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Feature Norm Cleaning and Normalization

Subjects who met one of the following criteria were removed:

e Responses from known spammers were removed. Subjects were removed when they failed to provide
the correct number of responses or ignored directions.

e Subjects who copied paragraphs from Wikipedia, Google, or our instructions were removed.
Collected feature norms were automatically cleaned using the following process:

1. Modal verbs (e.g., miissen, sollen, etc), prepositions, and forms of sein and haben were all corrected
to all lowercase spellings.

2. Words which were spelled without umlauts or Eszett were normalized to the umlaut/Eszett spelling if
another subject gave the exact same response with umlauts or eszetts.

3. We used a list of spelling corrections from a prior collection.

4. If two subjects gave the same response with and without the verbs haben or sein, such as “ist rot” and
“rot”, then we normalized to the form with the verb.

After these automatic procedures, we completed one pass where we manually corrected any additional
spelling mistakes and typos. Finally, we semantically normalized the feature norms.

When semantically normalizing, we attempted to reduce the number of unique responses given by the
subjects. For example, users may have given “ist aus Plastik” and “ist meist auf Plastik”, and we normalized
to the former response. Other examples include “ist griin oder weif3”, which we normalized to two feature
norms: “ist griin” and “ist weif3”.

The normalizations we performed were somewhat adhoc and based on our own intuitions. In the interest
of transparency, we release two versions of our data set: before and after semantic normalizations. A list of
transformations we applied in normalization is also provided.

Inference Algorithm for 3D mLDA

Algorithm 1 lists our online variational inference algorithm for mLDA. Table 1 provides a listing and de-
scription of the variables and parameters in the algorithm.



Algorithm 1 Online Variational Inference for 3D mLDA.
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Table 1: Description of variables and parameters in the algorithm.



