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Preface by the General Chair

October 17, 2016

Welcome to the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP
2016) in Austin, Texas, USA!

EMNLP is annually organized by SIGDAT, the Association for Computational Linguistics’ special
interest group on linguistic data and corpus-based approaches to NLP. At EMNLP 2016, one of the
top tier conferences in Natural Language Processing (NLP), we have witnessed how our field thrives.
This is not only reflected in the number of paper submissions but also in the number of sponsors. The
number of long paper submissions has increased 14.5% over that of 2015. This year, we also have seen a
record high number of sponsors in EMNLP history. We’re honored and grateful to have Amazon, Baidu,
Google and Grammarly as the Platinum Sponsors, Bloomberg, Citadel, eBay, Facebook, IBM Research,
Maluuba and Microsoft as the Gold Sponsors, AI@ISI as the Silver Sponsor, Nuance, VoiceBox and
Yandex as the Bronze Sponsors. We also have Oracle as the Student Volunteer Sponsor.

A large number of people worked hard to bring this annual meeting to fruition, to whom I'm
very grateful. Program Chairs, Kevin Duh and Xavier Carreras, the Area Chairs, reviewers, best
paper committee members put in an immense amount of work to develop the technical program.
Tutorial Chairs, Bishan Yang and Rebecca Hwa, Workshop Chairs, Annie Louis and Greg Kondrak
conducted a competitive selection process in collaboration with NAACL and ACL to select 6 tutorials
and 8 workshops. Sponsorship Chairs, Michel Galley, Hang Li (ACL International Sponsorship
Committee Representative for EMNLP) did an excellent job to attract the record number of sponsors.
Publication Chairs, Siddharth Patwardhan, Daniele Pighin (advisor), Handbook Chair, Swapna
Somasundaran worked with a very tight schedule to assemble the proceedings, C4Me Mobile app, and
handbooks. Publicity Chair, Saif M. Mohammad disseminated the call for papers, call for participation
and other announcements in a timely manner. Webmaster, Jackie C.K. Cheung kept the website
updated all the time, providing a professional outlook of the conference. Student Scholarship Chair
and Student Volunteer Coordinator, Vincent Ng, played two critical roles, managing the NSF and
SIGDAT scholarship, and the review of applications, coordinating the student volunteers to support the
conference. SIGDAT Secretary, Chris Callison-Burch acted as the liaison between SIGDAT and the
conference organizers. He is always available to provide great suggestions.

As usual, the conference cannot be done without Local Arrangements Chair, Priscilla Rasmussen, who
single-handedly took care of all conference logistics. I would like to mention that I benefited greatly
from last year’s General Chair, Lluis Marquez, for the monthly progress reports and other valuable
experience. We are also grateful to the invited speakers, Christopher Potts, Andreas Stolcke and
Stefanie Tellex who will share with us their exciting research.
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I really appreciate the trust from SIGDAT officers, including previous secretary, Noah Smith, to
coordinate the conference as the General Chair.

Finally, I’d like to thank all the authors and attendees. Your participation made a difference to the
conference. I hope that you have an enjoyable and productive time at Austin. My best wishes for a
successful conference!

Jian Su
EMNLP 2016 General Chair



Preface by the Program Committee Co-Chairs

October 17, 2016

Welcome to the 2016 Conference on Empirical Methods in Natural Language Processing! This year
we received 1,087 valid submissions, of which 687 were long papers and 400 were short papers. We
accepted 177 long papers (25.8% acceptance rate) and 87 short papers (21.8% acceptance rate), for a
total of 264 papers and an overall acceptance rate of 24.3%.

The technical program at EMNLP 2016 consists of a total of 273 papers, including 9 journal papers
accepted by the Transactions of ACL. We have structured the conference into three parallel oral
sessions in the day and two poster sessions in the evening. Borrowing from recent NAACL conference
innovations, we also run poster spotlight sessions (also called HMM: Half-Minute Madness'), where
poster presenters of long papers have 30 seconds and one slide to advertise their work. Poster sessions
are becoming larger due to the rapid growth in our field, and we believe it is important to ensure that all
papers receive the exposure they deserve.

We are excited and grateful to have three distinguished speakers for our invited keynote talks.
Christopher Potts (Stanford University) will present recent advances in rational speech acts and
pragmatics. Andreas Stolcke (Microsoft Research) will talk about the challenges and opportunities
in human-human-machine dialog. Stefanie Tellex (Brown University) will discuss novel methods and
frameworks for enabling human-robot collaboration. We think that these are exciting research areas
that can potentially impact—and be impacted by—the EMNLP community in the near future. We look
forward to their keynotes and the conversations afterwards.

