.
In this paper, we have discussed the methods to
generate these candidates, future work is devoted
to a fine-grained qualitative analysis.

gender +→pos +→neg -→pos -→neg
female 149 144 178 35
male 944 896 1242 214

Table 5: In favour of + and -, against + and -, gender-
specific, where pos/neg is a positive/negative word

6 Conclusion and Outlook

We introduced gender-tailored semantic role profil-
ing on the basis of grammatical gender detection
and sentiment relation extraction. Our model com-
bines the first classifier for the detection of the
grammatical gender of German nouns with an ex-
isting rule-based sentiment relation extractor. In a
case study, we were able to carve out the different
semantic role profiles of male and female denoting
expressions in news texts from 2004 to 2014. In
more recent work, we have compared the analysis
of the data from 2004 to 2014 to results from the
same newspapers from 2015 to present-day (Klen-
ner, 2023), in order to see whether semantic profiles
have changed or not.

7See under: “PolArt”-Lexicon from https://sites.
google.com/site/iggsahome/downloads.
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7 Discussion of Limitations

Our method detects gender imbalance by using an
existing rule-based system and a new grammati-
cal gender classifier. Neither performs perfectly,
and we cannot claim that our sampling methods
produce representative data drawn from the whole
population. Rather, we work with a subset that can
be identified by our tools. Generalizing from the
subset to the population is not our intention; rather,
our approach is a first step toward gender-tailored
sentiment analysis. Finally, we do not claim to find
biases in the data, but instead speak of imbalance
and propose that a qualitative analysis of the results
is needed.

8 Appendix: Table of Target Imbalance
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Abstract

This case study investigates the extent to which
a language model (GPT-2) is able to capture na-
tive speakers’ intuitions about implicit causal-
ity in a sentence completion task. Study 1
reproduces earlier results (showing that the
model’s surprisal values correlate with the im-
plicit causality bias of the verb; Davis and van
Schijndel 2021), and then examine the effects
of gender and verb frequency on model perfor-
mance. Study 2 examines the reasoning abil-
ity of GPT-2: Is the model able to produce
more sensible motivations for why the subject
VERBed the object if the verbs have stronger
causality biases? For this study we took care to
avoid human raters being biased by obscenities
and disfluencies generated by the model.

1 Introduction

This paper is a case study, highlighting different
ways to analyse the linguistic abilities of a language
model, with respect to an established linguistic
phenomenon, namely Implicit causality (IC) bias
(Hartshorne, 2014). Speakers associate either the
subject or the object of a verb with the cause of the
state or event described by that verb. For example,
the verb frighten is a subject-biased verb because
native speakers of English tend to see the subject
as the cause of the frightening event. Thus, given a
main clause like in (1a), participants in a sentence
completion task would tend to provide a reason
referring to the subject, as in (1b).

(1) a. [MAIN CLAUSE John scared Mary because . . . ]

b. [REASON he put on a Halloween costume.]

Earlier work by Upadhye et al. (2020) and Davis
and van Schijndel (2020, 2021) investigated the
extent to which language models are able to capture
native speakers’ IC biases. This paper aims to
reproduce some of their earlier results, using GPT-
2 (Radford et al., 2019) as an example. Using the

same sentence completion task as Davis and van
Schijndel (2020), we further investigate how bias,
subject gender, and verb frequency influence the
behavior of this model (§3). Next, we will more
thoroughly assess the quality of the completions
generated by GPT-2 (§4), asking: Does the model’s
performance hold up to further scrutiny?

Why GPT-2? Although it is neither the most
recent, nor the best performing open-source lan-
guage model around (see Black et al. 2022 for al-
ternatives), GPT-2 is still a very popular choice for
many researchers and practitioners. (See https:
//huggingface.co/gpt2 for statistics.) This pop-
ularity is at least partly due to its size, as the model
can be run and fine-tuned on consumer hardware.
The model’s popularity means that studying its ca-
pabilities and limitations may be more impactful
(at least in the short term) than studying the capa-
bilities and limitations of larger but less accessible
systems. For us, GPT-2 offers the right balance of
complexity and efficiency; as shown by Upadhye
et al. (2020), its outputs are good enough to have
a meaningful discussion about the assessment of
language model performance, without requiring a
large (and expensive) computational infrastructure.

Contributions Next to the value of reproducing
earlier work, and providing further details on the
IC-related behaviour of GPT-2, the main innova-
tion of this paper is the controlled assessment of
output quality. We took great care to separate is-
sues with the fluency and offensiveness of the out-
put from the content of the generated continua-
tions. (See Section 6 for the limitations of this
study.) This not only makes the task less harmful
to our participants, but it also increases their focus
on our construct of interest: The reasoning abili-
ties of language models. Our code and data from
this paper is available at https://github.com/
hienhuynhtdn/GPT2andImplicitCausality/.
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2 Data

We present two studies. Study 1 investigates next-
word surprisal values, and Study 2 looks at contin-
uations that are generated based on a prompt. For
both our studies, we provide the model with input
sentences of the following form:

(2) SUBJECT VERB-ed OBJECT because . . . .

The verbs are derived from a list of 246 IC verbs
compiled by Ferstl et al. (2011), who also provide a
bias score for each of these verbs. This score is de-
rived from a human experiment, where participants
were asked to complete sentences like (1a). The
human bias scores range from -100 (i.e., all valid
continuations produced by respondents in Ferstl et
al.’s experiment uniquely referred to objects of the
preceding clauses) to 100 (i.e., all valid continua-
tions referred to subjects of the preceding clauses).

The subjects and objects are provided by Davis
and van Schijndel (2020), who produced a list of 14
noun pairs that are grammatically male and female
(e.g. man, woman or brother, sister). A combi-
nation of the nouns and verbs, our set of stimuli
consists of 6888 examples (246 verbs × 14 pairs of
gender-mismatched nouns × 2 subject genders).

3 Study 1: IC-bias and pronoun use

First, we investigate whether verbs in GPT-2 pos-
sess the same subject/object bias as in the human
experiment described above.

Set-up To test the hypothesis, we use the ap-
proach from Davis and van Schijndel (2021) and
checked for each prompt whether the model as-
signed a lower surprisal to a male or female pro-
noun (i.e. he or she).1 If GPT-2 captures the IC bias,
then subject-biased verbs with a female subject
should lead the model to produce lower surprisal
values for she. Since each noun pair is used in both
orders (either a male or a female noun in subject
position), we have a perfectly balanced dataset.

Results Figure 1 shows the results split by sub-
ject gender and bias scores from Ferstl et al. (2011).
GPT-2 generally picks up on the subject or ob-
ject bias of the verb. The gender produces more
subject-based explanations if the verb’s IC bias is
more subject-biased. There is only one exception:
Performance for sentences with both subject-biased

1Next-word surprisal is estimated for a target upcoming
word by taking the inverse log of this word’s probability:
surprisal(wt) = −logP (wt|w1 . . . wt−1)
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Figure 1: Heatmap table showing the percentage of
outputs matching the subject or object bias of the verb,
with scores separated by subject gender.

verbs and female subjects is at chance level for all
bias scores.

IC Bias and Gender. We used the lme4
(Bates et al., 2015) and lmerTest package in R
(Kuznetsova et al., 2017) to carry out a mixed
effects regression analysis of the relationship
between the bias scores and GPT-2’s subject-
preference scores, corresponding to the difference
between the surprisal for the object-congruent pro-
noun and the surprisal of the subject-congruent
pronoun. Details about our statistical analyses
are provided in Appendix B. There were signif-
icant fixed effects of human bias score (b =
0.003, SE = 0.0001, p < .001) and of the interac-
tion between human bias score and subject gender
(b = 0.0014, SE = 0.0002, p < .001). This con-
firms our observations from Figure 1. The effect
of subject gender was found to be not significant
(b = −0.0103, SE = 0.012, p = .374).2

Verb frequency and model performance. We
then investigated whether verb frequency is posi-
tively correlated with the language model perfor-
mance. For more frequent verbs, we hypothesize
that the model more closely matches the human
subject/object bias. To test this hypothesis, we re-
gressed the squared errors from the previous mixed
effects model to the log-transformed word frequen-
cies of verbs used in the stimuli. As a proxy for
verb frequency in the training corpus, we used the

2In addition, the coefficient of determination of the model
was calculated based on the method developed by Nakagawa
and Schielzeth (2013) using the MuMIn library in R (BartoÂn,
2022). Approximately 14% of the variance in the GPT-2’s
subject-preference score could be explained by the fixed ef-
fects alone (marginal R2 = .142) while 23% of the variance in
the subject-preference score could be explained by both fixed
and random effects (conditional R2 = .230).
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SUBTLEX-US word frequencies from Brysbaert
and New (2009). We found a significant fixed effect
of log-transformed word frequencies of the verbs in
our materials (b = −0.049, SE = 0.012, p < .01).
This supports our hypothesis: More data leads to a
better approximation of human IC bias, in terms of
the preference for either male or female pronouns.

4 Study 2: Assessing continuations

We now turn to continuations generated by GPT-2
based on the prompts described in Section 2. Our
results above suggest that GPT-2 can generate con-
tinuations according to the causality bias pattern,
given enough data. Based on this result, we now
hypothesize that such continuations are better when
the IC pattern is clearly present in the data. The
stronger the IC bias is, the clearer the pattern of
continuations in the training set. Of course, this
task is much more difficult than simply generating
the right pronouns. We now want to see whether
the continuations actually make sense in the eyes
of human judges. To this end, we collected human
ratings for a carefully controlled subset of the con-
tinuations generated by GPT-2 (see Appendix C for
details). IRB approval was obtained prior to this
study. (Ethical considerations in Appendix A.)

Participants We used the Prolific participant
pool to recruit 75 participants for the sentence rat-
ing task. Our items were spread across 25 different
lists, and each participant was only allowed to pro-
vide ratings for one list. We restricted potential par-
ticipants to native speakers of English, either from
the UK or from the USA. After assessing response
quality, we recruited five additional participants, to
obtain three reliable judgments per item.

Task and target construct Each continuation
was assessed by three different participants, who
judged whether the continuations were reasonable,
given the prompt. We set up our experiment as a
rating task, where each participant indicated for a
list of 40 items whether they agreed with the state-
ment that the continuation was ‘reasonable.’ Par-
ticipants could indicate their agreement on a five-
point Likert scale, ranging from ‘Strongly Agree’
to ‘Strongly Disagree.’ With the addition of some
examples in our task description (see Appendix G),
we targeted our participants’ intuitions for what
makes a good reason to do something. As we will
discuss below, we aimed to avoid any influence of

the form of the output as much as possible.3

Prompt selection Due to financial limitations,
we were not able to obtain ratings for all 6888 con-
tinuations. Following the recommendations from
van Miltenburg et al. (2021), we used a stratified
sampling approach. We selected the 5 most fre-
quent noun pairs, and the 10 most frequent verbs
for each of the 10 different bias levels (as illustrated
in Figure 1). This selection gives us a sense of the
upper bound performance with respect to contin-
uation quality. Frequency was again determined
using the SUBTLEX-US data (Brysbaert and New,
2009). Prompts were constructed in the same way
as before (see Ex. 2), with each noun pair being
presented in both orders. This yields 10 verbs × 10
bias levels × 5 nouns × 2 orders = 1000 prompts.

Data preparation We used GPT-2 to generate
continuations for each prompt. As shown earlier,
the problem with these continuations is that they
may be offensive or contain disfluencies (most no-
tably repetition, see Fu et al. 2021). This creates
two problems: (i) Offensive output may cause psy-
chological harm for our participants, and (ii) offen-
siveness and disfluencies may lower the reliability
of the ratings, if participants consistently provide
lower scores for offensive/disfluent outputs (even
though they may be consistent with the prompt).
To prevent harm, and to avoid noise in the ratings,
we took the following approach:

1. If the output is offensive, select a different
noun pair from the 9 remaining pairs to gener-
ate a non-offensive alternative continuation.

2. If the output contains repetition, manually re-
move repeated elements from the sentence,
so that the core content of the continuation
remains largely unchanged.

Reliability To assess annotator reliability, we
used a leave-one-out approach to correlate each par-
ticipant’s scores with the mean scores of the two
other participants who rated the same responses.
Initial correlations ranged between 0.17 and 0.84.
Five annotators scored below our cutoff of 0.4, and
thus we recruited five more participants. After re-
computing the reliability scores, we kept only the

3Given the terminological confusion in the field of Natu-
ral Language Generation (Howcroft et al., 2020), Belz et al.
(2020) developed a categorization system for evaluation crite-
ria in NLG. In terms of their taxonomy, our informal notion
of ‘reasonable continuation’ clearly focuses on the content of
the output, but the frame of reference is harder to define. If
we look at the completed sentence as a whole, the sentence is
evaluated in its own right, and so it is a question of Coherence.
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Rating 1 2 3 4 5

Raw counts 689 571 333 782 625
% of ratings 23 19 11 26 21
% avg rating >= rating 100 79 55 32 7

Table 1: Distribution of the ratings. Ratings correspond
to a Likert scale, where 1=Strongly disagree, 2=Some-
what disagree, 3=Neither agree nor disagree, 4=Some-
what agree, 5=Strongly agree.

three highest-scoring participants per task. This
way, we obtained a mean score of 0.64, with a stan-
dard deviation of 0.11. This is a strong correlation,
considering the subjective nature of the task.

Continuation quality Table 1 shows the ratings
in three different ways. The top row shows the
(bimodal) raw score distribution: Ratings tend to
be either negative or positive, with relatively few
ratings in the middle of the scale. The second
row provides the same values as percentages, as a
guide for the third row. The third row shows the
percentage of continuations for which the average
rating is greater than or equal to a given rating. For
example: Only 32% of all the continuations have
an average rating greater than or equal to 4.

A total of 72 sentences was only rated at the
lowest level. Table 2 (next page) provides exam-
ples of low-quality categorisations, with a rough
categorisation. The three error categories are:

1. Non-sensical: Continuations that do not make
sense as a reason for anything.

2. Invalid reason: Continuations that provide a
reason, but the reason is not applicable.

3. Subject-object reversal: Continuations that
would have made sense if subject and object
were reversed.

These categories are not mutually exclusive (and
fairly subjective) because it is hard to pin down
what makes for a good/bad continuation. Never-
theless, it is clear that the example continuations
in Table 2 provide poor reasons indeed. Future
research could carry out a more systematic error
analysis (along the lines of van Miltenburg et al.
2021), and present the distribution of the different
kinds of erroneous continuations.

There were 69 continuations that always re-
ceived the highest rating seem to conform to the hu-
man IC bias. One random example is ‘The woman
thanked the man because he was a good man.‘;
the verb ‘to thank’ is strongly object-biased (raw
subject bias score -92).

Continuation diversity Besides continuation
quality, we also observe low continuation diversity.
Table 3 shows the five most frequent continuations
for our prompts, split by subject gender. It is clear
from the table that the continuations generated by
GPT-2 are very repetitive, and tend to be generic
without any specific details. So there are no exam-
ples like (3) in the generated continuations:

(3) The woman thanked the man because he gave
her a nice book for her thirty-seventh birthday.

Explaining model performance We again used
a mixed effects model to analyze our results. Our
aim is to explain GPT-2’s performance (i.e., how
reasonable the continuation is) in terms of verb
frequency and absolute IC bias (which only looks at
strength of the bias).4 Full details about the model
and model fitting are provided in Appendix D.

Subject gender and its interactions were consid-
ered, but did not significantly improve model fit,
and were dropped. Absolute IC bias has a small
but positive effect on the rating (b = 0.003, SE =
0.001, p = 0.015). The effect of frequency is nega-
tive (b = −0.121, SE = 0.038, p = 0.002). There
is also a negative interaction of bias and frequency
(b = −0.006, SE = 0.001, p < .001), indicating
that the positive effect of bias diminishes for higher
frequency verbs. Thus, while we concluded in
Study 1 that the accuracy of GPT-2 with respect to
subject/object bias increases as the verb becomes
more frequent, we now find that higher frequency
does not give us more reasonable continuations.
The (small) positive effect of absolute IC bias on
the ratings can be explained by the intuition that
the IC bias pattern is likely more clearly present in
the training data for verbs that are more strongly
biased. This makes it easier to pick up the pattern.

5 Discussion

The difference between Study 1 and Study 2 indi-
cates a qualitative difference between generating
pronouns and providing explanations: The latter
requires higher-level reasoning which may not be
present in language models like GPT-2 (Bender
and Koller, 2020). Though the fact that GPT-2

4IC bias and log-transformed frequency values were de-
termined as for Study 1. IC bias scores were made abso-
lute; the mean absolute IC bias is 49.3 (SD 27.5, range [2,
92]). The mean (untransformed) frequency per million is 45.4
(SD 90.7, range [0.02, 502.27]). The correlation between IC
bias and frequency was not significant and low (Pearson’s
r = −0.02, p = .35).
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Error category Examples

Non-sensical The girl hit the boy because he was too young to be a boy.
The girl chased the boy because he was wearing a black hoodie and a black hoodie with a black
hoodie on.

Invalid reason The mother approached the father because she was afraid of him.
The mother scared the father because he was a little too big for her.

Subject-object reversal The woman affected the man because she was afraid of him.
The woman surprised the man because he was wearing a black suit and a black tie.

Table 2: Rough categorisation of examples of low-quality continuations

Male subject Female subject
Continuations Frequency Continuations Frequency

he was afraid of her 521 she was afraid of him. 476
she was a woman 102 he was a good man and he was a good man 166
he was a good man and he was a good man 68 he was a good man 124
she was a good girl 64 he was a good boy 92
she was a woman, and he was a man 60 she was a woman 57

Table 3: Most frequent continuations for the prompts in Study 2, split by subject.

follows the implicit causality bias in pronoun se-
lection is at least compatible with knowledge of
causality, the quality of the continuations suggests
the pronoun selection is based on superficial heuris-
tics rather than a deep understanding of language
(also discussed as fast versus slow; see Choudhury
et al. 2022; Kahneman 2011). Although existing
suites for LM evaluation (e.g. Ettinger 2020) are
useful, slower forms of assessment (such as human
evaluation) are helpful to tease out this difference.

6 Limitations

The main limitation of our paper is that we focused
on only one language model (GPT-2), and only in
one language (English). So while our findings pro-
vide insights into the capacities of the English GPT-
2, they cannot be generalised to other language
models or other languages (which is also illustrated
by Davis and van Schijndel (2021)). Our main con-
tribution is methodological, namely exploring how
to assess the linguistic capacities of language mod-
els. Because our approach treats GPT-2 (mostly)
as a black box, our analysis can easily be applied
to other models as well.

For Study 2, a negative effect of verb frequency
on the quality of generated continuations was found.
As the materials used for the rating study were not
gathered to cover the full range of frequencies, this
pattern should not be generalized and may reflect
a hidden effect. The negative interaction with IC
bias suggests the same. The model fit shows an im-
perfect fit, but without one clear deviation from lin-

earity. Hence, our findings may well be explained
better with more appropriate independent variables.

7 Conclusion

This paper showed two different ways to assess the
linguistic capacity of a language model (GPT-2),
using implicit causality as a case study. The tech-
niques used above can be applied in a black box
setting, without the need to look at the internals of
the model. We hope that this paper is useful for
others aiming to assess the ability of other language
models to capture different linguistic phenomena
as well. Our findings also showed that automatic
assessment methods may not be enough to deter-
mine whether semantic phenomena like implicit
causality are learned by a language model. Human
evaluation remains a necessary complement to au-
tomatic evaluation (van der Lee et al., 2021). Our
paper shows one way to do this without participants
being influenced by factors like grammaticality and
offensiveness of the output.
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A Ethical considerations

Because our study deals with human subjects, we
first obtained ethical approval from our IRB. We
describe our considerations below.

A.1 Information letter and informed consent

Our IRB mandates the use of a separate informa-
tion letter (Appendix E) and informed consent form
(Appendix F). With the information letter, we give
a general description of the study, and provide an in-
dication of potential risks and benefits of the study.
The informed consent form is provided separately
to prevent information overload, and to ensure that
participants know what they are agreeing to, if they
decide to take part in our study.

A.2 Crowdsourcing and payment

Crowdsourcing has been criticized for its poten-
tially exploitative nature (Fort et al., 2011). We
explicitly frame our task as an experiment with hu-
man participants, rather than a human intelligence
task with crowdworkers, and apply the same con-
siderations and protections as for lab experiments.
Nevertheless, it is still work, and work needs to be
paid. Based on experience, we expected partici-
pants to spend roughly 15 minutes on the task, and
set the compensation to £2.40, which amounts to
£9.60/hour; 10 cents above the current UK mini-
mum wage.5 In the end, the vast majority of our
participants spent less time than expected on our
task (time in mm:ss format: range: 03:06±16:18,
median: 06:18, mean: 06:59, SD: 02:55.).

All participants were compensated for their time,
including those providing low-quality responses.

A.3 Offensive material

We wanted to avoid confronting our participants
with profanity or otherwise potentially harmful lan-
guage. We manually identified potentially offen-
sive continuations generated by the model, and
replaced harmful outputs with alternative contin-
uations generated for different prompts. We con-
sidered continuations potentially harmful if they
contained profanity or made reference to religion,
violence, or sexual acts. All originally generated
sentences and their replacements can be found in
the GitHub repository associated with our paper.

5See https://www.gov.uk/government/
publications/the-national-minimum-wage-in-2022

A.4 Language model-related harms

Language models are associated with several dif-
ferent harms (Bender et al., 2021; Weidinger et al.,
2021), but these harms also depend on the task at
hand. For example, since we used a pretrained
model, our study did not incur any additional train-
ing costs. And as described above, since no one
other than the authors were directly exposed to
the model’s output, we could prevent our partici-
pants from seeing harmful or toxic content. Thus
we are mostly left with inference costs, which are
relatively low, since GPT-2 can run on a personal
computer.

A.5 Intended use of this work

This study serves two purposes: (i) To explore the
ability of a language model (GPT-2) to capture
native speakers’ intuitions about implicit causal-
ity, and (ii) to develop an evaluation methodology
that isolates coherence of the responses from other
factors like offensiveness and (un)wellformedness.
We do not wish to make any claims about the cog-
nitive capacity of language models in general, nor
do we want to claim that GPT-2 can somehow rea-
son about the world. We just want to see whether
the model can generate outputs that follow earlier
observations about implicit causality, and that are
internally consistent. Follow-up studies in the spirit
of this work are encouraged.

A.6 Licensing

All resources used for this study were developed
for research purposes, but not all materials have a
clearly indicated license. GPT-2 is provided under
the MIT license.6 The work by Davis and van Schi-
jndel (2020, 2021) is provided on GitHub without
any license7 and both Brysbaert and New (2009)
and Ferstl et al. (2011) published their work in the
Behavior Research Methods journal without a clear
license, but with a clear intention for their work to
be used for research purposes. We thus conclude
that academic use of these resources is warranted.

B Study 1: Statistical analysis

As noted in Section 3, we used the lme4
(Bates et al., 2015) and lmerTest packages in R
(Kuznetsova et al., 2017) to carry out a mixed

6https://huggingface.co/gpt2
7https://github.com/forrestdavis/

ImplicitCausality
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effects regression analysis of the relationship be-
tween the model’s subject-preference score and
human bias score of every IC verb, reducing the
complexity by removing terms that do not signifi-
cantly improve fit.

As fixed effects, human bias score, subject gen-
der of the stimulus sentence-fragments (with two
levels, namely male or female) and their interaction
were included. Moreover, we included item, which
indicated the pairs of antonymous nouns used in
the stimulus sentences as subjects and objects, as a
random effect, and added by-item random slopes
for the effects of human bias score, subject gender
and their interaction. However, the fitting of the
full model including all fixed and random effects
failed to converge. Therefore, the by-item random
slopes for the effects of human bias, subject gen-
der and their interaction were removed. Our final
model is the following in R notation:

(4) subject-preference score ~ human IC bias score
* subject gender + (1|item)

We regressed the squared errors obtained from
the linear mixed effects regression model we per-
formed in the previous step on the log-transformed
word frequencies of IC verbs used in the stimuli.
As random effects, item was also entered into the
model, and by-item random slope for the effect of
log- transformed frequency was added.

C Study 2: Continuations

While Study 1 looked into the surprisal values for
the generation of male/female pronouns, this study
looks at continuations themselves.

C.1 Consistency check

We first checked whether the IC bias pattern con-
tinues to be present in the full continuations. In
all but 176 cases, the model generated a gendered
pronoun. These cases were coded manually, to de-
termine whether the continuation referred to the
subject or the object. Figure 2 shows the propor-
tion of continuations referring to either the subject
or the object of the prompt (Y-axis), split by the
bias score (X-axis). We see the same trends as
in the first study: Overall we see that references
to the subject increase as the bias score increases.
This trend also holds when we split the prompts by
subject gender, but for the female subjects the pro-
portion of references to the subject never exceeds
50%.

C.2 Patterns

We then inspected the frequencies of the contin-
uations. We observe that more than 20% of the
outputs is repeated more than 100 times. This lack
of diversity is a common issue in (neural) Natural
Language Generation (e.g. van Miltenburg et al.
2018; Hashimoto et al. 2019; Zhang et al. 2021).
It is not necessarily a problem at the individual
level (the continuation may be a bit generic but
still appropriate for the given context), but at the
corpus level these ‘one size fits all’ continuations
are shortcuts that prevent more varied outputs.8

C.3 Offensive output

Looking over the generated outputs, there were
several occasions where the model generated offen-
sive continuations, including instances of sexism,
racism, and misogyny. On top of this, the model
outputs also contained sexually explicit words, and
some continuations described acts of violence. Fol-
lowing the recommendations from Derczynski et al.
(2022), we do not provide any examples in this pa-
per. As discussed in Section 4, we also removed
(potentially) offensive continuations from our hu-
man rating experiment. For transparency reasons,
we do provide those sentences in our GitHub repos-
itory.

D Study 2: Statistical analysis

A full linear model was built with the factors
subject gender, absolute IC bias (centered), log-
transformed word frequency (z-scored) and their
interactions as fixed effects, and random effects for
participant (intercept, and slopes for the three main
effects), sentence (intercept), and subject/object
pair (intercept). The model was then subjected to
the step function of lmerTest, which removes in-
significant components. Though the full model and
some of the first reductions of it did not converge,
this procedure is still appropriate (a model that does
not converge should not be used, and as more data
is not available, the model should be simplified).
The reduced final model, that did converge, is, in R
syntax:

8We might also question whether it is possible at all to
properly assess the cognitive capacity of a model that keeps
using such shortcuts (which may be seen as cheating). As
an alternative, we can imagine a two-stage process where
researchers first generate an unrestricted set of continuations,
and then force the model to avoid common continuations.
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Figure 2: Percentage of continuations referring to subjects or objects by bias scores of verbs. Panel A shows overall
proportion, Panel B shows proportion split by subject gender

(5) rating ~ abs(IC bias_abs_c) * frequency + (1 |
sentence_ID) + (1|participant) + (1|item)

The DHARMa package (Hartig, 2022) was used
to assess model fit. Though the residuals are not
normally distributed, the deviations show no clear
pattern. To avoid spurious conclusions, we corrob-
orated the significant estimates by checking if their
95% confidence intervals included 0, which they
did not. Hence, treating ratings as a continuous
numeric variable was not problematic.

Figure 3: Ratings by absolute value of human IC bias.

E Information letter

Title: Assessing computer-generated texts

Introduction
We invite you to take part in our study to
assess computer-generated texts. This study
is part of a larger project to see how good or
bad computers are at producing or understand-
ing human language,such as English. In this
study you will be asked to rate the quality of

Figure 4: Ratings by absolute value of human IC bias,
separated for four different levels of verb frequency.

computer-generated texts/sentences. We will
use this information to see what the computer
is good at, and to see where it can still be improved.

What do I have to do?
As mentioned above, you will be asked to rate the
quality of computer-generated texts. In this study,
you will be asked to read 40 short sentences, and
to provide your judgment. We are interested in
your intuition as a native speaker of English, so
you don’t need to think too long about it.

Expected duration
We expect this study to take about fifteen minutes
of your time. Other than this, we do not foresee
any risks associated with this study. On the
positive side, your participation will improve our
understanding of the language capacity of modern
computer models.
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Ethics and rights
This study was approved by the Research Ethics
and Data Management Committee (REDC) at
Tilburg University.

Your participation is completely voluntary. Your
consent to participate generally applies for the
duration of this study. However, you have the right
to decline to participate and withdraw from the
research once participation has begun, without any
negative consequences, and without providing any
explanation.

Your participation is completely anonymous.
We will not store any identifying information, so
your answers cannot be traced back to you. We
only see the demographic information that Prolific
provides. Do let us know if you would like to have
a copy of your responses, and we will try to obtain
them based on the Prolific ID.

Use of data
Your responses will be used for the current study,
and possible follow-up studies in the future.
This means that the data will be presented in
research articles, that are publicly available. For
full transparency, we will also publicly share the
anonymised individual responses. As such, they
will be stored indefinitely.

Contact
If you have any questions, or if would like
to learn more about this study, please contact
C.W.J.vanMiltenburg@tilburguniversity.edu for
any of your questions.

Ethics approval
If you have any remarks or complaints regard-
ing this research, you may also contact the ªRe-
search Ethics and Data Management Committeeº
of Tilburg School of Humanities and Digital Sci-
ences via tshd.redc@tilburguniversity.edu.

F Informed consent

By agreeing to this consent form, you confirm
that you have read the study description and
that you have been offered the opportunity to
ask questions (via email). Remember that your
participation is voluntary, and that you have the
right to decline to participate and withdraw from
the research once participation has begun, without

any negative consequences, and without providing
any explanation.

I hereby give permission to:
• Store my anonymised responses to this survey.
• Analyse the anonymised data (both manu-

ally and automatically through statistical soft-
ware).

• Make the responses to this survey publicly
available upon completion of the study.

Yes ⇒ continue to the survey.
No ⇒ continue to the end of the survey.

G Task instructions

Task instructions
All questions below are of have the same form.
You will see the start of a sentence on the first line,
and a continuation generated by a computer model
on the second line. Your job is to assess the quality
of the continuation on the second line.

Example of a reasonable continuation:
For the following sentence: The clown startled the
girl because
A reasonable continuation would be: his make-up
was scary.

• Strongly agree
• Somewhat agree
• Neither agree nor disagree
• Somewhat disagree
• Strongly disagree

This is a reasonable continuation because scary
make-up can cause someone to be startled. So here
you would answer Strongly agree.

Example of a less reasonable continuation:
For the following sentence: The clown startled the
girl because
A reasonable continuation would be: she liked him.

• Strongly agree
• Somewhat agree
• Neither agree nor disagree
• Somewhat disagree
• Strongly disagree
This is a less reasonable continuation, because

being liked by someone is generally not a reason
to startle them. So here you would answer one of
the disagree options.
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Abstract
Categorial grammar (CG) is a lexicalized
grammar formalism that can be used to iden-
tify and extract the semantics of natural lan-
guage sentences. However, despite being used
actively to solve natural language understand-
ing tasks such as natural language inference
or recognizing textual entailment, most of the
tools exploiting the capacities of CG are avail-
able in a limited set of languages. This pa-
per proposes a first step toward developing
a set of tools enabling the use of CG for
the French language by proposing a neural
network tailored for part-of-speech and type-
logical-grammar supertagging, located at the
frontier between computational linguistics and
artificial intelligence. Experiments show that
our model can compete with state-of-the art
models while retaining a simple architecture.

1 Introduction

Categorial grammar (CG) is a formalism whose
foundations come from Ajdukiewicz (1935) and
Bar-Hillel (1953). From there, we can find two
major lines of research that were created, namely,
combinatory CG (CCG) (Steedman, 2000) and
type-logical grammar (TLG) (Moortgat, 1997;
Morrill, 1994) which itself can be divided into two
subtheories, namely, displacement calculus (Mor-
rill et al., 2011) and multi-modal CG (Moortgat,
1997). Other theories that build upon those theo-
ries also exist, such as hybrid TLCG (Kubota and
Levine, 2020) and abstract CG (de Groote, 2001).

Using these syntactic theories offers knowledge
about each word passed in an input sentence. Us-
ing the appropriate resources, the great amount
of information provided by a supertag (Bangalore
and Joshi, 1999) attributed to a given word in a
sentence can be parsed efficiently to solve natu-
ral language understanding tasks such as natural
language inference or recognizing textual entail-
ment. This syntax-semantic interface can then be

used by machines in order to answer various kinds
of challenges, such as question answering and text
summarization.

The continuous development of CCG and TLG
led to the progressive appearance of several anno-
tated corpora in various languages, such as Ger-
man (Hockenmaier, 2006), Italian (Bos et al.,
2009), Japanese (Uematsu et al., 2013), and
of course English (Hockenmaier and Steedman,
2007). However, the number of treebanks and
tools is very limited for the French language. Be-
cause CG has a close affinity to lambda calculus,
logic, and natural deduction proofs, we are moti-
vated to develop the current state-of-the-art in this
field for the French language.

In this work, we propose a simple supertag-
ger for part of speech (POS) and TLG tagging
by exploiting the capacities of deep bidirectional
encoder representation from transformers (BERT)
(Devlin et al., 2018) for unlabeled input sentences.
We demonstrate that integrating into our archi-
tecture a small long short-term memory (LSTM)-
based variational autoencoder (VAE) while adapt-
ing the training pipeline allows us to increase the
word-wise supertagging accuracy of our model.
We also show experimentally that joining the
training of both POS and TLG supertagging offers
slightly increased overall accuracy while reducing
the accuracy of tags seen rarely during training.

2 Related works

French TLG and POS supertagging The TL-
Gbank (Moot, 2015) is a type-logical treebank for
French, developed from the French Treebank, a
lexical and syntactic resource by Abeillé et al.
(2003). Because both corpora have been manually
verified and rectified by their respective authors,
they can be considered as the gold standard for
French CG. Alongside his TLGbank, Moot pre-

78



sented the supertagger DeepGrail,1 which is an
LSTM layer that uses ELMo (embeddings from
language models) vector embeddings of the unla-
beled input data. This model successfully assigns
93.2 percent of words their correct TLG formula
and presents an accuracy of 99.1 percent of cor-
rect POS supertags.

Since then, state-of-the-art TLG supertagging
of this treebank has been achieved by Kogkalidis
and Moortgat (2022) with an accuracy of 95.92
percent. Their approach revisits traditional models
by proposing a framework based on heterogeneous
dynamic graph convolutions and by decomposing
the structure of the supertags. By doing so, they
presented novel accuracy results on supertags that
were rarely seen during the training phase. This
generalization effort motivated us to explore dif-
ferent ways to regularize our architecture without
losing overall model accuracy.

CamemBERT Our approach is built around the
use of CamemBERT (Martin et al., 2020), which
is a fine-tuned RoBERTa model (Liu et al., 2019)
for French, which itself is based on BERT (De-
vlin et al., 2018). This model is attractive for the
French language because it uses a subword tok-
enization where each word is divided, so it can ex-
ploit the numerous inflections that appear in the
French language. In the study reported herein,
we found only a few differences between the
experimental results of CamemBERTBASE and
CamemBERTLARGE models. Therefore, for the
sake of computing speed and efficiency, we used
only CamemBERTBASE in our model because its
architecture is three times smaller than its other
version.

3 TLG and POS supertagger model

In this section, we describe the training data and
procedure and present the different modules of our
model.

3.1 Training data

We manually split the TLGbank with a fixed seed
into train/dev/test splits at a ratio of 80:10:10 to
have comparable results with the network pro-
posed by Kogkalidis and Moortgat (2022). For
each word, the corpus presents its TLG and French
POS supertags, allowing us to test several versions

1https://richardmoot.github.io/
DeepGrail/

Class Frequency Number of words
Frequent n ≥ 100 43,861
Uncommon 100 > n ≥ 10 761
Rare 10 > n ≥ 1 139
Unseen n = 0 21

Table 1: Supertag classes statistics of the TLGbank.

of our network using solely the 14,521 parsed sen-
tences of the treebank (411,520 words).

CGs such as TLG often suffer from a large num-
ber of possible supertags. To evaluate the regu-
larization power of our architecture, we group the
tags into four classes based on their frequency of
appearance in our training split. Table 1 shows
the supertag class names, frequency of tags in the
train split, and number of different words whose
supertag is in this class.

Because POS supertags do not share the same
sparsity as TLG supertags (<30 different tags for
the French MElt POS tagset), we report only the
overall accuracy on this task.

3.2 Model architecture

We develop each part of the model presented in
Figure 1 before presenting how the different mod-
ules were combined and evaluated. For simplicity,
we call the model VAEoTL (variational autoen-
coder over transfer learning).

CamemBERT CamemBERT was trained orig-
inally on the masked language modeling task.
Thus, we fine-tune CamemBERTBASE during the
training phase while only removing its original
head in a classical transfer-learning fashion. For
each phase of training described in Section 3.3, the
learning rate of CamemBERT is 10 times lower
than for the rest of the model in order not to
waste its pre-training. CememBERT’s subword
tokenization requires us to adapt the output size.
Because we attribute only one supertag per word
(and not per subword), we adapt the training data
by attributing the supertag to the first subpart of
each word and by padding the other subparts. Ac-
curacy is thus evaluated using a simple mask re-
moving this padding.

BiLSTM A single-layered bi-directional LSTM
(BiLSTM) is used after the CamemBERT layer. It
is a recurrent network that combines two LSTMs:
one reading the sentence from left to right, and one
reading the sentence from right to left, thus ex-
tracting for each input information coming from
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its neighbors on both sides.

VAE With the goal of regularizing our network
in mind, we tried to add a VAE to our architec-
ture. This module allows us to approximate the
output distribution of the BiLSTM by encoding it
to a latent space, before decoding it to reconstruct
the aforementioned outputs. Doing so allows us to
regularize the BiLSTM outputs and to increase the
supertagging accuracy, specifically over rare tags.
Internally, the encoder and decoder of the VAE
module are both composed of BiLSTM linked by
dense layers to the latent space. In our case, a la-
tent space of size 200 was the best compromise
between speed and efficiency in the final model.

However, integrating this module requires
adapting the training procedure because it requires
the previous layers to be pre-trained. We differ-
entiate our procedure into three distinct phases as
described later in Section 3.3.

Dense+CRF heads The final output of our neu-
ral network is tagged by a simple dense layer map-
ping the hidden dimensions to tagset space in or-
der to produce probability emission for each pos-
sible supertag. However, applying a simple soft-
max activation function to such emissions would
imply that each tag is conditionally independent
of its neighbor, which is in sharp contrast to the
nature of CGs.

While the softmax activation allows us to dis-
tribute the probability for each supertag to be cho-
sen given an input word, it sometimes fails to mod-
elize the relationship between adjacent supertags.
Instead, we use a conditional-random-field layer
(Lafferty et al., 2001), a discriminative model that
finds the Viterbi path maximizing the probability
of a sequence of possible supertags given an in-
put sequence. This effectively considers the con-
text around each supertag while allowing us to use
a simple forward-backward algorithm to compute
the negative log-likelihood between network emis-
sions and target outputs.

Two different heads are required because we
want to evaluate both the TLG and French POS
supertagging tasks. We experimented on two pos-
sible applications of this model: single-headed or
multi-headed. In the former, we train only a single
head at once, thus dedicating the whole architec-
ture to a single task. In the latter, we share the
training of the previous layers between each task,
on the hypothesis that overall accuracy should im-

Figure 1: Architecture of the network

prove because only the most relevant features will
be learned, thereby effectively preventing overfit-
ting.

3.3 Training procedure

For its training, the VAE module requires an
adapted negative log-likelihood with regularizer
and to have its previous layers sufficiently trained.
Accordingly, we define three distinct phases to our
training. The first phase (20 epochs) does not use
the VAE module at all, because we do not wish
to approximate the outputs of an untrained model.
In the second phase, we remove the heads of the
model and freeze the training of CamemBERT and
the BiLSTM layers in order to train the VAE for 10
epochs, using the mean squared error as a recon-
struction criterion added to the Kullback–Leibler
divergence in order to compute the loss. In the fi-
nal phase, we unfreeze all layers and fine-tune the
whole model for 10 epochs.

3.4 Implementation

We implement our model using PyTorch,2 which
provides an easy-to-use-and-adapt interface to
construct our model, alongside Huggingface,3

from which we accessed the CamemBERT model.
2https://pytorch.org/
3https://huggingface.co/
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Model Overall Frequent Uncommon Rare Unseen
ELMo & LSTM (Moot, 2015)1 93.20 95.10 75.19 25.85 0.0

Phase 1 Single-head 95.47 95.90 81.20 41.30 0.0
Phase 1 Multi-head 95.57 96.00 83.57 28.78 0.0
Final Single-head 95.58 96.00 81.20 45.19 0.0
Final Multi-head 95.66 96.13 83.04 28.78 0.0

HDC (Kogkalidis and Moortgat, 2022)1 95.92 96.40 81.48 55.37 7.26

Table 2: Model performance in percent for each category of tags (average over five runs). HDC stands for heterogeneous
dynamic convolutions. 1Reported results from the cited paper.

For each phase, we use a different Adam optimizer
with β = (0.9, 0.999), no weight decay, and a
learning rate of 10−4 fading to zero with polyno-
mial decay. To regularize the outputs, 40 percent
dropout is added during training.

4 Results

In Table 2, we present the wordwise supertagging
accuracy compared to the state-of-the-art results
published by Kogkalidis and Moortgat (2022) in
TLG supertagging. Although our model did not
surpass the state of the art, we proved its efficiency
despite its simplicity.4 The first training phase is
enough to reach high accuracy, but we observe that
adding a VAE module still allows us to improve
our accuracy, specifically over rare tags.

We observe that sharing the training between
TLG and POS supertagging allows us to improve
overall accuracy while sacrificing rare-tags accu-
racy. This is because the model will learn the
underlying correlation between both types of su-
pertags, thus reducing the probability of picking
rare TLG supertags knowing the POS supertag of
the same word.

Further investigations using this architecture are
needed in future work to prove the efficiency of
this model. However, its simple nature offers
the opportunity to manipulate and adapt it easily,
whether by modifying its structure or by simply
adding new heads tailored to specific tasks.

Table 3 presents our results on the POS su-
pertagging task compared to MElt tagger results
reported by Denis and Sagot (2012). We ob-
serve that the model achieves state-of-the-art re-
sults, demonstrating that it can learn features rele-
vant for both TLG and POS supertagging.

4The software used is available at the following github
page for reproducibility of results: https://github.
com/gaetanmargueritte/ftlgsupertagger

Model Accuracy
MElt tagger (Denis and Sagot, 2012) 97.70

Phase 1 Single-head model 99.53
Phase 1 Multi-head model 99.57
Final Single-head VAEoTL 99.55
Final Multi-head VAEoTL 99.56

Table 3: Model performance in percent for French POS tag-
ging on the TLGbank.

5 Contributions and limitations

With the goal in mind to provide a tool allowing
to properly represent the syntax of input sentences
formulated in natural language, we hope that fu-
ture works will be able to extend the capacities
of this architecture in order to exploit this syntax-
semantic interface. While our model has not im-
proved the state of the art of French TLG supertag-
ging, it presents an accessible and simple fine-
tuning of existing transformer-based models. Its
modular architecture eases the adaptation of other
existing techniques such as beam search to obtain
more than a single prediction per word.

However, this model fails to modelize the in-
ternal structure of the syntactic types in the sense
that it does not learn to create new composed types
(N/N, S\NP) by assembling atomic types (N, NP,
S). The current state of the art presented by Kogka-
lidis and Moortgat (2022) solves this problem by
using a graph-theoretic perspective.

6 Conclusion

In this work, we investigated the different ways
to regularize and fine-tune a supertagger for the
French language, exploiting pre-trained unlabeled
word embedding and a customized procedure uti-
lizing a VAE architecture. We used a gold-
standard annotated corpus, TLGbank, to train a
simple and adaptable model able to compete with
the current state of the art of supertaggers. We
have shown experimentally that a VAE can be used
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to improve model regularization and that overall
accuracy can be improved by using a multi-headed
architecture.
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Abstract

This work experiments with various con-
figurations of transformer-based sequence-to-
sequence neural networks in training a Dis-
course Representation Structure (DRS) parser,
and presents the results along with the code to
reproduce our experiments for use by the com-
munity working on DRS parsing. These are
configurations that have not been tested in prior
work on this task. The Parallel Meaning Bank
(PMB) English data sets are used to train the
models. The results are evaluated on the PMB
test sets using Counter, the standard evaluation
tool for DRSs. We show that the performance
improves upon the previous state of the art by
0.5 (F1%) for PMB 2.2.0 and 1.02 (F1%) for
PMB 3.0.0 test sets. We also present results on
PMB 4.0.0, which has not been evaluated using
Counter in previous research.

1 Introduction

Discourse representation structures (DRSs) are a
way of representing meaning based on Discourse
Representation Theory (Kamp and Reyle, 1993;
Kamp et al., 2011). In addition to predicate-
argument structures, DRSs express temporal re-
lations, anaphora, modals, negation, and presuppo-
sitions, and can be further employed by other auto-
matic processes to understand natural language.

The task of mapping sentences to their DRS
meaning representations is called DRS parsing.
There now exists a large dataset with DRSs for
corpus examples, the Groningen Parallel Meaning
Bank (PMB, Abzianidze et al. 2017), which makes
it possible to train deep neural networks of the
kinds that provide state-of-the-art performance on
a variety of NLP tasks these days.

Recent work has explored a variety of neural net-
work architectures for this task, but curiously, little
work has been done using the otherwise widely
utilized transformer-based encoder-decoder archi-

tecture. In this paper, we report on such experi-
ments using Wordpiece (Wu et al., 2016) to tok-
enize the input and output, and train a sequence-to-
sequence model where the encoder is a pre-trained
BERT model (Devlin et al., 2018) and the decoder
consists of randomly initialized transformer layers
with cross attention. We experiment with different
hyperparameter settings and achieve higher perfor-
mance than in previous work.

In the remainder of this paper, we briefly intro-
duce DRSs and the PMB dataset in Section 2. We
then survey previous work on DRS parsing in Sec-
tion 3. Section 4 provides the machine learning
configurations we used. Section 5 presents the re-
sults and a comparison with prior work. Section 6
remarks on our overall takeaways from this work.

2 Data

Historically, DRSs are represented in a box nota-
tion designed for human readability. The left-hand
side of Figure 1 shows the representation of Dvořák
was not aware of it. The negated content was not
aware of it is represented as a separate embedded
box labeled b6. Moreover, the sentence contains
three presuppositions that must be resolved: these
are the boxes b2, b4, b7 (shown inside a presuppo-
sition operator ∂), corresponding to the referents t1
(time at which the sentence holds), x5 (the referent
of the proper name Dvořák), and x6 (the entity to
which it refers). The latter two referents appear
inside the negated box, because they are syntac-
tically in the scope of negation, but they must in
fact be interpreted in a wider context (i.e. the text
entails that there exists a reference for it and a time
at which the state of Dvořák not being aware of it
held). For more details about DRSs, we refer to
(Kamp and Reyle, 1993; Kamp et al., 2011).

The release of the PMB offered for the first time
relatively large amounts of text annotated with deep
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b5 :

b4 : ∂




x5

male(x5)
name(x5, dvořák)




¬b6 :

s4

aware(s4)
T ime(s4, t1)
Stimulus(s4, x6)
Experiencer(s4, x5)

b2 : ∂




t1

time(t1)
t1 ≺ now


 , b7 : ∂




x6

entity(x6)




b4 REF x5
b4 Name x5 ”dvořák”
b4 PRESUPPOSITION b5
b4 male ”n.02” x5
b2 PRESUPPOSITION b6
b6 Time s4 t1
b2 REF t1
b2 TPR t1 ”now”
b2 time ”n.08” t1
b5 NEGATION b6
b6 REF s4
b6 Experiencer s4 x5
b6 aware ”a.01” s4
b6 Stimulus s4 x6
b7 REF x6
b7 PRESUPPOSITION b6
b7 entity ”n.01” x6

Figure 1: Box and clause notation of the DRS for Dvořák was not aware of it

semantic representations in the form of DRSs. In
PMB, DRSs are given in a more machine-friendly
clause format shown on the right-hand side of Fig-
ure 1. We refer to Liu et al. (2021) for more details
on the conversion. Notice that the clause format
also contains references to WordNet synsets (”n.02”
etc.). Parsing to PMB representations therefore also
involves word sense disambiguation.

There are several releases of the PMB, differing
in size and also in some choices of representation.
Previous work has focused on version 2.2.0, which
contains 5929 DRSs for English sentences, and ver-
sion 3.0.0, which has 8403 English DRSs. The lat-
est release, version 4.0.0, has 10715 English DRSs.
All versions also have data in Dutch, German, and
Italian, which we ignore here. Each release has
various data files available at the website (Parallel
Meaning Bank, 2020), but also provides a separate
download that contains only the data relevant for
experiments in semantic parsing (“exp data”).

The annotations are done automatically and then
manually corrected. The representations are la-
beled with bronze, silver, or gold status. Bronze
sentences have no manual correction, silver sen-
tences have a partial manual correction and gold
sentences have a full manual correction. The dev,
test, and eval datasets consist of gold sentences
only.

3 Related work

Before the advancement of machine learning sys-
tems, rule-based approaches were proposed as

System Model Input
Liu et al. (2019) transformer characters
van Noord et al. (2018) seq2seq characters
van Noord (2019) seq2seq characters
Evang (2019) stack LSTMs word embeddings
Fancellu et al.1 bi-LSTM word embeddings

Table 1: Systems in the shared task on DRS parsing

a solution for the DRS parsing task. Work
within this research track mainly tried to resolve
anaphora (Johnson and Klein, 1986; Wada and
Asher, 1986), scope ambiguities, and presuppo-
sitions (Bos, 2001) on short English text. Later, the
Boxer Software (Bos, 2008) used syntactic parses
from a Combinatory Categorial Grammar (Clark
and Curran, 2004) to produce DRSs. In another
line of work, DRSs were represented as graphs ob-
tained from dependency structures of sentences (Le
and Zuidema, 2012) and ranked according to their
probabilities of representing the sentence where the
probabilities are obtained from a corpus by com-
puting word-to-word alignments using an external
tool (Och and Ney, 2003).

With the advent of language models and a data
set like the PMB which is large enough for fine-
tuning such models, it became possible to employ
neural nets for DRS parsing. All systems in the
recent shared task on DRS parsing (Abzianidze
et al., 2019b) used neural architectures, as shown
in Table 1 adapted from Abzianidze et al. (2019a).

Most systems used a variety of a sequence-to-
1No system description was submitted to the proceedings

but the system is described in Abzianidze et al. (2019a).
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sequence LSTM (Hochreiter and Schmidhuber,
1997), though Liu et al. (2019) used a transformer
model (Vaswani et al., 2017). The system input
was either character-level representations or word
embeddings obtained from one of the widely uti-
lized BERT language models. Later, van Noord
et al. (2020) combined these two inputs to their
LSTM sequence-to-sequence system, which also
used an attention mechanism (Vaswani et al., 2017),
arguing that this improved results even when added
to the rich BERT embeddings. They also report re-
sults using a transformer model but were unable to
beat the LSTM sequence-to-sequence model in this
way. Their work reported state-of-the-art results
for PMB 2.2.0 and PMB 3.0.0 English datasets.
Later, Liu et al. (2021) used BERT word embed-
dings and position embeddings as input and ex-
pression of DRSs as trees as output to train a
transformer sequence-to-sequence model. They
reported a slight improvement (0.4%) upon the
state of the art for PMB 2.2.0 dataset. As far as we
know these are the only attempts at using the trans-
formers architecture which is the default approach
across many NLP tasks today.

4 Machine learning configurations

We use sequence-to-sequence modeling with two
main components: an encoder and a decoder.
HuggingFace transformers library (Wolf et al.,
2020) provides the class EncoderDecoderModel
to configure such models. The models are trained
with various configurations of this class to test
the performance.2 For the encoder side, 7 con-
figurations are tested. The first two options
test different sizes of random initialization (No-
PT). One configuration is 6 layers of 768 hid-
den layer size (No-PT, 6x768), and the other is
8 layers of 512 hidden layer size (No-PT, 8x512).
The rest of the encoders are pre-trained models:
bert base cased, bert base uncased, bert large
cased, and bert large uncased. For the decoder
side, we use the size of 6x768 with the 6x768 sized
No-PT encoder, and 8x512 with both a No-PT en-
coder setup and the pre-trained encoders. All de-
coder side weights are randomly initialized. The
12x768 networks have 12 and 8x512 networks have
8 attention heads per layer. For the 6-layer se-
tups, two configurations are used: 6 and 12 atten-
tion heads per layer. All decoders include cross-

2The replication code is published under GitHub: https:
//github.com/textlab/seq2seqDRSparser

attention layers as it is effective in sequence-to-
sequence training (Gheini et al., 2021).

The work by van Noord et al. (2020) reports that
updating pre-trained encoder weights always re-
sulted in poor performance. Therefore, a similar ap-
proach is followed and the encoder side weights are
frozen whenever we use the pre-trained encoders.
When the 12x768 decoder is used with No-PT en-
coders, the number of parameters to be trained gets
too high and a model cannot be trained. Thus, the
12x768 decoder configuration is only used together
with the frozen pre-trained encoders.

Our configurations get inputs as sub-word to-
kens derived from the widely utilized Wordpiece
tokenizer (Wu et al., 2016). With the pre-trained en-
coders, the tokenizer used to train that pre-trained
model is used as the input tokenizer. For No-PT en-
coders and for the decoder side output, we train cus-
tom Wordpiece tokenizers for each dataset. Since
the output of DRS parsing is a DRS, the serial-
izations of DRSs are tokenized using the relative
clause notation introduced in van Noord (2021).
All custom tokenizers are trained with: a vocab-
ulary size of 25000, the minimum frequency for
consideration of a token is set to 3, and the max-
imum tokenization length (maximum number of
tokens for one sentence) is set to 512 tokens.

To test the effect of using different parameters in-
troduced in this section, the other hyperparameters
are fixed such as the optimizer, learning rate, and
loss function. We use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.0001, and
use the negative log-likelihood loss (Yao et al.,
2020) to compute the loss in each batch between
the model output and the expected output. We set
the batch size to 16 sentences as this is the amount
the graphic cards could handle. For any other pa-
rameter, the default value defined by version 4.17.0
of the Transformers library is used for the objects
of types BertConfig, EncoderDecoderModel, En-
coderDecoderConfig, and BertModel.

We use four Nvidia V100 32GB GPUs to train
the models. The training time depends on the
number of parameters and the number of attention
heads. For one configuration, training for PMB
2.2.0 sets takes around one day, and training for
PMB 3.0.0 and PMB 4.0.0 sets takes around 2 days.
When four GPUs are used, it takes around one week
to train all models in all configurations. We train
for each configuration only once.
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number of PMB 2.2.0 PMB 3.0.0 PMB 4.0.0
parameters Encoder Decoder dev test dev test dev test eval
139,636,648 No-PT, 6x768-6 6x768-6 86.65 87.65 89.78 89.16 89.05 89.48 87.32
139,636,648 No-PT, 6x768-12 6x768-12 86.45 87.8 89.64 89.48 89.03 89.45 87.51
102,389,160 No-PT, 8x512-8 8x512-8 86.87 87.26 89.46 89.64 89.06 89.61 87.38

55,775,144 bert base uncased 8x512-8 87.17 88.45 89.69 89.78 89.1 89.79 87.2
55,775,144 bert base cased 8x512-8 87.51 88.23 89.96 89.89 89.19 89.9 88.18

133,633,960 bert base uncased 12x768-12 87.41 88.18 89.57 89.66 89.4 90.26 87.36
133,633,960 bert base cased 12x768-12 87.53 89.23 89.78 90.32 88.07 89.04 86.9
134,421,160 bert large uncased 12x768-12 86.93 88.56 89.08 88.65 88.71 89.6 87.29
134,421,160 bert large cased 12x768-12 86.9 88.27 89.39 90.03 88.81 90.12 87.42
≈106 million van Noord et al. (2020) 86.1 88.3 88.4 89.3
≈106 million Liu et al. (2021) 88.7

Table 2: F1% scores of various models. Prior works by van Noord et al. (2020) and Liu et al. (2021) use similar
hyperparameter settings. No-PT: No pre-training. AxB-C: A hidden layers of size B and C attention heads per layer.

5 Results

The performance scores are computed for dev, test,
and eval3 sets for each dataset. To compute the
scores, we used the Counter tool provided by van
Noord (2022). To make the results comparable with
the previous work, the version of Counter with the
same version tag for each release of the datasets
is used. For the 4.0.0 release of the datasets, we
use the latest version of the code as 4.0.0 is the
newest release. The models are trained for at least
80 epochs for all datasets and stopped if there is
no increase in performance for the last five epochs.
Table 2 presents the results obtained for the config-
urations mentioned in the previous section.

Previous work used gold and silver data for fine-
tuning. Our work uses the train sets as is and
does not prioritize gold, silver, or bronze sentences.
Therefore, one training epoch consists of using
each sentence only once, and, the learning rate is
not changed throughout the training. Even with this
setup, we observe that two configurations with ran-
domly initialized encoders and decoders (No-PT)
outperform the previous state of the art for PMB
3.0.0. Moreover, using pre-trained encoders per-
formed even better. For the PMB 2.2.0 test set, our
setup slightly improved upon the previous state-of-
the-art. For PMB 4.0.0, to the best of our knowl-
edge, this is the first time model performances are
reported using Counter.4 For all configurations, us-
ing the larger BERT pre-trained models bert large

3PMB publishes the eval dataset only for the 4.0.0 release
4Poelman et al. (2022) reports using the SMATCH (Cai and

Knight, 2013) tool by comparing Discourse Representation
Graphs (DRG), a simpler form of DRSs, on PMB 4.0.0.

cased and uncased do not perform better than the
smaller bert base cased and uncased. We observe
that using cased pre-trained models generally per-
formed better.

Table 3 presents detailed performances for dif-
ferent kinds of DRS clauses in the clause nota-
tion. The results are in line with what van No-
ord et al. (2020, Table 10) report. DRS operators
have the highest performance which indicates that
structural features of a DRS is captured better than
the other features. One reason may be that the
test set of all releases of PMB represent relatively
short sentences that have structurally simple DRSs.
Roles (i.e. binary predicates like Agent, Theme,
MadeOf etc.) and concepts (which includes word
sense disambiguation because each concept is a
WordNet synset) are harder to capture, especially
verbal concepts. Performance for adjective and
adverbs increase with each release of the datasets,
probably reflecting improving standards of annota-
tion.

van Noord et al. (2020) observe that parsing per-
formance decreases with sentence length. In Haug
et al. (2023) we show that the same holds for our
system. Nevertheless, the PMB test set with its uni-
formly quite short sentences (the large majority is ¡
10 tokens) does not lend itself to study the effect of
sentence length, and in Haug et al. (2023) we test
the system on more realistic sentence lengths.

6 Conclusions

Our work presents the effect of using various sizes
of transformer-based encoders and decoders in
sequence-to-sequence neural networks with the
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PMB 2.2.0 PMB 3.0.0 PMB 4.0.0
Operators 95.58 96.55 95.78

Roles 88.2 89.88 89.01
Concepts 85.35 86.99 87.95

Nouns 90.68 91.35 92.28
Verbs 73.45 75.81 73.83

Adjectives 67.43 78.98 82.53
Adverbs 50.0 73.85 85.5

Events 72.37 76.46 75.96

Table 3: F1% scores in different PMB versions’ test
sets for different types of DRS clauses in the clause
notation. The configuration is bert base cased encoder
with 12x768-12 decoder that is trained for each PMB
version separately.

subword tokenizer Wordpiece on the task of DRS
parsing. The performances of the use of various
sizes and pre-trained encoder configurations are
reported. This work shows that the performance of
DRS parsing increases with some of these configu-
rations. We believe that applying our setup could
improve the performance of other related tasks.
For example, Liu et al. (2021) explores multilin-
gual DRS parsing based on transfer from English
translations which, as we have shown here, could
be better parsed with our approach.

Our results provide a new state-of-the-art of what
can be achieved in a vanilla setup of transformer
networks with raw text input and clause format
DRS output. While it is likely that the results can
be improved with better language models, or by
fine-tuning strategies similar to those of van Noord
et al. (2020) (prioritizing gold data over silver and
bronze), we think more substantial improvements
can come from working on the input and output
representations. On the output side, we plan to ex-
periment with other ways of expressing DRSs such
as the format introduced by Liu et al. (2021). On
the input side, we believe that syntactic dependency
parses contain much information that is useful to
DRS parsing, such as predicate argument structures.
We are currently experimenting with rule-based ex-
traction of relevant information from UD trees and
ways of adding this information to the input.
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Abstract

This paper addresses the task of semantic frame
induction based on pre-trained language mod-
els (LMs). The current state of the art is to
directly use contextualized embeddings from
models such as BERT and to cluster them
in a two step clustering process (first lemma-
internal, then over all verb tokens in the data
set). We propose not to use the LM’s embed-
dings as such but rather to refine them via some
transformer-based denoising autoencoder. The
resulting embeddings allow to obtain compet-
itive results while clustering them in a single
pass. This shows clearly that the autoendocer
allows to already concentrate on the informa-
tion that is relevant for distinguishing event
types.

1 Introduction

In natural language processing, Semantic Frame
Induction refers to the task of clustering target word
instances, specifically verbs, in a corpus according
to their semantic frames in a given context. For
example, in the sentences:

(a) The price of LNG is rising, which makes the
European economy unstable.

(b) Gold value fell 2% in Junuary after climbing
5% in August.

(c) Adam climbs dangerous cliffs.

We would like to cluster the verbs in (a) and (b) in
one group and (c) in another. The problem of verb
semantic frames induction has received its share of
attention, particularly in the SemEval 2019 shared
task (Subtask-A) (QasemiZadeh et al., 2019a), in
which the gold labels are annotated according to
the FrameNet (Baker et al., 1998) frames inven-
tory. Frame-semantic resources are prohibitively
expensive and time-consuming to construct due

to difficulties in the frame definitions, as well as
the complexity of the construction and annota-
tion tasks, that require expert knowledge in lex-
ical event semantics. To overcome these issues,
researchers proposed to automate the process of
FrameNet construction through unsupervised tech-
niques (Titov and Klementiev, 2011; Modi et al.,
2012; Ustalov et al., 2018). Unsupervised seman-
tic frame induction methods help to automatically
build high-coverage frame-semantic resources. Up
until recently, state-of-the-art results for semantic
frame induction were dominated by a series of mod-
els leveraging contextualised pretrained language
model representations to cluster instances of verbs
according to the frames they evoke (Arefyev et al.,
2019; Anwar et al., 2019). In recent work, Ribeiro
et al. (2020) achieve state-of-the-art results by ap-
plying a graph-clustering algorithm based on Chi-
nese whispers (Biemann, 2006) by using contextu-
alized representations of frame-evoking verbs from
BERT (Devlin et al., 2019)). Another approach has
been proposed by Yamada et al. (2021b), who also
use masked word embeddings and two-step clus-
tering: each target instance is represented by three
contextualized embeddings in a text, clustering is
performed first over instances of the same verb
and then across all verbs. However, these previous
methods have one crucial shortcoming. As trans-
formers based contextual words embeddings are
originally designed to be fine-tuned on each down-
stream task to attain their optimal performance, it
is unclear how best to extract representations of
frame-evoking verbs from them, which are broadly
applicable across diverse word-related tasks. In this
paper, we further explore the use of LM represen-
tations by leveraging transformer-based Sequential
Denoising Auto-Encoder (Wang et al., 2021) (TS-
DAE) embeddings to tackle the aforementioned
problem. The proposed method achieves state-of-
the-art performance on the frame induction task.
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The contributions of this paper are three-fold:

• To the best of our knowledge, we are the
first to adapt Transformer-based Sequential
Denoising Auto-Encoder for semantic frame
induction.

• Our method does not require two step-
clustering, which is essential in most recent
semantic frame induction models (Arefyev
et al., 2019; Yamada et al., 2021a).

• Our clustering model outperforms recent state
of the art systems for semantic frame in-
duction on the SemEval 2019 shared task
(Subtask-A) benchmark.

2 Method

In this section, we provide a brief description of
TSDAE, and introduce the different components
of our semantic frames induction model. The pro-
posed model works in three stages:

• We train TSDAE on unlabeled sentences from
the target task,

• then use its encoder to extract embeddings
of the frame-evoking verb, associating each
target verb instance with its representative vec-
tor.

• Finally, We perform clustering on these repre-
sentative vectors.

TSDAE based word embeddings TSDAE, as
shown in Figure 1, is a popular unsupervised learn-
ing algorithm based on an encoder decoder archi-
tecture. The model is a modified encoder-decoder
Transformer where the key and value of the cross-
attention are both restricted to yield sentence em-
bedding only (Wang et al., 2021). The encoder
maps the original input vector to a hidden repre-
sentation, and the decoder maps the hidden repre-
sentation back to the original input space. During
training, noise is added to each input text by delet-
ing or swapping a fraction of all tokens (we delete
60% of words in our experiments1), encoding the
noisy text and reconstructing the embedding using
the decoder module. The autoencoder minimizes

1We performed several auxiliary experiments on the de-
velopment dataset to determine the optimal noise type and its
ratio. It was discovered that removing the verb that evokes the
semantic frame did not produce the most favorable outcome.
Instead, setting the deletion ratio to 0.6 resulted in the most
effective performance.

the reconstruction error by approximating an iden-
tity function (Ng et al., 2011). A good reconstruc-
tion quality means that the semantics must be well
captured in the word embeddings by the encoder.
After training, the decoder module is discarded and
the encoder is used to extract word representations.
We re-implemented the TSDAE algorithm based
on Huggingface’s Transformers. 2 The algorithm is
a simplified version of methods described in (Wang
et al., 2021).

Figure 1: Architecture of TSDAE

Clustering After training TSDAE on unlabeled
sentences from the target task, contextualised vec-
tors for the frame evoking verbs in the sentences
are calculated, and then clustered using agglom-
erative clustering with average linkage and cosine
distance. The number of clusters is defined based
on clusters maximizing the average silhouette score
of all frame evoking verbs.

3 Experiments

Data #Verbs #Frames #Examples

Dev. 600 41 588
Test. 4620 149 3346
All. 5220 190 3934

Table 1: Statistics of the dataset from the SemEval 2019
shared task

In this section, we introduce the datasets and
experiment settings used for semantic frame induc-
tion. We also present the evaluation results of each
model and compare them against existing semantic
frame induction systems.

2https://github.com/huggingface/
transformers
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Model Embeddings #C Pu Ipu Fpu Bcp Bcr Bcf

1-cluster-per-verb - 273 82.16 66.95 73.78 75.98 57.33 65.35

Anwar et al. (2019) Elmo 150 72.4 81.49 76.68 62.17 75.27 68.1
Arefyev et al. (2019) Bert 272 78.68 77.62 78.15 70.86 70.54 70.7
Ribeiro et al. (2019) Bert 222 72.84 77.84 75.25 61.25 69.96 65.32
Ribeiro et al. (2020) Bert - - - 79.97 - - 73.07

GA Bert 227 80.26 79.05 79.65 73.52 71.88 72.69
RoBERTa 192 80.35 81.9 81.12 73.61 75.7 74.64

TSDAE+GA Bert 208 79.87 79.87 79.87 72.89 73.41 73.15
RoBERTa 160 80.17 84.33 82.2 73.62 78.67 76.06

Table 2: Experimental results. #C denotes the number of frame clusters.Scores in bold denote significant improve-
ments over the baseline. GA designates group average clustering.

3.1 Dataset

We use the SemEval 2019s Task 2 (QasemiZadeh
et al., 2019b) as the benchmark datasets to evalu-
ate our models and to facilitate comparison with
related work. This dataset contains a subset of sen-
tences extracted from the Penn Treebank 3.0 (Mar-
cus et al., 1993) annotated with FrameNet Frames
and tagged with morphosyntactic information in
the CoNLL-U format (Buchholz and Marsi, 2006).
Table 1 lists the statistics of the dataset.

3.2 Evaluation Measures

We evalute our approach using the six evaluation
metrics3 employed on the SemEval’s task: Purity
(Pu), inverse-Purity (Ipu) and their harmonic mean
(Fpu) as proposed in (Steinbach et al., 2000), as
well as The harmonic mean of BCubed’s precision
and recall (denoted by Bcp, Bcr, and Bcf respec-
tively) (Bagga and Baldwin, 1998).

3.3 Experimental Settings

For all experiment we use BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019). In all cases
we use the implementations from the HuggingFace
Transformers toolkit (Wolf et al., 2019).

Baselines A very competitive baseline for frame-
semantic induction is the SemEval’19 shared task 2
winning system by Arefyev et al. (2019). They use
a two-step agglomerative clustering model. First,
it groups examples to a relatively small number of
large clusters, exploiting dense vector representa-
tions of the target word in a context obtained from
hidden layers of BERT model. It merges verbs

3We use the standard evaluation script from the
SemEval’19 shared task to calculate all the results.
http://pars.ie/lr/semeval2019-task2/
semeval-2019-task2-scorer.zip

that evoke the same frame together while not tak-
ing into account homonyms. Then splits each of
them into smaller clusters using the TF-IDF repre-
sentations from substitutes generated for the target
word by BERT masked LM to disambiguate all
homonyms. An even stronger baseline is the sys-
tem by Ribeiro et al. (2020) who apply Chinese
whisper (Biemann, 2006), a graph-clustering algo-
rithm, to a graph using contextualised representa-
tions of frame-evoking verbs as its nodes. Anwar
et al. (2019) introduced a simpler system based on
the agglomerative clustering of contextualised rep-
resentations extracted from hidden layers of ELMo
(Peters et al., 2018). Finally, we also evaluated one
additional, simpler baseline (1-cluster-per-head)
that treats all instances of one verb as one cluster.

3.4 Results

We evaluate the performance of each model and
report the BCubed F1-scores in Table 2, along with
the results from other semantic frame induction sys-
tems. Our model (TSDAE+GA) based on TSDAE
and group average clustering outperforms the other
methods on both Fpu and Bcf by a large margin.
It achieves the highest Fpu score of 82.2 and also
got the highest Bcf score of 76.06. The graph-
based clustering by Ribeiro et al. (2020) proved
to be the most competitive baseline, yielding de-
cent scores according to all six measures. Finally,
our RoBERTa group average model (GA) relying
on hard clustering algorithms showed a slight in-
crease in performance when compared to that of
the graph-based model, justifying the more elabo-
rate (TSDAE+GA) method. It is also worth noting
that the Bert based group average model obtain a
slightly worse or identical results.
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4 Analysis

We extracted the cluster signatures and manually in-
spected all of the semantic frame clusters produced
by TSDAE+GA, our best system, along with their
associated verbs in order to scrutinize the emerging
semantic classes and gain insight into annotator
decisions. We found that the most prominent rea-
son for incorrect clustering was due to the hard
partitioning output, while the evaluation dataset
contained fuzzy clusters. We also observed that the
semantic distinctions that are easier for humans to
make often elude representation models, and that
discriminating between similar and highly associ-
ated but dissimilar verbs remains a challenge for
most systems. Moreover, we noticed that the ef-
fectiveness of the models differ depending on the
semantic Frames, indicating discrepancies in the
quality of representations for verbs from diverse do-
mains. Interestingly, we found that many clusters
included an incoherent mix of multiple semantic
frames along with an incoherent set of verbs. This
suggests that frame induction should not be treated
solely as a verb clustering task as it requires a dis-
tinct and separate approach.

5 Conclusion

In this paper, we introduced the first implementa-
tion of TSDAE for unsupervised frame induction
and demonstrated that our method outperforms pre-
vious approaches in SemEval’19 shared task 2, set-
ting a new state-of-the-art. Our error analysis re-
vealed that a major source of incorrect clustering
stemmed from the hard partitioning output, while
the evaluation dataset consisted of fuzzy clusters.
For future work, we aim to extend our work to the
multi-lingual setup in future studies.
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Abstract 

Knowledge graphs (KGs) have become 

the standard technology for the 

representation of factual information in 

applications such as recommendation 

engines, search, and question-answering 

systems. However, the continual updating 

of KGs, as well as the integration of KGs 

from different domains and KGs in 

different languages, remains to be a major 

challenge. What we suggest here is that by 

a reification of abstract objects and by 

acknowledging the ontological distinction 

between concepts and types, we arrive at 

an ontologically grounded and language-

agnostic representation that can alleviate 

the difficulties in KG integration. 

 

1 Introduction 

Knowledge graphs are by now the standard 

representation of knowledge repositories that are 

used in various applications, such as search, 

recommendation engines, and question-

answering systems. While there are powerful KG 

tools, the semantic and conceptual side of KG 

technology is still partially ad-hoc. In particular, 

the continuous update and KG integration remain 

to be a challenge.  

A Knowledge graph (KG) is a graph structure 

that can be viewed as a set of triples e1, r, e2 

relating real-world entities e1 and e2 by a relation r 

to represent a real-world fact, as in the following 

examples: 

 

  RogerWaters, BornOn, 01/08/1955        (1) 

  PinkFloyd, StartedIn, London        (2) 

  BarakObama, LivesIn, WhiteHouse        (3) 

 

From the triples above that we might have in 

some knowledge graph KG1 we can immediately 

point to several issues that pose major challenges 

in constructing and maintaining KGs. We discuss 

these issues next. 

2 Alignment and Continuous Change 

Here are the main issues in the triples (1) through 

(3) above: First, in another knowledge graph KG2 

that we might want to integrate with KG1 there 

might be another Roger Waters where the two 

entities might or might not be the same and thus 

an entity alignment must occur with the triple in 

(1). Another issue here is that the triple in (2) uses 

“StartedIn” to represent the fact that the Pink 

Floyd band started in London. Another KG 

might, instead, use the relation “FormedIn” and a 

match and an alignment between the two 

relations is needed. Finally, the integration of 

KG1 with another KG might reveal that the triple 

in (3) is no longer valid and must thus be fused 

with new and updated information. At a 

minimum, then, the process of fusing together 

two or more KGs will first of all involve a 

tedious process of entity alignment (EA) (Zhang 

et. al., 2022), but more generally it will involve a 

process of continuous updating of information 

(Wang, et. al., 2022). Note that updating 

information and entity alignment both involve 

identifying if entities are the same (or not), where 

in one case we will perform a ‘merge’ and in the 

second an update.  

Clearly then entity alignment is the most basic 

operation in any KG integration, and as such it 

has received the most attention. To match an 

entity e1 in KG1 with an entity e2 in KG2 

embeddings in low dimensional space for both 

entities are constructed using neighboring 

information: related entities, immediate relations, 
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and attributes. Entities e1 and e2 are considered to 

have a match if their vector similarity is above a 

certain threshold. As such, different alignment 

techniques mainly differ in how the embeddings 

are constructed. In particular, they differ in what 

information is bundled in the embedding, and 

how far in the graph are other entities, relations 

and attributes are still considered to be in the 

“neighborhood”. Zhu et. al. (2021), for example, 

report that spreading entity information across all 

relations, gathering information, and bringing it 

back to an entity’s embedding, improves on 

embedding similarity and entity alignment.  In 

(Lin, Y. and Liu, Z. et. al., 2016) it is further 

suggested that including all attributes and their 

values will also improve on an entity’s 

embedding. Other approaches (e.g., Zhu et. al., 

2023) will also include, besides attribute values, 

all string information corresponding to entity, 

relation, and attribute names. In all these 

approaches the ultimate goal is to improve on the 

construction of entity embeddings, in the hope of 

improving on the accuracy of entity alignment 

(i.e., entity matching). See (Zhang, R. et. al., 

2022) for a good survey of various alignment 

techniques. 

3 Reifying Abstract Objects  

Regardless of the novelty and the progress made 

by various entity alignment algorithms, the 

accuracy of merging different knowledge graphs, 

especially ones that are continuously updated, 

will remain to be less than desired. In this section 

we will argue that the problem is to be handled 

not with constructing ever more reliable 

embeddings leading to more accurate alignments, 

but with how knowledge graphs are constructed 

in the first place. Specifically, we suggest that the 

answer lies in proposals that have been made in 

the study of semantics and formal ontology. In 

particular, we will appeal to conceptualism and 

the conceptual realism of Cocchiarella (2001), 

where we reify (or ‘object-ify’) abstract concepts 

in a manner that is consistent with our basic 

“cognitive capacities that underlie our use of 

language”. This is essentially an extension of 

Davidsonian semantics (Davidson, 1967; Larson, 

1998) where events are treated as entities, and is 

also in line with Moltmann’s (2013) arguments 

that the ontology of natural language admits 

references to “tropes”, which are particular 

instances of properties.  

Let us make all of this clear with an example. 

Consider the knowledge graphs in figure 1 where 

we are representing the facts expressed by “The 

musician Roger Waters was born in Great 

Bookham on 01/08/1955”. The knowledge graph 

in figure 1b has the same facts expressed in 

figure 1a but in an ontologically grounded and 

linguistically agnostic representation. First, note 

that instead of the ad-hoc naming of relations in 

1a (e.g, bornIn and bornOn), in 1b we have 

primitive and language-agnostic relations where 

events are entities (e.g., “Birth”) that have two 

essential properties, a time and a location and 

where these properties have specific values of 

specific types1. Note also that we are assuming 

here that these canonical names are done in the 

process of KG construction, and thus a ‘Birth’ 

event, regardless how it was named, will in the 

end translate to the same event. 

In our representation, therefore, everything is 

an entity and the relations come from a fixed set 

of primitive and linguistically agnostic set of 

relations (the set of primitive relations are shown 

in figure 2). How we come up with these 

relations is beyond the scope of this short paper 

but see Smith (2005) for a discussion. 

  

 
Figure 1: (a) A KG representing the facts expressed 

in “The musician Roger Waters was born in Great 

Bokham on 01/08/1955”; and (b) a language-

agnostic KG representing the same facts. 

 
1 While both ‘human’ and ‘teacher’ are concepts, a 
human is a type, while a teacher is not. In fact, a 
‘teacher’ is (ontologically, or metaphysically  an object 
of type human that we call (or label as) teacher when it 
is the agent of a teaching activity.   
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Besides the primitive and linguistically agnostic 

representation, entities and attribute values in the 

knowledge graph of figure 1b are strongly-typed, 

where the types are assumed to exist in a strongly-

typed hierarchy along the lines suggested in Saba 

(2020). Note that by making all entities typed we 

resolve the issue of separating knowledge graphs 

into two parts, one that has continuously updated 

information (RogerWaters, LivesIn, London) and 

one that has more static conceptual information 

such as RogerWaters, IsA, Musician (see Hao et. 

al., 2019 for a discussion on this issue). 

 

 
 

 

Figure 2: The set of primitive and linguistically 

agnostic relations that are used in the knowledge 

graph. These are the only relations used and all other 

abstractions are entities (e.g., events, properties, 

states, etc. all of which are reified/object-ified), 

 

Moreover, entity alignment will now be more 

accurate since the embedding of [RogerWaters: 

Musician] will only match the same musician in 

another knowledge graph, even if the entity was 

labeled differently, e.g. [GeorgeRogerWaters: 

Musician]. Besides adding semantic constraints 

that will improve knowledge integration, types 

are language agnostic and thus, like primitive 

relations, are easy to translate across languages. 

In figure 3 we show the isomorphic Arabic and 

French equivalents of the KG in figure 1b above. 

4 Evaluation  

Aside from the simple alignment of knowledge 

graphs written in different languages or different 

domains, we show here how the ontologically 

grounded and linguistically agnostic 

representation helps in the problem of entity 

alignment. First, we construct embeddings for 

triples where a change is made in one of the 

entities or in the relation: 
 

e1 = EMBED(RogerWaters, LivesIn, London) 

e2 = EMBED(RogerWaters, PlaceOfResidence, London ) 

e3 = EMBED(RogerWaters, LivesIn, Chelsea ) 

e4 = EMBED(RogerWaters, PlaceOfResidence, Chelsea ) 

 

EMBED(e1, r, e2) returns an embedding that is the 

sum of the vectors of e1, r, and e2. In table 1 

below we show the cosine similarity cosim(ei, ej) 

for i, j = 1,2,3,4 and for i  j. The triples with a 

different entity (a different real-world fact) 

matched better than those with slightly different 

but semantically similar relation (i.e., same real-

world fact).  

 

 
 

 
 

Figure 3: Since entity names, types, attribute values, 

and primitive relations are language agnostic, there’s 

a straightforward automatic translation of the KG in 

figure 1b into isomorphic Arabic and French KGs. 
 

 

Similar results were obtained by changing various 

semantically similar relations (e.g., bornIn vs. 

placeOfBirth, etc.) 

The above shows that entity alignments across 

knowledge graphs would fail simply because of 

the ad-hoc labeling of relations in the knowledge 

graph. On the other hand, changing the location in 

the knowledge graph in 1b amounts to changing 

one embedding out of several that remain 

constant. In the example of figure 1b, a change in 
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the location would result in a similarity of 0.688 

only, and the alignment would clearly fail, as it 

should. 
 

 

 
 

Table 1: Triples with different facts (locations) 

matched better than triples with the same facts 

(locations) but a relation that is worded slightly. 
 
 

That is, an entity that is a participant in a birth 

event that happened in London should not match 

with an entity that is a participant in a birth event 

that happened in Chelsea, regardless of the entity 

name. Note that this true even in knowledge 

graphs in different languages (see figure 3), 

assuming, of course, that the embeddings of 

[London : City] and [ لندن  : مدينة] have a good 

cosine similarity, as one would expect.  

5 Discussion  

One important aspect to the representation we are 

suggesting is that it is language agnostic. This we 

claim is based on the fact that our representation 

has entities and primitive relations between them 

and that both of these are language agnostic. Thus 

the claim of universality is based two 

assumptions: (i) we are assuming that entities, 

including abstract entities such as those 

corresponding to properties, events, states, etc. are 

language-agnostic; (ii) we are assuming that our 

primitive relations (see figure 2) are also language 

agnostic. If both of these assumptions are correct, 

then our representation is language-agnostic, and 

the only remaining question would be “how 

universal are the primitive relations in figure 2?” 

A final answer to this question requires further 

experimentation.  

Another important issue we could not discuss 

here for lack of space are the types that are 

associated with every entity and attribute value. 

These types are assumed to exist in a hierarchy of 

types that must also be language agnostic (that is, 

we are assuming that “the types of things we talk 

about/express facts about” are the same across 

languages). Admittedly, however, this claim might 

not be uncontroversial and further work needs to 

be done in this regard, although we believe the 

work of Saba (2020) is a step in the right 

direction. Another issue that should also be 

addressed is related to the mapping from natural 

language to our representation. As noted to us by 

one of anonymous reviewers, a fact such as "John 

sold the car to Bill” should, in theory, translate 

into the same sets of relations in the KG as the 

fact “Bill bought the car from John”. While in 

both cases we will  have a language agnostic 

representation with reified abstract objects for the 

‘buying’ and ‘selling’ events where Bill and John 

are participants, these two facts will only be 

equivalent if there were some meaning postulate 

that relates the ‘selling’ and ‘buying’ events. 

6 Concluding Remarks 

In this short paper we suggested an ontologically 

grounded and linguistically agnostic 

representation for knowledge graphs. This 

representation, we believe will solve the major 

challenges facing knowledge graphs today, 

namely the difficulty in continuous updating of 

factual information (which requires static 

conceptual information to be separated from the 

more dynamic information), and the difficulty of 

knowledge graph integration which requires very 

accurate entity and relation alignment. We argued 

that our representation offers a solution to these 

(essentially semantic) problems. 

A final remark we would like to make is related 

to an excellent point made by one the anonymous 

reviewers, name that the representation and the 

method we propose will work if the construction 

of every KG follows our methodology. This is 

true, and so in essence the representation we are 

suggesting can be thought of as a new standard 

for a semantically rigorous knowledge graph 

methodology. Although this is part of future work, 

this will entail building a natural language 

interpreter that will ensure the translation of every 

KG into the canonical and language agnostic 

representation suggested in this paper. 
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Abstract

It has been argued that BERT “rediscovers the
traditional NLP pipeline”, with lower layers
extracting morphosyntactic features and higher
layers creating holistic sentence-level represen-
tations. In this paper, we critically examine
this assumption through a principle-component-
guided analysis, extracing sets of inputs that
correspond to specific activation patterns in
BERT sentence representations. We find that
even in higher layers, the model mostly picks
up on a variegated bunch of low-level features,
many related to sentence complexity, that pre-
sumably arise from its specific pre-training ob-
jectives.

1 Introduction

The Transformer architecture of neural networks
(Vaswani et al., 2017) shows state-of-the-art perfor-
mance on a range of NLP tasks (Wang et al., 2018,
2019). At the same time, the question of what
Transformer models learn exactly has motivated
a number of studies into the representations that
they construct (Rogers et al., 2020; Chi et al., 2020;
Papadimitriou et al., 2021), with an increasingly
popular answer being that they recreate the classi-
cal NLP pipeline of incremental abstraction, from
morphosyntax to semantics (Tenney et al., 2019;
Geva et al., 2021).

In this paper, we put this finding to the test, ask-
ing to what extent representations learned by pre-
trained BERT (Devlin et al., 2019) capture system-
atic meaning distinctions, as opposed to more shal-
low and potentially idiosyncratic properties. The
challenge of this question is that it is open-ended:
in order not to bias the analysis, we do not want to
rely on a set of categories that we a priori expect to
be relevant, in contrast to most probing approaches,
which correlate model representations with proper-
ties of inputs or performance metrics (see Section 2
for details).

Instead, we adapt the approach that Geva et al.
(2021) proposed to analyze decoder-only Trans-
former models with causal masking. They regard
feed-forward (FF) sublayers in such models as neu-
ral memory units and extract inputs that produce
maximal activations in a random subset of their
neurons. Manual analysis of these sets shows what
categorization of inputs arises inside the model.1

We extend the approach by Geva et al. in two
dimensions. First, we apply it to pre-trained bidirec-
tional encoder-only transformer models like BERT
(Devlin et al., 2019; Liu et al., 2019), which, unlike
causal LMs, do not have a specific token guaran-
teed to represent all of the input. To do so, we
analyze two types of “prominent” tokens: the CLS
pseudo-token, often used for whole-sentence rep-
resentation (Ma et al. 2019; even if its usefulness
for downstream tasks is debatable, cf. Reimers and
Gurevych 2019), and the first subword of the root
element in sentences annotated with Universal De-
pendencies (Nivre et al., 2020). We regard these
two tokens as good candidates for loci of high-level,
abstract representations of inputs learned by BERT.

Second, we replace the analysis of random neu-
rons by guided exploration. We find that embed-
dings of both CLS tokens and root tokens at up-
per layers are highly intercorrelated. Therefore we
propose to analyze major principal components of
activation matrices, in essence tracking influential
groups of highly congruent neurons.

We exploit this approach to provide an analysis
of the sentence patterns that BERT attends to. We
find that while lower levels of BERT are predictably
more attuned to lexical effects, activations in higher
levels track a wide range of idiosyncratic phenom-
ena from various linguistic levels, from individ-
ual wordforms and bigrams to lexical classes (rare

1An automated approach to finding features that trigger
neuronal activations was proposed by Rethmeier et al. (2020).
They assign probability distribution over features to different
neurons, which makes qualitative analysis impractical.
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words), syntactic patterns (e.g., clauses with imper-
atives), and miscellaneous sentence types (recom-
mendations, incomplete sentences, short exclama-
tions). Overall, our results indicate that the typol-
ogy of sentences according to BERT is dominated
by what may be called natural classes (Mielke
et al., 2011) – clusters of objects that are character-
ized by a combination of values of several features –
with the embeddings showing little evidence of
principled semantic properties.2

2 Related Work

Probing transformers Two prominent avenues
of the study of Transformers in NLP are (i) prob-
ing analysis of internal representations of linguistic
inputs computed by the models (e.g., Vulić et al.,
2020; Pimentel et al., 2020; Belinkov, 2022) and
(ii) the analysis of the attention patterns that Trans-
formers converge on to compute these representa-
tions (Voita et al. 2019; Bian et al. 2021 and many
others). Both strategies rely on predefined arrays
of NLP tasks and features, which are either used as
benchmarks or are selected to highlight peculiari-
ties of models.