The program committee includes 823 primary reviewers and 99 secondary reviewers. The committee
was structured into 12 thematic areas, handled by 41 area chairs. We are grateful to all program
committee members for their effort and dedication during our tight reviewing schedule; without them
we cannot create a strong high-quality program. We are also thankful for all authors who submitted
papers, which overall cover a diverse range of topics.

Best paper awards were organized around three categories: best paper, best short paper, and best
resource paper. The latter category was introduced at EMNLP 2015. Since resources have become
central for scientific progress in our field, we would like this category of award to become a standard.
The selection process was bottom-up: reviewers and area chairs suggested candidates, which were
short-listed by us program chairs. Then, for each category we created a committee of experts to discuss
the papers in depth, and we chaired the committees.

For best paper, the committee members were Stephen Clark, Hal Daumé III, Chris Dyer, and Julia

"Neologism coined by Joel Tetreault, our HMM chair.
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Long Short Total

Initial submissions 747 438 1,185
Withdrawn or rejected without review 60 38 98
Submissions reviewed 687 400 1,087
Submissions accepted 177 87 264
Acceptance rate 25776% 21.75% 24.29%
TACL papers 9 0 9
Papers at EMNLP 2016 186 87 273
Oral talks 87 22 109
Poster presentations 99 65 164

Table 1: Submission statistics of EMNLP 2016

Hockenmaier. The committee selected two best long papers:
e Best Paper: Improving Information Extraction by Acquiring External Evidence with
Reinforcement Learning, by Karthik Narasimhan, Adam Yala and Regina Barzilay.
e Best Paper: Global Neural CCG Parsing with Optimality Guarantees, by Kenton Lee, Mike
Lewis and Luke Zettlemoyer.
In addition, two papers were given an honorable mention for best paper:
e Honorable Mention for Best Paper: Span-Based Constituency Parsing with a Structure-Label
System and Provably Optimal Dynamic Oracles, by James Cross and Liang Huang.
e Honorable Mention for Best Paper: Sequence-to-Sequence Learning as Beam-Search

Optimization, by Sam Wiseman and Alexander M. Rush.

For best short paper, the committee had Stefan Riezler, Anoop Sarkar, and Noah Smith, and the award
went to:

e Best Short Paper: Learning a Lexicon and Translation Model from Phoneme Lattices, by Oliver
Adams, Graham Neubig, Trevor Cohn, Steven Bird, Quoc Truong Do and Satoshi Nakamura.

For best resource paper, the committee consisted of Eneko Agirre, Mirella Lapata, and Sebastian
Riedel, and the award went to:

e Best Resource Paper: SQuAD: 100,000+ Questions for Machine Comprehension of Text, by
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev and Percy Liang.

We are grateful to the many people who helped us at various stages of the program preparation. In
particular, we would like to thank:
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e Jian Su and Chris Callison-Burch, who gave us advice and support throughout the whole process,
not only in their capacity as program chairs of EMNLP 2015, but also as general chair of EMNLP
2016 (Jian) and SIGDAT secretary-treasurer (Chris).

e The 41 area chairs, whose expertise and dedication we relied on heavily. They selected reviewers,
coordinated the review process, led discussions, and made recommendations. We owe you
a favor: Yoav Artzi, Tim Baldwin, Guillaume Bouchard, Nate Chambers, Kyunghyun Cho,
Michael Collins, John DeNero, Georgiana Dinu, Sanja Fidler, Alex Fraser, Kuzman Ganchev,
Ed Grefenstette, Julia Hockenmaier, Dirk Hovy, Liang Huang, Ruihong Huang, Min-Yen Kan,
Daisuke Kawahara, Yang Liu, Bing Liu, André F.'T. Martins, Saif Mohammad, Ray Mooney,
Smaranda Muresan, Preslav Nakov, Vivi Nastase, Ariadna Quattoni, Laura Rimell, Eric Ringger,
Alan Ritter, Brian Roark, David Smith, Manfred Stede, Suzanne Stevenson, Michael Strube, Joel
Tetreault, Lucy Vanderwende, Dekai Wu, Wei Xu, Scott Wen-Tau Yih, and Geoff Zweig.