In contrast, Geva et al. analyze the representation
of the last unmasked token of the input sequence
in the causal language model by Baevski and Auli
(2019), which serves as the representation of the
whole prefix. By sampling neurons from feedfor-
ward sublayers of the model and manually inspect-
ing sentences that give rise to maximum values of
these neurons, they show that the latter recognise
different patterns in the input – with lower-layer
activations tuned to more superficial lexical and
syntatctic features and upper layers arguably more
tuned to semantics. We extend this approach to
bidirectional LMs.

3 Methods

3.1 Models and Data

All experiments are conducted based on the
bert-base-cased model provided by Wolf
et al. (2020). We use the train and development
splits of the Georgetown University Multilayer
(GUM) corpus (Zeldes, 2017), which is annotated
with Universal Dependencies. Together, the two
splits comprise 6,507 sentences.

2The code used for the analyses in this paper
is available at https://github.com/macleginn/
universe-of-utterances

3.2 Analysis Procedure
Token selection and representation We con-
sider two tokens that are promising candidates as
loci for high-level categories that we would expect
BERT pre-training to extract from inputs: the CLS
token and the dependency root of the sentence.

For the CLS token, used in pre-training for the
next-sentence-prediction (NSP) task, we concen-
trate on the output of the pooler layer: an additional
MLP is applied to the raw BERT encoding before
it is fed into the classifier head.

The root token does not play a special role
in pre-training, but we assume that, as it largely
corresponds to the head predicate of the clause, it
should attend to its various syntactic elements in
order to be selected correctly and to guide selec-
tion of other tokens.3 To analyze root tokens, we
experiment with the outputs of feedforward sublay-
ers in the 3rd, 6th, and 11th BERT layers, which
should roughly correspond to different layers of
generic linguistic abstraction attained by the model.
The final layer has been suspected of being too
task-specific (Kovaleva et al., 2019).

Analysis procedure Our analysis proceeds in
two steps for both types of tokens: (1) we gauge
the extent of redundancy in the representations,
given that BERT neurons are known to be highly
redundant in general (Dalvi et al., 2021). As we
will show in Section 4.1, CLS-token embeddings
are in particular highly redundant. Consequently,
(2) we identify the first 5 principal components
of embedding matrices and extract sentences with
maximum and minimum scores for these PCs to
manually to identify shared features, similarly to
Geva et al. (2021).

Hypotheses Under the theory that BERT redis-
covers the traditional hierarchy of NLP tasks during
pre-training (Tenney et al., 2019), we expect it to
be possible to interpret principal components as
bundles of linguistic features, with higher layers
moving from morphosyntax towards sentence se-
mantics. Alternatively, we can hypothesize that
BERT optimizes its representations primarily for
its pre-training objectives (next-sentence prediction
for CLS and masked-token prediction for root to-
kens), which would presumably not support a clean
interpretation in terms of a feature hierarchy.

3Another vector that is often used as a stand-in for the
whole sentence is the average of all tokens embeddings. As
by construction it cannot be tied to any particular sentence
component, it is less interpretable.
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Figure 1: Correlations of neuronal activations in the
output of the pooler layer for CLS tokens (top) and
the output of the FF sublayer in layer 11 for root to-
kens (bottom). Rows and columns were reordered using
hierarchical clustering. More intense blue/red hues cor-
respond to stronger positive/negative correlations.

4 Results

4.1 Neural Redundancy and Major Principal
Components

As motivated above, we first assess the redundancy
of the pre-trained BERT embeddings for root to-
kens and CLS tokens (Dalvi et al., 2021). The
results, shown in the correlation plots in Figure 1,
reproduce the findings of earlier studies: there are
evident clusters of mildly correlated and anticorre-
lated neurons in root token embeddings, while
CLS neurons are extremely intercorrelated.

This redundancy motivates our use of principal-
components analysis (PCA) to reduce the dimen-

sionality of these representations. We find that
more than 50% of the variance in the output of the
pooler layer for CLS is explained by the first com-
ponent alone; the first three components explain
76% of the variance. In the case of FF sublayer
embeddings of root tokens, the first component
explains 25% of the variance in the 11th layer (36%
for the first 3 PCs together), but only 5% in the 6th
layer (10% for the first 3 PCs), and only 3% in the
3rd layer (8% for the first 3 PCs). Taken together,
this shows that as BERT progresses in its analy-
sis of the inputs, it aggressively discards more and
more information (Tishby and Zaslavsky, 2015).
Upper layers are less redundant than middle layers
(Dalvi et al., 2020) but might still be overparam-
eterized (although this may also be interpreted as
“spare capacity” for fine-tuning).

4.2 Principal Component-based Analysis
Sentences with maximum and minimum scores for
5 PCs for all studied settings can be found in the
paper’s code repository.4

4.2.1 CLS Tokens
Table 1 shows examples and statistics for the first 5
PCs of the CLS embedding space. The PCs may be
interpreted as as largely corresponding to sentence
complexity: they are noticeably correlated with
sentence length and somewhat correlated with the
number of rare words, operationalized as hapax
legomena in the test set. The particular patterns,
however, are highly varied.

Sentences with top scores on PC 1 are all short,
consist of bare NPs, and do not include rare words.
Sentences with minimal scores are, by contrast,
mostly long and include rare words, such as person
and place names.

Examples with minimal values for PC 2 are all
short conversational utterances, while sentences
with maximum values do not form a coherent
group.

Values for PC 3 demonstrates the highest cor-
relation with sentences length (0.57). Examples
with minimum values are all short quotes without
verbs of (reported) speech. Examples with maxi-
mum values seem all to be narrative sentences with
first-person-pronoun subjects.

Minimum values for PC 4 are mostly triggered
by sentences with an opening quote mark but with-
out a closing one, i.e. those starting a direct-speech

4https://github.com/macleginn/
universe-of-utterances
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PC SL HL Inputs w/ extremal values

1st -0.26 -0.1 [max] Estimated electricity use in residential sector; Second baseman / Short-
stop / Outfielder; High school career

2nd 0.37 0.37 [min] Yeah, I bet.; Yeah , that’s a good idea.; Probably.; Sure.; Nah, I’m
kidding.; Yeah , "think again" or something like that.; I have no idea.

3rd 0.57 0.22 [min] “With what?”; “Have you thought of that?”; "Why?"; "Are you ashamed
of her?"; “It’s not a joke.”; "No."
[max] I would find myself entering those crypts...; ...I came up with an individ-
ual story called Thad’s World Destruction...; We just want to be able to bring,
like she said, bring light into the entertainment...

4th 0.34 0.27 [min] We are a colony.; They’re going to implant a chip.; Go away!
5th -0.06 0.1 [min] THE END; Chapter Two: Master Lunre; 1 Harvest and prune

Table 1: CLS token analysis: Spearman correlations with measures of complexity (SL: sentence length, HL:
hapax-legomena counts per sentence) and examples inputs with extremal values (minimum / maximum).

segment. Sentences with maximum PC 4 values
are not easily interpretable.

Minimum values for PC 5 are shown by a varied
set of sentences many of which are chapter/section
names. Sentences with maximum values on this
axis do not afford a simple interpretation.

Overall, it is evident that CLS representations are
finely attuned to different kinds of sentences that
are likely to appear in particular contexts and are
thus informative for the next-sentence-prediction
task. Their semantic properties, which CLS tokens
are often assumed to be representations of, seem to
be largely irrelevant.

4.2.2 root Tokens

Layer 3 As expected, the FF sublayer of layer 3
is focused on shallow features. Sentences with min-
imum values for PC 1 are headed by the verb have.
Minimal values for PC 2 correspond to a combina-
tion of the verb form said and quote marks. Maxi-
mal values for PC 3 track non-third-person subject
and the verb know in the present tense, preferably
in combination.5 PC 4, despite being orthogonal
to previous components, assigns minimal values
to sentences headed with have and maximal val-
ues to sentences with said and quote marks. Sim-
ilarly, PC 5 assigns minimal values to sentences
with know but maximal values to sentences headed
by forms of go and come, including phrasal verbs
with widely differing semantics (go on, go through,
come home), which shows that this combination is
more collocational than semantic.

5Know your audience.; We know self-isolation works.

Layer 6 We expect Layer 6 to encode more ab-
stract features. However, PC 1 of root tokens on
layer 6 is highly negatively correlated with sentence
length (r = −0.62). Examples with high scores in-
clude one-word utterances (Alright.), dates, and im-
age captions of the form Image: [AUTHOR]. Mini-
mum values of PC 2 correspond to sentences with
forms of the verb say and a couple of other verbs
of speech as the head predicate. Maximum values
seem to be uninterpretable. Similarly, minimum
values of PC 3 correspond to sentences headed
by the verb have, while sentences with maximum
values are, with several exceptions, headed by be.
Small values for PC 4 are indicative of verbs of
creation (make, construct, build). Small values of
PC 5 again correspond to sentences with the verb
have. Sentences with high scores on this compo-
nent, however, are predominantly headed by a verb
in the imperative mood (see, know, come, tell, etc.).

Layer 11 We expect Layer 11 to represent high-
level semantic features. But again, PC 1 on layer
11 is also correlated with sentence length, this time
positively (r = 0.57). This time, sentences with
minimal scores have a rather specific form of tech-
nical instructions, including recipes.6 Minimal val-
ues of PC 2 seem to be connected to different kinds
of short sentences (You ass.; Absolutely great.;
She sighs.), incomplete phrases (They’re really —;
Melanie lies but —), and nominative heading-like
constructions (Basalt columns; Country-specific
advise). Minimal values of PC 4 correspond to
sentences headed with there’s, there is, it’s, and,

6Position a large mirror so you can check your positioning
and see what you’re doing.; Add six Skittles to 25 ml of vodka.
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somewhat incongruously, I’m. PCs 3 and 5 do not
support an obvious interpretation.

Discussion Overall, the PCs of root token rep-
resentations on layer 3 are oriented towards fre-
quent verbs tokens, while layer 6 adds a mor-
phosyntactic category of imperatives, and layer 11
singles out a wide variety of sentence patterns an-
chored by features at the level of surface properties
(sentence length, presence of a particular verb), lex-
ical groups (verbs of creation), syntactic categories
(imperatives), or text types (technical instructions).
Sentence length remains a recurring feature, as it
is for the CLS token.

5 Conclusions

The good performance of Transformers on down-
stream tasks is often explained by their ability to
extract meaningful linguistic, generalizing features
from raw text (Tenney et al., 2019; Rogers et al.,
2020; Geva et al., 2021). When approaching this
problem from the point of view of a particular set
of tasks, however, there is always the danger that
good model performance is due to accidental co-
variates in the data that help models solve the task
without creating useful generalizations (Levy et al.,
2015; Gururangan et al., 2018).

Our analysis of loci in BERT that are highly
likely to aggregate linguistic generalizations about
the input sentence indicates that this problem might
indeed be present in this model as well: we find a
conspicuous absence of high-level generalizations
and prominent shallow features even in the final lay-
ers, arguably because they prove useful in solving
the cloze and next-sentence-prediction pre-training
tasks. Many of these are complexity-related, sim-
ilar to biases found in word embeddings (Wilson
and Schakel, 2015).

These findings arguably go some way towards
explaining the instability of the performance of dif-
ferent instances of BERT on the same downstream
task (McCoy et al., 2020) and of the variance in the
effects of BERT interventions (Sellam et al., 2021).
The question of whether it is possible to create a
pre-training task that would nudge the model to-
wards extracting high-level features remains open.

Limitations

One limitation of this study is that it demands man-
ual inspection of extracted sentences. While this
makes it possible to identify patterns in a way not

prejudiced by the downstream task or the available
annotations of the inputs, it also makes it harder
to provide quantitative arguments in favor of the
proposed analysis.

Another limitation is that we only focus on
maximum and minimum values of the principal
components when extracting diagnostic sentences.
This provides for a clear interpretation when PCs
can be construed as well-defined axes; however,
sometimes they appear to be “discontinuous”, with
different properties surfacing at the two extreme
points. This suggests that there may be other in-
teresting classes of inputs encoded by mid-range
values.
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Abstract

Sparse word embeddings models (SPINE,
SINr) are designed to embed words in inter-
pretable dimensions. An interpretable dimen-
sion is such that a human can interpret the se-
mantic (or syntactic) relations between words
active for a dimension. These models are use-
ful for critical downstream tasks in natural lan-
guage processing (e.g. medical or legal NLP),
and digital humanities applications. This work
extends interpretability at the vector level with
a more manageable number of activated dimen-
sions following recommendations from psy-
cholinguistics. Subsequently, one of the key
criteria to an interpretable model is sparsity: in
order to be interpretable, not every word should
be represented by all the features of the model,
especially if humans have to interpret these fea-
tures and their relations. This raises one ques-
tion: to which extent is sparsity sustainable
with regard to performance? We thus intro-
duce a sparsification procedure to evaluate its
impact on two interpretable methods (SPINE
and SINr) to tend towards sustainable vector
interpretability. We also introduce stability as a
new criterion to interpretability. Our stability
evaluations show little albeit non-zero variation
for SPINE and SINr embeddings. We then
show that increasing sparsity does not necessar-
ily interfere with performance. These results
are encouraging and pave the way towards in-
trinsically interpretable word vectors.

1 Introduction

Word embeddings models (Mikolov et al., 2013;
Pennington et al., 2014; Devlin et al., 2018) al-
lowed tremendous evolution in natural language
processing. However, they embed the lexicon in
dense representation spaces with opaque dimen-
sions. It is possible to obtain an understanding
of these models via probing (Rogers et al., 2021)
and embedding matrix analysis (Shin et al., 2018).
However such methods are subject to criticism

with regard to the interpretation that can actually
be drawn from them (Hewitt and Liang, 2019;
Ravichander et al., 2021; Elazar et al., 2021). This
a posteriori approach to understanding models’ de-
cisions corresponds to the explainability paradigm
in machine learning.

On the other hand, interpretability (Rudin, 2019)
is defined for word embedding models as the pos-
sibility to find semantic (or syntactic) consistency
in the dimensions of the embedding space (Mur-
phy et al., 2012; Faruqui et al., 2015; Subrama-
nian et al., 2018; Prouteau et al., 2022). Models
such as SPINE (Subramanian et al., 2018) and
SINr (Prouteau et al., 2021) meet this requirement:
Table 1 illustrates the interpretability of the dimen-
sions resulting from such methods. These inher-
ently interpretable approaches to represent the lex-
icon are deemed preferable for high-stakes down-
stream use such as medical or legal NLP (Rudin,
2019). Interpretability also eases connection be-
tween word embeddings and linguistic models of
the lexicon, since consistent semantic dimensions
can be grasped as semantic features, which are
used in a variety of theoretical models (Jackendoff,
1983; Pottier, 1963; Rastier, 2009).

As far as we know, only the interpretability of
dimensions is considered in the literature and hu-
man evaluations such as the Word Intrusion Detec-
tion (Murphy et al., 2012) are targeted specifically
towards this aspect. In this paper, we introduce
vector-level interpretability and define it as the
capacity for a speaker to make sense of the set of
activated dimensions in a word vector. It is pos-
sible only if the set of dimensions to describe the
word is limited. The size of this set is bounded by
two different kinds of psychological experiments:
semantic features production (Garrard et al., 2001;
McRae et al., 2005) and features retention (Miller,
1956; Peterson and Peterson, 1959). This body of
literature comes to an agreement at roughly ten fea-
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tures. We consider in this paper that this number
of features is a desirable horizon for vector-level
interpretability. Following this objective and to fur-
ther reduce the amount of information provided to
the speaker, we also consider binary word vectors
as in Faruqui et al. (2015). Moreover, this binary
approach is consistent with componential analysis
(Goodenough, 1956; Katz and Fodor, 1963).

Considering these criteria, and to tend towards
more interpretability, our work offers the following
contributions :

• Refine interpretability by introducing addi-
tional criteria: stability and increased sparse-
ness for vector-level interpretability.

• Evaluate the effects of increased word vector
sparseness and binarity on performance.

• Illustrate the effects of increasing vector
sparseness on the embedding space.

To this end, we introduce Section 2 the criteria
for interpretability and their different settings in the
literature. Section 3 introduces the models consid-
ered for our experiments. In Section 4, we detail
the experimental setup adopted to evaluate the im-
pact of sparsity as well as binarity on performance
and vector-level interpretability. In Section 5, we
demonstrate that the trade-off between sparsity and
interpretability is not as strong as one would think.
Finally, Section 6 illustrates the impact of sparsity
on word vectors and discusses its benefits.

2 Related work

Interpretability : criteria and models. The sem-
inal article of (Murphy et al., 2012) paves the
way towards psycholinguistically plausible distri-
butional representations. The authors fix the follow-
ing set of constraints on the representation space:
sparseness, positivity and performance. Sparseness
is justified by the difficulty to cover a vast vocab-
ulary comprised of many different topics with a
small set of features. Thus, a large number of di-
mensions is needed, but only some of those are
activated for the description of each word. Posi-
tivity is motivated by the fact that storing null or
negative features for each item of the lexicon is
not cognitively efficient (Palmer, 1977; Lee and
Seung, 1999). The performance criterion is needed
since it is possible to produce interpretable repre-
sentations of the lexicon (e.g raw co-occurrence
matrices) with subpar performances on intrinsic

or extrinsic evaluations. This sparse interpretable
word model research is carried on with SPOWV
(Faruqui et al., 2015), SPINE (Subramanian et al.,
2018) and SINr (Prouteau et al., 2021). The first
two models transform previously trained dense rep-
resentations into sparse word embeddings while
the latter builds a sparse embedding space from a
word co-occurrence matrix. The word intrusion
tests (Murphy et al., 2012; Senel et al., 2018; Sub-
ramanian et al., 2018; Prouteau et al., 2022) are
designed to assess the internal consistency of di-
mensions in the embedding space. As introduced
Section 1, we wish to allow interpretability at the
vector level which might benefit from a smaller set
of activated components in word vectors.

Stability. Pierrejean (2020) demonstrate the non-
determinism of neural models’ training which lead
to variations in evaluation scores and word neigh-
borhoods. On the front of explicability, new deter-
ministic methods are emerging (Zafar and Khan,
2021). However, Rudin (2019) encourages to pri-
oritise interpretable approaches over explicable ap-
proaches, motivating this work.

From these observations and as stated Section 1,
we refine the criteria necessary to enable vector-
level interpretability by redefining sparsity and
adding stability.

Binary embeddings. Prototypicality theory
(Rosch, 1975; Rosch et al., 1976) introduced the
paradigm of weighted features in psychology
and linguistics. However, feature-based analysis
preempted this theoretical framework with compo-
nential analysis. This approach based on binary
features was used by anthropological linguists
(Goodenough, 1956), in structuralist work (Pottier,
1963) and in cognitively informed generativist
frameworks (Katz and Fodor, 1963). Faruqui
et al. (2015) construct binary vectors using sparse
coding to sparsify dense word embeddings in
more dimensions than the original space—called
overcomplete vectors (SPOWV). The model is
then binarized simply by setting each non-zero
value to one. In computer science, another use to
binary models is to reduce the memory footprint
of word embeddings by replacing floats with bits
and also the compute needed to exploit these
representations. It is especially critical in low-
resource embedded systems—e.g mobile phones.
Tissier et al. (2019) and Navali et al. (2020)
introduce autoencoder approaches to binarize
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Word2Vec SPINE SINr

insulin
scalar, tablespoon, vesicular, dystrophy
antiserum, falsifiable, experimenter, internat
PBS, NC, arginine, IFN

glutathione, pancreas, gastroduodenal, vitamin
immunologically, hyperplasia, transgene, nociceptive
insulin, sulphasalazine, interferon, cholangitis

hypertriglyceridaemia, mellitus, porcine, insulin
aldosterone, aminotransferase, creatinine, glycated
ulcerative, sulphasalazine, colitis, sera

mint
scalar, tablespoon, vesicular, dystrophy
cube, geranium, Berowne, curiosities
polyunsaturated, misfire, margarine, methile

spoonfuls, parsnips, kebabs, preheat
onion, basil, yogurt, coriander
dial, screams, vibration, spadefoot

tbsp, oregano, diced, dijon
Gibson, gigged, charvel, Ibanez
minted, minting, hoards, coinages

oxygen
scalar, tablespoon, vesicular, dystrophy
herbicides, menstrual, deprave, angiotensin
pou, tenascin, cytoplasm, platelet

glutathione, pancreas, gastroduodenal, vitamin
lipid, crypt, tris, calcium
monoxide, oxides, sulphuric, nitrogen

monoxide, dioxide, nitrous, oxides
supplemental, hypoxaemic, electrocardiographic, gastroscopy
diastolic, systolic, transfusion, transfusions

Table 1: Words with the highest values on the top three dimensions of ”insulin”, ”mint” and ”oxygen” in Word2Vec,
SPINE and SINr sparsified to 100 active dimensions per vector according to the protocol described Section 4.

dense representations. Both of these models
optimize for non-redundancy among dimensions
and conservation of semantic information. Once
vectors are binary, classical evaluation tasks such
as word similarity or analogy may be redefined
with bitwise operations (Sokal and Michener,
1958; Tissier et al., 2019). These models achieve
competitive results to the baseline considering
their small footprint.

3 Interpretable word embeddings

SPINE and SPOWV achieve close results on intrin-
sic and downstream evaluations but SPINE scores
better in terms of interpretability (Subramanian
et al., 2018), we thus do not consider SPOWV in
the experiments that follow. Furthermore, SINr
performances and interpretability are on a par with
SPINE, we thus consider both SPINE and SINr
as our reference interpretable models.

SPINE. SPINE, first introduced in Subrama-
nian et al. (2018) derives sparse word embeddings
from a previously trained dense model such as
Word2Vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014). Architecturally, it is an au-
toencoder whose hidden layer is of higher dimen-
sion than the dense input—e.g sparsifying from
300 dense dimensions to 1000 sparse dimensions.
Three losses are implemented to enforce sparsity
and interpretability. The Reconstruction Loss pe-
nalizes the poor reconstruction of the input rep-
resentation from the output of the hidden layer,
the Average Sparsity Loss and the Partial Spar-
sity Loss enforce sparse representations by limiting
the number of active dimensions and skew vector
values towards 0 or 1. SPINE has multiple hyper-
parameters: the minimum sparseness, the number
of epochs and the vector output dimension.

SINr. Introduced in Prouteau et al. (2021), SINr
is a graph-based approach to word embeddings.
From a co-occurrence matrix extracted on a cor-

pus, SINr builds a weighted word co-occurrence
graph—words are represented by nodes and the
number of co-occurrences by edges. A community
detection algorithm, the Louvain method (Blondel
et al., 2008), then uncovers dense groups of co-
occurring words in the graph. SINr then leverages
the distribution of each node over this partition
to derive a sparse representation—not all words
co-occur with words from each community. The
representation is sparse by design, each component
of the embedding space is related to a community.
Community detection is an unsupervised process
admitting a single parameter allowing to potentially
control the number of communities detected.

4 Methodology

Models. Alongside the models presented Sec-
tion 3, Word2Vec is used as a baseline. We use
the Skip-gram with negative sampling (SGNS) ar-
chitecture and the parameters described in Levy
and Goldberg (2014). Word2Vec embeddings
have 300 dimensions with a context window of
5 words. Since SPINE’s number of dimensions is
adjustable when SINr’s is not—it is dependent on
the number of communities detected—we base the
number of dimensions of SPINE on SINr. Op-
timal performances for SINr are observed with
the hyperparameter controlling the number of com-
munities set to 50 resulting in 4460 dimensions
for OANC (Nancy et al., 2011) and 8454 for BNC

(Consortium, 2007) —the English corpora we use
in our experiments is presented at the end of the
next section. SPINE embeddings are trained from
the Word2Vec model previously presented. The
sparsity parameter of SPINE has little impact on
the sparsity of the output. Subsequently, after
several rounds of training, the model selected is
that which achieves the best performances on the
similarity task with a sparseness—95% after 1000
epochs—allowing further sparsification according
to our experimental setup described hereinafter.
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Figure 1: Sparseness of SPINE and SINr according
to the maximum number of activated dimensions per
vector on OANC (top) and BNC (bottom). First data point
of each model is sparseness before sparsification.

Experimental framework. We introduce an ex-
perimental framework allowing to evaluate word
embedding interpretability. We first consider a
performance-sparsity compromise. Our hypoth-
esis is that sparse vectors are both more inter-
pretable and psycholinguistically plausible. To
control sparseness, we introduce our sparsification
method: from each embedding model, we keep
only the k top strongest dimensions by value in
each vector—k is in range 250− 10. Components
not in the top k for the vector are set to zero. Fig-
ure 1 presents the sparseness of SPINE and SINr
with regard to the active dimensions threshold. In
the case of Word2Vec, we keep the top k dimen-
sions out of the absolute values from the vectors.

In our second setup, we study the impact of
switching to binary vectors. The binarization step
is straightforward, we simply replace all non-zero
values in each sparsified and unsparsified model by
1 as in Faruqui et al. (2015).

To evaluate the quality of the representations af-
ter sparsification and binarization, we use the word
similarity evaluation—the correlation between the
cosine similarity of words in our model and sim-
ilarity rated by humans. Selected datasets model
a variety of relations : MEN (Bruni et al., 2014),
WS353 (Agirre et al., 2009), SCWS (Huang et al.,
2012). To evaluate the stability of vectors produced
by SPINE and SINr, our second criterion to in-
terpretability, we learn 10 models and present the
averaged results.

As similarity datasets are mostly available in En-
glish, we use the British National Corpus (BNC)
(Consortium, 2007) and the text part of the Open
American National Corpus (OANC) (Nancy et al.,

MEN WS353 SCWS

BNC

Pearson σ Pearson σ Pearson σ

Word2Vec 0, 72 0, 002 0, 65 0, 005 0, 57 0, 002

SPINE 0, 65 0, 006 0, 57 0, 01 0, 60 0, 004

SINr 0, 66 0, 0006 0, 62 0, 002 0, 54 0, 001

MEN WS353 SCWS

OANC

Pearson σ Pearson σ Pearson σ

Word2Vec 0, 43 0, 002 0, 50 0, 005 0, 46 0, 003

SPINE 0, 36 0, 009 0, 43 0, 01 0, 39 0, 01

SINr 0, 39 0, 0008 0, 44 0, 002 0, 39 0, 002

Table 2: Stability results for the word similarity evaluation on BNC (top), and OANC (bottom). Average Pearson
correlation coefficient and standard deviation σ over 10 runs.
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2011) to train our models. BNC contains 100 mil-
lion tokens and OANC 11 million. Both corpus are
composite in domain and genres. Those relatively
small corpora, considering the standards in natu-
ral language processing, are chosen because doc-
umented corpora allow for finer interpretations of
dimensions. Text preprocessing was performed us-
ing spaCy : tokenization with named-entity chunk-
ing, deletion of words shorter than three characters,
of punctuation and of numerical characters. The
minimum frequency for a type is set to 20. After
preprocessing, OANC contains 20,814 types and
roughly 4 million tokens, 58,687 types and 40 mil-
lion tokens for BNC.

5 Results

Stability. The first property we consider with re-
gards to interpretability is the stability of the mod-
els trained. This experiment is twofold, it allows
to show whether methods are stable and also sets
reference values for the similarity evaluation prior
to sparsifying. Each model was run ten times on
the same data with the same hyperparameters.

As reported in Table 2, the three models achieve
scores in close ranges, with all models showing
some degree if variability, their standard deviation
being non-zero across ten runs. While Word2Vec
and SINr seem more stable than SPINE, the over-
all observed variability on the small samples of
the vocabulary present in the similarity datasets
hinders reproducibility and is a flaw to the three
model’s interpretability.

Impact of sparsity on similarity. Results pre-
sented Figure 3 show the Pearson correlation scores
on the similarity evaluation with regard to the num-
ber of components activated. The similarity scores
are given with regard to the maximum number of
top values kept in each vector according to our
sparsification procedure. First, the three models
achieve comparable results to those reported Ta-
ble 2 up until 50 dimensions. More surprisingly,
sparsifying SINr embeddings seems to improve
performances. Sparsification may filter out noise
from the base SINr model. Subsequently, there is
not necessarily a trade-off between sparseness and
efficiency. Furthermore, the fact that results remain
satisfactory on our Word2Vec control model de-
spite the sparsification is an unexpected behavior
and is interesting with regard to how the semantic
information is organized in its vectors.

In order to approach the sparsity objective of 10

dimensions presented Section 1, the experiment is
also conducted at this level. Although we observe
an overall drop in performance and especially for
Word2Vec, a significant part of the semantic in-
formation is retained within these ten dimensions.
Indeed, they allow to solve at least partially the sim-
ilarity task. Even though the usefulness of this rep-
resentation for downstream tasks can be discussed,
it still allows to build interpretable word vectors
despite the drop in performance. The low number
of active dimensions render these models compat-
ible with theoretical models leveraging semantic
features, thus paving the way for new empirical
opportunities.

Impact of binarization on similarity. Results
presented Figure 3 follow the same display than
sparsity results except that all models are binarized.
Overall, we observe drops in performance across
all models but to drastically varying extents. While
SPINE and SINr lose some semantic information
compared to the sparsified weighted models, they
tend to retain performances of the same magnitude.
This is especially true for models trained on BNC,
considering that the models trained on OANC show
bigger drops in word similarity performance. On
the other hand, overall Word2Vec performances
crumble with binarized vectors. This result is to be
expected since Word2Vec is a dense model.

We can observe a common pattern across all
models, where performance of binarized embed-
dings increases with sparsification until 100 or 50
activated dimensions. Binarizing while maintain-
ing a lot of active dimensions flattens the hierarchy
between components with strong values and others
with low activations, thus otherwise very weak ac-
tivations may gain weight in the vector as a result
of binarization. In this case, the sparsification may
remove noise from representations, by restoring a
hierarchy between the few strong dimensions, acti-
vated with a 1 value, and the others set to 0. This
denoising behavior resulting from sparsification
seems common to binarized models, and weighted
SINr.

6 Discussion

Our results show that there is not necessarily a
trade-off between interpretability and performance.
On the contrary, stability and increased sparseness
of interpretable models can even improve results.
At thresholds close to what is described in psy-
cholinguistics, performances may remain accept-
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Figure 2: Word similarity performance (Pearson correlation) against maximum number of activated dimensions per
vector for Word2Vec (left), SPINE (middle) and SINr (right). Performances on OANC are reported in yellow,
and performances on BNC in blue.
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Figure 3: Word similarity performance (Pearson correlation) on binary models against maximum number of
activated dimensions per vector for Word2Vec (left), SPINE (middle) and SINr (right). Performances on OANC
are reported in magenta, and performances on BNC in cyan.

able considering the number of dimensions acti-
vated. Interpretability is hard to visualize without
a set objective. In the discussion ensuing, we illus-
trate the interpretability of models through visual-
izations on selected items.

Interpretability of the dimension. Interpretabil-
ity of the dimensions can be assessed after con-
ducting a word intrusion evaluation with humans,
both SPINE and SINr’s dimension interpretabil-
ity have been previously evaluated without prior
sparsification (Subramanian et al., 2018; Prouteau
et al., 2022). The goal is to evaluate whether dimen-
sions are interpretable—words with highest values
on a dimension should be related. We present Ta-
ble 1 top dimensions for three words as a glimpse

into how interpretable dimensions of SPINE and
SINr are in comparison with Word2Vec. As in
previous evaluations, Word2Vec does not exhibit
dimensions with related terms. If we consider the
term ”insulin”, words on the first three strongest
dimensions in the vectors are all related to medi-
cal conditions or biological functions. The word
”mint” presents interesting dimensions, for SPINE,
the first two dimensions are related to food and
ingredients, the third one is less interpretable as
one has trouble linking ”spadefoot”, a frog specie
to ”dial”. SINr captures the polysemous nature
of the word ”mint” with top dimensions unrelated
with one another. The first one is most probably
related to mint as an aromatic, meanwhile, the sec-
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(a) SPINE

(b) SINr

(c) SPINE 100 active dimensions

(d) SINr 100 active dimensions

Figure 4: Shared dimensions across 50 most and least similar words to ”mint” in SPINE and SINr. The models
are trained on BNC both without sparsification, and with a threshold set to 100 dimensions on BNC. The top half of
each figure represents the most similar words and the bottom half the least similar words.

ond one as the adjective describing guitars in mint
condition, and the third one as a verb, to mint, in
the sense of producing and managing currency. The
same analysis can be drawn for the word ”oxygen”
where the use in the medical field is represented
alongside chemical characteristics.

Interpretability of the vector. We evaluated in-
creasingly sparsified word embeddings with the
hypothesis that fewer features makes interpreting
words vectors themselves easier. Our evaluations
show that this gain in interpretability is not nec-
essarily at the cost of model performances, the
sparsification of representation can even increase
performances up to a certain sparseness level. The
following paragraphs aim to illustrate interpretabil-
ity at the word vector level.

We present Figure 4 the distribution of values in
the 50 most (top of each figure) and least similar
(bottom of each figure) words to ”mint” for SPINE
(a; c) and SINr (b; d) on BNC. Lines appearing
vertically across figures show shared dimensions
between vectors in the embedding space. The first
two figures (a; b) represent the shared features in

the model prior to sparsification. SPINE presents
vertical lines spanning most similar and least simi-
lar vectors, the embeddings seemingly share a large
number of dimensions. SINr, on the other hand,
exhibits a clear distinction between most and least
similar words. One can clearly see shared dimen-
sions among close neighbors of SINr for the word
”mint”. These first two distributions need to be com-
pared with the distributions observed after sparsify-
ing the vectors (c; d). At the 100 active dimensions
sparsity setup, SINr seems to display more shared
dimensions than SPINE for the word ”mint”. We
assume that the performance gain in the similarity
task observed for SINr Figure 2 is due to a process
of noise reduction induced by the sparsification of
the model.

The interesting results on similarity evaluation
showed by sparsified interpretable models seems
to indicate that the most important part of the se-
mantic information is stored in the few strongest
components of each vector. This observation al-
lows us to analyze these models through the lens
of our constrained version of interpretability di-
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Figure 5: Word vectors on the set of top 5 shared di-
mensions for ”mint”, ”insulin” and ”oxygen” and their
respective closest neighbors for SPINE (top) and SINr
(bottom) on BNC.

rected towards the interpretation of word vectors.
A speaker might want to interpret word embed-
dings by composing the meaning of a word with
a limited subset of the features that describe it. In
this case, the stability of the models becomes an
increasingly important issue. Indeed, interpreting
dimensions amounts to finding a consistency to a
set of words that strongly interpret a dimension.
However, interpreting a word vector relies both on
this consistency and the strength of the activation of
each dimension for a given vector. Thereby, even
subtle variations in the representation across runs
may induce different interpretations.

Binary representations. Our last experiment
aims to quantify the benefit of weighted features
over binary features. Considering results Figure
4, it appears that a significant part of the semantic
information for sparse interpretable models is en-
coded in the mere activation of a dimension by a
vector. Binarity is a means of reducing time and
memory complexity of semantic models and is un-
doubtedly beneficial in embedded applications with
low latency requirements or low resource hardware.
We observe with Figure 5 that a SINr weighted
model tends to have fewer and more strongly acti-
vated dimensions than a SPINE weighted model,
which makes the former more alike binarized repre-
sentations. This property facilitates the interpreta-
tion at the vector level: for example, dimensions 12
to 15 are strongly activated for ”mint” and ”thyme”,
and not at all for the other words, in the SINr repre-
sentation. Recognizing the similarity of ”mint” and
”thyme”, and their opposition to the other words, is

easier when there is a clear gap between a strong
activation and no activation of the dimension con-
sidered, like in a binarized vector.

Taking a step back, the comparison between
weighted and binarized vectors performances allow
us to pinpoint where the information is encoded.
A significant part of the semantic information is
stored in the activation of a few dimensions for
each word vector, but the dimensions weights are
needed to reach the most competitive performances.
This assessment is coherent with the theoretical
paradigm shift mentioned Section 2. Furthermore,
it appears that, while binarizing embeddings rep-
resents a cost in performance, sparsifying them is
not necessarily a trade-off. In some cases, it might
even be beneficial.

7 Conclusion

Previously, the interpretability of embedding
spaces focused mainly on dimension, this work re-
defined interpretability from the vector standpoint.
We state that stability of the models and sparsity are
necessary conditions to intepretability. Constrain-
ing on sparsity echoes psycholinguistic plausibility,
it is essential to find semantic coherence within
dimension of the embedding space but also to de-
scribe a word with a limited set of these dimensions.
We hypothesize that vectors constrained following
this protocol are interpretable by a speaker, since it
becomes possible to manipulate this small number
of dimensions in working memory.

Interpretable word embedding models achieve
good results on the intrinsic word similarity evalua-
tion task even with higher sparseness levels. SINr
even benefits from being sparsified. Furthermore,
we show through examples that dimensions remain
interpretable even on sparsified vectors and that,
indeed words that are close in the embedding space
are represented by a common set of dimensions.
Lastly, we show that real-valued vectors are a slight
improvement upon binary representation.

These results allow to reconsider the inter-
pretability performance for distributed represen-
tations. A following step would be to conceive
an evaluation framework to measure vector-level
interpretability, allowing us to investigate if and
how speakers would make sense of interpretable
word vectors. Such models also open up new per-
spectives in which theoretical models describing
the lexicon benefit from semantic features of word
embeddings. In the field of semantic drift detection,
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it would also allow to easily characterize the drift
by keeping track of the few dimensions at stake.

Acknowledgments

The work has been funded by the ANR project
DIGING (ANR-21-CE23-0010).

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
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mécanique. Publications linguistiques de la Faculté
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and Sylvain Meignier. 2022. Are embedding spaces
interpretable? results of an intrusion detection eval-
uation on a large french corpus. In Language
Ressources and Evaluation Conference.

François Rastier. 2009. Principes et conditions de
la sémantique componentielle. In Sémantique
interprétative, Formes sémiotiques, pages 17–37.
Presses Universitaires de France.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard
Hovy. 2021. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Euro-
pean Chapter of the Association for Computational
Linguistics, pages 3363–3377.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2021. A Primer in BERTology: What We Know
About How BERT Works. Transactions of the Asso-
ciation for Computational Linguistics, 8:842–866.

Eleanor Rosch. 1975. Cognitive representations of se-
mantic categories. Journal of Experimental Psychol-
ogy: General, 104:192–233.

Eleanor Rosch, Carolyn B. Mervis, Wayne D. Gray,
David M. Johnson, and Penny Boyes-Braem. 1976.
Basic objects in natural categories. Cognitive Psy-
chology, 8(3):382–439.

Cynthia Rudin. 2019. Stop explaining black box ma-
chine learning models for high stakes decisions and
use interpretable models instead. Nature machine
intelligence, 1(5):206–215.

Lutfi Kerem Senel, Ihsan Utlu, Veysel Yucesoy, Aykut
Ko.c, and Tolga Cukur. 2018. Semantic structure
and interpretability of word embeddings. Transac-
tions on Audio, Speech, and Language Processing,
26(10):1769–1779.

Jamin Shin, Andrea Madotto, and Pascale Fung. 2018.
Interpreting word embeddings with eigenvector anal-
ysis. Advances in Neural Information Processing
Systems, 32.

Robert R. Sokal and Charles Duncan Michener. 1958.
A statistical method for evaluating systematic rela-
tionships. University of Kansas science bulletin,
38:1409–1438.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings. In
AAAI conference on artificial intelligence, volume 32.

Julien Tissier, Christophe Gravier, and Amaury Habrard.
2019. Near-lossless Binarization of Word Embed-
dings. AAAI Conference on Artificial Intelligence,
33(01):7104–7111.

Muhammad Rehman Zafar and Naimul Khan. 2021. De-
terministic local interpretable model-agnostic expla-
nations for stable explainability. Machine Learning
and Knowledge Extraction, 3(3):525–541.

115



Proceedings of the 15th International Conference on Computational Semantics pages 116–133
June 21–23, 2023. ©2023 Association for Computational Linguistics

Semantically Informed Data Augmentation for
Unscoped Episodic Logical Forms

Mandar Juvekar∗
Boston University

Boston, MA, USA 02215
mandarj@bu.edu

Gene Louis Kim
University of South Florida

Tampa, FL, USA 33620
genekim@usf.edu

Lenhart Schubert
University of Rochester

Rochester, NY, USA 14627
schubert@cs.rochester.edu

Abstract

Unscoped Logical Form (ULF) of Episodic
Logic is a meaning representation format that
captures the overall semantic type structure of
natural language while leaving certain finer de-
tails, such as word sense and quantifier scope,
underspecified for ease of parsing and annota-
tion. While a learned parser exists to convert
English to ULF, its performance is severely lim-
ited by the lack of a large dataset to train the sys-
tem. We present a ULF dataset augmentation
method that samples type-coherent ULF expres-
sions using the ULF semantic type system and
filters out samples corresponding to implausi-
ble English sentences using a pretrained lan-
guage model. Our data augmentation method
is configurable with parameters that trade off
between plausibility of samples with sample
novelty and augmentation size. We find that the
best configuration of this augmentation method
substantially improves parser performance be-
yond using the existing unaugmented dataset.1

1 Introduction

Kim and Schubert (2019) introduced Unscoped
Episodic Logical Form (ULF) as a semantic rep-
resentation that captures syntactic type structure
within the Episodic Logic formalism, while staying
close to the surface form for ease of annotation and
parsing. Kim et al. (2021a) presented a learned ap-
proach to parsing English sentences to ULF which
showed promising results. Their parsing efforts,
however, were limited by the size of the training
data available. They released a dataset of 1,738
sentences with corresponding manual ULF annota-
tions alongside their parser which—to the best of
our knowledge—remains the only dataset of ULF
annotations to date. Our work aims to alleviate this
limitation of data sparsity.

∗Work done in part while at the University of Rochester.
1The code is available at https://github.com/

genelkim/subtree-sampled-ulf-data-augmentation.

(|Mary| ((past place.v)
|Glenn|
(under.p (k anesthesia.n))))

Figure 1: An example ULF for the sentence “Mary
placed Glenn under anesthesia.”

In this paper, we present a method of augment-
ing ULF datasets. Our method leverages ULF’s
underlying type structure and works by replacing
subtrees of seed ULFs with other subtrees of the
same semantic type. This, combined with the use
of pretrained language models to prune out the
most incoherent sentences, allows us to expand rel-
atively small datasets of ULF, such as that of Kim
et al. (2021a), into datasets several times larger in
size. We evaluate the efficacy of our system by
looking at the performance of the existing ULF
parser when trained on augmented versions of the
original training set.

The importance of our work, and more generally
of ULF parsing, comes from the role of ULF in the
broader Episodic Logic (EL) framework. Episodic
Logic (EL) is an extended first-order logic designed
to closely match the form and expressivity of nat-
ural language (Schubert, 2000). EL is a powerful
representation with rich model-theoretic semantics
which enable a variety of inferences including de-
ductive inference, uncertain inference, and natural
logic-like inference (Morbini and Schubert, 2009;
Schubert and Hwang, 2000; Schubert, 2014). How-
ever, parsing ordinary English sentences into fully
resolved EL forms is a difficult task.

ULF is an underspecified form of EL designed
to balance encoding adequate semantic information
with ease of parsing. It fully specifies the semantic
type structure of EL by marking the types of the
atoms and of all the predicate-argument relation-
ships while leaving issues such as quantifier scope,
word sense, and anaphora unresolved. ULF is the
critical first step in parsing full-fledged EL formu-
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las. A detailed description of how ULF fits into
the EL interpretation process is given by Kim and
Schubert (2019). ULF is also a useful interpreta-
tion in its own right. It is capable of generating
inferences based on clause-taking verbs, counter-
factuals, questions, requests, and polarity (Kim
et al., 2019, 2021b,c), and has been an effective
representation in schema-based story understand-
ing (Lawley et al., 2019) and spatial reasoning-
related dialogue (Platonov et al., 2020).

2 Background

ULFs are trees written in parenthesized list form.
The leaves of these trees, which we will refer to as
atoms, can be:

• Surface words marked with suffix tags of their
semantic types (e.g. .v, .n, .pro, .d for verbs,
nouns, pronouns, and determiners, respec-
tively);

• Case-sensitive symbols such as names and
titles marked with pipes (e.g. |Glenn|). Pipe-
marked symbols may be left without a seman-
tic tag, in which case they are interpreted as
having an entity type;

• One of a closed set of logical and macro
symbols (e.g. k and mod-n for denoting kind-
forming and noun modifier-forming operators,
respectively). These symbols have unique
types and are left without suffix tags.

Figure 1 contains an example ULF for the sen-
tence “Mary placed Glenn under anesthesia.” The
different types of atoms described above are all
present here. The names “Mary” and “Glenn” are
enclosed in pipes and the other surface words have
POS-related semantic tags (e.g. place.v). The
type-shifter k is used to turn the nominal predicate
anesthesia.n into a kind, which is an abstract in-
dividual whose instances are entities. The special
operator past is used to specify the tense of the
verb place.v.

As mentioned before, there is a machine
learning-based parser to convert English sen-
tences (Kim et al., 2021a) to ULFs. A brief
description of how the parser works is given
in Appendix A. In the other direction, Kim
et al. (2019) introduced a simple ULF-to-English
translator, ulf2english, which they reported as
achieving 78% grammaticality. Broadly speaking,
ulf2english works by analyzing the ULF type of

each clause, adding morphological details based
on that analysis, removing purely logical opera-
tors, and mapping logical symbols to their corre-
sponding surface forms. A more up-to-date version
(whose performance exceeds the evaluation in that
paper to an unknown degree)2 is used in our sam-
pling system.

2.1 The ULF Type System

The EL/ULF type system is the backbone upon
which our data augmentation system is built. The
semantics of EL are defined over a domain of in-
dividuals denoted by D and a set of truth values
denoted by 2. A set of situations S ⊂ D con-
sisting of first-class individuals provides the ba-
sis for intensionality.3 Since EL is a first-order
logic, the domain D contains all the individuals
that can be spoken about directly. D not only
contains ordinary individuals and situations, but
also collections, kinds of entities, propositions, and
more. Special type-shifting operators are used to
access these other individuals. For example, the
so-called kind operator k can be applied to the
nominal predicate dog.n (i.e. (k dog.n)) to talk
about “dogs” as a whole (as opposed to any par-
ticular dog or collection of dogs). Predicates can
be thought of as true/false-valued functions that
take a certain number of objects from the domain
and a situation as input. Viewing that in a curried
form gives us the type of an arbitrary predicate:
(D → (D → (· · · → (D → (S → 2)) · · · ))). For
convenience, we shorten this to (Dn → (S → 2))
where n is the number of Ds in the previous type.4

For our purposes (where we are mostly concerned
with ULFs) intensionality is not very relevant, and
so henceforth we will abbreviate (S → 2) by 2̂.
Since monadic predicates (type (D → 2̂)) com-
monly occur in the type system, we will use N as
a shorthand for (D → 2̂).

A couple of key differences exist between the
ULF and EL type systems. ULF types may have
syntactic restrictions, denoted by subscripts, e.g., a
verbal monadic predicate is denoted by NV . Deter-
miners are denoted with the type (N → D), which
anticipates their replacement in EL by a variable of
type D bound by a restricted quantifier.

Each ULF atom can be one of a few related
2https://github.com/genelkim/ulf2english
3The description of EL semantics we give is informal and

limited to our purposes. For a more detailed, formal discussion
we recommend reading Schubert and Hwang (2000, pp. 9–14).

4For technical reasons, EL supplies the situations last.
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2̂

(Dn → 2̂)V

D

(Dn+1 → 2̂)V

go.v)))

(NV → D)

(to

(Dn+1 → 2̂)V

(Dn+1 → 2̂)V

want.v)

ignored

((past

D

NN

boy.n)

(NN → D)

((The.d

Figure 2: An example of how atomic ULF types combine to give the type of the ULF.

semantic types. Logical operators have a unique
semantic type, whereas suffix-tagged atoms are
restricted by the semantic types that correspond
to their tags. A detailed correspondence between
ULF atoms and their semantic types is given by
Kim (2022, pp. 34–40). The types of atoms can
combine (or compose) via function application to
give the type of the ULF composed of those atoms.
For example, a.d which has type (N → D), and
dog.n which has typeN can compose to give (a.d
dog.n), with type D. Such ULFs can further com-
pose to give types for more complex ULFs. Fig-
ure 2 gives an example of such a type composition.
Here, the entire ULF has type 2̂, the type for a
complete sentence. Notice that want.v has type
(Dn+1 → 2̂)V . The variable n (taken to be a non-
negative integer) is used to account for the fact that
we do not have prior knowledge of how many ar-
guments the verb takes. It is treated as an integer
variable until the last step, where we instantiate it to
1 so that (Dn → 2̂)V can combine with D to give
2̂. Such treatment is typical for verbs and other
types that can take a variable number of arguments.
We will call trees similar to the one in Figure 2
without the actual ULF atoms type derivation trees.
A type derivation tree shows one way the types at
the leaves can combine to give the type at the root.

All properly annotated ULFs, including ULFs
that do not correspond to complete sentences,
should have a valid type that can be found by com-
posing the types of its atoms. This fact is what we
use to build our ULF sampler. Our method of sam-
pling ULFs produces new ULFs from a seed ULF
by picking a random subtree of the seed, finding the
semantic type of that subtree, and then replacing
the subtree with another ULF of the same type. In
our experiments, these seed ULFs are ULFs in the
training set of the manually annotated ULF dataset

released by Kim et al. (2021a). The type structure
helps ensure that the result is a valid ULF where
at least the composition of semantic types is co-
herent, and limiting our sampler to small subtrees
makes sampling meaningful sentences significantly
more likely than generating entire sentences from
scratch.

3 System Description

Our system can be broadly broken into two parts: a
sampler that takes a single seed ULF as input and
generates one new ULF-English pair, and a handler
which uses the sampler repeatedly to augment a
given dataset. Pseudocode for the salient parts of
this process is given in Appendix E.

3.1 The Sampler

The sampler goes through four phases: (1) picking
a random subtree, (2) finding its type, (3) sampling
a ULF of that type, and (4) replacing the original
subtree in-place. In this subsection we describe
that process, illustrating it by walking through the
process with the seed ULF (|Abe| ((pres see.v)
(a.d carp.n)) (see Figure 3 for an overview).

3.1.1 Picking a random subtree
This phase involves two parameters that can be
tweaked: a maximum size M for the subtree
picked, and a “recursion probability” p. Given
these parameters and an input ULF, our algorithm
first descends the ULF (viewed as a tree) top-down
by picking uniformly random children at each level
until it reaches a subtree with size (number of
leaves) less than or equal to M . Then at each step
where it is not at a leaf node it descends another
level (by picking a random child) with probability
p, and returns the subtree with the current node at
its root with probability 1−p. If the algorithm ever
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(|Abe| ((pres see.v)
(a.d carp.n) ))

(a) The original ULF with the selected sub-
tree highlighted. The subtree has type D.

(|Abe| ((pres see.v)
(many.d (plur plant.n) ))

(c) The final sampled ULF with the replaced
subtree highlighted.

=⇒

⇐=

D

NN

NN

plant.n))

(NN → NN )

(plur

(NN → D)

(many.d

(b) The derivation tree sampled for D with sampled
atoms for the leaf nodes.

Figure 3: The sampling process illustrated.

reaches a leaf node it simply returns it. Pseudocode
for this procedure is given in Algorithm 1 in Ap-
pendix E. In our running example (in Figure 3a)
the recursion goes down the right side of the tree
and stops with the subtree (a.d carp.n).

3.1.2 Computing the subtree’s type
The selected subtree’s type is computed using
ULF’s type composition rules. We use a pre-
existing ULF type system implementation5 which
finds the semantic type of a given ULF fragment by
recursively composing types from the atoms in a
bottom-up fashion. Due to the presence of variables
in some types of leaf nodes (for example for verbs
which can have multiple arities), the type system
can return a list of possible types corresponding to
different values of the variables. In such a case, we
pick a random type from this list. Since variables in
ULF type compositions rarely take high values (for
example, verbs do not frequently take more than
three arguments), we pick types corresponding to
smaller values of the variable with higher proba-
bility. Specifically, if the number of options is less
than 4, we pick uniformly. If the number of op-
tions is 4 or more, we pick uniformly from the first
three options with probability 3/4, and uniformly
from all the options with probability 1/4. Picking
from multiple possible types in a more principled
manner (for example by looking at the type com-
position tree of the seed ULF) could be an avenue
for future work in improving our sampler.

Using this process, we find that the chosen sub-
tree in the running example has type D.

3.1.3 Sampling a ULF with a given type
This phase involves one parameter: the maximum
size M ′ for the sampled ULF fragment; and takes
one argument: τroot, the desired ULF type (in our

5https://github.com/genelkim/ulf-lib

running example this is D). To sample a ULF with
the given type, we first sample a type derivation
tree with τroot at the root. Then, for each leaf type
in the derivation tree, we sample a ULF atom with
that type. Combining those atoms with the tree
structure of the derivation tree gives us a ULF with
the desired type.

Sampling a type derivation tree. Sampling a
derivation tree is done via three functions: SAM-
PLETYPEDERIVATION, SAMPLETYPESOURCE,
and SAMPLEARGDERIVATIONS. The top-level
function is SAMPLETYPEDERIVATION which, as
the name suggests, generates a type derivation tree
with type τroot. To do so it first uses SAMPLETYPE-
SOURCE to sample a source type, τsrc, which is a
type which can give τroot when supplied 0 or more
arguments and which is known to be the type of
an atomic ULF. It then calls SAMPLEARGDERIVA-
TIONS which takes τroot and τsrc and returns a list
of derivation trees for the argument types that need
to be supplied to τsrc to obtain τroot. Finally, SAM-
PLETYPEDERIVATION combines the source and
argument into a derivation tree for τroot which it
returns.

SAMPLETYPESOURCE takes one argument, τ0,
and returns a type that can be combined with 0 or
more arguments to obtain τ0 and which can be the
type of an atomic ULF. Let T be the set of all types
that can be taken by atomic ULFs, and let µT be a
distribution over T . We take µT to be the uniform
distribution in our implementation. We leave the
selection of a more informed distribution for future
work.6 SAMPLETYPESOURCE iteratively finds all
the types in T that can combine with 0 or more
arguments to give τ0 and adds them to a set T ′.

6For example, while a four-argument verb is possible (e.g.
in “I sold my car to John for $400.”), it is far less likely than
a one- or two-argument verb. A good choice for µT might
account for that.
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Glenn eats an apple.

Glenn eats an apple daily .

Glenn eats 33 apples daily.Monsoon rains eat an apple daily.

Glenn eats a pear .

Adelina’s cat eats a pear.Glenn does not throw a pear.

Figure 4: An example of what a tree of sentences (ULFs omitted for brevity) generated from the seed “Glenn eats
an apple” with depth of 2 and branching factor of 2 might look like. Newly sampled text segments are highlighted.
The corresponding replaced text segment in the parent (if any) is underlined with the same color.

It then returns a sample from T ′ with distribution
weights from µT .Details on how exactly T ′ is com-
puted are provided in Algorithm 2 in Appendix E.

SAMPLEARGDERIVATIONS takes parameters
τcur and τsrc, and computes a list of derivation
trees for types that can be composed with τsrc to
get τcur. This starts with τcur and “grows” outward
to get τsrc. It begins by finding the first type τnext
that needs to be prepended to τcur to get τsrc. For
instance, if τsrc = (A → (B → (S → 2))) and
τcur = (S → 2), then τnext = B. On finding
τnext, the algorithm makes a mutually recursive
call to SAMPLETYPEDERIVATION to compute a
derivation tree Dnext for τnext. It then recurses
with τcur = (τnext → τcur) and the same τsrc to
obtain a list of derivations, ℓD. The algorithm re-
turns [Dnext] + ℓD. Algorithm 2 in Appendix E
contains pseudocode for the entire derivation tree
sampling process.

Example. In our running example (Figure 3),
the top-level function call is SAMPLETYPED-
ERIVATION(D). That function calls SAMPLE-
TYPESOURCE(D), which returns the source type
(NN → D). This is a valid source type since
it can combine with one or more type to give
D, and since there are atoms (e.g. the.d) which
have type (NN → D). The top level function
then calls SAMPLEARGDERIVATIONS(τcur = D,
τsrc = (NN → D)). That function identifies that
NN can be combined with (NN → D) to get D,
and thus calls SAMPLETYPEDERIVATION(NN ).

In turn, that call does the same process as above,
but with NN as the root. It samples a source
which, let us say, turns out to be (NN → NN ).
It then calls SAMPLEARGDERIVATIONS(τcur =
NN , τsrc = (NN → NN )), which deduces that
the required argument type is NN and calls SAM-
PLETYPEDERIVATION(NN ) to find a derivation
tree for the argument. In our example, the mutual
recursion will end here: the call just mentioned will
sample NN as the source, which needs no further

arguments to get to NN .
Putting everything together, this process leads to

the derivation tree in Figure 3b.

Sampling ULF atoms. After generating a type
derivation tree, we sample ULF atoms that have
the types at the leaves of the derivation tree. Those
atoms are then put in the structure induced by the
derivation tree to obtain the ULF sampled. Sam-
pling atoms with given types is done using the
ULF lexicon used by Kim et al. (2021a). The sam-
pling is weighted by probabilities computed by nor-
malizing unigram counts from the Google n-gram
dataset (Franz and Brants, 2006). In our example
there are three leaf nodes with types (NN → D),
(NN → NN ), and NN . Suppose they are instanti-
ated to the atoms many.d, plur, and plant.n.

3.1.4 Replacing in place
The final sampled ULF is obtained from the input
ULF by replacing the random subtree picked in
the first phase with the ULF fragment sampled in
the previous phase. This is done using simple tree
operations. In our example, this leads to the final
sampled ULF, (|Abe| ((pres see.v) (many.d
(plur plant.n)))).

3.2 The Handler
The sampling handler takes three inputs: the dataset
that is to be augmented, a depth d, and a branching
factor b. For each ULF U in the dataset, the handler
performs the following steps:

1. Use the sampler b times on input ULF U to
get b different samples from the seed U .

2. On each new ULF U ′ sampled in the previous
step, use the sampler b times.

3. Repeat step 2 d times, thus obtaining a tree of
ULFs with depth d and branching factor b. In
this tree, each node is obtained from its parent
via an application of the sampler. Figure 4
shows an example of such a tree.
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4. Collect all the ULFs in this tree along with
their English translations (which are found
using the ULF-to-English library) into a set.

Combining all the sets obtained from the above
process gives us a raw augmented dataset.

After generating a raw augmented dataset we
assign a quality score using language model per-
plexity. The final dataset consists of the top F ∗N
ULF-English pairs according to the quality score,
where N is total number of samples and F is a
preset constant proportion (0 ≤ F ≤ 1). We use
the GPT-2 language model (Radford et al., 2019)
in our implementation. This last pruning step is
done in order to remove highly incoherent results.
Algorithm 3 contains pseudocode for the handler.

The reason we branch out from the seed instead
of repeatedly modifying in a linear fashion is that
in a linear design, if the sampler ever returns an
incoherent result, every sentence generated from
then onwards is likely to be incoherent too. This
leads to a lot of “wasted” seeds leading to a smaller
yield of good ULF-English pairs. In our branching-
based design, even if one sample ends up being
incoherent, the other branches of the algorithm still
remain viable.

3.3 ULF Macros

One notable limitation of our sampler is that it does
not support most ULF macros. ULF macros per-
form unique transformations over their arguments
to handle complex but regular mappings from syn-
tax to semantic structure (e.g., topicalization, post-
nominal modification, etc.) and do not fit directly
into the type-compositional system.

4 Experiments

We evaluate our sampler on the hand-annotated
ULF 1.0 dataset by Kim et al. (2021a), the only
dataset of gold ULF annotations that we are aware
of. This dataset has 1,378, 180, and 180 sentences
of ULF-English pairs in the training, development,
and test sets, respectively.

Metrics. Following prior work on this dataset,
we use SEMBLEU as the primary evaluation met-
ric and use EL-SMATCH secondarily for analysis,
since it is broken down into F1, precision, and
recall components. The SEMBLEU score better
reflects the the parser’s ability to generate coherent
ULFs because it takes into account chains of mul-
tiple nodes and edges that EL-SMATCH does not.

d b M M ′ p N

1 3 5 5 0.5 5,035
2 3 5 5 0.5 14,503
3 1 5 5 0.5 4,777
3 2 5 5 0.5 16,050
3 3 5 5 0.5 40,708
3 4 5 5 0.5 83,383
4 3 5 5 0.5 116,112

Table 1: Sampling parameters and the resulting dataset
sizes. The table uses the same variable conventions as
Section 3 for sampling parameters and dataset size.

Thus, SEMBLEU is used as the primary evaluation
metric for ULF parsing. Kim and Schubert (2016)
describes EL-SMATCH in detail, which includes
a method for representing ULFs as a set of triples
similar to AMRs. When SEMBLEU is run on ULF,
the same set-of-triples representation is used for
ULFs so that the metric designed for AMR can be
run on ULF.

4.1 Settings
Model. In order to isolate the benefits of the data
augmentation method, we use the current state-
of-the-art ULF parsing model (Kim et al., 2021a).
This parser is described in detail in Appendix A.
While Kim et al. (2021a) released the code for their
model, it runs on PyTorch 1.2 with Python 3.6
which are incompatible with the drivers in some
of our more up-to-date computing machines. We
updated the code to use PyTorch 1.11 and Python
3.10. This initially led to a reduction in parser per-
formance, but we found that we could replicate
the original parser performance by reducing the
step size by a factor 0.25 and doubling the num-
ber of training epochs. We detail the replication
experiment in Appendix D, including the model hy-
perparameters. We use the model that successfully
replicated the original results in our experiments.

Sampled Datasets. The sampling parameter
combinations we test are listed in Table 1 along
with the number of unique examples that result
from this sampling process. We vary the handler
parameters: depth and branching factors, which
largely determine the number of samples. We fix
the subtree sampling parameters: maximum sample
size to 5, maximum replacement size to 5, and re-
cursion probability to 0.5. During the development
process, we found this to lead to the best balance of
quality and speed. We remove duplicated samples
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d b SEMBLEU EL-SMATCH
F1 Precision Recall

Reported 47.4 59.8 60.7 59.0
Replicated 47.1 58.7 60.6 56.9
1 3 48.2 59.5 61.6 57.6
2 3 46.0 58.2 59.5 57.0
3 1 47.9 59.0 61.8 56.5
3 2 46.1 57.9 59.8 56.1
3 3 48.3 59.8 61.5 57.8
3 4 47.8 58.1 60.1 56.3
4 3 49.0 59.3 60.9 57.8

Table 2: Test set parser performance for augmented
training on various sampling parameters and no
filtering—the average of 5 runs with different random
seeds.

to reduce unintended bias towards these sentences.

LM Filtering. To evaluate the trade-off between
sample quality and quantity, we vary the num-
ber of LM-filtered samples in our final augmented
datasets. For each sampled dataset, we retain the
following proportions of samples: 0.1, 0.25, 0.5,
and 1.0. We limit our filtering experiments to the
three largest sampled sets. This ensures that suffi-
cient samples remain even after aggressive filtering.

4.2 Training & Hyperparameters

We modify the training process of the baseline
model to include some number of epochs where
the model trains on both the manually annotated
ULF examples and the type-sampled dataset. After
that, the remaining epochs are trained using only
the manually annotated ULF examples. Other than
this new hyperparameter, the only hyperparameter
that is changed from the original model is the total
number of epochs. We reduce the number of total
epochs trained since the model begins to overfit
earlier when a larger sampled dataset is added.

We estimated the number of epochs at which the
model begins to overfit with sample augmentation
using d = 3 and b = 3 at 1.0, 0.5, 0.25, and 0.1
filtering proportions. For these parameters, we set
the augmented training epochs to 1 greater than
where we consistently saw overfitting.7 We then
generalize this to other experiments under the as-
sumption that similarly sized datasets will begin to
overfit at similar numbers of epochs. The training
epoch specifics are provided in Appendix B.

4.3 Results

In this section, we report only the average test set
metrics. Appendix B reports the full results in-
cluding the development set metrics and standard
deviations for both test and development sets.

Handler Parameters. We first compare the per-
formance of the baseline model when augmented
with the unfiltered samples from the sampler with
sampling parameters specified in Table 1. These re-
sults are reported in Table 2. The model augmented
with d = 4 and b = 3 has the best performance,
with a SEMBLEU score that is 1.6 points over the
reported baseline and 1.9 points over the replicated
baseline. Augmenting the training with sampled
pairs improves SEMBLEU scores for most sam-
pler parameters. Under closer inspection, we find
a curious pattern in these results. When we fix b
to 3 and vary d from 1 to 4, we see a U-shaped
SEMBLEU performance curve. Similarly, when
we fix d to 3 and vary b from 1 to 4, we see a similar
pattern, though the performance drops a bit again
when b = 4.

The rise in SEMBLEU scores with data aug-
mentation is not reflected as strongly in the EL-
SMATCH scores. The EL-SMATCH F1 scores are
typically slightly higher than the replicated base-
line, but still under the score reported by Kim et al.
(2021a). This suggests that the augmented samples
push the model towards overall parse coherence
without much changing the expected performance
on a particular node or edge.8

LM Filtering. Table 3 shows the parser perfor-
mance when the augmented dataset is filtered at
different levels based on LM perplexity. Moderate
filtering (0.5) tends to result in a small improve-
ment, leading to the best SEMBLEU results in this
paper of 49.1 on the d = 3, b = 3 dataset. Curi-
ously, moderate filtering seems to push the model
toward higher EL-SMATCH recall over precision.

Aggressive filtering (0.1) consistently degrades
performance, even relative to the baseline model.
This does not seem to be due to dataset size, since
similarly sized augmented datasets in Table 2 (d =
1, b = 3 and d = 3, b = 1) still improve over the
baseline. This suggests that aggressive LM filtering

7We consider an increase in development set perplexity to
be an overfit model.

8EL-SMATCH scores are based on overlaps of individual
nodes and edges whereas SEMBLEU scores are based on
chains of node-edge-node links.
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d b Filter SEMBLEU EL-SMATCH
F1 Precision Recall

Reported 47.4 59.8 60.7 59.0
Replicated 47.1 58.7 60.6 56.9
3 3 1.00 48.3 59.8 61.5 57.8

0.50 49.1 59.8 61.0 58.6
0.25 46.6 58.3 59.3 57.4
0.10 46.9 59.7 60.8 58.7

3 4 1.00 47.8 58.1 60.1 56.3
0.50 47.9 59.0 60.4 57.5
0.25 47.5 59.0 60.1 57.9
0.10 46.6 58.4 59.8 56.4

4 3 1.00 49.0 59.3 60.9 57.8
0.50 48.1 59.5 60.2 58.9
0.25 48.1 59.0 60.0 58.1
0.10 45.3 57.9 58.9 56.9

Table 3: Test set parser performance for LM-filtered
augmented data for larger type sampling parameters—
the average of 5 runs with different random seeds.

removes useful variance in the samples and leads
to overfitting to low-perplexity sentences.

4.4 Qualitative Evaluation

We performed a qualitative analysis of the sam-
pled sentences in an early version of the sampler9

to evaluate the syntactic and semantic coherence
of the generated samples. This experiment used
d = 3, b = 2 sampling parameters and LM filtering
to a dataset size of 5,000 samples. 400 randomly
selected examples from this set were scored by
human evaluators for both syntactic and semantic
coherence, each on a 5-point scale. This resulted in
a mean syntax score of 3.87 and a mean semantics
score of 3.96, showing that the sampler typically
succeeds in generating ULFs corresponding to well-
formed and understandable text. Appendix C pro-
vides exact prompts given to human evaluators and
more details of the results.

5 Related Work

Gibson and Lawley (2022) fine-tune GPT2-large
on the ULF 1.0 dataset to learn both an English to
ULF parser and a ULF to English generator. Their
ULF parser underperforms Kim et al.’s (2021a) on
the primary SEMBLEU metric but achieves the
state-of-the-art on the EL-SMATCH metric. Their
ULF to English generator matches or outperforms
the ulf2english system on automatic machine
translation metrics, BLEU (Papineni et al., 2002),
chrF++ (Popović, 2017), and METEOR (Banerjee

9This version failed to properly propagate certain syntactic
restrictions leading to sampling failures, in which case we
repeated the sampling process.

and Lavie, 2005) but uses more compute resources.
Data augmentation is far from a new idea for

training neural networks. Data augmentation in
computer vision is common via translation, rota-
tion, cropping, flipping, noise injection, and color
space transformations (Shorten and Khoshgoftaar,
2019). NLP has its own suite of data augmenta-
tion techniques that have been explored with token-
level perturbations (Wei and Zou, 2019), graph-
level perturbations (Şahin and Steedman, 2018),
example interpolation (Zhang et al., 2018; Verma
et al., 2019; Faramarzi et al., 2022), and distribu-
tional model-based synthetic sampling (Sennrich
et al., 2016; Yang et al., 2020; Kobayashi, 2018)
covering the major common approaches. Feng et al.
(2021) provide a comprehensive survey of the NLP
data augmentation approaches.

Focusing in on semantic parsing, Jia and Liang
(2016) and Yu et al. (2021) learn synchronous
context-free grammars using available data from
which new examples are sampled. Andreas (2020)
infers shared lexical environments and performs
substitutions of words between them to encourage
compositionality in semantic parsers. van Noord
and Bos (2017) cross-reference two independent
AMR parsers to automatically generate likely-high-
quality examples which led to major parsing per-
formance gains. None of these methods are able
to exploit the knowledge that we have about ULF
types and the rules that mediate their composition.
Some of the approaches described in this section,
such as van Noord and Bos’ (2017), could be used
in conjunction with our approach.

6 Conclusions

We presented a data augmentation method for
ULFs that leverages ULF’s underlying semantic
type structure. This method helps alleviate the data
sparsity problem that currently exists for ULF pars-
ing, leading to a new state-of-the-art in this task
without any change in the parsing model. Though
we tested our data augmentation method on ULFs,
this technique is applicable to any semantic parsing
task with an underlying tree-structured composi-
tional type system. For example, parsing in com-
binatory categorical grammar (Steedman, 2000)
is another appropriate candidate for this sampling
technique. Some details of the sampling procedure
can also be improved in obvious, but not trivial
ways. For example, our ULF atom sampling pro-
cedure uses word frequencies without ULF type
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information.This leads to an over-representation of
type-ambiguous words in our generated samples.

We think that type system-driven data augmen-
tation for ULF is a promising way to further im-
prove ULF parser performance. We expect further
parsing improvements through refinement of the
sampling parameters and expansion of the sam-
pler to include macros. The additional data pro-
vided by such augmentation would support more
general neural network-based semantic parsers as
have been successful in other semantic represen-
tations (van Noord et al., 2018; Liu et al., 2018;
Buys and Blunsom, 2017; Konstas et al., 2017).
We are hopeful to see an improved semantic parser
find utility in ULF-related tasks such as those men-
tioned at the end of section 1.
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A Baseline ULF Parser Description

Kim et al.’s (2021a) ULF parser is a transition
system-based parser where the transition actions
are selected using an LSTM. This parser modifies
the cache transition parser (Gildea et al., 2018)
to better model ULFs. At a high level, the mod-
ification introduces methods of generating ULF
symbols on the fly from input words, rather than
assuming a sequence of symbols as input. These
symbol generation methods are further designed
to reflect the relationship between ULF symbols
and their corresponding words rather than assum-
ing that an arbitrary mapping can exist between
them. The cache transition system oracle, which is
needed for training, is similarly modified to support
these changes in the possible actions.

The LSTM is then trained to take a concatenation
of the relevant input word, the relevant ULF sym-
bol, and the current transition system state features
as input and predicts the next action for the tran-
sition system. The transition system is inspected
to determine which word is relevant, this is called
hard attention (Peng et al., 2018). The relevant
ULF symbol is similarly inferred from the transi-
tion system state and action history. Either we find
which symbol we generated based on the current
word, or if it has not been generated yet, the most
recently generated symbol. The word features in-
clude the RoBERTa (Liu et al., 2019) embedding,
GloVe embedding (Pennington et al., 2014), and
learned embeddings of the lemma, POS tag, and
NER tag. The symbol tokens are learned. The
transition state features further includes informa-
tion about the dependency tree distances of relevant
words and the transition system phase. We refer
you to Kim et al.’s (2021a) paper for further details
of the parser.

B Additional Experiment Details

B.1 Augmented Epoch Determination

Filtering N overfit epoch
1.00 40,708 2
0.50 20,354 4
0.25 10,177 9

Table 4: Epochs values at which the model begins to
overfit when trained with an augmented dataset using
d = 3 and b = 3 parameters at various GPT-2 filtering
levels.

d b N F Aug. Total
1 3 5,035 1.00 25 45
2 3 14,503 1.00 10 30
3 1 4,777 1.00 25 45
3 2 16,050 1.00 10 30
3 3 40,708 1.00 2 20
3 3 20,354 0.50 5 25
3 3 10,177 0.25 10 30
3 3 5,083 0.10 25 45
3 4 83,383 1.00 2 20
3 4 41,691 0.50 2 20
3 4 20,845 0.25 5 25
3 4 10,422 0.10 10 30
4 3 116,112 1.00 2 20
4 3 58,056 0.50 2 20
4 3 29,028 0.25 5 25
4 3 14,514 0.10 10 30

Table 5: Number of epochs trained on the augmented
dataset and in total for each sampling and filtering con-
figuration. “Aug." is the number of augmented epochs.
“Total" is the total number of epochs trained. Includes
the total size of each sampling configuration results to
help interpret the motivation behind the epoch values.

Table 4 shows when the model would begin to
overfit at various augmented dataset levels. Specifi-
cally, we use the augmented dataset with d = 3 and
b = 3, filtered with GPT-2 at various proportions.
We use this to determine the number of epochs
that we should train the model with sampling aug-
mented data before only training on the manually
annotated dataset. The procedure we use here is to
add 1 to the results from Table 4. We do not add
1 to the full d = 3 and b = 3 dataset. Due to the
size of the dataset, 1 additional epoch would likely
severely overfit the model. For filtering at a 0.1
level, we extrapolate from the 0.5 and 0.25 levels,
assuming a linear relationship between the number
of augmenting examples and epochs.

We then generalize these results to other sam-
pling settings under the assumption that similarly
sized datasets will begin to overfit at similar num-
bers of epochs. We select the filtering level for the
d = 3, b = 3 dataset whose N value is the closest
lower value to the augmenting dataset in question.
Table 5 lists the number of epochs that we trained
each model on the augmented set and in total.

As with the rest of the parser details, we fol-
low Kim et al.’s (2021a) approach to selecting the
test model. After all training epochs, we select
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Model SEMBLEU EL-SMATCH
d b F1 Precision Recall

Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)
Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7
Replicated 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3
1 3 48.7± 1.6 48.2± 1.2 58.4± 0.7 59.5± 0.7 61.3± 1.5 61.6± 1.3 55.7± 0.9 57.6± 0.6
2 3 46.9± 1.9 46.0± 1.6 56.9± 1.7 58.2± 1.0 59.6± 1.6 59.5± 1.1 54.4± 1.9 57.0± 1.7
3 1 49.2± 1.1 47.9± 1.5 58.4± 1.0 59.0± 0.8 61.9± 0.6 61.8± 0.9 55.3± 1.5 56.5± 1.2
3 2 48.0± 3.3 46.1± 3.3 57.5± 2.0 57.9± 1.7 60.7± 2.2 59.8± 1.8 54.7± 2.3 56.1± 2.4
3 3 49.6± 1.6 48.3± 1.7 59.2± 1.5 59.8± 1.4 62.1± 1.7 61.5± 1.4 56.7± 1.6 57.8± 2.2
3 4 49.3± 3.8 47.8± 4.0 58.3± 2.2 58.1± 2.4 61.1± 1.8 60.1± 2.0 55.7± 2.6 56.3± 3.2
4 3 50.4± 0.8 49.0± 1.0 58.7± 1.1 59.3± 1.7 61.2± 1.0 60.9± 1.2 56.5± 1.3 57.8± 2.5

Table 6: Detailed parser performance for augmented training on various sampling parameters and no filtering—the
average & standard deviation of 5 runs. See the caption for Table 10 regarding the meaning of the † superscript.

Model SEMBLEU EL-SMATCH
d b F F1 Precision Recall

Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)
Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7
Replicated 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3
3 3 1.00 49.6± 1.6 48.3± 1.7 59.2± 1.5 59.8± 1.4 62.1± 1.7 61.5± 1.4 56.7± 1.6 57.8± 2.2

0.50 49.5± 0.8 49.1± 1.7 58.7± 0.5 59.8± 1.0 61.2± 0.9 61.0± 1.5 56.4± 0.5 58.6± 0.8
0.25 47.6± 1.8 46.6± 1.8 57.4± 1.3 58.3± 1.4 59.8± 1.3 59.3± 1.9 55.3± 1.4 57.4± 1.3
0.10 47.2± 1.5 46.9± 1.5 57.9± 0.6 59.7± 0.8 59.7± 1.8 60.8± 1.5 56.2± 0.7 58.7± 0.9

3 4 1.00 49.3± 3.8 47.8± 4.0 58.3± 2.2 58.1± 2.4 61.1± 1.8 60.1± 2.0 55.7± 2.6 56.3± 3.2
0.50 48.6± 1.1 47.9± 1.4 58.4± 1.0 59.0± 0.9 61.1± 0.8 60.4± 1.2 55.8± 1.4 57.5± 0.9
0.25 47.3± 2.7 47.5± 2.4 57.4± 1.6 59.0± 2.2 59.8± 2.5 60.1± 2.7 55.1± 0.8 57.9± 1.9
0.10 46.7± 2.4 46.6± 2.2 57.2± 2.0 58.4± 2.4 60.1± 1.8 59.8± 1.7 54.7± 2.4 56.4± 3.3

4 3 1.00 50.4± 0.8 49.0± 1.0 58.7± 1.1 59.3± 1.7 61.2± 1.0 60.9± 1.2 56.5± 1.3 57.8± 2.5
0.50 49.0± 3.1 48.1± 3.6 59.2± 1.8 59.5± 2.1 60.9± 2.2 60.2± 2.4 57.7± 1.5 58.9± 1.9
0.25 48.3± 1.3 48.1± 1.7 57.8± 0.8 59.0± 0.8 60.0± 0.9 60.0± 1.4 55.7± 0.8 58.1± 0.6
0.10 45.5± 2.7 45.4± 2.7 56.9± 2.2 57.9± 2.1 58.9± 2.3 58.9± 1.8 55.1± 2.3 56.9± 1.8

Table 7: Detailed parser performance for LM-filtered augmented data for larger type sampling parameters—the
average & standard deviation of 5 runs.

the epoch at which the model has the best develop-
ment set SEMBLEU performance and restore that
checkpoint for testing.

B.2 Detailed Parser Results

Table 6 shows the full detailed parsing results with
full augmented datasets, no filtering. These results
include the development set results and standard
deviations. These details should help in check-
ing replication. It also shows that adding the aug-
mented data tends to lead to more overfitting of the
model. That is, the development set performance
is relatively higher compared to the test set perfor-
mance when using data augmentation. Still, the
average test set performance is only a point or two
below the average development set performance
so the overfitting does not tend to be very severe.
The standard deviations also show that certain sam-
pling configurations lead to very unstable training.
d = 3, b = 4 for example has a 4-point standard
deviation in SEMBLEU scores. Table 7 shows sim-

ilarly detailed results for the filtering experiments.

B.3 Hyperparameters
Model hyperparameters are listed in Table 8. All of
them except for the learning rate are grandfathered
in from Kim et al.’s (2021a) parser.

C Qualitative Evaluation Details

For the qualitative analysis, we sampled an aug-
mented dataset using the following parameters
d = 5, b = 2,M = 5,M ′ = 5, p = 0.5. This
earlier version of the parser performed filtering
based on a maximum augmented size, including
the seed examples, rather than filtering proportional
to only the sampled set. We set the maximum size
to 5,000. Excluding the 1,378 seed sentences (the
training set of ULF 1.0), this results in 3,622 new
samples. Of these, we uniformly randomly select
400 and had human evaluators rank the English
translations (using ulf2english) for both syntac-
tic and semantic coherence. Each example was
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GloVe.840B.300d
dim 300
RoBERTa embeddings
source RoBERTa-Base
dim 768
POS tag embeddings
dim 100
Lemma embeddings
dim 100
CharCNN
num_filters 100
ngram_filter_sizes [3]
Action embeddings
dim 100
Transition system feature embeddings
dim 25
Word encoder
hidden_size 256
num_layers 3
Symbol encoder
hidden_size 128
num_layers 2
Action decoder
hidden_size 256
num_layers 2
MLP decoder
hidden_size 256
activation_function ReLU
num_layers 1
Optimizer
type ADAM
learning_rate 0.0025
max_grad_norm 5.0
dropout 0.33
num_epochs 25
Beam size 3
Vocabulary
word vocab size 9200
symbol vocab size 7300
Batch size 32

Table 8: Model hyperparameters. The learning rate,
which differs from Kim et al.’s (2021a) parser, is bolded.

ranked. The samples were distributed among three
in-person human volunteers for ranking. Volun-
teers were given descriptions for the meaning of
each score value. These are provided in Table 9.

Figure 5: Frequencies for each score value reported by
scorers. Score frequencies for syntax are in blue, those
for meaning are in orange.

They were also asked to treat syntax and meaning
as orthogonal properties as far as possible.

Figure 5 plots the frequencies for the qualita-
tive scores. The mean syntax score was 3.87 with
a standard deviation of 0.97. The mean meaning
score was 3.96 with a standard deviation of 1.15.
The medians for both scores were 4. About 65.7%
of examples scored 4s and 5s on syntax, and about
69.2% scored 4s and 5s on meaning. Very few (less
than 40 each) scored 1s and 2s on either categories.
According to the descriptions given to the volun-
teers, this means that the average sentence was
somewhere between “some syntactic inaccuracies,
but overall not bad” (a score of 3) and “minor syn-
tax errors” (a score of 4) leaning heavily towards
the latter, and was just a little below “meaning is
clear but a little strange for the average ear” (a score
of 4) for meaning.

D Baseline Replication

The results for the baseline replication experiments
are presented in Table 10. These results are based
on 5 random runs, however, due to technical chal-
lenges, a few results are based on 4 random runs.
This was the first experiment run for this paper so
the infrastructure was still brittle. We did not redo
these failed runs since a single additional run would
not affect our conclusions in this circumstance.

When we run the unmodified parameters with
our code updated to newer Python and PyTorch
releases, we see that our SEMBLEU performance
drops by 4.5 points. However, when we reduce the
learning rate from 0.001 to 0.00025 and increase
the total epochs from 25 to 60, the performance dif-
ference is only 0.3. Considering that the standard
deviations of the SEMBLEU scores are 1.3 and
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Score Description
1 Completely garbled
2 Garbled up but there are sizable chunks that are coherent
3 Some inaccuracies in grammar, but overall not bad
4 Minor syntax errors
5 Grammatical

Score Description
1 This doesn’t mean anything
2 You could speculate what it means, but it isn’t very coherent
3 Either somewhat clear but still unclear, or quite implausible
4 Meaning is clear but a little strange for the average ear
5 Makes sense, is plausible

Table 9: Descriptions of scores given to volunteers. The first table corresponds to syntax scores and the second
corresponds to scores for meaning.

1.4 for the reported and our modified runs, respec-
tively, 0.3 is within the range of sample variance.
EL-SMATCH results are similar, though our repli-
cated runs are relatively stronger on precision over
recall.

E Pseudocode for Algorithms

Algorithms 1 to 3 are the pseudocode algorithms
for the PICKRANDOMSUBTREE, SAMPLETYPED-
ERIVATION, and AUGMENTDATASET, respectively,
which are described in Section 3.

Algorithm 2, however, elides some implementa-
tional caveats. First, in practice, we add a global
parameterM ′ that imposes a maximum on the num-
ber of leaves in the sampled tree. This is imple-
mented by limiting the amount of mutual recursion
that happens between SAMPLETYPEDERIVATION

and SAMPLEARGDERIVATIONS. Second, while
the pseudocode uses simple equality to compare
types, in practice we use a TYPEMATCH function
which takes two types τ and τ ′ and returns true
if and only if τ ′ is the same as τ , except possi-
bly with additional syntactic restrictions. Third, in
practice SAMPLETYPESOURCE can return some
non-atomic ULF types which are known to be types
of atomic ULFs when operated on with specific op-
erators. This is to account for operators (such as
sentential operators) which are ignored during type
composition. An example of this is that SAMPLE-
TYPESOURCE can returned a “tensed verb” type
which can be instantiated in the next step to a tense
operator operating on a verb (e.g. (pres eat.v)).
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Model SEMBLEU EL-SMATCH
F1 Precision Recall

Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)
Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7

Unmod.† 44.2± 1.7 42.9± 2.5 56.2± 0.4 56.7± 0.6 58.7± 1.9 58.3± 1.7 53.9± 1.2 55.3± 1.2
Modified 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3

Table 10: Results for the baseline replication experiments. Results are based on 5 random runs. A “†" superscript
indicates results based on 4 runs due to a system failure on one of the runs. The “Unmod.” row contains the results
of running our code updated to PyTorch 1.11 and Python 3.10 using the exact same parameters as the original. The
“Modified” row contains the results where the learning rate is lowered four-fold and total epochs are increased from
25 to 60.

Algorithm 1 Picking a random subtree of a ULF.

global parameters: M ∈ N, the maximum size of the subtree picked; p ∈ (0, 1), a probability.
function PICKRANDOMSUBTREE(U )

input: U , a ULF.
if SIZE(U) > M then

U ′ ← (uniformly) random child of U .
return PICKRANDOMSUBTREE(U ′).

else if U is atomic then
return U .

else
U ′ ← (uniformly) random child of U .

return





PICKRANDOMSUBTREE(U ′)

with probability p;
U otherwise.

end if
end function
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Algorithm 2 Sampling a type derivation tree for a given type. This pseudocode ignores some implementa-
tion details. Those details are explained in the text description of this algorithm.

function SAMPLETYPEDERIVATION(τroot)
τsrc ← SAMPLETYPESOURCE(τroot)−−→τargs ← SAMPLEARGDERIVATIONS(τroot, τsrc)
return (τsrc,

−−→τargs)
end function
function SAMPLETYPESOURCE(τ0)

global parameters: T , the set of possible types of ULF atoms; µT , a distribution over T .
T ′ ← ∅
for τa ∈ T do

τtmp ← τ0
while τtmp ̸= NIL do

if τa = τtmp then
T ′.append(τa)

end if
if τtmp ∈ {D,S,2} then

τtmp ← NIL
else

τtmp ← CODOMAIN(τtmp)
end if

end while
end for
return τsrc ∼ µT (T ′)

end function
function SAMPLEARGDERIVATIONS(τcur, τsrc)

if τsrc = τcur then
return []

end if
τarg ← NEXTARGTYPE(τcur, τsrc)
Darg ← SAMPLETYPEDERIVATION(τarg)
τnext ← (τarg → τcur)
return [Darg] + SAMPLEARGDERIVATIONS(τnext, τsrc)

end function
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Algorithm 3 The handler. We assume that the function SAMPLEFROMSEED is the top-level function for
the sampler. It takes a ULF as input and runs the sampler to produce a single new (ULF, English) pair.

function AUGMENTDATASET(D , d, b, F )
input: D , a set of (ULF, English) pairs; d, the branching depth; b, the branching factor;
F , top fraction of augmented set to keep.
D ′ ← D
for (U,E) ∈ D do

S ← [U ]
for i ∈ {1, 2, . . . , d} do

S′ ← ∅
for U ∈ S do

U ′ ← POPFIRST(S)
for j ∈ {1, 2, . . . , b} do

(U ′′, E′′)← SAMPLEFROMSEED(U ′)
D ′.append((U ′′, E′′))
S′.append(U ′)

end for
end for
S ← S′

end for
end for
ORDERBYLANGUAGEMODELSCORE(D ′)
return first F ∗ |D | elements of D ′

end function
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Université de Lorraine, CNRS, Inria, LORIA / F-54000 Nancy, France

marie.cousin@loria.fr

Abstract

The meaning-text theory is a linguistic theory
aiming to describe the correspondence between
the meaning and the surface form of an utter-
ance with a formal device simulating the lin-
guistic activity of a native speaker. We imple-
ment a version of a model of this theory with
abstract categorial grammars, a grammatical
formalism based on λ-calculus. This implemen-
tation covers the syntax-semantic interface of
the meaning-text theory, i.e., not only the three
semantic, deep-syntactic and surface-syntactic
representation levels of the theory, but also their
interface (i.e., the transformation from one level
to another). This implementation hinges upon
abstract categorial grammars composition in
order to encode level interfaces as transduction
operate.

1 Introduction

We present in this article our implementation of a
model of the meaning-text theory (MTT, Mel’čuk
et al., 2012; Milićević, 2006) with abstract catego-
rial grammars (ACG, de Groote, 2001), focusing
on the meaning to text direction, i.e., generation.
MTT is a linguistic theory that has already been
used in a generation context, while ACGs are a
grammatical framework known to encode a range
of various grammatical formalisms.

MTT aims to describe the link between the mean-
ing and the textual representation of an utterance.
This description is made possible thanks to a for-
mal device, a meaning-text model (MTM), that
simulates the linguistic activity of a native speaker.
It uses, among others, a dependency syntax and
the key concepts of paraphrase and lexical func-
tions (LF) (see Section 2.2). The latter enables
a text to be more natural: the syntagmatic LFs
for instance encode collocations or support verbs.
They play an important role, especially for surface
representations, and when producing text. Some

formalisations and implementations focusing on
text generation already exist, such as GUST (Ka-
hane and Lareau, 2005) or MARQUIS (Wanner
et al., 2010).

ACGs are a grammatical framework based on
λ-calculus. They enable the implementation of
other grammatical formalisms, and have many ad-
vantages. ACGs are reversible. We can there-
fore use them in generation or analysis (Kanazawa,
2007). Their capacities to encode other formalisms,
such as tree adjoining grammars (TAG, Pogodalla
(2017a)), and to be used in generation were em-
ployed to generalize the G-TAG model (Danlos
et al., 2014). They are also currently used in an
industrial context by Yseop. We aim in this article
to use these properties with another linguistic the-
ory that was already proven usefull for generation
systems: MTT.

We may now wonder if ACGs are a relevant tool
to implement a linguistic theory based on a depen-
dency syntax by assessing it on a text generation
task. This article presents the feasibility of such
an implementation, based on a restricted number
of examples which illustrate several specificities
of MTT. As a grammatical framework, ACGs can
provide the grammatical formalisms they encode
with their generic algorithms, making it unneces-
sary to develop and implement specific information.
They also offer a reversible encoding so that, for
instance, we get here both synthesis and analysis
for MTT.

Because we wish to have a fined-grained control
over the generated text, we choose to focus on text
generation with formal methods. The same moti-
vations can be found in Grammatical Framework
(Ranta, 2004), that use a type-theoretic system too.
The encoding and links to other formalisms in
ACGs have been well studied. Indeed, Table 1
below highlights the expressive power of ACGs.
A hierarchy of ACGs is used in this table, based
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on two notions (order and complexity of an ACG)
which are defined in Section 3.

ACG generated language
ACG(1,n) finite languages
ACG(2,1) regular languages
ACG(2,2) context-free grammars (CFG)
ACG(2,3) well-nested multiple CFG
ACG(2,4) mildly context-sensitive grammars

ACG(2,4+n) ACG(2,4)

ACG(3,n) MELL decidability

Table 1: Expressive power of ACGs (Pogodalla, 2017b).

We aim at encoding a MTM within ACGs, and
especially the linguistic structures used by MTT,
even thought other formalisms close to the ones
used by MTT exist. MTT uses graphs for its se-
mantic representation for instance, to represent
predicate-arguments structures, and is therefore
close to AMR (Banarescu et al., 2013). Regard-
ing the deep-syntactic representation, MTT uses
dependency trees with labels that can differ from
other dependency formalisms. We are here inter-
ested by how the linguistic structures of MTT relate
to each other and the unity of the whole.

2 Meaning-text theory, lexical functions
and paraphrase

2.1 MTT

MTT (Mel’čuk et al., 2012; Milićević, 2006) de-
scribes the meaning-text correspondance of an ut-
terance. The meaning is “a linguistic content to
be communicated” (Milićević, 2006), and is not
directly observable, while the text is “any fragment
of speech” (Milićević, 2006), immediately percep-
tible.

MTM consists of 7 representation levels (see
Figure 1): the semantic (SemR), deep-syntactic
(DSyntR), surface-syntactic (SSyntR), deep-
morphologic (DMorphR), surface-morphologic
(SMorphR), deep-phonetic (DPhonR) and
surface-phonetic (SPhonR) representation levels.

It also has 6 transition modules between these
levels. Between each pair of (neighbor) represen-
tation levels lay one module, which performs the
transition from one of these adjacent representation
levels to the other one. They take as input one repre-
sentation of the former level, perform the transition,
and output the obtained representations of the next
level. For example, if we give the semantic module
(between the semantic level and the deep-syntactic

level) the SemR represented Figure 6a as an input,
it will output the DSyntR represented Figure 6b.

On top of this transition, they may also perform
paraphrase steps, that are transformations inside
the same level. It is the case of the deep-syntactic
module (between the deep-syntactic and surface-
syntactic levels) that performs deep-syntactic para-
phrasing and LFs realization on top of DSyntR to
SSyntR structure transition.

Thus, depending on the chosen direction, the
MTM enables the generation (from SemR to
SPhonR) or the analysis (from SPhonR to SemR)
of an utterance (see Figure 1).

SPhonR

DPhonR

SMorphR

DMorphR

SSyntR

DSyntR

SemR
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en
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DSyntR
=

⟨ DSyntS,
DSynt-CommS,
DSynt-ProsS,

DSynt-AnaphS ⟩

Figure 1: Schema of the MTM and detail of the sub-
structures of DSyntR (Mel’čuk et al., 2012).

Each one of these representations has substruc-
tures: one main structure and other structures that
add information to the main one.

In this article and our implementation we use
mainly DSyntS (the main structure of DSyntR),
and not the other three substructures of DSyntR.
Therefore, we will not give further detail about
them, and only work with DSyntS. The same ap-
plies to the substructures of the other representation
levels.

• SemS is the main structure of SemR. It is a di-
rected graph whose nodes are semantemes and
arcs are labeled with numbers (starting with
1). For each semantic predicate, the numbers
on the arcs leading to its arguments indicate
their order (see Figure 6a).

• DSyntS is the main structure of DSyntR
(see Figure 6b). It is a dependency tree,
whose nodes are deep-syntactic lexemes and
branches are labelled with deep-syntactic rela-
tions. Deep-syntactic relations include actan-
tial relations (labelled from I to VII), attribu-
tive relations (labelled ATTR and ATTRdescr),
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other subordinate relations (labelled AP-
PEND) and coordinative relations (labelled
COORD and QUASI-COORD) relations.

• SSyntS is the main structure of SSyntR. It
is also a dependency tree, whose nodes are
surface-syntactic lexemes, and branches are
labelled with surface-syntactic relations (see
Figure 6c for an example).

• The main structures of all other levels are rep-
resented by strings.

Regarding DSyntR (see Figure 1), its substruc-
tures are the deep-syntactic structure (DSyntS),
deep-syntactic communicative structure (DSynt-
CommS), deep-syntactic prosodic structure (DSynt-
ProsS) and deep-syntactic anaphoric structure
(DSynt-AnaphS). Mel’čuk et al. (2013) give fur-
ther detail about the construction rules of such a
structure. DSynt-CommS consists of markers of
communicative opposition, such as the theme of
the DSyntR (see Milićević (2006), page 15 where
an example is detailed). DSynt-ProsS consists of a
set of markers of prosodies, such as “declarative”
or “ironic” for instance. DSynt-AnaphS contains
the links of co-referentiality between the node of a
DSyntS.

We focus in this article on the deep-syntactic
module, more precisely on the LFs realization.

2.2 LF and paraphrase
In the transition modules as well as at some rep-
resentation levels MTT uses the key concepts of
paraphrase and LFs.

LFs (Mel’Čuk and Polguère, 2021) aim at de-
scribing linguistic phenomena that exist in all lan-
guages. Indeed, they are functions describing re-
lations between lexical units (LU). They associate
with that LU the set of all other alternative choices
of LUs consistent with the relation they describe.
They hinge on semantics, syntax and morphology.
That means that they are part of the lexicon of the
language, as well as part of its grammar. They are
used in MTT in the explanatory combinatorial dic-
tionary (we will not describe that part, see Mel’čuk
et al. (2012, 2013) for further detail), and to per-
form linguistic paraphrase.

LFs are classified in two main categories:
paradigmatic and syntagmatic LFs. The former
ones express relations of semantic derivation be-
tween LUs, while the latter express the combina-
torial properties of LUs. For instance, anti is a

paradigmatic LF associating a LU with its contrary:
anti(CALM) = {UPSET, RESTLESS} (based on
Mel’čuk et al. (2013)) and causFunc is a syntag-
matic LF which associates a LU with a support verb
meaning make it exist: causFunc(ATTENTION)
= DRAW (in the expression “to draw attention”)
(Milićević, 2006). LFs are useful to encode lexical
phenomena such as collocations or support verbs.
Further detail is given in Mel’Čuk and Polguère
(2021).

As for the paraphrase, there are different kinds
of paraphrases that can occur at different levels:

(a) at the semantic level with the definition of
semantemes by simpler semantemes,

(b) at the deep-syntactic level with the transfor-
mation of the dependency tree into another
one thanks to lexical paraphrasing rules and
restructuring paraphrasing rules (that supports
the lexical ones) (Mel’čuk et al., 2013) mak-
ing some LFs appear (cf. Figures 2 and 3),

(c) between the deep-syntactic and surface-
syntactic levels, when choosing how to realize
a LF when more than one value of LU is pos-
sible (cf. Figures 2 and 3),

(d) at the surface-syntactic level.

Both types (b) and (c) of paraphrase are often
considered to be part of the deep-syntactic para-
phrase. We want here to make a distinction between
what we call deep-syntactic paraphrase (i.e., type
(b)) and what we call LF realization (i.e., type (c)),
even if both of them occur in the deep-syntactic
module.

Iordanskaja et al. (1991) gives further detail
on the different paraphrase types. We will here
evoke mechanisms to encode the deep-syntactic
paraphrase (type (b)) and highlight the one con-
cerning LFs (type (c)). Figure 2 shows an example
of paraphrase that uses both types (b) and (c), i.e.,
deep-syntactic paraphrase and LF realization (it
will be further explained in Section 5).

3 Abstract categorial grammars

ACGs (de Groote (2001), whose definitions we
use here) are a grammatical formalism based on λ-
calculus. An ACG is composed of two languages,
linked together by a lexicon. The first langage
is called the abstract language and is the set of
abstract grammatical structures, such as analysis
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BE

JOHN UPSET

I II

(a) “John is upset.”
≡

BE

JOHN CALM non

I II ATTR

(b) “John is not calm.”

Figure 2: Representation of two deep-syntactic struc-
tures representing the paraphrase of “John is upset”.
That paraphrase uses lexical and restructuration deep-
syntactic rules as well as the relation anti(UPSET) =
CALM (based on Mel’čuk et al. (2013)). The depen-
dency tree obtained between deep-syntactic paraphrase
and LF realization is given in figure 3a.

trees. The second one, called the object language,
is the set of the surface representations generated
by the abstract language, such as strings or logical
representations in the form of a graph. Each one
of these languages is a set of λ-terms obtained by
induction over a signature.

Definition 1 Let A be a set of atomic types. T (A)
is the set of linear implicative types, obtained in-
ductively over A:

• if a ∈ A then a ∈ T (A)

• if α, β ∈ T (A) then (α→ β) ∈ T (A)

Definition 2 Let Σ be a higher order signature.
Σ is of the form Σ = ⟨ A, C, τ ⟩, where:

• A is a set of atomic types,

• C a set of constants,

• τ : C −→ T (A) a function.

We express with ⊢Σ1 t : s that the type of a λ-
term t is s in the signature Σ (or t : s if there is no
ambiguity).

We express Λ(Σ) the set of λ-terms obtained
using the constants of C, the variables, the abstrac-
tions and the applications.

Definition 3 Let Σ1 and Σ2 be two signatures. A
lexicon L12 from Σ1 to Σ2 is a pair of morphisms
⟨F,G⟩ such that F : τ(A1) −→ τ(A2) and
G : Λ(Σ1) −→ Λ(Σ2).

We write L12(t) = γ to express that γ is the
interpretation of t by L12 (or t := γ if there is no
ambiguity on the used lexicon).

The signatures (like Σdsynt tree, see Figure 2) we
describe here use almost linear λ-terms. We will
not explain this notion, for it is not of great interest

for what we say (the used variables being neither
discarded nor duplicated in the lexicons). Never-
theless we use the notation λo and λ for the linear
and non-linear abstractions respectively.

Moreover, an interesting property of ACGs is
that when they are second order almost linear, the
morphisms inversions (see below) are decidable in
a polynomial time (Salvati, 2005), and when they
are not almost linear, they remain decidable, even
though the complexity is not polynomial anymore
(Salvati, 2010). We therefore were careful to use as
much as possible second order almost linear ACGs
in this implementation.

We may thereby define Σdsynt tree in Figure 2
that corresponds to the DSyntR level. Indeed, the
constants of this signature enable to build the deep-
syntactic trees of DSyntS, like the ones in Figure 3.

• Adsynt tree = {T, rel, l},

• Cdsynt tree = {cdtJohn, cdtbe, c
dt
restless, c

dt
upset,

cdtcalm, A1, A2, ATTR, lex0, lex2, lex3, Anti,
Non},

• τdsynt tree is given by Table 2 below.

Constant Type
cdtJohn : l

cdtbe : l
cdtrestless : l
cdtupset : l
cdtcalm : l

A1 : rel
A2 : rel

ATTR : rel
lex0 : l → T
lex2 : l → rel → T → rel → T → T
lex3 : l → rel → T → rel → T → rel → T → T
Anti : l → l
Non : T

Table 2: τdsynt tree

In Table 2, all the constants of the form cXL en-
code LUs, while all constants of the form Ai and
lexi encode the dependency tree structure. The con-
stants anti and non encode the eponyms LFs.

Due to space considerations, we will not define
A and C in the following paragraphs and sections
anymore, they can be deduced from the table repre-
senting τ . We may now define the notions of ACG,
abstract and object languages:

Definition 4 An abstract categorial grammar is a
tuple G = ⟨Σ1,Σ2,L12, s⟩ where:
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• Σ1 = ⟨A1, C1, τ1⟩ and Σ2 = ⟨A2, C2, τ2⟩
are two higher order signatures,

• L12 = Σ1 −→ Σ2 is the lexicon,

• s ∈ T (A1) is the distinguished type of the
grammar.

Definition 5 The abstract language A and the ob-
ject language O of an ACG G = ⟨Σ1,Σ2,L12, s⟩
are:

• A = {t ∈ Λ(Σ1)| ⊢Σ1 t : s is derivable}

• O = {t ∈ Λ(Σ2)|∃u ∈ A(G) such that
t = L12(u)}

In this article we use βη-equivalence as equality
between λ-terms.

Σdsynt tree illustrated above gives the needed con-
stants to build the dependency trees of Figure 3.

BE

JOHN
anti(UPSET)

non

I II ATTR

(a) “John is not not upset.”, encoded by equation (1) below
using Table 2 and corresponding to γdt

au in Figure 4.

BE

JOHN
anti(RESTLESS)

non

I II ATTR

(b) “John is not not restless.”, encoded by equation (2) below
using Table 2 and corresponding to γdt

ar in Figure 4.

Figure 3: Representation of two deep-syntactic struc-
tures representing the deep-syntactic paraphrases of
“John is not calm” (based on Mel’čuk et al. (2013)).

But, in order to do so with an ACG, we
need another signature as well as a lexicon: we
now introduce the abstract signature Σdeep syntactic
(see Table 3), to define LdsyntRel (see Table 4).
⟨Σdeep syntactic, Σdsynt tree, LdsyntRel, G⟩ is the ACG
that builds the dependency trees of DSyntS in
Σdsynt tree (see the articulation of these signatures
in Figure 5).

We define the notion of order and complexity of
an ACG as well. They are used in Table 1 which
describes the expressive power of ACGs.

Constant Type
cdsJohn : G

cdsbe : G → G → G
cdsupset : G

cdsrestless : G
cdscalm : G

Table 3: τdeep syntactic

Σdeep syntactic Σdsynt tree

G := T
cdsJohn := lex0 cdtJohn

cdsbe := λo X Y. lex2 cdtbe A1 X lex2 Y

cdsupset := lex0 cdtupset
cdsrestless := lex0 cdtrestless

cdscalm := lex0 cdtcalm

Table 4: LdsyntRel

Definition 6 (Pogodalla, 2017b) The order of an
ACG is the maximum of the order of its abstract
constants. The order of an abstract constant is the
order of its type τ . The order of a type τ ∈ T (A)
is inductively defined:

• order(τ) = 1 if τ ∈ A,

• order(α→ β)
= max(1 + order(α), order(β)) else.

The complexity of an ACG is the maximum of
the orders of its atomic types realizations. An ACG
of order γ and of complexity η is written ACG(γ,η).

In the following paragraphs and sections, we use
the notation cXL for the constant of ΣX encoding the
LU L. If there are two different constants represent-
ing the same LU L in ΣX, we write cXL1 and cXL2 to
distinguish them. We also use γXi for the complex
λ-term of ΣX indexed by i. These complex λ-terms
being the encoding of possible representations for
an expression, the index i indicate this expression.
Therefore, we will use au for “John is not not up-
set” (cf. Figure 3a), ar for “John is not not restless”
(cf. Figure 3b), and c1, c2 for “John is not calm”.

We use dt and d0f instead of dsynt tree and
dsynt 0 fl.

That being said, we define the complex λ-terms:

γdtau = lex3 cdtbe A1 (lex0 cdtJohn)

A2 (lex0(anti cdtupset)) ATTR cdtnon
(1)

γdtar = lex3 cdtbe A1 (lex0 cdtJohn)

A2 (lex0(anti cdtrestless)) ATTR cdtnon
(2)

γflc1 = lex3 c
fl
be A1 (lex0 c

fl
John)

A2 (lex0 c
fl
calm1) ATTR cflnon

(3)

138



γflc2 = lex3 c
fl
be A1 (lex0 c

fl
John)

A2 (lex0 c
fl
calm2) ATTR cflnon

(4)

γd0fc = lex3 c
d0f
be A1 (lex0 c

d0f
John)

A2 (lex0 c
d0f
calm) ATTR cd0fnon

(5)

γdtau encodes the upper tree of Figure 3 while γdtar
encodes the lower tree of Figure 3.

Another advantageous property of ACGs is their
ability to be composed. A specific case of compo-
sition is transduction: given two ACGs sharing the
same abstract signature, transduction (see Figure 4)
is the composition of the analysis (or the inversion)
of a morphism (like Llexfl

−1) and the application of
a morphism (as Lreducefl) using both ACGs. Conse-
quently, transduction is very useful since it enables
two terms of two object signatures to be in relation
with each other.

Λ(Σdsynt tree)

Λ(Σfl)

Λ(Σdsynt 0 fl)

Llexfl Lreducefl

γd0fc

γflc1

γflc2

γdtau

γdtar

analysis
(or parsing)
(Llexfl

−1)
application

transduction from Σdsynt tree
to Σdsynt 0 fl

Figure 4: Transduction from DSyntR to a deep-syntactic
representation where the LFs would be realized. Lreducefl

is such that Lreducefl(γflc1) = Lreducefl(γflc2).

It is indeed a method to make possible the transi-
tion between the representation levels (represented
here by signatures) and perform the transformation
of the structures: given an initial λ-term, transduc-
tion gives a second λ-term, without modifying the
first one. MTT being like a suite of structure trans-
formations (see Figure 1), transduction seems well
adapted to implement a MTM. This suite of struc-
ture transformations also appears in the overview
of the ACG architecture of our implementation in
Figure 5 presented in Section 4, especially between
the areas 1, 2, 4, and 5 of Figure 5.

Moreover, we can produce a lot of structures
inside a signature. But, they do not all have an
antecedent in the abstract signature. Indeed, when
parsing a structure of an object signature of an
ACG, if it has an antecedent, it will be found (for
parsing is decidable, see above). If it does not have
one, then nothing happens. That means that, when
applying transduction between two object signa-

tures (or two representation levels, in the case of
our implementation), if one structure should not
have a correspondance in the next object signature,
it will not have one: no new structure will be pro-
duced.

4 Overview of our implementation

In order to represent the MTM, at least from SemR
to SSyntR, we implemented signatures and lexi-
cons (see Figure 5) and experimented our encoding
with ACGtk (Pogodalla, 2016), a piece of software
allowing for defining grammars and using the as-
sociated parsing and interpretation operation. Nev-
ertheless, for simplification purpose we did not
implement the other substructures than the main
one for each representation level, like the commu-
nicatives structures (see Section 2).

This implementation uses transduction (see Fig-
ure 4) which is the heart of our implementation, for
it is used to perform all transformations (see Fig-
ure 5, where we can guess the use of transduction).

We can see that the third area (see Figure 5)
looks like a detour. That is due to the fact that,
on one hand, MTT does not modify a structure
when going from a representation level to another
(which transduction also does), and, on the other
hand, during some steps of the generation process,
we want to keep the former structures as well as
the newly obtained ones. That is the case of the
deep-syntactic paraphrasing, for we want to keep
all possible dependency trees that would lead to a
sentence, so all the possible paraphrases. In other
words, MTT makes other structures appear inside
of one representation level, and we want them all
to reach the next representation level, not only the
last one. For this is not the goal of transduction,
deep-syntactic paraphrasing is hard to perform in
the current state of our implementation, and is per-
formed by this third area, although it is problematic,
as we will explain later.

Our implementation encodes the different levels
of representation of a MTM (see Figure 5): Σsem

corresponds to SemR, Σdsynt tree to DSyntR, and
Σssynt tree to SSyntR. As we can see, we use the
transduction between:

• Σsemantic and Σdsynt tree: to perform the seman-
tic paraphrasing and to make the transition
from SemR to DSyntR (areas 1 and 2),

• Σdsynt tree and Σdsynt rule: to perform the deep-
syntactic paraphrasing (area 3),
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3

4 5

2
1

Lss2ds

Lsem LdsyntRel

Llexpara

Llexfl

Lpararule

Lreducefl

LssyntRel

Σsemantic

Σdeep syntactic

Σdsynt tree

Σdsynt para Σdsynt rule

Σfl
Σdsynt 0 fl

Σsurface syntactic

Σssynt tree

Figure 5: Overview of the ACG architecture. Area 1 corresponds to the semantic paraphrasing, area 2 to the
transition between SemR and DSyntR, area 3 to the deep-syntactic paraphrasing, area 4 to the LFs realization step,
and area 5 to the transition to SSyntR.

• Σdsynt tree and Σdsynt 0 fl: to realize LFs (area
4, this part will be detailed in Section 5),

• Σdsynt 0 fl and Σssynt tree: to make the transition
from a deep-syntactic representation without
LFs anymore to SSyntR.

It was tested on a sample of example sentences.
This sample is short, but covers many lexical phe-
nomena, like collocations, the use and realization
of LFs, semantic or syntactic equivalences, as well
as obligatory arguments optionally expressible. As
stated at the end of Section 3, inside a representa-
tion level (or a signature), the structures that should
not have a correspondance in the next representa-
tion level (because they are incorrect for example)
do not have one: they will not find an antecedent by
reversing the lexicon during transduction (Table 5
highlights this). If a structure should not lead to
another one regarding MTT formalism, then our
implementation of ACGs is such that, by transduc-
tion, no antecedent will be found.

The code and the examples are available at
https://inria.hal.science/hal-04104453.

On top of that, this implementation also deals
with adverbial groups, that have a specific treat-
ment inspired by the work on TAG of Pogodalla
(2017a). Their treatment is indeed not the same de-
pending on the signature we look at. In SemR, i.e.,
in Λ(Σsemantic), the arc between the adverbial group
and the verb it modifies is directed toward the verb,
while in DSyntR, so Λ(Σdsynt tree), it is directed to-
ward the adverbial group. This is because adverbial
groups are modifiers (Mel’čuk et al., 2013, 2015).
We used the same approach as Candito and Kahane
(1998) for the dependency inversions between de-
rived trees and derivation trees in TAG (see Fig-

(kill)

(Charlie)
(Taylor)

(intention)

1 2

1
2

(a) SemS for “Charlie kills Taylor intentionally.”
KILL

CHARLIE TAYLOR INTENTIONALLY

I II ATTR

(b) DSyntS for “Charlie kills Taylor intentionally.”
KILL

CHARLIE TAYLOR INTENTIONALLY

Subj DirO Adverbial

(c) SSyntS for “Charlie kills Taylor intentionally.”

Figure 6: Dependency inversion for the adverb
“intentionally” in “Charlie kills Taylor intentionally”.

ure 6). The manipulation of obligatory arguments
of a SemR that are optionally expressible is also
possible, and was inspired by Blom et al. (2011).
It is done thanks to some constants in Σdeep syntactic.
These last two points will not be detailed here, but
you can find further detail in (Cousin, 2022). Nev-
ertheless, the Section 5 will explain the last step of
the paraphrase illustrated on Figure 2, that is the
realization of LFs. It is a good example to show the
different kinds of possible equivalence inside an
ACG, as well as how LFs are used in this modeling.
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Expression linked to the semantic graph “Charlie kills Taylor intentionally” “John is calm”
SemR (Σsemantic) 1 1

DSyntR before deep-syntactic paraphrasing (Σdsynt-tree) 2 1
of which will be accepted at the next stage 2 1

DSyntR after deep-syntactic paraphrasing (Σdsynt-tree) 2 61

of which will be accepted at the next stage 2 3
DSyntR after FLs realization (Σdsynt-0-fl) 2 5

of which will be accepted at the next stage 2 3
SSyntR (Σssynt-tree) 2 3

Table 5: Number of obtained structures by generation step for two initial semantic graphs, corresponding to the
expressions “Charlie kills Taylor intentionally” and “John is calm”.

5 Example

This section gives a detailed example on how the
transduction works and how we realize LFs in our
implementation. We consider here the signatures
Σdsynt tree (see Table 2), Σfl and Σdsynt 0 fl only, as
well as the lexicons Llexfl and Lreducefl. We saw in
Figure 2 a paraphrase example using deep-syntactic
paraphrase as well as LF realization. We will ex-
plain the LFs realization in this section.

We consider the following sentences:
(6) a. “John is upset”

b. “John is not calm”

c. “John is restless”

We consider the example of the paraphrase be-
tween expressions (6a) and (6b). We may re-
member that anti(CALM)={UPSET, RESTLESS},
so we also have anti(UPSET) = CALM =
anti(RESTLESS) (among other values, but we are
interested in CALM here). After the deep-syntactic
paraphrasing of sentence (6a), before realizing LFs,
we have a dependency tree such as Figure 3a. But,
(6a) is a paraphrase of (6b), and so is (6c) (illus-
trated in Figure3b). They both have the same para-
phrase (6b), so these two sentences (6a) and (6c)
are paraphrases of each other themselves (depend-
ing on the context, but that point will be explained
in the conclusion).

Therefore, we want for our implementation to
allow this link, this equivalence between the ex-
pressions (6c) and (6a). Thus, we want to obtain
an equivalence such as (7):

γdtau ≡ γdtar (7)

Indeed, we may remember that γdtau represents the
DSyntS of expression (6a), and γdtar the DSyntS of

1In fact, more structures are obtained, but they are incorrect
by construction. They will therefore not be considered here
(and do not have an antecedent in Σsurface-syntactic).

expression (6c). Because both expressions are para-
phrases of (6b) and because two different images of
a morphism cannot have the same antecedent, we
will have to use transduction here. The equivalence
between (6a) (or (6c)) and (6b) will take two steps,
i.e., parsing and application. We want, if we write
T for the transduction relation, our implementation
to allow equations such as (8):

T (γdtau, γd0fc ) and T (γdtar, γd0fc ) (8)

Hence, we want to use two ACGs sharing the same
abstract signature, to have the following equations
(9), (10) and (11) (see Figure 4 that illustrates it) in
order to have equations (8) and (7):

Lreducefl(γflc1) = γd0fc = Lreducefl(γflc2) (9)

Llexfl(γflc1) = γdtau (10)

Llexfl(γflc2) = γdtar (11)

Tables 2, 6a, 6b and 6c define the constants of
the signatures and lexicon we use in this section
in order to do so. They are simplified and show
only relevant information for this example. The
constants such as lexi and Ai (see Section 3, Ta-
ble 2) are not specified anymore, for they do not
change from one signature to another.

We implement the realization of LFs with the
transduction and the properties of λ-calculus, like
β-reduction. Indeed, one expression may have dif-
ferent representations in Σdsynt tree (see Table 2),
but only one in Σdsynt 0 fl (see Table 6a). To realize
LFs, we use different levels of equivalencies, that
this example highlights.

The different levels of equivalencies are the fol-
lowing (see Figure 4):

• inside of a signature, and by application or
parsing of a lexicon, two representations may
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Constant Type Constant Type
cflJohn : l cd0fJohn : l

cflbe : l cd0fbe : l
cflcalm0 : l cd0fcalm : l
cflcalm1 : l Non : t

cflcalm2 : l
Non : t

(a) τfl (left) and τdsynt 0 fl (right)
Σfl Σdsynt tree

t := T , r := rel, l := l

cflJohn := cdtJohn

cflbe := cdtbe
cflcalm0 := cdtcalm
cflcalm1 := anti(cdtupset)

cflcalm2 := anti(cdtrestless)

Non := Non

(b) Llexfl

Σfl Σdsynt 0 fl

t := t, r := r, l := l

cflJohn := cd0fJohn

cflbe := cd0fbe

cflcalm0 := cd0fcalm

cflcalm1 := cd0fcalm

cflcalm2 := cd0fcalm

Non := Non

(c) Lreducefl

Table 6: τfl, τdsynt 0 fl, Llexfl and Lreducefl.

be equal thanks to β-reduction. Neverthe-
less, this example does not show it. This β-
equivalence inside of a signature is used in
Σsemantic but not illustrated in this article due
to space restrictions.

• by parsing a lexicon, for instance Lreducefl: the
sentence “John is not calm” has one represen-
tation in Σdsynt 0 fl, while it has two different
ones in Σfl. Thus, we obtain thanks to the
parsing the equality (9).

• by transduction: the two dependency trees
γdtau and γdtar in Σdsynt tree are equivalent. In-
deed, when parsing and applying the lexi-
cons Lreducefl and Llexfl, we obtain (as wanted)
the equations (9), (10) and (11), then (8)
and finally (7) by transduction. Equations
(10) and (11) show that anti(UPSET) and
anti(RESTLESS) will be realized as CALM.
Because one antecedent cannot have two dif-
ferent images, we need the second object sig-
nature Σdsynt 0 fl in order to have one unique
constant per lexeme (here CALM). Hence we

have in Σdsynt 0 fl deep-syntactic dependency
trees where LFs are realized.

Thus transduction between signatures Σdsynt tree
and Σdsynt 0 fl allows to realize LFs, and to perform
the third type of paraphrase (see Section 2).

6 Conclusion and future work

We have shown a possible implementation of a
MTM with ACGs. This implementation models the
SemR to SSyntR levels of MTM. Even though this
implementation uses only the main structures of
the representation levels of MTT and not the other
substructures (like the communicatives ones), when
tested over a sample of example sentences, their
SSyntS are correctly obtained (see Table 5). Indeed,
for a given representation level, in the direction
of the generation, the incorrect structures are not
produced, for they do not have an antecedent by
parsing the lexicon to the next abstract signature.
Moreover, if we take the direction of analysis, we
obtain the wanted semantic graphs.

The implemented model enables the semantic
paraphrase to take place, as well as the transitions
between the representation levels thanks to trans-
duction, the realization of LFs thanks to transduc-
tion too, the handling of obligatory semantic argu-
ments optionally expressible, and the handling of
adverbial groups.

However, this implementation has some limita-
tions. Indeed, the deep-syntactic paraphrasing is
not optimal. It is actually made possible by the
detour of area 3 in Figure 5, but we need to manu-
ally iterate the process. We need to save the previ-
ous structures, perform the paraphrasing loop, and
apply again the process for the newly generated
structures until no new correct structure is obtained.
Transduction is showing some limitations here: this
mechanism is not well suited for the deep-syntactic
paraphrasing because rewritten structures still need
to be processed as well as resulting structures.

Furthermore, we have not exploited all the possi-
ble types of paraphrasing (Iordanskaja et al., 1991)
in our implementation yet: we also want to con-
tinue in this direction to implement all of them.
Moreover, we want to include, for each level, other
substructures, such as the communicative struc-
tures, to have more information about the theme,
the rheme, and the speaker intentions, in order to
have an implementation nearer to MTT than what
it currently is.
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de Lorraine. Thèse de doctorat dirigée par Philippe
de Groote.

Sylvain Salvati. 2010. On the membership problem for
non-linear abstract categorial grammars. Journal of
Logic, Language and Information, 19(2):163–183.

Leo Wanner, Bernd Bohnet, Nadjet Bouayad-Agha,
François Lareau, and Daniel Nicklaß. 2010. Marquis:
Generation of user-tailored multilingual air quality
bulletins. Applied Artificial Intelligence, 24(10):914–
952.

143



Proceedings of the 15th International Conference on Computational Semantics pages 144–154
June 21–23, 2023. ©2023 Association for Computational Linguistics

Measuring Fine-Grained Semantic Equivalence
with Abstract Meaning Representation

Shira Wein
Georgetown University
sw1158@georgetown.edu

Zhuxin Wang
Georgetown University
zw85@georgetown.edu

Nathan Schneider
Georgetown University

nathan.schneider@georgetown.edu

Abstract
Identifying semantically equivalent sentences
is important for many NLP tasks. Current ap-
proaches to semantic equivalence take a loose,
sentence-level approach to “equivalence,” de-
spite evidence that fine-grained differences
and implicit content have an effect on human
understanding and system performance. In
this work, we introduce a novel, more sensitive
method of characterizing cross-lingual seman-
tic equivalence that leverages Abstract Mean-
ing Representation graph structures. We find
that parsing sentences into AMRs and com-
paring the AMR graphs enables finer-grained
equivalence measurement than comparing the
sentences themselves. We demonstrate that
when using gold or even automatically parsed
AMR annotations, our solution is finer-grained
than existing corpus filtering methods and
more accurate at predicting strictly equiva-
lent sentences than existing semantic similar-
ity metrics.

1 Introduction

Translation between two languages is not always
completely meaning-preserving, and information
can be captured by one sentence which is not
captured by the other. Semantic divergence (or
conversely, semantic equivalence) detection aims
to pick out parallel texts which have less than
equivalent meaning. Though semantic divergence
across sentences in parallel corpora has been well-
studied, current detection methods fail to capture
the full scope of semantic divergence. State-of-the-
art semantic divergence systems rely on perceived
sentence-level divergences, which do not entirely
encapsulate all semantic divergences.

For example, consider the parallel French and
English sentences from the REFreSD dataset (Bri-
akou and Carpuat, 2020) shown in Figure 1. The
French sentence says “tous les autres édifices” (all
other buildings) while the English specifies “all

All other religious buildings are mosques or Koranic schools
founded after the abandonment of Old Ksar in 1957.

Tous les autres édifices sont des mosquées ou des écoles
coraniques fondées à l’époque postérieure à l’abondance du
vieux ksar en 1957.

Figure 1: Two parallel sentences from the REFreSD
dataset marked as having no meaning divergence, for
which the AMRs diverge.

other religious buildings.” Because the sentence
goes on to list religious buildings, it could be in-
ferred from context that the French is describing
other religious buildings despite being omitted; the
sentences thus convey the same overall meaning
but are not exactly parallel. Under a strict or close
analysis of the translation, these sentences could be
considered divergent—because the meanings are
not identical—but at the sentence-level they are
essentially equivalent.

Fine-grained semantic equivalence detection is
not widely studied—in spite of evidence that:
(1) implicit information can be critical to the un-
derstanding of the sentence (Roth and Anthonio,
2021), (2) fine-grained divergences in parallel train-
ing data have a negative effect on neural ma-
chine translation system performance (Briakou and
Carpuat, 2021), and finally, that (3) fine-grained
semantic equivalence detection holds promise for a
number of applications. Most notably, translation
studies, semantic analyses, and language learning
contexts could all benefit from the distinction be-
tween semantically equivalent sentence pairs and
sentence pairs which have subtle or implicit differ-
ences (Bassnett, 2013). A fine-grained divergence
detection system would enable the probing of ma-
chine translation models for semantic equivalence
(Mallinson et al., 2017) and could point to areas
where the source language itself affects semantics
in parallel sentences (Taguchi, 2005). Other poten-
tial uses include: reducing the workload of human

144



translators in post-editing of machine translation
output by filtering out exactly semantically equiva-
lent sentence pairs (Green et al., 2013) and cross-
lingual text reuse detection (plagiarism detection)
(Potthast et al., 2011).

Given the wide-ranging motivation for the de-
velopment of a fine-grained equivalence detection
system, coupled with the notable gap in research
on this task, we argue that a finer-grained measure
of semantic equivalence is needed: a way to de-
tect strictly semantically equivalent sentence pairs.
We leverage explicit semantic information in the
form of Abstract Meaning Representation (AMR;
Banarescu et al., 2013) to fill this gap. In this work,
we demonstrate that parsing sentences into AMR
graphs and comparing those graphs enables a finer-
grained semantic comparison than simply compar-
ing the sentences. We suspect that AMR may be
useful in this case because it makes explicit every
concept and relationship between those concepts
present in the sentence, taxonomically categorizing
each concept’s role and argument.

With analysis of data in two language pairs
(English-French and English-Spanish), we demon-
strate that sentence-level divergence annotations
can be coarse-grained, neglecting slight differences
in meaning (§3). We find that comparing two AMR
graphs is an effective way to characterize mean-
ing in order to uncover finer-grained divergences
(§4), and this can be achieved even with automatic
AMR parsers (§5). Finally, in §6 we evaluate our
AMR-based metric on a cross-linguistic semantic
textual similarity dataset, and show that for detect-
ing semantic equivalence, it is more precise than a
popular existing model, multilingual BERTScore
(Zhang et al., 2020).

Our primary contributions include:
• Our novel approach to the identification of se-

mantic divergence which uses AMR to move
beyond perceived sentence-level divergences

• A simple pipeline algorithm (which modi-
fies Smatch (Cai and Knight, 2013)) to auto-
mate the detection of AMR-level divergence
in cross-lingual pairs

• Studies demonstrating that our AMR-based
approach accurately captures a finer-grained
degree of semantic equivalence than both the
state-of-the-art corpus filtering method and a
semantic textual metric

We will release the code and dataset for this work
upon publication to enable the use of AMR for

semantic divergence detection.

2 Background on Semantic Divergence

Semantic divergences can arise when translating
from one language to another. These divergences
can arise due to different language structure, syn-
tactic differences in the language, or translation
choices (Dorr, 1994, 1990). Additional divergences
can be introduced when automatically extracting
and aligning parallel resources (Smith et al., 2010;
Zhai et al., 2018; Fung and Cheung, 2004).

To address these divergences, a number of sys-
tems have been developed to automatically identify
divergences in parallel texts (Carpuat et al., 2017;
Vyas et al., 2018; Briakou and Carpuat, 2020, 2021;
Zhai et al., 2020). The approach taken by Briakou
and Carpuat (2020) to detecting sentence-level se-
mantic divergences involves training multilingual
BERT (Devlin et al., 2018) to rank sentences di-
verging to various degrees. They introduced a novel
dataset called Rational English-French Semantic
Divergences (REFreSD). REFreSD is a subset of
the French-English WikiMatrix (Schwenk et al.,
2021) with crowdsourced annotations classifying
the sentences as having no meaning divergence,
some meaning divergence, or being unrelated.

Recent work has investigated the differences in
cross-lingual (English-Spanish) AMR pairs within
the framework of translation divergences (Wein
and Schneider, 2021). Specifically, this work de-
veloped an annotation schema to classify the types
and causes of differences between cross-lingual
AMR pairs. We use this dataset to test the per-
formance of our system on English-Spanish gold
AMR pairs. (For English-French, we produce our
own gold judgments of AMR divergence to test our
algorithm.) Additional prior work has explored the
role of structural divergences in cross-lingual AMR
parsing (Blloshmi et al., 2020; Damonte, 2019).

The relationship between Abstract Meaning Rep-
resentation metrics and measures of semantic sim-
ilarity has been explored in (Leung et al., 2022).
Recent work has also integrated sentence-level em-
beddings and comparison of AMR graphs (Opitz
et al., 2021; Wein and Schneider, 2022; Zeidler
et al., 2022).

3 AMR for Identification of Semantic
Equivalence

Semantic representations are designed to capture
and formalize the meaning of a sentence. In partic-
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He later scouted in Europe for the Montreal Canadiens.

(s / scout-02
:ARG0 (h / he)
:ARG1 (c / continent

:wiki "Europe"
:name "Europe")

:ARG2 (c2 / canadiens
:mod "Montreal")

:time (a / after))

Il a plus tard été dépisteur du Canadiens de Montréal en Eu-
rope. (He later scouted for the Montreal Canadiens in Eu-
rope.)

(d / dépister-02
:ARG0 (i / il)
:ARG1 (c / continent

:wiki "Europe"
:name "Europe")

:ARG2 (c2 / canadiens
:mod "Montreal")

:time (p / plus-tard))

Figure 2: A pair of sentences and their human an-
notated AMRs, for which the sentences receive a
“no meaning divergence” judgment in the REFreSD
dataset, and are also equivalent per AMR divergence.

ular, the Abstract Meaning Representation (AMR)
framework aims to formalize sentence meaning as a
graph in a way that is conducive to broad-coverage
manual annotation (Banarescu et al., 2013, 2019).
These semantic graphs are rooted and labeled, such
that each node of the graph corresponds to a seman-
tic unit. AMR does not capture nominal or verbal
morphology or many function words, abstracting
away from the syntactic features of the sentence.

We leverage the semantic information captured
by AMR to recognize semantic equivalence or di-
vergence across parallel sentences. Figure 2, for
example, illustrates a strictly meaning-equivalent
sentence pair along with the AMRs. Though the
sentences differ with respect to syntax and lexical-
ization, the AMR graphs are structurally isomor-
phic. If the AMR structures were to differ, that
would signal a difference in meaning.

Two particularly beneficial features of the AMR
framework are the rooted structure of each graph,
which elucidates the semantic focus of the sentence,
as well as the concrete set of specific non-core
roles, which are useful in classifying the specific
relation between concepts/semantic units in the
sentence. For example, in Figure 3, the emphasis
on the English sentence is on possession—your
planet—but the emphasis on the Spanish sentence
is on place of origin, asking, which planet are you
from? This difference in meaning is reflected in the
diverging roots of the AMRs.

Which is your planet?

(p / planet
:poss (y / you)
:domain (a / amr-unknown))

¿ De qué planeta eres ? (Which planet are you from?)

(s / ser-de-91
:ARG1 (t / tú)
:ARG2 (p / planeta

:domain (a / amr-desconocido)))

Figure 3: Two parallel sentences and AMRs from the
Migueles-Abraira et al. English-Spanish AMR dataset,
which diverge in meaning. The Spanish role labels are
translated into English here for ease of comparison.

Finally, we identify the fact that non-core roles
(such as :manner, :degree, and :time) are partic-
ularly helpful in identifying parallelism or lack of
parallelism between the sentences. This is because
AMR abstracts away from the syntax (so that word
order and part of speech choices do not affect equiv-
alence), but instead explicitly codes relationships
between concepts via semantic roles. Furthermore,
AMRs use special frames for certain relations, such
as have-rel-role-91 and include-91, which can
be useful in enforcing parallelism when the mean-
ing is the same but the specific token is not the same.
For example, if the English and French both have a
concession which the English marks via “although”
and the French marks with “mais” (but), the AMR
special frame role will still preserve parallelism by
indicating them both as a concession.

Granularity of the REFreSD dataset.
Sentence-level divergences (as annotated in
REFreSD) do not capture all meaning differences.
Another example of this surface-level divergence
adjudication, using sentences from the REFreSD
dataset, is shown in Figure 4. These sentences
are marked as having no meaning divergence in
the REFreSD dataset but do have diverging AMR
pairs. The difference highlighted by the AMR
pairs is the :time role of reach / atteindre. The
English sentence says that no. 1 is reached “within
a few weeks” of the release, while the French
sentence says that no. 1 is reached the first week of
the release (la première semaine).

We explore the ability to discover semantic diver-
gences in sentences either with gold parallel AMR
annotations or with automatically parsed AMRs us-
ing a multilingual AMR parser, in order to enable
the use of this approach on large corpora (consider-
ing that AMR annotation requires training).

We propose that an approach to detecting di-
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Although the sales were slow (admittedly, according to the
band), the second single from the album, "Sweetest Surprise"
reached No. 1 in Thailand within a few weeks of release.

Même si les exemplaires ont du mal à partir (comme l’admet
le groupe), le second single de l’album, Sweetest Surprise,
atteint la première place en Thaïlande la première semaine de
sa sortie.
Figure 4: Two parallel sentences from the REFreSD
dataset (Briakou and Carpuat, 2020) marked as having
no meaning divergence, but for which the AMRs di-
verge. Italicized spans indicate the cause of the AMR
divergence.

vergences using AMR will be a stricter, finer-
grained measurement of semantic divergence than
perceived sentence-level judgments.

4 Examining and Automatically
Detecting Differences in Gold AMRs

In this section, we evaluate the ability of AMR to
expose fine-grained differences in parallel sen-
tences and how to automatically detect those dif-
ferences. In order to do so, we produce and ex-
amine English-French AMR pairs, which is the
first annotated dataset of French AMRs; we also
examine a number of English-Spanish AMR pairs.

This is a relatively small dataset (100 English-
French items and 50 English-Spanish items) be-
cause it serves as a manually annotated precur-
sor to validate our hypothesis, ahead of our exten-
sive automatically-produced AMR experimentation
(§5) which uses 1033 items.

4.1 Examination of Gold AMR Data

We focus on French for effective comparison with
sentence-level semantic divergence models (be-
cause of the available resources), though it also
makes for ideal candidates in a cross-lingual AMR
comparison, as it is broadly syntactically similar to
English. This suggests that the AMRs could be ex-
pected to look similar (though not exactly the same)
as inflectional morphology and function words are
not represented in AMR. Prior work has investi-
gated the transferability of AMR to languages other
than English, and has found that it is not exactly an
interlingua, but in some cases cross-lingual AMRs
align well. Additionally, some languages are more
compatible (Chinese) with English AMR than other
languages (Czech) (Xue et al., 2014).

English-French AMR Parallel Corpus In in-
vestigating the differences between the degree of

divergence captured by AMR and sentence-level di-
vergence, we aim to compare quantitative measures
of AMR similarity with corresponding sentence-
level judgments of similarity. In order to compare
human judgments and AMR judgments, we de-
velop the first French-English AMR parallel cor-
pus, which represents the first application of AMR
to French. We produce gold AMR annotations
for 100 sentences, which were randomly sampled,
from the REFreSD dataset (Briakou and Carpuat,
2020; Linh and Nguyen, 2019). We also test our
system on the full REFreSD dataset, using an auto-
matic AMR parser (described in §5).

For the French AMR annotation process, the
role/argument labels were added in English as has
been done in related non-English AMR corpora
(Sobrevilla Cabezudo and Pardo, 2019), and the
concept (node) labels were in French. The spe-
cific concept sense numbers were based on English
PropBank frames (Kingsbury and Palmer, 2002;
Palmer et al., 2005).

AMR Div. AMR Equi.

Sentence-Level Div. 57 0

Sentence-Level Equi. 26 17

Table 1: Comparison between AMR Divergence anno-
tations and Sentence-Level Divergence REFreSD anno-
tations for 100 French-English sentences.

Findings from Corpus Annotation In light of
our research question considering whether AMR
can serve as a proxy of fine-grained semantic diver-
gence, we consider both qualitative and quantita-
tive evidence. While producing this small corpus
of French-English parallel AMRs, our suspicions
that AMR would be able to more fully capture se-
mantic divergence than perceived sentence-level di-
vergence were confirmed. We uncovered a number
of ways in which perceived sentence-level equiv-
alence is challenged by the notion of AMR diver-
gence. Take the example in Figure 1. The dif-
ference between “religious” being applied in the
French sentence and appearing in the English sen-
tence is not captured by perceived sentence-level
divergence, but is captured by AMR divergence.

The results in Table 1 demonstrate that when
using AMR as a lens to filter meaning, the result is
always stricter than when simply comparing their
corresponding sentences in the form of human judg-
ment. There are no instances where the sentence-
level annotation claims that the sentences are di-
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vergent but the AMR annotations are equivalent.
Conversely, there are 26 instances with AMR di-
vergence but no perceived sentence-level semantic
divergence. From this annotation we find that AMR
divergence is a finer-grained measure of divergence
than perceived sentence-level divergence.

4.2 Quantifying Divergence in Cross-Lingual
AMR Pairs

We have shown that not all pairs that humans con-
sidered equivalent at the sentence level receive iso-
morphic AMRs because they actually contain low-
level semantic divergences. This suggests AMRs
can be useful for more sensitive automatic detec-
tion of divergence. Now, we investigate whether
we can automatically detect and quantify this di-
vergence on gold AMRs via the graph comparison
algorithm Smatch. In order to quantify this di-
vergence in cross-lingual AMR pairs, we develop
a simple pipeline algorithm which is a modified
version of Smatch and incorporates token align-
ment. We test our modified Smatch algorithm on
gold English-French AMR pairs and gold English-
Spanish AMR pairs in comparison to the similarity
scores output by Briakou and Carpuat (2020).

Modified cross-lingual version of Smatch. Our
simple pipeline algorithm extends Smatch, a mea-
surement of similarity between two (English)
AMRs (Cai and Knight, 2013). Smatch quanti-
fies the similarity of two AMRs by searching for an
alignment of nodes between them that maximizes
the F1-score of matching (node1, role, node2) and
(node1, instance-of, concept) triples common be-
tween the graphs. However, Smatch was designed
to compare AMRs in the same language, with the
same role and concept vocabularies.

To compare AMR nodes across languages, the
nodes first need to be cross-lingually aligned. This
involves translating the concept and role labels. We
take a simple approach of first word-aligning the
sentence pair to ascertain corresponding concepts
(most of which are lemmas of content words in the
sentence). Our approach is similar to that of AM-
RICA (Saphra and Lopez, 2015), but we use a differ-
ent word aligner (fast_align rather than GIZA++1)
and deterministic translation of role names if the
labels are not in English. The deterministic trans-
lation is done using a mapping of the role names

1fast_align has been shown to produce more accurate word
alignments, such as in the case for Latvian-English translation
(Girgzdis et al., 2014).

between Spanish and English provided in the Span-
ish annotation guidelines (Migueles Abraira, 2017).
To align AMR graphs across languages, we word-
align the sentence pairs, then map these alignments
onto nodes in the graph (most concept labels on
nodes correspond to lemmas of words in the sen-
tence). Role names are mapped deterministically
based on a list from Migueles Abraira (2017).

We normalize the strings and remove sense la-
bels from the English and French/Spanish concept
labels. An error that we noticed while developing
the system was associated with the same concept la-
bel appearing more than once in either AMR, so we
tag repeated words numerically before performing
the alignment.

Finally, we run Smatch with the default num-
ber of 4 random restarts to produce an alignment.
The Smatch score produced is an F1 score from 0
to 1 where 1 indicates that the AMRs are equiva-
lent. This can be converted to a binary judgment,
where all non-1 pairs are divergent, or used as a
continuous value (as in §5).

Testing our Approach on Gold AMRs. One of
the benefits of leveraging semantic representations
in our approach to semantic divergence detection is
that the identification of divergence boils down to
determining whether the graphs are isomorphic or
not (and accurate word alignment). This suggests
that our pipeline algorithm (§4.2) should be highly
effective at identifying whether AMR pairs are di-
vergent or equivalent. In order to test our AMR-
based approach to strict semantic equivalence iden-
tification, we first test on gold AMRs, which are
created by humans and thus have no external noise
from being automatically parsed.

We expect that our AMR divergence character-
ization would behave differently from a classifier
of sentence-level divergence. This is because the
sentence-level classification methods require spe-
cialized training data and as such learn to classify
based on the perceived sentence-level judgments
of semantic divergence. To test the strictness of
our framing, we validate our quantification on gold
English-French and gold English-Spanish cross-
lingual AMR pairs.

Results on Gold English-French AMR Pairs
We test our pipeline algorithm on the 100 English-
French annotated AMR pairs described in §4.1.
As expected, the simple pipeline algorithm is very
accurate at correctly predicting whether the cross-
lingual pairs do or do not diverge according to the
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Equivalent (17) Divergent (83) All

System P R F1 P R F1 F1

Ours 1.00 0.82 0.90 0.97 1.00 0.98 0.97
BC’20 0.39 0.82 0.53 0.95 0.73 0.83 0.75

Table 2: FR-EN: Binary divergence classification on
on 100 gold French-English AMR pairs, annotated for
sentences from the REFreSD dataset. Precision (P),
Recall (R), and F1 scores are reported for the equiva-
lent, divergent, and all AMR pairs. We compare the
performance of our model with the performance of
the (Briakou and Carpuat, 2020) model, referenced as
BC’20, on our finer-grained measure of divergence for
the same English-French parallel sentences.

stricter criterion.
Table 2 showcases the ability of our pipeline

system and the (Briakou and Carpuat, 2020) system
(described in §2) to identify these finer-grained
semantic divergences. On these English-French
AMR pairs, the F1 score for our system is 0.97
overall and 1.00 for equivalent AMR pairs. This
high level of accuracy indicates we can reliably
predict cross-lingual AMR divergence.

The (Briakou and Carpuat, 2020) system per-
forms worse when using our finer-grained delin-
eation of semantic divergence, achieving an F1
score of 0.75.2 Unsurprisingly, the precision, recall,
and F1 for their system is lower than the perfor-
mance of our system, because theirs is not trained
to pick up on these more subtle divergences. Note
that on their own measure of divergence (perceived
sentence-level divergence), the system achieves an
F1 score of 0.85 on these same 100 sentences.

Of the 3 errors made by our algorithm (in all
cases, classifying equivalent AMR pairs as diver-
gent), 2 of the 3 are caused by word alignment
errors. Named entities seem to pose an issue with
fast_align for our use case.

Equivalent (13) Divergent (37) All

System P R F1 P R F1 F1

Ours 1.00 0.92 0.96 0.97 1.00 0.99 0.98
BC’20 0.24 0.38 0.29 0.72 0.57 0.64 0.52

Table 3: EN-ES: Binary divergence classification with
gold parallel AMRs. Included are Precision (P), Recall
(R), and F1 for the Equivalent, Divergent, and All AMR
pairs for our pipeline algorithm compared to the system
by Briakou and Carpuat (2020), referenced as BC’20,
on the same English-Spanish parallel sentences.

2The Briakou and Carpuat (2020) system does not take
AMRs as input, so we use the corresponding sentences as
input for their system.

Results on Gold English-Spanish AMR Pairs.
In addition to testing our system on our English-
French AMR annotations, we test our system on
the 50 English-Spanish AMRs and sentences re-
leased by Migueles-Abraira et al. (2018), who col-
lected sentences from The Little Prince and altered
them to be more literal translations; recent work
classified these AMRs according to a structural
divergence schema (Wein and Schneider, 2021).

In Table 3, we measure the ability of our pipeline
system and the (Briakou and Carpuat, 2020) system
to detect semantic divergences at a stricter level, as
picked up by the AMR divergence schema.

Our system performs similarly well on Spanish-
English pairs as it did on the English-French pairs,
described in Table 2. This demonstrates that our
pipeline algorithm is not limited to success on only
one language pair, and we further affirm that the
simple pipeline algorithm is a reliable way to pre-
dict cross-lingual AMR divergence.

5 Strictness Results Using Automatic
English-French AMR Parses

In §4, we confirmed our hypothesis by demonstrat-
ing that we are able to use gold (human annotated)
AMRs to capture a finer-grained level of semantic
divergence, quantifiable via Smatch. We extend
this further by determining whether fine-grained
semantic divergences can be detected well even
when using noisy automatically parsed AMRs. To
do so, we compare the Smatch scores of automati-
cally parsed AMR pairs with the human judgments
output on the corresponding sentences by Briakou
and Carpuat (2020).

To take the expensive human annotation piece
out of the process, we show that automatic AMR
parses can be used instead of gold annotations by
establishing a threshold, instead of via binary clas-
sification. Therefore, we use the F1 score output by
our pipeline algorithm as a continuous score and es-
tablish thresholds (described later in this section) to
divide the data between divergent and equivalent.

We automatically parse cross-lingual AMRs for
the entirety of the English-French parallel RE-
FreSD dataset (1033 pairs). The REFreSD dataset
is parsed using the mbart-st version of SGL, a
state-of-the-art multilingual AMR parser (Procopio
et al., 2021). The (monolingual) Smatch score for
the SGL parser, comparing our gold AMRs with
the automatically parsed AMRs, is 0.41 for the
100 French sentences using Smatch (0.43 using our
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pipeline algorithm)3 and 0.52 for the 100 parallel
English sentences using Smatch.

In doing error analysis, we find that the data
points which are classified as having no meaning
divergence but have extremely low F1 scores are
largely suffering from parser error. We do find that
there are pairs classified in REFreSD as having no
meaning divergence at the sentence-level that do
correctly receive low F1 scores. For example, the
sentence pair in Figure 4, which has a REFreSD
annotation of sentence-level equivalence and a gold
AMR-level annotation of divergence, was assigned
an F1 score of 0.3469.

Despite Smatch scores of 0.5 between the gold
and automatic parses, both are usable for the task
of detecting finer-grained semantic equivalence.
To demonstrate the usefulness of our continuous
metric of semantic divergence using automatically
parsed AMR pairs, we develop potential thresholds
at which you could separate data as being equiva-
lent vs. divergent.

Because our metric is more sensitive, a prac-
titioner could choose their own threshold by de-
termining appropriate precision (how semantically
equivalent they wanted a subset of filtered data to
be) and recall (how much data they are willing
to filter out) needs. This tradeoff is depicted in
Figure 5. For example, if all pairs are marked as
equivalent, precision would be approximately 40%
on the REFreSD dataset if considering solely the
“no meaning divergence” pairs equivalent.
Comparing with model probabilities. Though
it is reasonable to assume that if the gold AMR
annotations provide a distinctly finer-grained mea-
sure of divergence than sentence-level divergence
then this would also be the case when using au-
tomatically parsed AMRs, we want to ensure the
continued strictness of our methodology. To do
this, we compare the values of our continuous met-
ric and the probabilities produced by the (Briakou
and Carpuat, 2020) system.

Because the probabilities produced by the sys-
tem described in (Briakou and Carpuat, 2020) are
always very close to 1 (equivalent) or very close
to 0 (divergent) and there are far more divergent
instances than equivalent instances, median and

3The SGL parser approaches cross-lingual parsing as the
task of recovering the AMR graph for the English translation
of the sentence, as defined in prior work (Damonte and Cohen,
2018). The result is that the parses of French sentences are
largely in English, and default to French concepts only for out-
of-vocabulary French words. The alignments in our pipeline
account for this to better reward the native French concepts.

Figure 5: Precision / recall curve for equivalence de-
tection in the 1033 sentence pairs in the full REFreSD
dataset (English-French) using automatic AMR parses.
Precision reflects the percent of sentences in which RE-
FreSD human annotation was equivalent (as labeled as
no meaning divergence in the blue/bottom curve, or
as labeled as having either no or some meaning diver-
gence in the red/top curve).

mode serve as a more effective form of comparison
than mean between our F1 score and their probabil-
ity score. Above the 0.7 threshold, the median F1
for our system is 0.7869 and mode is 0.8; the me-
dian probability for the Briakou and Carpuat (2020)
system is 0.9990 and the mode is 1.0. For the 0.6
threshold, our median is 0.6667 and our mode is
0.6667; their median is 0.9871 and mode is 1.0.
Above the 0.5 threshold, our median is 0.5814 and
our mode is 0.5; their median is 0.8907 and mode
is 1.0. Because these numbers are lower for our
system than their system, we confirm that our mea-
sure is a stricter measure of equivalence even when
using the automatically parsed AMRs.

If the goal is to prioritize items for a human to
look at on a fixed budget, the absolute scores may
matter less than rankings, though the rankings addi-
tionally differ drastically. Of the top 50 sentences
ranked by AMR divergence (which range in AMR
similarity score from 0.96 to 0.67), only 19 of the
50 appear in the 166 sentences scored 1.0 by the
Briakou and Carpuat (2020) system.

6 Sentence Similarity Evaluation with
Automatically Parsed English-Spanish
AMRs

As we have shown in previous sections, our
AMR-focused approach in general is stricter than
sentence-based measures of equivalence, in partic-
ular corpus filtering methods. Because our system
is a stricter measure of semantic equivalence, it
may be the case that our system can more precisely
identify the most similar sentences than existing
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measures of sentence similarity. In this final results
section, we look at the most semantically equiva-
lent sentences in the dataset (as judged by our ap-
proach and as judged by multilingual BERTscore
(mBERTscore; Zhang et al., 2020)) in comparison
to their human judgments of equivalence. Specif-
ically, we aim to investigate: (1) whether the av-
erage human similarity score for the most similar
n sentences is higher when ranked by our AMR-
based metric versus when ranked by mBERTscore,
and (2) whether human judgments of sentence sim-
ilarity for the most similar sentences are more
correlated with our AMR-based metric than with
mBERTscore (an embedding-based automatic eval-
uation metric of semantic textual similarity). We
compare our AMR-based metric to mBERTscore
because it has been shown to work well in cross-
lingual settings when comparing system output to
a reference (Koto et al., 2021). Semantic textual
similarity considers the question of semantic equiv-
alence slightly differently because it rewards se-
mantic overlap as opposed to equivalence.

Data. To perform this comparison, we use the
301 human annotated Spanish-English test sen-
tences from the news down of the SemEval task on
semantic textual similarity (Agirre et al., 2016).

6.1 Smatch with Cross-Lingual AMR parsing

For our analysis, we use the Translate-then-Parse
system (T+P; Uhrig et al., 2021). Providing the
Spanish sentences as input, T+P translates them
into English, and then runs an AMR parser4 on the
English translation. Because the Spanish sentence
was translated into English and then parsed, this
automatic parse can be compared against the auto-
matic parse of the original English sentence with
plain Smatch (no cross-lingual alignment added).

As we have established in §5, the noise intro-
duced by automatic parsers can be overcome in
our approach. We validate that the Smatch scores
retrieved after using Uhrig et al.’s (2021) parser
still bears some correlation with the Smatch scores
on the aligned gold AMRs.5

4Via amrlib: https://github.com/bjascob/amrlib
5On the 50 Spanish-English sentences mentioned in §4,

the correlation between the Smatch scores (in comparison to
the same gold AMRs) when using either the translation-then-
parse method or the method of aligning concepts via fast_align
is 0.31. This can be interpreted as a weak correlation. We
find that both methods (translating the sentence first, or our
pipeline algorithm aligning concepts in AMRs of different
languages) work sufficiently well to capture the amount of
divergence between cross-lingual AMR pairs.

Figure 6: All data points normalized to a range of 0 to
1 for the Spanish-English sentence pairs from Agirre
et al. (2016), including human judgment, AMR simi-
larity score, and mBERTscore. This displays the de-
creased range of mBERTscore judgments in compari-
son to human judgments and AMR similarity.

6.2 Sentence Similarity Results

The average human judgment score, on a scale of
0 to 5 with 5 being exactly equivalent, for all sen-
tence pairs which have an AMR similarity score
greater than 0.8 is 4.98. The average human judg-
ment score for all sentence pairs which have an
mBERTscore similarity score greater than 0.8 is
4.89. Similarly, the average human judgment score
for pairs with an AMR similarity score of greater
than 0.7 is 4.86, while the average human judgment
score for pairs with an mBERTscore greater than
0.7 is 3.8. This is because mBERTscore takes a
much broader view of semantic equivalence. While
the human judgments occupy the full range of 0
to 5, the mBERTscores of these sentences range
from 0.57 to 0.87, as shown in Figure 6. The AMR
similarity score ranges from 0.11 to 0.98.

This might suggest that then a higher threshold
should be used for mBERTscore to achieve the
same level of semantic granularity. However, our
AMR similarity metric is also more correlated with
human judgments for the most semantically equiv-
alent sentences. For the top 20 items as ranked
by AMR similarity, Pearson correlation with hu-
man judgments is 0.4068, while the top 20 items
as ranked by mBERTScore are not correlated with
human judgments (−0.0023). When looking at
all items above the mBERTscore of 0.8, corre-
lation with human judgment is 0.1645, whereas
for all items above the AMR similarity score of
0.8, correlation with human judgment is 0.2675.
Overall, AMR similarity score correlates with hu-
man judgment at a coefficient of 0.8367, which is
slightly lower than the 0.8605 correlation between
mBERTscore and human judgment. This evidence
further supports that our metric is in fact a finer-
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grained measure of semantic equivalence, and is
therefore better at identifying which sentences are
exactly semantically equivalent.

7 Conclusion

In this work, we have proposed a stricter measure
of semantic divergence than existing systems which
rely on perceived differences at the sentence level.
We have effectively demonstrated that parsing sen-
tences into Abstract Meaning Representations and
comparing those graphs facilitates a more detailed
semantic comparison, when using either gold or
automatically parsed AMR pairs.

We are excited by the numerous possible appli-
cations of this finer-grained measure of meaning
(mentioned in §1), both from an engineering stand-
point and the potential it has in translation and
language-learning environments to highlight spe-
cific differences in language pairs.

Limitations

As the first work exploring the use of AMR for
fine-grained semantic equivalence assessment, our
work faces a few limitations. First, our results were
limited to the language pairs we work with. In the
three languages pairs, we claim that our approach
is a more fine-grained measure of semantic equiv-
alence than existing approaches. Future work on
other language pairs would provide further insight
into its applicability to languages less syntactically
similar to English. Second, it may be worth con-
sidering the use of other semantic representations
in addition to AMR. Though our results confirm
that AMR captures many aspects of meaning that
are important to human judgments of cross-lingual
similarity, AMR does not capture all aspects of
semantics. Finally, our system is limited by the
performance of automatic AMR parsers. In §5, we
show that, despite Smatch scores of 0.5 between
the gold and automatic parses, both are usable for
the task of detecting finer-grained semantic equiv-
alence. Still, it is reasonable to expect that better
parsers would lead to better performance by our
system, and thus our results currently suffer due to
less-than-perfect performance.
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Abstract 

Word embeddings are widely used for diverse 

applications in natural language processing. 

Despite extensive research, it is unclear when 

they succeed or fail to capture human judge-

ments of semantic relatedness and similarity. 

In this study, we examine a range of models 

and experimental datasets1, showing that while 

current embeddings perform reasonably well 

overall, they are unable to account for human 

judgements of antonyms and polysemy. We 

suggest that word embeddings perform poorly 

in representing polysemy and antonymy be-

cause they do not consider the context in 

which humans make word similarity judge-

ments. In support of this, we further show that 

incorporating additional context into trans-

former embeddings using general corpora and 

lexical dictionaries significantly improves the 

fit with human judgments. Our results provide 

insight into two key inadequacies of word em-

beddings, and highlight the importance of in-

corporating word context into representations 

of word meaning when accounting for context-

free human similarity judgments. 

1 Introduction 

Lexical semantics seeks to provide a cognitive 

explanation of how word meaning is represented 

and how semantic relations such as hyponymy, 

antonymy and synonymy are encoded. Vector-

space models are one of the dominant approaches 

 
1 Our code and processed datasets are available at 

https://github.com/bmmlab/lexical-

semantics-eval 

to studying lexical semantics. In vector-space 

models, a word is associated with a vector of real 

numbers called a word embedding, which captures 

information about word co-occurrences in a doc-

ument or sentence. Each component of this vector 

corresponds to an abstract feature in an underlying 

vector space (Almeida and Xexéo, 2019; Lieto et 

al., 2017). The meaning of each word is thus rep-

resented by the direction of its word embedding in 

semantic space. (In this paper we use ‘word em-

beddings’ loosely, referring to any vector repre-

sentation of word meaning using real numbers). 

Word embedding methods are widely used in 

natural language processing, where they are uti-

lised by machine learning architectures that have 

achieved impressive performance on a range of 

applied language tasks (Devlin et al., 2019; Lenci, 

2018; Ranashinghe et al., 2019; Young et al., 

2018). Vector-space semantics models also have a 

natural synergy with neuroimaging techniques 

that measure patterns of voxel activities in re-

sponse to linguistic stimuli, thus providing an 

interface between lexical semantics and cognitive 

neuroscience (Rodrigues et al., 2018; Wang et al., 

2020). It is therefore of considerable interest to 

evaluate the performance of these methods in 

modelling word meanings. 

Vector-space approaches to semantics hypothe-

sise that many aspects of word meaning, including 

semantic relationships such as synonymy, anton-

ymy, hyponymy, and logical inference, can be 

efficiently represented by the relative direction of 

word embeddings in semantic space (Günther et 

al., 2019; Clark, 2015). One way to test this hy-

pothesis is to compare the similarity relations 
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between word embeddings with human judge-

ments of word similarity and relatedness (De 

Deyne et al., 2016; Lenci et al., 2021). A high 

correlation between the similarity structure of 

word embeddings and human similarity judge-

ments is evidence that the embeddings successful-

ly encode information about word meaning and 

semantic relationships between words. 

Existing literature evaluating word embeddings 

against human similarity judgments, however, has 

typically ignored the implicit context humans use 

to make these judgements. We hypothesise that 

this omission is an important factor contributing 

to the relatively poor performance of word em-

bedding models when evaluated against certain 

experimental datasets. 

In this study we focus on two specific semantic 

phenomena in which the effects of context are 

most likely to be apparent: antonymy and polyse-

my. In the case of antonymy, we hypothesise that 

humans judge the meaning of a word differently 

when it is presented in the context of a word op-

posite in meaning. Likewise, we hypothesise that 

humans assess the meaning of polysemous words 

differently than non-polysemous words due to the 

need to use contextual information to select the 

relevant sense. We therefore anticipate an investi-

gation into polysemy and antonymy will be im-

portant for understanding the limitations of word 

embeddings resulting from neglecting context. 

1.1 Vector-space semantics models 

Word embeddings can be constructed using a 

variety of techniques. Predict-based embeddings 

are constructed by training a neural network on a 

word prediction task, such as predicting the next 

word in a text (Baroni, Dinu, & Kruszewski, 

2014). Knowledge-based methods utilise human 

curated datasets of semantic relations such as 

WordNet (Pedersen et al., 2004). Transformers are 

the most recent class of models, which capture 

context-specific meaning using multilayered at-

tention neural networks trained on very large nat-

ural language corpora (Tripathy et al., 2021). 

Transformers can be used to compute word em-

beddings which are modified based on the specific 

usage of the word, and hence are of particular 

value in assessing the effects of word context. 

One of the most common methods for as-

sessing word embeddings is semantic similarity. 

Similarity is sometimes conceptualised as the 

degree to which two words are interchangeable 

(Miller and Charles, 1991). Another metric used 

in the evaluation of word embeddings is semantic 

relatedness. Relatedness refers to the degree to 

which the words share any type of semantic rela-

tion or psychological association (Gladkova et al., 

2016; Hadj Taieb et al., 2020). As an example, 

‘car’ and ‘van’ have high similarity and high relat-

edness, whereas ‘car’ and ‘wheel’ have lower 

similarity but still high relatedness. See Table 1 in 

Appendix A for a summary of major word similar-

ity and relatedness datasets. 

In most experimental studies, participants are 

asked to provide judgements about the similarity 

or relatedness of a set of word pairs, typically 

measured on an ordinal scale (Hill et al., 2015; 

Gerz et al., 2016). The averaged ratings are then 

compared to the cosine similarity of the corre-

sponding word embeddings using a correlation 

coefficient (Vulić, Ponti, et al., 2020). 

Numerous studies have followed this approach 

to investigate the relationship between human 

judgements and word embeddings, as summarised 

in Table 2 in Appendix A. These analyses have 

typically treated such judgements as non-

contextual since word pairs are presented in isola-

tion. However, we argue that this constitutes a 

failure to consider the implicit context provided 

by the second word in each word pair.  Several 

studies have found that presenting words within 

the context of a sentence affects the manner in 

which humans make semantic judgments 

(Armendariz et al., 2020; Haber and Poesio, 2021). 

For example, humans interpret the word ‘bank’ 

differently when presented in a sentence about 

aircraft compared to when presented in a sentence 

about money (Trott and Bergen, 2021). However, 

to our knowledge this effect of context on human 

judgements has not been investigated in experi-

mental datasets consisting solely of word pairs 

presented in the absence of additional context.  

As such, building on previous suggestions 

(Bloch‐Mullins, 2021) we hypothesise that when 

subjects are presented with two words absent 

further context, they assess the meaning of each 

word in the pair based on the implicit context of 

the other word in the pair. In the present study we 

investigate this hypothesis by evaluating the abil-

ity of word embeddings models to represent the 

meaning of antonym pairs and polysemous words. 

These were chosen as inherently relational seman-

tic phenomena where context is most likely to 

affect human similarity judgements. 
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1.2 Antonymy 

Antonyms are words that are ‘opposite in mean-

ing’. They provide a particular challenge for word 

similarity measures, since words like ‘happy’ and 

‘sad’ are similar in that they both describe basic 

emotions, however since they are roughly oppo-

site in meaning, they tend to be given low similar-

ity ratings by humans (Lenci, 2018). It has proven 

difficult to define precisely what is meant by ‘op-

posite meaning’, with different subtypes and vari-

ations of antonymy proposed for different con-

texts or word types (Kotzor, 2021). In this study, 

we use a broad definition of antonymy by identi-

fying verb pairs with varying degrees of con-

trasting or opposing meanings. 

There are also conflicting views about the rela-

tionship between antonymy and similarity. If simi-

larity is defined as the extent to which words are 

used in similar contexts, antonyms usually are 

identical in meaning except for the single dimen-

sion in which they have opposite values 

(Etcheverry and Wonsever, 2019). Conversely, if 

similarity is defined as the extent to which two 

words can be interchanged without loss of mean-

ing, then antonyms have very low similarity 

(Kliegr and Zamazal, 2018). In practise, vector-

space semantic models tend to give fairly high 

similarity ratings to both synonyms and antonyms 

(Nguyen et al., 2016), making it difficult to distin-

guish between these two relations in such models 

(Dou et al., 2018). 

Various methods have been proposed to im-

prove the representation of antonyms, including 

training a classifier over a set of word embeddings 

to distinguish antonyms from synonyms (Ali et al., 

2019; Etcheverry and Wonsever, 2019), combin-

ing thesaurus or other knowledge-based infor-

mation with word embeddings (Dou et al., 2018), 

and modifying standard word embeddings so that 

antonyms are maximally distant in similarity 

space (Nguyen et al., 2016; Samenko et al., 2020). 

However, if the goal is to construct a compre-

hensive representation of word meanings, merely 

being able to distinguish antonyms from syno-

nyms is insufficient. The fundamental difficulty 

appears to be that humans judge the similarity of 

antonyms differently than they judge other words, 

drawing upon background knowledge about the 

salient features for which antonyms have oppos-

ing values, and using the context provided by the 

presentation of words in a pair to judge the sali-

ence of these opposing features (Kotzor, 2021). 

The goal of the present study is to explore the role 

of context in more depth, investigating how anto-

nym representation in word embedding models 

differs from human judgements. 

1.3 Polysemy 

A word is polysemous when it has multiple dis-

tinct but related meanings. For example, the verb 

‘count’ can be used either to describe ‘calculating 

using numbers’ or ‘being included as part of a 

group’. Vector-space models typically do not di-

rectly incorporate polysemy, as the usual approach 

is to learn a single word embedding vector for 

each word (Boleda, 2020; Camacho-Collados and 

Pilehvar, 2018). A major difficulty in incorporat-

ing polysemy into vector-space models is that 

there is no established method for distinguishing 

or enumerating different senses for a given poly-

semous word (Emerson, 2020), or in determining 

how much different senses overlap (Boleda, 2020). 

WordNet provides one commonly-used set of 

senses, though these have been criticised as being 

too finely-grained and lacking any clear structure 

(Palmer et al., 2007).  

Polysemy also presents a problem for evaluat-

ing word embeddings, since humans may use the 

context of the second word in a pair to disambigu-

ate a polysemous word. For instance, when pre-

sented with the pair ‘bank’ and ‘river’, partici-

pants may interpret ‘bank’ as relating to a 

riverbank, while when presented with ‘bank’ and 

‘loan’, they are likely to interpret ‘bank’ as relat-

ing to a financial institution. This differs from 

word embeddings, which typically represent each 

word as a fixed vector regardless of which other 

word it is being compared to. As such, compari-

sons between human similarity judgements and 

word embedding similarities may be limited in 

accuracy by ignoring the contextual effects that 

affect human judgements. 

One potential solution is to replace static word 

embeddings with contextual word embeddings, 

where instead of being fixed for all uses, word 

embeddings are dynamically modified based on 

the context in which they occur (Ethayarajh, 2019; 

Ranashinghe et al., 2019). Contextual embeddings 

can be constructed by transformer-based architec-

tures, which have achieved impressive results at 

sense disambiguation and other investigations of 

word similarity (Garí Soler and Apidianaki, 2021). 

However, the highly flexible and contextual na-

ture of transformer embeddings makes it unclear 
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how exactly these contextual embeddings can be 

interpreted (Ethayarajh, 2019), and whether it 

even makes sense to analyse transformer embed-

dings from two different sentences as existing in 

the same semantic space (Mickus et al., 2019). 

Another problem is that contextual embeddings 

continuously vary in meaning across senses rather 

than forming discrete clusters, which differs from 

how polysemy is typically defined (Yenicelik et 

al., 2020).  

An approach adopted by previous studies is to 

use traditional dictionaries to specify different 

word senses, combining definitions or example 

sentences with transformers to produce contextu-

alised word embeddings for each sense (Ruzzetti 

et al., 2021; Tissier et al., 2017). The present study 

aims to build on previous research by using ex-

ample sentences taken from dictionaries to con-

struct word embeddings specialised for a particu-

lar context. We use these contextualised embed-

dings to investigate the extent to which polysemy 

reduces the ability of word embeddings to account 

for word similarity and relatedness datasets. 

2 Methods 

2.1 Analysis of word embeddings 

In line with previous work, datasets of similarity 

and relatedness judgements were used to evaluate 

word embeddings by computing the Spearman 

correlation coefficient between human judge-

ments and cosine similarities computed by word 

embedding models (Baroni et al., 2014). We used 

Spearman correlation as this is standard practise 

for evaluating ordinal human judgments of world 

similarity (Armendariz et al., 2020). See Table 3 

in Appendix A for a full description of the embed-

dings used in this study. 

Before computing correlations, the stimuli in 

the experimental datasets were pre-processed: 

• All capitalisation was removed for con-

sistency across datasets. 

• Proper nouns were removed, as these have 

different semantic properties to regular 

nouns (Boleda et al., 2017). 

• Word conjugations were altered to be in 

simple present infinitive form.  

• Spelling was standardised to US spelling. 

For the Tr9856 dataset, pre-processing re-

moved so many sentences (mostly due to the 

presence of many proper nouns) that the modified 

dataset was renamed to Tr1058 to reflect that this 

is a small subset of the original dataset. This is 

indicated in Figure 5 in Appendix A. 

For transformer models, decontextualised word 

embeddings were extracted by passing a single 

word to the transformer, averaging over multiple 

tokens when necessary. Contextualised transform-

er embeddings were computed using ERNIE as 

explained in Section 3.3. Embeddings were then 

normalised by dividing by the standard deviation 

in order to mitigate the problem of ‘rogue dimen-

sions’, whereby a small number of dimensions 

account for most of the variation (Timkey and van 

Schijndel, 2021). 

2.2 Verb antonymy 

To assess the way antonyms are represented by 

vector-space semantics models, we manually 

identified antonym and near-antonym word pairs 

in the verb datasets, and computed the Spearman 

correlation between the relevant dataset and word 

embedding cosine similarities, both with and 

without these antonym pairs. The purpose of this 

analysis was to determine whether antonyms are 

represented differently compared to other word 

pairs. Verb datasets were chosen for this task as it 

was observed that the main available noun da-

tasets contained relatively few pairs of antonyms. 

2.3 Verb polysemy 

To measure the effect of polysemy on semantic 

similarity judgements, contextual transformer 

embeddings were reduced to static embeddings 

using procedures developed previously 

(Bommasani et al., 2020; Soper and Koenig, 

2022). The key idea of this approach is to use a 

transformer to compute embeddings of the target 

word in a given sentence context, and then aver-

age over multiple sentences to produce a context-

sensitive static word embedding. By altering the 

sentences used to produce the contextual embed-

ding, the resulting static word embeddings can be 

tailored to particular senses of the target word.  

This method was applied using the ERNIE 

transformer, as it performed similarly to other 

leading transformer models while also being small 

and computationally tractable (see Section 3). We 

produced four distinct contextualised embeddings 

to test a variety of methods for incorporating con-

textual information relevant to polysemy. These 

four methods differ in the amount and quality of 

contextual information provided, as explained 

below and summarised in Table 4 of Appendix A. 
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Note that in order to disentangle the effects of 

antonymy from those of polysemy, subsequent 

analyses are performed on the verb datasets with 

antonyms removed. 

The ERNIE Wikipedia Basic embeddings were 

computed from a set of sample sentences, each 

containing the target word, from a custom Wik-

ipedia corpus of 10,000 articles. These were se-

lected using a Wikipedia list of key articles, in 

order to provide sentences covering a diverse 

range of topics while also keeping the corpus a 

manageable size. The text of each article was 

imported using a Wikipedia Python API, and then 

processed to remove image captions, tables, cita-

tions, and other metadata. The result was a corpus 

consisting of 2 million sentences. 

Word embeddings were then computed by find-

ing sentences containing each target word within 

the corpus, up to a maximum of 100 sentences per 

target word to avoid wasting computational time 

for very common words. To ensure a match, 

words in each sentence were lemmatised using the 

nltk WordNetLemmatizer (Loper and Bird, 2002). 

Contextualised embeddings were computed for 

each matching sentence using ERNIE, and the 

token embeddings of the target word averaged 

over all sample sentences for that word. A lemma-

tiser was used to automatically conjugate each 

word in the sentence as a noun or verb to match 

the target. In cases in which the target word corre-

sponded to more than one transformer token, the 

embeddings for each token were averaged. 

The ERNIE Wikipedia Verb embeddings were 

computed in the same way, except that words in 

the sample sentences were now always lemma-

tised as verbs, thus ensuring the sample sentences 

reflected cases when the target word was used as a 

verb. This provides a simple method for control-

ling for polysemy of words that are used as both 

nouns and as verbs. A similar approach was taken 

for nouns, though little gain in performance was 

observed (see Figure 5 in Appendix A), so subse-

quent analysis focused only on verb polysemy. 

The ERNIE Dictionary Word embeddings were 

calculated from sample sentences extracted for 

each target word from the Oxford Learner’s Dic-

tionary (Turnbull et al., 2010). It was hypothe-

sised that using sentences tailored to providing 

examples of usage for each word would provide 

better disambiguation of polysemy than a large 

collection of assorted Wikipedia sentences. In this 

case, example sentences were pooled together 

regardless of the sense they corresponded to. 

Finally, the ERNIE Dictionary Sense embed-

dings were constructed by manually separating 

example dictionary sentences into up to six differ-

ent senses for each target word. This was per-

formed by the authors, using the Oxford Learner’s 

Dictionary and Longman Dictionary of Contem-

porary English Online (Pearson, 2023) as guides. 

Senses that shared a common grouping or heading 

in these dictionaries were generally combined, as 

  

Figure 1: Spearman correlations between embedding models (rows) and verb subsets of experimental datasets 

(columns). An asterisk denotes exclusion of antonyms from the dataset. SimLexV indicates the SimLexVerb 

dataset, and likewise for MultiSimV. Average is weighted by dataset size. Note that ERNIE Dict embeddings 

were only computed for verb datasets with antonyms removed. 
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were instances where one sense is a subset of 

another. Rare senses containing few example sen-

tences were excluded to focus on more common 

uses. We anticipated that manual consolidation of 

senses would improve the resulting word embed-

dings by allowing sample sentences to combined 

from the Oxford, Longman, and Collins Online 

Dictionaries (Collins, 2023). 

Furthermore, while the previous methods pool 

all senses together, this approach produces em-

beddings for each individual sense. Such sense 

embeddings can be compared to the experimental 

datasets either by taking the average (mean) over 

all senses, or the maximum (max) similarity over 

all pairwise sense comparisons. We consider the 

maximum pairwise similarity because we hypoth-

esise that participants may be sensitive to the most 

similar senses of two target words. Both results 

are shown in Figure 1.  

3 Results 

3.1 Analysis of word embeddings 

To identify the best-performing embeddings to use 

in subsequent analysis, Spearman correlation co-

efficients between each word embedding model 

and the similarity ratings of all verb-based exper-

imental datasets were computed (Figure 1). For 

comparison, the results for noun datasets are given 

in Appendix A. For both nouns and verbs, Con-

ceptNet embeddings consistently show higher 

correlations with human judgements over almost 

all datasets. Transformers typically perform better 

than count- and predict-based embedding models, 

with GPT-2, ALBERT xxlarge, and ERNIE show-

ing the highest correlations. We also observed 

some clustering of models, with static and contex-

tualised embeddings being more similar to each 

other than to different types of models, as shown 

in Figures 5 and 6 in Appendix A.   

Given its superior performance, ConceptNet 

was chosen as the focus of subsequent analysis of 

antonyms, for which static embeddings are suffi-

cient. ERNIE was selected as a representative 

transformer for analysis of polysemy, as this re-

quired computing contextual embeddings which is 

not possible with ConceptNet.  

3.2 Verb antonymy 

Figure 2 shows scatterplots of ConceptNet cosine 

similarities against three verb-based datasets. The 

difference between the top and bottom rows of the 

subplots shows the effect of removing antonyms, 

which are seen to disproportionally cluster in the 

top left of the scatterplots. Removal of the anto-

nyms substantially improves the fit between ex-

perimental and word embedding similarities, in-

creasing the correlation on the SimVerb dataset 

from 0.572 to 0.675, from 0.533 to 0.706 on the 

SimLexVerb dataset, and from 0.665 to 0.750 on 

the MultiSimVerb dataset. This shows that hu-

mans represent the relations between antonyms 

very differently than do the ConceptNet embed-

 

Figure 2: Effects of removing antonyms (shown in orange) from the SimVerb (left), SimLexVerb (centre), and 

MultiSimVerb (right) datasets, with experimental similarity judgements on the plotted on the horizontal axis 

against ConceptNet cosine similarities (vertical axis). 
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dings. Similar results were observed for ERNIE 

embeddings, as shown in Figure 8 of Appendix A. 

3.3 Verb polysemy 

Figure 3 shows the results of incorporating con-

textual information from corpus and dictionary 

sources by reducing contextual ERNIE embed-

dings to static embeddings, as outlined in Section 

2.3. Relative to the layer 5 ERNIE base embed-

dings, Wikipedia Basic embeddings increase the 

correlation with human judgements in the 

SimVerb dataset by 5 percentage points, Wikipe-

dia Verb embeddings by 8, Dictionary Word em-

beddings by 12, and the Dictionary Sense max 

embeddings by 13 percentage points. 

We also examined the effect of transformer lay-

ers on the correlation with human judgements. 

Consistent with previous studies (Caucheteux et 

al., 2021; Timkey and van Schijndel, 2021), the 

best results are found around the middle layers of 

the transformer, indicating that later layers pro-

gressively incorporate relevant contextual infor-

 

Figure 3: Comparison of the increase in correlation with SimVerb dataset relative to the ERNIE base model for 

the Wikipedia Basic, Wikipedia Verb, and Dictionary Word, and Dictionary Sense max embeddings. Correla-

tions increase as more specific and fine-grained contextual information is added. 