e Priscilla Rasmussen, our local organizer who performed amazing feats to make everything work.
o Siddharth Patwardhan and Daniele Pighin, the publication chairs.
e Swapna Somasundaran, handbook chair.

e Joel Tetreault, Brendan O’Connor, and Courtney Napoles for organizing and chairing the HMM
sessions.

e The session chairs: Regina Barzilay, Alexandra Birch, Phil Blunsom, Yejin Choi, Ido
Dagan, Marie-Catherine de Marneffe, Katrin Erk, Pascale Fung, Alona Fyshe, Rebecca Hwa,
Heng Ji, Diane Litman, Yang Liu, Lluis Marquez, André F.T. Martins, Kathy McKeown,
Raymond Mooney, Preslav Nakov, Hinrich Schiitze, Thamar Solorio, Hiroya Takamura, Kristina
Toutanova, Bonnie Webber, and Wei Xu.

e Jackie C.K. Cheung, who maintained the EMNLP 2016 website with up-to-date information.
e Yejin Choi, who kept us connected with the ACL Exec.
e Kristina Toutanova and Lillian Lee, who helped us regarding TACL papers.

e Janyce Wiebe, Michael Strube, and Anoop Sarkar, who provided detailed advice about chairing
a program committee of a large conference at the initial planning stages of the process.

e Ani Nenkova, Owen Rambow, Katrin Erk and Noah Smith (program co-chairs of NAACL and
ACL this year), with which we coordinated several aspects of the major conferences this year.

e The Softconf support team, Rich Gerber and Paolo Gai, who assisted us in using the Start
Conference Manager.

On behalf of all attendees at the conference, we would also like to acknowledge the generosity of our
sponsors: Amazon, Baidu, Google, Grammarly, Bloomberg, Citadel, eBay, Facebook, IBM Research,
Maluuba, Microsoft, AI@ISI, Nuance, VoiceBox, Yandex, and Oracle.
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Chairing the program committee of EMNLP has been a great honor and a rich scientific experience.
We are grateful to SIGDAT for giving us this opportunity. And we hope that you will find the program
as exciting and enjoyable as we do!

Xavier Carreras and Kevin Duh
EMNLP 2016 Program Committee Co-Chairs
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Invited Speaker: Christopher Potts

Learning in Extended and Approximate Rational Speech Acts
Models

Abstract: The Rational Speech Acts (RSA) model treats language use as a recursive process in
which probabilistic speaker and listener agents reason about each other’s intentions to enrich, and
negotiate, the semantics of their language along broadly Gricean lines. RSA builds on early work
by the philosopher David Lewis and others on signaling systems as well as more recent develop-
ments in Bayesian cognitive modeling. Over the last five years, RSA has been shown to provide
a unified account of numerous core phenomena in pragmatics, including metaphor, hyperbole,
sarcasm, politeness, and a wide range of conversational implicatures. Its precise, quantitative na-
ture has also facilitated an outpouring of new experimental work on these phenomena. However,
applications of RSA to large-scale problems in NLP and Al have so far been limited, because
the exact version of the model is intractable along several dimensions. In this talk, I’ll report
on recent progress in approximating RSA in ways that retains its core properties while enabling
application to large datasets and complex environments in which language and action are brought
together.

Bio: Christopher Potts is Professor of Linguistics and, by courtesy, of Computer Science, at Stan-
ford, and Director of the Center for the Study of Language and Information (CSLI) at Stanford.
He earned his BA in Linguistics from NYU in 1999 and his PhD from UC Santa Cruz in 2003. He
was on the faculty in Linguistics at UMass Ambherst from 2003 until 2009, when he headed west
once again, to join Stanford Linguistics. He was a co-editor at Linguistic Inquiry 2004-2006,
an associate editor at Linguistics and Philosophy 2009-2012, and has been an Action Editor
at TACL since 2014. In his research, he uses computational methods to explore how emotion
is expressed in language and how linguistic production and interpretation are influenced by the
context of utterance. He is the author of the 2005 book The Logic of Conventional Implicatures
as well as numerous scholarly papers in computational and theoretical linguistics.
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Invited Speaker: Andreas Stolcke

You Talking to Me? Speech-based and Multimodal Approaches for
Human versus Computer Addressee Detection

Abstract: As dialog systems become ubiquitous, we must learn how to detect when a system
is spoken to, and avoid mistaking human-human speech as computer-directed input. In this talk
I will discuss approaches to addressee detection in this human-human-machine dialog scenario,
based on what is being said (lexical information), how it is being said (acoustic-prosodic proper-
ties), and non-speech multimodal and contextual information. I will present experimental results
showing that a combination of these cues can be used effectively for human/computer address
classification in several dialog scenarios.