  

   

   

Figure 4: Comparison of the Spearman correlations of the SimVerb dataset with ERNIE Base (top), ERNIE 

Wikipedia Verb (middle), and ERNIE Dictionary Sense max (bottom) embeddings, split by polysemy score. 
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mation, but only up to a certain point. Henceforth 

we discuss results from layer 5. 

To further investigate the effect of polysemy on 

the accuracy of word embeddings, SimVerb word 

pairs were grouped according to their total poly-

semy score, defined simply as the sum of the 

number of senses for both words in each pair. 

Senses were differentiated for each word during 

the construction of the ERNIE Dictionary Sense 

embeddings, as outlined in Section 2.3. As shown 

in Figure 4, and similarly to the results in Figure 3, 

the correlation with human ratings increases as 

more specific and fine-grained contextual infor-

mation is added, with Wikipedia Verb embeddings 

showing higher correlations than the base model, 

and Dictionary Sense embeddings showing higher 

correlations still. 

Furthermore, we found that correlations in-

crease most for highly polysemous word pairs. 

Relative to the uncontextualised ERNIE base, the 

ERNIE Dictionary Sense embeddings increase 

correlations by 0.25 for the least polysemous, 0.29 

for moderately polysemous, and 0.48 for the most 

polysemous word pairs. These results indicate that, 

while static word embeddings struggle to accu-

rately represent the meaning of highly polyse-

mous words, transformer models which incorpo-

rate contextual information perform much better. 

4 Discussion 

This paper has highlighted significant differ-

ences between the manner in which humans and 

word embedding models represent the meaning of 

antonyms. While it has long been known that 

word embeddings perform poorly in predicting 

antonym similarity judgements (Dou et al., 2018), 

we have shown the reason for this is that anto-

nyms are given consistently low similarity ratings 

by humans but moderate to high cosine similari-

ties by embedding models. This effect is con-

sistent across datasets and large in magnitude, 

reducing correlations by 0.10-0.15, even though 

antonym or near-antonym word pairs only ac-

count for about 10% of each dataset. 

Previous research has sought to rectify the low 

accuracy of word embedding models on antonyms 

by adding constraints to artificially pull antonyms 

further apart in semantic space (Mrkšić et al., 

2016, Biesialska et al., 2020). However, we argue 

that this may be inappropriate, because when hu-

mans make similarity judgments between words, 

they may not be performing an analogous task to 

computing the cosine similarity between the cor-

responding embeddings. If this is the case, then 

the failure of word embedding cosine similarities 

to match human similarity judgments for anto-

nyms should be interpreted as a limitation of the 

evaluation method, not a flaw of the word embed-

dings as a model of word meaning. 

Relatedly, it has been argued that antonyms 

should have cosine similarities close to the small-

est possible value of -1 (Samenko et al., 2020). In 

practise, however, negative cosine similarities 

occur mostly between unrelated words rather than 

antonyms, with small absolute values (up to 

around -0.1 for ConceptNet). This is likely be-

cause computing cosine similarity averages across 

all features whether salient or not, thereby compu-

ting ‘property overlap’ (Erk, 2016). Since anto-

nyms share most features in common, this results 

in a high cosine similarity. 

Why then do humans rate antonyms as having 

very low semantic similarity? One potential ex-

planation is that the salience of the semantic fea-

tures of a word varies depending on the context in 

which the word is used. This has been observed 

for human judgements of noun combination tasks 

(Bock and Clifton, 2000) and feature verification 

tasks (Montefinese et al., 2014). Such findings are 

consistent with our hypothesis that, when as-

sessing the similarity of two antonyms, humans 

judge the dimension of meaning in which the two 

words differ as the most salient, and hence rate 

overall semantic similarity as low. This would 

also explain earlier findings that humans rate an-

tonyms almost as similar as synonyms when 

asked to rate features separately, rather than 

providing an overall similarity score (Crutch et al., 

2012). 

These considerations highlight the need for a 

new method which enables more consistent and 

informative comparison between human similarity 

judgements and cosine similarities for antonyms. 

Unfortunately, in this study we were unable to 

develop such a method. We experimented with 

simple methods such as providing both words to 

the ERNIE transformer and extracting the contex-

tualised embeddings of each, but this yielded no 

useful results. Further improvements will likely 

require identifying which particular features are 

most salient for assessment of antonyms, in line 

with several previous studies (Ali et al., 2019; 

Nguyen et al., 2016). In addition, our brief treat-

ment of antonymy has not discussed important 
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issues such as adjectival antonyms or the effects 

of discourse context on negation (Kruszewski et 

al., 2016). We leave such considerations for future 

work. 

In this study we also found that polysemy sig-

nificantly reduces the accuracy of word embed-

dings in describing the similarity of verbs. The 

dramatic increase in the correlation of ERNIE 

embeddings with human judgements when con-

textual information was incorporated (see Figure 

4) is evidence that the quality of the embeddings 

is significantly impaired by the inability to proper-

ly distinguish different word senses. Our results 

are consistent with a strategy whereby humans 

assess the similarity of two words using an implic-

it context that maximises the aspects of meaning 

they share, ignoring any additional polysemous 

meanings. This would explain why providing 

ERNIE with additional information about context, 

like parts of speech and example sentences, im-

proves the correlation with human judgments. 

Our results also highlight the value of using 

contextual information from lexical dictionaries to 

augment contextual word embeddings. In particu-

lar, ERNIE Dictionary Sense max embeddings 

increase the correlation by about 5 percentage 

points for the full SimVerb dataset (excluding 

antonyms), and about 23 percentage points for the 

most polysemous word pairs. Similar increases in 

correlation were observed from the simpler auto-

mated method of aggregating all dictionary senses 

together, as used in the ERNIE Dictionary Word 

embeddings. We hypothesise that these improve-

ments arise because example dictionary sentences 

represent common uses of verb, which may reflect 

the way that humans judge word similarities when 

asked to judge two words without context. 

A different approach to control for the effects of 

polysemy used in several past studies is to ask 

participants to judge the similarity of words in the 

context of a specific sentence, thereby allowing 

for clearer sense disambiguation (Armendariz et 

al., 2020; Camacho-Collados and Pilehvar, 2018; 

Haber and Poesio, 2021). However, it is difficult 

to ensure that participants do not simply judge the 

overall similarity of the sentences, or conversely 

ignore the context and consider the target words in 

isolation. Furthermore, contextualised word em-

beddings are more difficult to interpret than static 

embeddings since they only apply to the word in a 

specific precise context. Given that a concept is 

typically defined as a mental representation that is 

reasonably invariant across contexts (Laurence 

and Margolis, 1999; Musz and Thompson-Schill, 

2018), highly context-specific word embeddings 

are arguably of less value as cognitive models of 

concepts. As such, we believe there is also value 

in incorporating contextual information to im-

prove static embeddings of polysemous words, as 

we have shown can be done by using example 

sentences from lexical dictionaries. 

In this paper we have focused on ERNIE em-

beddings, as they showed superior performance 

over competing models that are purely text-based. 

The performance of ConceptNet embeddings 

provide an additional baseline that also incorpo-

rates expert linguistic knowledge. The results 

corroborates previous studies which found that 

adding expert knowledge can improve the per-

formance of embeddings derived from word co-

occurrence statistics (Peters et al., 2019; Xu et al., 

2021; Zhang et al., 2020). Nevertheless, trans-

former models like ERNIE use much larger train-

ing corpuses and have more parameters than Con-

ceptNet (Devlin et al., 2019), so the fact that Con-

ceptNet still outperforms all transformer embed-

dings is a notable finding. However, we do not 

seek to determine the effect of specific architec-

tural choices or hyperparameters, as such analysis 

has been conducted in previous studies (Baroni et 

al., 2014; Lapesa and Evert, 2014; Liu et al., 

2021).  

5 Conclusion 

In this study we have highlighted the problems 

of ignoring the implicit context in which humans 

make word similarity judgements. Our results 

show that word meaning is judged in a context-

dependent manner which decontextualised word 

embeddings struggle to adequately capture. Future 

work focused on improving embeddings may 

require better datasets specifically focused on 

evaluating how humans rate the similarity of dif-

ferent forms of antonyms. Also important is im-

proving the representation of polysemy, which we 

have shown is possible by combining contextual-

ised embeddings with carefully collated data from 

dictionaries and other knowledge banks. Our 

analysis has primarily focused on verbs, and so 

further work focusing on nouns is also needed. 

Overall, much work remains to be done to en-

hance the ability of vector-space semantic models 

to describe a wide range of semantic phenomena. 
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A Additional Figures and Tables 

  

Models Tested WS353 SL999 MEN  MT287 MT771 RW SV Citation 

PMI model, Skip-
gram, GloVe .71 .43 .78 .69  .51  

Levy, Goldberg, et 
al. (2015)  

PMI model, CBOW 
.79 .43 .79 .78 .71   

De Deyne et al. 
(2016)  

Skip-gram  

 
.70 .34 .73 .66 .61 .40  

Chiu et al. (2016)  

Count-based, 
CBOW, GloVe, 
FastText 

.70 .40 .78     

Wijnholds and 
Sadrzadeh (2019)  

BERT, GPT-2, 
RoBERTa, XLNet, 
DistilBERT 

.72 .55     .45 

Bommasani et al. 
(2020) 

LSA, LDA, CBOW, 
skip-gram, GloVe, 
RI, FastText, BERT 

.71 .49 .79 .71  .48 .41 

Lenci et al. (2021) 

Table 2: Summary of previous analyses of word embedding models, showing the highest Spearman correlation 

recorded by each paper for each analysed dataset. WS: WordSim, SL: SimLex, MT: MTurk, RW: Stanford-

RW, SV: SimVerb. 

Model Name Number 

Word Pairs 

Part of 

Speech 

Data Type Citation 

RG65 65 Nouns Similarity Rubenstein and Goodenough (1965)  

WordSim-353 353 Nouns Relatedness Finkelstein et al. (2001)  

SimLex-999 999 Mixed Similarity Hill et al. (2015)  

YP-130 130 Verbs Similarity Yang and Powers (2006)  

Verb-143 143 Verbs Similarity Baker et al. (2014) 

Multi-SimLex 1,888 Mixed Similarity Vulić, Baker, et al. (2020)  

SimVerb-3500 3,500 Verbs Similarity Gerz et al. (2016)  

MEN 3,000 Nouns Relatedness Bruni et al. (2012)  

MTurk-287 287 Nouns Relatedness Radinsky et al. (2011)  

MTurk-771 771 Nouns Relatedness Halawi et al. (2012)  

Tr9856 9,856 Nouns Relatedness Levy, Dor, et al. (2015) 

SemEval-2017 500 Nouns Relatedness Camacho-Collados et al. (2017)  

Stanford-RW 2,034 Mixed Similarity Luong et al. (2013)  

Table 1: Summary of word similarity and relatedness experimental datasets. 
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Figure 6: Correlation matrices of all models computed over the vocabulary of the MEN noun dataset. 

 

Figure 5: Spearman correlations between embedding models (rows) and noun-based experimental datasets 

(columns). 
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Figure 8: Effects of removing antonyms (shown in orange) from the SimVerb (left), SimLexVerb (centre), and Mul-

tiSimVerb (right) datasets. 

  

Figure 7: Correlation matrices of all models computed over the vocabulary of the SimVerb verb dataset. 
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Model Name Type Explanation Citation 

CW vectors Count Regression model trained over Wikipedia 

corpus. 

Collobert et al. (2011) 

Dissect PPMI Count Trained using Positive Point-wise mutual 

information (PPMI) over ukWaC, Wikipedia, 

and the British National Corpus. 

Baroni et al. (2014) 

Word2Vec 

skipgram 
Predict Skipgram model trained over Wikipedia. 

Kutuzov et al. (2017) 

Gensim Wiki Predict Skipgram model trained over Wikipedia and 

Gigaword corpus. 

Kutuzov et al. (2017) 

Gensim BNC Predict Skipgram model trained over British National 

Corpus. 

Kutuzov et al. (2017) 

Genism CBoW Predict Continuous Bag of Words (CBoW) model 

trained over Gigaword corpus. 

Kutuzov et al. (2017) 

GloVe Predict Custom regression model trained over 840 

billion token corpus from the Common Crawl. 

Pennington et al. (2014) 

FastText Predict Skipgram model trained over Wikipedia and 

Gigaword corpus. 

Kutuzov et al. (2017) 

ELMo Predict A 94 million parameter bidirectional Long 

Short Term Memory (LSTM) trained over a 30 

million word corpus. 

Peters et al. (2018) 

ConceptNet Knowledge ConceptNet relations are encoded into vec-

tors by applying PPMI to the relation adja-

cency matrix, plus extra information from 

GloVe and word2vec. 

Speer et al. (2017) 

WordNet Knowledge WordNet relations encoded into vectors by 

counting number of intermediate nodes. 

Saedi et al. (2018) 

BERT large Transformer A 340 million parameter transformer model 

trained on a 3.3 billion token corpus from 

Wikipedia and BooksCorpus. 

Devlin et al. (2019) 

GPT2 large Transformer A 1.5 billion parameter transformer model 

trained on a web corpus of 8 million docu-

ments. 

Radford et al. (2019) 

ELECTRA large Transformer A 335 million parameter transformer model 

trained on a 33 billion token web corpus. 

Clark et al. (2020) 

ALBERT xxlarge Transformer A 233 million parameter transformer model 

trained based on BERT. 

Lan et al. (2020) 

SemBERT Transformer A 240 million parameter transformer model 

based on BERT and incorporating semantic 

role labelling. 

Zhang et al. (2020) 

ERNIE Transformer A 10 billion parameter transformer model 

trained on a corpus of plain text and 

knowledge graphs. 

Sun et al. (2021) 

Table 3: Summary of word embedding models used in this paper. 
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Model Name Explanation Specificity of Context 

ERNIE base No context provided. None 

ERNIE Wiki Basic Context provided from a corpus of Wikipedia articles, 

with words matched using automatic lemmatisation. 

Least 

ERNIE Wiki Verb Context provided from a corpus of Wikipedia articles, 

and only matching words conjugated as verbs. This 

should avoid matching cases where verbs as used as 

nouns. 

Less 

ERNIE Dictionary Word Context provided by example sentences extracted 

automatically from Oxford Online Dictionary. This 

should provide higher-quality and more relevant use 

cases representative of the words. 

More 

ERNIE Dictionary Sense Context provided by a curated set of example sen-

tences separated by sense from the Oxford, Longman, 

and Collins Online dictionaries. 

Most 

Table 4: Summary of ERNIE embeddings constructed in the paper, and with an indication of how fine-grained 

is the context incorporated into the embeddings. 
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Abstract

Taxonomies are an essential knowledge repre-
sentation, yet most studies on automatic tax-
onomy construction (ATC) resort to manual
evaluation to score proposed algorithms. We ar-
gue that automatic taxonomy evaluation (ATE)
is just as important as taxonomy construction.
We propose RaTE1, an automatic label-free tax-
onomy scoring procedure, which relies on a
large pre-trained language model. We apply
our evaluation procedure to three state-of-the-
art ATC algorithms with which we built seven
taxonomies from the Yelp domain, and show
that 1) RaTE correlates well with human judg-
ments and 2) artificially degrading a taxonomy
leads to decreasing RaTE score.

1 Introduction

A domain taxonomy is a tree-like structure that not
only aids in knowledge organization but also serves
an integral part of many knowledge-rich applica-
tions including web search, recommendation sys-
tems and decision making processes. Taxonomies
are also inevitably used as business and product
catalogs and for managing online sales. Notable
taxonomy products in this domain include Amazon
Category Taxonomy,2 Google Product Taxonomy,3

Yelp Business Category4 and Google Content Cat-
egories.5

Recent years have witnessed interest in new au-
tomatic taxonomy construction (ATC) systems, but
there are no systematic methods for objectively

1Our code repository is available at https://github.c
om/CestLucas/RaTE

2https://www.data4amazon.com/amazon-product-t
axonomy-development-mapping-services.html

3https://support.google.com/merchants/answer/
6324436?hl=en

4https://blog.yelp.com/businesses/yelp_catego
ry_list/

5https://cloud.google.com/natural-language/do
cs/categories?hl=fr

evaluating their figure of merit. For instance, Taxo-
Gen (Zhang et al., 2018) — see Section 3 — was
evaluated by asking at least three human evaluators
if a taxonomy concept pair contains a hypernymy
relationship, which can lead to bias and low repro-
ducibility. It is not only difficult to compare or
rank different algorithms, but changing the hyper-
parameters or settings of a parameterized ATC sys-
tem can also result in drastically different outputs,
and make optimization unfeasible.

Because ontologies and taxonomies in partic-
ular are typically created in contexts to address
specific problems or achieve specific goals, e.g.
classification, their evaluation is evidently context-
dependent, and many researchers actually believe
that a task-independent automatic evaluation re-
mains elusive (Porzel and Malaka, 2004). Still, re-
searchers have argued that objective evaluation met-
rics must be well available for significant progress
in the development and deployment of taxonomies
and ontologies (Brewster et al., 2004).

In this work, we propose RaTE, a Reproducible
procedure for Automatic Taxonomy Evaluation.
RaTE does not require external knowledge but
instead depends on masked language modelling
(MLM) to query a large language model for sub-
sumption relations. We show that with some care,
MLM is a valuable proxy to human judgments.

We apply RaTE to the Yelp corpus (a corpus of
restaurant reviews) ranking seven taxonomies we
extracted using three state-of-the-art ATC systems.
We observe it correlates well with our manual eval-
uation of those taxonomies, and also show that arti-
ficially degrading a taxonomy leads to a decrease
of score proportional to the level of noise injected.

In the remainder, we discuss related work in
Section 2. In Section 3, we describe the ATC sys-
tems we used for building up our taxonomies, and
their evaluation procedures. We then present RaTE
in Section 4 including refinements that we found
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necessary for our approach to work. We report in
Section 5 the experiments we conducted to demon-
strate the relevance of RaTE, and conclude in Sec-
tion 6.

2 Related Works

Systematic methods of evaluating ontologies and
taxonomies are lacking. Because agreed upon quan-
titative metrics are lacking, research on taxonomy
and ontology construction relies heavily on qualita-
tive descriptions and the various perspectives of on-
tology engineers, system users or domain experts,
which renders the results subjective and unrepro-
ducible (Gómez-Pérez, 1999; Guarino, 1998).

Brank et al. (2005) summarized four principle
ontology evaluation methods, by (1) comparing the
target ontology to a "gold standard" (ground-truth)
ontology (Maedche and Staab, 2002); (2) using the
target ontology in an application and evaluating the
application results ("application based") (Porzel
and Malaka, 2004); (3) conducting coverage analy-
sis comparing the target with a source of data (eg.,
a collection of documents) about a specific domain
("data driven") (Brewster et al., 2004); (4) manual
reviews done by human experts that assess how
well the target ontology meets a set of predefined
criteria, standards, and requirements (Lozano-Tello
and Gómez-Pérez, 2004).

Gold Standard Evaluation focusses on compar-
ing and measuring the similarity of the target tax-
onomy with an existing ground truth such as Word-
Net (Fellbaum, 1998), Wikidata and ResearchCyc
(Ponzetto and Strube, 2011). Semantic similarity
metrics have been proposed, including Wu-Palmer
(Wu and Palmer, 1994), Leacock-Chodorow (Lea-
cock and Chodorow, 1998) and Lin (Lin, 1998).
We include in this category specific measures such
as topic coherence (Newman et al., 2010) which
scores the quality of a word cluster which rely on
similarity measures. There are several issues with
such a process: mapping concepts from the out-
put system to the ground truth is not trivial and
gold standards do not necessarily cover well the
domains of interest.

Application-based Evaluation is an attractive
alternative to gold-standard evaluation. Porzel and
Malaka (2004) for instance proposed several possi-
ble applications for evaluation including concept-
pair relation classification. Brank et al. (2005) un-
derlines however that it is in fact hard to correlate

ontology quality with the application performance.

Data-driven Evaluation intends to select the on-
tology O with the best structural fit to a target cor-
pus C, which boils down into estimating P (C|O)
as in (Brewster et al., 2004). Practically however,
it remains unclear how to approximate such condi-
tional probability.

3 Automatic Taxonomy Extractors

In this work, we replicated results of three state-
of-the-art ATC systems that are publicly available
and that are producing quality results on selected
datasets and domains. In this section, we describe
those systems and discuss their corresponding eval-
uation methods.

3.1 TaxoGen
TaxoGen (Zhang et al., 2018) is an adaptive text
embedding and clustering algorithm leveraging var-
ious phrase-mining and clustering techniques in-
cluding AutoPhrase (Shang et al., 2018), caseO-
LAP (Liem et al., 2018) and spherical k-means
clustering (Banerjee et al., 2005). TaxoGen itera-
tively refines selected keywords and chooses cluster
representative terms based on two criteria: popular-
ity which prefers term-frequency in a cluster and
concentration which assumes that representative
terms should be more relevant to their belonging
clusters than their sibling clusters.

The system can be configured with several hyper-
parameters including the depth of the taxonomy,
the number of children per parent term and the
"representativeness" threshold. Experiments were
conducted on DBLP and SP (Signal Processing)
datasets and the system is quantitatively evaluated
with relation accuracy and term coherency mea-
sures assessed by human evaluators (10 doctoral
students).

3.2 CoRel
CoRel (Huang et al., 2020) takes advantages of
novel relation transferring and concept learning
techniques and uses hypernym-hyponym pairs pro-
vided in a seeded taxonomy to train a BERT (De-
vlin et al., 2019) relation classifier and expand
the seeded taxonomy horizontally (width expan-
sion) and vertically (depth expansion). Topical
clusters are generated using pre-computed BERT
embeddings and a discriminative embedding space
is learned, so that each concept is surrounded by
its representative terms.
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The clustering algorithms used by CoRel are
spectral co-clustering (Kluger et al., 2003) and
affinity propagation (Frey and Dueck, 2007), which
automatically computes the optimal number of
topic clusters. Compared to TaxoGen, CoRel does
not require depth and cluster number specifications
but a small seeding taxonomy as an input for en-
abling a weakly-supervised relation classifier.

CoRel is quantitatively evaluated with term co-
herency, relation F1 and sibling distinctiveness
judged by 5 computer science students on subsets
of DBLP and Yelp datasets. The system generates
outputs in the form of large hierarchical topic word
clusters.

3.3 HiExpan
HiExpan (Shen et al., 2018) is a hierarchical tree
expansion framework that aims to dynamically ex-
pand a seeded taxonomy horizontally (width expan-
sion) and vertically (depth expansion) and performs
entity linking with Microsoft’s Probase (Wu et al.,
2012) — a probabilistic framework used to harness
2.7 million concepts mined from 1.68 billion web
pages — to iteratively grow a seeded taxonomy. As
an entity is matched against a verified knowledge
base, we perceive the accuracy of terms and con-
cept relations to be higher than that of CoRel and
TaxoGen.

Authors of the HiExpan, as well as some vol-
unteers assessed the taxonomy parent-child pair
relations using ancestor- and edge-F1 scores.

3.4 Observations
Each of those taxonomy extractors face their own
set of advantages and drawbacks. TaxoGen is the
only parameterized systems in our experiments,
and is the only one that does not require a seeded
input for producing an output, which can be benefi-
cial when prior knowledge of the corpus is lacking.
It also generates alternative synonyms for each tax-
onomy topic, which increases the coverage and
improves concept mapping between taxonomies
and documents. However, it seems to depend on
the keyword extraction quality and it is unclear
how to determine the best hyper-parameter settings
owing to the lack of automatic evaluation methods.

CoRel uses the concept pairs provided in the
seed taxonomy for mining similar relations, but
this has become its Achilles’ heel because same-
sentence co-occurrence of valid parent-child topics
is rare in real-world data. As a result, CoRel may
fail to produce any output at all due to insufficient

training examples for the relation classifier. It is
also resource-intensive for making use of neural
networks for relation transferring and depth expan-
sion. Anecdotally, the output of CoRel may also
not be entirely exhaustive and deterministic.

For our experiments, HiExpan is perceived to
produce the most consistent taxonomies thanks to
the use of Probase for measuring topic similarities
and locating related concepts. However, the set-
expansion mechanism of HiExpan often ignores
topic granularity and adds hyponyms and hyper-
nyms found in similar contexts to the exact same
taxonomy level (hence most HiExpan taxonomies
are two-level only). It also cannot differentiate
word senses such as virus as in computer virus and
a viral disease.

4 RaTE

A critical part of taxonomy/ontology evaluation is
knowledge about subsumptions, e.g. "is fluores-
cence spectroscopy a type of fluorescence technol-
ogy?" or "is CRJ200 a Bombardier?".

Thus, RaTE measures the accuracy of the hyper-
nym relations present in a taxonomy we seek to
evaluate. The main difference between our work
and earlier ones is that we do not rely on human
judgments to determine the quality of a parent-
child pair, nor do we consider an external reference
(that often is not available or simply too shallow).
Instead, we rely on a large language model tasked
to check subsumption relations.

Ultimately, an optimized language model should
be able to generate an accurate list of the most
canonical hypernyms for a given domain, similar
to domain experts. But because we are mainly in-
terested in domain-specific taxonomies, there is
a high risk that specific terms of the domain are
not well recognized by the model, and therefore,
we investigate three methods for increasing the hit
rate of hypernymy prediction of taxonomy subjects
and reducing false negatives by (1) creating vari-
ous prompts, (2) fine-tuning MLMs with different
masking procedures, and (3) extending the model’s
vocabulary with concept names.

4.1 Core idea

We consider a taxonomy as a set of n parent-child
pairs from adjacent taxonomy levels linked by sin-
gle edges, denoted as (p, c) ∈ T . For each parent-
child pair (pi, ci), i ∈ 1, ..., n, we insert ci and the
"[MASK]" token into some prompts containing
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c Pred 1 Pred 2 Pred 3 Pred 4 Pred 5 Rank

Mussel fish (0.227) dish (0.144) seafood (0.140) meat (0.037) soup (0.033) 3
Clam fish (0.203) dish (0.095) seafood (0.076) crab (0.030) thing (0.027) 3
Lobster seafood (0.222) dish (0.145) lobster (0.131) food (0.052) sauce (0.052) 1
Chicken dish (0.167) meat (0.110) chicken (0.079) thing (0.058) sauce (0.052) 73
Beef meat (0.274) beef (0.161) dish (0.063) food (0.027) thing (0.024) 57

Table 1: Top-5 hypernym predictions made by a pre-trained BERT model (Bert-large-uncased-whole-word-masking)
by prompting it with “c is a type of [MASK]”. The rank of seafood in the list is indicated in the last column.

"is-a" patterns (Hearst, 1992), then use LMs to un-
mask p′1(ci), p

′
2(ci), ..., p

′
k(ci) ∈ p′(ci) per query

as proxy parent terms of ci, where k is a recall
threshold (we used k = 10 in this work). This
process is illustrated in Table 1.

A good pair of taxonomy concepts is therefore
if the parent concept pi can be found among the
machine predictions p′(ci). We consider a parent-
child relation positive if and only if the parent term
is recalled one or more6 times in the top k predic-
tions. This policy can obviously be adjusted, which
we leave as future work. The measure of quality of
T is then simply the percentage of (p, c) links in T
that are correct according this procedure. We note
that for a taxonomy with no parent-child pairs, i.e.
a single-level taxonomy, our evaluation score is 0.

seafood

mussel clam lobster chicken beef

Figure 1: Excerpt from HiExpan1 for topic "seafood"

As an illustration, the taxonomy in Figure 1
would receive a score of 3/5 based on the pre-
dictions made in Table 1 where for instance,
p′1(ci), p

′
2(ci), ..., p

′
5(ci) equal fish, dish, seafood,

meat, soup for ci = mussel, in which we find the
real taxonomy parent pi = seafood = p′3(ci).

We observe from Table 1 that not every predic-
tion is factually correct (e.g. mussels are neither
fish nor meat), and it remains evidently unreliable
to depend solely upon pre-trained language models
as ground-truth for all knowledge domains. Yet, we
argue that we can regard the rankings of MLM pre-
dictions as a likelihood of a subsumption relation
between the subject and the object of a query. In

6A parent word can be predicted multiple times in singular
and plural forms, misspellings, and so on, e.g. "dessert",
"desserts" and "desert".

our example, the model is significantly more likely
to predict “seafood” for mussel, clam and lobster
(rank 3,3,1) than for chicken and beef (rank 73,57).

4.2 Diversified Prompting

Models can produce all sorts of trivial predictions,
such as stop-words (e.g. "this is a kind of seafood"),
or expressions and collocations found frequently
in training samples (e.g. "seafood is a kind of
joke/disappointment").

Differences in prompts used can actively im-
pact a model’s performance in hypernymy retrieval
(Peng et al., 2022; Hanna and Mareček, 2021).
Hanna and Mareček (2021) reported that prompting
BERT for hypernyms can actually outperform other
unsupervised methods even in an unconstrained
scenario, but the effectiveness of it depends on the
actual queries. For example, they show that the
query “A(n) x is a [MASK]” outperformed “A(n)
x is a type of [MASK]” on the Battig dataset.

As a result, instead of relying on a single query,
we design five pattern groups (p1-p5) of hyper-
nymy tests for pooling unmasking results. Those
are illustrated in Table 2 for the parent-child pair
(seafood,shrimp).

While p2 to p4 follow standard Hearst-like
patterns (Hearst, 1992), p5a employs the “my
favourite is” prompt which has demonstrated high
P@1 and MRR in (Hanna and Mareček, 2021).
Patterns p1 have been created specifically for noun
phrases that have a tendency to be split and consid-
ered as good taxonomy edges by ATC systems.7

With this refined set of patterns, a topic pair has
therefore a score of 1, as in the seafood-shrimp
example, if the parent term is among the top-k
machine predictions for any inquiries containing
the child topic, and 0 vice versa. Again, more
elaborate decisions can be implemented.

7For instance, extractors tend to produce (salad,shrimp)
for the pair (salad,shrimp salad).
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Prompt Pred1 Pred2 Pred3 Pred4 Pred5 Rank
p1a {shrimp} [MASK] salad cocktail pasta soup rice 359
p1b [MASK] {shrimp} fried no garlic coconut fresh 117
p2a {shrimp} is a [MASK] joke must winner favorite hit 959
p2b {shrimp} is an [MASK] option issue experience art order 4407
p3a {shrimp} is a kind of [MASK] joke thing dish treat disappointment 146
p3b {shrimp} is a type of [MASK] dish thing food sauce seafood 5
p3c {shrimp} is an example of [MASK] that this shrimp food seafood 5
p4a [MASK] such as {shrimp} sides food seafood fish shrimp 3
p4b A [MASK] such as {shrimp} lot variety side combination protein 40
p4c An [MASK] such as {shrimp} ingredient item option order animal 197
p5a My favorite [MASK] is {shrimp} dish thing part item roll 16

Table 2: Evaluation queries for the parent-child pair (seafood,shrimp).

4.3 Fine-tuning the Language Model

To improve hypernymy predictions, we must also
address two issues with pre-trained language mod-
els: (1) the models are untrained on the evaluation
domain; (2) the default model tokenizer and vo-
cabulary are oblivious of some taxonomy topics,
resulting in lower recall.

Most research on MLM prompting only assessed
the performance of pre-trained models. Yet, Peng
et al. (2022) found an improvement when using
FinBert models (Yang et al., 2020) pre-trained with
massive financial corpora in retrieving financial hy-
pernyms such as equity and credit for “S&P 100
index is a/an __ index", compared to using BERT-
base. Also, Dai et al. (2021) generated ultra-fine
entity typing labels, e.g. “person, soldier, man,
criminal" for “he was confined at Dunkirk, escaped,
set sail for India" through inserting hypernym ex-
traction patterns and training LMs to predict such
patterns.

Analogously, we compared six fine-tuned mod-
els, investigating different masking protocols,
model vocabulary (see next section) and training
sizes. Because we want the language models to
concentrate on the taxonomy entities, particularly
the parent terms and their surrounding contexts, we
prioritize therefore masking the main topics (shown
in Table 3) and parent terms of the taxonomies to
evaluate, then other taxonomy entities (e.g. leaf
nodes), followed by AutoPhrase entities if no tax-
onomy entities are present in the sentence and other
random tokens from our training samples. In addi-
tion, we test entity masking by only masking one
taxonomy entity rather than 15% of sentence to-
kens to gain more sentence contexts. Our masking
procedures are illustrated in Figure 2.

4.4 Extended Vocabulary
Domain-specific words such as food items are typ-
ically not predicted as a whole word, but rather
as a sequence of subword units, such as appetizer
which is treated as ’app’, ’##eti’ and ’##zer’ by the
standard tokenizer. To avoid multi-unit words to be
overlooked by the language model, we propose to
extend its vocabulary.

R
ev

ie
w Everything was pretty good but the beef

in the mongolian beef was very chewy and
had a weird texture.

E
nt

iti
es

Taxonomy beef (CoRel1-4, HiExpan1)
mongolian (CoRel1-4)

AutoPhrase beef, chewy, mongolian
weird texture

Masking Policy

E
nt

ity

15% Everything was pretty good but the
[MASK] in the [MASK] [MASK]
was very chewy and had a weird
texture.

one Everything was pretty good but
the [MASK] in the mongolian
[MASK] was very chewy and had
a weird texture.

To
ke

ny

15% Everything was pretty [MASK] but
the beef in the mongolian beef
[MASK] very chewy and had a
[MASK] texture.

Figure 2: Comparison of masking strategies for a sample
Yelp review where taxonomy entities or those proposed
by AutoPhrase are underlined. We prioritize masking
the taxonomy entities, AutoPhrase entities and random
tokens, in that order.

We enrich the vocabulary of models m1 and m2,
by adding the lemmas (or singular forms) of par-
ent terms from Table 3 that were not previously
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included in the base tokenizer, such as “sushi", “ap-
petizer" and “carne asada", and resizing the models’
token embedding matrices to match the size of the
new tokenizer. The embedding representation of
new tokens were initialized randomly before fine-
tuning, although it is possible to assign them to the
representation of the closest terms in the original
vocabulary.

By adding only a small number of new tokens
to the model and tokenizer, we also ensure similar
model and tokenizer efficiencies. We believe that
vocabulary extension will become a necessary step
for effective hypernymy prediction in most special-
ized domains, though the exact optimal strategies
remain to be discussed.

5 Experiments

We conducted our experiments on the Yelp corpus
which contains around 1.08M restaurant reviews
such as the one in Figure 2 (top box). We used the
very same corpus prepared by Huang et al. (2020).8

5.1 Taxonomies
We created seven taxonomies for evaluation using
the ATC systems mentioned in Section 3. Here
our goal was to obtain meaningful taxonomies that
best cover the Yelp domain using each taxonomy
extractor. We did so by experimenting with differ-
ent extractor settings and input. For TaxoGen, we
only had to specify some parameters.9 For CoRel
and HiExpan however, we had to provide a seed
taxonomy. Hence we produced 5 such taxonomies
using CoRel and HiExpan by providing frequently-
appearing parent-child pairs in the seeds.10

Table 3 reports the main topics (level 1) of the
produced taxonomies. We observe that the output
of one ATC system varies substantially from one
parametrization to another. Also, it is noticeable
that the main topic of some taxonomies do lack
structure. For instance, putting beef and chicken
in the category meat would arguably make better
sense in CoRel1.

5.2 Models
We fined-tuned six language models according to
the different strategies we presented in Section 4

8Available at: https://drive.google.com/drive/fol
ders/13DQ0II9QFLDhDbbRcbQ-Ty9hcJETbHt9.

9We considered taxonomy depth, number of topics per
level, and “word filtering threshold”. See the github for the
specific values we used.

10They pretty much align with the one used by Huang et al.
(2020), although we proceeded by trial-error until satisfaction.

Taxonomy Top level (main) topics

CoRel1 steak, veggies, beef, cheese, crispy,
fish, rice, salad, shrimp, spicy, pork, bacon, burger,
appetizer, bread, dessert, seafood
CoRel2 bacon, bread, fries, roll, soup, burger,

dessert, salad, shrimp
CoRel3 chinese, seafood, dessert, steak
CoRel4 dinner, food, location, lunch, service
HiExpan1 seafood, salad, dessert, appetizer,

food, sushi, desert, pizza, coffee, bread, pasta,
beer, soup, wine, cheese, cocktail, taco, water,
music
TaxoGen1 main_dish, south_hills, high_cei-

lings, était_pas
TaxoGen2 chest, tempe, amaretto, pepper_jelly,

relies, travis, free_admission, exposed_brick

Table 3: Main targets of MLM evaluation.

and which characteristics are summarized in Ta-
ble 4. In particular, we experiment with entity mask-
ing while fine-tuning model m1a, m1b and m0b,
which emphasizes masking task-relevant tokens,
because it has been shown to be more effective
than random masking in (Sun et al., 2019; Kawin-
tiranon and Singh, 2021). All models have been
fine-tuned for 2 epochs by masking 15% tokens, to
the exception of m1b (marked with ⋆) for which
only one entity has been masked per example.

Model Finetuning Masking
name (base) Voc. Full 70% Ent. Tok

m1a (bert-base)
m1b (bert-base) ⋆
m2a (bert-base)
m2b (bert-base)

m0a (bert-base)
m0b (distilbert-base)

Table 4: Configurations of the fine-tuned models, with
models m0a and m0b serving as baselines for training
with the base tokenizer; m0b using a smaller pre-trained
model and less fine-tuning material. Column Voc. in-
dicates that main target words proposed ATC systems
were injected in the model’s vocabulary.

For comparison purposes, we also selected two
pre-trained models bert-large-uncased-whole-word-
masking and bert-base-uncased that we did not fine-
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Model Pred1 Pred2 Pred3 Pred4 Rank

m1a burger dish sandwich steak 4
m1b dish burger beer sandwich 10
m2a steak dish meat cut 1
m2b steak dish burger meat 1
m0a dish burger steak meat 3
m0b cut steak meat beef 2

B-l fruit flavor food color 69
B-b food drink color dessert 71

Table 5: Fine-tuned (top) vs. pre-trained (bottom) mod-
els’ top-4 predictions with the prompt “my favourite
[MASK] is sirloin ."

tune and that we named B-l and B-b respectively.
To highlight the qualitative differences between

our evaluation models, we provide a simple prompt
“my favourite [MASK] is sirloin" for the models to
predict the taxonomy hypernym "steak" in CoRel1.
The results are shown in Table 5, where 5 out of
6 fine-tuned models and none of the pre-trained
models correctly predicted the taxonomy parent in
the top 4 predictions. Further, all fine-tuned models
returned "steak" in the top ten predictions.

Lastly, we show the positive effects of extending
the vocabulary of the language model in Table 6
where we wish to recall the parent term “appetizer"
for the concept pair “appetizer-mozzarella sticks"
in CoRel1, where the token “appetizer" would be
split into ’app’, ’##eti’ and ’##zer’ by the stan-
dard tokenizer. Both models m1a and m1b trained
with entity masking and an expanded vocabulary
correctly predicted “appetizer" in their top five pre-
dictions; m2 models also recalled the term, albeit
with a very low rank whereas other models are
completely oblivious to it. Nevertheless, we find
that expanding the model’s vocabulary in conjunc-
tion with entity masking may introduce bias into
the models when fine-tuning with limited training
samples, i.e. over predicting the added tokens.

5.3 Ranking Results

5.3.1 Manual Ranking
The first author of this paper first manually ranked
the extracted taxonomies prior to experimenting
with RaTE. The main task was to manually verify
the validity of the parent-child pairs of each tax-
onomy, while also taking into account factors like
taxonomy structure.11

11All HiExpan1 and TaxoGen1&2 parent-child pairs were
manually examined, however due to the large size of the word

Model Pred1 Pred2 Pred3 Pred4 Rank

m1a sides foods food apps 5
m1b sides food appetizer foods 3
m2a sides items food dessert 6089
m2b things items foods props 3111

m0a sides extras items dessert N/A
m0e sides apps foods snacks N/A
B-l foods items products food N/A
B-b foods snacks food items N/A

Table 6: Top-4 predictions of models with extended
(top) or base (bottom) vocabulary for the prompt
“[MASK] such as mozzarella sticks".

HiExpan1 was deemed the best taxonomy, likely
because the word relations actually originate from
a verified database and the coverage is extensive. It
is also observably more accurate than CoRel 1-4,
which have similar (overall good) quality. TaxoGen
taxonomies were the least accurate, with TaxoGen1
superior to TaxoGen2. We found them trivial in the
sense that the algorithm selects many insignificant
topics because no seeded taxonomy indicating user
interest is provided. We believe that another cause
for this is the system’s low sensitivity to keywords
supplied by AutoPhrase, which on Yelp generates
too many irrelevant terms and leads to many noisy
concept pairs (e.g. “exposed brick – music video”).

In fact, manually ranking the HiExpan and Taxo-
Gen taxonomies was simple and obvious, but rank-
ing the CoRel taxonomies was more complex. Such
an assessment is delicate; after all, this was the prin-
cipal motivation of RaTE.

5.3.2 RaTE Ranking
Table 7 showcases the results of MLM taxonomy
relation accuracy evaluation, calculated by the num-
ber of positive relations over all unique parent-child
pairs in a taxonomy.12

The entity-masking models m1a and m1b pre-
dicted the most positive relationships in each can-
didate taxonomy while the pre-trained models pre-
dicted the fewest, which was expected. It is also
surprising that B-b outperforms B-l when it comes
to matching more positive concept pairs. Model
m2b (trained on two-thirds of the data) expectedly

clusters, we had to sample and evaluate concept pairs for
CoRel 1-4.

12We considered word inflections and certain special cases
to improve matching between taxonomy terms and machine
predictions, e.g. "veggies", "vegetable" and "vegetables";
"dessert" and "desert".
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Fine-tuned Models BERT Majority RaTE Manual
m1a m1b m2a m2b m0a m0b large base Voting ranking ranking

CoRel1 72.7 71.8 42.4 44.5 46.3 43.6 20.4 27.4 44.3 4 3
CoRel2 78.2 75.0 54.4 53.7 57.2 51.2 25.9 36.2 57.2 2 2
CoRel3 60.2 66.7 54.1 54.9 57.2 50.1 36.0 40.0 53.5 3 4
CoRel4 68.2 64.6 45.0 39.0 36.5 38.1 41.0 41.8 34.7 5 5
HiExpan1 84.5 84.7 59.5 56.7 56.9 64.3 34.9 42.0 59.0 1 1
TaxoGen1 13.5 14.7 5.5 6.1 1.2 2.5 3.1 3.7 1.2 6 6
TaxoGen2 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 7 7

Table 7: Relation accuracy scores evaluated by language models, calculated by the number of positive relations, or
parent terms in the model predictions, divided by the number of unique parent-child pairs in each taxonomy.

underperforms model m2a, but not drastically.
However, all models produce overall similar

score distributions, with the HiExpan taxonomy
receiving the highest scores and the TaxoGen tax-
onomies receiving the lowest. This is consistent
with our manual judgements in that the HiExpan
concept pairs were derived from an accurate re-
lation dataset (Probase), whereas TaxoGen1 and
TaxoGen2 contain mostly noise.

We also compute the majority voting scores for
each evaluation target using the six models of Ta-
ble 4: a concept pair of a taxonomy is positive if
and only if three or more models have successfully
predicted the parent word. The resulting ranking is
reported in the next column, and is shown to corre-
late well with our manual evaluation (last column).

5.4 Random noise Simulation

To further evaluate the good behaviour of RaTE,
we conducted an experiment where we degraded
the HiExpan1 taxonomy (the best one we tested).
We did this by randomly replacing a percentage
of concepts by others. Figure 3 shows that the
score (obtained with model m1a) roughly decreases
linearly with the level of noise introduced, which
is reassuring.

6 Discussion

We presented RaTE, a procedure aimed at automat-
ically evaluating a domain taxonomy without gold
standard references or human evaluations. It relies
on a large language model and an unmasking proce-
dure for producing annotations. We tested RaTE on
the Yelp corpus which gathers restaurant reviews,
and found that it correlated well with human judg-
ments, and (artificially) degrading a taxonomy led
to a score degradation proportional to the amount

Figure 3: Relation accuracy obtained with model m1a,
as a function of the percentage of noise introduced in
HiExpan1.

of noise injected. Still, we observed that the quality
of the language model predictions varies according
to the strategies used to fine-tune them.

There remains a number of avenues to investi-
gate. First, we have already identified a number
of decisions that could be revisited. In particular,
we must test RaTE on other domains, possibly con-
trolling variables such as the size of the fine-tuning
material or the frequency of terms. Second, RaTE
is an accuracy measure, and depending on the eval-
uation scenario, it should eventually be coupled
with a measure of recall. Last, an interesting av-
enue is to investigate whether RaTE can be used to
optimize the hyper-parameters of an ATC system.
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Abstract

The aim of the Universal Anaphora initiative
is to push forward the state of the art both in
anaphora (coreference) annotation and in the
evaluation of models for anaphora resolution.
The first release of the Universal Anaphora
Scorer (Yu et al., 2022b) supported the scoring
not only of identity anaphora as in the Refer-
ence Coreference Scorer (Pradhan et al., 2014)
but also of split antecedent anaphoric reference,
bridging references, and discourse deixis. That
scorer was used in the CODI-CRAC 2021/2022
Shared Tasks on Anaphora Resolution in Dia-
logues (Khosla et al., 2021; Yu et al., 2022a).
A modified version of the scorer supporting
discontinuous markables and the COREFUD
markup format was also used in the CRAC 2022
Shared Task on Multilingual Coreference Res-
olution (Žabokrtský et al., 2022). In this paper,
we introduce the second release of the scorer,
merging the two previous versions, which can
score reference with discontinuous markables
and zero anaphora resolution.

1 Introduction

The objective of the Universal Anaphora initia-
tive, or UA,1 is to coordinate efforts to push forward
the state of the art in anaphora and anaphora resolu-
tion beyond identity anaphora,2 and also covering
genres such as dialogue, exemplified by datasets
such as ARRAU (Poesio et al., 2018; Uryupina
et al., 2020), the CODI-CRAC 2021/2022 corpora
(Khosla et al., 2021; Yu et al., 2022a) and GUM

(Zeldes, 2017) for English, the Prague Dependency
1http://www.universalanaphora.org
2We use the term identity anaphora to refer to the subclass

of anaphora in which the anaphor refers to the same discourse
entity as the antecedent, also known in NLP as ‘coreference’.
E.g., in [Geraint Thomas]i’s Giro d’Italia challenge evapo-
rated on the steep slopes of Monte Lussari in north-east Italy.
[The Welsh rider]i was overtaken by his closest challenger,
Primoz Roglic. , the anaphor The Welsh rider refers to the
same entity as its antecedent, Geraint Thomas.

Treebank (its latest version in Hajič et al., 2020) for
Czech, and ANCORA for Catalan and Spanish (Re-
casens and Martı́, 2010). The initiative, modelled
on Universal Dependencies (UD),3 aims to achieve
this by expanding the aspects of anaphoric inter-
pretation which are or can be reliably annotated
in anaphoric corpora, producing unified standards
to annotate and encode these annotations, deliver-
ing datasets encoded according to these standards,
and developing methods for evaluating this type of
interpretation. The Universal Anaphora effort has
proceeded in close collaboration with the CORE-
FUD initiative (Nedoluzhko et al., 2021, 2022),
whose objective is to facilitate research on corefer-
ence and anaphora (possibly along with morphol-
ogy and dependency syntax) by converting corpora
in various languages to a unified markup format,
fully compatible with UD standards.

An essential prerequisite to make Universal
Anaphora-compatible corpora usable in NLP is the
availability of scorers that can evaluate the interpre-
tation produced by a system for, e.g., bridging ref-
erence (Clark, 1977; Hou et al., 2018; Hou, 2020;
Yu and Poesio, 2020; Kobayashi and Ng, 2021),
discourse deixis (Webber, 1991; Marasović et al.,
2017; Kolhatkar et al., 2018) or split-antecedent
anaphora (Eschenbach et al., 1989; Vala et al.,
2016; Zhou and Choi, 2018; Yu et al., 2020, 2021).
A first step in this direction was the introduction
of the Universal Anaphora scorer for anaphoric
interpretation (Yu et al., 2022b), the first scorer
able to evaluate system performance in all aspects
of anaphoric interpretation covered by the current
version of the Universal Anaphora proposal. This
scorer was used in the CODI-CRAC 2021/2022
Shared Tasks in Anaphora Resolution in Dialogue
(Khosla et al., 2021; Yu et al., 2022a) and a re-
vised version supporting COREFUD was used in

3https://universaldependencies.org/
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the CRAC 2022 Shared Task on Multilingual Coref-
erence (Žabokrtský et al., 2022).

In this paper, we introduce the second version
of the Universal Anaphora scorer. This release ad-
dresses two key limitations of the first release. The
first limitation is the restriction to contiguous men-
tions, not allowing discontinuous markables such
as [a tanker] .. [of orange juice] in (1.1), consist-
ing of two chunks of text separated from S’s utter-
ing yeah. Discontinuous markables are common
in spoken conversations, but are also used in the
CRAFT-CR 2019 biomedical corpus (Cohen et al.,
2017) and in corpora such as ARRAU to encode the
conjuncts in noun phrases with coordinated heads
such as the students and lecturers from Queen Mary
University, which result in the discontinuous mark-
ables [the students] [from Queen Mary University]
and [the][lecturers from Queen Mary University].

Example 1.1
M : ... [a tanker]
S : yeah
M : [of orange juice]

A second limitation of the UA scorer 1.0 is the
inability to score the resolution of zero anaphora
(unrealized arguments) as in (1.2), except in the
‘gold’ case in which the zero is explicitly marked
in the test set.

Example 1.2 (IT) [Giovanni]i è in ritardo, cosı̀
[∅]i mi ha chiesto se posso incontrar[lo]i al cin-
ema.
[EN] [John]i is late so [he]i asked me if I can meet
[him]i at the movies.

Zero anaphora is annotated in Arabic and Chinese
ONTONOTES, and in several of the datasets in the
COREFUD collection (Nedoluzhko et al., 2022).
In Arabic and Chinese ONTONOTES, zeros are
marked using an asterisk * to indicate the position
of the empty category in the training data and in
the test data in ‘gold’ mode, but not in the test data
in ’predicted’ mode, meaning that to evaluate this
second mode the scorer must be able to handle ‘in-
sertion’ of tokens, resulting in evaluation problems
(Aloraini et al., 2022).

The new version of the scorer presented in this
paper (i) incorporates the treatment of discontinu-
ous markables developed for the COREFUD scorer,
testing it also on the CRAFT-CR 2019 corpus; (ii)
introduces a novel treatment for the basic form of
zero anaphora; and (iii) supports both the CORE-
FUD and UA markup formats.

2 Universal Anaphora And CorefUD

Achievements of the Universal Anaphora initiative
so far include a first proposal concerning the range
of phenomena to be covered, as well as a survey
of the range of existing anaphoric annotations and
two proposals for markup formats extending the
CONLL-U format developed by Universal Depen-
dencies with mechanisms for marking up the range
of anaphoric information covered by UA.

2.1 Beyond Identity Anaphora

Most modern anaphoric annotation projects cover
basic identity anaphora. However, many other
types of identity anaphora exist, as well as other
types of anaphoric relations that are annotated in a
number of corpora (Novák et al., 2023).

In ONTONOTES, plural reference is only marked
when the antecedent is mentioned by a single noun
phrase. However, split-antecedent anaphors are
also possible (Eschenbach et al., 1989; Kamp and
Reyle, 1993). These are also cases of plural identity
coreference, but to sets composed of two or more
entities introduced by separate noun phrases, as in
[John]1 met [Mary]2. [He]1 greeted [her]2. Then
[they]1,2 went to the movies.

Discourse deixis (Webber, 1991; Kolhatkar
et al., 2018) is the term used to cover both event
anaphora, as in John met Mary. [It]1 happened at
3pm., as well as more general types of anaphoric
reference to abstract objects not introduced by nom-
inals, as in John told Mary he was at the office.
She didn’t believe [that]1 .. Event anaphora is an-
notated in ONTONOTES and in corpora such as
the multi-sentence AMR corpus (O’Gorman et al.,
2018). The full range of discourse deixis is anno-
tated in, e.g., ANCORA and ARRAU.

Possibly the most studied of non-identity
anaphora is bridging reference or associative
anaphora (Clark, 1977; Hawkins, 1978; Prince,
1981) as in John looked at the house. [The roof]
was thatched., where bridging reference / associa-
tive anaphora the roof refers to an object which is
related to / associated with, but not identical to, the
the house.

2.2 CONLL-UA

The markup format proposed in UA, called CONLL-
UA,4 is based on the CONLL-U-Plus tabular format

4https://github.com/UniversalAnaphora/
UniversalAnaphora/blob/main/documents/
UA_CONLL_U_Plus_proposal_v1.0.md
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proposed in Universal Dependencies for corpora
containing additional linguistic annotations.5 The
format specifies the following layers in addition to
those defined in UD:

• an Identity layer, specifying the entity a
markable refers to in the case of a referring
markable and, optionally, whether the mark-
able is referring or not, what its head is, and,
for split antecedents, the set they belong to;

• a Bridging layer, specifying the anchor, its
most recent mention, and, optionally, the as-
sociative relation;

• a Discourse Deixis layer, whose mark-
ables specify the non-nominal antecedents of
discourse deixis, represented exactly as in the
Identity layer. This makes it possible to
adopt for discourse deixis the same metrics
used for identity anaphora.

The CONLL-UA format was designed to provide
a way to specify anaphoric information indepen-
dent from other layers, but compatible with the
UD format. However, at present the UD parser
used to validate documents included in UD datasets
cannot process the CONLL-U-Plus format. Thus,
UA collaborated with COREFUD to design a more
‘compact’ format that could be used to pack the
anaphoric information representable in CONLL-UA

in the ‘Misc’ column of the CONLL-U format, and
is fully compatible with the Universal Dependen-
cies. We discuss COREFUD next.

2.3 The CorefUD format
The COREFUD initiative (Nedoluzhko et al., 2022)
was launched in parallel with UA to create a col-
lection of corpora annotated with coreferential
and other anaphoric relations using a harmonized
schema and format. Its current version CORE-
FUD 1.1 (Novák et al., 2023) consists of 17
datasets for 12 languages in its publicly available
edition.6

Whereas UA is primarily focused on anaphora,
COREFUD has another objective besides harmo-
nization of the coreference datasets, namely, to
intersect the world of coreference with the world of
syntax. This is achieved by augmenting the corefer-
ence data with morpho-syntax annotation compli-
ant with the UD standards, which has been obtained

5https://universaldependencies.org/ext-format.html
6In total, 21 datasets for 13 languages, including datasets

with non-public licences, e.g. ONTONOTES and ARRAU.

automatically for the datasets that do not contain
such manual annotation. This is motivated not only
pragmatically (popularity of UD and standards for
numerous technical issues), but it is also grounded
theoretically. For instance, entity mentions often
correspond to syntactically relevant notions (e.g.
noun phrase, subject), some coreference relations
are manifested mainly by syntactic means (e.g. re-
flexive and relative constructions), and zero expres-
sions (e.g. pro-drops) are vital for coreference in
many languages.

After developing a first format in COREFUD 0.1
(Nedoluzhko et al., 2021) independently from the
UA initiative7, a new format was jointly developed
and introduced with COREFUD 1.0 (Nedoluzhko
et al., 2022). This format can encode essentially
the same information as CONLL-UA, but this in-
formation is encoded in the Misc column, which
makes it possible to pass the official UD validation
at level 2 (passing the higher levels is not possible
with automatically predicted POS tags and depen-
dency relations).8 One remaining difference is that
COREFUD has been from its very beginning de-
signed to represent existing data in datasets includ-
ing dependency graphs. Thus, it can capture zero
expressions by stipulating ‘empty tokens’ and ref-
erencing them using enhanced dependency graphs,
whereas in CONLL-UA, which does not require de-
pendency layers, empty tokens are bound to the
surface tokens by their relative position.

The COREFUD collection is accompanied with
API implemented within the Udapi framework9

that facilitates manipulation with the data in CORE-
FUD format as well as its visualization.

3 The Universal Anaphora Scorer 1.0

The Universal Anaphora (UA) 1.0 scorer (Yu
et al., 2022b) is a Python scorer for the varieties
of anaphoric reference covered by the Universal
Anaphora guidelines: identity anaphora, split an-
tecedent plurals, identification of non-referring ex-
pressions, bridging reference, and discourse deixis.

For identify reference, the scorer builds on the
original Reference Coreference scorer 10 (Pradhan

7This format, which substantially differs from
the current format, is described in: https:
//ufal.mff.cuni.cz/˜popel/corefud-1.0/
corefud-1.0-format.pdf.

8https://universaldependencies.org/
validation-rules.html#levels-of-validity

9https://github.com/udapi/udapi-python
10https://github.com/conll/

reference-coreference-scorers
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et al., 2014) and its reimplementation in Python by
Moosavi,11 developed for the CRAC 2018 shared
task (Poesio et al., 2018). The Reference Corefer-
ence scorer, developed for use in the CONLL 2011
and 2012 shared tasks on the ONTONOTES cor-
pus (Pradhan et al., 2012), implemented the best
known metrics for identity anaphora (coreference):
MUC (Vilain et al., 1995), B3(Bagga and Baldwin,
1998), CEAF (Luo, 2005), and BLANC (Recasens
and Hovy, 2011). The Reference Coreference
scorer popularized scoring by using the average F1
value of MUC, B3 and CEAF, as originally proposed
by (Denis and Baldridge, 2009)–so much so that
this average, originally known as MELA, has since
become known as the CONLL metric. Moosavi’s
CRAC 2018 scorer, apart from being written in
Python, also implemented the LEA metric (Moosavi
and Strube, 2016) and provided a separate score
for the interpretation of non-referring expressions.

3.1 Identity Reference
In the CONLL-UA format, identity reference is
specified in the Identity column, which spec-
ifies the cluster id (EntityID), markable id
(MarkableID), the minimum span (Min) and
the semantic type (SemType) (non-referring types,
discourse new (dn) and discourse old (do)) of the
mention. Split-antecedent information is annotated
on the antecedents’s row using an ‘ElementOf’
attribute that specifies the cluster id of the split an-
tecedent plural anaphor. This is illustrated in the
following example:

(EntityID=10|\
MarkableID=markable_11|\
Min=5|\
SemType=do|\
ElementOf=23)

The UA 1.0 scorer computes all major metrics
for identity reference including MUC (Vilain et al.,
1995), B3 (Bagga and Baldwin, 1998), CEAF (Luo,
2005), CONLL (the unweighted average of MUC,
B3, and CEAF) (Pradhan et al., 2014), BLANC (Luo
et al., 2014; Recasens and Hovy, 2011), and LEA

(Moosavi and Strube, 2016) scores.
Three score-reporting options are available: The

first option mirrors the evaluation used in the
CONLL shared tasks (Pradhan et al., 2012) which
excludes singletons and split-antecedents from eval-
uation. The second option is the one used in
the identity anaphora sub-task of the CRAC 2018

11https://github.com/ns-moosavi/coval

shared task (Poesio et al., 2018). This evaluation
includes singletons, but not split-antecedents. Fi-
nally, the scorer can include both singletons and
split-antecedent anaphors; this is the format used
in CODI-CRAC 2021/2022 (Khosla et al., 2021;
Yu et al., 2022a). Clusters include both split-
antecedents and singletons. For split antecedents, a
generalization of the existing coreference metrics
was developed (Paun et al., 2023).

3.2 Split Antecedent Anaphora
The UA scorer implements a new method proposed
by Paun et al. (2023), for scoring split-antecedent
anaphora based on treating the antecedents of split-
antecedent anaphors as a new type of mention, ac-
commodated sets–set denoting entities which have
the split antecedents as elements.

3.3 Non-referring expressions
A key aspect of anaphoric interpretation is correctly
determining whether nominal phrases like mark-
able it in Example 3.1 are referring or not, and to
distinguish such noun phrases from singletons.
Example 3.1 [It] was late at night.
The semantic type (SemType) attribute is used
to specify the non-referring type in detail for cor-
pora such as ARRAU or CODI-CRAC 2021/2022 in
which such distinctions are made (e.g. predicate,
idiom). The new UA scorer follows the scorer de-
veloped for the CRAC 2018 shared task in that non-
referring expressions are not treated as singletons
in the evaluation of identity reference. Instead, non-
referring expressions are separated from identity
references when inputted to the scorer. More specif-
ically, the collection of non-referring expressions
in both the key and the response is identified and
the scorer computes an F1 score for non-referring
expressions only. The F1 score for non-referring
expression is reported separately from the F1 scores
for identity reference.

3.4 Discourse Deixis
The UA scorer supports the extension to discourse
deixis proposed in version 1.0 of the Universal
Anaphora specification of anaphoric phenomena
by implementing an entirely new approach to evalu-
ation of discourse deixis supporting the evaluation.
This new approach is enabled by the way discourse
deixis is encoded in the UA markup.

In the UA markup, discourse deixis is specified
in the Discourse deixis column of the ‘ex-
ploded’ format, and the same attributes are used as
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for the Identity column. The only difference is
that the cluster id (EntityID) and the markable
id (MarkableID) of the segments are highlighted
with a ‘-DD’ suffix and ‘dd ’ prefix respectively,
to avoid confusion in visual inspection.

This representation enables the application of
coreference metrics to evaluate discourse deixis.
Particularly given that our new scorer provides a
way to incorporate split-antecedents into the stan-
dard metrics, which therefore are discourse deixis-
ready. This is exactly how the UA scorer evaluates
discourse deixis: it computes the same MUC, B3,
CEAF, CONLL, BLANC and LEA metrics as for iden-
tity anaphora.

3.5 Bridging References
In UA format, bridging references are specified
in the Bridging column of the ‘exploded’ for-
mat. The attributes for bridging include the mark-
able ID (MarkableID), a mention of anchor en-
tity (MentionAnchor), the cluster id of the an-
tecedent (EntityAnchor) and the bridging rela-
tionship (Rel). For example:

(MarkableID=markable_9|\
Rel=subset-inv|\
MentionAnchor=markable_1|\
EntityAnchor=3)

For bridging references, the scorer reports three
scores: the two metrics computed by the scorer
used for CRAC 2018 shared task – mention-based
F1 and entity-based F1 – and, in addition, anaphora
recognition F1. Mention-based F1 for bridging
evaluates a system’s ability to predict the correct
anaphora and the mention of the anchor specified
in the annotation (this is usually the closest or most
suitable mention). Entity-based F1 is more relaxed
than mention-based F1, and does not require the
system to predict exactly the same mention as the
gold annotation. Finally, anaphora recognition F1
is used to assess the system’s ability to identify
bridging anaphors.

4 The CorefUD Scorer 1.0

CorefUD scorer 1.0 was used in the CRAC 2022
Shared Task on Multilingual Coreference Resolu-
tion (Žabokrtský et al., 2022). It is based on the
Universal Anaphora Scorer 1.0, reusing the imple-
mentations of all generally used coreferential mea-
sures without any modification. This guarantees
that the measures are computed in exactly the same
way. Nevertheless, CorefUD scorer is capable of

processing the coreference annotation files in the
CorefUD 1.0 format.

Among other things, it allows evaluation of
coreference for zeros. Nonetheless, its version 1.0
is not able to handle a response document whose
tokens are not completely identical to the tokens
in the key document. This holds also for empty
tokens, which virtually prevents the scorer to evalu-
ate response documents where the zero expressions
are automatically predicted.

Moreover, the CorefUD scorer re-defines match-
ing of key and response mentions in the way to be
able to process potentially discontinuous mentions,
which are present in some CorefUD datasets. In-
stead of comparing mention boundaries, matching
is based on set/subset relations between the tokens
of the mentions in question.

Last but not least, the CorefUD scorer intro-
duced two new scores. The MOR score mea-
sures to what extent key and response mentions
match, no matter to which coreference entity they
belong. The CorefUD scorer also implements the
anaphor-decomposable scoring schema introduced
by Tuggener (2014) and applies it to zeros. This
allows for measuring the quality of predicting any
of the antecedents of zero anaphors.

5 The UA Scorer 2.0

The UA scorer 2.0 merges the functions of the UA
scorer 1.0 and CorefUD scorer 1.0 to make them a
unified scorer. It also optimises/extends the scorer’s
ability on handling discontinuous markables and
zeros, e.g. the new scorer can handle zeros in the
predicted setting and can reproduce the CRAFT-CR

2019 shared task results. We introduce the details
of the implementations in the next subsections.

5.1 Discontinuous Markables

In CONLL-UA, discontinuous markables
can be used in both the Identity and
Discourse Deixis columns by sharing the
MarkableID between the different sub-spans of
a discontinuous markable. The scorer can then
recognise the discontinuous markables from the
text. For example, if a discontinuous markable
consists of two continuous spans, the two spans
will have the same Identity column, e.g. same
EntityID, MarkableID, Min and SemType.

COREFUD format does not assign IDs to mark-
ables. Each continuous part of a discontinuous
markable is thus labeled by its ordinal number
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and the total number of parts in square brackets
just after the cluster ID: Entity=(10[1/2] . . .
Entity=10[1/2]) . . . Entity=(10[2/2]
. . . Entity=10[2/2]).

Since coreference evaluation metrics are devel-
oped based on the assumption that mentions in the
key and response are aligned implicitly, the scorer
provides two mention alignment strategies during
the evaluation: ‘strict’ and ‘partial’. In a ‘strict’ set-
ting mentions are aligned only if all parts of the dis-
continuous markables are recognised correctly by
the system. In the ‘partial’ setting, mentions can be
aligned using a specified fuzzy matching algorithm.
To use the ‘partial’ matching, the Min/head span
for each mention needs to be specified in the key
files. The Min/head span is specified as the mini-
mum string that a coreference resolver must iden-
tify for the corresponding markable (either discon-
tinuous or continuous). Allowing ‘partial’ mention
alignment is especially useful for evaluating dis-
continuous mentions, given that it is more complex
to predict, and most of the current coreference sys-
tems cannot predict the discontinuous markables.

To be more specific, the scorer provides two al-
gorithms to align the mentions in ‘partial’ settings.
By default, a mention in the response is considered
a candidate for a gold mention if it contains the
MIN/head string and does not go beyond the anno-
tated maximum boundary. To align the mentions
in the key and response, we first align the men-
tions based on the exact matching to exclude them
from the partial matching step. Secondly, to align
the remaining mentions, we compute the recall (the
precision will always be 100% according to our def-
inition of partial matching) between all remaining
mention pairs between key and their corresponding
candidates in the response to create a recall matrix.
Finally, the recall matrix is used with the Kuhn-
Munkres algorithm (Kuhn, 1955; Munkres, 1957)
to find the best alignment between those mentions.
After the alignment between the mentions is found,
the coreference evaluation metrics can be used as
normal.

To facilitate the research in the biomedical do-
main we also provide an option to align the men-
tions using the same algorithm as in CRAFT-CR

2019 shared task (Baumgartner et al., 2019) The
CRAFT-CR 2019 corpus consists of biomedical
files with coreference relations (including discon-
tinuous markables) annotated. The algorithm used
to align mentions in CRAFT-CR 2019 shared task

considers a predicted mention correct if any contin-
uous span of the predicted mention overlaps with
and does not go beyond the first span of the key
mention. Their algorithm does not impose a one-
to-one alignment between mentions hence one key
mention might be aligned with multiple predicted
mentions and vice versa.

By default, if a corpus consists of discontinuous
markables the system will use the ‘strict’ setting to
evaluate them. The -p|--partial-match op-
tion can be used to enable the default partial match-
ing algorithm. To use the CRAFT-CR 2019 algo-
rithm, the --partial-match-method option
needs to be set to craft.

5.2 Zeros
In both ‘exploded’ and ‘compact’ format, zeros
are represented using the UD standard of empty
nodes, in which the first column (ID, word index) is
indicated using the decimal numbers. For instance,
if we have a zero anaphora right after a token whose
ID is 5, we index the zero with 5.1 instead of 6
used for a normal token. The scorer identifies the
zeros by the decimal indexing and has the option
to include zeros in the evaluation.

When zeros are included in the evaluation, again
we need to align them between the key and re-
sponse. Currently, the scorer performs the align-
ment based on the position of the zeros, i.e. zeros
are aligned if they are located in the same position
in the sentences. This is based on the assumption
that the position of the zeros is not random, and the
corpus which have zeros annotated has a consistent
guideline on where should the zeros be positioned.
We are also considering another approach that uses
dependency relations to align the zeros, in which
the position of zero does not need to follow a cer-
tain rule. However, due to the complication of this
approach, we are not able to include it in this re-
lease and are planning to make it available in the
next version of the scorer.

By default zeros are excluded in the evaluation,
to include them the -z|--keep-zeros options
can be specified.

5.3 Formats
The scorer supports three formats: CONLL 2012,
CONLL-UA (UA ‘exploded’) and COREFUD (UA

‘compact’). The CONLL-UA format is the default
format for the scorer that support all anaphora
relations assessed by the scorer e.g. singletons,
non-referring expressions, split-antecedents, bridg-
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ing reference and discourse deixis. The parser
of the COREFUD format supports identity rela-
tions including discontinuous markables and ze-
ros but does not support split-antecedents and non-
referring expressions. The CONLL 2012 format
only support continuous markables in the identity
relation.

5.4 Shared Tasks Support
As the number of shared tasks supported by the
scorer grows, the options also increase. To simplify
the usage of the scorer we provide shortcuts for all
coreference shared tasks supported by the scorer.
The -t|--shared-task option can be used to
specify the evaluation settings for the shared task
in question. In total, the scorer supports 7 different
settings used in 5 shared tasks:

• conll12: This evaluation mode is compat-
ible with the coreference evaluation of the
CONLL 2012 shared task in which only core-
ferring markables are evaluated.

• crac18: The evaluation method used in
CRAC 2018 shared task. In this evaluation
setting, coreference relations, singletons and
non-referring mentions are taken into account
for evaluation.

• craft19: This evaluation mode is used by
the CRAFT 2019 shared task, it includes
coreference relations, singletons and discon-
tinuous markables.

• crac22: The evaluation method used as the
primary metric by the CRAC 2022 shared task
on multilingual coreference resolution. The
evaluation applies partial matching and in-
cludes coreference relations, discontinuous
markables, and zeros but excludes singletons
and split-antecedents

• codicrac22ar: The evaluation method
used by the anaphora resolution track of the
CODI-CRAC 2021/2022 shared tasks. In
this mode, both coreferring markables, split-
antecedents and singletons are evaluated by
the specified evaluation metrics.

• codicrac22br: The evaluation method
used by the bridging resolution track of the
CODI-CRAC 2021/2022 shared tasks. In this
evaluation setting only bridging references
will be evaluated.

• codicrac22dd: The evaluation method
used by the discourse deixis track of the CODI-
CRAC 2021/2022 shared tasks. The discourse
deixis column is evaluated using the same
method as codicrac22ar.

6 Results

In this section we demonstrate the scorer in prac-
tice by using it to score the submissions to two
shared tasks that involved discontinous markables
and zeros, CRAC 2022 and CRAFT-CR 2019.

6.1 CRAC 2022 Shared Task
We tested the new UA scorer on the submissions
to the CRAC 2022 Shared Task on Multilingual
Coreference Resolution (Žabokrtský et al., 2022),
namely on the predictions of the winning setup of
the CorPipe system (Straka and Straková, 2022).

Table 1 shows the performance of the winning
submission evaluated on the shared task testset in
terms of F-scores of multiple standard coreferential
metrics macro-averaged over all datasets in the
testset. We compare the measured performance
to the scores calculated by the COREFUD scorer
1.0, the official scorer of the shared task, using
‘strict’ and ‘partial’ setting (denoted as exact and
partial matching, respectively, in the CRAC 2022
shared task). Apart from the standard scores, it also
compares the values of the anaphor-decomposable
score for zeros and the MOR score, calculating the
average overlap of key and response markables.

Firstly, note that all scores obtained with the
‘strict’ setting are significantly lower than those cal-
culated with the ‘partial’ setting. It results from ar-
tificial reduction of system mentions to their heads
done by the CorPipe system. They pursued this
strategy in order to perform better in terms of the
official metric, computed using partial matching.

Secondly, the comparison of pairs of correspond-
ing scores measured by the two scorers confirms
that the UA scorer implements processing of the
COREFUD format including discontinuous mark-
ables correctly, exemplified by the identical scores
with respect to the ‘strict’ setting. On the other
hand, it also shows that partial matching is treated
in a slightly different way, leading to consistently
lower scores measured by UA scorer. The reason
is that, unlike COREFUD scorer 1.0, the new UA

scorer imposes one-to-one alignment when match-
ing potentially overlapping markables.

Finally, the only mismatch for the ‘strict’ set-
ting occurs in the MOR score. The two scorers in
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Exact Partial
Metrics CorefUD UA CorefUD UA

MUC 34.20 34.20 74.18 73.98
B3 29.40 29.40 68.34 68.08

CEAFe 35.93 35.93 69.64 69.40
CEAFm 40.86 40.86 71.24 71.04
BLANC 28.39 28.39 64.86 64.35

LEA 22.68 22.68 65.02 64.78
CoNLL F1 33.18 33.18 70.72 70.49

Zero 60.42 60.42 83.65 83.15
MOR 45.37 26.76 45.37 44.75

Table 1: Comparison between the UA scorer and the
COREFUD scorer.

fact use different mapping between key and system
mentions. Whereas UA scorer uses the same map-
ping as for the other scores, which is based either
on exact or partial matching, COREFUD scorer
employs one-to-one mapping that maximizes the
number of overlapping tokens regardless of the
chosen matching. Two mentions that do not match
even partially may still overlap. Consequently, the
MOR scores outputted by COREFUD scorer are
the same for each of the matching type as well as
higher than those produced by the UA scorer.

6.2 CRAFT-CR 2019 Shared Task

Since the system outputs of the CRAFT-CR 2019
shared task are not publicly available, we have to
find the system outputs elsewhere. We obtained
the system output of the best-performing system
from Lu and Poesio (2021) to compare the evalua-
tion results between our scorer and the CRAFT-CR

2019 scorer12 in both ‘strict’ and ‘partial’ mention
matching settings.

Table 2 shows the comparison, as we can see
from the ‘strict’ evaluation setting our scorer has
the same results as their scorer. For the ‘partial’ set-
ting we find their original scorer produces slightly
different results if we run the scorer multiple times,
whereas our scorer always produces the same re-
sults. The difference between the two scorers is
within the range of the difference between two dif-
ferent runs of the original scorer. Hence we are
convinced that the new scorer follows the same al-
gorithm as the original scorer and can be used as a
replacement for the original scorer.

12https://github.com/bill-baumgartner/
reference-coreference-scorers

Strict Partial
Metrics CRAFT UA CRAFT UA

MUC 57.69 57.69 59.74 59.78
B3 45.43 45.43 48.03 48.02

CEAFe 39.89 39.89 42.89 42.89
CEAFm 51.26 51.26 53.19 53.20
BLANC 46.29 46.29 49.68 49.76

LEA 42.34 42.34 44.15 44.14
CoNLL F1 47.67 47.67 50.22 50.23

Table 2: The comparison between the UA scorer and the
CRAFT-CR 2019 scorer.

7 Conclusion and Future Work

The new version of the Universal Anaphora scorer
presented in this paper makes further progress to-
wards the goal of providing the community with
methods for evaluating systems carrying the full
range of anaphoric interpretation. This version
builds on the results of three separate shared tasks
and additional research that enabled the Universal
Anaphora community to test the scorer not only
for a variety of types of anaphoric interpretation,
but also for a range of genres covering dialogue
(Khosla et al., 2021; Yu et al., 2022a) and biomed-
ical text (Lu and Poesio, 2021), and for a vari-
ety of languages including Arabic (Aloraini et al.,
2022) and the 13 languages covered in COREFUD
(Žabokrtský et al., 2022). It revealed a number of
limitations with the previous version of the scorer
that needed addressing. We hope the community
will take advantage of the new scorer to broaden
the range of research on multilingual, multi-genre
anaphoric interpretation.
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Ana Marasović, Leo Born, Juri Opitz, and Anette
Frank. 2017. A mention-ranking model for ab-
stract anaphora resolution. In Proceedings of
the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 221–232,
Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Nafise S. Moosavi and Michael Strube. 2016. A
proposal for a link-based entity aware metric. In
Proc. of ACL, pages 632–642, Berlin.

James Munkres. 1957. Algorithms for the assign-
ment and transportation problems. Journal of the
society for industrial and applied mathematics,
5(1):32–38.

Anna Nedoluzhko, Michal Novák, Martin Popel,
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2023. Coreference in universal dependencies 1.1
(CorefUD 1.1). LINDAT/CLARIAH-CZ digi-
tal library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Tim O’Gorman, Michael Regan, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, and Martha Palmer.
2018. Amr beyond the sentence: the multi-
sentence amr corpus. In Proc. of COLING, pages
3693–3702, Santa Fe, New Mexico, USA. Asso-
ciation for Computational Linguistics.

Silviu Paun, Juntao Yu, Nafise Moosavi, and Mas-
simo Poesio. 2023. Scoring coreference chains
with split-antecedent anaphors and other entities
constructed from a discourse model. Dialogue
and Discourse.

Massimo Poesio, Yulia Grishina, Varada Kolhatkar,
Nafise Moosavi, Ina Roesiger, Adam Rous-
sel, Fabian Simonjetz, Alexandra Uma, Olga
Uryupina, Juntao Yu, and Heike Zinsmeister.
2018. Anaphora resolution with the ARRAU
corpus. In Proceedings of the First Workshop on
Computational Models of Reference, Anaphora
and Coreference, pages 11–22, New Orleans,
Louisiana. Association for Computational Lin-
guistics.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens,
Eduard Hovy, Vincent Ng, and Michael Strube.
2014. Scoring coreference partitions of predicted
mentions: A reference implementation. In Pro-
ceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers), pages 30–35, Baltimore, Mary-
land. Association for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen
Xue, Olga Uryupina, and Yuchen Zhang. 2012.
CoNLL-2012 shared task: Modeling multilin-
gual unrestricted coreference in OntoNotes. In
Proceedings of the Sixteenth Conference on Com-
putational Natural Language Learning (CoNLL
2012), Jeju, Korea.

Ellen F. Prince. 1981. Toward a taxonomy of given-
new information. In P. Cole, editor, Radical
Pragmatics, pages 223–256. Academic Press,
New York.

192



Marta Recasens and Ed Hovy. 2011. Blanc: Imple-
menting the rand index for coreference evalua-
tion. Natural Language Engineering.

Marta Recasens and M. Antònia Martı́. 2010.
AnCora-CO: Coreferentially annotated corpora
for Spanish and Catalan. Language Resources
and Evaluation, 44(4):315–345.

Milan Straka and Jana Straková. 2022. ÚFAL Cor-
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Abstract

Current symbolic semantic representations
proposed to capture the semantics of human
language have served well to give us insight
in how meaning is expressed. But they are
either too complicated for large-scale annota-
tion tasks or lack expressive power to play a
role in inference tasks. What I propose is
a meaning representation system that it is in-
terlingual, model-theoretic (by translation to
first-order logic), and variable-free. It divides
the labour involved in representing meaning
along three levels: concept, roles, and con-
texts. As natural languages are expressed as
sequences of phonemes or words, the meaning
representations that I propose are likewise se-
quential. However, the resulting meaning rep-
resentations can also be visualised as directed
acyclic graphs.

1 Introduction

There are many proposals for representing meaning
of natural language expressions in a formal way.
These originate from various disciplines, including
formal semantics (Thomason, 1974; Dowty et al.,
1981; Heim, 1982; Kamp, 1984; Groenendijk and
Stokhof, 1990; Chierchia, 1992), artificial intelli-
gence (Schubert, 1976; Sowa, 1984, 1995; Schu-
bert, 2015), and computational linguistics (Copes-
take et al., 2005; Banarescu et al., 2013; Abzian-
idze et al., 2017; Martı́nez Lorenzo et al., 2022).
Although most of these do a tremendous job in
analysing meaning, I think none of them offers a
meaning representation that is the ideal candidate
for large-scale annotation tasks in computational
semantics requiring supervised machine learning:
some of them lack expressive power, some of them
are only partially interpretable, some of them are
tailored to specific natural languages, and yet oth-
ers are featured with a complex syntax that makes
them unsuitable for human annotation tasks.

What nearly all of these semantic formalisms
have in common is that they all share the prop-
erty of using variables ranging over (first-order
or higher-order) entities. Representations without
variables have potential advantages and benefits
when we think of human annotation efforts, ma-
chine learning approaches, and meaning visuali-
sations techniques. Hence, the question I take at
heart is whether it is possible to eliminate variables
from formal meaning representations without los-
ing expressive power required to interpret linguistic
expressions.

The goal of this paper is to propose a meaning
representation that is a healthy mixture of interlin-
guality, simplicity, and expressiveness. With inter-
linguality I mean a meaning representation that is
not designed to support a single language. With
simplicity I mean a kind of semantic representation
that supports an intuitive way of drawing a graphi-
cal representation of the meaning that it is supposed
to represent. With expressiveness I mean at least
the expressive power of first-order logic (i.e., quan-
tification, negation, and conjunction) and support
for discourse phenomena such as co-reference and
discourse structure.

Current graph-based meaning representations
such as AMR, Abstract Meaning Representation
(Banarescu et al., 2013) lack expressive power. Cur-
rent logic-based meaning representations such as
DRS, Disourse Representation Structure (Kamp
and Reyle, 1993) are unattractive to represent
as graphs as they require substantial reification
(Abzianidze et al., 2020). What I propose is a
formalism that combines AMR with DRS while re-
moving notational redundancies such as variables
and punctuation symbols. It takes the attractive and
simple graph-based visualisation of AMR but adds
the “boxes” of DRS, arriving at a formalism that
includes negation and quantification as in predicate
logic. The formalism accommodates two ways

195



of represent meaning: the variable-free sequential
notation, and directed acyclic graphs. The variable-
free sequence notation is expected to be advanta-
geous for human annotation efforts and language
technology applications that require machine learn-
ing (e.g., applying neural networks for the tasks of
semantic parsing or natural language generation).
This is because it doesn’t require the process of
using variables nor explicit indication of scope for
logical operators like negation. The graph repre-
sentation is convenient for human readers and for
software designed to work with graphs.

2 Simplifying Meaning Representations

In this section I will present a new meaning repre-
sentation system. Using this formalism, annotation
can be done with a simple text editor. There are no
logical variables but there is still support for nega-
tion and scope. The primary encoding of meaning
is done in sequence notation. But the meanings
can be visualised as directed acyclic graphs. The
sequence notation can be applied to various mean-
ing representation formalisms including AMR and
DRS. In this paper I focus on the latter.

2.1 The Sequence Notation
I will introduce the sequence notation by first ex-
plaining what the elementary building block are.
Then I explain how sequences can be constructed,
visualised, and interpreted. The sequence notation
has the following ingredients (with examples in
brackets):

• Concepts (cat.n.01, see.v.03, . . . )

• Constants ("Mary", speaker, 20, π, . . . )

• Roles (Agent, Theme, Patient, . . . )

• Operators (=, 6=, ≈, <, ≤, ≺, . . . )

• Indices (. . . , -2, -1, +1, +2, . . . )

• Contexts

• Separators (NEGATION, CONJUNCTION,
EXPLANATION, NARRATION, . . . )

• Connectors (. . . , <2, <1, >1, . . . )

Concepts identify an entity or event as belonging
to a certain class within a domain ontology. Con-
cepts are always written in lower case and are rep-
resented as interlingual WordNet synsets as triplets
comprising of a lemma, part of speech (n, v, a, or
r) and a sense number, e.g., cat.n.01 represents
the first sense of the noun cat. I view a WordNet

synset as language-neutral, even though in this pa-
per I will use the synsets as defined in Princeton’s
American English WordNet 3.0 (Fellbaum, 1998)
because of its common use in the NLP commu-
nity. Adoption of a multi-lingual wordnet (Nav-
igli and Ponzetto, 2012; Bond and Foster, 2013)
would eventually be the target in a large-scale multi-
lingual implementation.

Constants comprise proper names (of people,
animals, organisations, locations, artifacts), numer-
ical values (integers and reals), times and dates,
literal mentions. They also include deictic refer-
ences: the speaker of the utterance (speaker),
the addressee (hearer), the utterance time (now)
and location (here).

Roles connect an event to an entity (or relate two
entities to each other). Roles always start with an
uppercase character followed by lowercase to dis-
tinguish them from concepts. The roles used in this
paper are by and large based on thematic role in-
ventory provided by VerbNet and LIRICS (Kipper
et al., 2008; Bonial et al., 2011). The connections
between events and entities are established with
indices (see § 3.3). The operators are used to ex-
press comparisons between entities and are written
in mathematical notation or with three uppercase
letters (EQU, NEQ, SIM, LES, LEQ, TPR, and so
on).

All concepts are introduced in a context. Con-
texts are not explicit in sequence notation. A sep-
arator introduces a new context connecting it to a
previously introduced context as indicated by its
connector (see § 3.4). Separators are always writ-
ten in all uppercase to distinguish them from roles
and concepts.

2.2 Forming Sequences

A role followed by a constant is an anchor. So,
Name "Mary" is an anchor. A role followed
by an index is a hook. Hence, Owner +1 is
a hook. A simple sequence is a sequence of
one or more concepts, where a concept can be
followed by zero or more anchors or hooks.
Therefore, dog.n.01 is a simple sequence, and
so are cat.n.01 dog.n.01, and cat.n.01
Owner +1 person.n.01 Name "Mary".
A simple sequence represents a single context. A
context is similar to a box in Discourse Representa-
tion Theory (Kamp and Reyle, 1993). They set the
stage for the entities that play a part of the context.

A complex sequence is formed by combining
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two (simple or complex) sequences using a sepa-
rator and connector. For instance, person.n.01
NEGATION <1 smile.v.01 Theme -1 is
a complex sequence, constructed from the sim-
ple sequences person.n.01 and smile.v.01
Theme -1 using the separator NEGATION and
connector <1 as glue. A complex sequence repre-
sents two or more contexts.

2.3 Graph Visualisation

A meaning in sequence notation can be visualised
as a directed acyclic graph, where the vertices
denote concepts, contexts or constants, and the
edges are decorated by roles or comparison
operators. Concept nodes are drawn as ovals
and context nodes as boxes. Figure 1 shows
how the sequence male.n.02 Name "Tom"
time.n.08 TPR now cry.v.02 Agent
-2 Time -1 is visusalised as a graph.

Figure 1: Graph for “Tom was crying.”

Although contexts are implicit in the sequence
notation, drawn as a graph the contexts become ex-
plicit as boxes. Each concept is related to a context
with a membership edge connected to its context,
as Figure 1 shows.

Note that the sequence notation corresponds to
a topological ordering of its graph. As a directed
acyclic graph can give rise to one or more topologic
orderings, the preferred ordering is one that resem-
bles the linguistic realisation. As a consequence, a
meaning-preserving translation from a sentence in
one language to another language could result in
a single meaning representation that would show
different orders in sequence notation for the two
languages. This is exemplified for a simple English
sentence (1) and its translation in Dutch (2) with a
different word order.

(1) a. (that) a boy bought a book.
b. boy.n.01 buy.v.01 Agent -1

Theme +1 book.n.02

(2) a. (dat) een jongen een boek kocht.
b. boy.n.01 book.n.01 buy.01

Agent -2 Theme -1

2.4 Role Inversion

A role connects two entities, but can only be
hooked to one. This could cause unwanted side-
effects such as cycles in the corresponding graph
(see previous section) or imperfect linguistic align-
ment (see next section). The mechanism of role
inversion, as introduced in description logics, AI
approaches of knowledge representation and AMR,
is therefore a useful one to have at one’s disposal
because of the added flexibility in creating mean-
ings.

Role inversion is defined as follows:
∀R∀x∀y(R(x,y) ↔ ←−

R (y,x)), where ←−R is the
inversion of R. In words: every role, a binary
relation, has a dual, and if you want to swap the
arguments of a role, you can do so using the dual
without changing the overall meaning. Following
the convention in AMR, I use the Of suffix to
indicate inverted roles. Consider (3) with an
inverted role and compare it to the earlier (1).

(3) a. A boy bought a book.
b. boy.n.01 buy.v.01 Agent -1

book.n.02 ThemeOf -1

Role inversion does not affect the truth-conditional
meaning, and for checking syntactic equivalence
of graphs inverted roles are normalised (Cai and
Knight, 2013). Role inversion gives us flexibility
in the sequence notation, which is useful in seman-
tic annotation tasks where linguistic alignment is
important.

2.5 Linguistic Alignment

For practical purposes (human annotation and veri-
fication and natural language processing technolo-
gies using machine learning) it is convenient to
get a close alignment between the meaning repre-
sentation and the natural language expression that
it forms the interpretation of. It is hard to align
meaning graphs with text, which is linear by na-
ture (Pourdamghani et al., 2014; Liu et al., 2018;
Anchiêta and Pardo, 2020; Blodgett and Schneider,
2021). I show how a reasonably fine-grained align-
ment can be provided using the sequence notation.
(Appendix B shows an elaborated example.)

Because the sequence notation is simply a suc-
cession of hooked or anchored concepts, possibly
divided by context separators, it gives us a lot of
freedom in the way it can be encoded. As most
writing systems in western cultures possess a left-
to-right direction, it is convenient to follow this
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convention when describing languages following
this direction, as I have done in the examples above.
However, for annotation purposes a top-to-bottom
organisation is handy and perhaps also the most
neutral seen from the perspective of the various
writing systems used for natural languages. It is
also used in computational linguistics to annotate
text with labels classifying word tokens in cate-
gories for tasks such as part-of-speech or named
entity tagging, known as the column-based format
(Buchholz and Marsi, 2006). Figure 2 gives us the
idea.

boy.n.01 % A boy
bought.v.01 Agent -1 Theme +3 % bought
quantity.n.01 2 QuantityOf +1 % two
box.n.03 MeasureOf +1 % boxes of
bonbon.n.01 % bonbons.

Figure 2: Aligning a sequence meaning with text.

Even though there is no one-to-one mapping
between words and elements of the meaning rep-
resentation, the alignment is reasonably executed,
with all concepts in line with a noun, adjective,
or verb. Prepositions, determiners, and particles
aren’t always directly alignable, and nor are dis-
continuous expressions. The alignment could be
further improved using the machinery introduced
by Blodgett and Schneider (2021).

2.6 Evaluation

Evaluation of meaning representation becomes im-
portant and interesting when one wants to compare
two meanings that are independently produced for
the same input. This could be a comparison be-
tween computer output and gold standard annota-
tion (curated by a semanticist), or a comparison
between two human-created meanings in order to
calculate inter-annotator agreement. A simple pro-
posal using existing software is put forward in Poel-
man et al. (2022) who convert sequential mean-
ings to PENMAN format (Kasper, 1989) and then
use SMATCH to compute overlap of triples (Cai
and Knight, 2013). Therefore no new machinery
is required to evaluate meanings in sequence no-
tation, and improved evaluation metrics such as
SEMBLEU can also be adopted easily (Song and
Gildea, 2019).

3 Interpreting Sequences

In the previous section I showed how sequential
meanings can be constructed. In this section I ex-

plain how they are interpreted. Appendix A illus-
trates how sequential meanings can be converted
to Discourse Representation Structures from DRT.

3.1 Concepts

A concept in a sequence has a dual purpose: it
(a) introduces an entity within its context, and (b)
classifies it to a particular concept. Hence, every
entity has a corresponding one-place predicate, a
“guard”, that classifies it within some background
knowledge ontology.1 Roughly speaking, a simple
sequence of concepts [[C1 . . . Cn]] corresponds to
the first-order formula ∃x1 . . .∃xn(C(x1). . .C(xn)).
In the terminology of Discourse Representation
Theory (Kamp and Reyle, 1993), a concept C that
is part of a context B introduces a fresh discourse
referent x in the domain of B and a basic condition
C(x) in the set of conditions of B.

3.2 Anchors

Anchors connect a concept in a meaning represen-
tation with an external entity. It can be seen as a
means of grounding or anchoring abstract units of
meaning with concrete entities present in the real
world. The denotation of an anchored concept is
defined as follows: [[C Rc]] = ∃x(C(x)∧R(x, c)).

3.3 Hooks

A hook connects (”hooks”) a concept to another
concept by a two-place relation. Recall that a hook
is always (a) attached to a concept and (b) ends with
an index. The indices replace the variables found
in traditional meaning representation, inspired by
work of Nicolaas Govert de Bruijn (1972). There
are negative and positive indices. As concepts are
strictly ordered in the sequential notation, we can
refer to a concept by refering to the relative position
the relation is situated: the index 0 refers to the cur-
rent concept, −1 to the concept introduced before
the current concept, −2 to the concept before that,
and so on. Negative indices refer to entities intro-
duced before, and positive indices refer to entities
that are available later in the sequence: +1 refers
to a concept that is introduced after the current in-
dex. This mechanism is crucial to understand how
hooks work, and bears also resemblance with how
co-reference is implemented in Lexical Functional

1This is reminiscent of guarded quantifiers (Andréka et al.,
1998), and it is equivalent to a many-sorted first-order logic,
where sorts, sometimes called types, denote subsets of the
domain. Instead of assigning a sort to a variable directly, I do
this by adding a one-place predicate (a concept).
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Grammar (Kaplan and Bresnan, 1982). The first-
order logic interpretation of a concept with hooks is
thus roughly defined as follows: [[C H1 · · ·Hn]] =
∃x(C(x) ∧H1(x, y1) ∧ · · · ∧Hn(x, yn)). Indices
without an antecedent concept correspond to free
variables in first-order logic.

3.4 Separators

A separator divides a sequential meaning represen-
tation into two contexts: the context before, and
the context after the separator. Hence, a sequen-
tial meaning representation with n separators has
exactly n + 1 contexts. There are various kinds
of separators. The type of separator tells us what
logical or rhetorical relationship exists between the
two contexts. A key application of separators is
the treatment of negation, disjunction and universal
quantification, but separators also find use in as-
signing discourse structure and rhetorical relations
in text.

A separator decorated with a connector <1
means that the separator connects two local con-
texts. A connector <2 means that the context fol-
lowing the separator is attached to an earlier in-
troduced context: not the previous context but the
one just before that. Newly introduced contexts
always connect to a previously introduced context.
A new context cannot be linked to more than one
context. Usually, a separator connects two adjacent
contexts. But it is possible that a separator connects
two contexts that are not adjacent. This happens
with wide-scope interpretations, presuppositional
accommodation, non-local discourse relations, and
disjunction.

4 Semantic Phenomena

4.1 Negation and Disjunction

Negation has impact on the structure of mean-
ing: it doesn’t introduce a new conceptual en-
tity or hook, but rather packages the information
in what is asserted as positive information and
what is negative. In sequence notation, nega-
tion introduces the separator NEGATION, stat-
ing that the negated information following the
separator is attached to the context just before
the separator (Figure 3). Its first-order equiva-
lent is ∃x(person.n.01(x) ∧¬∃y∃z(book.n.02(z) ∧
buy.v.01(y) ∧ Agent(y,x) ∧ Theme(y,z))). In DRT
parlance, the corresponding DRS would have a
nested box with a unary negation operator (see Fig-
ure 9 in Appendix A).

person.n.01 % Somebody
NEGATION <1 %

buy.v.01 Agent -1 Theme +1 % bought
book.n.02 % no book.

Figure 3: Graph for “Somebody bought no book.”

Another example with negation is given in Fig-
ure 4, displaying a sequential meaning with three
contexts, where the contextual index <2 ensures
that the second negation is correctly attached to the
main context, rather than the first negated context.

female.n.02 % She
NEGATION <1 % is neither

rich.a.01 AttributeOf -1 % rich
NEGATION <2 % nor

famous.a.01 AttributeOf -2 % famous.

Figure 4: Graph for “She is neither rich nor famous”.

Disjunction is represented in sequential mean-
ings using the equivalence (p1 ∨ p2 ∨ ... ∨ pn) ≡
¬(¬p1 ∧¬p2 ∧ ...∧¬pn). This representation has
the advantage that no new separators are required,
and that there is no limit to the number of disjuncts,
as shown in Figure 5.

person.n.01 EQU speaker % I
NEGATION <1 %
NEGATION <1 %
bake.v.02 Agent -1 Patient +1 % bake
bread.n.01 % bread,
NEGATION <2 %
listen.v.01 Agent -3 Theme +1 % listen
music.n.01 % to music,
NEGATION <3 % or
read.v.01 Agent -5 Source +1 % read comic
comic-book.n.01 % books.

Figure 5: Graph exemplifying disjunction.
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4.2 Universal Quantification

Universal quantification is encoded in sequential
meanings by making use of the logical equivalence
∀x(P (x) → Q(x)) ≡ ¬∃x(P (x) ∧ ¬Q(x)).
For instance, the sentence “Everyone smoked.”
is analysed as: it is not the case that there is a
person that is not smoking. In sequence notation
this would be NEGATION <1 person.n.01
NEGATION <1 smoke.v.01 Agent -1.
The reason to use nested negation rather than a
conditional is because this way there is no need to
add two new separator relations—that would need
to be coordinated as well, because unlike negation,
a unary operator, implication and disjunction are
binary operators—to the vocabulary.

Universal quantifiers in object position pose a
challenge to meaning-text alignment in the se-
quence notation because of the scope they take
over the transitive verb. An example is given in
Figure 6, where the CONJUNCTION separator per-
forms a merge of semantic information akin to
merging of Discourse Representation Structures
(Zeevat, 1991). This representational technique
effectively gives the object wider scope, and is sim-
ilar to presuppositional accommodation (Van der
Sandt, 1992).

female.n.02 % She
NEGATION <1
NEGATION <1

buy.v.01 Agent -1 Theme +1 % bought
CONJUNCTION <2 % every

book.n.02 % book.

Figure 6: Graph displaying universal quantification.

4.3 Discourse Relations

Rhetorical relations are also encoded in sequential
meanings by separators. Here I adopt the inven-
tory of discourse relations as proposed in SDRT
(Asher, 1993). Figure 7 shows an example where
the rhetorical relation EXPLANATION connects
two contexts. In sequential meanings discourse
relations are always between single contexts. In
SDRT, however, this is not necessarily the case
because of the recursive nature of the segmented
discourse representation structures. Yet sequen-
tial meanings can still capture rhetorical structure
(Figure 8).

person.n.01 % Someone
smile.v.01 % smiles.
EXPLANATION <1 %

male.n.01 EQU -2 % He
happy.a.01 Experiencer -1 % is happy.

Figure 7: Graph visualisation for a short text.

As Asher and Lascarides (2003) have shown,
anaphoric reference to compound discourse units is
possible. The sequence notation would require ad-
ditional machinery to catch this phenomenon. This
could be something like a summation operation
similar to handling split antecedents of plural pro-
nouns in Discourse Representation Theory (Kamp
and Reyle, 1993). This is probably also needed to
cover the CONTRAST and PARALLEL discourse
relations of SDRT.

person.n.01 Name "Max" % Max
have.v.01 Pivot -1 Theme +2 % had
lovely.a.01 AttributeOf +1 % a lovely
evening.n.01 % evening.

ELABORATION <1
male.n.02 EQU -4 % He
have.v.01 Pivot -1 Theme +2 % had
great.a.01 AtttributeOf +1 % a great
meal.n.01 % meal.

ELABORATION <1
male.n.02 EQU -4 % He
eat.v.01 Agent -1 Patient +1 % ate
salmon.n.01 % salmon.

NARRATION <1
male.n.02 EQU -3 % He de-
devour.v.01 Agent -1 Patient +2 % voured
quantity.n.01 EQU + % lots of
cheese.n.01 Quantity -1 % cheese.

NARRATION <3
male.n.02 EU -11 % He
win.v.01 Agent -1 Theme +2 % won
dancing.n.01 % a dancing
competition.n.01 Theme -1 % competition.

Figure 8: Sequential meaning for Asher and Lascarides
(2003)’s celebrated example.

In SDRT, a NARRATION of a discourse unit U′′

of U′, where U′ is an ELABORATION of U, would
automatically invoke an ELABORATION relation
of U′′ to U, given the way SDRSs are constructed.
This is not the case in sequence notation for the
reason mentioned above. To capture such indirect
discourse relations, some background inference
rules would be needed.
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5 Related Formalisms

The development of the sequence notation found
inspiration from a wide spectrum of semantic rep-
resentation systems, ranging from the classic se-
mantic networks, Discourse Representation Theory,
and Abstract Meaning Representations. In this sec-
tion we will discuss how they are related: what do
they have in common and how do they differ?

5.1 Semantic Networks

Semantic networks were introduced in the early
1970s to represent meaning (Simmons, 1973). Typ-
ically in these networks, a distinction is made be-
tween entity types and tokens (for instance, “a dog”
would introduce two nodes in the network, one de-
scribing the set of dogs, and the other a particular
member of that set, whereas in AMR just one node
would be introduced in the semantic graph). The
need for a richer network formalism was already
recognised back then by Gary Hendrix, to cover lin-
guistic phenomena such as universal quantification,
hypothethical and imaginary situations. Hendrix
(1975) introduced a method for partioning a se-
mantic network into spaces. His use of spaces in
semantic nets is strongly reminiscent to the way
we employ contexts in the sequence notation, and
is also similar to the Scoped Semantic Networks
proposed by Power (1999).

A yet even more elaborative proposal was made
around the same time by Len Schubert, who ex-
tended the expressive power of semantic nets
with negation, disjunction and lambda expressions
(Schubert, 1976). The resulting networks became
rather cumbersome, and even Schubert himself re-
marks “I hasten to add that I am not urging univer-
sal adoption of this notation.” These bunglesome
additions might have been the reason why the ex-
tended networks never became mainstream in later
years of AI and NLP, with the exception of the
Conceptual Graphs proposed by Sowa (1984).

5.2 Discourse Representation Structures

One of the most elaborated semantic formalisms is
probably Discourse Representation Theory (Kamp,
1984). Proposed in the early 1980s, it has seen
many improvements, extensions, modifications,
and reincarnations (Klein, 1987; Roberts, 1989;
Zeevat, 1991; Van der Sandt, 1992; Kamp and
Reyle, 1993; Asher, 1993; Reyle, 1993; Bos et al.,
1994; Muskens, 1996; Van Eijck and Kamp, 1997;
Frank and Kamp, 1997; Piwek, 2000; Kadmon,

2001; Beaver, 2002; Asher and Lascarides, 2003;
Bos, 2003; Geurts and Maier, 2013; Kamp et al.,
2011; Geurts et al., 2020). A wide range of linguis-
tic phenomena are covered by DRT, among them
conditionals, negation, modals, disjunction, pre-
supposition, plurals, tense, aspect, and quantifier
scope.

The contexts in sequence notation can be com-
pared directly to the DRSs in Discourse Represen-
tation Theory. But sequential meanings discard
representational redundancies: discourse referents
are implicitly introduced by concepts. DRT has
separate types of DRS conditions to model con-
ditionals and disjunction, whereas the sequence
notation only uses negation to cover these.

Standard DRT (Kamp and Reyle, 1993) follows
a Davidsonian event semantics, whereas in this pa-
per a neo-Davidsonian semantics is adopted that
gives us the binary relations that enables simple
graphical visualusation. Several features of DRT
can be transferred to sequential meanings: block-
ing of anaphoric links by inaccessibility, merging
of DRSs (Zeevat, 1991), and presuppositional ac-
commodation (Van der Sandt, 1992).

5.3 Abstract Meaning Representations

The Abstract Meaning Representation formalism
(Langkilde and Knight, 1998) represents meaning
of natural language sentences as rooted, directed
acyclic graphs. It took the clarity of the early se-
mantic networks, and techniques introduced by AI
researchers such as role inversion. Large seman-
tically annotated corpora were developed based
on AMR (Banarescu et al., 2013), encoded by us-
ing the PENMAN notation introduced by Kasper
(1989). These corpora sparked a lot of interest in
computational linguistics, and gave rise to many
new approaches to semantic parsing and generating
text from meaning representations.

Drawing a parallel with the semantic networks
introduced in the 1970s, history repeats itself, when
many scholars realized that AMR has incomplete
inference capabalities for negation (and other logi-
cal devices such as universal quantification). Sev-
eral proposals for extending AMR were published
(Bos, 2016; Stabler, 2017; Pustejovsky et al., 2019;
Bos, 2020; Lai et al., 2020; Stein and Donatelli,
2021). However, none of these proposals were
widely adopted.

Several features of AMR are also present in the
sequence notation: the binary relations that support
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attractive graphical visualisation, the use of role in-
version, and being agnostic to grammar. But there
are also notable differences: the sequence notation
is closer to surface wording because there is not
as much decomposition as in AMR. The sequence
notation supports logical quantification and nega-
tion, which AMR lacks. And the sequence notation
adopts WordNet (Fellbaum, 1998) and VerbNet
(Kipper et al., 2008) to interpret the non-logical
symbols, whereas AMR is based on PropBank
(Palmer et al., 2005), but not all non-logical sym-
bols are interpreted (verb-based symbols are, noun-
based symbols aren’t). This makes AMR partly
specific to English, even though there have been
AMR corpora constructed for other languages.

6 Discussion

6.1 No Overdose of Variables

Variables require some kind of naming convention,
effectively an arbitrary way of blessing entities with
a unique identifier. It is this resort to a naming sys-
tem that makes variables unattractive for applica-
tions such as machine learning and human annota-
tion. Usually, there are some informal conventions
involved in naming variables, such as giving a vari-
able an index that is increased by every new con-
cept introduced in the meaning representation, or
using the next letter of the alphabet. Alternatively,
as is done in AMR, the variable name is based on
the name of the concept that it names (Banarescu
et al., 2013). This works well for short sentences,
but as soon as longer texts need to be taken into
account, the naming system gets cumbersome in
practice.

The system of indices in sequential meaning
does not suffer from these issues. Furthermore, the
indices are relative—not absolute—capturing local
“distances” between concepts. This enables a gen-
eralisation of catching argument structure, indepen-
dent of sentence or text length. Even for short sen-
tences meaning representations with indices yield
better results in neural parsing than those resorting
to variables (Van Noord et al., 2018). Hence, using
indices rather than variables has the potential to
offer advantages respect to human annotation and
machine learning. And even though in this paper
the sequence notation is used to encode DRS-based
meanings, it can also be used to produce AMRs,
as the AMR in (4) and its translation in sequence
notation (5) show.

(4) (w / want-01 :arg0 (b / boy)
:arg1 (g / go-01 :arg0 b))

(5) boy want-01 :arg0 -1 :arg1 +1
go-01 :arg0 -2

The sequence notation results in shorter and com-
pact meaning representations, because no space is
wasted on brackets and variables.

6.2 Compositionality

I don’t say much about compositionality from the
perspective of the syntax-semantics interface. This
is a deliberate choice. Compositionality—the study
of how meanings of complex expressions are de-
rived from meanings of their parts—is a fascinating
problem in formal and computational semantics
(Montague, 1973; Dowty et al., 1981) in which
many attempts have been formulated and imple-
mented, in particular within the Montagovian tradi-
tion (Bos et al., 1996; Bender et al., 2015).

The assumption in any implementation of com-
positionality is that there are atomic units of ex-
pressions carrying meaning that cannot be further
decomposed. But what these atomic units are is
unclear in general, and can range from simple in-
flectional markers to multi-word expressions. An
extreme direction in this tradition, however never
been explored in computational semantics, is Nat-
ural Semantic Metalanguage, defining a small set
of semantic primes of which meanings can be com-
posed (Wierzbicka, 1996).

A theory of syntax that supports semantic theory
is therefore not sufficient to completely uncover
compositionality, and moreover, makes the formal-
ism language dependent. Arguably, large semantic
annotation efforts have been shipwrecked exactly
on the dependence of a computational grammar
(Bos et al., 2017; Abzianidze et al., 2017).

Instead, sequential meanings do not require a
lexical theory of meaning, such that one could, for
instance, give an interpretation for a preposition,
article or adverb in isolation. It assumes the expres-
sions that it maps meanings to are complete utter-
ances. Giving up strong compositionality is, from
one perspective, certainly attractive, as it makes
the formalism language-neutral and opens the door
for multi-lingual computational semantics. Having
said this, there are natural ways to break down se-
quantial meanings into smaller pieces (concepts,
hooked/anchored concepts, contexts, and so on).
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7 Conclusion

The meaning represention that I proposed has much
in common with AMR (Banarescu et al., 2013)
and DRS (Kamp and Reyle, 1993). But there are
notable differences. Like AMR but unlike DRS,
sequential meanings are agnostic to any method or
theory of syntax. Like AMR, but unlike DRS, se-
quential meanings can be viewed as simple graphs.
Like DRS, but unlike AMR, there is an explicit
way of assigning scope to logical operators. Unlike
AMR and DRS, there are no variables in sequential
meanings.

The quote “make everything as simple as pos-
sible, but not simpler”, often attributed to Albert
Einstein, is perhaps what summarises the sequence
notation. It provides a language that I think cannot
be simpler than it is, at the same time making it
possible to describe complex meaning representa-
tions (including negation, disjunction, quantifica-
tion, and discourse structure) with a formal inter-
pretation. As there are only binary relations, and
the binary relations can be inverted, a sequential
meaning can be visualised as a directed acyclic
graph, resulting in graphs that are simpler than
those previously proposed for Discourse Represen-
tation Theory (Basile and Bos, 2013; Abzianidze
et al., 2020). The sequence notation therefore of-
fers a visual aid for verification of meanings.

I think the sequence notation is also a convenient
way of annotating text with meaning representa-
tions. The notation is simple, no logical variables
are needed, meanings can be manually entered and
corrected in a standard text editor. The sequence
notation supports the alignment between meaning
representations and corresponding linguistic reali-
sation in an approximate manner, where at least the
order of the concepts corresponds with the order
as they are introduced in the text by nouns, verbs,
adjectives and adverbs. Yet I understand that not
everyone is convinced that annotation with the se-
quence notation would be simpler than say AMR
or DRS. This paper has no evidence for this claim
and is solely based on personal experience. Addi-
tionally, I have observed that researchers with logic
background have become accustomed to the use of
variables, making it considerably challenging for
them to abandon the familiarity of such notation.

Currently the sequence meaning notation has
been put in practice in the Parallel Meaning Bank
(Abzianidze et al., 2017). In future work the idea
is to take advantage of the sequence notation and

annotate larger (multi-sentence) multi-lingual doc-
uments with meaning representations that include
rhetorical structure.
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Rafael Anchiêta and Thiago Pardo. 2020. Semanti-
cally inspired AMR alignment for the Portuguese
language. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1595–1600, Online. Associa-
tion for Computational Linguistics.
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A Translation to DRS

Here I sketch a translation from sequential mean-
ing notation to DRT’s Discourse Representation
Structure (DRS). Although the sequential mean-
ing system presented here bears strong similarities
with Discourse Representation Theory (Kamp and
Reyle, 1993), it is significantly different from it:

1. Events are represented in a neo-Davidsonian
way whereas in DRT a Davidsonian way is
assumed (i.e., without adopting an inventory
of thematic roles);

2. All non-logical synbols are interpreted using
WordNet as supporting ontology, whereas in
DRT these remain uninterpreted;

3. A single NEGATION relation is used to cap-
ture negation, disjunction and conditionals,
whereas DRT has special complex conditions
for them in the DRS language;

4. There is no syntactic check for free and bound
variables, whereas the geometrical structure
of DRS immediately shows accessibility of
referents.

5. There is no support for generalised quantifiers
unlike DRT that has duplex conditions to
accommodate them. If one were to incorpo-
rate generalised quantifiers into sequential
meanings one would likely resort to adding
new separators to the inventory. For instance,
for “A guitar has six strings”, we would arrive
at something like GENERALISATION <1
guitar.n.01 MOST < have.v.02
Pivot -1 Theme +1 string.n.03
Quantity 6. These two separators would
need to be coordinated though: one cannot
exist without the other.

6. There is no different in representation of sin-
gular and plural noun phrases—the model the-
ory behind sequential meanings allows enti-
ties in the domain to range over plural noun
phrases as well.

Despite these differences, the similarities with
DRT become immediately clear when one sketches
the translation from sequential meanings to DRS
(Kamp and Reyle, 1993). Only closed sequential
meanings can be translated to DRS, so each index

needs to have an antecedent context, each connec-
tor needs to link to an existing context, and in the
resulting DRS no free variables should occur.

The easiest way to explain the translation from
sequential meanings to DRS is to take the corre-
sponding rooted directed acyclic graphs as starting
point. The root node is always a context. The trans-
lation to DRS starts with this context, initiated as an
empty DRS. Recall that a DRS consists of a domain
(a set of discourse referent) and a set of (basic and
complex) DRS-conditions. All entities with con-
cept C that are members of this context are added
to the domain of the DRS with a fresh discourse ref-
erent. The concept is translated as unary predicate
applied to this discourse referent and added to the
conditions of the DRS. All hooks and anchors of
this concept are added to the conditions as binary
predicates, where the internal argument is the same
as the discourse referent.

Once this is completed for all members of a con-
text, the process is recursively repeated for contexts
that are connected to the current context. There are
two main cases here: (1) NEGATION adds a com-
plex unary condition ¬B to the DRS, where B will
be the result of the translation of the context as-
sociated to the negation; and (2) CONJUNCTION
does not start a new DRS, but instead continues
adding information to the current DRS. The other
separators build up a structure as in SDRT (Asher,
1993). To illustrate the procedure, I show in Fig-
ure 9 the DRSs that are the result of translating two
sequential meanings presented earlier in this paper.

x

person.n.01

¬

y z

book.n.02(y)
buy.v.01(z)
Agent(z,x)
Theme(z,y)

x

female.n.02(x)

¬
y

rich.a.01(y)
AttributeOf(y,x)

¬
z

famous.a.01(z)
AttributeOf(z,x)

Figure 9: DRS equivalents of the sequential meanings
shown in Figure 3 and Figure 4.

B Semantic Annotation Example

Figure 10 shows an elaborated example in sequence
notation aligned with its textual input. Figure 11
visualises the corresponding graph.
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male.n.02 Name "Pierre Vinken" % Pierre Vinken,
APPOSITION <1

quantity.n.01 EQU 61 % 61
measure.n.02 Quantity -1 Unit "year" % years
old.a.01 AttributeOf -3 Value -2 % old,

CONJUNCTION <2
time.n.08 TSU now % will
join.v.01 Theme -5 CoTheme +1 Role +3 Time -1 % join
board.n.01 % the board
nonexecutive.a.01 % as nonexecutive
director.n.02 Attribute -1 % director
time.n.08 MonthOfYear 11 DayOfMonth 29 TOV -5 % Nov. 29.

ELABORATION <1
male.n.02 Title "Mister" Name "Vinken" EQU -10 % Mr. Vinken
be.v.03 Theme -1 Co-Theme +2 Time +1 % is
time.n.08 EQU now
chairman.n.01 Of +1 % chairman of
company.n.01 Name "Elsevier N.V." % Elsevier N.V.,

APPOSITION <1
country.n.02 Name "The Netherlands" % the Dutch
publishing_group.n.01 Source -1 EQU -2 % publishing group.

Figure 10: Meaning in sequence notation aligned for the first text of the Wall Street Journal corpus (Marcus et al.,
1993). The text is here included as comments on each line following a percentage sign, and is not part of the actual
meaning representation. Three different comparison operators are used here: EQU (equality), TSU (temporally
succeeds), and TOV (temporally overlaps). The resulting graph is shown in Figure 11.

Figure 11: Graph visualisation of the WSJ corpus text “Pierre Vinken, 61 years old, will join the board as a
nonexecutive director Nov. 29. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.”
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Abstract

A number of graph-based semantic representa-
tion frameworks have emerged in recent years,
but there are few parallel annotated corpora
across them. We want to explore the viability
of transforming graphs from one framework
into another to construct parallel datasets. In
this work, we consider graph rewriting from
Discourse Representation Structures (Parallel
Meaning Bank (PMB) variant) to Abstract
Meaning Representation (AMR). We first build
a gold AMR corpus of 102 sentences from the
PMB. We then construct a rule base, aided by
a further 95 sentences. No benchmark for this
task exists, so we compare our system’s output
to that of state-of-the-art AMR parsers, and ex-
plore the more challenging cases. Finally, we
discuss where the two frameworks diverge in
encoding semantic phenomena.

1 Introduction

Many semantic representation frameworks have
emerged over the years (Kamp and Reyle, 1993;
Copestake et al., 2005; Banarescu et al., 2013;
Abend and Rappoport, 2013), at varying levels of
abstraction in terms of encoding semantic phenom-
ena. We want to be able to compare frameworks
empirically across phenomena, with the goal to un-
derstand, unify and extend them. Unfortunately,
this is difficult to do in a data-driven manner as
there are few freely available parallel datasets. As
manual annotation is laborious, it is important to de-
velop automatic tools to create and expand datasets.
One way to approach this is by transforming an-
notations across frameworks. In this work, we
take a look at Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), and Discourse
Representation Structures (DRS) (Kamp and Reyle,
1993), as expressed in the Parallel Meaning Bank
(PMB) (Abzianidze et al., 2017), to see how much
of the former can be constructed from the latter.

We show a significant portion of AMR can be
constructed from DRS and provide a discussion on
our insights as to where the process is not possible.
To achieve this we build a graph rewriting system
from DRS to AMR. As there is no parallel data
between the two, we also annotate a small part of
the PMB into AMR.

Our motivation for this work is twofold. Our
first goal is to get more parallel annotated data be-
tween semantic formalisms in general, and between
AMR and DRS for this particular study, in order
to foster empirical cross-formalism comparison. A
natural question to ask here is, since (as we will
see in section 5) automatic parsers based on ma-
chine learning techniques seem to perform better
than rule-based transformation systems on this task,
why do we bother with such an experiment. We
have a few reasons: (i) rule-based transformation
systems may still perform quite well, especially for
more closely-related formalisms (as we show in
this study) and we do not know how well exactly
until we test such a system; (ii) it is possible that the
two approaches make different kinds of mistakes,
which opens the possibility for hybrid solutions
that combine their strengths; (iii) with a rule-based
system, tracking the decision-making process is
possible, rendering the method explainable.

Our second goal is to better understand the dif-
ferences between formalisms with a view to ex-
tend and unify them. This is difficult to do in a
non-data-driven manner as the formal definitions
of formalisms are rarely complete. More impor-
tantly, within the community, it is not clear what a
complete semantic representation should consist of.
Thus, while not as direct as the first, an outcome
we hope to get from this work is a deeper insight
into what is needed in a semantic representation
and what are the missing links between formalisms,
as a step towards defining a unifying framework.

The rest of the paper is structured as follows:
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in section 2, we present the two frameworks; in
section 3 – our graph rewriting system (GRS); sec-
tion 4 is about our annotation procedure for a small
gold AMR dataset; in section 5, we present our
experiments, discuss the results, and compare them
to those of SoTA AMR parsers; in section 6, we
provide a discussion and future work directions.
Our code and data are publicly available1.

2 Background

In this section we present the Parallel Meaning
Bank as an instance of a large corpus of Discourse
Representation Structures, and Abstract Meaning
Representation.

2.1 DRS in the PMB
The Parallel Meaning Bank (PMB) is a semanti-
cally annotated corpus, with parallel annotations
available for four languages – English, German,
Italian and Dutch. The portion of the PMB that
contains gold annotations for English is signif-
icantly larger than the other three: 10,715 sen-
tences vs 2,844 (German), 1,686 (Italian) and 1,467
(Dutch). The formalism behind the PMB semantic
representations is Discourse Representation Theory
(DRT) (Kamp and Reyle, 1993) and in particular
Projective DRT (PDRT) (Venhuizen, 2015), which
differs from DRT in the way it accounts for pre-
suppositions and conventional implicatures. DRT
expressions are called Discourse Representation
Structures (DRS). DRS are typically represented
as boxes with variables defined at the top of the
box and the entities and relations between them
in the bottom. The boxes are used to label scopes
and discourse units. Similar to (Muskens, 1996),
the PMB “dialect” of DRS is compositional and it
allows to embed boxes into one another, specifying
the relations between them. Sentences from the
PMB can be viewed on the PMB explorer2. There,
DRS’s can be seen in three kinds of notation: the
traditional box notation (Figure 1a), clause notation
(Figure 1b), and the recently proposed Simplified
Box Notation (SBN) (Bos, 2021) (Figure 1d).

The PMB uses WordNet (Fellbaum, 1998)3 to
encode senses (e.g. attack.v.04, shark.n.01)
and VerbNet/LIRICS (Bonial et al., 2011) for se-
mantic roles (e.g. Agent, Patient, etc.).

1https://gitlab.inria.fr/
semagramme-public-projects/drs2amr

2https://pmb.let.rug.nl/explorer/explore.php;
data freely available under ODC-BY 1.0

3https://wordnet.princeton.edu/

For the purposes of our work, as the three nota-
tions available in the PMB are equivalent4, we use
SBN as a starting point, as it is simplest to process.
We transform SBN representations into graphs for
easier manipulation and visualisation (Figure 1c).

2.2 AMR
Abstract Meaning Representation (AMR) repre-
sents “who did what to whom” in a sentence. It
is meant to be rather abstract in order to be easily-
readable by humans and easier for annotators to
work with. The simplification is achieved by not en-
coding phenomena such as tense, plurality or scope,
though this can also be seen as a disadvantage.

AMR abstracts away from the surface represen-
tation, allowing multiple sentences with the same
meaning to have the same representation. The
AMR in Figure 2 is the representation of the sen-
tence “He was attacked by a shark.”, but also of “A
shark attacked him.”. Furthermore, as AMR does
not encode various semantic phenomena, sentences
with similar (but not the same) meanings can also
get the same representation. The AMR in Figure 2
also represents the sentences “The shark attacked
him.” and “Sharks will attack him.”, among others.

AMR is centered around predicate-argument
structure and, for English, makes extensive use
of PropBank predicates (Palmer et al., 2005). Pred-
icates are used to annotate verbs in a sentence, but
also adjectives, and sometimes even nouns, if the
appropriate PropBank frames exist. Each predicate
has a set of arguments which are called core roles
and appear as numbered arguments in AMRs (see
ARG0 and ARG1 in Figure 2). Additionally, non-core
roles such as time, domain, duration make up the
rest of the AMR relations.

AMRs are directed acyclic graphs (DAGs) with
a single root. Respecting both of these properties
does not always come naturally. To preserve both,
an AMR role can be inverted by changing its direc-
tion and adding -of to its label. Inverse roles are
also useful for highlighting the focus of a sentence.

Unlike for DRS, the larger, more commonly used
AMR datasets, are only available via a paid license
from the Linguistic Data Consortium5. Still, a
smaller portion of the so-called AMR Bank is freely
available6, namely the Little Prince corpus and the
BioAMR corpus. However, for the purposes of
our work, we need parallel data between DRS and

4with the exception of PRESUPPOSITION
5https://www.ldc.upenn.edu/
6https://amr.isi.edu/download.html
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(a)

b1 REF x1 % He [0...2]
b1 PRESUPPOSITION b2 % He [0...2]
b1 male "n.02" x1 % He [0...2]
b2 REF t1 % was [3...6]
b2 TPR t1 "now" % was [3...6]
b2 Time e1 t1 % was [3...6]
b2 time "n.08" t1 % was [3...6]
b2 REF e1 % attacked [7...15]
b2 Patient e1 x1 % attacked [7...15]
b2 attack "v.04" e1 % attacked [7...15]
b2 Agent e1 x2 % by [16...18]
b2 REF x2 % a [19...20]
b2 shark "n.01" x2 % shark [21...26]

% . [26...27]

(b) (c)
male.n.02 % He [0-2]
time.n.08 TPR now % was [3-6]
attack.v.04 Patient -2 Time -1 Agent +1 % attacked by [7-18]
shark.n.01 % a shark. [19-27]

(d)

Figure 1: The sentence “He was attacked by a shark.” in box notation (a), clause notation (b), as a graph (c), and in
simplified box notation (SBN) (d).

(a / attack-01
:ARG0 (s / shark)
:ARG1 (h / he))

(a)

(b)

Figure 2: AMR annotation of the sentence “He was
attacked by a shark.”, among others, in (a) Penman
notation and (b) as a graph.

AMR. Since that, to the best of our knowledge,
does not exist, we chose to annotate a small portion
of the PMB into AMR (section 4).

3 System

We use GREW7 (Guillaume, 2021; Bonfante et al.,
2018) to build a graph rewriting system (GRS) for
rewriting SBN graphs into AMR ones. GREW is a
tool that allows the user to define rules to match pat-
terns in a graph and apply a set of commands that
transform the matched part of the graph. GREW

also allows for the use of lexicons, which lets us
map sets of values and assign a value to a variable
based on the value of another variable.

3.1 Lexicons

AMR and the PMB use different lexical resources,
so our system relies extensively on lexicons to map

7https://grew.fr/

them: WordNet verbs to PropBank predicates, and
VerbNet semantic roles to PropBank arguments.

SemLink8 (Palmer, 2009) is an existing ef-
fort aimed at linking English linguistic resources,
among which PropBank and WordNet. We scraped
the SemLink verb groupings9 to collect mappings
between the WordNet senses used in our dataset
and the corresponding PropBank predicates. We
note that this is a many-to-many mapping, as can
be seen in the sample below.

wn pred pb pred
%=================
try.v.01 try-01
try.v.01 try-04
play.v.01 play-01
play.v.07 play-01

We collected 133 such mappings in total for the
197 (95 from dev set + 102 from test set) sentences
in our dataset10. These span across 110 WordNet
senses and 119 PropBank predicates. The map-
pings do not cover all the predicates present in our
dataset, as either the WordNet or PropBank predi-
cate does not exist in its respective resource or the
mapping between the two is not a part of SemLink.
We found 22 such WordNet predicates, 13 of which
correspond to phrasal verbs.

Next, for each PropBank predicate in our lexi-

8https://verbs.colorado.edu/semlink/
9https://verbs.colorado.edu/html groupings/

10For this experiment, we wanted to simulate having a com-
plete lexicon mapping. Constructing such a mapping is out of
the scope of this work. Instead, we chose to have a lexicon that
is “complete” at least for our dataset by pulling the predicate
senses appearing in both the dev and test sets.
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con, we manually11 went over the corresponding
PropBank entry and collected the VerbNet role for
each argument where that was present. This way,
we produced the first version of our lexicon, which
we will refer to as incomplete lexicon. Out of the
119 PropBank predicates, 61 (around 51%) were
missing a VerbNet role for some or all arguments.

Finally, we produce the final version of our lex-
icon, which we will refer to as complete lexicon.
We do this by going over all the predicates again
and deciding on a VerbNet role for each of the
arguments that do not have one.

For example, in PropBank, for try-01, we have
the following:

Arg0-PAG: Agent/Entity Trying (vnrole: 61.1-
agent)

Arg1-PPT: thing tried (vnrole: 61.1-theme)

whereas for try-04, we have:

Arg0-PAG: tryer
Arg1-PPT: thing tried (hand, patience)
Arg2-PRD: attribute of Arg 1

As can be seen, for try-01 the corresponding
VerbNet roles are explicitly specified in the brack-
ets, whereas for try-04 they are not. Thus, while
the incomplete lexicon contains entries for both
try-01 and try-04, it specifies the PropBank num-
bered arguments only for try-01.

wn pred pb pred Agent Theme ...
%===============================
try.v.01 try-01 ARG0 ARG1 ...
try.v.01 try-04 - - ...

The complete lexicon, on the other hand, speci-
fies the roles for try-04 as well. As can be seen
below, based on the descriptions from PropBank,
we have decided to link ARG0 to Agent, ARG1 to
Theme and ARG2 to Attribute.

wn pred pb pred Agent Theme Att.
%================================
try.v.01 try-01 ARG0 ARG1 -
try.v.01 try-04 ARG0 ARG1 ARG2

The PMB typically uses WordNet’s
measure.n.02 as a node when talking about

11This seems like a lot of work for a small dataset, but it is a
one-off effort. Once done for the entire sense bank for a given
language, it can be used for all datasets for that language.

quantities. In AMR, this is more fine-grained,
with concepts such as temporal-quantity or
distance-quantity. Many of these can be
deduced based on the :unit of said quantity, e.g.
if the :unit is day, then the concept should be
temporal-quantity. To address this, we also
produce and use a lexicon which maps unit types
to quantity types.

3.2 Our Graph Rewriting System

Our Graph Rewriting System (GRS) includes a few
groups of rules, centered around different types of
roles or structures in both AMR and the PMB. We
selected partition 00 of our split of the PMB (see
section 4 for explanation on partitions) as the set
used for constructing rules, referred to hereupon as
our dev set. AMR annotations for it were produced
by annotator D (see section 4). All our data comes
from the English section of the PMB.

Core roles with lexicon. This set of rules en-
compasses a rule for picking a PropBank predicate
for the WordNet verbs in the input SBN graph if
a mapping for that WordNet verb is present in our
lexicon, and rules for rewriting the VerbNet roles
from the input graph into PropBank numbered ar-
guments. This category contains 27 rules – one
for sense picking and one each for the 26 VerbNet
predicates in our lexicon.

Core roles without lexicon. Here, we include
a set of rules that rewrite the most common Verb-
Net roles, Agent, Patient, Theme, Stimulus and
Experiencer, into PropBank numbered arguments
in case they were not present in the lexicon for the
relevant PropBank entry. For each, we select the
most common numbered argument that that role
has in our lexicon. These are later referred to as
our fallback rules. This category contains 5 rules.

Non-core roles. This set of rules covers rewrit-
ing of PMB roles, such as Duration, Manner,
Beneficiary, etc., to their AMR counterparts
(:duration, :manner, :beneficiary, etc.). This
category contains 21 rules.

Structures. Another set of rules deals with what
we call structures. As structures, we consider a set
of nodes and edges (as opposed to just a single node
or a single edge) that can be rewritten into another
set of nodes and edges or an individual edge. One
such example is the structure used by the PMB
when we have person.n.01 -EQU-> speaker.
This corresponds to using either the concept I or
the concept we as a single node in place of the
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whole structure. Here we also include rules where
a single node or edge is rewritten into a set of nodes
and edges. An example of this is the rule we use
for named entities that rewrites the edge Name from
the SBN graph into a structure that encompasses
the name, wiki and their corresponding values in
the AMR graph. We have 25 rules in this category.

Special words. A small set of rules deals with
special concepts and relations. One such example
is the concept be-03 which is most often used to
refer to spatial location and therefore invokes the
special AMR concept be-located-at-91. There
are 12 rules in this category.

Boxes. As described in subsection 2.1, the PMB
groups nodes in boxes. When there is a single
box in the SBN representation of a sentence, this
generally does not bring any new information for
the AMR graph. However, when more than one
box is present, for example to introduce phenomena
such as negation or universal quantification, this
can be informative for the AMR graph as well.
For example B1 -NEGATION-> B2 can introduce
a :polarity - relation to AMR. Our final set
of rules deals with the different types of relations
between boxes when more than one box is present.
A final rule removes all the boxes that are left at
the end. This category contains 36 rules.

The different sets of rules presented here are ap-
plied in the following order: special words, core
roles with lexicon, non-core roles, structures, core
roles without lexicon, boxes, except the two rules
dealing with the AttributeOf SBN role, which
are applied after boxes. An additional rule for re-
moving cycles with three nodes by inverting one of
the relations in the cycle is applied at the end.

Some of the rules are combined into non-deter-
ministic strategies. For example, since there is no
way to tell from the SBN graph only (i.e. with-
out referring to the text) whether person.n.01
-EQU-> speaker refers to I or we, both versions are
produced by our GRS. Similarly, as we mentioned
in subsection 3.1, the WordNet to PropBank predi-
cate mapping is many-to-many. In case a WordNet
predicate maps to multiple PropBank ones, all pos-
sible graphs are produced.

3.3 Post-processing

After applying the GRS to our data, we do some
post-processing on the GREW graphs. For named
entities, our GRS only produces an :op1 property
for the name of the entity even if the name consists

of multiple words. This is addressed in the post-
processing step by adding :op2 to :opN accord-
ingly. Additionally, for any remaining WordNet
concepts (be it verbs, nouns or adjectives) we re-
move the trailing part starting from the first dot, i.e.
piano.n.01 becomes piano. Finally we produce
the PENMAN notation for the output AMR graph
(or graphs in the case of non-determinism).

4 Gold Data

To evaluate our system, we produced gold AMR
annotations for 102 sentences of the English part
of the PMB. In order to make sure that there were
no specific phenomena concentrated in certain par-
tition of the PMB data, instead of picking a random
partition and risking having a non-representative
sample, we applied an algorithm to “randomise”
that12. We created 100 new partitions, by find-
ing the sum of the part and document number of
each sentence and applying modulo 100 to get a
new partition number. This approach groups the
data randomly, but is reproducible and as the PMB
expands, the partitions should grow in a fairly uni-
form manner. Version 4.0.0 of the PMB contais
10,715 gold English sentences, so 107 sentences
on average per partition.

We picked partition 25 (i.e. all the documents for
which (p+ d)%100 is 25) to annotate manually. It
contains 102 sentences. Our four annotators – A, B,
C and D – annotated half of the sentences (51) each.
Every sentence was annotated by two annotators.
To ensure that each pair of annotators had the same
number of overlapping sentences, we split the 102
sentences into six groups of 17 and distributed the
groups among the six different pairings.

The annotators consulted the following resources
during the annotation process:

• AMR Specifications13 as the primary source
for examples and explanations on how to an-
notate different phenomena

12As per (Abzianidze et al., 2017), the corpora used in the
PMB are balanced across parts. It is difficult to verify whether
the dataset is also balanced across various semantic phenom-
ena. In case it is, our randomization step is not necessary.
We do, however, want to point out that the English gold data
in the PMB 4.0.0 is not distributed uniformly across parts.
Those towards the beginning and those with a number divisi-
ble by 10 have significantly more sentences than the rest (see
subsection C.1 in the Appendix).

13https://github.com/amrisi/amr-guidelines/
blob/master/amr.md (points to version 1.2.6 of the
specifications at the time of writing)
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• AMR Annotation Dictionary14 for additional
annotation examples grouped by specific roles,
concepts, words and constructions

• PropBank Searchable Frame Files15 for Prop-
Bank predicates and their argument structures

• A full list of PropBank frames from the AMR
website16 to find “hidden” AMR frames (e.g.
“strong-02” is hidden in strengthen.html
in the Searchable Frame Files). PropBank
Searchable Frame Files took precedence in
case of conflict.

• GREW-MATCH17 to search for examples of
different concepts or structures, in graph for-
mat. For AMR, GREW-MATCH currently con-
tains all the examples from the AMR Speci-
fications, AMR Annotation Dictionary, The
Little Prince corpus, and the BioAMR corpus.

We used Smatch (Cai and Knight, 2013) to com-
pute the inter-annotator agreement (IAA). Smatch
uses a hill-climbing algorithm to find the maximum
number of triples between two graphs. There are
three types of triples: instance, relation, and at-
tribute. Instance triples match nodes in the graph,
counting exact matches between the node concepts.
Relation triples match edges in the graph. Attribute
triples match properties of the nodes. Each type
has equal weight in the overall score count.

The results of our IAA are reported in Table 1.
Annotator A appears to have the lowest agreement
with the other three annotators. One reason for this
may be that annotator A correctly observed that
named entities in AMR always get a :wiki prop-
erty, even if they do not have an existing Wikipedia
page18 and added them accordingly. The other
three annotators only added a :wiki property to
Wikipedia named entities. We have adopted anno-
tator A’s approach for the gold data.

To produce the final version of the gold data,
the four annotators gathered in groups (two, three,
or four) over the course of a few sessions. For
each sentence, the two existing annotations were

14https://www.isi.edu/∼ulf/amr/lib/amr-dict.
html

15http://verbs.colorado.edu/propbank/
framesets-english-aliases/

16https://amr.isi.edu/doc/
propbank-amr-frames-arg-descr.txt

17http://semantics.grew.fr/
18Indeed, we observe that all the named entities in the AMR

annotated data, except from one sentence from the BioAMR
corpus have a :wiki property.

A B C D
A – 0.76 0.82 0.81
B 0.76 – 0.83 0.86
C 0.82 0.83 – 0.84
D 0.81 0.86 0.84 –

Table 1: Inter-annotator agreement – Smatch f-score.

compared and after a discussion, one was chosen
or a modification that combines elements of both
annotations was selected. In a small number of
cases, the annotators agreed on an entirely different
annotation from the two proposed ones.

5 Evaluation

As with our IAA, we use Smatch to evaluate our
system’s output against the gold annotations. As
mentioned in section 4, Smatch takes into account
not only the graph structure, but also the exact
match of concepts between graphs. Thus, we
expected that the predicate lexicon and the sec-
ond post-processing step (removing trailing part of
WordNet concepts) would have a substantial im-
pact on the final score. To evaluate this, we run the
experiment with no lexicon (1), with the incomplete
lexicon (2), and with the complete lexicon (3). Ad-
ditionally, we also run a version with the complete
lexicon, but without the second post-processing
step (4). Finally, while adding a lexicon of senses
increases the results for both the test and dev sets
significantly, we see that the difference in results
between the incomplete lexicon and the complete
lexicon setting is very small. Our hypothesis is
that this is due to the fallback rules for core roles
that have not been rewritten. To verify this, we
run the three different lexicon versions (no lexicon
(5), incomplete lexicon (6), and complete lexicon
(7)) also without the fallback rules. We run each of
these experiments on both the dev and test sets.

The results from our experiments are reported
in Table 2. As can be seen our hypothesis about
the benefit of a lexicon and the post-processing
step is justified: we get an increase of 6− 7% on
both the dev and test sets for all scores. When
we consider the fallback rules, we can compare
experiments (1), (2) and (3) with experiments (5),
(6) and (7). We see that the fallback rules do a lot
of the groundwork, but more so when we have no
lexicon or an incomplete one. They have less of an
impact when working with a complete lexicon.

Due to non-deterministic rules, for some sen-
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tences we get more than one output graph. As we
want to see what is the biggest part of the AMR
structure that can be built from DRS, the scores we
report take the graph with highest overlap (accord-
ing to Smatch F1-score) with the gold graph19.

Comparing the scores on the dev and test sets,
we notice the big disparity in the scores between
the two. This is due to our building the rules based
on the dev set and thus missing out on structures
that do not appear in it, but appear in the test set.
This suggests that our rule set is incomplete and a
larger dev set may be necessary to ensure broader
structure coverage. One such example is that the
structure used in the PMB for expressions such as
instead of and rather than needs special treatment
which requires either the duplication of a specific
node or the introduction of the predicate prefer-01.
However, since our rule base was built from the dev
set and that does not include such an example, we
do not have a rule to address it. We do, however,
have such an example in the test set and it cannot
be addressed properly.

5.1 Comparison to AMR parsers

As far as we are aware, transforming DRS graphs
into AMR ones is a new task. There is, therefore,
no benchmark against which we can compare our
outputs. For the sake of argument, however, we
got predictions from two SoTA AMR parsers – an
ensemble one, and a single-model one.

MBSE. Maximum Bayes Smatch Ensemble
(MBSE) (Lee et al., 2022) is an ensemble dis-
tillation model that combines knowledge from a
number of models to produce a single prediction.
MBSE is currently the SoTA AMR parser.

AMRBART. AMRBART (Bai et al., 2022) uses
graph-to-graph pre-training to improve pre-trained
language models’ awareness of the graph structure
of AMRs. It is currently the best single-model
and fifth best overall parser on the AMR2.0 and
AMR3.0 datasets.

We sent our dataset to the MBSE authors and ob-
tained the predictions from the Ensemble-5 MBSE
model back from them. As for AMRBART, we ran
the fine-tuned on AMR parsing AMRBART-large
(AMR2.0)20 on our dataset. The granular Smatch
scores21 (Damonte et al., 2017) for these two as
well as for our system on both our test and dev

19For completeness, if we take the worst graph instead, the
F1-score for experiment (3) is 0.71 for dev and 0.65 for test.

20https://github.com/goodbai-nlp/AMRBART
21https://github.com/mdtux89/amr-evaluation

sets are in Table 3. MBSE predictions have not
been wikified. We expect that after wikification,
MBSE’s score will be on par with AMRBART’s.

As can be seen in the table, the AMR parsers
perform better overall compared to our system. We
believe there are two main reasons for this. Firstly,
the AMR parsers have been trained on a lot more
data: tens of thousands of sentences versus 95 for
our system. Secondly, we are limited by the infor-
mation that is present in the DRS and parts of the
AMR structure simply cannot be predicted from it
(see section 6 for further discussion).

A closer look at the granular scores indicates that
the areas where our system performs particularly
poorly is when dealing with negations and reen-
trancies, both of which are the hardest areas for the
parsers as well. For negation, we owe this to the
fact that in DRS, when negation is morphological,
but there is a corresponding WordNet concept, as
is the case with unhealthy.a.01 in “I knew it was
unhealthy” (26/2674), this is expressed in one node,
whereas in AMR, we have a node for healthy-01
and a node that negates that22.

In some cases, our system performs better than
the parsers. For example, in sentences that use
comparison (e.g. “This car is bigger than that one”
(67/2333)). However, this is likely because our rule
for handling these cases was built following the
AMR guidelines, as was our gold dataset. The data
that the two parsers have been trained on uses a dif-
ferent than in the guidelines structure, leading them
to learn that instead. To their credit, our hypothesis
is that if they were trained on the same structure,
they would be more likely to predict it correctly.

5.2 Error Analysis
As discussed earlier, some of our errors are due
to certain structures not being present in our dev
set. These do not, however, account for the errors
on the dev set itself. There are a number of other
aspects which come at play here.

Missing predicates from lexicon. A number
of the predicates in our sentences, while present
in both WordNet and PropBank, do not appear in
Semlink. Therefore we have not been able to add
them to our lexicon. This leads to a non-overlap

22It would be possible to address this via a rule that captures
such words. However, only words where the negative particle
is indeed a morpheme, need to follow this rule (it would not
apply to ”uniform”, for example). This would require the
construction of a lexicon of words with negative morphemes.
This is ultimately a task that requires morphological analysis
and, as such, is out of the scope of this work.
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Dev set Test set
Precision Recall F1-score Precision Recall F1-score

(1) No lexicon 0.72 0.71 0.72 0.66 0.62 0.64
(2) Incomplete lexicon 0.79 0.77 0.78 0.72 0.68 0.70
(3) Complete lexicon 0.79 0.78 0.78 0.73 0.68 0.70
(4) Complete lexicon, no concept fix 0.65 0.63 0.64 0.61 0.57 0.69
(5) No lexicon, no fallback 0.61 0.60 0.60 0.55 0.51 0.53
(6) Incomplete lexicon, no fallback 0.75 0.74 0.75 0.69 0.65 0.67
(7) Complete lexicon, no fallback 0.77 0.75 0.76 0.70 0.66 0.68
MBSE – no wiki 0.84 0.83 0.83 0.85 0.80 0.82
AMRBART 0.85 0.83 0.84 0.86 0.86 0.86

Table 2: Smatch scores. Where “no fallback” is not specified, it means that the fallback rules have been applied.
Where “no concept fix” is not specified, it means that the post-processing concept addition has been applied.

Smatch Unlabeled No WSD Concepts NE Neg. Wiki Reent. SRL

Dev
MBSE 0.83 0.87 0.84 0.88 0.92 0.55 – 0.66 0.84

AMRBART 0.86 0.89 0.87 0.87 0.94 0.70 0.85 0.66 0.83
Our system 0.78 0.84 0.79 0.78 0.91 0.40 0.68 0.53 0.75

Test
MBSE 0.82 0.86 0.83 0.86 0.94 0.60 – 0.65 0.81

AMRBART 0.84 0.87 0.84 0.86 0.94 0.55 0.88 0.59 0.84
Our system 0.70 0.78 0.71 0.70 0.82 0.48 0.73 0.37 0.65

Table 3: Granular Smatch scores.

between instance nodes for those predicates as well
as a wrong argument structure. This is especially
true in the case of adjectives since many are Prop-
Bank predicates. However, there are no adjectives
in the Semlink groupings so we have not been able
to add them to our lexicon.

Divergence between AMR and DRS. AMR
and DRS differ in the way in which they encode
certain semantic phenomena, notably scope. There
are specific AMR structures for which it is not
possible to decide on the correct structure, given
only the DRS. We discuss some of these cases in
more detail in section 6.

Inconsistencies in the PMB data. Finally,
while a much smaller number, some errors are prop-
agated from wrong annotations in the PMB dataset.
An example of this can be seen in subsection C.2.

6 Discussion

Our goal with this work was to see what portion of
AMR can be constructed from DRS and where that
is not possible, to understand why. While construct-
ing our rule base, we observed that the way the two
frameworks encode predicate-argument structure
is very similar, differing mostly in semantic role la-
bels, where DRS relies on VerbNet roles and AMR

on PropBank predicates. With an exhaustive lexi-
con that contains a mapping between all senses and
their arguments in the two lexical resources, it will
be possible to rewrite these correctly.

The most notable difference between the two
frameworks is the lack of scope in AMR, whereas
that is present in DRS. Some phenomena linked
to scope are encoded differently in the two. E.g.,
universal quantification is typically encoded in the
PMB in the same way as generics: the sentences
“All the seats are booked.” (50/2764) and “A cat has
two ears.” (60/0913) have a similar structure, de-
spite the different phenomena. In AMR the two are
encoded differently as the quantifier “all” is present
on the surface in one and not in the other. Similarly,
the quantifiers “the” and “this” are expressed in the
same way in DRS: by neither being present in the
representation, while in AMR “this” is expressed
as a separate node and “the” is not.

DRS, as the name suggests, is centered around
discourse (as opposed to dialogue) and is not meant
to encode questions very well. We observe that in
the PMB, wh-questions can be derived from the
representation. However, this is not the case for
yes-no questions, which, in the PMB are encoded
exactly as their declarative counterparts. This is
not the case in AMR, thus preventing us from dis-
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Figure 3: AMR annotation of the sentence “All who
were arrested have been released.” (99/1243), the way
it would look like if we were to follow the “logical”
reading as in DRS.

Figure 4: AMR annotation of the sentence “All who
were arrested have been released.” (99/1243), the way a
human annotator using the AMR guidelines and datasets
as examples would likely annotate it.

tinguishing between the two without referring to
the text of the sentence.

That being said, for a number of our rules in the
Boxes category, we do make use of GREW’s abil-
ity to check for specific regular expressions in the
original sentence. This works for short sentences
where there is a small or no risk of having a specific
structure appear more than once. However, it is not
a valid solution for longer texts. A future version
of this system may benefit from using the SBN
notations comments (part after % in Figure 1d).

Finally, we want to discuss a broader issue in
relation to universal quantification in DRS. In the
PMB, sentences such as “All who were arrested
have been released.” (99/1243) have a structure
which corresponds to the reading “if a person has
been arrested, they have been released”. This is the
way to express the semantics of universal quantifi-
cation in logic. It is achieved in the PMB by using
a combination of a CONDITION-CONSEQUENCE box
embedding. This can be rewritten into AMR by
making use of the non-core role condition, ob-
taining the graph in Figure 3. This is a correct
reading of the sentence. However, if an annota-

tor was to follow the AMR guidelines, we would
get the graph in Figure 4. We believe this is also
a correct representation of the sentence. While
logically the two may be equivalent, the graph rep-
resentations are structurally different. This raises
the question of whether we can have more than one
correct AMR per sentence. If so, then this opens
the door for future considerations on how to take
that into account in our evaluation metrics.

There are a number of other improvements to
our system that are worth exploring in the future.
Expanding the rule base can happen in two main
ways (1) by expanding the dev set so that more
varying structures are present and (2) thoroughly
going though the different expressions in the AMR
guidelines and AMR dictionary and designing rules
for each of them. Ideally, a combination of the two
should be considered. Furthermore, as we have
seen with our experiments in section 5, having a
lexicon that maps WordNet senses to PropBank
predicates improves the score significantly. Our
lexicon is still incomplete and can be further im-
proved by adding adjectives, for instance. It would
also be interesting to explore how our system per-
forms on other languages (see Appendix A).

Our effort in trying to transform frameworks is
not unique for the semantic representations com-
munity. In an exploration to better understand what
linguistic semantic phenomena formalisms encode,
Hershcovich et al. (2020) propose a rule-based con-
version system from syntax and lexical semantics
into Universal Conceptual Cognitive Annotation.
Closer to our work in terms of formalisms used,
Bos (2020) proposes AMR+ (an AMR extension to
deal with scope) and a formal procedure to convert
AMR+ into DRS. As a future work, we are inter-
ested in seeing how much AMRs obtained by ap-
plying the reverse procedure (from DRS to AMR+),
then dropping the scope information, would differ
from what we obtained with our system.

7 Conclusion

The goal of this work was to build a graph rewriting
system from DRS (as in the PMB) to AMR to dis-
cover what portion of the latter can be constructed
from the former. To do so, we first constructed a
small AMR dataset from PMB sentences and built
a lexicon mapping WordNet senses to PropBank
predicates and arguments. We showed a significant
part of the AMR structure is contained in DRS.
Finally, we discussed their divergences.
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A Limitations

There are a number of limitations of our work that
we address in this section.

We work with semantics, and it can be ar-
gued that the meaning representation of a sen-
tence should be identical regardless of the language.
However, empirical experiments are necessary to
verify that this is indeed the case when we work
with real-world data and that our system still works
for languages which are structurally very different
from English.

That being said, reproducing this experiment
for another language is not as straightforward as
simply running our system on a dataset in a differ-
ent language. For our system we rely heavily on
lexical resources in English. The same are not as
well-developed for most other languages.

Furthermore, as there is no parallel data between
DRS and AMR, to run an evaluation on such a sys-
tem for another language, requires the construction
of a corpus in one or both frameworks. This comes
at the cost of either training or having access to
a skilled annotator who is also a speaker of the
language for which the system is to be constructed.

Finally, relating to subsection 3.1, the missing
VerbNet arguments for the PropBank predicates
were decided on by one of the authors, after care-
fully reading descriptions for each numbered argu-
ment of the given predicate in PropBank. However,
as none of the authors is an expert in semantic role
labeling, we have to note that the decisions may
not have always been what an expert in this field
may have chosen.

B Ethical considerations

Our system is entirely rule-based: it does not rely
on heavy computational power and takes a few
seconds to run on a standard computer.

Our code and data are freely available and it is
not necessary to obtain any paid resources to be
able to reproduce our experiments.

C PMB data

C.1 Source distribution for English gold

Figure 5 shows that the sources where data comes
from in gold English section of the PMB 4.0.0 is
balanced across parts. The total number of sen-
tences per part, however, is not evenly distributed,
with parts towards the beginning and those with

a sequence number divisible by 10 having more
sentences than the rest.

C.2 Inconsistencies in PMB data
Though not very frequent, there are errors in the
PMB annotations, which, in turn, propagate to the
AMR annotations produced by our system. One
such example is for the sentence “Since I didn’t
receive a reply, I wrote to her again” (75/3043).
Its PMB annotation, in graph format, can be seen
in Figure 6. This is incorrect, as this is the DRS
for the sentence “I didn’t receive a reply because
I wrote to her”. For the correct version of this
sentence, the NEGATION and EXPLANATION labels
have to be reversed, like they are in Figure 7 for the
sentence “I am hungry because I did not eat lunch”
(86/1591).
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Figure 5: Distribution of the sources across the English gold part of the PMB, release 4.0.0.
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Figure 6: PMB annotation of the sentence “Since I didn’t receive a reply, I wrote to her again.” (75/3043). The
NEGATION and EXPLANATION labels should be reversed.

Figure 7: PMB annotation of the sentence “I am hungry because I did not eat lunch.” (86/1591).
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Abstract
We describe the first experimental results for
data-driven semantic parsing with Tree Rewrit-
ing Grammars (TRGs) and semantic frames.
While several theoretical papers previously dis-
cussed approaches for modeling frame seman-
tics in the context of TRGs, this is the first
data-driven implementation of such a parser.1

We experiment with Tree Wrapping Grammar
(TWG), a grammar formalism closely related
to Tree Adjoining Grammar (TAG), developed
for formalizing the typologically inspired lin-
guistic theory of Role and Reference Gram-
mar (RRG). We use a transformer-based multi-
task architecture to predict semantic supertags
which are then decoded into RRG trees aug-
mented with semantic feature structures. We
present experiments for sentences in different
genres for English data. We also discuss our
compositional semantic analyses using TWG
for several linguistic phenomena.

1 Introduction

While many user-facing applications of Natural
Language Processing such as machine translation
or sentiment analysis can these days be performed
with state-of-the-art accuracy by syntax-agnostic
machine learning models, grammar-based meth-
ods are still important. For one thing, they offer
more transparency and insight into the decisions of
a model, while in many cases having near-state-
of-the-art performance (Xia et al., 2019; Kasai
et al., 2019; Lindemann et al., 2019; Poelman et al.,
2022). Secondly, they tend to be less data-hungry
and therefore more readily adapted or transferred to
low-resource languages. Symbolic methods for se-
mantic parsing can also greatly contribute to gram-
mar theory studies and to linguistic investigations
of different languages.

1The code for our semantic parser can be found on
https://github.com/TaniaBladier/
Frame-Semantic-Parser-with-Lexicalized-Grammars

In this paper, we are interested in developing
a methodology for deep semantic parsing (i.e.,
producing semantic representations for entire sen-
tences) which would also allow easy transfer to
different languages, including low-resource ones.
We start from the typologically oriented linguis-
tic theory of Role and Reference Grammar (RRG).
This theory uses a common inventory of labels
and structures to describe languages from differ-
ent language families (Van Valin and Foley, 1980;
Van Valin, 2005). The formalization of RRG using
Tree Wrapping Grammar (TWG; Kallmeyer et al.,
2013) has paved the way for using this theory in
computational linguistics and for developing NLP
applications such as syntactic parsers (Bladier et al.,
2022; Evang et al., 2022).

NP[I = 3 ]

N

⋄

John

CLAUSE[E = 0 ]

CORE

NP[I = 2 ]NUC

V

⋄

needed

NP[I = 1 ]

NP[I = 4 ]

N

⋄

help

3

[
John

]

0


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require need want hope
AGENT 1

THEME 2




4

[
help

]

Figure 1: Frame-semantic derivation with TWG for
John needed help

The TWG formalism is inspired by Tree-
Adjoining Grammar (TAG; Joshi and Schabes,
1997) and allows for adequate modeling of long-
distance dependencies. Since TWG is closely re-
lated to TAG, we can readily apply existing com-
putational methods developed for TAG. In this
work, we explore how well the methodology for
compositional semantics with a tree-based syn-
tax outlined in several theoretical papers on TAG
(Kallmeyer and Osswald, 2012a,b; Zinova and
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Kallmeyer, 2012) is suitable for TWG and can be
used for a large scale implementation.

A small-scale frame-semantic parser based on
the Tree Adjoining Grammar was already imple-
mented by Arps and Petitjean (2018). Our ap-
proach differs from theirs in that it is data-driven
and aims for a broad-coverage semantic parser. Our
method is based on transformers and contextual
embeddings and we do not use a metagrammar
in our application, but go for an approach based
on supertagging. Our work also differs from Se-
mantic Role Labeling (i.e., shallow semantic pars-
ing) with TAG (Liu and Sarkar, 2009; Kasai et al.,
2019) since we are interested in deep semantic rep-
resentations of the sentences. Figure 1 shows how
the semantic representations for the sentence John
needed help can be produced compositionally with
elementary trees in TWG paired with frames, and
Figure 3 shows the frame representation for this
sentence.

The objective of this paper is to implement
a broad-coverage semantic parser based on Tree
Rewriting Grammars. Since this is the first broad-
coverage implementation of a deep semantic parser
for either TAG or TWG, we are particularly inter-
ested in modeling linguistic phenomena which we
came across during this data-driven implementa-
tion. We describe this in §2. We also want to inves-
tigate if our syntax-aware methodology allows us
to achieve state-of-the-art results on semantic pars-
ing. We describe the theoretical background of our
work and introduce our approach to frame-based se-
mantics with TWG in §3 and present experimental
results in §4. We discuss future work in §5.

2 Semantic Parsing with TWG

2.1 Tree Wrapping Grammar

TWGs consist of elementary trees which can be
combined using the operations of a) substitution (re-
placing a leaf node with a tree), b) sister adjunction
(adding a new daughter to an internal node), and
c) tree-wrapping substitution (adding a tree with a
d(ominance)-edge by substituting the lower part of
the d-edge for a leaf node and merging the upper
node of the d-edge with the root of the target tree,
see Fig. 2). The latter is used to capture long dis-
tance dependencies (LDDs), see the wh-movement
in Fig. 2. Here, the left tree with the d-edge (de-
picted as a dashed edge) gets split; the lower part
fills a substitution slot while the upper part merges
with the root of the target tree. TWG is more pow-

erful than TAG (Kallmeyer, 2016). The reason
is that a) TWG allows for more than one wrap-
ping substitution stretching across specific nodes
in the derived tree and b) the two target nodes of
a wrapping substitution (the substitution node and
the root node) do not have to come from the same
elementary tree, which makes wrapping non-local
compared to adjunction in TAG.

TWG emerged as a result of the formalization
of Role and Reference Grammar (RRG; Van Valin
and LaPolla, 1997; Van Valin, 2005). RRG is a
linguistic theory strongly inspired by typological
concerns. RRG was used to describe languages
with diverse syntactic structures such as Lakhota,
Tagalog, and Dyirbal. RRG’s syntactic structures
are rather flat in order to be applicable to all types of
different languages. According to RRG, sentence
structure is organized in layers: nucleus (containing
the predicate), core (containing the nucleus and
the arguments of the predicate) and clause (the
core and extracted arguments). Each layer can
have modifiers (called periphery elements), and
operators attach to the layer over which they take
semantic scope.

2.2 Frame Semantics and TWG
We adapt the syntax-semantics interface for LTAG
proposed by Kallmeyer and Osswald (2013) to se-
mantic parsing with TWG. Kallmeyer and Osswald
represent semantic frames as base-labelled, typed
feature structures. The frames can be understood
as a straightforward representation of the semantic
and conceptual knowledge about a situation, while
having good computational properties as their com-
position relies on the unification of attribute-value
structures. The frames represent genuine semantic
representations, and not logical expressions, whose
meaning has to be derived during semantic compo-
sition2.

The elementary trees in a lexicalized TWG are
paired with frames via interface feature structures,
as shown in Figure 1. Here, the root of the el-
ementary tree for ‘needed’ is augmented with an
interface feature structure whose E (event) attribute
value is a frame of type require need want hope,
which has two attributes: an agent and a theme.

2The advantage of the unification is that the order of se-
mantic argument filling is not specified by successive lambda
abstraction or the like. Instead, semantic argument slots can
be filled in any order (in particular, independently of surface
word order) via unifications triggered by syntactic compo-
sition). For a more detailed discussion see Kallmeyer and
Romero (2004) and Kallmeyer and Osswald (2014)
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Figure 3: Frame-semantic representation for John
needed help.

The values of these attributes are shared with the
feature structures paired with the NP substitution
nodes for the subject and the object, where they
are the values of the I (individual) attribute3. The
roots of the elementary trees for ‘John’ and ‘help’
are augmented with feature structures for whose
I attribute values are feature structures for whose
types we use the respective lemmas (more detailed
semantic representations of NPs are beyond the
scope of this paper).

During parsing, as syntactic trees are combined
(by adjunction, substitution or wrapping substitu-
tion), the semantic representations are also com-
bined. The unification of interface feature struc-
tures triggers unification of feature values in the
frames. In our example, as the substitution of the
subject NP takes place (combining the elementary
trees of ‘needed’ and ‘John’), the respective val-
ues associated to the attribute I in the interface
feature structures are unified. This results in the
unification of the feature structures 3 and 1 , which
makes the frame for John become the agent of the
event ‘needed’. The same happens when the tree
for ‘help’ is substituted at the object NP node of
the ‘needed’ tree: 4 and 2 unify to let the frame
for ‘help’ become the value of the theme attribute
in the frame 0 .

To build our frame lexicon, we use the inven-
tory of the lexical-semantic resource VerbAtlas
(Di Fabio et al., 2019). VerbAtlas covers over
13 700 verbal WordNet (Fellbaum, 2000) senses,
but organizes them into a relatively small number
of frames (466) with only 25 cross-frame seman-
tic roles, which makes it well suited for training

3The feature I is used as a variable in untyped frames re-
ferring to an argument (possibly syntactically complex) which
fills the substitution slot.

neural language models. The frames in VerbAt-
las are mapped to PropBank (Palmer et al., 2005)
framesets and multilingual BabelNet (Navigli and
Ponzetto, 2010) frames, and can potentially be
linked to FrameNet (Baker et al., 1998; Baker,
2014) frames.

2.3 Complex linguistic cases

In the process of developing our data-driven se-
mantic parser, we came across several complex
linguistic constructions which were not previously
described in papers dealing with the combination of
Tree Rewriting formalisms and semantics. Depend-
ing on the syntactic complexity of the sentences,
such constructions occur in about 20% of all sen-
tences in our data, distributed unevenly among the
subcorpora we used for the experiments. We de-
scribe some of our semantic modeling choices in
this section4.

Control constructions We introduce the variable
pivot for cases in which an elementary tree does
not have an explicit syntactic argument, but shares
the argument with an elementary tree it combines
with. Figs. 4 and 5 show an example. The pivot
variable is only assigned to CORE nodes and is
used to propagate the semantic representation of
the controlled argument.

Constructions with a peripheral subordinate
clause The representation of discourse relations
is beyond the scope of this work, so for now we
generate semantic representations for such clauses
separately. Fig. 6 shows the elementary tree-frame
pairs and Fig. 7 shows a representation for the sen-
tence The sheep follow him because they know his
voice.

Constructions with a non-peripheral subordi-
nate clause If a subordinate clause is not a modi-

4For the sake of space we only represent the relevant el-
ementary trees in the figures of this section and skip some
initial elementary trees that are substituted or adjoined into
the larger trees.
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Figure 5: Label unifications and resulting frame for she
loves to cook.
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CLAUSE-PERI[E = 7 ]
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V

know

NP[I = 5 ]

0




follow-in-space
AGENT 1

THEME 2


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
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Figure 6: Tree-frame pairs for the sentence The sheep
follow him because they know his voice




follow-in-space
AGENT sheep
THEME him


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know
EXPERIENCER they
THEME voice


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Figure 7: Semantic representations of a main clause and
a peripheral subordinate clause in sentence The sheep
follow him, because they know his voice

fier, but an argument of a main clause, the frame of
the subordinate clause fills the corresponding argu-
ment slot of the parent frame (see the elementary
trees and frame representation in Fig. 8, 9 for the
sentence What people say about themselves means
nothing).

Treatment of prepositional phrases The treat-
ment of prepositional phrases depends on whether

CLAUSE[E = 0 ]

CORE

PP[I = 2 ]NUC

V

say

NP[I = 1 ]

PrCS

NPwh
[I = 3 ]

CLAUSE[E = 4 ]

CORE

NP[I = 8 ]NUC

V

means

CLAUSE[E = 7 ]

0




affirm
AGENT 1

ATTRIBUTE 2

THEME 3




4




imply
CAUSE 7

TOPIC 8




Figure 8: Tree-frame pairs for constructions with subor-
dinate clauses

0




imply
CAUSE




affirm
AGENT people
ATTRIBUTE themselves
THEME what




TOPIC nothing




Figure 9: Constructions with subordinate clauses, here
What people say about themselves means nothing

the PP is an argument or an adjunct of the predicate.
In (1-a) below, the PP fills a core role of the predi-
cate lowered. However, the role filler well for this
argument slot should itself be substituted first into
the elementary tree of the preposition into. Thus, to
propagate the filler of the destination role to the des-
ignated argument slot of lowered, we check during
the substitution of the PP subtree and the subse-
quent frame unification that the argument role of
the PP corresponds to the required argument role of
the sentential predicate (see Fig. 10). If the preposi-
tional phrase is an adjunct of the predicate (as, for
example, in (1-b), where with a check modifies the
predicate pay), the subframe of the prepositional
phrase is added as an additional semantic role of
the predicate after adjoning the PP subtree.

Since we focus on verbal predicates in this work,
we do not explore an explicit frame representation
of different prepositions, as outlined in Kallmeyer
and Osswald (2013). Instead, we leave the rep-
resentation of prepositions and other non-verbal
predicates for future work.

(1) a. Tom lowered the bucket into the well.
b. I want to pay with a check.

Constructions with non-local dependencies
Constructions with non-local dependencies (e.g.
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long-distance wh-movement or extraposed relative
clauses) can be handled via unification during wrap-
ping substitution (see tree-frame pairs in Fig. 11
and the resulting representation in Fig. 12).

Supertag Frame Arg. Link.

she (NP (PRO ⋄)) (entity) (–)
loves (CL (CO (like) ((1, ‘Exp.’),

(NP ) (2, ‘Stim.’))
(NUC (V ⋄))
(CORE )))

to (CO* (CLM ⋄)) (–)
cook (CO (NUC (V ⋄))) (cook) ((0, ‘Agent’))

Table 1: Example of the training data, CL stands for
Clause, CO means Core.

3 Method

3.1 Argument linking
As outlined in the previous section, our approach to
semantic parsing requires two components which
are used to compositionally produce a deep seman-
tic representation of the sentences: TWG elemen-
tary trees and the corresponding semantic frames.
We divide prediction of semantic frames into two
subtasks: prediction of the correct frame and learn-
ing the argument linking within those frames.

The argument linking mechanism relies on the
elementary tree of the predicate and predicts which
substitution slot of the supertag carries which se-
mantic role. For example, in Table 1 the argu-
ment linking for the predicate likes means that the
first substitution slot of the corresponding supertag
should get the role label “Experiencer” and the
second slot gets the label “Stimulus”, hence the
numbers 1 and 2. In case an elementary tree has a
semantic role with no local filler, as in control or
raising constructions (see Figure 4) or in sentences
with conjoining predicates, we mark the seman-
tic role with the index 0, indicating that there is

CLAUSE[E = 0 ]

CORE

PP[E = 0 , I = 3 ]NP[I = 2 ]NUC

V

lowered

NP[I = 1 ]

PP[E = 7 ,I= 6 ]

NP[I = 6 ]P[E = 7 ]

into
0




lower
AGENT 1

THEME 2

DESTINATION 3


 7

[
event
DESTINATION 6

]

Figure 10: Propagating the role of the argument PP into
to the main frame lower for the example (1-a)

no substitution slot for this role (see, for example
the frame cook in Table 1). For non-predicative
frames we learn the frame with the dummy type
ENTITY and resolve the type of the frame to the
corresponding lemma after parsing.

3.2 Reducing the size of TWG grammars
Since the TWG grammars are usually large and
contain several thousands distinct elementary trees,
which is potentially hard for a neural model to learn,
we reduce the size of the grammar by flattening the
elementary trees and thus simplifying the syntactic
structure of the trees from which we induce the
TWG grammar. We collapse the internal structure
of the trees, so that it preserves the relevant syn-
tactic information about the lexical anchor and its
argument structure. In particular, we delete the
internal nodes of the tree which are not relevant
for syntactic composition (i.e. the nodes are not
involved in any tree combination operations) while
leaving the root node and unlexicalized leaves un-
touched. We delete all SENTENCE nodes while
keeping however the spine of CLAUSE, CORE
and NUC since these are important targets for mod-
ifier and operator adjunctions. Figure 13 shows an
example. After flattening the trees, we extract a
TWG elementary trees using the automated gram-
mar extraction approach of Bladier et al. (2020a).
Since the syntactic trees in TWG grammars can
have crossing branches, but the algorithm for TWG
parsing (Bladier et al., 2020b), which we use to
obtain syntactic representations for our data, does
not support crossing branches, some nodes in trees
have to be reattached before grammar extraction
and re-attached to the correct nodes after parsing.

3.3 Multi-task transformer-based learning
We use the MaChAmp toolkit (van der Goot et al.,
2021) to build a multi-task neural model for si-
multaneous learning of the elementary tree tem-
plates (i.e. supertags), frame selection, and argu-
ment linking, all cast as sequence labeling tasks.
The MaChAmp multi-task models share a BERT-
based encoder, but use task-specific decoders for
the subtasks. Table 1 shows an example of the in-
put for the multi-task neural model. We initially
experimented with training a single-task model for
each subtask and tried out different combinations
of multi-task models. Since the results of a multi-
task model turned out to be comparable with the
single-task models (showing only around 0.1 per-
cent of difference), we therefore carry out our ex-
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
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think
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THEME 4


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Figure 11: Wrapping substitution for wh-LDD in sentence Whom does Paul think Mary likes? The OP=CL notion
means that the node will be attached to the CLAUSE node of the parent tree after the parsing step.

0
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AGENT Paul
THEME
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
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Figure 12: Semantic representation for an LDD con-
struction in Whom does Paul think Mary likes?

SENTENCE

CLAUSE
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NUC

V

reading

OPtns
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NP

COREN

NUCN

N

girls

OPdef

The

;

CLAUSE

CORE

NUC

V

reading

OPtns [OP=CL]

were

NP

N

girls

OPdef

The

Figure 13: Example of a transformed tree before gram-
mar extraction: the crossing branch from the original
tree (on the left) is reattached and some of the internal
nodes are removed. OP=CL indicates that the OPtns

node was originally immediately below CLAUSE.

periments with the multi-task model. This model
has the advantage of predicting all the components
of our semantic parsing approach at once, resulting
in lower training and prediction times. We tried
to apply different weights on the loss function of
each subtask to see if it affects the performance of
the multi-task model, however the results did not
change significantly. Apart from experimenting
with different loss functions, we used the default
values of the MaChAmp Bert model for training.
The model is trained for 10 epochs, and we select
the model with the highest F1-checkpoint for the
evaluation.

4 Experiments and Discussion

4.1 Data

Since there is currently no manually annotated gold
dataset for semantic parsing with TWG, we use al-
ternative resources to train our model. We use the
statistical neural TWG parser ParTAGe (Bladier
et al., 2020b) developed for syntactic parsing with
TWGs and train it on multilingual data from RRG-
parbank, the first large resource for TWG and Role
and Reference Grammar (Bladier et al., 2022). The
ParTAGe parser predicts the syntactic trees based
on predicted n-best supertags for each sentence
and also predicts the dependency heads based on
the produced syntactic tree. The performance of
this parser is different for sentences with different
sentence length, but is sufficiently high for shorter
sentences. We measured the ParTAGe performance
on English sentences from the RRGparbank cor-
pus (since the parser was originally trained on this
data). We found that the performance of the parser
on sentences with less then 7 tokens had the labeled
F1 score of 93.52 for the produced syntactic trees,
and the labeled F1 score of longer sentences was
around 85.26.

We use the Parallel Meaning Bank v3.0.0 (PMB;
Abzianidze et al., 2017) and the CoNLL-2012 En-
glish dataset based on OntoNotes 5.0 (Pradhan
et al., 2012) for the frame-semantic parsing ex-
periments. The PMB provides deep semantic rep-
resentations of sentences following Discourse Rep-
resentation Theory. It has rather short sentences
(around 6.7 tokens on average) consisting of Web
texts, newspaper articles and the Bible. The En-
glish part of the CoNLL-2012 corpus is a large re-
source which includes over 94 000 sentences from
different genres, including journal articles, web
data, broadcast news and phone conversations. We
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use the pre-defined train, development and test sets
for both resources (see Table 2).

PMB OntoNotes

# sents (train, dev, test) 6654, 886, 75187, 9480,
902 9260

avg. sent length 6.94 16.71
# tokens 54205 201300
# lemmas 5463 10975
# dist. frames 350 436
# dist. frame/lemma pairs 949 2965
# frame occurrences 4783 34930
# role occurrences 13495 45496
# supertags 782 4158
# supertags occ. once 354 2204

Table 2: Statistics on the used data.

PMB and OntoNotes are not explicitly annotated
with VerbAtlas frames, but PMB provides WordNet
senses and VerbNet semantic roles, and OntoNotes
is annotated with PropBank framesets and semantic
roles. Since VerbAtlas provides manually created
mappings to these resources, we used these map-
pings to create a sufficient amount of semantically
annotated data. In order to obtain syntactic repre-
sentations needed for our frame-semantic parser,
we parse all sentences with the pretrained ParTAGe
models available from Bladier et al. (2022).

4.2 Frame-semantic parsing experiments
Our frame-semantic parser predicts supertags
needed to produce syntactic trees in parallel with
the frame labels and corresponding semantic roles.
We predict only heads of the semantic roles, since
the full spans can be reconstructed deterministically
from the predicted syntactic trees. We use the con-
stituent trees produced by our parser to reconstruct
the full spans of semantic roles5.

VerbAtlas has 466 frames, 350 of which we ob-
serve in PMB and 436 in the OntoNotes data. The
distribution of the frames is relatively even, without
any frames occurring particularly more frequent
then other frames. We do not consider frames asso-
ciated with modal verbs. Since some of the frames
occur only in test or development set and thus can-
not be learned, we calculate the upper bound for
the data to determine what would be the highest
possible achievable score. The evaluations show
a long tail of prediction errors without particular
errors occurring more often then the others. Table 4
shows some of the most frequent mistakes.

5We reconstructed full spans of semantic roles only for
OntoNotes, since the data from PMB are not annotated with
full-span semantic roles.

The distribution of the supertags is uneven with
a couple of most frequent ones occurring in the
majority of the cases. We found 225 distinct pred-
icative supertags in the PMB data, and 1358 in
OntoNotes. Table 5 shows that the first three most
common predicative supertags make up around two
thirds of all predicates in PMB. A similar distribu-
tion is also present in the larger OntoNotes corpus,
although the frequency of the most common su-
pertags is less prominent.

The results of the frame-semantic parsing show
that we achieve results comparable with the base-
line Semantic Role Labeling (SRL) results on the
OntoNotes and show a slight improvement on the
PMB data (see Table 36). The results on different
genres in OntoNotes show a significant increase in
performance on the Bible data and the worst results
for the web texts. This result is due to the greater
sentence length for the web data and a high amount
of internet slang and deviations from standard En-
glish orthography and syntax.

4.3 Error analysis

Although VerbAtlas has rather coarse-grained
frame lexicon, the number of frames (466) is still
large and some frame pairs have only a subtle dif-
ference in its definition (e.g. the frame pairs GO-
FORWARD and LEAVE DEPART RUN-AWAY or AF-
FIRM and SPEAK). Also there are some verbs, like
for example go, which are polysemous and can be
assigned different frames which appear more or
less frequent in the annotated data. Since the ma-
jority of the frames appear only a couple of times
in the training data, the model sometimes predicts
the wrong frame which appears more frequently, as
for example the frame LEAVE DEPART RUN-AWAY

is wrongly predicted instead of CONTINUE in ex-
ample (2).

(2) [...] but they’re determined to keep
going[leave depart run-away]

Each frame in VerbAtlas comes with its own set
of semantic roles. Although the number of the
roles is small (26), the model has to learn the cor-
rect labels for each of the 466 frames. Since for
most frames in VerbAtlas, the agentive and patien-
tive role have the labels AGENT and THEME, the

6We use the following terms while describing our semantic
parsing experiments: the term trigger stands for a lexical unit
that can evoke a frame, the term role for frame element, and
role candidate for the sequence of words that instantiates a
role.
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PMB OntoNotes
avg. bn+bc nw+mz pt tc wb

frame trigger detection 93.75 92.92 92.35 92.14 96.41 94.79 91.56
frame label selection 89.75 89.57 88.56 88.65 95.81 92.5 86.15

(w. entity and event labels)
frame label selection 83.9 89.06 87.93 87.78 97.11 92.06 85.48

(only VA-labels)
*upper bound 99.81 99.46 99.59 99.38 99.71 99.65 98.88

role candidate detection 91.1 87.47** 86.54** 87.91** 91.45** 86.45** 86.25**
role label selection (head) 86.15 89.67** 88.36** 90.08** 93.16** 89.56** 88.15**
role label selection (full span) – 88.34** 87.61** 88.63** 92.11** 88.82** 86.43**

role label selection 85.8 92.1
(baseline, head) Bladier et al. (2021) InVeRo-XL (Conia et al., 2021)
role label selection – 86.8
(baseline, full span) InVeRo-XL (Conia et al., 2021)

avg. sent. length 5.99 14.73 14.36 20.09 11.02 8.04 16.71
# sents 902 9260 2968 2568 1051 1618 1055

Table 3: Frame-semantic parsing results. We use the frame inventory from VerbAtlas (VA; Di Fabio et al., 2019) in
our semantic representations. The role label selection for full spans is not evaluated for the PMB experiment, since
only semantic heads of role spans are annotated in gold PMB data. *Since some labels from the test set are not
present in the training data, we measure the highest possible upper bound for the VA-label selection. **We measure
the scores for OntoNotes only for pre-identified predicates to make the evaluations comparable with the reported
baseline. bn+bc = broadcast, nw+mz = newswire, pt = bible, tc = telephone conversations, wb = web.