Bio: Andreas Stolcke received a Ph.D. in computer science from the University of California at
Berkeley. He was subsequently a Senior Research Engineer with the Speech Technology and Re-
search Laboratory at SRI International, Menlo Park, CA, and is currently a Principal Researcher
with the Speech and Dialog Research Group in the Microsoft Advanced Technology-Information
Services group, working out of Mountain View, CA. His research interests include language
modeling, speech recognition, speaker recognition, and speech understanding. He has published
over 200 papers in these areas, as well as SRILM, a widely used open-source toolkit for sta-
tistical language modeling. He is a Fellow of the IEEE and of ISCA, the International Speech
Communications Association.
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Invited Speaker: Stefanie Tellex

Learning Models of Language, Action and Perception for
Human-Robot Collaboration

Abstract: Robots can act as a force multiplier for people, whether a robot assisting an astronaut
with a repair on the International Space station, a UAV taking flight over our cities, or an au-
tonomous vehicle driving through our streets. To achieve complex tasks, it is essential for robots
to move beyond merely interacting with people and toward collaboration, so that one person can
easily and flexibly work with many autonomous robots. The aim of my research program is to
create autonomous robots that collaborate with people to meet their needs by learning decision-
theoretic models for communication, action, and perception. Communication for collaboration
requires models of language that map between sentences and aspects of the external world. My
work enables a robot to learn compositional models for word meanings that allow a robot to ex-
plicitly reason and communicate about its own uncertainty, increasing the speed and accuracy of
human-robot communication. Action for collaboration requires models that match how people
think and talk, because people communicate about all aspects of a robot’s behavior, from low-
level motion preferences (e.g., "Please fly up a few feet") to high-level requests (e.g., "Please
inspect the building"). I am creating new methods for learning how to plan in very large, uncer-
tain state-action spaces by using hierarchical abstraction. Perception for collaboration requires
the robot to detect, localize, and manipulate the objects in its environment that are most impor-
tant to its human collaborator. I am creating new methods for autonomously acquiring perceptual
models in situ so the robot can perceive the objects most relevant to the human’s goals. My
unified decision-theoretic framework supports data-driven training and robust, feedback-driven
human-robot collaboration.

Bio: Stefanie Tellex is an Assistant Professor of Computer Science and Assistant Professor of
Engineering at Brown University. Her group, the Humans To Robots Lab, creates robots that
seamlessly collaborate with people to meet their needs using language, gesture, and probabilistic
inference, aiming to empower every person with a collaborative robot. She completed her Ph.D.
at the MIT Media Lab in 2010, where she developed models for the meanings of spatial prepo-
sitions and motion verbs. Her postdoctoral work at MIT CSAIL focused on creating robots that
understand natural language. She has published at SIGIR, HRI, RSS, AAAI, IROS, ICAPs and
ICMI, winning Best Student Paper at SIGIR and ICMI, Best Paper at RSS, and an award from
the CCC Blue Sky Ideas Initiative. Her awards include being named one of IEEE Spectrum’s
AT’s 10 to Watch in 2013, the Richard B. Salomon Faculty Research Award at Brown University,
a DARPA Young Faculty Award in 2015, and a 2016 Sloan Research Fellowship. Her work has
been featured in the press on National Public Radio, MIT Technology Review, Wired UK and
the Smithsonian. She was named one of Wired UK’s Women Who Changed Science In 2015 and
listed as one of MIT Technology Review’s Ten Breakthrough Technologies in 2016.
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Session 1A: Parsing and Syntax (Long Papers)

Span-Based Constituency Parsing with a Structure-Label System and Provably Op-
timal Dynamic Oracles
James Cross and Liang Huang

Rule Extraction for Tree-to-Tree Transducers by Cost Minimization
Pascual Martinez-Gémez and Yusuke Miyao

A Neural Network for Coordination Boundary Prediction
Jessica Ficler and Yoav Goldberg

Using Left-corner Parsing to Encode Universal Structural Constraints in Grammar
Induction
Hiroshi Noji, Yusuke Miyao and Mark Johnson

Session 1B: Information Extraction (Long Papers)