Gold frame Predicted frame %

GO-FORWARD LEAVE DEPART RUN-AWAY 0.7
CONTINUE LEAVE DEPART RUN-AWAY 0.48
INCITE INDUCE EXIST-WITH-FEATURE 0.42
KNOW MEET 0.42
RESULT CONSEQUENCE ARRIVE 0.42

Table 4: Most frequent frame label prediction mistakes
with the percentage from the overall frame label predic-
tion errors, measured on OntoNotes data.

Supertag % %
(PMB) (ON)

(CL (CO (NP ) (NUC (V ⋄)) (NP ))) 38.82 8.5
(CL (CO (NP ) (NUC (V ⋄)))) 14.37 6.64
(CL (CO (NP ) (NUC (V ⋄)) (PP ))) 10.62 3.3
(CL (CO (NP ) (NUC (V ⋄)) (NP ) (NP ))) 7.6 0.1
(CL (CO (NP ) (NUC (V ⋄)) (P ) (NP ))) 5.28 0.01

Table 5: Most common predicative supertags for PMB
and OntoNotes (ON) data.

model frequently picks these two labels instead of
some less frequent frame-specific role labels. For
example in (3), the correct role set for the COME-
AFTER FOLLOW-IN-TIME frame is THEME and CO-
THEME, but the model predicts the more common
AGENT and THEME role labels.

(3) That[agent] follows[come-after follow-in-time] a
decline[theme] in the prior six months [. . .]

As for the errors in prediction of argument linking,
the most errors emerge when an infinitive modifies

a noun or an adjective (see an example in (4)). The
supertag for the verb in such constructions has the
type of an auxiliary tree and thus lacks the agentive
argument slot. In these cases, the semantic role
corresponding to the PIVOT variable sometimes is
not predicted (we described the PIVOT in greater
detail in Section 2.3). For example, in (4) for the
MANAGE frame, only the role THEME is predicted,
but not the AGENT role for strategy.

(4) A time-honored strategy to control[manage]
the masses[theme].

5 Conclusion and Future Work

In this paper, we presented the first broad-coverage
frame-semantic parser with Tree Wrapping Gram-
mar, a grammar formalism closely related to Tree
Adjoining Grammar. To develop our parser, we
adapted the theoretical approach of Kallmeyer and
Osswald (2013) to semantic parsing with TAG
and transferred it to TWG. We explored parsing
strategies for several complex linguistic construc-
tions. We developed our transformer-based lan-
guage model based on the VerbAtlas frame lexicon,
and experimented with English data in several gen-
res. We could see that our semantic parser shows
results close to the state-of-the-art semantic parsers.

In future work we want to explore the transfer-
ability of our approach to different languages, in-
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cluding low-resource ones. Our approach to seman-
tic parsing starts from statistical syntactic parsing
for TWG proposed by Waszczuk (2017); Bladier
et al. (2020b). A recent work by Evang et al. (2022)
presents a modification of this method for cross-
lingual syntactic parsing based on word embed-
dings and English glosses. The underlying idea is
to transfer supertag information from an English
translation to the target sentence via word align-
ments. We plan to extend this method to semantics.

The frame lexicon VerbAtlas, which we use as
a frame inventory for the semantic representations,
lacks relations between frames. In order to enable
semantic inference and logical reasoning with our
parser, we currently investigate possibilities to de-
velop a rule-based mapping from VerbAtlas frames
to FrameNet frames, which would then yield also
hierarchical relations between frames.
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Abstract
The distinction between arguments and ad-
juncts is a fundamental assumption of several
linguistic theories. In this study, we investi-
gate to what extent this distinction is picked
up by a Transformer-based language model.
We use BERT as a case study, operationaliz-
ing arguments and adjuncts as core and non-
core FrameNet frame elements, respectively,
and tying them to activations of particular
BERT neurons. We present evidence, from
English and Korean, that BERT learns more
dedicated representations for arguments than
for adjuncts when fine-tuned on the FrameNet
frame-identification task. We also show that
this distinction is already present in a weaker
form in the vanilla pre-trained model.

1 Introduction

The widely used Transformer-based contextualized
language model BERT (Devlin et al., 2019) has
been extensively studied regarding its capability to
uncover linguistic patterns from raw text, with anal-
yses focused mostly on syntax. Both constituency
and dependency trees were either found encoded
inside the model or were used to probe for syntac-
tic rules such as agreement (Jawahar et al., 2019;
Rogers et al., 2020).

In this paper, we shift the focus of BERT anal-
ysis to the syntax-semantics interface, considering
the foundational distinction between arguments
and adjuncts. According to Koenig et al. (2003),
arguments and adjuncts differ in two crucial ways:
arguments describe necessary participants in the
event described by the verb and are therefore both
obligatory, i.e. they have to be realized by default,
and specific, i.e. they express idiosyncratic prop-
erties of the event or the event class. In contrast,
neither is necessarily true for adjuncts. For exam-
ple, in the sentence Peter praised his colleague
repeatedly, the praising event is accompanied by
two necessary, specific participants, namely a com-
municator, Peter, and an evaluee, the colleague;

in contrast, the adverb repeatedly, which specifies
the frequency, could be left out and applies to a
very broad range of events. The argument–adjunct
distinction has played a major role in linguistic
theory (Chomsky 1981; Pollard and Sag 1994, but
see Przepiórkowski 2016) and has implications for
human language processing (Tutunjian and Boland,
2008) and semantic NLP (Zhang et al., 2020).

We empirically assess the status of the argument–
adjunct disinction in BERT by making use of
FrameNet (Baker et al., 1998) – an implementa-
tion of frame semantics (Fillmore, 1982), a theory
of predicate-argument structure, which describes
predicate meaning in terms of frames (prototypi-
cal situations) and frame elements (the situations’
participants). FrameNet maintains a distinction be-
tween core elements and non-core elements, which
maps onto the argument–adjunct distinction (see
Section 2 for details).

We use a modification of the method of model
analysis proposed by Rethmeier et al. (2020) for
associating neurons inside neural-network models
with features they are particularly attuned to. In
our main analysis, we use FrameNet annotations
to fine-tune BERT for a task – frame identifica-
tion, – for which frame elements are informative,
without exposing the frame-element labels to the
model, and then correlate the learned model rep-
resentations with the presence of these labels. We
also repeat the correlational analysis on the vanilla
(pre-trained) BERT model.

Our contribution is twofold: (a) we extend Reth-
meier et al.’s methodology, which targeted LSTMs,
to BERT and, instead of constructing a probability
distribution of features a given neuron is attuned
with, we extract tight neuron–feature combinations
using correlation analysis, reminiscent of the larger
neuroscience literature on input-specific neural ac-
tivations (Dayan and Abbott, 2001); (b) we use
this method for an analysis of the representation
of arguments vs. adjuncts in Multilingual BERT
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(mBERT) based on English and Korean data. We
find that even though BERT representations are
dominated by frequency effects, with common in-
put patterns more robustly tracked by individual
neurons, arguments and adjuncts differ in their acti-
vation patterns (arguments produce relatively more
robust activations while adjuncts generally lack
highly specialized neurons that track them) and
that this distinction is already present, to a lesser
extent, in a vanilla pre-trained model.1

2 Frame Semantics and FrameNet

Frame semantics (Fillmore, 1982) posits that a key
element of the understanding of an utterance is
knowledge about the situations that the predicates
in it evoke. This knowledge is captured through
frames, schemas that associate predicates (frame-
evoking elements / FEEs) with situations, their in-
ferences, and their relevant participants, which are
realized in language as so-called frame elements.
Frame-semantic resources were first developed for
English (FrameNet; Baker et al., 1998) but have
been extended to other languages (Baker et al.,
2018).

The example given in the introduction, Peter
praised his colleague repeatedly, evokes the
JUDGMENT_COMMUNICATION frame where
a COMMUNICATOR expresses an evaluation
of an EVALUEE. These are two of the core
elements (CEs) of this frame, which generally
meet both of Koenig et al.’s criteria for argu-
menthood: they are obligatory (unless they are
null-instantiated, cf. Fillmore 1986) and they are
specific to frames (or groups of closely related
frames, cf. Fillmore et al. 2004). In contrast, the
JUDGMENT_COMMUNICATION frame contains
a number of non-core elements (NCEs), which do
not meet at least one of the two criteria and thus
show adjunct behavior: they are either not specific
(MANNER, FREQUENCY) or not obligatory
(GROUNDS: the basis for the judgment; ROLE: the
capacity of the evaluee). A similar situation obtains
with many other frequently found frames, and
we assume that the core vs. non-core distinction
largely mirrors the argument/adjunct dichotomy.

Data For our experiments, we use FrameNet cor-
pora in English and Korean. For English, we use
the FrameNet 1.7 lexical unit annotations, which

1The code used for the analyses in this paper
is available at https://github.com/macleginn/
argument-adjunct-framenet

cover over 1.2k frames and 13k unique predicates.
The Korean FrameNet was created around a set of
about 4k sentences translated from English, which
were then added to using crowd sourcing. It aims
for full compatibility with the English FrameNet
(Hahm et al., 2020). We select 50 most frequent
frames in both languages for analysis; the full list is
given in the Appendix. There are 34,373 sentences
in the English train set and 3,819 sentences in the
test set. We use the Korean dataset only as a test set
in a zero-shot setting. It contains 4,591 sentences.

3 Experimental Setup

Fine-tuning BERT We start from a pre-trained
BERT model and fine-tune it to assign a single
frame to each sentence (Hermann et al., 2014) in
line with the FrameNet annotation (cf. Section 2).

We experiment with two variants of the task. In
the FEE present setting, the model is shown com-
plete sentences, including the FEEs, but no frame-
element annotation. This task aims at encouraging
the model to connect FEEs with arguments, which
are known to be relevant for frame identification
(Yang and Mitchell, 2017). Adjuncts are expected
to be less relevant (as they are unspecific) or less
reliable (as they are optional). To select the frame,
we feed the first subword of the first FEE token to a
fully-connected 50-neuron layer (corresponding to
the 50 frames) and obtain a prediction by applying
the usual softmax.2

In the FEE masked setting, all FEE tokens are
replaced with the [MASK] token, so that the model
has to rely on the sentential context to identify the
frame. Our hypothesis is that this version of the
task incentivizes the model to more actively focus
on extracting arguments. In this case, we feed the
embedding of the first masked token into the frame
classification head as above.

In both variants, the model is trained end-to-end
using cross-entropy loss for twenty epochs with
early stopping when the performance on the test set
decreases. We use the pre-trained mBERT model
provided by HuggingFace (Wolf et al., 2020). For
English, we report results for the test set. For Ko-
rean, we adopt a zero-shot setting and, after check-
ing that mBERT fine-tuned on English has some
success in identifying Korean frames, analyze the
activations that Korean sentences produce in it.

2We opt for a simplistic classifier head to keep more infor-
mation in the embeddings.
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Figure 1: Left: Accuracy of predictions based on the
output of different layers (development set). Right: the
Kullback–Leibler divergence between the probability
distribution of frame labels induced by intermediate
layers and by the final layer.

Probing analysis Once the BERT model has
been fine-tuned, we can analyze the activation pat-
terns of different layers of the model (Rethmeier
et al., 2020). On the data side, we cast input sen-
tences as a binary matrix whose columns corre-
spond to the presence or absence of each CE or
NCE in these sentences, i.e. to their indicator func-
tions. On the model side, we associate each input
sentence with a d = 768-dimensional embedding
of the first subword of the FEE token or the embed-
ding of the first [MASK] token, depending on the
setting, for a selected subset of BERT layers. We
then carry out correlational analysis to identify, for
each CE or NCE indicator function and for each
layer of interest, the neuron whose activations are
most strongly correlated with these functions.

To choose layers for the analysis, we evaluated
English model predictions based on the represen-
tations in each layer. The results are shown in
Figure 1. For both variants of the task, we find
similar results: the outputs of the 11th layer are
close to the final layer, and there is a swift increase
in prediction accuracy from the 7–8th layer onward.
On this basis, we probe the activation patterns of
layer 11 (near-convergence) and layer 9 (start of
competitive performance).

Analysis of neural activity was performed in a
similar fashion by Durrani et al. (2020). They, how-
ever, extract activations in the context of specific
tasks, such as POS tagging and syntactic chunking,
instead of feeding sentences to a headless embed-
ding model in an unsupervised setting.

Language FEE FEE MBL RBL
present masked

EN 96 55 15 2
KO 40 21 12 2

Table 1: Frame ID accuracy in % on test set (layer 11).
MBL: majority class baseline, RBL: random baseline

4 Results and Discussion

English Table 1 shows the test-set performance
of layer 11 in the fine-tuned model.3 As expected,
the FEE-present setting is much easier than the
FEE-masked one, where the model still substan-
tially outperforms the baselines.

The results of the correlation analysis are pre-
sented in the scatterplots in Figure 2. Individual
points show, for a frame element with a given fre-
quency, how large the correlation with the most
attuned neuron activation vector in the respective
model is. The left plot shows core elements, the
right plot non-core elements.

The plots show that frequency is the dominating
factor: high-frequency frame elements tend to have
(more or less) dedicated neurons tracking them,
with correlations of 0.4 and above, while this is
not true for low-frequency frame elements. This
is to be expected given the maximum-likelihood
training objective.

However, there still is a clear difference between
CEs and NCEs: even the most frequent NCEs do
not attain correlations above 0.3, and only a handful
show correlations above 0.2, in both the standard
and masked settings. In contrast, the correlations
for CEs with frequencies above 100 are all higher
than 0.2. This shows the model’s low reliance on
NCEs for frame identification.

Comparing the behaviors at layers 9 (red) and
11 (turquoise), we do not see major differences: in
particular for NCEs, the plots are extremely simi-
lar. Comparing the two variants of the task (solid
vs. dashed), we see that the masked-task model
learns less dedicated representations for the CEs
but spends some more effort on representing high-
frequency NCEs – contrary to the expectation we
formulated in Section 3. The global advantage of
CEs over NCEs in all settings leads us to believe
that the model simply relies on arguments in either
case, and that in the masked setting the model just
struggles more to identify where they are.

3Results for layer 12: 96.5/60.8 (EN), 41.3/23.9 (KO).
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Figure 2: English fine-tuned setting: Averages and 95% confidence intervals for maximal correlations between
BERT neurons and CEs (left) / NCEs (right), by frequency. Solid/dashed lines: FEE present/masked task. The
curves show GAM-smoothed averages with 95% confidence intervals.
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Figure 3: Correlations between frames (rows) and their
core elements (columns).

This interpretation is corroborated by an analy-
sis of CE information content. Figure 3 shows a
matrix of correlations between frames with non-
masked FEEs (rows) and their CEs (columns).
Some frames are in a nearly one-to-one correspon-
dence with their CEs, but other CEs can be found
with several frames. Arguably, when FEEs are
present, they form a strong signal together with
the CEs pointing towards particular frames. When
FEEs are masked, however, frequent CEs – pre-
cisely those that are found with many different
frames – become less informative, and the model
shifts some of the weight towards NCEs.

Korean The accuracy results for the zero-shot
application to Korean in Table 1 show similar ten-
dencies to English, but with much lower accuracies.
We attribute this to the simplistic linear classifier
we use (cf. the observations on multilingual zero-
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Figure 4: English vanilla BERT: GAM-smoothed aver-
ages and 95% confidence intervals for maximal corre-
lations between neurons and CEs (left) / NCEs (right),
by frequency. Solid/dashed lines: FEE present/masked
task.

shot transfer by Lauscher et al. 2020). However,
the results of the correlation analysis shown in Fig-
ure 5 are strikingly similar to English: (a) top cor-
relations of neural activations with CEs are much
higher than those with NCEs; (b) strong frequency
effects are evident; (c) the masked variant moves
some focus from CEs to high-frequency NCEs. We
take these observations as evidence that mBERT
represents arguments and adjuncts in a remarkably
similar way across languages as different as En-
glish and Korean, with the latter’s rich morphology
and SOV word order.

Without fine-tuning The above analysis uses
a fine-tuned model. This begs the question of
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Figure 5: Korean zero-shot setup (model fine-tuned for English): GAM-smoothed averages and 95% confidence
intervals for maximal correlations between BERT neurons and CEs (left) / NCEs (right), by frequency. Solid/dashed
lines: FEE present/masked task.

whether the distinction between arguments and ad-
juncts is a side-effect of the fine-tuning task, as
opposed to mBERT’s acquiring it in an unsuper-
vised way in pre-training (Tenney et al., 2019). To
test this, we repeat the experiment using a vanilla
English pre-trained model and the complete Berke-
ley FrameNet 1.7 release instead of the sentences
with most-frequent frames. The results for layer
11, shown in in Figure 4, are remarkably similar in
terms of the general pattern but with significantly
weaker correlations: for CEs, correlations exceed
0.1 reliably for N > 1000, with maximum values
approaching 0.3.4 For NCEs, correlations are al-
most always < 0.1, reaching this value only for
the most frequent NCEs, with N ≈ 5000. This
indicates that after pre-training BERT already has
some notion of the distinction between arguments
and adjuncts, but that this distinction becomes sub-
stantially more pronounced after fine-tuning on a
task for which it is relevant.

5 Conclusion

Our study asked whether BERT can distinguish be-
tween arguments and adjuncts and operationalized
these concepts via FrameNet’s core vs. non-core
frame-element distinction. For both English and
Korean, our analysis of the presence of dedicated

4Two most-frequent frames, AGENT and THEME, are very
general and unsurprisingly display weaker correlations. By
comparison, the next three most-frequent frames, SPEAKER,
GOAL, and TIME, are much richer semantically and have more
dedicated representations.

neurons that track individual frame elements found
that this is the case, with frequency as a major
covariate. The picture is clearer for a fine-tuned
model, but the main patterns emerge already after
pre-training.

On the neural-language-model side, our study
confirms the ability of such models to recover
‘deep’ linguistic categories in an unsupervised man-
ner. On the FrameNet side, our results have bear-
ing on the status of borderline-core frame elements
(Ruppenhofer et al., 2006), for which the behaviour
of the model may serve as a heuristic. A promising
avenue for future work would be to turn around our
setup and to explore BERT representations in or-
der to identify a set of properties that differentiate
arguments and adjuncts from the model’s point of
view, à la Geva et al. (2021).

This work has focused on FrameNet. Other
frameworks giving access to semantic-role infor-
mation, such as the PropBank annotation scheme
(Palmer et al., 2005), AMR (Banarescu et al., 2013),
and UCCA (Abend and Rappoport, 2013), also may
be fruitful for this type of analysis.
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A Appendix

Most frequent frames used in the analysis
ARRIVING, ATTEMPT SUASION, AWARENESS,
BECOMING AWARE, BODY MOVEMENT, BRING-
ING, CATEGORIZATION, CAUSE HARM, CAUSE

MOTION, CHANGE POSITION ON A SCALE,
CHANGE POSTURE, COGITATION, COMING TO

BELIEVE, COMMITMENT, COMMUNICATION

MANNER, COMMUNICATION NOISE, COMMUNI-
CATION RESPONSE, CONTACTING, COTHEME,
DEPARTING, DESIRING, EVIDENCE, EXPE-
RIENCER FOCUS, EXPERIENCER OBJ, FILL-
ING, FLUIDIC MOTION, GIVE IMPRESSION, IM-
PACT, INGESTION, JUDGMENT, JUDGMENT COM-
MUNICATION, JUDGMENT DIRECT ADDRESS,
KILLING, LOCATION OF LIGHT, MANIPULA-
TION, MOTION, MOTION NOISE, PERCEPTION

ACTIVE, PERCEPTION EXPERIENCE, PLACING,
REMOVING, REQUEST, RESIDENCE, REVEAL SE-
CRET, SCRUTINY, SELF MOTION, STATEMENT,
TELLING, TEXT CREATION, USING.
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Abstract

Language researchers have long assumed that
concepts can be represented by sets of seman-
tic features, and have traditionally encountered
challenges in identifying a feature set that could
be sufficiently general to describe the human
conceptual experience in its entirety.

In the dataset of English norms presented by
Binder et al. (2016), also known as Binder
norms, they introduced a new set of neurobio-
logically motivated semantic features in which
conceptual primitives were defined in terms
of modalities of neural information processing.
However, no comparable norms are currently
available for other languages.

In our work, we built the Mandarin Chinese
norm by translating the stimuli used in the orig-
inal study and developed a comparable collec-
tion of human ratings for Mandarin Chinese.
We also conducted some experiments on the au-
tomatic prediction of the Chinese Norms based
on the word embeddings of the corresponding
words to assess the feasibility of modeling ex-
periential semantic features via corpus-based
representations.

1 Introduction

A longstanding research trend in semantics as-
sumes that the conceptual content of lexical items
can be decomposed into semantic features identi-
fying basic meaning components (Vigliocco and
Vinson, 2007). Such features represent semantic
primitives that can be present or absent in the se-
mantic representation of a lexeme, such as boy in
Example (1).

(1) boy [+MALE, -MATURE . . . ]

However, this type of view has some critical lim-
itations: First, discrete features are not suitable
to address the gradient prototypicality of feature-
to-concept associations (Murphy, 2002). Second,

these feature sets tend to be manually selected, and
are generally tailored to a few in vitro examples;
thus, they are unable to account for large portions
of the lexicon of natural languages (Chersoni et al.,
2021).

On one hand, featural representations have the
advantage of human interpretability, as they label
the dimensions of word meanings explicitly, and
provide explanatory factors for their semantic be-
havior; for example, the similarity between beer
and coffee can be explained by assuming that they
share the semantic feature of LIQUID. On the other
hand, this type of features is highly subjective, and
can only be collected through a time-consuming
process of elicitation from human subjects (e.g.
McRae et al. (2005); Vinson and Vigliocco (2008);
Devereux et al. (2014); Buchanan et al. (2019)).

An alternative was proposed by Binder et al.
(2016) using brain-based semantics based on
modalities of neural information processing. Af-
ter reviewing extensive evidence from studies of
human physiology, the authors proposed a dataset
of 535 words described in terms of 68 experien-
tial features, each of which was associated with a
specific neural processing in the neurobiological
literature. The features were categorized according
to 14 different domains of experience (Table 1).

The proposal by Binder et al. (2016) should nat-
urally extend to other languages: If the features are
genuinely neurobiologically motivated, it should
also be possible to use them to describe the essen-
tial meaning components of languages other than
English.1 However, to the best of our knowledge,
Binder-like norms are currently only available for
the English language.2

1See also the recent work of Blasi et al. (2022) on the need
for cognitive science studies to look beyond English, in order
to support claims of universality.

2A partial exception is represented by the collection of
ratings published by Wang et al. (2022); see Section 2.
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Domain Type Domain Meaning components (features)

Sensory Vision VISION, BRIGHT, DARK, COLOUR, PATTERN, LARGE, SMALL, MOTION,
BIOMOTION, FAST, SLOW, SHAPE, COMPLEXITY, FACE, BODY

Sensory Somatic TOUCH, HOT, COLD, SMOOTH, ROUGH, LIGHT, HEAVY, PAIN
Sensory Audition AUDITION, LOUD, LOW, HIGH, SOUND, MUSIC, SPEECH
Sensory Gustation TASTE
Sensory Olfaction SMELL
Motor Motor HEAD,UPPER LIMB, LOWER LIMB, PRACTICE
Spatial Spatial LANDMARK, PATH, SCENE, NEAR, TOWARD, AWAY
Number Number NUMBER
Event Temporal TIME, DURATION, LONG, SHORT
Event Causal CAUSED, CONSEQUENTIAL
Event Social SOCIAL

Cognition Cognition HUMAN, COMMUNICATION, SELF, COGNITION
Evaluation Evaluation BENEFIT, HARM, PLEASANT, UNPLEASANT
Emotion Emotion HAPPY, SAD, ANGRY, DISGUSTED, FEARFUL, SURPRISED

Drive Drive DRIVE, NEEDS
Attention Attention ATTENTION, AROUSAL

Table 1: List of the domains and meaning components (features) in Binder et al. (2016).

Therefore, in our work, we adopted the same
design of Binder norms: We translated the words
in the Binder dataset into Mandarin Chinese, and
obtained ratings from human subjects for each of
the 68 Binder features per word in order to obtain
a comparable dataset. Moreover, we experimented
with regression algorithms to assess the extent to
which such norms could be predicted automatically
based on the text-derived embeddings of the corre-
sponding words.3

2 Related Work

Neurosemantic decoding research, initiated by the
seminal work of Mitchell et al. (2008), has the aim
of creating mappings between different concept
representations, typically from a corpus-derived
one (such as word embedding) to one derived from
human data (such as fMRI scans and semantic
norms). For example, previous studies used fMRI
data to learn mapping from the traditional count-
based distributional models (Devereux et al., 2010;
Murphy et al., 2012), including both count- and
prediction-based vectors (Bulat et al., 2017; Ab-
nar et al., 2018), and topic models (Pereira et al.,
2011, 2013); the same methodology has been used
to map word-embedding models onto feature (Fa-
garasan et al., 2015; Bulat et al., 2016; Derby et al.,
2019) and modality norms (Chersoni et al., 2020)
to ground the vectors in perceptual data and to
make them interpretable. Due to the grounding
on perceptual experience, the Binder features for
English have also been used for the same purpose

3Dataset and code for the experiments will be available at
the following URL: https://github.com/Laniqiu/
norming.

(Utsumi, 2018; Turton et al., 2020; Chersoni et al.,
2021). Notice that, differently from property norms
(McRae et al., 2005; Devereux et al., 2014), the col-
lection process is more constrained: the properties
of concepts are not freely elicited from human par-
ticipants; because the Binder features are a closed
set, the participants were asked to only rate the
relevance of a given feature for a given concept.

We are not currently aware of any other work that
has introduced Binder-like norms for languages
other than English. The recent work by Wang et al.
(2022) introduced a fMRI dataset for Mandarin
Chinese, together with a collection of Binder rat-
ings for the target words. However, their targets
differed from those in the original study by Binder
et al. (2016) (a total of 672 words from the Syn-
onymy Thesaurus of the Harbin Institute of Tech-
nology), and the representation was limited to 54
Binder features, as some of them were excluded
due to high levels of correlation with at least one
of the other features. With the aim of providing a
comparable and more comprehensive resource to
facilitate future experiments on the prediction of
crosslingual norms, we opted to retain the original
set of target words and features.

3 Data Collection

Binder et al. (2016) collected ratings for 68
cognitively-motivated features for 535 words in to-
tal.4 242 words were selected from the Knowledge
Representation in Neural Systems project (Glas-
gow et al., 2016), including 141 nouns, 62 verbs,

4In their paper, they used the feature label Temperature for
features Hot and Cold, Texture for Smooth and Rough, and
Weight for Light and Heavy, resulting in 65 feature categories.
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Type-POS No. of items
Concrete Objects - Nouns 275

Living Things - Nouns 126
Other Natural Objects - Nouns 19

Artifacts - Nouns 130
Concrete Events - Nouns 60
Abstract Entities - Nouns 99
Concrete Actions - Verbs 52
Abstract Actions - Verbs 5

States - Verbs 5
Abstract Properties - Adjectives 13
Physical Properties - Adjectives 26

Table 2: Concept types, parts of speech (POS), and the
number of items in the dataset by Binder et al. (2016).

Word VISION BRIGHT ... COGNITION BENEFIT

公寓(gongyu) 5.56 3.82 ... 0.86 4.60
杏子(xingzi) 4.24 4.06 ... 1.34 3.34

Table 3: Sample of Binder vectors for the words gongyu
(apartment) and xingzi (apricot).

and 39 adjectives, while another 293 words were
added to include more abstract nouns. We adopted
the original set of 535 target words and 68 features
proposed by Binder et al. (2016), and the original
survey queries that they proposed. We translated
them into Mandarin Chinese using simplified char-
acters. This survey was used to elicit the ratings
for the salience of each attribute for each target
word, with the same 0-6 Likert scale used in the
original study (the higher the score, the higher the
relevance of a feature when one has to think about
the target concept, while 0 corresponds to “feature
not applicable to this concept”).

The target words and the survey queries were
translated by two native speakers of Mandarin, who
were Master’s students of linguistics. For features
and target words, we adopted their most common
and core sense in English to translate into their
corresponding Chinese. While some words in col-
loquial uses may have multiple senses, we selected
more specific words which were equally frequent
to the polysemous ones and to the sense expressed
by the English counterparts. We were aware that
the concept of “adjective” could sometimes not eas-
ily be recognized in Chinese, just as the function
of words in the -ed form can be ambiguous in En-
glish as either adjectival or verbal past participle.
When an adjective could be interpreted as other
parts of speech categories (POS), we added an ad-
jectival suffix -的 de to such adjectives to avoid
such potential confusion. The final version of the
survey queries and the target words were manually

checked by one of the authors, who is also a native
Mandarin speaker. The same POS of each word
were maintained for the 535 words, and each word
was associated with survey questions pertaining
to the 68 cognitively motivated features. One tar-
get word in the survey, banjo, was replaced for a
more culturally relevant musical instrument,二胡
erhu, while the other words were the same as their
English counterparts.

As is the case for the Binder norms, we adopted a
continuous rating design to obtain the attributes for
each word. We collected the data on a crowdsourc-
ing platform that is commonly used in China (问卷
星Wenjuanxing), because the rating results might
occur along a continuum and could be subjective
due to the speakers’ personal experiences and back-
grounds, thus, a larger sample size was considered
to be helpful in overcoming this issue. We obtained
8025 sets of ratings from the crowdsourcing survey;
each of the 535 targets obtained 15 sets of rating
results covering all 68 features. The demographics
and the language backgrounds of the participants
were checked before they participated in the survey.
Each participant received RMB$20 after complet-
ing the survey and once their results had passed the
survey’s attention checks.

After completing the survey, we measured the
Spearman correlation between English and Chi-
nese ratings. We found out that the ratings were
quite consistent across languages: on average, we
obtained a correlation of 0.68 across words and a
correlation of 0.59 across features.

4 Experiments

In order to learn to map between word-embedding
spaces and our Chinese Binder features, we trained
regression models using three different regressors,
namely Ridge Regression, Random Forest and Mul-
tilayer Perceptron (MLP) 5, using the ratings of the
68 features in the dataset as the dependent variables
and the dimensions of pretrained word-embedding
models as the independent variables.

Considering that the task requires mapping be-
tween word types that are taken out of context,
we decided to use static word-embedding mod-

5The regression models were implemented using Scikit-
learn (Pedregosa et al., 2011) with standard hyperparam-
eters. The only exception was the MLP, for which
we selected the following parameters after a parameter
search: hidden layer sizes=(50, 10), activation=’identity’,
early stopping=True, max iter=1000 (the other parameters
are the default ones).
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Figure 1: Feature correlation scores by domain type (left) and word correlation scores by POS (right).

els: we used four different types of embeddings:
count-based sparse PPMI vectors (Church and
Hanks, 1990; Bullinaria and Levy, 2007) that were
trained on the Chinese Wikipedia (ppmi.wiki.zh;
Qiu et al. (2018)), Skip-Gram vectors (Mikolov
et al., 2013) that were trained on the Chinese
Wikipedia (sgns.wiki.zh, Qiu et al. (2018)), and
FastText vectors that were trained on the Chinese
Common Crawl (fast.cc.zh) or on the Chinese
Wikipedia (fast.wiki.zh) (Bojanowski et al., 2017)).
All the embedding models had 300 dimensions
as input features for the regressor, except for the
sparse PPMI vectors, which had 350k dimensions.
In addition, we initialized 300-dimensional random
vectors for all the words in the dataset, and used
them to train similar regression models as baselines
(Random). In future, we also plan to test contex-
tualized word embeddings (Devlin et al., 2019) in
the task, although it is worth pointing out that their
performance in out-of-context semantic tasks has
recently been shown not to differ significantly from
that of static models (Lenci et al., 2022).

Following Utsumi (2018), we adopted the leave-
one-out paradigm for data splitting: For each of
the n target words; we extracted one word out and
trained a regression model on the other n − 1 re-

Vectors Model Word Feature
fast.cc.zh Ridge 0.70 0.49
fast.cc.zh RandomForest 0.66 0.36
fast.cc.zh MLP 0.69 0.40

sgns.wiki.zh Ridge 0.66 0.44
sgns.wiki.zh RandomForest 0.63 0.33
sgns.wiki.zh MLP 0.66 0.38
fast.wiki.zh Ridge 0.68 0.47
fast.wiki.zh RandomForest 0.64 0.35
fast.wiki.zh MLP 0.69 0.44

ppmi.wiki.zh Ridge 0.25 0.03
ppmi.wiki.zh RandomForest 0.50 0.07
ppmi.wiki.zh MLP 0.15 0.03

Random Ridge 0.26 -0.01
Random RandomForest 0.51 -0.02
Random MLP 0.49 0.04

Table 4: Word and Feature Spearman correlation for all
regression models (top scores are in bold).

maining words, and then we used the last word as
the test set. The standard metric of the Spearman
correlation was computed to compare the vectors
of the Binder features predicted by the models and
the gold vectors of human ratings (note that only
one word was predicted for each run).
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5 Results

The results in Table 4 reveal that embedding models
based on FastText and Skip Gram had highly sig-
nificant correlations with human scores, and that
the FastText vectors trained on Common Crawl
achieved higher scores than did any of the ones
trained on Wikipedia. However, the sparse PPMI
vectors had a much weaker performance, to the
extent that the scores were close to the regressors
initialized using the random vectors. Both the mod-
els with random and with PPMI vectors failed to
achieve significant correlations at the feature level.
Ridge Regression models were the most accurate,
particularly for the correlations at the feature level.
However, it should be said that the differences be-
tween the regressors trained with Skip-Gram and
FastText are small and not significant, also due to
the relatively small size of the samples.6

We also analyzed the features and the POS that
were predicted better, in comparison to Chersoni
et al. (2021)’s experiment using English data (see
Figure 1). Our analyses revealed that, similarly to
English, the predictions for the COGNITION do-
main were the best. This is not surprising, because
this domain is important for characterizing abstract
concepts, of which textual/linguistic information is
probably the prevailing source for human concept
learning (Vigliocco et al., 2009). Sensory and Mo-
tor features were also predicted at relatively high
correlations level, suggesting that many aspects
of experiential, first-hand information can still be
retrieved from linguistic data (Riordan and Jones,
2011). Finally, domains related to Spatial, Tempo-
ral (NUMBER and EVENT) and Attention turned
out to be most challenging ones, coherently with
the findings of Chersoni et al. (2021)’s experiment.

It can also be seen that, while English nouns
were predicted much better than other POS, similar
correlations were observed for nouns and verbs in
Chinese (adjectives were the most difficult in both
languages).

6 Conclusions

In this paper, we introduced Binder-style norms
for Mandarin Chinese, collected using a similar
method to the original study, and ran regression
experiments from embeddings to norms, showing
that the latter can be predicted with moderate to
high correlations with humans. Such an application

6p-values computed with Fisher’s r-to-z transformation.

is especially interesting because it allows to extend
the norms to large portions of the lexicon.

In the future, we plan to experiment with regres-
sion models based on contextualized vectors and to
run tests for zero-shot crosslingual norms predic-
tions, which could pave the way for the automatic
acquisition of norms in low-resource languages.
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Abstract

Following the data-driven methods of evalua-
tion and error analysis in meaning representa-
tion parsing presented in (Buljan et al., 2022),
we performed an error exploration of an Ab-
stract Meaning Representation (AMR) parser.
Our aim is to perform a diagnosis of the types
of errors found in the output of the tool in
order to implement adaptation and correction
strategies to accommodate these errors. This
article presents the exploration, its results, the
strategies we implemented, and the effect of
these strategies on the performances of the tool.
Though we did not observe a significative rise
on average in the performances of the tool, we
got much better results in some cases using our
adaptation techniques.

1 Introduction

Semantic parsing of natural language is the task
of extracting a formal meaning structure from a
natural language sentence. Semantics of natural
languages can be formalised in various ways, see
for instance Bos (2011) and more recently Žabokrt-
ský et al. (2020) for overviews; semantic pars-
ing can be performed from any natural language
into any of the semantic formalisms. One of
these formalisms, Abstract Meaning Representa-
tions (AMR, Banarescu et al. (2013)) has been
widely used in the context of deep semantic parsing
of English and up to at least ten other languages,
including French, German, Spanish, Italian, and
Polish. There are two main types of approaches to
multilingual AMRs: either the AMR graphs con-
cepts are consistent with the target language (e.g.
French concepts for French sentences), or the pars-
ing results in an AMR graph with English concepts
(Propbank-based). In this paper, we work in the
scope of the latter approach. Machine semantic
parsing of English has reached high-quality results,
scoring over 83% Smatch score (Cai and Knight,

2013)1 for the state of the art approaches (Yu and
Gildea, 2022). In this context, we want to focus on
the remaining 17%, and investigate both why the
parser performs badly on these inputs and why the
evaluation techniques would consider these parses
as bad ones. We have limited our error explorations
to languages we were familiar with; in particular,
expert annotators familiar with Chinese should be
involved in a follow-up study covering Chinese, for
which a large amount of AMR annotation has been
done. Machine AMR parsing works well, mak-
ing the cases where it performs badly particularly
interesting both linguistically and for deep learn-
ing studies. To make AMR parsing truly usable
and reliable for real-life applications such as auto-
matic summarization (Huang et al., 2022), ques-
tion/answer generation (Deng et al., 2022), and
neural machine translation (Li and Flanigan, 2022)
we need to be able to trust it. We believe that this
trust will come from a deep understanding of both
our models and our data. The work presented in
this article takes roots in explainability of artificial
intelligence and computational linguistics. We con-
duct an error analysis and annotation exploration of
the 50 worst examples from development corpora.
We work in a multilingual context, on English (EN),
French (FR), German (DE), Spanish (ES), Italian
(IT), and Polish (PL). Our aim in this article is to
share the error categories that we observed along
with our attempts to remediate these errors, and
the results of these attempts, in particular in terms
of (non-significant) effects on the Smatch score.
While our work constitutes a negative proof of con-
cept, we still think it is an important contribution to
share in the field to help to constitute a baseline for
such adaptation techniques and encourage research
and dialogues around them.

1A Python package is available at https://github.com/
snowblink14/smatch/
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2 AMR Parsing

AMR parsing was explicitly developed for English
only. Its goal was to represent sentences through
relations between predicates and their semantic
arguments. These representations are now machine-
generated and have been extended to at least ten
other languages.

Abstract Meaning Representations In AMR,
each sentence is represented with a rooted, directed,
acyclic graph with labelled edges, where nodes are
instances, concepts or literals, and edges are rela-
tions (figure 1). A single AMR graph can represent
several natural language sentences as AMRs do not
map words in a sentence to parts of the graph, but
rather represent the semantic links that appear in
the sentence or sequence of sentences. The goal
of AMR representations is to abstract from syn-
tactic constraints: sentences that have the same
meaning but different formulations are represented
with the same AMR. The representations are based
on frames from PropBank (Kingsbury and Palmer,
2002), and the concepts and relations are either
extracted from PropBank or English lemmas.

(h / hear-01 # “is a” relation (instantiation)
:ARG0 (w / woman) # relation
:ARG1 (c / cat

:quant 2)) # attribute

Figure 1: AMR graph for “the woman heard two cats”.

Machine AMR Parsing The AMR parser we
explore is based on AMRlib2 for which the un-
derlying language model T5 was changed for the
multilingual MT5. We only used the T5/MT5 mod-
els since at the time we began our study they gave
the best results (on English). AMRlib is based on
a seq2seq model and outputs a “raw” AMR graph
(without instance variables). The variables are in-
serted in a postprocessing step. If the raw graph
contains too many errors (e.g. missing or addi-
tional quotes or parentheses), the postprocessing
step loops through the raw graph until it has found a
clean beginning. In this case, the final AMR graph
lacks some instances and relations.

Data The training data for our parser is based on
the English corpus of AMR 3.0 (LDC2020T023).
These corpora are mainly based on news reels. To
obtain multilingual parsing, we trained our modi-
fied AMRlib using MT5 (instead of the monolin-

2https://github.com/bjascob/amrlib
3https://catalog.ldc.upenn.edu/LDC2020T02

IT ES DE FR PL
73.9 74.4 71.0 74.0 72.2

Table 1: Results for multilingual parsing evaluation.

gual T5) on data obtained by machine translation of
English data to French, German, Spanish, Italian,
and Polish. To reinforce the training, the parser
was trained for each language on both corpora in
English and in the target language. The AMR test
corpus has been translated manually into German,
Italian, Spanish, and Chinese (LDC2020T07). We
evaluated on the first three of these and added the
machine-translated versions for French and Polish
since there is no manual translation of the sentences
of the test corpora for these languages available.
The results of our evaluation are listed in table 1.

3 Error Exploration

We performed an error analysis of the parser’s out-
puts. We identified and implemented two strategies
based on this analysis. Our results show improve-
ments in the parsing results that are qualitatively in-
teresting but quantitatively not significant enough.

Our analysis was done on the development cor-
pus of AMR 3.0 (LDC2020T02), as we wanted to
avoid introducing any bias in our study by using
the test corpus. The sentences were machine trans-
lated into the given language, parsed using a model
trained on the machine-translated training corpus,
and then evaluated using the Smatch Python pack-
age against the gold development corpus. Then,
the sentences were ranked by worst Smatch score,
and the 50 first ones were annotated. Table 2 shows
the Smatch scores for the first and 50th worst sen-
tences, per language.

Smatch EN FR DE ES IT PL
worst 25.0 22.2 13.3 13.3 20.7 11.8
50th 60.9 49.6 46.8 48.9 49.5 47.4

Table 2: Worst and 50th worst Smatch per language.

3.1 Error Categories
We identified seven categories of errors in the de-
velopment data: (1) translation, (2) coordination,
(3) input-based errors, (4) incomplete output, (5)
reification, (6) errors in gold annotation, (7) other.
These categories are listed in the order used for the
exclusive annotation: if an error is annotated as a
translation one, we did not try to annotate it further
as belonging to another category as well.
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(1) Translation Translation-based errors have
different origins: some of these come from wrong
translations from English to the target language,
which yields a bad parsing; others come from sen-
tences for which the wordings in English and in
the target language are structurally or lexically very
different. Note that for DE, ES, and IT we used
the official translations provided by LDC, so for
these languages translation errors are of the second
category. Some of the sentences contain technical
terms which are badly or inexactly translated. The
translation can also contain hallucinations because
of the underlying seq2seq model, which adds parts
that were not in the original sentence to the trans-
lated one. Lastly, the translation introduces syn-
onymy in the AMR concepts that are used to build
the graph. For instance, the English verb break was
translated correctly into French casser, however,
the AMR parser uses the concept smash-01 instead
of break-01 found in the gold AMR graph.
Example: “This is worth pondering a little!” /
“Cela mérite réflexion un peu !”

gold predicted (on French)
w/worth-02

t/this

:ARG1 p/ponder-01

:ARG2

:ARG1

l/little

:mod

d/deserve-01

t/that

:ARG0 t2/think-01

:ARG1

:ARG1

b/bit

:degree

(2) Coordination This category corresponds
to several subtypes of errors, including sen-
tence coordination/multiple sentences, that can
yield multi-sentence annotations, trigger and-
concepts or not be annotated at all. First, we
labelled here the errors that have to do with a
bad parsing of conjunctions such as “and” or
“but”. Then, the ones that have to do more
largely with sentence segmentation: sentences
which were split incorrectly in two graphs linked
with the multi-sentence-concept, or, on the con-
trary, two sentences which were merged using the
and-concept.
Example: “There is an epidemic of fever and diar-
rhea.”

gold predicted
a/and

e/epidemic

:op1

e2/epidemic

:op2

f/fever

:mod

d/diarrhea

:mod

e/epidemic

a/and

:topic

f/fever

:op1

d/diarrhea

:op2

(3) Input There are errors in the input corpus,
which can in turn yield errors in the output. In
particular, some of the input sentences are too long
for the model; when confronted with too long sen-
tences, the model cuts off the sentence after the
maximal input length has been reached, yielding
incomplete AMR graphs. For Romance languages
(FR, ES, IT), translated sentences are generally
longer than the EN original ones. We also iden-
tified several cases in which the input sentence
contains a misspelt word, or a word that is not in
the model’s vocabulary, or data in a format that is
not identified by the model (ex: date), or named
entities not recognized by the model as such.
Example: “Thaks.”

t/thank-01 p/person

n/name

:name

"Thaks"

:op1

(4) Incomplete output Sometimes, we cannot
identify any of the first three categories of errors,
and the output AMR graph is still incomplete.
Example: “China can not be so ‘Doctrine of the
Mean’ ” / “Chiny nie mogą być więc ‘Doktryną
środka’ ”

gold (left) & predicted on Polish
p/possible-01

-

:polarity

t2/thing

:ARG1

n2/name

:name

s/so

:degree

c/country

:domain

"Doctrine"

:op1

"of"

:op2

"the"

:op3

"Mean"

:op4

n/name

:name

"China"

:op1

ii/infer-01

p/possible-01

:ARG1

-

:polarity

h/have-mod-91

:ARG1

c/country

:ARG1

m/middle

:ARG2

n/name

:name

c2/critical-02

:ARG1-of

"China"

:op1

(5) Reification In the AMR 3.0 documentation,
some relations (e.g. :location) can be reified
into concepts (e.g. be-located-at-91), in order
to be able to add a third argument. A reification
without additional relations is considered seman-
tically equivalent to the non-reified relation, thus
in the gold annotations, both types of annotations
are used. However, the standard evaluation script
Smatch does not detect these equivalencies and
produces a bad score.
Example: “the school is on marcadieu street”
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b/be-located-at-91

s/school

:ARG1

s2/street-address-91

:ARG2

r/road

:ARG2

n2/name

:name

"Marcadieu"

:op1

"Street"

:op2

s/school

s2/street

:location

n/name

:name

"Marcadiu"

:op1

"Street"

:op2

(6) Gold In very few cases, the drop in the
Smatch score comes from a mistake in the gold
annotation and not from one in the parser’s output.
Example: “Legally, there are two remedies.”

t/thing

2

:quant

r/remedy-01

:ARG2-of

l/law

:mod

r/remedy-01

2

:quant

l/legal-02

:ARG1-of

(7) Other After establishing the 6 previous cat-
egories and conducting the annotation, we found
other mistakes, which did not constitute a category
on their own and could not be assigned to any of
the previous categories. These errors have been
annotated in this last category.
Example: “That was one hell of an over-reaction.”/
“To była cholernie przesadna reakcja.”

o3/overreact-01

o2/one

:mod

h/hell

:mod

t/that

:domain

r/react-01

t/that

:ARG1

o/over-03

:ARG1-of

d/damn

:degree

Table 3 shows the distribution of errors across
these categories according to the annotation we per-
formed on the 50 examples with the worst Smatch
scores, for each language. Coordination is the most
important error category for English and French;
for the other languages, it is the second most im-
portant one after Translation. Then come the cate-
gories Input and Reification. Our annotation shows
that the 2 other categories (not counting Other) are
not significant enough with respect to the worst
Smatch score examples.

3.2 Adaptation Strategies and Results

Errors in the input are difficult to correct, as we
would risk overfitting and even worsening the situa-
tion when our parser would be confronted with new
input mistakes outside the kind it would have been
prepared to adapt to. Thus, we focused on coordina-
tion and reification phenomena for the development

of our adaptation and correction strategies.

Reification To check whether the comparison
between reified and non-reified relations impacts
the evaluation, we wrote a script that reified every
occurrence of reifiable relations in both the gold
and system output of the development corpus and
checked whether the Smatch score increases. How-
ever, the impact is minimal, instead of a Smatch
score of 85.4, after reification we got 86.0 for EN.

Syntax-based Sentence Splitting Since we ob-
served that long sentences are cut off when the
number of tokens is bigger than the MT5 model can
handle, we decided to test two sentence-splitting
methods. We parsed all sentences of the develop-
ment corpus with a dependency parser trained on
Universal Dependency data4. In the first test, we
focused on coordination by splitting sentences at
the parataxis dependency relation (see black on
white and white on black parts in figure 2). We
then processed each partial sentence and merged
the AMR graphs using the multi-sentence con-
cept, e.g.:
original sentence: “The first stage splashed down
in the Sea of Japan, the second stage crossed the
main island of Japan.”
partial sentences: (1) “The first stage splashed
down in the Sea of Japan” (2) “the second stage
crossed the main island of Japan.”

The first stage splashed down ... , the second stage crossed ...

det

amod nsubj

root

advmod

...

punct
det

amod nsubj

parataxis

punct

Figure 2: Dependency syntax tree for adjuncts (trun-
cated).

For the second test, we extracted relative clauses
(white on black in cf. figure 3) from the sentence
(black on white in 3), replaced the relative pronoun
(“who”) by the head of the relative clause (to have
a complete sentence). We then ran the AMR parser
on each partial sentence and recombined the AMR
graphs by merging the variables of the head of the
relative clause (here “man”) in both AMR graphs.
original sentence: “The man who saw the dog was
afraid”
partial sentences: (1) “the man was afraid” (2) “the
man saw the dog”

4https://universaldependencies.org
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Language Translation Coord. Input Incomplete output Reification Gold error Other
EN n.a. 21 (42%) 6 (12%) 0 (0%) 7 (14%) 3 (6%) 13 (26%)
FR 13 (26%) 14 (28%) 1 (2%) 0 (0%) 10 (20%) 2 (4%) 10 (20%)
DE 32 (64%) 7 (14%) 7 (14%) 3 (6%) 0 (0%) 0 (0%) 1 (2%)
ES 25 (50%) 7 (14%) 7 (14%) 3 (6%) 0 (0%) 1 (2%) 7 (14%)
IT 26 (52%) 12 (24%) 3 (6%) 5 (10%) 0 (0%) 0 (0%) 4 (8%)
PL 22 (44%) 14 (28%) 1 (2%) 1 (2%) 5 (10%) 2 (4%) 5 (10%)

Table 3: Results of error annotations of the 50 first parses with the worst Smatch scores, per language.

The man who saw the dog was afraid

det

nsubj

nsubj

acl:relcl

det

obj

cop

root

Figure 3: Dependency syntax tree for relative clause.

individual AMR graphs:
(v1 / fear-01

:ARG0 ( v2 / man))
(v3 / see-01
:ARG0 ( v4 / man)
:ARG1 (v5 / dog))

joined graph (instances v2 and v4 merged into m):
(f / fear-01

:ARG0 ( m / man
:ARG0-of (s / see-01

:ARG1 (d / dog))))

Even though for some complex sentences we got
much better results with this splitting technique, for
others this resulted in additional errors. On average
the results in terms of Smatch score did not change.

4 Related Work

There are to our knowledge not many publica-
tions presenting systematic explorations of ma-
chine AMR parsing mistakes for the purpose of im-
proving the explored tool. This observation might
come from a publication bias, as a scientific com-
munity, we tend to publish positive results over
negative ones. In Buljan et al. (2022), the authors
present a discussion of methodological choices for
diagnostic evaluation and error analysis in the con-
text of four semantic parsers, two of which out-
put AMR graphs. This article also explores one
of the alternatives to Smatch, developed for sev-
eral semantic representations of language (not only
AMR), as part of the meaning representation pars-
ing task. Damonte et al. (2017) presents another
way of measuring the quality of automatic parses
by using Smatch to compute more fine-grained
metrics. Stemming from this work, Szubert et al.
(2020) focuses on reentrancy phenomena in AMR
graphs, categorizes their types, and shows results
of experiments performed via an oracle correcting

these errors, augmenting the overall parsing per-
formance by 5%. Smatch is also being questioned
in a multilingual context. In Wein and Schneider
(2022), the authors argue for the necessity of a mul-
tilingual AMR evaluation metric and present a mul-
tilingual adaptation of S2match called XS2match.
The work presented in our article is inspired by
the previous work of the same authors (Wein and
Schneider, 2021); in this work, they annotate trans-
lation divergences between a corpus of English and
a corpus of Spanish data, grounding their annota-
tion schema in AMR and labelling type and cause
of divergences.

5 Discussion and Conclusion

As shown in table 3, the errors for the AMR graphs
on languages other than English mostly concern
the machine translation. Either the (English) input
had typos (like “thaks” for “thanks”) or contained
some named entities spelt in lowercase without any
quotes which were translated literally into the target
languages and not identifiable as named entities
thereafter. The most frequent translation-related
error is when a concept slightly differs from the
concept in the gold. Even though we can consider
these errors as minor, Smatch cannot identify close
synonyms and classifies these differing concepts as
plain errors.

The next steps for our research are twofold. On
one hand, we will continue the diagnostic of our
approach, in particular for languages other than
English, by evaluating our parser using scores such
as XS2match and exploring the errors that get the
lower scores; conjointly, as translation issues were
majoritary in our analyses, we will investigate how
manual correction of translations can improve the
parsing’s quality. On the other hand, we will in-
vestigate other approaches for our parser. Several
categories of errors we diagnosed come from the
seq2seq method and from the machine translation
tools we use to produce the non-English corpora.
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Ševčíková. 2020. Sentence meaning representations
across languages: what can we learn from existing
frameworks? Computational Linguistics, 46(3):605–
665.

251



Proceedings of the 15th International Conference on Computational Semantics pages 252–257
June 21–23, 2023. ©2023 Association for Computational Linguistics

Unsupervised Methods for Domain Specific Ambiguity Detection.
The Case of German Physics Language

Vitor Lécio Lacerda Fontanella
Hochschule Hannover

Institute for Applied Data Science
Hannover, Germany

vitor-lecio.lacerda-fontanella
@hs-hannover.de

Christian Wartena
Hochschule Hannover

Institute for Applied Data Science
Hannover, Germany

christian.wartena
@hs-hannover.de

Abstract

Many terms used in physics have a different
meaning or usage pattern in general language,
constituting a learning barrier in physics teach-
ing. The systematic identification of such terms
is considered to be useful for science education
as well as for terminology extraction. This ar-
ticle compares three methods based on vector
semantics and a simple frequency-based base-
line for automatically identifying terms used
in general language with domain-specific use
in physics. For evaluation, we use ambiguity
scores from a survey among physicists and data
about the number of term senses from Wik-
tionary. We show that the so-called Vector Ini-
tialization method obtains the best results.

1 Introduction

In science, it is common to refer to specific con-
cepts using terms which are also used in every-
day language but with a more specific or different
meaning. At the same time, terms from science
are assimilated into general language, often with a
transformed meaning and use. Since these terms
have a domain-specific use within science, they are
a potential source of ambiguity, generating prob-
lems for successful communication and learning.

More specifically, in science education, it has
been found that students’ conceptions are often re-
lated to terms’ general meanings non-congruent
with the scientific ones (Itza-Ortiz et al., 2003;
Clerk and Rutherford, 2000). In physics teaching,
for example, words like work, energy, momentum,
impulse, power, and mass have a narrower defini-
tion and a meaning that often differs entirely from
the one used in everyday language (Itza-Ortiz et al.,
2003; Song and Carheden, 2014). Song and Carhe-
den (2014) argue that terms with multiple meanings
are more difficult to learn, demanding further nego-
tiation, expansion, and correct contextualization of
their meanings. They also showed in a study with

words from the chemistry teaching (e.g., solution,
polar, and compound) that disassociating the sci-
entific meaning from the one already acquired in
everyday life is often hard. Moreover, Itza-Ortiz
et al. (2003) show that students’ ability to distin-
guish the different senses of a term correlates with
test scores in the corresponding discipline.

By recognizing that terms with different mean-
ings and uses in science and general language
represent a learning barrier, their automatic iden-
tification within a discipline becomes a relevant
task, supporting awareness of their use in teach-
ing (Itza-Ortiz et al., 2003; Strömdahl, 2012; Liu
et al., 2022), or even supporting specific teaching
strategies for these cases (Vâlcea, 2019).

In Natural Language Processing (NLP), identify-
ing semantic differences between domains (Syn-
chronic Lexical Semantic Change) is similar to
identifying lexical changes in time (Diachronic Lex-
ical Semantic Change). In both cases, we can use
properties of word embeddings to detect shifts in
the relative positions in the embeddings space. The
Synchronic Lexical Semantic Change has recently
received attention in engineering requirements (Fer-
rari and Esuli, 2019; Jain et al., 2019; Mishra and
Sharma, 2019) for the detection of potential sources
of ambiguity. This task is also investigated in ter-
minology extraction (Hätty et al., 2019), where
statistical measures might not identify terms com-
monly used in specific and general contexts as part
of a field’s terminology.

Since word embeddings give a concise represen-
tation of a word’s use (and, according to the distri-
butional hypothesis, the meaning), many authors
use them to study the domain-specific meaning of
words. However, when computing word embed-
dings from two different corpora, we will end up
with incomparable embedding spaces. The main
differences in the proposed approaches deal with
the solutions used to overcome this problem.
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The present paper aims to compare three meth-
ods and a simple baseline for identifying general
language words with a deviant meaning in physics.
For the evaluation, we use two data sets, one ob-
tained by collecting expert judgments on a small
number of nouns and a larger data set derived from
Wiktionary. To the best of our knowledge, this is
the first evaluation of the automatic identification
of general terms with a specific meaning in the
science education domain.

2 Related Work

As mentioned above, we cannot immediately com-
pare word embeddings derived from different cor-
pora since the dimensions are randomly initialized,
and the same dimensions in the two models will
not correspond. The method Vector Initialization
Kim et al. (2014) was the first to use neural network
embeddings and solves this problem by initializing
the embeddings’ training from the previous cor-
pus embeddings, and then comparing the position
of the embedding before and after training. The
hypothesis is that the embeddings’ displacement
after training reflect the word lexical change. This
method was initially aimed at diachronic lexical
change identification but can also be used for syn-
chronic lexical change. Specific for the synchronic
lexical change identification, Ferrari et al. (2017)
and Mishra and Sharma (2019) use a variation of
the Vector Initialization method to investigate lexi-
cal ambiguity between specific domains: they use
marked target words before further training the
embeddings. However, they need to select target
words for the analysis based on their frequencies
in both domain-specific corpora.

Other authors proposed to make the vector
spaces comparable by defining a linear trans-
formation between embedding spaces based on
the solution of the Orthogonal Procrustes Prob-
lem (Hamilton et al., 2016; Jain et al., 2019;
Schlechtweg et al., 2019). In the Orthogonal Pro-
crustes analysis, a mapping matrix is determined
using Singular Value Decomposition that rotates
one of the vector spaces. The optimal alignment is
the one that minimizes the distances between the
embeddings of the same word in both vector spaces.
Schlechtweg et al. (2019) added a pre-processing
step to the procedure: the alignment of the mean
center of the vector spaces before determining the
mapping matrix.

The method proposed by Ferrari and Esuli

(2019), named here as Similar Words, indirectly
measures the similarity of embeddings from dif-
ferent spaces: they generate two lists of the most
similar words using two vector spaces for a tar-
get word. Finally, they compute a rank correlation
between the two lists to get an ambiguity score.

The methods above are based on static embed-
dings, like Word2Vec (Skip-Gram). This way, we
obtain a general word representation in each con-
text. Liu et al. (2022) use dynamic embeddings,
using the average embedding of up to 1000 BERT
embeddings in the corpus. They use a supervised
regression model to identify domain-specific terms.
Therefore we cannot compare their results to those
from the unsupervised approaches discussed above.
Martinc et al. (2020) also use averaged contextual
embeddings. They use the same fine-tuned BERT
embeddings for the general and domain-specific
corpus but take the average for examples from each
corpus separately. Thus the two averages obtained
for each corpus are in the same embedding space
and can be compared immediately.

Beyond qualitative evaluation, authors evalu-
ate their method’s results using manually created
rankings (Ferrari and Esuli, 2019; Schlechtweg
et al., 2019; Liu et al., 2022). Ferrari and Esuli
(2019) only evaluated his method and ambiguity
between specific domains, whereas Schlechtweg
et al. (2019) systematically compared methods but,
for synchronic lexical change, evaluated the meth-
ods only with the ranking of a few words used in
general language and in the context of cooking.
Liu et al. (2022) evaluated two methods (their own
regression model and the unsupervised approach
from Martinc et al. (2020)) on three different do-
mains, generating lists of domain-specific terms.
These lists were then evaluated manually, using
precision as an evaluation measure; however, recall
could not be assessed.

3 Experimental setup

In the following, we will present some (techni-
cal) information about our implementation of four
methods for the identification of terms in general
language with a specific sense in physics: Vector
Initialization, Orthogonal Procrustes, Similar
Words and Relative Frequency. The general idea
behind the methods we compare was already de-
scribed in section 2.

We generated three vector spaces using the Skip-
Gram method from Gensim (Řehřek and Sojka,
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Table 1: Overview of the corpora used.

corpus Physics deNews2020
Sentences 796 167 1 000 000
Tokens 15 506 365 17 624 256
Types 252 468 648 959

2011). The first (model 1) is obtained from a gen-
eral language corpus. The second (model 2) fol-
lows the approach proposed by Kim et al. (2014):
we train the model on the physics corpus, but initial-
ize all vectors withe the embeddings from model 1.
The third vector space (model 3) is obtained from
the physics corpus alone. The embeddings have
200 dimensions, and the window size used in train-
ing was 5. In all cases we computed embeddings
only for words occurring at least 10 times.

For the Vector Initialization method, we calcu-
late the cosine value between the embeddings from
model 1 and model 2. Words with the lowest co-
sine values will assumably have the most signifi-
cant semantic displacement. For the Orthogonal
Procrustes method, we align the vector spaces from
models 1 and 3 after the pre-processing step pro-
posed by Schlechtweg et al. (2019). After align-
ment, we also calculate the cosine values between
the embeddings, expecting words with the same us-
age pattern in the two contexts to be more aligned
after the procedure. Finally, for the Similar Words
method, the ambiguity score will be determined
by comparing the most similar words of the terms
from models 1 and 3. To evaluate the methods, as
a simple baseline, we also sort the words according
to the relative frequency, assuming that all words
frequently used in physics have a specific meaning
in this domain.

4 Data

Identification of terms with domain-specific mean-
ing requires two corpora, a general language cor-
pus and a domain-specific corpus. The general lan-
guage corpus should be, in principle, non-specific
and large, representing, to some extent, everyday
language. The domain-specific corpus (physics cor-
pus) reflects the communicative context of our inter-
est, namely physics teaching. For the present study,
we use a German news corpus denews2020 (Gold-
hahn et al., 2012). For the specific corpus, we use
a corpus of German texts on physics, mostly high-
level textbooks (Lacerda Fontanella et al., 2023).
Table 1 gives some details on both corpora.

Table 2: Number of Words in Evaluation. The first
column gives the number of words initially collected.
The second column the number of the words from this
initial collection that occur at least 10 times in both
corpora.

Total denews ∩ Physics
Survey 48 48

Wiktio. Phy+ 766 212
Wiktio. Phy- 135 660 9997

From the literature, we know a few terms that are
considered problematic since they have a different
meaning in physics than in general language. Such
words are e.g., Arbeit (work, labor), Energie (en-
ergy), Leistung (power, performance), Spannung
(tension), Strom (electricity, current), Temperatur
(temperature), Wärme (heat, warmth) Strömdahl
(2012); Rincke (2010).

However, for a more solid base for evaluation,
we collected a set of 48 nouns, including the words
mentioned above, along with more problematic
and also unproblematic terms. In a survey, we
asked participants to what extent, on a scale from
1 (same meaning) to 5 (totally different meaning),
the meaning of a term differs in everyday use and
the physical context. The ambiguity score for each
term is the mean value of the answers in the survey.
14 subjects completed the survey. They were Ger-
man native speakers with at least a master’s degree
in physics or physics teaching, including teachers,
physicists, and science education researchers. We
used survey data for evaluating the methods us-
ing the Pearson Correlation between the ambiguity
score and the metric obtained for each word from
the methods.

For a second experiment, we collected words
from Wiktionary and counted how many senses for
a word are marked as being specific for physics.
E.g., a word like Kraft (force) appears with four
senses in Wiktionary, one of them referring to
physics. Since we compare senses that differ be-
tween physics and general language, we evaluated
the ranking generated with each method, from po-
tentially more to less ambiguous. We take from
Wiktionary the binary information, no physics
sense (0), and one or more sense in physics (1).
Then, we calculate the area under the curve (AUC)
to evaluate the ranking with this binary information.
The total of words used (shown in Table 2) is much
smaller than the number of words in the Wiktionary,
given that the words must appear in both corpora
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Table 3: Methods Evaluation.

Survey Wiktionary
Method (Correlation) (AUC)

Vector Init. 0.60 0.83
Ortho. Proc. 0.52 0.71
Sim. Words 0.23 0.70

Rel. Freq. 0.58 0.68

Figure 1: Area under the curve for the methods rankings
and the data from Wiktionary.

and hold the minimum frequency requirement for
computing an embedding.

5 Results

Table 3 shows the results of the quantitative eval-
uations of the methods. The method with the best
correlation with the survey ambiguity score was
the Vector Initialization with a moderate person
correlation of 0.60, followed closely by Relative
Frequency (0.58). The similar words method per-
forms extremely bad on this task. For the ranking
experiment, using much more words from Wik-
tionary, the Vector Initialization again is the best
method, but now this method is clearly much better
than the second best method. Relative frequency
here is the worst method, though the differences
between the other methods are quite small. The
good results fron the relative frequency baseline
are not surprising, since relative frequency between
a specific and general corpus is considered to be an
important criterion for terminology identification
(Pazienza et al., 2005). However, Vector Initializa-
tion clearly outperforms the relative frequency.

Figure 2: Correlation between Vector Initialization
cosine values and survey score (Pearson=0.6). The term
’Platte’ (board) is the most out the curve.

Finally we look at some qualitative results and
examples from the experiments. Table 4 shows the
first words in the ranking generated by each method.
Here, the terms selected by the Vector Initialization
methods make most sense, while especially the
Orthogonal Procrustes and Similar Words method
give a number of words that seem not to be related
to physics at all.

Figure 2 displays the words of the survey with
their averaged survey score and computed score.
The participants did not perceive Platte (board) as
ambiguous. Looking at some sentences with the
term, we observe that this term is used in German
very often referring to music albums. We believe
the participants would hardly consider this sense
while answering the survey.

Figure 3 shows the effect of the vector initializa-
tion method, displaying two terms on their original
position and on their position after continued train-
ing on the TeCoPhy corpus. We see that the terms
move in the direction of other typical physics terms.

6 Conclusion

Lexical ambiguity is a general challenge in com-
municative situations and an important issue in
science education. Identifying domain specific am-
biguity is needed to support the appropriate use of
language in teaching and specific methodologies
for terminology acquisition. In our research, the
Vector Initialization method proved to be the most
effective for identifying lexically ambiguous words.
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Table 4: Twenty top lexical ambiguity candidates.

Ortho Proc Vec Init Similar Words Rel Freq
1 Heim Kern Zwilling Ladung
2 Neo Impuls Ware Flüssigkeit
3 Aussendung Masse Not Masse
4 Kennzeichen Winkel Unterlage Messung
5 Erhalt Ladung Amerikaner Energie
6 Uniform Beobachter Paar Wärme
7 Toleranz Flüssigkeit Lange Definition
8 Ware Einheit Akt Geschwindigkeit
9 Nerv Körper Verbreitung Eigenschaft

10 Visum Funktion Verteilung Winkel
11 Unterlage Gas Schnitt Intensität
12 Grenzübergang Feld Kammer Theorie
13 Bund Volumen Bestimmung Körper
14 Rausch Intensität Zähler Experiment
15 Hamilton Ordnung Produkt Beschreibung
16 Spaltung Feder Ruf Universum
17 Plus Spannung Siemens Spektrum
18 Weiss Strom Signal Gas
19 Profil Summe Brief Spannung
20 Messe Dimension Fluss Strömung

Figure 3: TSNE projection (Maaten and Hinton, 2008)
of the most similar word embeddings for the terms Kraft
(force) and Spannung (tension, stress, voltage) in model
1 and model 2.

This method achieved the highest Pearson correla-
tion with the survey and AUC calculated with the
Wiktionary data. However, in a different study by
Schlechtweg et al. (2019), the Vector Initialization
method performed poorly when ranking 22 target
words. Such conflicting results may be due to the
differences in the tasks involved, namely ranking
target words versus automatically identifying lexi-
cal change.

Moreover, identifying lexical changes can aid in
terminology extraction (Hätty et al., 2019), since
it can uncover terms with a specialized meaning
within a particular domain, despite being frequently
used in general language. Such terms may not
be found purely based on their frequency. Our

research shows that the Vector Initialization method
holds more promise than Orthogonal Procrustes as
an additional technique for terminology extraction
in science education.

A direction for future work is to bring the
method to individual occurrences of a word: when
finding an instance of an ambiguous word, we
would like to be able to see whether the general or
domain-specific meaning of the word is intended.
This could finally help to see whether students use
a word in the correct sense or whether they are
misled by the everyday meaning of a specific term.
For this purpose, we plan to explore methods based
on contextual embeddings and evaluate their appli-
cability to science education.
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Abstract

Definition Modeling, the task of generating def-
initions, was first proposed as a means to evalu-
ate the semantic quality of word embeddings—
a coherent lexical semantic representations of a
word in context should contain all the informa-
tion necessary to generate its definition. The
relative novelty of this task entails that we do
not know which factors are actually relied upon
by a Definition Modeling system. In this pa-
per, we present evidence that the task may not
involve as much semantics as one might ex-
pect: we show how an earlier model from the
literature is both rather insensitive to seman-
tic aspects such as explicit polysemy, as well
as reliant on formal similarities between head-
words and words occurring in its glosses, cast-
ing doubt on the validity of the task as a means
to evaluate embeddings.

1 Introduction

Definition Modeling (Noraset et al., 2017, DefMod)
is a recently introduced NLP task that focuses on
generating a definition gloss given a term to be de-
fined; most implementations rely on an example
of usage as auxiliary input (Ni and Wang, 2017;
Gadetsky et al., 2018; Mickus et al., 2019, a.o.). In
the last few years, it has been the focus of more
than a few research works: datasets have been pro-
posed for languages ranging from Japanese (Huang
et al., 2022) to Wolastoqey (Bear and Cook, 2021),
and DefMod has even been the subject of a recent
SemEval shared task (Mickus et al., 2022).

Practical applications for DefMod abound, from
the generation of lexicographic data for low-
resource languages (Bear and Cook, 2021), to
computer-assisted language learning (Kong et al.,
2022), creating learners’ dictionaries (Jiaxin et al.,
2022), and from explaining slang (Ni and Wang,
2017) to clarifying scientific terminology (August

∗Equal contribution.

et al., 2022). Yet, it was initially conceived by No-
raset et al. (2017) as an evaluation task for word
embeddings. If a word embedding is a coherent
lexical semantic representation, then it ought to
contain all the information necessary to produce a
coherent gloss. Researchers have kept this seman-
tic aspect firmly in mind: for instance, Bevilacqua
et al. (2020) argue that DefMod provides a means
to dispense word-sense disambiguation (WSD) ap-
plications from fixed, rigid sense inventories. More
broadly, dictionaries in NLP are often used to cap-
ture some aspect of semantics.

This point bears closer inquiry. One may expect
that writing definitions requires some knowledge
of the meaning of the headword, but little has been
done to confirm this expectation. Here, we focus
on empirically verifying what impacts a model’s
ability to generate valid definitions. As such, our
interest lies mostly in examining what factors in the
performance of a successful Definition Modeling
system, rather than in the engineering aspects of
DefMod implementations. We therefore re-purpose
the fine-tuning protocol of Bevilacqua et al. (2020)
to train a BART model (Lewis et al., 2020) to gen-
erate definitions, which we subsequently evaluate
on infrequent words: As Bevilacqua et al. have
extensively demonstrated the quality of their model
on English data, it is suitable for our own endeavor.

Our findings suggest that it is possible to gener-
ate definition with little semantic knowledge: Our
DefMod system, far from manipulating semantic
information, mostly relies on identifying morpho-
logical exponents and tying them to lexicographic
patterns. Semantic aspects of the headword—e.g.,
its polysemy or frequency—do not appear to weigh
on model performances as captured through auto-
matic metrics.

258



2 Related Works

There is a broad domain of research that focuses
on NLP solutions to lexicography problems and as-
sessing how suitable they are (e.g., Kilgarriff et al.,
2008; Frankenberg-Garcia, 2020; Frankenberg-
Garcia et al., 2020; Hargraves, 2021). Conversely,
many NLP works have used dictionaries to address
semantic tasks, such as hypernym or synonym de-
tection (Chodorow et al., 1985; Gaume et al., 2004)
word-sense-disambiguation (Lesk, 1986; Muller
et al., 2006; Segonne et al., 2019), compositional
semantics (Zanzotto et al., 2010; Hill et al., 2016;
Mickus et al., 2020), interpretability (Chang and
Chen, 2019), representation learning (Bosc and
Vincent, 2018; Tissier et al., 2017) or word retrieval
(Siddique and Sufyan Beg, 2019, a.k.a. reverse dic-
tionaries). We more narrowly concerned ourselves
with definition modeling (Noraset et al., 2017), for-
mulated as a sequence-to-sequence task (Ni and
Wang, 2017; Gadetsky et al., 2018; Mickus et al.,
2019). Our fine-tuning approach is borrowed from
Bevilacqua et al. (2020); note that Huang et al.
(2021) also employed a PLM (viz. T5, Raffel et al.,
2020). We refer readers to Gardner et al. (2022) for
a more thorough introduction.

3 Model & dataset

Datasets We retrieve data from DBnary
(Sérasset, 2014),1 an RDF-formatted dump of
Wiktionary projects.2 This source of data has
previously been used to build DefMod datasets
(Mickus et al., 2022), and is available in multiple
languages—a desirable trait for future replication
studies. More details are provided in Appendix B.
For each term to be defined, we also tabulate its
number of occurrences by tallying the number
of string matches in a random subset of 5M
documents from the deduplicated English Oscar
corpus (Ortiz Suárez et al., 2019).

Headword frequency is worth focusing on, for
at least two reasons. First, lexicographers are
more likely to cover frequent words: dictionary-
makers often espouse a data-driven approach to de-
termine whether words should be included in gen-
eral or specialized dictionaries (Hartmann, 1992;
Frankenberg-Garcia et al., 2020);3 Second, dictio-

1http://kaiko.getalp.org/about-dbnary/
2http://wiktionary.org/
3Lack of corpus evidence may also be reason enough

for lexicographers to ignore rarer words (Hanks, 2009,
2012). Dictionaries often rely on usage data to select entries

nary users should also be less familiar with rarer
words—and likely require definitions. Hence, we
set aside definitions where the headword has five or
fewer occurrences in our Oscar subset for test pur-
poses only, and further distinguish low-frequency
headwords depending on whether they are attested
in our Oscar sample. Remaining headwords are
then split 80–10–10 between train, validation, and
a second held out test set, so as to also measure
models on identically distributed items. As such,
we have three test sets, distinguished by the fre-
quency of the headword in our Oscar sample: We
note as # = 0 the test set comprised of forms
unattested in the sample; # ≤ 5 corresponds to
headwords with five or fewer occurrences; # > 5
matches with train set and validation set conditions.

Model The core of our methodology is borrowed
from Bevilacqua et al. (2020): we fine-tune a gen-
erative pretrained language model, namely BART
(Lewis et al., 2020), to produce an output gloss
given an input example of usage, where the term
to be defined is highlighted by means of special
tokens <define> and </define>. We justify
our adoption of their methodology by the fact that
they report high results, through extensive NLG
and WSD evaluation: as such, the approach they
propose is representative of successful modern ap-
proaches to DefMod, and is suitable for a study
such as ours. We refer the reader to their paper and
Appendix A for details.

We expect DefMod systems to be sensitive to
the variety of examples of usages and number of
target glosses: more examples of usage should lead
to higher performances, whereas not exposing the
model to polysemy should be detrimental. This can
be tested by down-sampling the training set, so as
to select one gloss per headword (1G or ∀G) and/or
one example of usage per gloss (1E or ∀E). This
leads us to defining four related models: ∀G∀E,
∀G1E, 1G∀E, and 1G1E. 4

4 Impact of frequency, polysemy and
contextual diversity

Corresponding results in terms of BLEU, shown
in Table 1, are in line with similar results on un-

(e.g., https://www.merriam-webster.com/help/
faq-words-into-dictionary)

4Using this notation, 1G∀E means that, for a given head-
word, we randomly selected one gloss with all its correspond-
ing examples; for ∀G1E, all glosses were considered but with
only one randomly selected example for each.
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Config Split
Val. # > 5 # ≤ 5 # = 0

∀G∀E 9.07 9.13 11.15 10.85
∀G1E 9.06 9.10 11.11 10.94
1G∀E 8.29 8.32 10.69 10.53
1G1E 8.49 8.53 11.06 10.87

Table 1: Average BLEU performances on held-out sets.
Averaged on 5 runs; std. dev. < ±0.001 always.

seen headwords e.g. in Bevilacqua et al. (2020).5

They also highlight a strikingly consistent behavior
across all four configurations: Mann-Whitney U
tests stress that we do not observe lower perfor-
mances for rarer words, as one would naively ex-
pect, except in few cases (∀G∀E, ∀G1E and 1G1E
models, when comparing unattested and rare head-
words) with relatively high p-values given the sam-
ple sizes (p > 0.01 always).

Another way to stress the lack of effect re-
lated to explicit polysemy or contextual diversity
consists in correlating BLEU scores across mod-
els: Comparing the BLEU scores obtained by one
model (say the ∀G∀E) to those of another model
(e.g., the 1G1E model) indicates whether they be-
have differently or whether BLEU scores are dis-
tributed in roughly the same fashion. We sys-
tematically observe very high Pearson coefficients
(0.82 < r < 0.90). In other words, definitions
that are poorly handled in any model will in all
likelihood be poorly handled in all other models,
and definitions that are easy for any single model
will be easy for all other models. We provide a
breakdown per split and per model in Appendix C,
Table 6.

5 Digging further: manual evaluation

To better understand model behavior, we sample
50 outputs of the ∀G∀E model, per BLEU quartile,
for the validation split and our three test splits. We
then annotate these 800 items as follows.

5.1 Annotation scheme

Sample items for all annotations are provided in
Table 2.

5We observed similar patterns with most widely-used auto-
matic NLG metrics, and focus on BLEU in the present article
for brievity. Nonetheless, see e.g. Roy et al. (2021) for a
discussion of the limitations of this metric.

Fluency (FL) measures if the output is free of
grammar or commonsense mistakes. For instance,
“(intransitive) To go too far; to
go too far.” is rated with a FL of 1, and
“(architecture) A belfry” is rated 5.

Factuality (FA) consists in ensuring that gen-
erated glosses contain only and all the facts rel-
evant to the target senses. Hence the output
“Not stained.” generated for the headword
unsatined is annotated with a FA of 1, whereas
the output “A small flag.” for the headword
flaglet is rated with a FA of 5.

PoS-appropriateness (PA) A PoS-appropriate
output defines its headwords using a phrase that
match its part of speech—e.g., defining adjective
with adjectival phrases and nouns with noun
phrases. As such, the adjective headword fried
yields the PoS-inappropriate “(transitive)
To cook (something) in a frying
pan.”, while the production for the verb unsub-
stantiate, viz. “(intransitive) To make
unsubstantiated claims.” has a PA of 1.

Pattern-based construction (PB) An output is
said to display a pattern-based construction when-
ever it contains only words that are semantically
tenuous or morphologically related to the head-
word. The headword clacky thus yield the PB
output “Resembling or characteristic
of clacking.”, and the headword fare yields
the non-PB production “(intransitive) To
do well or poorly.” 6

5.2 Results of the manual evaluation

When looking at all 800 annotations, we find that
outputs tend to be fluent (average FL of 4.37) and
overwhelmingly PoS-appropriate ( 95%). They
frequently involve patterns (36.5% of PBs) which
often involve a straight copy of the headword (10%
of all productions). On the other hand, factuality is
lacking (average FL of 2.69).

Inter-annotator agreement To quantify how
consensual our annotations are, we randomly sam-
ple 200 items for dual annotation. Results in Ta-
ble 3 highlight that, while the two annotators have
different sensibilities as to the magnitude of the
mistakes in FL and FA (as shown by the low κ),
relative judgments on fluency and factuality are

6FA and FL are on a 5-point scale, PA and PB are binary.
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POS example target hypothesis annotation

verb Thus was th’ accomplish’d squire en-
dued / With gifts and knowledge
per’lous shrewd .

To invest (someone) with a given qual-
ity, property etc.; to endow.

(obsolete, transitive) To
supply; to supply; to sup-
ply.

FL 1

noun The wealth of those societies in which
the capitalist mode of production pre-
vails, presents itself as “an immense ac-
cumulation of commodities,” its unit be-
ing a single commodity.

(Marxism) A combination of productive
forces such as labour power and means
of production, and social and technical
relations of production such as property,
power, laws and regulations, etc.

(economics) The eco-
nomic system in which
the production of goods
and services is based
on the production of
commodities.

FL 3

noun Often, though, a suki to the chest will
cause the sword to become lodged be-
tween bone and cartilage making it very
difficult to quickly remove.

(martial arts) An opening to the enemy;
a weak spot that provides an advantage
for one’s opponent.

(historical) A blow made
by a sword to the chest.

FL 5

verb [...] the higher of them can never abut
on a pyknon in the case envisaged here,
where the tone is introduced to disjoin
the tetrachords.

(transitive) To border on. (music, transitive) To play
(a note) at the same time.

FA 1

noun “Kurkuls are our enemy,” he shouted,
“and we must exterminate them as a so-
cial class. [...]

(historical) A rich or supposedly rich
peasant, targeted during Soviet collec-
tivization, especially in the context of
Ukraine or Ukrainians; kulak.

(rare) A kurkul. FA 3

adj. And its success or failure is likely to tell
whether talents [...] make new fortunes
from the nonentertainment companies
that are looking to Hollywood.

Not of or pertaining to entertainment. Not entertainment. FA 5

adj. an arrant knave, arrant nonsense (chiefly, with a negative connotation,
dated) Complete; downright; utter.

(obsolete, transitive) To
make up; to invent; to in-
vent.

PA 0

noun [...] Another is to ban planned obso-
lescence, so manufacturers can’t create
products that are designed to fail .

(uncountable) The state of being
obsolete—no longer in use; gone into
disuse; disused or neglected.

The state or condition of
being obsolescent.

PA 1

noun A canister of flour from the kitchen had
been thrown at the looking-glass and lay
like trampled snow over the remains of
a decent blue suit with the lining ripped
out which lay on top of the ruin of a
plastic wardrobe.

A covering for the inside surface of
something.

The outer layer of a gar-
ment.

PB 0

adj. an obliquangular triangle (archaic, geometry) Formed of oblique
angles.

(geometry) Of or pertain-
ing to an oblique angle

PB 1

Table 2: Example of annotated items. Word being defined in bold in the example of usage.

Trait Cohen κ Spearman ρ Pearson r

FL 0.405 0.633 0.693
FA 0.374 0.741 0.768
PA 1.000 1.000 1.000
PB 0.780 0.784 0.784

Table 3: Manual annotations, inter-annotator agreement.
Pearson r were computed on z-normalized annotations.

consistent (as shown by ρ and r). Hence, we z-
normalize FA and FL in the rest of this analysis.

Effects of patterns Mann-Whitney U-tests on FA
and FL annotations show that non-pattern-based
outputs are statistically rated with lower FL (p <
3 · 10−6, common language effect size f = 42.3%)

and lower FA (p < 2 · 10−9, f = 37.7%) than
pattern-based definitions, despite no significant dif-
ference in BLEU scores (p = 0.262). On the other
hand, BLEU scores are correlated with FL and FA
ratings (Spearman ρ = 0.094 and ρ = 0.276 re-
spectively). In sum, the morphologically complex
nature of a headword drives much of the behav-
ior of our DefMod system. While BLEU captures
some crucial aspects we expect to be assessed in
DefMod, it is still impervious to this key factor.

To further confirm that patterns are indeed cru-
cial to a DefMod system’s performance, we train
a model on data where headwords have been re-
moved from examples of usages, keeping the sur-
rounding control tokens. This in effect creates a
2-token sentinel for which the decoder must gener-
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Split
Val. # > 5 # ≤ 5 # = 0

5.60 5.72 5.11 4.85

Table 4: Performances with headword ablation

ate a gloss, and deprives the model of information
about headword form. BLEU scores drastically
drop with this ablated train set, as shown in Table 4.
We also find unattested headwords yielding statisti-
cally lower BLEUs than rare headwords, which in
turn yield lower BLEUs than the other two splits
(Mann-Whitney U tests, p < 10−7).

Frequency and polysemy We now return to pol-
ysemy and word frequency. We consider as an indi-
cator of word polysemy the number of definitions
for that headword present in our corpus, whereas
we rely on our Oscar sample to derive frequency
counts. Frequency and definition counts appear to
be highly correlated (Spearman ρ = 0.406), and
both also anti-correlate with PB (ρ = −0.1143 and
ρ = −0.111 respectively), i.e., rare, monosemous
words are defined by the model with patterns (that
is, they are likely morphologically complex). We
also observe an anticorrelation between FL and def-
inition count (Spearman ρ = −0.105), which could
be explained by the fact that patterns tend to yield
more fluent outputs, as we just saw—however, as
we do not observe a correlation between frequency
and FL, the interaction between FL and polysemy
(as measured by definition count) is likely not so
straightforward.7 Finally, BLEU scores do not cor-
relate with word frequency nor definition counts,
which strengthens our claim that this DefMod sys-
tem makes limited use semantic information to
generate glosses—if at all.

FL FA

BertScore (Zhang et al., 2020) 0.16 0.37
BLEU (Papineni et al., 2002) 0.09 0.28
chrF (Popović, 2015) – 0.35
GLEU (Wu et al., 2016) – 0.29
METEOR (Banerjee and Lavie, 2005) – 0.31
ROUGE-L (Lin, 2004) – 0.37
TER (Snover et al., 2006) −0.10−0.27

Table 5: Correlation of FA and FL with NLG metrics.
Missing values correspond to insignificant coefficients.

7Neither do we observe no correlation with FA and PA.

Alternatives to BLEU These annotations leave
one question unanswered: is BLEU an adequate
means of measuring DefMod productions? In Ta-
ble 5, we compare the Spearman correlation coeffi-
cient of various NLG metrics with our FA and FL
annotations. Most NLG metrics do not correlate
with fluency ratings: we posit this is due to the over-
whelming majority of highly fluent productions
in our sample. As for BLEU, it doesn’t produce
the highest (anti-)correlations—they are instead at-
tested with BertScore for FL and ROUGE-L for FA.
Lastly, Mann-Whitney U tests comparing metrics
with respect to PB annotations indicate that most
of these are not sensitive to the presence or absence
of a pattern, with the exception of chrF (f = 0.43)
and TER (f = 0.42). In all, our annotated sample
suggests that most NLG metrics appear to display
a behavior similar to BLEU: they capture factuality
to some extent—but not the importance of patterns.

6 Conclusions

In this work, we have presented how an earlier
Definition Modeling system was able to achieve
reasonable performances and produce fluent out-
puts, although the factual validity leave much to
be desired. This behavior is almost entirely due
to morphologically complex headwords, for which
the model is often able to derive reasonable glosses
by decomposing the headword into a base and an
exponent, and mapping the exponent to one of a
limited set of lexicographic patterns. The model we
studied seems more sensitive to formal traits than to
explicit accounts of polysemy. There are numerous
limitations to this work: we focused on one spe-
cific fine-tuning approach for one specific English
PLM. Nonetheless, we have shown that models
can achieve reasonable performances on DefMod
without relying on semantics, casting doubt on the
task’s usefulness for word embedding evaluation,
as initially suggested by Noraset et al. (2017)

In other words: using lexicographic data as in-
puts for an NLP model does not ensure that it will
pick up on the semantic aspects contained therein.
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Adam Kilgarriff, Miloš Husák, Katy McAdam, Michael
Rundell, and Pavel Rychlý. 2008. GDEX: Automati-
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A Hyperparameters

Models are implemented in fairseq (Ott et al.,
2019). We used the bart large model and fol-
lowed the instructions on the github repository
for finetuning BART on the summary task.8 We
used the same parameters except for the learn-
ing rate, which after some experiments, was set
to 5 · 10−6. For every configuration (∀G∀E,
∀G1E,1G∀E, 1G1E) we kept the model with the
best loss on the validation dataset.

B Data preprocessing

In the present work, we retrieve definition glosses
(i) associated with an example of usage and (ii)
where the term to be defined is tagged as a noun, ad-
jective, verb, adverb or proper noun. Like Bevilac-
qua et al., we also consider MWEs as potential
terms to define.

To highlight a headword within an example of
usage, the approach of Bevilacqua et al. (2020) con-
sists in surrounding them with learned task-specific
control tokens. We therefore parse example of us-
ages using SpaCy9 to retrieve the first sequence of
tokens whose lemmas match with the lemmas of
the term to be defined.

The BART model we fine-tune on DefMod has
been pretrained on OpenWebText, which contains
some pages retrieved from Wiktionary. We preemp-
tively remove these pages from all dataset splits, so
as to ensure there is no overlap between pre-train,
train and test data.

Frequencies are tabulated on a case-folded,
whitespace-normalized subset of the Oscar cor-
pus. In practice, we extract the number of hard
string matches of each headword preprended and
appended with word boundaries.

C BLEU scores correlations

In Table 6, we display how similar are the behaviors
on different models across splits. Each sub-table
corresponds to a different split, and pits all com-
binations of models. For instance, the last cell in
the second row of sub-Table 6c indicates that to
the Pearson correlation between the ∀G1E and the
1G1E on the # ≤ 5 test split is above 88.4%. The
crucial fact that emerges from these tables is the dis-
tribution of BLEU is very similar across all models

8https://github.com/facebookresearch/
fairseq/blob/main/examples/bart/README.
summarization.md

9https://spacy.io/

∀G1E 1G∀E 1G1E
∀G∀E 0.89 0.87 0.85
∀G1E 0.84 0.87
1G∀E 0.88

(a) Validation split

∀G1E 1G∀E 1G1E
∀G∀E 0.89 0.86 0.85
∀G1E 0.83 0.87
1G∀E 0.87

(b) Test # > 5 split

∀G1E 1G∀E 1G1E
∀G∀E 0.88 0.89 0.86
∀G1E 0.85 0.88
1G∀E 0.88

(c) Test # ≤ 5 split

∀G1E 1G∀E 1G1E
∀G∀E 0.88 0.88 0.85
∀G1E 0.86 0.88
1G∀E 0.88

(d) Test # = 0 split

Table 6: BLEU scores correlations (Pearson r)

we tested—which entails that explicit polysemy or
contextual diversity do not weight on performances,
as measured through BLEU scores.

266



Proceedings of the 15th International Conference on Computational Semantics pages 267–274
June 21–23, 2023. ©2023 Association for Computational Linguistics

SMARAGD : Learning SMatch for Accurate and Rapid Approximate
Graph Distance

Juri Opitz Philipp Meier Anette Frank
Dept. of Computational Linguistics

Heidelberg University
69120 Heidelberg

{opitz,meier,frank}@cl.uni-heidelberg.de

Abstract

The similarity of graph structures, such as
Meaning Representations (MRs), is often as-
sessed via structural matching algorithms, such
as SMATCH (Cai and Knight, 2013). How-
ever, SMATCH involves a combinatorial prob-
lem that suffers from NP-completeness, making
large-scale applications, e.g., graph clustering
or search, infeasible. To alleviate this issue, we
learn SMARAGD : Semantic Match for Ac-
curate and Rapid Approximate Graph Distance.
We show the potential of neural networks to
approximate SMATCH scores, i) in linear time
using a machine translation framework to pre-
dict alignments, or ii) in constant time using
a Siamese CNN to directly predict SMATCH
scores. We show that the approximation er-
ror can be substantially reduced through data
augmentation and graph anonymization.

1 Introduction

Semantic graphs such as Meaning Representation
(AMR) are directed, rooted and acyclic, and la-
beled. For instance, in AMR (Banarescu et al.,
2013) labels indicate the events and entities of a
sentence, and structures capture semantic roles and
other key semantics such as coreference.

Often, pairs of MRs need to be studied, using
MR metrics. Classically, MRs are compared to
assess Inter Annotator Agreement in SemBank-
ing or for the purpose of parser evaluation, typi-
cally using the structural SMATCH metric (Cai and
Knight, 2013; Opitz, 2023). Going beyond these
applications, researchers have leveraged SMATCH-
based MR metrics for NLG evaluation (Opitz and
Frank, 2021; Manning and Schneider, 2021), for
re-inforcing AMR parsers (Naseem et al., 2019),
as a basis for a COVID-19 semantics-based search
engine (Bonial et al., 2020), comparison of cross-
lingual AMR (Uhrig et al., 2021; Wein et al., 2022),
and fine-grained argument similarity assessment

(Opitz et al., 2021b). Many of these extended sce-
narios greatly profit from a quick similarity compu-
tation. Also, additional future applications can be
anticipated that require fast metric inference: e.g.,
corpus linguists who want to find instantiations of
abstract semantic patterns in a large corpus.

But graph metrics typically suffer from a high
time complexity: Computation of SMATCH is NP-
hard (Nagarajan and Sviridenko, 2009), and it can
take more than a minute to compare some 1,000
AMR pairs (Song and Gildea, 2019). To understand
that this can become problematic in many setups,
consider a hypothetical user who desires exploring
a (small) AMR-parsed corpus with only n = 1, 000
instances via clustering. The (symmetric) SMATCH

needs to be executed over (n2 − n)/2 = 499, 500
pairs, resulting in a total time of more than 6 hours.

This high time complexity is a well-known bot-
tleneck and negatively impacts AMR evaluation
time (Song and Gildea, 2019), as well as parsing
efficency of approaches involving re-inforcement
learning (Naseem et al., 2019) or graph ensem-
bling (Hoang et al., 2021), where the SMATCH

metric is executed with high frequency. Further-
more, given recent interest into larger meaning rep-
resentations that cover multiple sentences, such
as multi-sentence AMR (O’Gorman et al., 2018),
dialogue AMR (Bonial et al., 2021) or discourse
representation structures (Kamp, 1981; van Noord
et al., 2018), we anticipate that this problem will
become more pressing in the future.

Testing ways to mitigate these issues, we pro-
pose a method that learns to match semantic graphs
from a teacher SMATCH, and show that this can re-
duce AMR clustering time from hours to seconds,
with only little expected loss in accuracy.

Our contributions are:

1. We explore three different neural approaches
to synthesize the combinatorial graph metric
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SMATCH from scratch.

2. We show that we can approximate SMATCH

up to a small error, by leveraging novel data
augmentation tricks.

Our code is available at: https://github.com/
PhMeier/Smaragd/.

2 Related work

Other metrics for MR similarity Recently, re-
searchers have proposed AMR metrics beyond
SMATCH. We can distinguish two lines of work:
i) metrics aiming at extreme efficiency by skip-
ping the alignment and extracting graph parts via
breadth-first traversal (Song and Gildea, 2019; An-
chiêta et al., 2019). ii) Weisfeiler-Leman graph
metrics that aim to reflect human similarity ratings
(Opitz et al., 2021a). Opitz et al. (2020) make an
argument for the importance of graph alignment.

Algorithm synthesis Neural networks have been
studied for solving other problems efficiently. Ex-
amples range from sorting numbers (Graves et al.,
2014; Neelakantan et al., 2016) to solving elabo-
rated tasks such as symbolic integration (Lample
and Charton, 2019), the famous traveling salesman
problem (Gambardella and Dorigo, 1995; Budinich,
1996; Bello et al., 2016; Zhang et al., 2021), and
computer programs (Balog et al., 2016; Nye et al.,
2020; Chen et al., 2021). The ‘long-range arena’
benchmark (Tay et al., 2021) includes algorithm
synthesizing tasks, such as ‘listOps’ (learning to
calculate), or Xpath (tracing a squiggly line), which
prove challenging even for SOTA architectures.
Since structural graph matching with SMATCH con-
stitutes a very hard combinatorial problem, inves-
tigating efficient neural approximations seems an
interesting challenge in general – beyond the use-
case of rapid graph distance calculation.

3 Learning NP-hard graph alignment

The SMATCH metric measures the structural over-
lap of two graphs. We i) compute an alignment
between variable nodes of graphs and ii) assess
triple matches based on the provided alignment.
Formally, we start with two graphs a and b with
variable nodesX = (x1, ...xn) and Y = (y1...ym).
The goal is then to find an optimal alignment

map⋆ : X → Y, (1)

searching for a map that maximizes the number
of triple matches for the two graphs. For instance,

assume two AMR triples (x, ARG0, y) ∈ G and
(u, ARG0, v) ∈ G′. If x = u and y = v, we count
one triple match. Finally:

SMATCH = max
map

score(a, b,map) (2)

Researchers typically use a harmonic mean
based overlap score = F1 = 2PR/(P + R),
where P = |triples(a) ∩ triples(b)|/|triples(a)
and R = |triples(a) ∩ triples(b)|/|triples(b|.

3.1 Setup

Experimental data creation We create the data
for our experiments as follows: 1. We parse 59,255
sentences of the LDC2020T02 AMR dataset with a
parser (Lyu and Titov, 2018) to obtain graphs that
can be aligned to reference graphs; 2. For every par-
allel graph pair (a, b), we use SMATCH (ORACLE)
to compute an F1 score s and the alignment map⋆,
yielding an extended data tuple (a, b, s,map⋆) We
shuffle the data and split it into training, develop-
ment and test set (56255-1500-1500).

Objective and approach The task is to repro-
duce the teacher ORACLE as precisely as possible.
We design and test three different approaches. The
first is indirect, in that it predicts the alignment,
from which we compute the score. The second
directly predicts the scores. The third approach en-
hances the second, to make it even more efficient.

3.2 Synthesis option I: Alignment learning

Here, we aim to learn the alignment itself (Eq. 1)
with an NMT model, as illustrated in Figure 1. For
the input, we linearize the two AMRs and concate-
nate the linearized token sequences with a special
<SEP> token. The output consists of a sequence
xj:yk ... xi:ym ... where in every pair u:v, u is
a variable node from the first AMR mapped to a
node v from the second AMR. The SMATCH score
is then calculated based on the predicted alignment.

To predict the node alignments/mapping of vari-
ables, we use a transformer based encoder-decoder
NMT model. Details about the network structure
and hyperparameters are stated in Appendix A.1.

3.3 Synthesis option II: SMATCH prediction

In this setup, we aim to predict SMATCH F1 scores
for pairs of AMRs directly, in a single step. This
means that we directly learn Eq. 2 with a neural
network and our target is the ORACLE F1 score.
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Figure 2: Implicit CNN-based SMATCH graph metric predictor.

To learn this mapping, we adapt the convolu-
tional neural network (CNN) of Opitz (2020), as
shown in Figure 2. The model was originally in-
tended to assess AMR accuracy (Opitz and Frank,
2019), i.e., measuring AMR parse quality without
a reference. Taking inspiration from human anno-
tators, who exploit a spatial ‘Penman’ arrangement
of AMR graphs for better understanding, it models
directed-acyclic and rooted graphs as 2d structures,
employing a CNN for processing, which is highly
efficient. To feed a pair of AMRs, we remove the
dependency graph encoder of the model and re-
place it with the AMR graph encoder. Moreover,
we increase the depth of the network by adding
one more MLP layer after convolutional encoding.
A basic mean squared error is employed as loss
function. More details about hyperparameters are
stated in Appendix A.2.

3.4 Synthesis option III: AMR Vector learning

Inspired by Reimers and Gurevych (2019), we aim
to make the CNN even more efficient, by allevi-
ating the need for pair-wise model inferences. In-
stead of computing a shared representation of two
CNN-encoded graphs, we process each representa-
tion with an MLP (w/ shared parameters), to obtain
two vectors NN(a) and NN(b). These vectors

are then tuned with signal from ORACLE(s):

L =
∑

(a,b,s)

([
1−|NN(a)−NN(b)|

]
−s
)2

, (3)

where || is returns a vector distance∈ [0, 1]. This
approach enables extremely fast search and clus-
tering: the required (clustering-)model inferences
are O(n) instead of O(n2), since the similarity is
achieved with simple linear vector algebra.

3.5 Data compression and extension tricks

Vocabulary reduction trick The SMATCH met-
ric measures the structural overlap of two graphs.
This means that we can greatly reduce our vocabu-
lary, by assigning each graph pair a local vocabu-
lary (see Figure 3, ‘anonymize’).

First, we gather all nodes from two graphs a
and b, computing a joint vocabulary over the con-
cept nodes. We then relabel the concepts with
integers starting from 1. E.g., consider AMR a:
(r / run-01 :ARG0 (d / duck)), and AMR b: (x
/ run-01 :ARG0 (y / duck) :mod (z / fast)). The
gold alignment is map⋆ = {(r, x), (d, y), (∅, z)}.
Now, we set the shared concepts and relations to
the same index run=run=1 and duck=duck=2 and
:ARG0=:ARG0=3 and distribute the rest of the in-
dices r=4, d=5, x=6, y=7, z=8, fast=9, :mod=10.
This yields equivalent AMRs a′ = (4 / 1 :3 (5 / 2))
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Figure 3: AMR graph anonymization and permutation.

and b′ = (6 / 1 :3 (7 / 2) :10 (8 / 9)). The target align-
ment then equals map⋆ = {(4, 6), (5, 7), (∅, 8)}.
This strategy greatly reduces the vocabulary size,
in our case from 40k tokens to less than 700.

Auxiliary data creation trick We also find that
we can cheaply create auxiliary gold data. We
re-assign different indices to AMR tokens, and cor-
respondingly modify the ORACLE alignment (Fig-
ure 3, ‘permute’). In our experiments, we permute
the existing token-index vocabularies 10 times, re-
sulting in a ten-fold increase of the training data.
We expect that, with this strategy, the model will
better learn properties of permutation invariance,
which in turn will help it synthesize the algorithm.

3.6 Evaluation
Output post-processing For the score synthe-
sis (Option II) and vector synthesis (Option III),
no further post-processing is required, since we
directly obtain the estimated SMATCH scores as
output. In the explicitly synthesized alignment al-
gorithm, however, we get map, which is the pre-
dicted alignment from the sequence-to-sequence
model. In this case, we simply feed map as an
argument into Eq. 2, to obtain the scores.

Evaluation We compare the predicted scores ŷ
against the gold scores y with Pearson’s ρ. How-
ever, for the model that predicts the explicit align-
ment (Option I), we can compute another inter-
esting and meaningful metric. For this, we first
calculate the average SMATCH score over AMR
pairs given the gold alignment map⋆, and then we
calculate the average SMATCH score over AMR
pairs given the predicted alignment m̂ap using Eq.

data trick Eq. 2 Pea’s ρ time(secs)

ORACLE na 77.5 100 28680
rand. baseline na 13.5 22.2 0.4

align. synthesis 39.0 52.8 1089
align. synthesis voc 64.5 80.0 1089
align. synthesis voc+aug 76.4 98.4 1089

score synthesis na 87.5 140
score synthesis voc na 82.0 140
score synthesis voc+aug na 96.8 140

vector synthesis na 84.7 0.7
vector synthesis voc na 75.6 0.7
vector synthesis voc+aug na 94.2 0.7

Table 1: Results of experiments. time: Approximate
time for computing a pair-wise distance matrix on 1k
AMRs on a TI 1080 GPU.

2. Note, that the SMATCH score based on the gold
alignment constitutes an upper bound (max). There-
fore, the SMATCH score based on the predicted
alignment shows us how close we are to this up-
per bound. Our baseline consists of scores that are
computed from a random alignment (random).

Results (Table 1) Our best model is the NMT
approach using both data augmentation tricks. Ob-
taining 98.4 ρ, it very closely approximates the
ORACLE, while being about 30 times faster than
ORACLE and 76.2 points better then the random
baseline. Perhaps the best tradeoff between speed
and approximation performance is gained by the
simple CNN score synthesis (96.8 ρ, 200x faster
than ORACLE), also using both data tricks. The
vector synthesis falls a bit shorter in performance
(94.2 ρ), but it is extremely fast and achieves a
40,000x speed-up compared to ORACLE and about
1500x compared to the NMT approach.1

Consistently, the data extension (aug) is very
useful. However, the vocabulary reduction (voc)
is only useful for the NMT model (+27.2 points),
whereas the scores are lowered for the CNN-based
models (−5.5 for score synthesis, −9.1, vector
synthesis). We conjecture that the CNNs learn
SMATCH more indirectly by exploiting token simi-
larities in the global vocabulary, and therefore strug-
gle more to build a generalizable algorithm, in con-
trast to the bigger NMT transformer that learns to
assess tokens fully from their given graph context.

1Note also that all models in Table 1 are significantly bet-
ter (p<0.001) than the random baseline (one-sided test w/
z-transform).
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4 Conclusion

We tested methods for learning to solve the hard
structural graph matching problem that is key to
many applications where we compare meaning rep-
resentations. To this aim, we explored different
neural architectures, and data augmentation strate-
gies that help models to generalize. Our best mod-
els increase metric calculation speed by a large
factor while incurring only small losses in accu-
racy that can be tolerated in many use cases. Our
work paves the way to emergent use-cases of mean-
ing representation that involve pair-wise analysis:
e.g., semantic clustering or semantic pattern-based
search for corpus linguistic studies.

Limitations

An issue of the tested methods concerns the align-
ment of larger graphs with many variables. On
one hand, when the alignment candidate space in-
creases, the runtime of SMATCH increases expo-
nentially, while our considered approaches remain
fast. However, in such a scenario, the neural mod-
els are bound to trade in some accuracy. Table 4
(Appendix A.3) assesses the effect size for differ-
ently sized alignment candidate spaces: while the
model overall copes with different search space
sizes, the accuracy loss is more considerable for
large problems. We conclude that the fast and ac-
curate alignment of larger AMR graphs remains
a challenging and unsolved problem. However,
note that such a bottleneck even exists for the al-
gorithmic metrics, which either use a hill-climber
that suffers from worsening sub-optimality or re-
quire a costly ILP procedure that may be infeasible
for larger graphs (see Opitz (2023) for discussion
and analysis). In this regard, we believe that our
proposed data extension trick in combination with
long-sequence transformers (Beltagy et al., 2020;
Rae et al., 2020; Choromanski et al., 2021) may
provide valuable means to address this limitation,
or provide useful tradeoffs.

Other limitations are: i) the models that were
trained without our proposed anonymization proto-
col were tested on graphs that contain English con-
cepts, and therefore depend on an English vocabu-
lary. ii) For loading the models, our tested methods
require more RAM memory than SMATCH, which
can be calculated on a low-budget computer.
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parameter value

embedding size 512
encoder 4 transformer layers w/ 4 heads
decoder 4 transformer layers w/ 4 heads
feed forw. dim 2048
loss cross-entropy
weight init xavier
optimizer adam
learning rate 0.0002
batch size 8192 (tokens)

Table 2: Overview of NMT hyper-parameters.

parameter value

emb. dimension 100
‘pixels’ 60x15
CNN encoder concatenate(

256 3x3 convs, 3x3 max pool
128 5x5 convs, 5x5 max pool)

MLP relu layer followed by lin. regressor
weight init xavier
optimizer adam
learning rate 0.001
batch size 64

Table 3: Overview of CNN hyper-parameters.

A Appendix

A.1 Sequence-to-sequence network
parameters

Hyper-parameters for the NMT approach are dis-
played in Table 2. The best model is determined on
the development data by calculating BLEU against
the reference alignments.

A.2 CNN network parameters
Hyper-parameters for the CNN approach are dis-
played in Table 2. The best model is determined
on the development data by calculating Pearson’s
ρ correlation of predicted scores and gold scores.

A.3 Analysis of performance on different
problem sizes

See Table 4.
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∆ vs. ORACLE
data type data size Eq. 2 Pea’s ρ better

full 1500 -1.1 -1.6 -

< 5 vars 505 -0.6 -1.2 yes
< 10 vars 1041 -0.7 -1.2 yes
< 15 vars 1206 -0.9 -1.2 yes
< 20 vars 1353 -0.9 -1.2 yes
< 25 vars 1449 -0.9 -1.3 yes

> 5 vars 940 -1.5 -2.2 no
> 10 vars 476 -2.1 -3.6 no
> 15 vars 318 -2.3 -5.4 no
> 20 vars 183 -3.0 -10.1 no
> 25 vars 83 -4.7 -19.3 no
> 30 vars 37 -8.0 -25.5 no
> 35 vars 20 -12.5 -41.1 no

single snt AMRs 1421 -1.0 -1.5 yes
multi snt AMRs 79 -2.7 -9.6 no

Table 4: Experiments on different test subsets that repre-
sent different problem complexities predicted with our
best model (align. synthesis+voc+aug). <> x vars
means that one of two graphs contains <> x variables.
better: is the drop in accuracy of the model vs. OR-
ACLE smaller compared with the model tested on all
data?
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Abstract

The task of natural language inference (NLI)
asks whether a given premise (expressed in NL)
entails a given NL hypothesis. NLI benchmarks
contain human ratings of entailment, but the
meaning relationships driving these ratings are
not formalized. Can the underlying sentence
pair relationships be made more explicit in an
interpretable yet robust fashion? We compare
semantic structures to represent premise and
hypothesis, including sets of contextualized em-
beddings and semantic graphs (Abstract Mean-
ing Representations), and measure whether the
hypothesis is a semantic substructure of the
premise, utilizing interpretable metrics. Our
evaluation on three English benchmarks finds
value in both contextualized embeddings and
semantic graphs; moreover, they provide com-
plementary signals, and can be leveraged to-
gether in a hybrid model.

1 Introduction

Natural language inference (NLI) and textual en-
tailment (TE) assess whether a hypothesis (H) is
entailed by a premise (P). Systems have various
interesting applications, e.g., the validation of au-
tomatically generated text (Holtzman et al., 2018;
Honovich et al., 2022). Recent systems make use
of neural networks to encodeH and P into a vec-
tor and thereupon make a prediction (Jiang and
de Marneffe, 2019). While this can provide strong
results when such systems are trained on large-
scale training data, the overall decision process is
not transparent and may rely more on spurious cues
than on informed decisions (Poliak et al., 2018).

We aim to develop more transparent alternatives
for NLI prediction, and therefore compare repre-
sentations and metrics to predict entailment. Fig-
ure 1 gives an intuition of how 5 different sentences
overlap in meaning. Representing each sentence
with a semantic structure, we assume that, by and

a) A kitten is drinking fresh milk.

b) The milk is being drunk by a cat

c) The milk is not drunk by any kitten.

d) There is no milk being drunk by a cat.

e) There is milk

Figure 1: Semantic (sub-)structure analysis shows that
4 of 25 candidate relations are true entailment relations:
b) is entailed by a). d) is entailed by c). e) is entailed by
a), b), and c).

large, the semantic elements of an entailed sentence
should be contained within the premise.

These considerations trigger three interesting re-
search questions that we will investigate in this
paper: RQ1. How to characterize a semantic struc-
ture? RQ2. How to determine/measure what is a
substructure? RQ3. Is there a suitable and inter-
pretable structure and measure that help to make
NLI judgments more robust, or more accurate?

To assess RQ1, we test three options: token sets,
sets of contextualized embeddings, or graph-based
meaning representations (MRs). As a meaning
representation, we select Abstract Meaning Rep-
resentation (AMR; Banarescu et al., 2013), using
automatic AMR parses of the NLI sentences. To
assess RQ2, we test different types of metrics that
are designed or adapted to measure entailment on
the selected structures, inspired from research on,
e.g., MT evaluation and MR similarity. One of our
key goals is to investigate whether it is possible
to accurately capture relevant semantic substruc-
ture relationships via meaning representations. Fi-
nally, we show that we can positively answer all
aspects of RQ3: First, besides their enhanced in-
terpretability, unsupervised semantic graph metrics
are more robust and generalize better than fine-
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tuned BERT. Second, importantly, we show that
they are high-precision NLI predictors, a property
that we exploit to achieve strong NLI results with
a simple decomposable hybrid model built from
a fine-tuned BERT on the one hand, and a seman-
tic graph score on the other. Code and data are
available at https://github.com/flipz357/AMR4NLI.

2 Related work

Textual entailment Automatic approaches for
this task date back to, at least, Dagan et al. (2006),
who introduced a shared task for entailment clas-
sification. Since then, we can distinguish many
different kinds of systems for addressing the task
(Androutsopoulos and Malakasiotis, 2010), for in-
stance, based on logics (Bos and Markert, 2005)
or string- and tree-similarity (Zhang and Patrick,
2005), or graph matches of semantic frames and
syntax (Burchardt and Frank, 2006) that aim in a
similar direction as us. Recent releases of large-
scale training corpora, such as SNLI (Bowman
et al., 2015), or MNLI (Williams et al., 2018) can
be exploited for supervised training of strong clas-
sifiers, e.g., by fine-tuning a BERT language model
(Devlin et al., 2019). However, trained systems
tend to suffer from the ‘Clever Hans’ effect and fall
prey to spurious cues (Niven and Kao, 2019; Jin
et al., 2020), such as position (Ko et al., 2020) or
even gender (Sharma et al., 2021). This can lead to
undesired and peculiar NLI system behavior. Po-
liak et al. (2018) show that supervised NLI systems
can make many correct predictions solely based on
P , without even seeing H. In our work, we want
to test more transparent ways of rating entailment.

Metrics and meaning representations In part
due to the reduced dependence on spurious cues,
unsupervised/zero-shot metrics are found in evalu-
ation of MT (e.g., BERTscore (Zhang et al., 2020),
BLEURT (Sellam et al., 2020)), and NLG faithful-
ness checks (Honovich et al., 2022). Through the
lens of abstract meaning representation (Banarescu
et al., 2013), systems perform explainable sentence
similarity (Opitz et al., 2021b; Opitz and Frank,
2022b), NLG evaluation (Opitz and Frank, 2021;
Manning and Schneider, 2021), cross-lingual AMR
analysis (Wein and Schneider, 2021, 2022; Wein
et al., 2022), and search (Bonial et al., 2020; Müller
and Kuwertz, 2022; Opitz et al., 2022). Leung et al.
(2022) discuss different use-cases of embedding-
based and MR-based metrics.

3 Method

3.1 Underlying research hypotheses
RH1: Semantic substructure analysis with
asymmetric metrics can predict entailment We
aim to study the entailment problem through analy-
sis of semantic structure of P andH. To perform
such analysis, we need a metric that can measure
the degree to which H-structure is contained in
the P-structure. Therefore, we hypothesize that
an asymmetric metric is preferable. Note that
asymmetric metrics of complex objects like sets
or graphs tend to be under-studied in NLP.1

RH2: Meaning representations are suitable se-
mantic structures Semantic structures for P/H
should (ideally) hold facts that make them true. In
this work we explore three options to build such
structures forH/P: i) the set of text tokens, ii) the
set of (contextual) embeddings obtained from them,
and iii) graph-structured MRs. It is the latter that
we hope will represent the facts best: A token set
holds ‘facts’ in their surface form, which can be
lossy in morphologically rich languages or with
paraphrases. Contextual embedding sets, on the
other hand, are powerful meaning representations,
but hardly offer interpretability. An MR-structure
is semantically more explicit, and is defined to rep-
resent a sentence’s meaning through its parts.

3.2 Implementation
Preliminaries Let us define a

metricDT : D ×D → [0, 1] (1)

where 1 implies true entailment. With the parame-
ter D we denote the metric domain (i.e., text with
metrictext or MR with metricgraph). The type
parameter T specifies whether the metric is sym-
metric (metricsym), or asymmetric (metricasym).

3.3 Text metrics: metrictext

Token metrics Given a set of tokens fromH and
from P , our asymmetric metrictextasym calculates a

1Indeed, most metrics used in NLP are naturally symmetric
(e.g., cosine distance). Others fuse two asymmetric metrics
into, e.g., an F1 score from precision and recall (Popović,
2015; Zhang et al., 2020). Alternatively, they are inherently
asymmetric but enforce symmetry via balancing with an in-
versely correlated metric, e.g., BLEU (Papineni et al., 2002)
focuses on precision but tries to factor in recall via a ‘brevity
penalty’. Even in related cases, where using an asymmetric
metric seems intuitive, we find that sometimes symmetric met-
rics being used instead, e.g., Ribeiro et al. (2022) design a
baseline for assessing faithfulness of automatically generated
summaries with a symmetric F1 score using an AMR metric.
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unigram precision-score:

TokP = |H|−1 · |toks(H) ∩ toks(P)|, (2)

which is known to be a simple but strong predictor
baseline for NLI-related tasks such as faithfulness
evaluation in generation (Lavie et al., 2004; Baner-
jee and Lavie, 2005; Fadaee et al., 2018) (the most
closely related ‘BLEU-1’ is used in many papers
to assess system outputs). By switchingH and P
in Eq. 2, we calculate TokR, and based on these a
symmetric metrictextsym TokS via harmonic mean.

BERTscore (Zhang et al., 2020) is a contex-
tual embedding metric that calculates a greedy
match between BERT embeddings of two texts,
in our case: hypothesis EH := embeds(H) and
premise EP := embeds(P). For our asymmetric
metrictextasym, we calculate a precision-based score:

BertScoP = |EH|−1
∑

e∈EH

max
e′∈EP

eT e′. (3)

Symmetric metrictextsym BertS is calculated as har-
monic mean of BertScoP and BertScoR, the latter
being obtained by switchingH and P in Eq. 3.

3.4 MR Graph metrics: metricgraph

We study the following (a)symmetric MR metrics.

GTok Emulating TokP and TokS, we introduce
GTokS and GTokP via Eq. 2 applied to two bags
of graphs’ node- and edge-labels.

Structural matching with Smatch (Cai and
Knight, 2013) aligns triples of two graphs for best
matching score, and returns precision (SmatchP)
and a symmetric F1 score (SmatchS). We use the
optimal ILP implementation of Opitz (2023).

Contextualized matching with WWLK aims
at a joint and contextualized assessment of node
semantics and node semantics informed by neigh-
borhood structures. Therefore, Opitz et al. (2021a)
first iteratively contextualize a vector representa-
tion for each node by averaging the embeddings
of all nodes in their immediate neighborhood (the
iteration count is indicated by K, which we set
to 1). The normalized Euclidean distance of the
concatenation of these refined vectors defines a
cost matrix C, where Cij is the distance of nodes
i ∈ P , j ∈ H. The AMR similarity score
is derived by solving a transportation problem:

WWLK = 1 − minF
∑

i

∑
j FijCij where Fij

is the flow between nodes i, j. Opitz et al. con-
strain

∑
j F∗j = 1/|P| and

∑
i Fi∗ = 1/|H|. We

call this symmetric setting WWLKS. We addition-
ally propose an asymmetric sub-graph matching
score WWLKP where we let

∑
j F∗j ≤ 1 instead.

The most reduced version, which deletes
all structural information from the graphs, is
achieved by setting k = 0, which we denote as
N(ode)Mover(P|S) score, analogously to the popu-
lar word mover’s score (Kusner et al., 2015).

3.5 Hybrid model

Our decomposable hybrid model takes the predic-
tion of a text metric, and the prediction of a graph
metric, and returns an aggregate score. Such a met-
ric can provide an interesting balance between a
score grounded in a linguistic interpretation, and
a score obtained from strong language models. If
the two scores are both useful and complemen-
tary, we may even hope for a rise in overall results.
To test such a scenario we will combine the best
performing metricgraph with the best performing
metrictext via a simple sum (α = 0.5):

α ·metricgraph + (1− α)metrictext. (4)

4 Evaluation setup

Data sets We employ five standard sentence-
level data sets: i) SICK (test) by Marelli et al.
(2014) and SNLI (dev & test) by Bowman et al.
(2015), as well as iii) MNLI (matched & mis-
matched) by Williams et al. (2018). Mismatched
(henceforth referred to as MNLI-mi) can be under-
stood as a supposedly more challenging data set
since it contains entailment problems from a differ-
ent domain than the training data, allowing a more
robust generalization assessment of trained models.
By contrast, in MNLI-ma(tched) the domain of the
testing data matches that of the training data. For
each data set, we map the three NLI labels to a
binary TE classification setting, by merging contra-
diction and neutral to the non-entailed class.2

Evaluation metric We expect predictions to cor-
relate with the probability of entailment, i.e.,

metricDT (x, y) ↑ =⇒ P (x entails y) ↑,
2Same as in Uhrig et al. (2021), we use the T5-based off-

the-shelf parser from amrlib for projecting AMR structures.

277



where ↑ means ‘higher is better’. The NLI ‘gold
probability’ labels are approximated as binary hu-
man majority labels. To circumvent a threshold
search and obtain a meaningful evaluation score
for comparing our metrics, we follow the advice of
Honovich et al. (2022), who evaluate metrics for
zero-shot faithfulness evaluation of automatic sum-
marization systems, using mainly the Area Under
Curve (AUC) metric. The AUC score is the proba-
bility that given randomly drawn instances (P,H,
entailed) and (P ′,H′, non-entailed) the entailed in-
stance receive a higher score. To rank metrics, we
calculate two averages: AVGall averages the scores
over all data sets, while AVGnli excludes SICK.3

Trained (upper-bound) We use a BERT trained
on 500k SNLI examples.4 It predicts an entailment
probability from a vector representation generated
by a transformer model.

5 Results

5.1 Main insights
Main insights can be inferred from Table 1. On
all data sets, and overall on average, asymmet-
ric metrics substantially outperform symmetric
metrics. Sometimes they improve results by up
to ten AUC points over their symmetric counter-
parts (e.g., NMoverS vs. NMoverP, +9.2). Com-
paring token sets, embedding sets and graphs, we
find that both embedding set and graph prove ad-
vantageous: NMoverP achieves slightly better re-
sults than BertScoP, which has been pre-trained
on large data. Fine-tuned BERT outperforms the
tested unsupervised metrics when test data is in-
domain (see SNLI results), but falls short at gen-
eralization. However, our simple hybrid model
can inform the output with sub-graph overlap
and yields a strong boost outperforming all un-
supervised and even trained metrics by a large
margin (+4.5 points).

5.2 Analysis
Advantage of AMR and AMR metrics: high pre-
cision For each metric, we retrieve the p% most
probable predictions, and calculate their accuracy.
Results, averaged over all data sets, are displayed in
Table 2. In high % levels, MR metrics outperform
BertScoP by almost 20 points (e.g., BertScoP vs.

3SICK contains entailment labels but not the direction of
entailment and thus we do not include it in AVGnli.

4https://huggingface.co/textattack/
bert-base-uncased-snli

WWLKP: +17.6 points), and even the fine-tuned
BERT is strongly outperformed. Therefore, we can
attribute the surprisingly strong performance of the
graph metrics (and the hybrid model) to its poten-
tial for delivering high scores in which we can trust
– if it determines that the semantic graph of H is
(largely) a subgraph of P , true entailment is most
likely (in Appendix A, we show two examples).

Advantage of untrained (AMR) metrics: better
robustness We check the robustness of our di-
verse NLI metrics on a controlled substructure of
3,261 SNLI testing examples by Gururangan et al.
(2018), who removed examples that show spuri-
ous biases and/or annotation artifacts. Results in
Table 3 show a catastrophic performance drop by
trained BERT (−12.0 points), while untrained met-
rics such as TokP and WWLKP remain unaffected
(+0.4 points) and WWLKP now even outperforms
the SNLI-trained BERT model. Lastly, we see that
the hybrid model can (partially) mitigate the drop
introduced by its trained component (−7.3 points).

Discussion: graph metrics struggle with recall,
and other limitations The MR metrics struggle
with recall since they have problems to cope with
MRs that strongly differ structurally, but not (much)
semantically, which is a known issue (Opitz et al.,
2021a). An example from our data is the following:
In The man rages, man is the arg0 of rage, while in
the entailed sentence A person is angry, person is
the arg1 of angry, yielding large structural dissimi-
larity of MR graphs (SmatchP=0.0). In future work
we aim to explore and improve this issue, such that
we are able to identify that the experiencer of angry
is strongly related to the agent of rage.

Potentially unrelated to the recall problem, other
issues may hamper AMR usage for NLI, e.g., in-
consistent copula modeling (Venant and Lareau,
2023), or parsing errors: even though parsers tend
to provide high-quality output structures, they can
still suffer from significant flaws (Opitz and Frank,
2022a), and thus their improvement may positively
affect AMR4NLI performance.

Weights in hybrid model Recall that we can use
α in Eq. 4 to weigh two metrics. We inspect dif-
ferent α in Figure 2 for fusing trainBERT (text)
and WWLKP (graph, α ≥ 0.5: graph metric is
weighted higher). While a balance (α ≈ 0.5) over-
all seems effective, SNLI profits if the text metric
has more influence, and MNLI profits if the graph
metric dominates. Finally, again we see more stable
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D(omain) metric SICK SNLI-dev SNLI-test MNLI-ma MNLI-mi AVGall AVGnli

te
xt

TokS 72.1 64.2 64.6 66.7 68.7 67.2 66.0
TokP 74.7 70.0 70.6 68.2 70.3 70.8 69.8
BertScoS 79.8 66.7 66.2 68.4 71.6 70.5 68.2
BertScoP 82.0 74.5 74.0 74.5 77.5 76.5 75.1

A
M

R
gr

ap
h

GTokS 78.2 63.2 62.6 66.4 68.5 67.8 65.2
GTokP 81.0 75.1 74.7 71.1 72.6 74.9 73.4
NMoverS 77.7 65.8 64.9 66.7 68.5 68.7 66.5
NMoverP 79.4 77.9 77.2 72.9 74.8 76.5 75.7
SmatchS 76.3 63.3 62.3 65.7 67.6 67.0 64.7
SmatchP 79.2 72.3 71.6 70.0 71.9 73.0 71.4
WWLKS 77.2 66.4 65.6 65.7 67.5 68.5 66.3
WWLKP 79.3 78.0 77.3 71.9 73.8 76.1 75.3

text trainBERT 81.0 88.8 88.2 71.5 72.0 80.3 80.1
hybrid trainBERT + WWLKP 85.9 91.0 90.4 77.9 78.9 84.8 84.5

Table 1: Overall AUC results on five data sets. The last two rows involve a trained component.

AVG Accuracy scores
D(omain) metric 1% 2% 3% 4% 5% 7% 10% 15% AVGall AVGnli

te
xt TokP 88.4 87.1 81.0 74.4 72.8 71.4 68.3 64.2 76.0 77.3

BertScoP 74.5 74.0 73.3 73.9 73.9 73.0 72.0 69.4 73.0 73.8

A
M

R
gr

ap
h GTokP 86.5 86.5 87.1 88.0 87.7 86.1 80.4 73.6 84.5 88.4

NMoverP 85.3 84.5 85.0 85.2 86.2 84.7 82.4 74.2 83.4 89.6
SmatchP 90.0 89.1 88.4 85.2 81.9 77.9 74.2 68.3 81.9 83.8
WWLKP 97.3 96.8 96.1 95.0 93.8 88.4 82.4 74.8 90.6 90.7

text trainBERT 84.5 84.0 82.9 81.5 80.6 79.0 76.8 73.2 80.3 81.9
hybrid trainBERT + WWLKP 96.7 95.7 94.3 93.4 92.5 90.2 86.7 82.2 91.5 92.9

Table 2: Precision assessment. We select p% of a metric’s highest predictions and check the ratio of true entailment.

training no yes no no/yes
domain text text embedding AMR hybrid
metric TokP BScoP BERT WWLKP +BERT

AUC 71.0 71.4 76.2 77.7 83.1
AUC ∆ +0.4 -3.6 -12.0 +0.4 -7.3

Table 3: Evaluation on 3,261 hard SNLI-test examples.
AUC ∆: observed change in performance (cf. Table 1).

performance of graph metrics overall (converging
AUC with high α vs. diverging AUC with low α).

6 Conclusion

We find that metrics defined on advanced semantic
representations are useful predictors of entailment.
This is especially true for metrics performing asym-
metric measurements on graph-structured meaning
representations and sets of contextualized embed-
dings. Interestingly, meaning representation-based
metrics offer advantages over strong embedding-
based metrics beyond just interpretability: while
showing similar performance as BERTscore, they
are more robust than fine-tuned BERT and offer

Figure 2: Balancing the hybrid text-graph metric.

high-precision predictions. With this, we show
that linguistic and neural representations can com-
plement each other in a hybrid model, leading to
substantial improvement over both untrained and
trained neural approaches.
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A Appendix

Figure 3: Two example ratings assessing true entailment:
The first shows how MR can define a useful semantic
set, the second shows that sometimes embedding-based
graph metrics, such as WWLKP, are needed to assess the
subgraph properly (in this example, SmatchP provides
semantically meaningless alignments and a score that is
too low.)
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Abstract

Language models have shown great promise
in common-sense related tasks. However, it
remains unseen how they would perform in
the context of physically situated human-robot
interactions, particularly in disaster-relief sce-
narios. In this paper, we develop a language
model evaluation dataset with more than 800
cloze sentences, written to probe for the func-
tion of over 200 objects. The sentences are
divided into two tasks: an “easy” task where
the language model has to choose between vo-
cabulary with different functions (Task 1), and
a “challenge” where it has to choose between
vocabulary with the same function, yet only
one vocabulary item is appropriate given real
world constraints on functionality (Task 2). Dis-
tilBERT performs with about 80% accuracy
for both tasks. To investigate how annotator
variability affected those results, we developed
a follow-on experiment where we compared
our original results with wrong answers chosen
based on embedding vector distances. Those
results showed increased precision across docu-
ments but a 15% decrease in accuracy. We con-
clude that language models do have a strong
knowledge basis for object reasoning, but will
require creative fine-tuning strategies in order
to be successfully deployed.

1 Introduction

When it comes to using robots in disaster-relief
scenarios such as search-and-rescue, it is essential
that a robot can interpret and execute an instruction
based on its current understanding of the objects
detected in its environment. For example, in or-
der to Enter the building, the robot should know
to search for entrance points, such as doors and
windows. Similarly, to Scan the second floor, the
robot must be able to find appropriate ways to get
to the second floor, such as stairs. Finally, to Use
the outlet to check for power, the robot must know
how outlets are used. Essentially, the robots need to

know an object’s function(s) in order to complete
envisioned interactions.

Envisioned interactions are a multi-modal ap-
proach to responding to natural language instruc-
tions. For this paper, we assume that various sen-
sors and computational systems, such as LIDAR,
motion, or camera sensors, have taken care of iden-
tifying the objects in a scene. This information is
passed to a language based world model, which
deduces which, if any, of the objects perceived are
relevant to the instruction based on the objects ca-
pabilities. This information would then be passed
on to a lower-level policy-planning tool. An en-
visioned interaction that this research supports is
depicted in Figure 1.

To understand the possibilities for executing a
natural language instruction within the current envi-
ronment, the robot requires apriori, commonsense
knowledge of the objects in the environment. In
particular, knowledge of object function is criti-
cal for interpreting natural language instructions
in physically situated disaster-relief tasks. Given
that such tasks are dynamic and dangerous, a robot
should be able to accept unconstrained natural lan-
guage (as opposed to placing a cognitive burden
on the rescue worker to use a robot’s controlled
language). We hypothesize that a large language
model (LM) would be uniquely equipped to handle
this challenging task of supporting commonsense
reasoning about an object’s function for situated
natural language understanding (NLU), due to the
LM’s latent world knowledge (Petroni et al., 2019).

The contributions of this paper include:

1. The development of a dataset of objects, found
to be relevant to disaster-relief scenarios, with
their functions established in terms of Prop-
Bank rolesets (Section 2);

2. The creation of an LM evaluation set of sen-
tences that probe the model for its knowledge
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Figure 1: Envisioned interaction in which understanding and executing the instruction are supported by reasoning
about objects in the environment detected via visual sensors (left) and LIDAR sensors (right). Given an instruction
to look for a container of materials, the functions of detected objects with labels “table,” “box,” and “stool,” can be
compared against the containment function, represented by the PropBank role and roleset, “Arg0-of contain.01.”
Here, only “box” has the appropriate function, prompting further exploration of contents of the box.

of those object functions in both an “easy”
task (Task 1) and a “challenge” (Task 2) (Sec-
tion 3.1), and the augmentation of Task 1 for
a follow-on evaluation (Section 3.2);

3. DistilBERT (Section 4) evaluation results
(Section 5) with suggestions for future im-
provements informed by related work (Sec-
tions 6, 7).

We will make our object function dataset and cloze-
sentence evaluation set available upon request.

2 Object Function Background and
Dataset

PropBank (Palmer et al., 2005) is a semantic role
labeling framework that provides a lexicon of event
“rolesets,” where each corresponds to a particular
sense of a verb, eventive noun, or relational adjec-
tive. Each sense is described in terms of its set of
participant roles, captured as argument numbers
“ARG” 0-5, or as “ARG-M” modifier or adjunct
arguments. In addition to the lexicon, PropBank
provides a large corpus of annotated data where
each relation is marked up with its sense in the
lexicon and the arguments are marked for their se-
mantic role with respect to that sense roleset. This
lexicon is also used in the annotated corpus of Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013). The standard roles are ARG0, which
corresponds to Dowty’s prototypical Agent, and
ARG1, which corresponds to the prototypical Pa-
tient (Dowty, 1991). The corresponding semantic

roles of the other, higher-numbered ARGs 2-5 are
verb specific. ARG-Ms, which can theoretically
modify or accompany any verb, include roles such
as INSTRUMENT and PATH.

By leveraging the PropBank lexicon and corpus
to establish that ladders and stairs fulfill the same
role semantically (as the ARG1 for climb.01), we
are able to derive a set of objects that have the
same functionality (ways to climb between floors
of a building).1Essentially, using Propbank is a
pre-existing method of establishing commonalities
between objects’ functions. For example, Prop-
bank allows us to group barrels, boxes, crates, and
cabinets together because they all are ARG0 of the
Propbank sense contain.01

While alternative resources that encode object
functionality do exist, such as the Suggested Up-
per Merged Ontology (SUMO) (Niles and Pease,
2003), which includes axioms and object defini-
tions indicating function, we found that PropBank
provided a data-driven approach for us to develop a
ground truth of each object’s functionality as well
as an elegant way of encoding and representing
that function, for example as ARG1 of climb-01.
This semantic representation of function thus fits
with broader NLU that leverages the PropBank
and Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) for a distillation of uncon-
strained natural language instructions into action
primitives and their parameters, executable by a

1See climb.01 roleset: https://propbank.github.
io/v3.4.0/frames/climb.html#climb.01
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robot. Object function is therefore encoded in the
same way as the natural language instructions that
might reference the object or desired functional-
ity. For example in Figure 1, the instruction would
be parsed into AMR, abstracting the target object
which would be a thing that is an ARG0-of con-
tain.01. Then, the objects currently detected, lo-
calized, and labeled in the environment using the
robot’s sensors would be evaluated for which object
had the matching function of ARG0-of contain.01.
We created a vocabulary of about 280 objects men-
tioned in a human-robot dialogue corpus (Marge
et al., 2017). These dialogues were previously col-
lected via wizard-of-oz experimental interactions
between people and remotely located robots in a
search and exploration task, which is similar to
our target domain of robotic exploration for dis-
aster relief. Informed by existing PropBank and
AMR corpora, an annotator then decided the best
role for each vocabulary item given an appropri-
ate PropBank sense. For instance, the word crate
was assigned the PropBank ARG0 role of the con-
tain.01 sense—indicating it is the container holding
some kind of contents. After one annotator made
initial judgements, two other annotators familiar
with PropBank and AMR reviewed the annotation
to validate or offer alternative labels for vocabulary
whose PropBank annotations were more difficult
to surmise.

3 LM Evaluation Dataset

With the objects labelled with the appropriate Prop-
bank sense-role pairing to signify their functionali-
ties, we needed to develop a method of zero-shot
testing a language model. For this methodology, it
was important that we develop an understanding
both of the language model’s capabilities and how
a small group of expert human annotators could be
skewing the results beyond their particular writing
styles. This led to two rounds of evaluation data
generation: one with a manually developed answer
set, and one with an answer set based on distances
within LM vector space.

3.1 Manually Developed Sentence and
Answer Set

We wanted to analyse both the LM’s ability to dif-
ferentiate between objects with different functions
(Task 1) and between objects with the same func-
tion (Task 2), so we designed two different tasks.
For both, we generated cloze sentences that express

the need for a particular functionality or affordance,
where the correct answer is one of our object vocab-
ulary items that offers that functionality (according
to the function annotations described in Section 2).
The LM’s task was to pick the correct word from
a short list of possible answers. Providing a short
list of answers was both inspired by the Winograd
Schema Challenge (Levesque et al., 2012) and be-
cause a robot would be faced with a set of rec-
ognized and labeled objects in its environment to
choose from in a given disaster-relief scenario.

For Task 1, annotators wrote sentences such that
all words with the same function can reasonably
fill in the blank. For instance, in the sentence
Go check if there’s anything suspicious inside
that BLANK, the blank can be filled by any word
denoting an object whose function is a container,
be it a barrel or a cabinet. In Task 1, two wrong
options were also presented; these did not share the
function of the right answer and were arbitrarily
chosen by the annotator from the rest of the
vocabulary list. One sentence was written for each
function. If more than one vocabulary term had the
same function, the same sentence would be used
multiple times, but the correct answer would be
changed so that each word with the same function
was represented in the evaluation set. This was
done to see if a LM was consistent in correctly
choosing objects with the same function. The
sentences were written fairly explicitly so that only
the word’s intended function could be reasonably
inferred by a human reader, as we had words that
could serve multiple functions, like stairs, which
could fall under ascend.01 PATH or descend.01
PATH.2 A sample of Task 1 sentences from one
author/annotator is given below. The LM must
choose which of the answer choices is the most
likely filler of the masked position.3

(1) I need to see from higher up, so I’m going up
the [MASK].

Choices ladder, cushion, tomato
Correct ladder

(2) I need to see from higher up, so I’m going up
2While a qualitative analysis of the results did not show

any evidence of polysemous words causing errors, we are
uncertain how many vocabulary items are polysemous and
what that effect may have on our results.

3From an implementation perspective, we used the fol-
lowing format: SENTENCE with [MASK] ||| ANSWER
CHOICES ||| CORRECT ANSWER.
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the [MASK].

Choices stairway, cushion, tomato
Correct stairway

(3) The [MASK] will keep the horse from running
out of the pen.

Choices mop, barrier, bucket
Correct barrier

(4) The roof collapsed when the flimsy [MASK]
failed to support its weight.

Choices curtain, lamp, column
Correct column

Note that the answer vocabulary is based upon
objects mentioned in the human-robot collabora-
tive exploration corpus, and therefore relevant to
robotic exploration tasks, even if the sentences are
not instructions per se. By not limiting the anno-
tators to writing instructions only, we allowed for
more use-cases given the object’s function. For ex-
ample, here are three sentences given the function
of contain.01 ARG0.

1. I was getting ready to move, so I put all of my
belongings into a [MASK].

2. Go check if there’s anything suspicious inside
that [MASK].

3. I need to hold my collection of cups for safe-
keeping, so I’m going to use a [MASK].

Each sentence works for any objects that can con-
tain, but they each highlight a unique aspect of
containing that would be important for a robot to
recognize.

For Task 2, we narrowed our focus in order to
study how LMs can leverage commonsense knowl-
edge to differentiate between items with the same
function. For our initial evaluation, we chose two
functions from our dataset that contained the most
unique objects within them: facilitating transport
(objects listed with this function include car, boat,
bike) and containment (objects listed include jug,
luggage, cup). Within each function, we wrote sen-
tences that would be true for one object with the
same functionality but not another. As an example,
the LM could choose between ladder and stairs to
fill in the blank for I need to get to the second floor,
so I’m going to move the BLANK to that window.
Both serve the function of climbing, but they are

not interchangeable because ladders are portable
and stairs are not. We generated all possible pair-
ings of objects within our chosen functions and
randomly selected the pairings for sentence genera-
tion. More details about the sentence data can be
found in Table 1 and a sample from one annotator
for the transportation function is given here:

(4) I’m trying to get my legs in shape, so I take
my [MASK] to school each day.

Choices bicycle, boat
Correct bicycle

(5) My husband’s going green so he takes his
[MASK] everywhere he needs to go.

Choices bicycle, car
Correct bicylce

(6) Today you really need air conditioning, so you
decide to take the [MASK] to get to the office.

Choices bicycle, car
Correct car

(7) She couldn’t afford any gas, so she had to ride
her [MASK] to the next village over.

Choices bicycle, motorcycle
Correct bicycle

Note that the real-world knowledge required to
determine the correct answer for Task 2 we hypoth-
esized to be fairly nuanced—a connection between
biking and getting legs in shape, or going green, or
NOT being able to afford gas, for example.

3.2 Answer Sets from Embedded Vectors
After an initial analysis of the results of Task 1,
we noted that the performance across “documents,”
where each document is the set of evaluation sen-
tences written by a single annotator, varied sub-
stantially (as we will describe in greater detail in
Section 5). This prompted us to consider where
this variation was coming from. Each document
was intended to evaluate the LM’s knowledge of
the functionality of the same set of objects, so this
was variance outside of what could be concluded
to be related to commonsense knowledge of ob-
ject functionality. We only had three annotators,
which has been shown to introduce bias (Geva et al.,
2019). As each annotator both authored sentences
and selected the sentence’s wrong answers, we hy-
pothesized that both factors likely add bias to our
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results. As a first step to reduce inadvertent vari-
ance stemming from wrong answer choices, we
elected to experiment with different methods of
choosing wrong answers for Task 1 to see how the
wrong answers affected the results of our exper-
iments. Specifically, we decided to compare the
results with the manually chosen wrong answers
for Task 1 with a more technical procedure in which
we selected the wrong answers based on the cosine
distance between vectors taken from the LM’s re-
sult of encoding each individual vocabulary term.
While the embedded vectors of individual words
differ from the embedded vector the word takes
within an encoded BERT sentence, we decided this
was a reasonable approximation that also took into
account the limited onboard computing power a
robot would have for our task.

Figure 2: Two examples of the effect different answer
choices for task 1 vs task 1e. The answers chosen for
closeness by vector distance are often have similar func-
tions (carry vs. contain) or potentially related within
a conceptual domain (gas pump vs. hydrant), making
Task 1e more challenging.

We ran several experiments at closer and further
cosine distances to test the hypothesis that the LM
would choose more wrong answers if they had a
closer cosine distance to the correct answer. We
named this “Task 1e,” or Task 1-encoded vectors.
For each right answer, we compiled a subset of
valid distractors from our original vocabulary list,
then chose the wrong answers by their ranking
in our query. Examples comparing sentences and
answers for Task 1 and 1e are shown in Figure 2.
This approach does not account for any changes
in density within the vector space. However, for
all experiments the standard deviation of distances
remained fairly uniform. This led us to believe that
the ranked distances were all similar enough that
the comparison between functions is still fair.

4 Experimental Setup

We used Huggingface’s pipeline class with the fill-
mask task and the DistilBERT uncased model. We
chose DistilBERT because it is lightweight while
having very similar accuracy to the full base BERT
model (Sanh et al., 2019). This allows the model,

Task 1 Task 2
Sentences 608 236
Objects 183 21

Functions 65 2
LM Accuracy 81.5% 79.7%

Acc. Range 22.8% 15.0%

Table 1: Size and shape of the data, as well as Distil-
BERT’s average accuracy for Task 1 and Task 2 and the
range in its accuracy across documents.

theoretically, to be loaded directly onto the robot
platform, keeping its space to a minimum with-
out sacrificing too much accuracy. To calculate
the vector embedding’s cosine distances, we fol-
lowed in BERT-as-a-service’s footsteps: we took
the second to last layer of DistilBERT to repre-
sent each vocabulary term (McCormick and Ryan,
2019). We used Sci-kit Learn’s implementation of
a KD-Tree to store the resulting vectors (Pedregosa
et al., 2011). All experiments were run with Py-
torch and all scores were put into log space (Paszke
et al., 2019).

Multi-token Vocabulary Terms One challenge
we faced was how to fairly compare the scores
of single-token vocabulary terms as opposed to
multi-token vocabulary terms, since the WordPiece
tokenizer used by DistilBERT can potentially break
words into subwords. To solve this problem, we
adapt the sentence level scoring scheme of pseudo-
log likelihood from Salazar et al. (2020) when vo-
cabulary items have multiple tokens. Specifically,
for tokens t1 . . . tn that make up word W with Tj
tokens before the mask and Tk tokens afterwards,
where j and k are both natural numbers, we calcu-
late the probability as shown:

log(p(t1|Tj , Tk)) + log(p(t2|Tj , t1, Tk)) . . .+
log(p(tn|Tj , t1, t2, . . . tn−1, Tk))

We found that normalizing the scores by the num-
ber of tokens improved accuracy results. We hy-
pothesize that this normalization reduced the LM’s
bias towards single token answers, but more ex-
perimentation is required to fully understand the
effects of normalizing scores by token length.

5 Results and Discussion

5.1 Task 1 and Task 2
The accuracies for Task 1 and Task 2 were nearly
identical, as shown in Table 1. This was somewhat
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Figure 3: A breakdown of accuracy across PropBank
roles for Task 1 by number of instances. Notably, ac-
curacy decreases as the number of samples increases
regardless of the role the vocabulary term plays in the
sentence.

surprising, as we thought that DistilBERT would be
more accurate when differentiating between words
with different functions than within the same func-
tion, where we hypothesized more nuanced com-
monsense knowledge was required to recognize
the correct answer. This could be from word co-
occurrence probabilities. DistilBERT knows that
legs is more likely to co-occur with bicycle than
boat, so it doesn’t necessarily need to do any rea-
soning. It’s also possible that reporting bias played
a role: annotators may have spent more time care-
fully differentiating between objects with similar
functions than they do differentiating objects with
significantly different functions because it is more
self-explanatory to the reader what the latter differ-
ences are. Thus, the sentences for Task 2 may have
inadvertently been more informative.

We also obtained DistilBERT’s accuracy across
each function. Some trends are immediately vis-
ible. First, regardless of the role the vocabulary
term played in the sentence, the more sentences
written for a specific function, the worse accuracy
got. This can be seen in 3. Since so much expert
knowledge was used when assigning the PropBank
sense and role while deciding function, we do not
believe this is because of labelling error. Rather,
functions with fewer sentences tended to be more
common, specific, and explicit than functions with
many sentences. For instance, some functions that
had only one or two sentences that scored well were

Ranked Distance Accuracy Accuracy Range
1st, 2nd 62.2% 15.4%
1st, 3rd 60.1% 15.2%
2nd, 3rd 66.5% 13.3%
2nd, 5th 67.2% 10.0%
6th, 11th 76.0% 9.1%
12th, 21st 77.1% 18.7%
26th, 36th 81.5% 7.3%

Table 2: Results for Task 1e. Ranked distances refer
to the cosine distance from the wrong answers to the
correct answer and are ranked by closeness to the correct
answer, from 1st closest to 36th closest.

dig.01 ARG2 (which corresponded with shovel),
rotate.01 ARG1 (which corresponded with wheel),
and buttress.01 ARG0 (which corresponded with
column). All of these items are strongly corre-
lated with the functions. Larger categories that
struggled more included contain.01 ARG0, whose
vocabulary items ranged from cabinet to can, and
occupy.01, whose terms ranged from car to barn.
Since the annotators were writing sentences that
worked with all vocabulary of the same function,
the sentences with “larger” functions had to be
more general and likely had fewer semantic clues
for DistilBERT to utilize. This suggests that LMs
have room to improve on more general cases for
objects for our use case, including handling a wider
variation in object function use.

Even though the results for Task 1 were strong,
within the task there was a wide range in accuracy
over each document, with 2 documents in the same
task differing in accuracy by as much as 22%. We
attributed this wide range to annotator bias (as men-
tioned in Section 3.2). While annotator bias is a
given in a dataset with few sentence creators, we
wanted to minimize as much bias as possible to en-
sure the LM was a sufficient basis for our ultimate
use case of collaborative, disaster-relief commu-
nication. One clear place to eliminate bias was
in the selection of wrong answers, motivating the
development of Task 1e.

5.2 Task 1e, Embedding Distances
For Task 1e, we achieved our initial goal of reduc-
ing the range in accuracy over all documents for
all experiments, as shown in Table 2. This demon-
strates that the wrong answers chosen by sentence
authors did have an impact on accuracy, as we had
hypothesized. The overall accuracy ranges also
show that the impact of manually selected wrong
answers is overall positive. In other words, the
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Figure 4: Example sentences that DistilBERT correctly
(shown in green with check marks) and incorrectly
(shown with a red X) answered from Tasks 1 & 2.

manually selected wrong answers in Task 1 were
generally easier for the LM to eliminate than the
wrong answers selected for all but the most distant
wrong answer choices in Task 1e. The accuracy
range also decreases as vocabulary terms get fur-
ther away from the correct answer in vector space,
demonstrating that the sentence alone does not give
DistilBERT enough information to differentiate be-
tween the answers, and that it needs the answers
choices to provide extra information for it to make
a correct decision. We also examined the scores
for each function as we did with Task 1, and we
found that scores decreased rather evenly across
the board, regardless of how many sentences were
testing the function.

As we had hypothesized, the overall scores and
the scores by function generally improved linearly
as the wrong answers moved further away from
the correct answer. However, when looking at
individual documents and functions with wrong
answers close to the correct answer, that linearity
breaks down, and performance seems very depen-
dent on the language choices of individual anno-
tators. When examining the data qualitatively, it’s
often not clear from a linguistic perspective why
DistilBERT assigned the probability it did. For in-
stance, DistilBERT thought it was more likely that
one would use a motorcycle to catch their balance
than a rail, or even a television. It’s also not im-
mediately clear how the annotators writing styles
are “easier” or “harder” for DistilBERT to work
with. Other unclear examples can be seen in Figure

4 for both Task 1 and 2. We suspect that larger
language models which utilyze larger vocabularies
than DistilBERT would be more linguistically in-
formed due to the increased data and training time,
but we leave that to future work.

While the scores decreased significantly when
going from annotator-selected wrong answers to
ranked distance wrong answers, DistilBERT still
scores far better than random and shows it does
have a strong amount of knowledge on object func-
tions. Overall, our expectations for DistilBERT’s
zero-shot knowledge were exceeded in both tasks.
Nonetheless, given the high stakes of our applica-
tion domain, we plan paths for improvements in
future work (Section 7).

6 Related Work

We were inspired in our own research by Chen et al.
(2022), who also test an LM’s zero-shot knowledge
with respect to physically situated settings. The
authors’ goal is to use LMs to help robots determine
the type of room it is in for a given 3D scene. To
test if LMs could be effective at this task, they
automatically generate sentences from the template
“The r often contains o”, where r is a type of room
and o is an object often found in that room. The
authors ran their sentences through the masked LM
BERT with the room masked to see how well BERT
could predict the room based on the objects. The
authors found that rooms with very specific items
(bathrooms, bedrooms, kitchens) were easier to
identify than rooms which had furniture that can be
in many rooms (dining rooms, living rooms). This
showed us the effects reporting bias can have on
physical commonsense LMs and prompted us to
research this for our own use case.

The ultimate goal of our research is to use LMs
for robot policy planning with a strong understand-
ing of the LM’s decision-making process and em-
beddings, since high stakes situations demand ac-
countability. Dipta et al. (2022) approach this task
by creating linguistically informed embeddings
within a custom encoder-compressor-decoder net-
work. The network was trained to recognize the
hierarchical nature of events by using frames from
FrameNet (Baker et al., 1998) only partially de-
scribing said event. By injecting linguistically in-
formed knowledge, while not requiring specific
vocabulary to indicate that an event is occurring,
Dipta et al. (2022) had strong performance with
a reasonable explanation of what each part of the
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neural network is doing.
In terms of planning with LMs, there are mul-

tiple interesting approaches. Driess et al. (2023)
trained an LM, called PaLM-E to also accept im-
age and continuous sensor data, as well as text. By
encoding the non-text data into vectors that are the
same size as a text vector, the model can complete
a variety of tasks straight out of the box while also
allowing for downstream fine-tuning. Notably, it
can output plain text that can be interpreted as a
robotic policy, though PaLM-E has to interpret on
its own what a particular robot’s capabilities are.
More testing needs to be done to see if the robot
can behave consistently, and the authors caution
that it is not meant for long-term tasks. Another
model made by Song et al. (2022) utilizes an upper
level LM, in their case GPT, with some few-shot
training for high-level policy planning. They sepa-
rately designed a lower level model that handles the
execution of movement and other low-level tasks.
Importantly, if the lower level model can’t execute
a task, it can query the higher level model with
the information it perceived about the environment
for an updated policy. This enables it to handle
long term, complex tasks. However, both of these
models lack the explainable nature of Dipta et al.
(2022) with its basis in linguistic theory.

7 Future Work and Conclusion

Given the overall success of these experiments, we
have several avenues of future work. First, we
want to test how different LMs perform on our
dataset. While DistilBERT satisfied our theoretical
computational constraints, there’s a strong chance
that newer and larger masked LMs will perform
even better on our dataset. Testing on other LMs
will also further solidify our dataset as a useful
analysis tool for object-related common sense. We
also want to do a more in-depth statistical analysis
of how DistilBERT performed by function, perhaps
grouping functions to get coarser granularity to
understand which functions need the most fine-
tuning for a LM to succeed.

With the recent advent of multi-modal LMs like
PaLM-E and GPT-4 (OpenAI, 2023), our research
interests are quickly shifting towards utilizing these
models for grounded common-sense understanding.
It is possible these may be more aware of physical
limitations due to images (and in PaLM-E’s case,
robotic policy) in the training data. While these
models do have some ability to explain their de-

cision making process, there is much to discover
in terms of the models’ full capabilities. We are
also interested in examining few-shot fine-tuning
with syntactic and semantic information to improve
both common-sense performance and the model’s
ability to explain itself. Our hope is that combin-
ing new multi-modal models with linguistic insight
will make a more trust-worthy model that can be
successfully deployed in disaster-relief missions.

We set out to discover if LMs can provide
the type of apriori, commonsense knowledge of
the functions of various objects, especially those
deemed important to robot-based, disaster relief
missions. This is important because this technol-
ogy could lead to replacing humans with robots in
dangerous scenarios that have little room for error.
We systematically identified the function each ob-
ject plays in our domain, then created two tasks to
test the granularity of a LM’s ability to differentiate
between these functions. DistilBERT performed
quite strongly on our tasks, validating our proof of
concept. Even when removing the bias of human-
generated wrong answers, we still obtained strong
results indicating that DistilBERT has significant
knowledge about our domain. We are finding new
avenues to expand our research into using more
advanced LMs in tandem with resources encod-
ing linguistic knowledge to improve collaborative,
physically situated human-robot dialogue.
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Abstract

SimpleMTOD is a simple language model
which recasts several sub-tasks in multimodal
task-oriented dialogues as sequence prediction
tasks. SimpleMTOD is built on a large-scale
transformer-based auto-regressive architecture,
which has already proven to be successful
in uni-modal task-oriented dialogues, and ef-
fectively leverages transfer learning from pre-
trained GPT-2. In-order to capture the seman-
tics of visual scenes, we introduce both local
and de-localized tokens for objects within a
scene. De-localized tokens represent the type
of an object rather than the specific object it-
self and so possess a consistent meaning across
the dataset. SimpleMTOD achieves a state-of-
the-art BLEU score (0.327) in the Response
Generation sub-task of the SIMMC 2.0 test-
std dataset while performing on par in other
multimodal sub-tasks: Disambiguation, Coref-
erence Resolution, and Dialog State Tracking.
This is despite taking a minimalist approach
for extracting visual (and non-visual) informa-
tion. In addition the model does not rely on
task-specific architectural changes such as clas-
sification heads.

1 Introduction

Multimodal conversational agents have witnessed a
rapidly growing level of interest among the conver-
sational AI community as well as within the com-
puter vision community. Most multimodal conver-
sational datasets to-date are an extension of visual
question answering (VQA) (Das et al., 2016; Hud-
son and Manning, 2019). Consequently building
upon the success of other visio-linguistic tasks such
as VQA, state-of-the-art multimodal conversational
agents commonly depend on non-autoregressive
models (Wang et al., 2020; Murahari et al., 2019)
most of which are based on BERT (Devlin et al.,
2018).

However, dialogues with such systems signifi-
cantly differ from what the conversational AI com-

munity has typically viewed as a multi-turn dia-
logue. First, most of the current multimodal dia-
logue datasets are focused on querying the visual
content whereas external knowledge bases have
been an integral part of traditional unimodal dia-
logue datasets (Budzianowski et al., 2018; Galley
et al., 2019). Second, in traditional unimodal di-
alogues, co-reference resolution (explicitly or im-
plicitly) plays a major role within the dialogues.
Additionally, state-of-the-art unimodal conversa-
tional agents predominantly rely on GPT-based
auto-regressive models (Radford et al., 2018) due to
their proven language generation capabilities (Peng
et al., 2020; Hosseini-Asl et al., 2020; Ham et al.,
2020). The SIMMC 2.0 (Kottur et al., 2021) task-
oriented dialogue dataset bridges this gap between
multimodality and the more traditional view of a
multi-turn dialogue. Due to the simultaneous pres-
ence of signals from multiple modalities, which a
user can refer to at any point in the conversation,
the multimodal task-oriented dialogues proposed in
the SIMMC 2.0 are challenging compared to both
text-only counterparts and image querying dialogue
datasets.

In spite of the inherent complexity of multimodal
dialogues, we propose SimpleMTOD, recasting
all sub-tasks into a simple language model. Sim-
pleMTOD combines the idea of ’de-localized vi-
sual object representations’ with a GPT-like auto-
regressive architecture. The idea of de-localized
representations stems from the analogous process
of de-lexicalization that has been extensively used
in task-oriented dialogues. In de-lexicalization
Mrksic et al. (2017), slot-values such as vegan are
replaced by a more general abstracted token such
as food-type. Likewise, when de-localized, objects
are represented by the catalogue type of the object
instance rather than the instance itself. These de-
localized tokens then possess a consistent meaning
throughout the dataset.

The main objective this work is to evaluate the
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effectiveness of de-localized object representations
within SimpleMTOD. Despite the simplicity, Sim-
pleMTOD achieves the state-of-the-art BLEU score
of 0.327 for assistant response generation in the
SIMMC2.0 test-std 1 dataset . Furthermore, the
model achieves an accuracy of 93.6% in Mul-
timodal Disambiguation (MM-Disambiguation),
Object-F1 of 68.1% in Multimodal Co-reference
Resolution (MM-Coref), and 87.7% (Slot-F1) and
95.8 (Intent-F1) in Multimodal Dialogue State
Tracking (MM-DST). Other than the proposed
benchmark settings, we also evaluate SimpleM-
TOD in an end-to-end setting. Major contributions
of our work are as follows:

• We formalise notion of multimodal task ori-
ented dialogues as an end-to-end task.

• We propose a GPT-based simple language
model combined with visual object de-
localization and token based spatial informa-
tion representation, that addresses four sub-
tasks in multimodal dialogue state tracking
with a single architecture.

• We analyse the behaviour of our model us-
ing salience scores from the Ecco (Alammar,
2021) framework, which provide an intuition
into which previous token mostly influence
predicting the next token.

2 Background

Traditional task-oriented dialogue datasets consist
of a dialogue corpus, a dialogue ontology with
a pre-defined set of slot-value pairs, and annota-
tions required for related sub-tasks in a set of do-
mains (Budzianowski et al., 2018). The SIMMC
2.0 dataset follows a similar structure and contains
dialogues in both the fashion and the furniture do-
mains. However, in the SIMMC 2.0 multimodal di-
alogue corpus, each dialogue is also associated with
an image representing the scene where each dia-
logue takes place. A scene is made by re-arranging
a known set of items (objects) in different configu-
rations. Along with the raw-image, the dataset pro-
vides a file (scene JSON) containing details of the
images such as objects and relationships between
objects. Furthermore, a meta-data file contains vi-
sual and non-visual attributes of objects that recur
within a scene.

1The testing dataset (test-std) is not publicly available and
was part of the SIMMC 2.0 challenge used for scoring the
submitted systems.

2.1 Benchmark Tasks

Multimodal Disambiguation: In real-world con-
versations, references made by humans related to
objects or entities can be ambiguous. For example,
consider A: Blue trousers are priced at $149.99.
U: What about the red ones?, in a setting where
there are multiple red trousers. In these situations,
there is insufficient information available for co-
reference resolution. This task is aimed at identify-
ing such ambiguous scenarios, given the dialogue
history.

Multimodal Co-reference Resolution: The goal
of this task is to resolve any reference in a user
utterance to canonical object ids of the object as
defined per each scene (see image in Figure 1(b)).
Users may refer to 1) dialogue context 2) visual
context, or 3) both.

Mutltimodal Dialogue State Tracking: Simi-
lar to unimodal DST, this tracks the belief states
of users across multiple turns. The belief state
consists of an intent, slot-value pairs, and user re-
quested slots.

Assistant Response Generation Given the user
utterance, ground-truth APIs, and ground-truth can-
nonical object ids (with meta-data), the model
needs to generate a natural language response de-
scribing objects as observed and understood by the
user.

3 Methods

In the first part of this section, we model multi-
modal task oriented dialogues as a sequence gener-
ation task. We define the problem in a more general
setup and discuss some empirical limitations ap-
plied to the model.

3.1 Multimodal Task-Oriented Dialogues

Similar to unimodal setting, we view dialogue state
(belief-state) tracking, action prediction, and re-
sponse generation to be the core components of
multi-modal task-oriented dialogues. However, out-
puts of each of the sub-tasks should be conditioned
not only on the dialogue history, but also on the
associated scene.

Multimodal dialogues consist of multiple turns.
In a turn t, there exists an associated vi-
sual scene Vt, the user-provided input Ut and
the system-generated response St. Theoreti-
cally, the dialogue context can be denoted as
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(a)

(b)

(c)

Figure 1: Sample dialogue instance in SIMMC 2.0: a) First four turns of a sample dialogue with user and system
transcript annotations. U: and A: tokens are used to differentiate user and system utterances respectively. First
row of annotations are in INTENT | SLOT-VALUE | REQUEST-SLOTS format. Second row identifies referred
canonical objects id tags in the utterance (e.g. [29]). It should be noted that, these object ids are specific to a given
scene. In the case of user utterances, this identifier is the target of the MM-Coref task. b) Sample image with
cannonical object id tags over items. This image is mapped to the dialogue by scene id. c) Single entry of the
fashion object meta-data file. 295



SimpleMTOD

User Utterance Sys. Utterance User Utterance User Belief State
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Multimodal Info

Training with Teacher Forcing

Inference

SimpleMTOD

Scene Description User Utterance Sys. Utterance Sys. Utterance 
Multimodal Info

User Utterance

Scene Description

Figure 2: SimpleMTOD architecture with training and inference time setting

Ct = [V0, U0, S0|V0, ...St−1|Mt−1, Vt, Ut]. Here
St−1|Mt−1 denotes that the statement St−1 is asso-
ciated with the representation of multimodal infor-
mation such as objects viewed and mentioned to
the user during that turn.

Given the context, Ct, SimpleMTOD generates
the belief-state Bt:

Bt = SimpleMTOD(Ct) (1)

Bt is a concatenation of intent, slot-values, re-
quested slots, and resolved object references
MReft.

However, it should be noted that, Sim-
pleMTOD models the context as Ct =
[Vt, Ut−n, St−n|Mt−n, ...St−1|Mt−1, Ut, ] where
the n is the context window. Major deviations
from the theoretical representation of Ct are, 1) we
ignore the history of visual signals and only con-
sider the current visual scene; 2) we consider only
n previous turns in contrast to the entire dialogue.

Then, in a more generalized setting where
the system have access to an external database,
which can be queried,Bt would be used to retrieve
database results Dt. These Dt along with context
and belief states can be used to generate the system
action At.

At = SimpleMTOD(Ct, Bt, Dt) (2)

Action At is a triplet containing system intent,
slot-value pairs, and details on requested slots.
However, in our setup, no such database exists.
Hence we model action At from Bt and Ct keep-
ing Dt = ∅.

Finally, the concatenation of the context, belief
state, (database results), and action is used to gen-
erate system responses St.

St = SimpleMTOD(Ct, Bt, Dt, At) (3)

TOP:LEFT

CENTRE:LEFT CENTRE:MID CENTRE:RIGHT

TOP:MID TOP:RIGHT

BOTTOM:LEFT BOTTOM:MID BOTTOM:RIGHT

H

W

0.33H

0.66H

0.33W 0.66W

Figure 3: A scene is divided into 9 regions. Each region
is identified by combination of 2 tokens.

3.2 De-localized Visual Representation

Here we discuss how visual information of a scene
is represented within the SimpleMTOD as de-
localized tokens and how Vt is derived from those
tokens.

In the SIMMC 2.0 dataset a scene is a spatial
configuration of a set of object instances. From
here on we will refer to these instances simply as
objects. Probable types of these objects are pre-
defined in two meta-data files, with one for each
domain. We will refer to these files as catalogues
and an entry of these catalogues as a catalogue-
item. See Figure1(c) for an example catalogue-
item with visual and non-visual attributes defined.
For benchmark tasks, non-visual attributes can be
used during inference while visual attributes are
not allowed. However, we use neither of these at-
tributes in the SimpleMTOD visual representation
explained below.

In our setup, we assign a unique token (eg:
INV 278) to each catalogue-item. These catalogue-
items are used as a de-localized version of objects
within a scene. While these catalogue-item tokens
are consistent across the entire dataset, spatial re-
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lationships associated with the objects will be lost.
Therefore we encode spatial details of objects as
follows: Each scene is divided into 9 regions as
shown in Figure 3. Every object is assigned to
a region based on the center-point of the object
bounding box. Then concatenation of catalogue-
item tokens and assigned region description (eg:
INV 278@TOP:LEFT) tokens are used as object
representations. A scene-description is obtained by
concatenating all such tokens representing every
object within a scene. This is our Vt in SimpleM-
TOD.

3.3 SimpleMTOD Training and Inference

For training, we follow routine causal language
modeling with teacher forcing. A training sequence
Xt in SimpleMTOD is obtained by concatenat-
ing all the components; context,user belief state,
database results (which is null in our case), system
actions and system utterance.

Xt = [Ct, Bt, Dt, At, St] (4)

In terms of tokens, Xt can be denoted as Xt =
(x0t , x

1
t , ....x

n(t)
t ) when n(t) represent the number

of tokens in turn t. In general, the goal of the model
is to learn ρ(X) given X = (x0, x1, ..xi..xn) :

ρ(X) = Πn
i=1ρ(x

i|x<i) (5)

For this, we train the neural network with
parameterization θ minimizing the negative log-
likelihood over the multimodal dialogue corpus
MD where MD = {X1, X2....X|MD∥} . How-
ever, in our setup the tokens related to scene-
description V are ignored during the loss calcu-
lation. When n(V ) is the number of tokens related
to the scene description:

L(D) = −
|MD|∑

t=1

n(t)∑

i=n(V )

logρθ(x
i
t|x<i

t ) (6)

During inference, the learnt parameter θ is used
to predict a token at a time. Unlike training time
where ground-truth tokens are used every time, gen-
erated tokens become part of the left-context. For
inference, we stick to a simple greedy prediction
approach with top-k=1. That is we always generate
the token with highest probability as the next token.

4 Experiments

In Section 3.1 we defined an end-to-end setting for
SimpleMTOD. However, some of the benchmark
tasks allow more ground-truth information to be
utilized during training and inference time.

For the MM-Disambiguation task, we consider
two setups. In the task-specific scenario, we train
the model to predict YES or NO tokens directly
from context Ct. In the end-to-end setup, we con-
sider the label to be YES only if the system intent
predicted is to Disambiguate. Two similar setups
are considered for MM-Coref as well. It should be
noted that end-to-end version of SimpleMTOD pre-
dicts de-localized tokens with spatial information
and we obtain the canonical object id by reversing
the de-localization process explained in Section 3.2.
If multiple objects were found in the same region
with same catalogue-item token, the area of the
object bounding box is used as a tie-breaker. In the
case of assistant response generation, the bench-
mark task defined in SIMMC 2.0 allows ground-
truth system belief state to be used as an input.
Therefore, we evaluate both from action response
generation as well as end-to-end setting.

4.1 Baselines
We consider 2 baselines which were provided as
part of the SIMMC2.0 challenege.

GPT-2: This extends Ham et al. (2020) to multi
modal task-oriented dialogues, encoding objects
in a scene using canonical object ids concate-
nated with the token OBJECT ID. For the MM-
Disambiguation task, a classification head is used,
while other tasks are modeled in a generative man-
ner.

Multimodal Transformer Networks (MTN):
Adapts Le et al. (2019) (only) for the MM-DST
and Response Generation sub-tasks 2. In contrast
to the auto-regressive modeling of SimpleMTOD,
MTN uses an encoder-decoder architecture.

4.2 Training and Evaluation
We follow the experimental setup of the SIMMC
2.0 challenge with same dataset-splits, inference
time limitations, and performance metrics. See Ap-
pendix:B for details. It should be noted that the
test-std split of the SIMMC2.0 dataset is not pub-
licly available and is a held-out set for evaluating

2MTN-SIMMC2 implementation https://github.
com/henryhungle/MTN/tree/simmc2
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Model Intent-F1 Slot-F1 Request Slot-F1 Joint Accuracy
GPT-2 Baseline 94.5 81.7 89.6 44.6
MTN-SIMMC 94.3 74.8 85.4 28.3
SimpleMTODSub 95.8 83.3 89.7 57.3
SimpleMTOD 94.0 85.8 91.7 63.1

Table 1: Evaluation results for MM-DST task on Devtest split

submissions to SIMMC2.0 challenge. Therefore,
the final version of our model could only be evalu-
ated on the dev-test split. However, the prior ver-
sion of the model SimpleMTODSub, which did not
encode region information or scene information,
was submitted to the SIMMC2.0 challenge.

5 Results

Model Accuracy Object-F1
GPT-2 Baseline 73.5 36.6
SimpleMTODSub 92.17 67.6
SimpleMTOD 92.12 73.5

Table 2: Accuracy and Object-F1 scores for MM-
Disambiguation and MM-Coref tasks on Devtest split.

Model BLEU
GPT-2 Baseline 0.192
MTN-SIMMC 0.217
SimpleMTODSub 0.43
SimpleMTOD(ground truth actions) 0.49
SimpleMTOD 0.45

Table 3: BLEU scores for Assistant Response Genera-
tion task on Devtest split.

MM-Disambiguation As shown in Table 2 and
Column 2 of Table 4, SimpleMTODSub achieves
accuracy scores of 92.17% and 93.6 on devtest
and test-std respectively when trained to predict
YES/NO tokens. This is a 27% relative improve-
ment over the GPT-2 based baseline with a classifi-
cation head. Furthermore, we evaluate the model
on the MM-Disambiguation task as part of the
end-to-end model. based on the system intent
predicted by the model. Here, we consider any
INFORM:DISAMBIGUATE prediction as a YES.
This approach demonstrates a very similar accuracy
score of 92.12. The best performing model (94.5% :
Team-6) on test-std, ensembles two models trained

on RoBERTa and BART 3.

MM-Coref Table 2 and the Third column of the
Table 4 show the MM-Coref Object-F1 scores of
on devtest and test-std respectively. SimpleMTOD
achieved 68.2 (54% relative gain over baseline) in
test-std dataset and 67.6 (84% gain) on the devtest
split. While there is no information available on
Team-2’s leading solution, the BART-based model
of Team-4 which is trained end-to-end with task-
specific heads achieves 75.8% on this task.

MM-DST Despite being a simple language
model, both our Intent-F1 (95.8%) and Slot-F1
(87.7%) scores on test-std split are comparable with
complex visual-language models. Furthermore, as
in Table 1, there is significant improvement in the
Joint Accuracy scores from 57.3% to 63.1% when
positional information is used.

Response Generation A prior version of the
model, SimpleMTODSub achieves a state-of-the-
art BLEU score of 0.327 on the test-std split of
the SIMMC2.0 dataset. This is in comparison with
models which rely on sophisticated feature extrac-
tion processes. In our view, the simplified repre-
sentation of visual information preserves and com-
plements the generative capabilities of pre-trained
models. Furthermore, as shown in Table 3, Sim-
pleMTOD achieves a BLEU score of 0.49 on de-
vtest when the ground-truth actions are used. The
end-to-end version of SimpleMTOD also achieves
a BLEU score of 0.45. It should be noted that this
is an improvement over the SimpleMTODSub

model score of 0.43. This indicates the importance
of associating region related information.

6 Discussion

In order to understand the behaviour of SimpleM-
ToD, we use gradient-based salience (Atanasova
et al., 2020) provided with the Ecco framework
(Alammar, 2021). Using Ecco, we inspect salience

3This is based on the description provided at: https:
//github.com/NLPlab-skku/DSTC10_SIMMC2.0
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Model MM-Disam’n MM-Coref DST Response Generation
Accuracy Object-F1 Intent-F1 Slot-F1 BLEU

GPT-2 Baseline 73.5 44.1 94.1 83.8 0.202
MTN - Baseline NA NA 92.8 76.7 0.211
Team-2 NA 78.3 96.3 88.4 NA
Team-5 93.8 56.4 96.4 89.3 0.295
Team-6 94.7 59.5 96.0 91.5 0.322
SimpleMTODSub 93.6 68.2 95.8 87.7 0.327

Table 4: Test-std results for SIMMC2.0 Challenge. NA denotes model is not applicable to the particular sub-task.
Test-std split of SIMMC2.0 dataset is held-out set, which is not publicly available and used to evaluate submissions
in SIMMC2.0 challenge. An earlier version of the system, SimpleMTODSub, without scene information, was
submitted for the evaluation.

User:Ineedayellowshirt.=> <USB> :REQUEST:GET[type=shirt,color=yellow]()<SPCT> <EPCT>
|>|>INFORM:GET[type=shirt,color=yellow]()<SSCT> >> INV_146

Figure 4: Salience score heat-map when predicting the token INV 146 for utterance I need a yellow shirt without
scene information. Darker colors represents higher salience score. See Figure:8 in appendix for actual values

INV_228@TOP:LEFT,INV_2@TOP:LEFT,INV_32@TOP:MID,INV_186@TOP:LEFT,INV_247@CENTRE:
LEFT,INV_199@CENTRE:LEFT,INV_238@CENTRE:LEFT,INV_230@CENTRE:LEFTUser:Ineedayellow
shirt.=> <USB> :REQUEST:GET[type=shirt,color=yellow]()<SPCT> <EPCT>|>|>INFORM:GET[type
=shirt,color=yellow]()<SSCT> >> INV_247

Figure 5: Salience scores heat-map with scene information when predicting the token INV 247 in utterance I need a
yellow shirt. See Figure:9 in appendix for actual values

INV_228@TOP:LEFT,INV_2@TOP:LEFT,INV_32@TOP:MID,INV_186@TOP:LEFT,INV_247@CENTRE:
LEFT,INV_199@CENTRE:LEFT,INV_238@CENTRE:LEFT,INV_230@CENTRE:LEFTUser:Ineedapinkshirt
.=> <USB> :REQUEST:GET[type=shirt,color=pink]()<SPCT> <EPCT>|>|>INFORM:GET[type=shirt
,color=pink]()<SSCT> >> INV_199

Figure 6: Salience score heat-map when predicting the token INV 199 for modified utterance I need a pink shirt See
Figure:10 in appendix for actual values

Feature
Token

INV 146 INV 199 INV 247

Color yellow pink yellow
Type shirt shirt shirt

Table 5: Relevant catalogue items represented by tokens
INV 146, INV 199, INV 247. None of these metadata
were explicitly presented to the model.

scores for all the tokens in the left side of the
token of interest. In the heat-maps presented in
this section, darker colors mean a higher salience
score. It should also be noted that the model as-
signs high salience scores on separator tokens (such
as < USB >, [ , ] ) that define the structure of
the generation. While proper attention to the struc-
ture is of paramount importance, our discussion
focuses on salience scores assigned to the rest of
the tokens, which represent the semantics of the
multimodal conversations.

Effect of De-localization and Scene Descriptions:
The introduction of de-localized tokens signifi-
cantly improves the Object-F1 of MM-coref and
joint accuracy of MM-DST. Accordingly, we first
analyse the behaviour of the model when predict-
ing co-references. Figures 5 and 4 show example
utterances with and without scene descriptions re-
spectively. In the case where scene description is
not provided, the model puts a high salience on
tokens ‘yellow’ and ‘shirt’, and predicts the token
INV 146 which represents a yellow color shirt as
shown in Table 5. (It should be noted that none of
the metadata shown in the diagram are provided to
the model explicitly and the model figures this out
from globally consistent use of tokens). However,
in this case, a particular catalogue item INV 146
is not present in the scene. When we observe the
confidence values of the prediction from the last
layer (shown in Table 6), it can be seen that the
model is not quite certain about the prediction with
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Original(color=yellow) INV 247 (92.63) INV 199 (7.17) INV 155(0.08)
Original w/o desc. INV 146(13.75) INV 247 (13.04) INV 249 (12.60)
Modified(color=pink) INV 199(99.79) INV 247 (0.19) INV 235(<0.01)

Table 6: For the example utterances discussed, we inspected top-3 tokens and their confidence scores.

13.75 for INV 146 and 13.04 for INV 247, both
of which represent yellow shirts. This is to indi-
cate that even though the model has learnt to asso-
ciate object attributes necessary for co-reference
resolution, it lacks information to be certain about
the prediction. To this end, we provide the model
with a scene description as described in 3.2. When
the scene descriptions are provided, SimpleMTOD
correctly predicts the token INV 247 with 92.63%
confidence and high salience score over the same
token from the scene description, as well as tokens
‘shirt’ and ‘yellow’.

Additionally from Figure 5 it can be noted that
INV 199 also shows a high salience score. From
the metadata, we can see it is a pink color shirt.
However, there is a significant salience score over
the token ‘yellow’ that results in generating the cor-
rect token INV 247 over INV 199 (which is the sec-
ond ranked token with only had 7.17 confidence).
Extending the analysis, we modified the original
utterance to “I need a pink shirt” and generated
the next token, and SimpleMToD accordingly pre-
dicted the token INV 199 (with high confidence of
99.79%) as observed in Figure 6.

Effect on Intent prediction: Even though scene
descriptions play a key role in overall belief track-
ing as described earlier, the Intent-F1 score drops
from 95.8% to 94.0% when the scene descriptions
are encoded. In order to understand the effect, we
inspect salience scores when predicting the user
intent. It can be observed that when the scene de-
scriptions are omitted, higher salience scores are
assigned to the user utterance suggesting more fo-
cus on that. However, when the scene information
is included, salience scores assigned to the utter-
ance decreased to an extent, resulting in wrong
predictions in certain cases. This is to indicate
that scene descriptions are either redundant or act
as a distractor when we consider intent-detection,
which explains reduction in score. Furthermore,
this behaviour aligns with our intuition that the in-
tent parts of the user utterances are predominantly
language-driven. Figure 7 shows an example where
omitting the scene information produces the cor-
rect intent of REQUEST:COMPARE, whereas our

final version of SimpleMTOD wrongly predicted
the intent as ASK:GET

7 Related Work

Peng et al. (2020); Hosseini-Asl et al. (2020); Ham
et al. (2020) are closely related to our work as they
all model task-oriented dialogues in an end-to-end
manner with GPT-2-like large-scale transformer-
based architectures. However, all those models fo-
cus on text-only task-oriented dialogues. The GPT-
2 adaptation (Kottur et al., 2021), which is provided
as a baseline along with the SIMMC2.0 dataset, is
also closely related to our work. However, this
baseline represents visual objects by canonical ids
and demonstrates subpar results to our model in all
four tasks.

Generative encoder-decoder models (Liang et al.,
2020; Zhao et al., 2017) are a promising alternative
to decoder-only (GPT-2 based) dialogue models
that have been extensively investigated in unimodal
task-oriented dialogues. The MTN-baseline (Le
et al., 2019), which we compare to, is based on the
encoder-decoder architecture. While being inferior
with respect to performance in both the tasks con-
sidered, this model involves sophisticated feature
extraction process.

Mrksic et al. (2017) coined the term ‘de-
lexicalization’ for abstraction in neural dialogue
state tracking tasks. This idea has been extensively
used in goal oriented dialogues. Our notion of de-
localized object representation is influenced by this
work.

8 Conclusion

We explore a simple, single generative architec-
ture (SimpleMTOD) for several sub-tasks in multi-
modal task-oriented dialogues. We build on large-
scale auto-regressive transformer-based language
modeling, which has been effectively utilized in
task-oriented dialogues, and formalize the multi-
modal task-oriented dialogue as a sequence predic-
tion task. Our model employs a ‘de-localization’
mechanism for visual object representation that en-
sures the consistency of those tokens throughout
the dataset. Furthermore, we encoded spatial infor-
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System:AllthreeontheleftaresizeL.<SCAT>INV_250@CENTRE:LEFT, INV_283@CENTRE:LEFT,
INV_168@CENTRE:LEFT<ECAT>User:Whatelsemightyousuggest?System:I'msorry,thoseareallwe
currentlyhave.CanIhelpyoulookforsomethingelse?<SCAT> <ECAT>User:Canyoutellmethebrands
forthepurpleandmaroononesontheleftandhowmuchtheyare?=> <USB> : >>

REQUEST:COMPARE

Figure 7: Salience score heat-map when predicting the correct intent token REQUEST:COMPARE for the dialogue
turn with final utterance “Can you tell me the brands for the purple and maroon ones on the left and how much they
are?” without providing scene information

mation of object instances with a very small num-
ber of special (globally consistent) tokens. Despite
the simplicity in representing visual information,
our model demonstrates comparable or better per-
formance with models that heavily rely on visual
feature extraction, on four multimodal sub-tasks in
the SIMMC2.0 challenge.

9 Future Directions

Most current vision-language research relies on fus-
ing pixel-level vision information with token-level
language representations. However, their applica-
bility for dialogues where the language is sophisti-
cated remain sparsely studied. In contrast, we ex-
plore a symbolic approach for representing visual
information and combining it with auto-regressive
language models. While we rely on smaller scale
models (with 17 million parameters), our work
is readily extendable for large language models
(LLMs). Unlike pixel level visual representations,
special tokens representing visual information be-
ing more similar to the word tokens which the
LLMs area trained on, symbolic visual representa-
tion would facilitate effective transfer learning.

SimpleMTOD represents visual information us-
ing carefully designed input tokens. Capturing
these information through semantic scene-graphs,
which would provide richer representation, and
fusing them with LLMs would be an interesting fu-
ture direction of research for multimodal dialogues.
Development in knowledge-graph based language
grounding would complement this line of work.
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A SIMMC 2.0 Dataset

The SIMMC 2.0 dataset ( released under CC-BY-
NC-SA-4.0 licence) 4 consists of three major com-
ponents:

• Dialogue Data: Includes system and user ut-
terance with relevant annotations. Figure 1(a)
provide first 4 turns of a sample dialogue.

• Scene Data: Set of scenes representing envi-
ronments in which dialogues take place. Fig-
ure 1(b) provide the scene related to the dia-
logue segment shown in Figure 1(a). Other
than raw-images , an json file associated with
each image provides detail of objects, such as
bounding boxes and spatial relationships (left
of, right of, over, under) among objects.

• Meta-data: acts as a catalogue of items re-
lated to the dialogue corpus. Scene images are
made-up by positioning instances of catalogue
items in different configurations. Entries con-
tain both visual and non-visual attributes of
each item. Visual attributes of items from the
meta-data file are not allowed to be used dur-
ing inference.Figure 1(c) shows a single entry
in meta-data file.

A.1 Data Statistics

Split # of Dialogues
Train (64%) 7307
Dev (5%) 563
Test-Dev(15%) 1687
Test-Std (15%) 1687

Table 7: Number of dialogues in each split.

B Training and Evaluation

Task Metric
MM-Disambiguation Accuracy
MM-Coref Object-F1

MM-DST
Intent-F1
Slot-F1

DST+Coref Joint Accuracy
Response Generation BLEU-4

Table 8: Evaluation metrics used for different tasks in
SIMMC 2.0

4https://github.com/facebookresearch/simmc2
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We conduct our experiments with the SIMMC
2.0 (Kottur et al., 2021) dataset. Further, we follow
the experimental setup of the SIMMC 2.0 chal-
lenge with the same dataset splits, inference time
limitations, and performance metrics.

Implementation: We conduct our experiments
using PyTorch Huggingface’s transformers (Wolf
et al., 2019). All SimpleMTOD model variants
were initialized with Open AI GPT-2 pretrained
weights and exhibits computational speed iden-
tical to Open AI GPT-2. We use Adam opti-
mizer (Kingma and Ba, 2014) with default pa-
rameter of Huggingface’s AdamW implementation
(lr = 1e− 3, eps = 1e− 6, weight decay = 0).

We use the GPT-2 tokenizer for encoding user
and system utterances. However, we noticed that
the default tokenizer encoder mechanism chunks
special tokens introduced for visual object repre-
sentation. Therefore, we implemented an encoding
mechanism which selectively skips the default byte-
pair encoding for object tracking tokens.

Evaluation: We use the same evaluation met-
rics and evaluation scripts provided with the
SIMMC2.0 challenge. Table 8 shows metrics that
are used for evaluating each benchmark task.

C Salience scores

For the discussion we use input X gradient (IG)
method from (Alammar, 2021) as suggested in
(Atanasova et al., 2020). In the IG method of input
saliency, attribution values are calculated across the
embedding dimensions. With the values from em-
beddings dimension, the L2 norm is used to obtain
a score per each token Then resulting values are
normalized by dividing by the sum of the attribu-
tion scores for all the tokens in the sequence. Here
we provide actual salience scores for heat-maps
provided in the discussion in Section: 6.
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Figure 9: Salience scores with scene information when predicting the token INV 247 in utterance I need a
yellow shirt.
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Figure 10: Salience scores when predicting the token INV 199 for modified utterance I need a pink shirt
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Abstract
We present a novel method for using agent ex-
periences gathered through an embodied sim-
ulation to ground contextualized word vectors
to object representations. We use similarity
learning to make comparisons between differ-
ent object types based on their properties when
interacted with, and to extract common features
pertaining to the objects’ behavior. We then use
an affine transformation to calculate a projec-
tion matrix that transforms contextualized word
vectors from different transformer-based lan-
guage models into this learned space, and eval-
uate whether new test instances of transformed
token vectors identify the correct concept in
the object embedding space. Our results ex-
pose properties of the embedding spaces of
four different transformer models and show
that grounding object token vectors is usually
more helpful to grounding verb and attribute
token vectors than the reverse, which reflects
earlier conclusions in the analogical reasoning
and psycholinguistic literature.

1 Introduction
A common critique of modern large language mod-
els (LLMs) is that they lack understanding in the
sense of being able to link an utterance to a specific
communicative intent (Bender and Koller, 2020).
This shortcoming is often characterized as being
due to a lack of ability to ground or link lexical
items to real-world entities such as classes of ob-
jects, or associated properties or actions. For in-
stance, a modern generative LLM like ChatGPT1

may be able to generate coherent text describing
an object (e.g., “a coconut has a hard, often hairy
outer shell”), without any inherent underlying con-
ceptualization of what the item actually is.

Crucially, these underlying conceptualizations
necessarily invoke other modalities. Existing ap-
proaches to grounding in NLP typically treat the

1https://chat.openai.com

problem as one of making the correct kind of link
between text and another modality, usually im-
ages (Socher et al., 2014; Yatskar et al., 2016;
Zhu et al., 2020, 2021). However, still images do
not capture the wealth of information humans re-
ceive when interacting with objects or experiencing
events, and video data requires orders of magnitude
more data and computational power to effectively
process. Additionally, humans do not use vision
alone as their only non-linguistic modality.

As humans develop object concept representa-
tions and map them to associated nouns, they are
also learning to individuate objects from the per-
ceptual flow not just based on visual features but
also based on experience that includes interacting
with them in real time (Spelke, 1985; Spelke et al.,
1989; Spelke, 1990; Baillargeon, 1987). Gentner
(2006) argues that Talmy (1975)’s findings on vari-
ability in verbal semantics helped to explain why
nouns are typically learned before words for verbs
or other properties. Concrete nouns are more eas-
ily “groundable” not just because of their visual
manifestations but also because of their physical
presences that leave traces in the world, and these
physical properties provide a scaffold on which to
build representations of related concepts that are
supervenient upon understanding of objects.

In this paper we take an embodied simulation
approach to grounding, using a virtual environ-
ment to create experiences for an agent interact-
ing with objects. We show that similarity learning
over data gathered during the agent’s experience in
the virtual world can not only make comparisons
between objects, but also appears to learn infor-
mation pertaining to more abstract properties of
the objects. Fig. 1 shows a schematic view of our
overall approach. We map token vectors from dif-
ferent transformer-based LLMs into the resulting
representation space, and show that with just a few
samples, grounding noun representations alone is
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Figure 1: Overview of grounding architecture. In this figure, M denotes the computed affine transformation matrix
between language model (LM) and object classifier (Obj) space. Similarity learning in this figure is performed only
over a subset of the available classes (see Sec. 3.2). The solid lines depict the flow of information used to “train” or
compute the affine transformation “bridge” matrix, and the dashed lines depict the flow of information of novel
“test” samples, including transformation by the precomputed bridge matrix.

helpful for subsequent grounding of verbal tokens,
abstract properties, and attributive terms, but that
grounding verbal or attributive token representa-
tions is less helpful for subsequent grounding of
object concepts.

2 Related Work
Multiple works in cognitive science have identified
contrastive mechanisms, and the ability to analo-
gize by applying previous experiences to novel sce-
narios, as a cornerstone of problem-solving (Gen-
tner, 1983; Forbus et al., 1995; McLure et al., 2010;
Hofstadter and Sander, 2013; Smith and Gentner,
2014; Lovett and Forbus, 2017).

In visual analogy, Hill et al. (2019) created analo-
gies by contrasting relational structure. For solv-
ing Raven’s Progressive Matrices (RPMs) (Raven,
1936), Małkiński and Mańdziuk (2022) applied a
generalization of the Noise Contrastive Estimation
(NCE) algorithm (Gutmann and Hyvärinen, 2010).
Wu et al. (2018) performed feature learning using
visual similarity via unsupervised learning at the
instance-level with NCE. Oh Song et al. (2016)
used deep feature embedding based on lifted struc-
ture loss, and evaluated their method via clustering
and retrieval tasks on images from unseen classes.
Bell and Bala (2015) trained a Siamese CNN with
contrastive loss (Hadsell et al., 2006) to learn an
embedding space of interior design images and ap-
plied the embeddings to image search applications
like finding visually similar products across cate-
gories.

Since evaluating AI agents in physical environ-

ment can be expensive, many works have used
both embodied and non-embodied simulations to
explore language learning. Hermann et al. (2017)
combined reinforcement and unsupervised learn-
ing to teach agents to correlate linguistic symbols
with physical percepts and action sequences. How-
ever, this still-computationally-expensive method
required millions of training episodes. The SNARE
benchmark (Thomason et al., 2022) was evaluated
on grounding to objects but not in context or un-
der interaction. Tucker et al. (2021) demonstrated
an emergent clustering of semantic tokens from a
(non-embodied) continuous representation space
and Tucker et al. (2022) extended that method with
an application of an information bottleneck. Our
work integrates concepts from the above areas: em-
bodied simulation environments, language ground-
ing using both situated and linguistic context, and
emergent semantic categorization.

Merullo et al. (2022) examined 2D and 3D visual
and interactive data for learning object affordances
and found that 3D and interactive data performed
better. Ebert et al. (2022) extracted verbal seman-
tics from object trajectories in 3D space, but fo-
cused only on verbs whereas we examine nouns,
verbs, and attributes. We show that objects and
properties can also be encoded by object trajec-
tories or behavior in 3D space, using a stacking
task that exposes richer correlations between ob-
ject properties and behaviors. Like us, Patel and
Pavlick (2022) investigated word grounding but
they evaluated on within-domain concepts (e.g.,
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learning “left” to help ground “right” where we
investigate how, say, learning “sphere” can help
ground “round”) in a grid world (our world rep-
resentation is continuous), and where their trans-
formation passed input through a whole LLM, our
transformation is a simple affine map between em-
bedding spaces. Lazaridou et al. (2015) mapped
vision embeddings to language via ridge regression,
but their Multimodal Skip-Gram used static word
vectors, not contextualized vectors from transform-
ers.

Pezzelle et al. (2021) evaluated the representa-
tions of transformer models and found that mul-
timodal representations better align with human
judgments in the domain of concrete nouns, but
not abstract terms. Our work arrives at a related
conclusion using cross-model transfer.

3 Methodology
Our methodology comprises two primary compo-
nents: similarity learning to create a representa-
tion space of objects by making comparisons be-
tween geometric properties, and linear projection
to ground language representations to this space.

3.1 Data
We use the dataset from Ghaffari and Krish-
naswamy (2022), in which an agent in a simulated
environment built on the VoxWorld platform (Kr-
ishnaswamy et al., 2022), stacks 9 different types
of theme objects2 on top of a cube. Each object’s
behavior when stacked is different, based on its geo-
metric structure and therefore affordances (Gibson,
1977). For instance, a cube, if placed correctly on
another cube, will remain stacked, while a sphere
placed in the same position will roll off and keep
moving. An egg will likely do the same, but the
direction of motion may be subtly different based
on the symmetry of the object. The dataset con-
tains 10,000 total samples, each with 43 numerical
values describing the behavior of the objects in the
course of this stacking task: theme object type;
object orientation before the agent acts upon it;
numerical action describing the placement of the
theme relative to the destination object; resulting
spatial relations between the two objects; object
orientation after the action; and position of the
theme relative to the destination object before ac-
tion, immediately after action, and after the world
physics are applied to the scene. See Ghaffari and

2cube, sphere, cylinder, capsule, small cube, egg, rectan-
gular prism, pyramid, and cone.

Krishnaswamy (2022) for further details. This in-
formation about object behaviors and trajectories
in space, unlike still images, situates the objects in
an embodied environment and encodes richer in-
formation than visuals alone do. The dataset does
also contain images but these are not used here.

Two of the object types in the data, cylinder
and cone, have both flat sides and round edges,
and as this distinction strongly affects the behavior
of these objects when stacked (i.e., given proper
placement, a cylinder or cone will stack on top
of a cube but only if also placed in the correct
orientation), the dataset preserves these distinctions
nicely, and we split the cone and cylinder samples
into “flat-side-down” and “round-edge-down” for
similarity learning of properties (Sec. 3.2).

3.2 Similarity Learning of Object Properties
Since comparing pairs of examples plays a role in
analogy-making, we apply deep pair-based learn-
ing to compare structural object properties. The
main goal in deep pair-based learning techniques
is to learn an embedding space where embeddings
of similar samples are closer together and dissim-
ilar samples are pushed apart, after the projection
of input space to the embedding metric space. In
our case, the trained model should be able to infer
contrasts and comparisons between different struc-
tural properties of objects (in this case flatness and
roundness), and apply it to novel objects based on
commonalities in behavior and relational structure.

In training, we consider only samples of cube,
rectangular prism, pyramid, and small cube that
stacked successfully, and samples of capsule,
sphere, and egg that did not. For testing data, we
take a test split of the same object classes, and
also samples of cone and cylinder. These sam-
ples behave differently according to, among other
things, their orientation when placed. We split
cone and cylinder instances into “flat-side-down”
(stacked successfully) and “round-edge-down” (did
not stack successfully). Therefore we train on 7
classes and evaluate on 11 classes, including 4
never seen in training.

To train, we take 500 samples of each training
class, zero-center the data and make it unit variance.
Our model architecture consists of 4 1D convolu-
tional layers (32, 32, 64, and 64 units, respectively,
with filter size 3, stride length 1). The network
applies ReLU activation to the output feature maps,
with a max-pooling layer after the first two convo-
lutional layers. The final convolutional layer output
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is flattened, followed by an L2 normalized dense
layer.

We use multi-similarity loss (Wang et al., 2019)
which uses two iterative steps: pair-mining and
weighting. This approach considers both self-
similarity and relative similarity to collect more
informative pairs, and takes a weighted combina-
tion of selected positive and negative pairs. Like
other pairwise-based losses, this loss function max-
imizes the distance between dissimilar examples
and minimizes it between similar examples.

Equation 1 provides the formulation of the multi-
similarity loss function:

1

m

m∑

i=1

{ 1
α
log[1 +

∑

k∈Pi

1 + e−α(Sik−λ)]

+
1

β
log[1 +

∑

k∈Ni

1 + eβ(Sik−λ)]}, (1)

where Ni represents negative pairs (samples
from different classes) in the batch while Pi de-
notes positive pairs (samples from the same class).
Sik represents element (i, k) of the similarity
matrix, indicating the similarity of two samples
{xi, xk}, Sik := f(xi; θ) · f(xk; θ) where f is
the neural network with parameters θ. The cosine
embedding size is 64.

We use Adam optimization (Kingma and Ba,
2015) with a learning rate of 5× 10−6, with batch
size 70, and train for 20 epochs. Training was
performed on a Mac M1 Max with Metal acceler-
ation. In every mini-batch, 10 inputs (m = 10)
from each of the 7 training classes are randomly
sampled. In Equation 1, α = 2 (weight for positive
pairs), β = 40 (weight for negative pairs), λ = 0.5
(used to weight the distance). Margin ϵ = 0.1 is
used to remove easy positive and negative pairs
such that negative pairs are sampled if they are
greater than ( min

yi=yk
(Sik) − ϵ) where min

yi=yk
Sik rep-

resents the positive pair with the lowest similarity,
and positive pairs are sampled if they are less than
(max
yi ̸=yk

(Sik)+ ϵ) where max
yi ̸=yk

Sik represents the neg-

ative pair with the highest similarity. y denotes the
one-hot label vectors.

Since during training only 7 types of flat-sided
and round objects are used, the model learns to out-
put an embedding that represents pure round and
flat objects samples in the cosine space. The ex-
tracted embeddings are indexed. Given that the in-
dex of the embedding space represents only purely

Figure 2: Confusion matrix on the test split of 11 ob-
jects. Only 7 pure flat and round objects are used during
training. cyl-f = cylinder, flat side down; cyl-r
= cylinder, round edge down; likewise for cone-f/r.
The values shown in the matrix are normalized between
0 and 1.

round or flat objects, we consider 100 test samples
each from all 11 classes (seen and unseen) and
find the closest matches to the test samples using a
nearest neighbour search (K = 10).
Similarity Learning Results Fig. 2 shows the
confusion matrix for nearest neighbor search on
the test split of objects, using 100 test samples per
class. Interestingly, even though the model was
not trained on any cone and cylinder instances,
it is still able to not only match them to the cor-
rect object type, but also to the correct orientation.
Where confusions arise, it is between different flat-
sided objects and different round objects, but never
across these categories. In other words, this model
can capture and distinguish the main distinguishing
concepts—roundness and flatness—in the differ-
ent object classes, and draw comparisons between
them across classes. It also applies what is already
learned to novel objects to find similar examples
with respect to these concepts. Overall classifica-
tion accuracy is 82%.

3.3 Grounding Conceptual Vocabulary
First, we extracted the embeddings of 800 object
test samples from the learned object space. These
were 64D embeddings that defined the object rep-
resentation space, and objects clustered into two
broad regions defining the “flat-sided” and “round-
sided” objects (see Fig. 3).
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Figure 3: PCA of test object embeddings. Points out-
lined in blue represent “flat” object embeddings. Points
outlined in orange represent “round” object embeddings.

Individual embedding vectors of different in-
stances of the same object type form a region defin-
ing the object representation where some subset
of these vectors form the region’s spanning set;
Ethayarajh (2019) observed similar phenomena in
the representations of contextualized token vectors
from LLMs, suggesting there exists a structure-
preserving mapping between equivalent regions in
different embedding spaces.

To assess this, we needed to generate appropri-
ately contextualized vector representations of terms
to ground to the object representation space. For
this we turned to OpenAI’s ChatGPT model to
rapidly generate a sentence corpus. ChatGPT was
given prompts to generate short, unique sentences
that would explicitly mention the objects by name
and describe their behavior in a stacking task (e.g.,
“Write 40 short sentences about how cubes can be
stacked”). In the process, ChatGPT also generated
mentions of properties of the objects (flat/round),
associated behaviors (stack/roll), properties of the
resulting structure (stable/unstable), and resulting
state of the structure (stand/fall). We generated
40 sentences describing each object type, plus 20
sentences each for block and ball, synonyms for
cube and sphere. In total, a 440-sentence corpus
was generated.

We then took the most frequently-occurring
domain-relevant terms (these were the object
names and aforementioned related conceptual
terms) and extracted the word-level embeddings
for each occurrence. We extracted word embed-
dings using the BERT, RoBERTa, ALBERT (all
768D), and XLM (2,048D) base models. Embed-
dings were creating by summing over the encoder
hidden states of the last four encoder layers. Where
tokenization split the target word into multiple to-

kens, the individual contextualized token embed-
dings were averaged to create a single embedding.

To actually ground the word embeddings into the
object space, we used a simple affine transforma-
tion. We took 5 contextualized embeddings of each
target word, paired each with an embedding for the
object whose name occurs in the sentence the target
word came from, and use them to compute an affine
transformation from LLM space to object embed-
ding space, using a ridge regressor that minimizes
the mean squared-error distance between the paired
embeddings. The resulting transformation matrix
serves as a “bridge” between the two representa-
tion spaces. This affine transformation technique
has previously been used to compare image em-
beddings from different vision models (McNeely-
White et al., 2022) and to map information from
monolingual LLMs into multilingual LLMs (Nath
et al., 2022). Here we apply this technique in a
cross-modal setting.

We perform iterative experiments, starting by
using only a subset of the different words and ob-
jects to compute the mapping, and incrementally
add conceptual vocabulary to improve the quality
of the calculated transformation. We evaluate the
transformation by transforming word vectors for
concepts not used in computing the transformation
matrix and seeing if those embeddings cluster with
the correct set of objects that bear those properties,
have those affordances, etc. The order in which
object concepts are introduced follows the order
we used previously in Ghaffari and Krishnaswamy
(2022), with the exception of moving cylinder and
cone to the end, due to their exclusion from ini-
tial training of the similarity learning model, and
pairing one flat-sided with one round object (e.g.,
pyramid + capsule) at each step.

As a final step, a “hint” is provided by adding 5
embedding pairs that explicitly include the concept
to be grounded to the computation of the trans-
formation. We evaluate this by transforming new
instances of that concept into the object embedding
space and seeing where they cluster. We quantify
the clusters of different concepts when transformed
into the object space using separation of cluster
centers and a K-nearest neighbor (KNN) classifier
with K = 5.

4 Results of Conceptual Grounding
For illustrative purposes, let us first examine the
concepts of “flat” and “round” using word embed-
dings drawn from XLM, the best-performing model
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Figure 4: PCA of “flat” (pink) and “round” (black) test embeddings from XLM mapped into object embedding
space. L: with mapping computed using only information about cubes, spheres, and eggs. C: using information
about all objects. R: using all objects and a 5-sample “hint” about “flat” vs. “round.”

in this domain when “hinting” is used. Further re-
sults from other models are given in the Appendix.

In Fig. 4, we see word embeddings for “flat”
and “round” transformed into the object embed-
ding space. At first (the left figure), when only
information about cubes, spheres, and eggs are
used to compute the mapping, there is only a slight
separation between the two transformed embed-
ding clusters and neither term clusters cleanly with
either flat or round objects. When information
about all objects is used to compute the transfor-
mation (center), the two word embedding clusters
distinctly separate, with most “flat” embeddings
clearly overlapping with the flat-sided objects, mu-
tatis mutandis “round” embeddings and the round
objects. Finally (right), the “hint” is provided, by
explicitly pairing a small set of 5 “flat” or “round”
word embeddings to object embeddings whose type
appears in a generated sentence collocated with the
target word (e.g., “The cubes were flat on all sides,
making it easy to stack them neatly.”). With this
hint we see that the “flat” and “round” word em-
beddings more completely overlap with the objects
that have the respective attributes.

When little information about related object con-
cepts is provided when computing the mapping
from LLM space to object embedding space, the
transformed clusters of contrasting terms share a
high level of similarity in object space, but as more
information about related object concepts is intro-
duced into the transformation, the separation of the
transformed novel concept clusters start to cleanly
separate and become distinguished from each other.
Fig. 5 shows the mean similarity of the transformed
clusters of attributive, verbal, and object synonym
terms as different object terms are mapped into
the object space, using embeddings drawn from
the four different LLMs. Fig. 6 shows the same
change in the similarity between cluster centers,
but this time evaluated over the transformed object
terms when the transformation is computed using

attributive and verbal terms. In both plots, dashed
lines show where an explicit “hint” is given about
specific concepts. We see that just by using a few
samples of each concept and projecting them into
object space using an affine transformation, ground-
ing object terms is helpful in distinguishing the
meaning of terms denoting related properties, at-
tributes, and verbs, but grounding the more abstract
concept vocabulary first does not usually cause the
transformed clusters of object terms to separate
before explicit hinting is provided, reflecting the
psycholinguistic hypothesis of Gentner (1983).

Table 1 shows the results of the KNN classifier
over the transformed attributive and verbal word
embeddings, both when the transformation was
computed using only object information (top sec-
tion) and with “hints” about the attributive concepts
(bottom). Table 2 shows KNN classifier results over
transformed object embeddings without hints about
the objects, and with. We report macroaveraged F1
scores, so that successful performance on high sup-
port classes does not obscure poor performance on
low support classes. Numbers in parentheses show
how much “hinting” helped improve performance
of the particular model on the concept in question.
Block and ball are included in both the “object” test
set and the “predicate” test set (even though they
are not predicative terms in this sense), because
these terms were not used in computing the affine
mapping in either case. They are included as syn-
onyms for cube and sphere. Further discussion is
provided in Sec. 5.

5 Discussion
Separation of conceptual clusters In Fig. 5, we
can see that for object concept vectors from certain
models, as information about certain other concepts
is included in the transformation from LLM space
to object space, the centers of the conceptual clus-
ters in question start to organically separate. This is
particularly true for ALBERT object word vectors
and to some extent XLM and BERT vectors. In
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flat/round stack/roll stable/unstable stand/fall block/ball
Models N = 103 N = 56 N = 22 N = 10 N = 30

BERT 0.89 0.16 0.58 0.60 0.33

RoBERTa 0.34 0.16 0.29 0.37 0.67

ALBERT 0.92 0.65 0.58 0.89 0.60

XLM 0.73 0.53 0.37 0.29 0.79

BERT+hint 0.96 (+0.07) 0.78 (+0.62) 0.91 (+0.63) 1.00 (+0.40) 0.93 (+0.60)

RoBERTa+hint 0.90 (+0.56) 0.89 (+0.73) 1.00 (+0.71) 1.00 (+0.63) 0.90 (+0.23)

ALBERT+hint 0.89 (-0.03) 0.85 (+0.20) 0.86 (+0.28) 1.00 (+0.11) 0.66 (+0.06)

XLM+hint 0.98 (+0.25) 1.00 (+0.47) 0.73 (+0.36) 1.00 (+0.71) 0.97 (+0.18)

Table 1: Macroaveraged KNN F1 over transformed attribute/verb/synonym word embedding test sets (mapping
computed using object embeddings). Numbers in parentheses show performance increase with “hinting.”

Models cube/sphere pyr/cpsl cyl-f/r cone-f/r block/ball

BERT 0.77 0.46 0.34 0.40 0.83
RoBERTa 0.81 0.44 0.40 0.49 0.55

ALBERT 0.88 0.88 0.81 0.78 0.46

XLM 0.40 0.46 0.49 0.36 0.55

BERT+hint 0.97 (+0.20) 1.00 (+0.54) 0.78 (+0.44) 0.84 (+0.44) 0.93 (+0.10)

RoBERTa+hint 0.81 (±0.00) 0.94 (+0.50) 0.78 (+0.38) 0.87 (+0.38) 0.90 (+0.35)

ALBERT+hint 0.88 (±0.00) 0.94 (+0.06) 0.87 (+0.06) 0.88 (+0.10) 0.66 (+0.20)

XLM+hint 1.00 (+0.60) 0.97 (+0.51) 0.81 (+0.32) 0.91 (+0.55) 0.97 (+0.42)

Table 2: Macroaveraged KNN F1 over transformed object word embedding test sets (mapping computed using
attribute/verb embeddings). Numbers in parentheses show performance increase with “hinting.” N = 30 for all.

other words, if the model already “knows” about
the dual aspects of cones and cylinders, it becomes
easier to distinguish an abstract concept of flatness
from roundness. Clusters of transformed RoBERTa
object word vectors tend not to separate very clearly
until explicit hints about them are provided.

Flat/round is the easiest of the attributive or ver-
bal concepts to distinguish, through affine trans-
formations that include information about flat and
round objects. Stable/unstable is a particularly hard
distinction for most model representations, in part
because of the low support for these terms in the
training corpus but also because in the scenario
captured in the simulation data and described in
training sentences, the terms refer to properties not
of the objects themselves, but of the objects in the
context of the stacking task (i.e., spheres are not
inherently “unstable” but are if someone attempts
to stack them). This suggests data gathered from
either stacking more objects, or from tasks involv-
ing more complex balancing acts would be useful
to learn a robust interpretation of such terms.

Inverse trends are observable in Fig. 6, where

we see that when the transformation includes only
information about attributes and verbs, transformed
BERT and XLM object word vectors for contrast-
ing objects do not meaningfully separate until ex-
plicit hints are provided (and even then sometimes
they don’t separate much). Some of the RoBERTa
object word clusters do appear to appreciably sepa-
rate as more attribute and verb information is added
to the transformation, and ALBERT object word
clusters, actually at first grow closer as related con-
ceptual information is added to the transformation,
until suddenly separating at the provision of an ex-
plicit hint. This suggests that ALBERT, perhaps
due to its smaller training size and architecture,
learns vocabulary representations that are more
“entangled” or that representations of flat-sided or
round object words carry with them a bias toward
object-related interpretations of “flat,” “round,” and
associated terms. Meanwhile XLM and other rep-
resentations of abstract vocabulary are perhaps less
correlated with concrete nouns, making them less
easy to ground but also in principle more composi-
tional with less bias toward certain interpretations.
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Figure 5: Separation of cluster centers for transformed
(in order) BERT, RoBERTa, ALBERT, and XLM em-
beddings for verb and property concepts, as more infor-
mation about other concepts is progressively added to
compute the transformation. Dashed lines show where
a “hint” is given about the concept to be grounded (de-
noted by the similarly-colored solid line).

Classification of conceptual terms With hinting,
XLM vectors perform best in the term classifica-
tion task. XLM is the largest of the four models
and has the largest embedding size (2,048 where
all other models use an embedding size of 768).
Hinting typically provides the biggest boost in per-
formance to XLM vectors, both for grounding con-
crete object and abstract terms. This suggests that
the object concepts and the attributive/verbal con-
cepts form distinct and possibly distant regions in

Figure 6: Separation of cluster centers for transformed
embeddings for object concepts, as more information
about other concepts is progressively added to com-
pute the transformation. Format is identical to Fig. 5.
+shapes denotes adding information about all objects.

the original XLM embedding space, and that an
affine transformation into the object space does not
always put pairs of contrastive attributes or verbs
closer to distinct objects that display those respec-
tive properties. Providing hints helps all models
achieve high performance by matching objects and
related concepts, but the performance boost is par-
ticularly high for XLM vectors, which often per-
form very badly in KNN classification of some con-
cepts (e.g., stable/unstable, stand/fall) until hints
are provided. Hinting is still less helpful for trans-
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forming XLM object vectors when only previous
information about attributes or verbs is provided.

Interestingly, hinting is least helpful when
grounding word vectors from ALBERT, the small-
est of the four models. On eight out of ten concept
pairs explored, ALBERT vectors perform the best
by far in the KNN classifier before any hints are
provided, but providing subsequent hints makes
only a small difference to classification F1, and
sometimes none at all, while boosting the perfor-
mance of other representation ahead of ALBERT
vectors. This suggests that the object and related
concept representations already share some level
of correlation and possibly overlap in ALBERT
embedding space. In turn, these results suggest
that larger models like XLM may be better able
to represent multiple word senses and figurative,
non-physically-grounded usages of terms like these.
However, grounding these concepts to a physical
environment without some explicit “nudges” may
be more challenging for larger pretrained models
than smaller ones, in which the abstract concepts
may already be biased toward correlations with
the associated concrete object concepts. Further
discussion is provided in the Appendix.

6 Conclusion and Future Work
In this paper, we have presented evidence that sim-
ilarity learning over rich object behavior and tra-
jectory data from an embodied simulation envi-
ronment can create a representation space that not
only successfully classifies concrete objects but can
make analogical comparisons between them based
on abstract properties that inhere across multiple
object types. We used the resulting representation
to conduct investigations into the properties of to-
ken embeddings from different LLMs by mapping
them into the object space using a linear ridge re-
gression technique. We found that computing a
mapping using representations of objects/object
terms correlated with increased ability to distin-
guish and assign related conceptual vocabulary to
the right categories, but that representations from
different LLMs behaved quite differently. We also
observed that computing mappings using informa-
tion about abstract properties was less useful for
distinguishing and classifying object terms. This
reflects earlier arguments from psycholinguistics
and analogical reasoning, e.g., Gentner (2006)’s hy-
pothesis that names for concrete objects should be
learnable by humans very early but that associated
verbs and attributes are harder.

Our approach uses numerical data that situates
and embodies an agent’s positioning in the environ-
ment relative to the objects it interacts with. This
method allows us to build a model over rich in-
formation without visual artifacts like occlusion
or perspective distortion, Prior research, e.g., Kr-
ishnaswamy and Pustejovsky (2022); Pustejovsky
and Krishnaswamy (2022) has demonstrated that
embodiment is also influenced by other factors like
events and habitats, and that purely linguistic rep-
resentations of objects, attributes, and activities
may not capture these types of information. In
fact, the corpus generated using ChatGPT, an un-
embodied language model trained solely over text,
is likely not entirely representative of these aspects
beyond cooccurrences between object terms, habi-
tats, and affordances in the training data. What
our embodied approach brings is a way to correlate
representations extracted from unembodied models
to representations learned from embodied data, and
provides evidence that the ability to ground real-
world entities, properties, or actions to lexical items
could enable LLMs to simulate the human ability
to link utterances to specific communicative intents.
However, further investigation is necessary.

Since the primary objective of this research is
to provide a method that achieves human-like “un-
derstanding” of communicative intents, we should
note that we do not argue that human learners
use the same mathematical transformations we use
herein, but just that we can use them to make AI
systems behave similarly.

Directions for future work include 1) investigat-
ing the effects of intra-class order when ground-
ing tokens, e.g., introducing object concepts to the
affine mapping in a different order; 2) using sim-
ilarity learning over images, or images combined
with the embodied data, to create the representation
space; 3) using data gathered in other embodied
tasks to investigate other concepts like concavity or
directedness, that are not captured in this stacking
task; 4) evaluating token representations directly
from a decoder like a GPT-style model; and 5) di-
rectly operationalizing analogical comparisons in a
real-time embodied simulation, e.g., by making an
agent solve problems using analogical reasoning in
a live environment.
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A Appendix: Additional Results

The following figures are provided for comparison
with Fig. 4 and Table 1.

Fig. 7 shows the projection of “flat” and “round”
token embeddings from BERT into the learned
object representation space when the mapping is
computed using paired embeddings of objects and
object terms, but no explicit hint is provided about
the meaning of “flat” and “round.” The two clusters
clearly separate from each other but do not map
clearly onto flat and round object representations
at this stage. Fig. 8 shows the same projection after
a 5-sample hint about “flat” and “round” is added
to the mapping.

Figure 7: PCA of “flat” (pink) and “round” (black) test
embeddings from BERT mapped into object represen-
tation space. Mapping is computed using information
about all objects but without flat/round hinting.

Figure 8: PCA of “flat” (pink) and “round” (black) test
embeddings from BERT mapped into object represen-
tation space. Mapping is computed using information
about all objects and flat/round hinting.

Fig. 9 shows the projection of “flat” and “round”
token embeddings from RoBERTa into the learned
object representation space when the mapping is
computed using paired embeddings of objects and
object terms, but no explicit hint is provided about
the meaning of “flat” and “round.” Again, the two
clusters clearly separate from each other at this
stage, but the “flat” embeddings are closer to the
round objects embeddings in the 64D space while
the “round” embeddings are distinct from each ob-

ject cluster. Fig. 10 shows the same projection after
a 5-sample hint about “flat” and “round” is added
to the mapping.

Figure 9: PCA of “flat” (pink) and “round” (black)
test embeddings from RoBERTa mapped into object
representation space. Mapping is computed using infor-
mation about all objects but without flat/round hinting.

Figure 10: PCA of “flat” (pink) and “round” (black)
test embeddings from RoBERTa mapped into object
representation space. Mapping is computed using infor-
mation about all objects with flat/round hinting.

Figs. 11 and 12 show the equivalent using the
ALBERT “flat”/“round” token embeddings. Here,
without hinting, the transformed “flat” embeddings
mostly cluster with flat-sided objects and the trans-
formed “round” embeddings mostly cluster with
round objects, suggesting that in ALBERT, the rep-
resentations of “flat”, “round”, and other associ-
ated object-related concepts are relatively entan-
gled with the object terms themselves. Hinting
solidifies this correlation somewhat but the effect
is relatively small, as discussed in Sec. 5.

Fig. 13 shows contextualized token embeddings
for all vocabulary items from (top to bottom) BERT,
RoBERTa, ALBERT, and XLM mapped into the
object representation space when the mapping is
computed using information about all concepts,
including hinting. For all points, the outer color
denotes the token it represents and the inner color
(blue or orange) indicates whether the transformed
embedding clusters with flat-sided or round object
representations. Therefore, a black point with an
orange center indicates a “round” token embedding
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Figure 11: PCA of “flat” (pink) and “round” (black)
test embeddings from ALBERT mapped into object
representation space. Mapping is computed using infor-
mation about all objects but without flat/round hinting.

Figure 12: PCA of “flat” (pink) and “round” (black)
test embeddings from ALBERT mapped into object
representation space. Mapping is computed using infor-
mation about all objects with flat/round hinting.

that clusters with round objects (correctly), but a
black point with a blue center indicates one that
incorrectly clusters with flat-sided objects. We see
that when using the full set of concepts in com-
puting the mapping between spaces, the larger
models show the strongest correlations between
correctly-mapped token embeddings and the ex-
pected set of object representations. Mapped XLM
vectors show the strongest separation between the
flat-related concepts and round-related concepts,
while mapped ALBERT vectors display a fairly
significant overlap between those correlated with
flat objects and those correlated with round object
(this is evident in the center of the plot “between”
the two main flat and round clusters). Mapped
RoBERTa and to a lesser extent BERT embeddings
show a similar overall separation to mapped XLM
embeddings, but with a wider dispersion in the
distribution of mapped embeddings, where some
(particularly in the case of RoBERTa embeddings)
have a very high Euclidean distance from the two
core object representation clusters to which they
are compared.

Figure 13: PCA of (top to bottom) BERT, RoBERTa,
ALBERT, and XLM test word embeddings for all con-
cepts mapped into object representation space, including
hinting in the mapping. Innermost colored point indi-
cates whether that transformed embedding clusters with
flat-sided objects or round objects.
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Abstract
Interactive Task Learning (ITL) concerns learn-
ing about unforeseen domain concepts via nat-
ural interactions with human users. The learner
faces a number of significant constraints: learn-
ing should be online, incremental and few-shot,
as it is expected to perform tangible belief up-
dates right after novel words denoting unfore-
seen concepts are introduced. In this work, we
explore a challenging symbol grounding task—
discriminating among object classes that look
very similar—within the constraints imposed
by ITL. We demonstrate empirically that more
data-efficient grounding results from exploit-
ing the truth-conditions of the teacher’s generic
statements (e.g., “Xs have attribute Z.”) and
their implicatures in context (e.g., as an answer
to “How are Xs and Ys different?”, one infers
Y lacks attribute Z).

1 Introduction

Consider a general-purpose robot assistant pur-
chased by a restaurant, which must acquire novel
domain knowledge to operate in this particular
venue. For example, the agent must learn to dis-
tinguish brandy glasses from burgundy glasses
(Fig. 1a), but these subcategories of glasses are
entirely absent from the agent’s domain model in
its factory setting. Learning to distinguish among
fine-grained visual subcategories is a nontrivial feat
(Wei et al., 2021); most current approaches require
careful engineering by ML practitioners, making
them unsuitable for lay users to readily inspect and
update the robot’s domain knowledge.

There are also challenges regarding data ef-
ficiency, which using natural language can po-
tentially address (Laird et al., 2017). A single
generic statement—e.g., “Brandy glasses have
short stems”—expresses content that would take
many visual examples to infer. Such statements,
given their dialogue context, may also carry addi-
tional meaning that is linguistically implicit. For

(a) 3D models of fine-grained types of glasses.

How are brandy glasses different 
from burgundy glasses?

Brandy glasses have short stems.

… and they are similar 
in other regards

Burgundy glasses do not 
have short stems…

(Defeasible) Inference of implicatures from context

(b) Example interaction between a teacher and a learner dis-
cussing generic knowledge about types of glasses.

Figure 1: Learning via embodied dialogue in a simu-
lated tabletop domain.

instance, if the statement “Brandy glasses have
short stems” is given as an answer to the contrastive
question “How are brandy glasses and burgundy
glasses different?”, then it implies that burgundy
glasses don’t have short stems, and also, defeasibly,
that these two types of glasses are similar in other
conceivable respects (Grice, 1975; Asher, 2013).
Vision processing models that exploit natural lan-
guage data exist (He and Peng, 2017; Xu et al.,
2018; Chen et al., 2018; Song et al., 2020), but
they generally treat language as supplementary sig-
nals for augmenting training examples, rather than
leveraging a range of symbolic inferences licensed
by purposeful utterances in dialogue.

In this work, we develop an interactive sym-
bol grounding framework, in which the teacher
presents to the learner evidence for grounding dur-
ing embodied dialogues like those illustrated in
Fig. 1b. The framework is based on a highly modu-
lar neurosymbolic architecture, in which subsym-
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bolic perceptual inputs and symbolic conceptual
knowledge obtained during dialogues gracefully
combine. We run proof-of-concept experiments to
show that agents that exploit semantic and prag-
matic inferences from generic statements in dis-
course outperform baselines that don’t exploit se-
mantics and pragmatics, or don’t exploit symbolic
inference at all.

2 Related Work

In fine-grained image analysis (FGIA), a model
learns to distinguish (patches of) images of sub-
categories that belong to the same basic category.
FGIA is challenging because images exhibit small
inter-class variance and large intra-class variance,
and labeling often requires specific domain exper-
tise, hence high annotation costs (Wei et al., 2021).

A natural approach to FGIA is to utilize informa-
tion of different modalities, including unstructured
text descriptions (He and Peng, 2017; Song et al.,
2020), structured knowledge bases (Xu et al., 2018;
Chen et al., 2018) and human-edited attention maps
(Duan et al., 2012; Mitsuhara et al., 2021). How-
ever, to our knowledge, no existing FGIA models
exploit NL generic statements provided in vivo dur-
ing natural dialogues. Existing interactive FGIA
methods (Branson et al., 2010; Wah et al., 2011,
2014; Cui et al., 2016) query humans to refine pre-
dictions from off-the-shelf vision models at infer-
ence time but do not update the grounding mod-
els. In contrast, our framework supports continu-
ous learning, updating the grounding model as and
when the teacher says something noteworthy.

Our use case, described in §1, can be subsumed
under the framework of Interactive Task Learning
(ITL; Laird et al., 2017). Motivated by scenarios
where unforeseen changes may happen to the do-
main after deployment, the core goal of ITL is to ac-
quire novel concepts that the learner is unaware of
but are critical to task success. ITL systems gather
evidence from natural embodied interactions with
a teacher that take place while the learner tries to
solve its task. Thus a key desideratum in ITL is
that learning should be online and incremental: the
learner should change its beliefs and behaviours
whenever the teacher provides guidance.

Natural language is a common mode of teacher-
learner interaction in ITL (Kirk et al., 2016; She
and Chai, 2017). Accordingly, several ITL works
draw inspiration from linguistic theories to make
learning more effective and efficient. While the for-

This is a bordeaux glass.

𝑜1

𝑜3

𝑜2
User> 𝜋1
Agent> 𝜋2

𝑜1

𝑜3

𝑜2
User> ? λ𝑃. 𝑃 𝑜1 .
Agent> 
bordeaux_glass 𝑜1 .

Vision Processing Module Language Processing Module

Symbolic Reasoning Module

Exemplar
Base

Episodic 
Memory

Lexicon
Knowledge 

Base

Long-term Memory

Scene graph Semantic representationFinal estimate

Preliminary scene graph Dialogue record updated

Figure 2: Overview of the architecture in inference
mode, in which the component modules interact to gen-
erate an answer to a user question.

mal semantics of quantifiers and negation (Rubavi-
cius and Lascarides, 2022) and of discourse coher-
ence (Appelgren and Lascarides, 2020) has been
explored in ITL settings, none of the works in the
ITL literature have investigated the utility of ex-
ploiting the logical inferences licenced by the se-
mantics and pragmatics of contrastive questions
and their generic statement answers.

3 Agent architecture

Fig. 2 illustrates our neurosymbolic architecture
for situated ITL agents that can engage in ex-
tended dialogues with a teacher. Its design enables
both subsymbolic-level learning of visual concepts
from perceptual inputs (“This looks like a X”) and
symbolic-level learning and exploitation of rela-
tional knowledge between concepts (“Xs gener-
ally have attribute Z”) during task execution. Here
we stress that our proposed approach is not in di-
rect competition with wide-coverage neural vision-
language models, but actually complements them.
As an ITL framework, we offer a coping mecha-
nism, to be employed when an existing pre-trained
model is deployed in a domain where concepts are
frequently introduced and changed, requiring the
model to quickly adapt with only a few exemplars
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Exemplar
Base

Few-shot
concept prediction

𝐼, perceived 
scene image

𝑆𝐺, scene graph 
estimate

෪𝑆𝐺, preliminary 
scene graph template

Vision Processing Module

𝜒𝛾
+, 𝜒𝛾

−,

Positive/negative exemplars
(For each concept 𝛾)

(Updated throughout episodes)

𝐵𝑖𝑛𝐶𝑙𝑓𝛾,

Induced binary classifiers
(For each concept 𝛾)

Pre-trained neural model for few-shot object 
localization and feature extraction

(Weights stay frozen throughout episodes) Boxes with 
feature vectors

Figure 3: Abridged illustration of the few-shot scene
graph generation process (Full version in Appendix A)

of unforeseen concepts.

3.1 Vision processing module

Given a visual scene perceived by the vision sensor,
the agent first summarizes the raw input into a
graph-like data structure (scene graph hereafter).
A scene graph SG encodes a set of salient objects
in the scene with their distinguishing features and
their pairwise relationships, serving as the agent’s
internal, abstracted representation of the scene.

Our architecture makes exemplar-based few-
shot predictions to generate scene graphs, so as
to quickly learn novel visual concepts after a few
training instances in an online, incremental fashion.
Specifically, our vision processing module employs
a neural model extended from Deformable DETR
(Zhu et al., 2021), trained to learn distinct low-
dimensional metric spaces for each concept type
(object class/attribute/relation). The module makes
binary concept predictions based on similarity dis-
tances between embedded vectors. As illustrated in
Fig. 3, the role of the vision module is to process an
RGB image input I into a preliminary scene graph
template

∼
SG. The template is further processed

along with the agent’s store of concept exemplars
in its long-term memory (§3.3) to yield SG. For
further details about the inner working of the neural
vision module and the translation process from

∼
SG

to SG, refer to Appendix A.

3.2 Language processing module

The language processing module parses natural
language utterances into formal semantic represen-
tations, maintains dialogue records, and generates
natural language utterances as needed. For con-
trolled experiments, we constrain our attention to a
class of simple sentences that discuss primarily two
types of information: 1) instance-level descriptions
about conceptual identities of scene objects (e.g.,

“This is a brandy glass”, “This has a wide bowl”);
and 2) relational knowledge about generic proper-
ties shared across instances of the same concepts
(e.g., “Brandy glasses have short stems”).

More formally, we represent the propositions ex-
pressed by NL sentences via a simple antecedent-
consequent pair (PROP hereafter). PROPs draw on
a first-order language L which includes constants
referring to objects in the visual scene and predi-
cate symbols for their classes, attributes and pair-
wise relations (i.e., visual concepts from §3.1). In-
dicative NL sentences are generally represented
with a PROP ψ = Ante ⇒ Cons, where Ante
and Cons are each a L-formula (for ψ, we refer
to these as Ante(ψ) and Cons(ψ)). Ante(ψ) is
empty (and thus omitted) if ψ represents a non-
conditional, factual statement. Further, we no-
tate a PROP that stands for a generic character-
ization with a ‘generic quantifier’ G. For ex-
ample, the sentences “o is a brandy glass” and
“Brandy glasses have short stems” are translated
into PROPs respectively as brandyGlass(o) and
GO.brandyGlass(O)⇒ haveShortStem(O).1

We represent questions (QUES hereafter) follow-
ing notation similar to Groenendijk and Stokhof
(1982). The answer to a polar question, repre-
sented as ?ψ, is ψ (if true) or ¬ψ (if false). An-
swers to a wh-question ?λX.ψ(X) provide val-
ues a of X that make ψ[X/a] true (i.e., all oc-
currences of X in ψ are substituted with a). For
the question “How are p1 and p2 different?”, we
avoid the complexity of higher-order formal lan-
guages and simply introduce a reserved formal-
ism ?conceptDiff(p1, p2), which our imple-
mented dialogue participants can handle by in-
voking a dedicated proecdure. The answer to
?conceptDiff(p1, p2) is the set of attributes
that all objects of class p1 have and p2 lack, and
vice versa.

The language processing module is implemented
as a pipeline with two components: an off-the-
shelf large-coverage parser of the English Resource
Grammar (Copestake and Flickinger, 2000) fol-
lowed by manual heuristics that map the parser’s
outputs to the above forms, as required by the sym-
bolic reasoner (see §3.4). The module also keeps

1In the interest of brevity and simplicity, we have trans-
lated “have short stems” into an ‘agglomerate’ predicate
haveShortStem in this text. This is contrary to the actual im-
plementation, where we introduced the concepts stem, short
(unary predicates) and have (binary predicate) as elementary
units. See Appendix B for a more accurate exposition.

320



track of the current dialogue history as a sequence
of utterances: each one logged as a PROP or QUES,
its NL surface form and its speaker.

3.3 Long-term memory module
Our agent stores new knowledge acquired over the
course of its operation in its long-term memory.
We implement four types of knowledge storage:
visual exemplar base (XB), symbolic knowledge
base (KB), episodic memory and lexicon.

Visual XB For each visual concept γ, the visual
XB stores χ+

γ and χ−
γ , a set of positive/negative ex-

emplars worth remembering. The exemplars serve
as the basis of the agent’s few-shot prediction ca-
pability as mentioned in §3.1. The visual XB is
expanded each time the agent makes an incorrect
prediction. Specifically, when the learner incor-
rectly states “This is γ̃”, the teacher provides a cor-
rective response, saying “This is not γ̃, this is γ”,
thereby augmenting χ+

γ and χ−
γ̃ . New sets χ+/−

γ

are created whenever the teacher introduces a novel
concept γ via a neologism.

Symbolic KB The symbolic KB is a collection
of generic PROPs describing relations between sym-
bolic concepts, such as GO.brandyGlass(O) ⇒
haveShortStem(O). Each KB entry is annotated
with the source of the knowledge: a generic rule
may be explicitly uttered by the teacher or inferred
as an implicature, given the dialogue context. We’ll
discuss how the learner can extract unstated knowl-
edge in §4.2.2 in further detail.

Episodic memory The episodic memory stores
the summary of each episode of situated interac-
tions between the agent and the teacher.

Lexicon The lexicon stores a set of content words
the teacher introduces into the discourse, along
with linguistic metadata like part-of-speech.

3.4 Symbolic reasoning
For symbolic reasoning, we employ a probabilistic
variant of a logic programming2 technique known
as answer set programming (ASP; Lifschitz, 2008).
The formalism of ASP represents a reasoning prob-
lem as a normal logic program that consists of rules
of the following form:

a← b1, . . . , bm,not c1, . . . ,not cn. (1)
2In contrast to first-order logic, logic programming is based

on the notion of minimal models, where any true atom must
be justified (founded) by a clause in the logic program.

where the rule head atom a and the rule body
atoms {bi}mi=1, {cj}ni=1 can be propositional or
(quantifier-free) first-order logic formulas. An
intuitive reading of the rule, by itself, is that
a is logically justified if and only if all of the
positive body atoms {bi}mi=1 hold and none of
the negative body atoms {cj}ni=1 are proven to
hold. For instance, the ASP rule fly(X) ←
bird(X),not abnormal(X) would roughly cor-
respond to the meaning of the generic NL statement
“Birds (generally) fly”. A rule whose head is empty
(⊥) represents an integrity constraint that its rule
body should not hold in answer models.

In probabilistic ASP (Lee and Wang, 2016), each
rule is associated with a weight, such that possible
worlds satisfying a set of rules with higher total
weights are assigned greater probability. Thus a
rule may be violated at the expense of its weight.
Formally, a probabilistic ASP program Π = {w :
R} is a finite set of weighted rules whereR is a rule
of the form (1) and w is its associated weight value.
The probability of a possible world I according to
Π is computed via a log-linear model on the total
weight of rules in ΠI , where ΠI is the maximal
subset of Π satisfiable by I .

WΠ(I) = exp

( ∑

w:R∈ΠI

w

)
(2)

PΠ(I) =
WΠ(I)∑

J∈possible worlds by ΠWΠ(J)
(3)

For more rigorous technical definition, refer to Lee
and Wang (2016).

Each symbol grounding problem is cast into an
appropriate program as follows. First, serialize
the learner’s visual observations contained in the
scene graph SG into ΠO = {logit(s) : γ(o1, ...).},
where each γ(o1, ...) is a visual observation in SG
with confidence score s ∈ [0, 1]. Then we export
the KB into a program ΠK , built as follows:

• For each KB entry κ, add to ΠK :

logit(Ud) : ⊥ ← Ante(κ),not Cons(κ).

which penalizes ‘deductive violation’ of κ.

• For each set of KB entries {κi} that share
identical Cons(κi), add to ΠK :

logit(Ua) : ⊥ ← Cons(κi),∧

κi

{not Ante(κi)}
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which penalizes failure to explain Cons(κi).

Here, Ud, Ua ∈ [0, 1] are parameters encoding the
extent to which the agent relies on its symbolic
knowledge; we use Ud = Ua = 0.95 in our exper-
iments. For instance, the KB consisting of a sin-
gle PROP parsed from “Brandy glasses have short
stems” will be translated into ΠK consisting of the
two rules (7) and (8) in Example 1 below. Finally,
the program Π = ΠO∪ΠK is solved using a belief
propagation algorithm (Shenoy, 1997) modified to
accommodate the semantics of logic programs.

Example 1. The program Π below encodes a sce-
nario where the agent sees an object o1 and ini-
tially estimates o1 is equally likely to be a brandy
or burgundy glass. The agent also notices with high
confidence it has a short stem, and knows brandy
glasses have short stems:

logit(0.61) : brandyGlass(o1). (4)

logit(0.62) : burgundyGlass(o1). (5)

logit(0.90) : haveShortStem(o1). (6)

logit(0.95) : ⊥ ← brandyGlass(O),

not haveShortStem(O).
(7)

logit(0.95) : ⊥ ← haveShortStem(O),

not brandyGlass(O). (8)

This results in PΠ(brandyGlass(o1)) = 0.91,
whereas PΠ(burgundyGlass(o1)) = 0.62. Thus
the agent forms a stronger belief that o1 is a brandy
glass than it is a burgundy glass.

See Appendix C for more examples.

4 Interactive Visual Concept Acquisition

4.1 Task description
In our symbol grounding task, each input is a tuple
xi = (Ii, bi), where Ii ∈ [0, 1]3×H×W is an RGB
image and bi is a specification of a bounding box
encasing an object in Ii. That is, xi is essentially
reference to an object in an image. The task output
yi is dependent on two possible modes of querying
the agent about the identity of the object referenced
by xi. The first ‘polar’ mode amounts to testing
the agent’s knowledge of a concept in isolation
(i.e., “Is this a X?”; so yi is yes or no). The second
‘multiple-choice’ mode demands the agent selects
a single object class yi describing the object among
possible candidates (i.e., “What is this?”, and yi is a
class). The teacher’s response to yi is dependent on

What is this?

This is a brandy glass.

Correct. □ This is not a brandy glass.

This is a burgundy glass.

How are brandy glasses 
and burgundy glasses 

different?

Okay. □

Brandy glasses have short 
stems.

Correct answer Incorrect answer

On first confusion of 
two concepts

(Update XB)

(Update XB)

(Update KB)

this
T

L

T T

T

T

LL

T

L

Figure 4: Flowchart covering the range of training dia-
logues modeled in this study. □ signals termination of
an interaction episode.

the content of yi and the teacher’s dialogue strategy
as described in §4.2.1. The learner updates its
symbol grounding model from the teacher’s moves
using the methods described in §3 and §4.2.2.

As mentioned earlier, the agent’s domain model
may entirely lack the concept of interest for la-
belling xi. The agent acquires unforeseen concepts
via teacher utterances. For example, if “This (xi) is
a brandy glass” introduces the agent to the unfore-
seen concept “brandy glass”, then BrandyGlass
is added to L and the visual XB is augmented
with newly generated sets χ+

BrandyGlass = {xi}
and χ−

BrandyGlass = ∅.

4.2 Flow of dialogues
We focus on a family of dialogues illustrated in
Fig. 4. As depicted, each interaction episode is
initiated by a teacher query. Dialogues will pro-
ceed according to the learner’s responses and the
teacher’s strategy. In this research, we want to
investigate how different interaction and learning
strategies affect learning efficiency.

4.2.1 Teacher’s strategy options
The teacher starts off each interaction episode
by presenting an instance o of some visual con-
cept p, querying the learner with a probing QUES

“?λP.P (o)”.3 If the learner provides the correct
3Note that the expression ?λP.P (o) does not fully capture

the intended meaning of “What is this?” in its own right, since
the discourse contexts set up additional semantic/pragmatic
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answer as the PROP “p(o)”, the teacher responds
“correct” and the episode terminates without agent
belief updates. Otherwise, if the learner provides
an incorrect answer, “p̃(o)” or “I am not sure”, the
teacher needs to provide some corrective informa-
tion so that the learner can adjust its beliefs. We
implement and compare the following variations
in the teacher’s response, in increasing order of
information content:

• minHelp: Provides only boolean feedback to
the learner’s answer, i.e., “¬p̃(o)”.

• medHelp: In addition to minHelp, provides
the correct answer label, saying “p(o)”.

• maxHelp: In addition to medHelp, provides
a set of generic PROPs that characterize p or
p̃. The feedback is provided after the learner’s
QUES “?conceptDiff(p, p̃)”, asked once
on the first confusion between p and p̃.

The generic PROPs provided by maxHelp teach-
ers originate from the teacher’s domain knowledge,
which we assume here to be correct and exhaustive.
The set of PROPs to be delivered is computed as the
symmetric difference between the set of properties
of p versus that of p̃ (see Appendix D for an exam-
ple). minHelp and medHelp serve as vision-only
baselines since only concept exemplars with binary
labels are communicated as teaching signal.

4.2.2 Learner’s strategy options
Another dimension of variation we model is the
learner’s strategy for interpreting generic state-
ments within dialogue contexts. Note that the vari-
ation in this dimension is meaningful only when
the teacher deploys the maxHelp strategy, thereby
allowing exploitation of generic statements.

In human dialogues, interlocutors infer, and
speakers exploit, implicatures that are validated by
linguistically explicit moves, given the context of
utterance (Grice, 1975). As a core contribution of
this study, we model how generic statements given
as an answer to a question about similarities and
differences give rise to certain implicatures (Asher,
2013) that can be exploited for more data-efficient
learning.

Suppose a question “How are X and Y different?”
is answered with a generic statement “Xs have at-
tribute Z”. The following implicatures can arise

constraints on what counts as acceptable answers. We have
approximated those constraints via our pre-defined dialogue
strategies.

Situation

Confusion brandy glass vs. burgundy glass

Teacher input “Brandy glasses have short stems.”

Current KB GO.brandyGlass(O) ⇒ haveWideBowl(O)

Strategy New KB entries added

semOnly GO.brandyGlass(O) ⇒ haveShortStem(O)

semNeg GO.brandyGlass(O) ⇒ haveShortStem(O)
GO.burgundyGlass(O) ⇒ ¬haveShortStem(O)

semNegScal
GO.brandyGlass(O) ⇒ haveShortStem(O)
GO.burgundyGlass(O) ⇒ ¬haveShortStem(O)
GO.burgundyGlass(O) ⇒ haveWideBowl(O)

Table 1: An example of how different learner strategies
update their KBs from the teacher’s generic statement
feedback after the learner has confused a burgundy glass
for a brandy glass. The learner has already learned that
burgundy glasses have wide bowls. PROPs in black
is obtained from the teacher’s NL utterance; PROPs
in red from ‘negative’ implicatures (ψneg from ψ) as
demanded by coherence; and PROPs in blue from scalar
implicatures (κscl from κ).

from this discourse context: 1) “Ys do not have
attribute Z”, and 2) “X and Y are otherwise simi-
lar”. The former follows from the assumption that
the generic is a coherent answer to a contrastive
question (Asher and Lascarides, 2003). The latter,
which arguably is more defeasible (Grice, 1975),
is what’s known as a scalar implicature: if there
were other important differences that the learner
should know, then Gricean maxims of conversation
predict that the teacher would have included them
in the answer as well.

For a PROP ψ, let ψp↔q denote a PROP which is
identical to ψ except that occurrences of the predi-
cate p are all substituted with the predicate q and
vice versa. We consider the following strategies the
learner can take when interpreting a set of generic
PROPs {ψi} provided during an episode:

• semOnly: Simply add all ψi’s to KB.

• semNeg: In addition to semOnly, infer
a generic PROP ψneg

i = Ante(ψp↔p̃
i ) ⇒

¬Cons(ψp↔p̃
i ) for each ψi given as answer

to ?conceptDiff(p, p̃).

• semNegScal: In addition to semNeg, in-
fer a generic PROP κscl = Ante(κp↔p̃) ⇒
Cons(κp↔p̃) for each KB entry κ that has
either p or p̃ mentioned, only if κscl is not
inconsistent with any of ψi’s or ψneg

i ’s.

For example, consider the example situation illus-
trated in Tab. 1. The semNeg learner adds “Bur-
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gundy glasses do not have short stems” to its KB,
and semNegScal in addition adds “Brandy glasses
have X” for every property X that, according to its
KB, burgundy glasses have (e.g., wide bowls).

While the semNeg inference stems from the
demand that the teacher’s move is a coherent an-
swer (Asher and Lascarides, 2003), the scalar im-
plicatures inferred by semNegScal are defeasi-
ble presumptions (Grice, 1975). That is, sem-
NegScal risks misunderstanding the teacher’s in-
tended meaning, inferring general rules that are
incorrect—yet cancellable (see Appendix E for an
example failure case). Subsequent pieces of re-
futing evidence may falsify the inferred implica-
tures without rendering the conversation incoherent.
Therefore, we equip our agents with some risk man-
agement faculty that can assess and reject contents
of scalar implicatures. This is achieved by periodi-
cally testing KB entries whose origin is solely from
scalar implicatures, rejecting those whose coun-
terexamples can be found in the episodic memory.

5 Experiments

5.1 Evaluation Scheme

We run a suite of experiments that evaluate the
data efficiency of the learner’s and teacher’s strate-
gies from §4.2. Results are averaged over multi-
ple sequences of interaction episodes for each of
five combinations of teacher’s and learner’s strate-
gies: minHelp, medHelp, maxHelp+semOnly,
maxHelp+semNeg and maxHelp+semNegScal.
Each episode-initial probing question “?λP.P (o)”
is associated with a randomly selected instance o of
a concept selected from a round-robin of the target
concepts to be acquired. For controlled random
selections of concept instances and shuffling of the
round-robin, 40 seeds are shared across different
configurations. Each sequence continues until the
learner makes Nt mistakes in total.

As is common in ITL scenarios, training and
inference are fully integrated. Learning has to take
place during use whenever the teacher imparts in-
formation. In this work, we evaluate our learners by
having them take ‘mid-term exams’ on a separate
test set after every Nm mistakes made (Nm ≤ Nt).
The mid-term exams comprise binary prediction
problems “?p(o)” asked per every target concept p
for each test example o, and we collect confidence
scores between 0 and 1 as response. The primary
evaluation metric reported is mean average preci-

(a) fineEasy difficulty (three glass types)

(b) fineHard difficulty (five glass types)

Figure 5: Averaged learning curves (with 95% confi-
dence intervals): effective training examples vs. mAP.

sion (mAP)4; we do not use an F1 score because
we are more interested in relative rankings between
similar-looking concepts than the learners’ absolute
performances at some fixed confidence threshold.
We also report averaged confusion matrices col-
lected for the sequence-final exams (partially in
Fig. 6, fully in the supplementary material).

5.2 Setup

The learner agents start with relatively good, but
still error-prone, priors of what bowls and stems
and their attributes (e.g., “short stem”) look like,
but completely lacks the vocabulary, concepts and
related visual features for the various glass types.
The prior knowledge is injected into the learner
agents by exposing them to the full set of posi-
tive examples of stems and bowls in our data set,
and randomly sampled non-instances for negative
examples. The average binary classification accu-
racies on balanced test sets were 98.11% for the
part concepts and 86.12% for their attributes.

Our training and testing images are randomly
generated from a simulation framework Cop-
peliaSim (Rohmer et al., 2013), using a toolkit
for controlled sampling of 3D environments (Innes
and Ramamoorthy, 2021). Each image features a

4Mean of areas under interpolated precision-recall curves.

324



scene of several objects from the restaurant domain
laid on a tabletop (e.g., the image in Fig. 2). Each
type of glass in our tabletop domain can be charac-
terized by its parts having different attributes; see
Appendix D for the complete list. We implement
simulated teachers in place of real human users
for the experiments, which perform rule-based pat-
tern matching just sufficient for participating as
a teacher in our training dialogues. Our imple-
mentation and datasets are publicly released in
https://github.com/itl-ed/ns-arch.

The more distractor concepts we have, the
more difficult the task becomes; difficulty scales
roughly quadratically with respect to the num-
ber of concepts, since C concepts enable(
C
2

)
different pairwise confusions. Our ex-

periments cover two levels of difficulty: fi-
neEasy and fineHard. For fineEasy, we
set (C,Nt, Nm) = (3, 30, 5), where target
concepts are {brandy glass, burgundy
glass, champagne coupe}. For fineHard,
we set (C,Nt, Nm) = (5, 60, 10), where target
concepts as those for fineEasy plus {bordeaux
glass, martini glass}.

5.3 Results and Discussion

Fig. 5 and Tab. 2 display the averaged learning
curves for the five strategy combinations in each
task difficulty setting, along with 95% confidence
intervals. It is obvious that learners exploiting the
semantics of generic statements from maxHelp
teachers are significantly faster in picking up new
concepts, compared to the vision-only baseline con-
figurations with minHelp or medHelp teachers.
Among the maxHelp results, the learners which
extract and exploit additional, unstated information
from the context (i.e., semNeg and semNegScal)
outperform the learner semOnly, which doesn’t
exploit pragmatics.

Our error analysis reveals that the significant
performance boosts enjoyed by semNeg and sem-
NegScal learners comes from the ability to in-
fer non-properties from property statements (i.e.
ψneg from ψ). The confusion matrices reported in
Fig. 6 allow us to study the mechanism. Specifi-
cally, notice how the maxHelp semOnly learner
in Fig. 6a frequently misclassifies brandy glasses
as burgundy glasses, whereas it is considerably
less likely to make such mistakes in the opposite
direction: 91% vs. 30%. We can see this is be-
cause semOnly learners do not have access to

(a) maxHelp semOnly on fineEasy difficulty.

(b) maxHelp semNeg on fineEasy difficulty.

Figure 6: Averaged confusion matrices taken from the
sequence-final evaluations for two configurations.

the negative property of burgundy glasses of not
having short stems (GO.burgundyGlass(O) ⇒
¬haveShortStem(O)). Therefore, while se-
mOnly learners can confidently dismiss instances
of burgundy glasses as non-instances of brandy
glasses, they are not able to dismiss instances
of brandy glasses as non-instances of burgundy
glasses. We can observe in Fig. 6b that this is pre-
cisely remedied by semNeg and semNegScal
learners, which are able to reliably distinguish the
two types in both directions: 24% vs. 19%.

The difference between semNeg and sem-
NegScal learner is more subtle. Although their
performances generally tend to converge after suf-
ficient training, learners that exploit scalar implica-
tures seem to show higher data efficiency at earlier
stages, especially in the fineHard task. Nonethe-
less, the two learning curves have largely overlap-
ping confidence intervals; we cannot make a strong
scientific claim based on these results, and we will
have to conduct experiments at a larger scale to
corroborate this difference.
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Task difficulty fineEasy fineHard

# training examples 5 15 30 10 30 60

minHelp 0.372 0.478 0.507 0.253 0.345 0.355
medHelp 0.371 0.494 0.529 0.241 0.346 0.426
maxHelp semOnly 0.719 0.743 0.750 0.551 0.558 0.582
maxHelp semNeg 0.727 0.797 0.805 0.572 0.636 0.681
maxHelp semNegScal 0.744 0.803 0.811 0.574 0.649 0.681

Table 2: Task performances of agents by mAP scores after different numbers of effective training examples.

6 Conclusion and Future Directions

In this research, we have proposed an interactive
symbol grounding framework for ITL, along with
a neurosymbolic architecture for the learner agent.
We empirically showed that learners who can com-
prehend and exploit valid inferences from generic
statements, including pragmatic content given their
context of use, can learn to ground novel visual con-
cepts more data-efficiently. Our findings confirm it
pays to study human-AI natural language interac-
tions through the lens of discourse semantics, not
only the truth conditions of isolated sentences but
also their coherent connections to their context.

In future, we plan to relax some of many sim-
plifying assumptions we made for controlled ex-
periments, possibly exploring other domains. For
instance, the ideal assumption that teachers are in-
fallible and communication is noise-free does not
hold in most real-world scenarios (Appelgren and
Lascarides, 2021). Further, the set of linguistic
constructions we have studied in this work is very
constrained (as intended), and a natural next step
is to accommodate a wider range of diverse and
free-form NL constructions. It is also a strong
assumption that the learner agent already has rela-
tively reliable beliefs about object part and concept
attributes. For example, if the learner does not
know what the “stem” of a wine glass means, the
absence of the concept must be resolved before
communicating any generic characterizations in-
volving stems. Finally, our approach does not fully
exploit the semantics of generic statements, which
express qualitative rules that admit exceptions (Pel-
letier and Asher, 1997). The generic quantifier G
did not play any significant role in this work. One
major strength of ASP is that it is well suited for
modeling non-monotonic inferences, and it would
be interesting to study how to model ITL scenar-
ios that can robustly address exceptions to generic
rules.
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A Vision processing module:
implementational details

Our implementation of the few-shot neural vision
processing module is based on the pretrained model
of two-staged Deformable DETR (Zhu et al., 2021).
We train new lightweight multilayer perceptron
(MLP) blocks for embedding image regions into
low-dimensional feature spaces. The MLP blocks
replace the existing pretrained prediction heads that
have fixed number of output categories, enabling
metric-based few-shot predictions of incrementally
learned visual concepts.

Let C, A and R denote open sets of visual con-
cepts of different types: object classes5, attributes6

and pairwise relations7. In principle, we need one
metric space for each concept type for their sep-
arate handling, hence three MLP blocks to train.
But for this work, |R| = 1, where the only relation
concept we need to capture is ‘have’ (whole-part re-
lationship). We can make proxy predictions for the
concept by the ratio of the area of bounding box in-
tersection to the area of the candidate object part’s
bounding box. Therefore, in the interest of simplic-
ity, we prepare only two embedder blocks for C
and A respectively; in future extensions where we
need to deal with a truly open R, we will have to
implement a relation-centric embedder block for R
as well.

Fig. 7 depicts how our vision module summa-
rizes the raw RGB image input I ∈ [0, 1]3×H×W

into a preliminary scene graph
∼
SG, and then makes

few-shot predictions to finally yield a scene graph
SG. I is first passed through the feature extractor
backbone to produce {fl}Ll=1, a set of feature maps
f l ∈ RC×Hl×W l

at L different scales. {fl}Ll=1

are flattened into a single sequence of input tokens
(thus in RC×∑

l H
l·W l

), combined with appropri-
ate positional encodings and fed into the encoder.

5Intuitively corresponding to concepts denoted by nouns—
e.g.,‘brandy glass’, ‘stem’.

6intuitively corresponding to concepts denoted by
adjectives—e.g., ‘wide’, ‘short’.

7intuitively corresponding to concepts denoted by transi-
tive verbs and adpositions—e.g., ‘have’, ‘of’

We obtain from the encoder an objectness logit
score si and a proposal bounding box coordinate
bi ∈ [0, 1]4 for the input tokens, out of which
the top k proposals with the highest si scores are
selected. The selected proposals are fed into the
decoder along with corresponding feature vectors
to generate f ci , f

a
i ∈ RD, the class/attribute-centric

embeddings of each input token, in addition to
the (refined) bounding box coordinates bi. The
decoder outputs are collated into the preliminary
scene graph template

∼
SG= (Ñ , Ẽ). Ñ is the node

set containing bi, f
c
i , f

a
i for each detected object. Ẽ

is the edge set that would contain pairwise relation-
centric embeddings f ri,j for each pair of detected
objects. However, Ẽ is essentially empty in our
current implementation since as mentioned above,
we fall back to proxy prediction by area ratio for
the only relation concept of interest ‘have’.

For each visual concept γ ∈ C,A(, R), the
agent’s visual XB stores χ

+/−
γ , a set of posi-

tive/negative exemplars, which together naturally
induce a binary classifier BinClfγ . We are free
to choose any binary classification algorithm as
long as it can return probability scores for concept
membership from χ+

γ and χ−
γ . We use Platt-scaled

SVM with RBF kernel (Platt et al., 1999) in our
implementation. Then, SG = (N,E) is gener-
ated from

∼
SG and a set of BinClfγ’s, where N

and E are each the scene graph node set and the
scene graph edge set. For each scene object,N con-
tains ci ∈ [0, 1]|C| and ai ∈ [0, 1]|A|, each a vector
designating the probabilistic beliefs of whether the
object classifies as an instance of concepts inC and
A, as well as the box specification bi. E contains
information about binary relationships between or-
dered pairs of objects, namely ri,j ∈ [0, 1]|R|, the
probabilistic beliefs of whether the pair (i, j) is
an instance of concepts in R. As a reminder, in
our setting, N is computed from Ñ and BinClfγ
for each γ ∈ C,A, whereas E is computed from
bounding box area ratios.

Our new embedder blocks are trained on 50% of
the Visual Genome dataset (Krishna et al., 2017)
with NCA loss objective (Goldberger et al., 2004)
for metric learning, for 80,000 steps using SGD op-
timizer with the batch size of 64, the learning rate
of 3× 10−4 and the momentum factor of 0.1. The
prediction heads are then fine-tuned on our tabletop
domain dataset8 for 2,000 steps using Adam opti-
mizer, with the batch size of 16, the initial learning

8Excluding the fine-grained types of drinking glasses.
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Figure 7: A schematic of the structure of the vision processing module component in our agent architecture, and the
pipeline through which raw visual inputs are processed into the final scene graph estimate.

rate of 2 × 10−4 and PyTorch default values9 for
the hyperparameters β1, β2, ϵ.

B FOL representation of concept
properties

In the main paper, we have represented the NL
predication “have short stems” with an agglomer-
ate predicate haveShortStem for the sake of brevity,
so that “Brandy glasses have short stems” would be
translated into the PROP GO.brandyGlass(O)⇒
haveShortStem(O). However, this is an over-
simplification of what is actually happening under
the hood in our implementation. The predication
“have short stems” ought to be broken down into its
constituent meanings delivered by the individual
tokens “have”, “short” and “stem” respectively, for
primarily two reasons: 1) they are the elementary
units of concepts handled by the vision module
and included in the output scene graphs, and 2) the
object parts should be explicitly acknowledged as
entities separate from the objects they belong to,
and the generic PROPs should model relations be-
tween objects and their parts (plus their attributes).

In light of this, we choose to read NL sentences
of the form “{object}s have {attribute}
{part}s” as follows: “If O is an object, there
exists an entity P such that O has P as its part, and
P is a part that is attribute”. Then, for exam-

9https://pytorch.org/docs/stable/
generated/torch.optim.Adam.html

ple, the sentence “Brandy glasses have short stems”
would be represetned by the following PROP:

GO.brandyGlass(O)⇒
(∃P.have(O,P ), short(P ), stem(P ))

or alternatively,

GO.brandyGlass(O)⇒
have(O, f(O)), short(f(O)), stem(f(O))

where f is a skolem function that maps from the
instance of brandy glass to its (only) short stem.
We opt for the latter option because it is more com-
pliant with the formalism commonly used by logic
programming methods, in which existential quanti-
fiers are not admitted and variables are all implicitly
universally quantified.

C More examples of grounding problems
as probabilistic ASP programs

Example 2 below illustrates how lack of high-
confidence observation of a short stem of a glass o1
results in a weaker belief that o1 is a brandy glass.

Example 2. The agent sees an object o1 and ini-
tially estimates it’s equally likely to be a brandy
or burgundy glass. The agent also notices with
high confidence it does NOT have a short stem, and
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knows brandy glasses have short stems:

logit(0.61) : brandyGlass(o1). (9)

logit(0.62) : burgundyGlass(o1). (10)

logit(0.10) : haveShortStem(o1). (11)

logit(0.95) : ⊥ ← brandyGlass(O),

not haveShortStem(O).
(12)

logit(0.95) : ⊥ ← haveShortStem(O),

not brandyGlass(O). (13)

This results in PΠ(brandyGlass(o1)) = 0.20,
whereas PΠ(burgundyGlass(o1)) = 0.62.

Example 3 shows how knowledge of neg-
ative properties of an object class can affect
symbolic reasoning. The example supposes
the agent’s KB only consists of the knowledge
“Burgundy glasses do not have short stems”,
namely the PROP GO.burgundyGlass(O) ⇒
¬haveShortStem(O). Note how we translate a
generic PROP whose Cons is a negation of some
L-formula into probabilistic ASP rules. Only rules
penalizing deductive violations are generated, in
which the negation (¬) that wraps around Cons
‘cancels out’ the default negation not. We do
not generate rules for penalizing failures to ex-
plain Cons from negative PROPs, as abductive in-
ferences of object classes from lack of properties
would give rise to far-fetched conclusions: e.g.,
inferring something might be a banana because it
does not have wheels.

Example 3. The agent sees an object o1 and ini-
tially estimates it’s equally likely to be a brandy or
burgundy glass. The agent also notices with high
confidence it has a short stem, and knows burgundy
glasses do NOT have short stems:

logit(0.61) : brandyGlass(o1). (14)

logit(0.62) : burgundyGlass(o1). (15)

logit(0.90) : haveShortStem(o1). (16)

logit(0.95) : ⊥ ← burgundyGlass(O),

haveShortStem(O).
(17)

This results in PΠ(brandyGlass(o1)) = 0.61,
whereas PΠ(burgundyGlass(o1)) = 0.19.

Note that knowledge about brandy glasses
do not affect the likelihood of o1 being a bur-
gundy glass, and vice versa: i.e., for an ob-
ject, the events of being a brandy glass vs. a

burgundy glass are independent. This is be-
cause the KBs in the examples do not introduce
any type of dependency between the two glass
types. For instance, if we inject mutual exclu-
sivity relation between the two types in the KB,
both probability values PΠ(brandyGlass(o1))
and PΠ(burgundyGlass(o1)) would be affected
by knowledge about either.

D Task domain: Fine-grained types of
drinking glasses to distinguish

Type Properties Sample image

bordeaux
glass

Bowl: elliptical, tapered.

brandy
glass

Bowl: wide, tapered, round.
Stem: short.

burgundy
glass

Bowl: wide, tapered, round.

champagne
coupe

Bowl: broad, round.

martini
glass

Bowl: broad, conic.

Table 3: Fine-grained types of drinking glasses modeled
in our tabletop domain. (Note only brandy glasses have
characteristic stems, whereas bowls of all glass types
can be characterized by some set of attributes.)

Tab. 3 lists the set of fine-grained types of drink-
ing glasses that are modeled in our simulated table-
top domain, along with their properties and sample
images. 3D meshes of the glasses are obtained
from a website that lists stock models made by
third-party providers,10 then imported into the sim-
ulation environment.

As illustrated, properties of each fine-grained
type comprise its part attributes. For instance,
the full set of properties of a brandy glass could
be expressed as a set {(wide, bowl), (tapered,
bowl), (round, bowl), (short, stem)}. When asked,
our simulated teacher computes the answer to
?conceptDiff QUES as pairwise symmetric
differences between property sets: e.g., for
?conceptDiff(brandyGlass,burgundyGlass),

10https://www.turbosquid.com/3d-models/
wine-glasses-3d-1385831
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Confusion champagne coupe - burgundy glass burgundy glass - bordeaux glass

KB state

GO.champagneCoupe(O) ⇒ haveBroadBowl(O) GO.burgundyGlass(O) ⇒
GO.burgundyGlass(O) ⇒ haveWideBowl(O), haveRoundBowl(O)

haveWideBowl(O), haveTaperedBowl(O) GO.bordeauxGlass(O) ⇒ haveEllipticalBowl(O)
GO.burgundyGlass(O) ⇒ ¬haveBroadBowl(O) GO.bordeauxGlass(O) ⇒
GO.champagneCoupe(O) ⇒ ¬(haveWideBowl(O), haveRoundBowl(O))

¬(haveWideBowl(O), haveTaperedBowl(O)) GO.burgundyGlass(O) ⇒ ¬haveEllipticalBowl(O)
GO.bordeauxGlass(O) ⇒

haveWideBowl(O), haveTaperedBowl(O)
GO.bordeauxGlass(O) ⇒ ¬haveBroadBowl(O)

Table 4: An example illustration of how semNegScal learners can infer incorrect and unintended knowledge. The
underlined PROP denotes a generic rule which is neither correct nor intended by the teacher.

we obtain {(short, stem)} for brandy glasses and
∅ for burgundy glasses.

These properties of glasses did not ship with the
3D models; instead, we hand-coded them based
on information available on the internet. We have
put effort to prepare an annotation scheme that is
faithful to properties of the glasses in the reality, yet
the domain knowledge may still have inconsistency
against the ‘ground-truth’—any error in that regard
remains our own.

E Rule acquisition by inference of
implicatures and failure case analysis

In this work, we assume that all generic NL state-
ments given by the teacher are characterizations
of object classes by their positive properties (those
described in Appendix D), and statements of nega-
tive properties are never explicitly provided. This
reflects the fact that we usually characterize things
by their positive properties rather than by their
negative properties because the former generally
have more determining power (Zangwill, 2011).
Therefore, in our experiments, negative proper-
ties can be obtained only by virtue of inference
of implicatures. That is, for example, only sem-
Neg or semNegScal learners have access to
the negative PROP GO.burgundyGlass(O) ⇒
¬haveShortStem(O).

Nevertheless, semNegScal learners risk acqui-
sition of incorrect and unintended knowledge when
they make inferences of scalar implicatures. To see
this, study the example illustrated in Tab. 4, where
two successive confusions take place in the or-
der of brandy glass vs. burgundy glass
and then burgundy glass vs. champagne
coupe. In the example, the underlined PROP suc-
cessfully infiltrates into the learner’s KB without
being suppressed by explicitly stated PROPs or their
negative implicature counterparts. This is why in-

ference of the scalar implicatures should be can-
cellable, so that they can be retracted in the face
of contradictory evidence. In our implementation,
this is achieved by periodically inspecting the KB
entries against the episodic memory, removing any
rules whose counterexamples are found.
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