Distinguishing Past, On-going, and Future Events: The EventStatus Corpus
Ruihong Huang, Ignacio Cases, Dan Jurafsky, Cleo Condoravdi and Ellen Riloff

Nested Propositions in Open Information Extraction
Nikita Bhutani, H V Jagadish and Dragomir Radev

A Position Encoding Convolutional Neural Network Based on Dependency Tree for
Relation Classification

Yunlun Yang, Yunhai Tong, Shulei Ma and Zhi-Hong Deng
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Aldrian Obaja Muis and Wei Lu
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Modeling Human Reading with Neural Attention
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Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Peter Clark and Michael Hammond

Improving Semantic Parsing via Answer Type Inference
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[TACL] Deep Recurrent Models with Fast-Forward Connections for Neural Ma-
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Mingxuan Wang, Zhengdong Lu, Hang Li and Qun Liu
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TACL Papers)

Semi-Supervised Learning of Sequence Models with Method of Moments
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Language as a Latent Variable: Discrete Generative Models for Sentence Compres-
sion
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Globally Coherent Text Generation with Neural Checklist Models
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[SO9][MACHINE LEARNING] Recurrent Residual Learning for Sequence Classification
Yiren Wang and Fei Tian

[S10][MACHINE LEARNING] Richer Interpolative Smoothing Based on Modified
Kneser-Ney Language Modeling
Ehsan Shareghi, Trevor Cohn and Gholamreza Haffari

[S11][MACHINE LEARNING] A General Regularization Framework for Domain Adap-

tation
Wei Lu, Hai Leong Chieu and Jonathan Lofgren

XXX Vil



Wednesday, November 2, 2016 (continued)

[S12][MACHINE TRANSLATION] Coverage Embedding Models for Neural Machine
Translation
Haitao Mi, Baskaran Sankaran, Zhiguo Wang and Abe Ittycheriah

[S13][SYNTAX & MOoRrPHOLOGY]  Neural Morphological Analysis:  Encoding-
Decoding Canonical Segments
Katharina Kann, Ryan Cotterell and Hinrich Schiitze

[S14][SYNTAX & MORPHOLOGY] Exploiting Mutual Benefits between Syntax and Se-
mantic Roles using Neural Network
Peng Shi, Zhiyang Teng and Yue Zhang

[S15][SEmaNTICS] The Effects of Data Size and Frequency Range on Distributional
Semantic Models
Magnus Sahlgren and Alessandro Lenci

[S16][SEMANTICS] Multi-Granularity Chinese Word Embedding
Rongchao Yin, Quan Wang, Peng Li, Rui Li and Bin Wang

[S17][SEMANTICS] Numerically Grounded Language Models for Semantic Error
Correction
Georgios Spithourakis, Isabelle Augenstein and Sebastian Riedel

[S18][SEMANTICS] Towards Semi-Automatic Generation of Proposition Banks for
Low-Resource Languages
Alan Akbik, vishwajeet kumar and Yunyao Li

[S19][SENTIMENT ANALYSIS] A Hierarchical Model of Reviews for Aspect-based Sen-
timent Analysis
Sebastian Ruder, Parsa Ghaffari and John G. Breslin

[S20][SENTIMENT ANALYSIS] Are Word Embedding-based Features Useful for Sar-
casm Detection?

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya and Mark Car-
man

[S21][SENTIMENT ANALYSIS] Weakly Supervised Tweet Stance Classification by Re-
lational Bootstrapping
Javid Ebrahimi, Dejing Dou and Daniel Lowd

[S22][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] The Gun Violence Database:

A new task and data set for NLP
Ellie Pavlick, Heng Ji, Xiaoman Pan and Chris Callison-Burch

XXX Viil



Wednesday, November 2, 2016 (continued)

[S23][SocIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Fluency detection on com-
munication networks
Tom Lippincott and Benjamin Van Durme

[S25][SociAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Characterizing the Lan-
guage of Online Communities and its Relation to Community Reception
Trang Tran and Mari Ostendorf

[S26][SPOKEN LANGUAGE PROCESSING] Joint Transition-based Dependency Parsing
and Disfluency Detection for Automatic Speech Recognition Texts
Masashi Yoshikawa, Hiroyuki Shindo and Yuji Matsumoto

[S27][SPOKEN LANGUAGE PROCESSING] Real-Time Speech Emotion and Sentiment
Recognition for Interactive Dialogue Systems

Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu, Yan Wan, Ricky Ho Yin
Chan and Pascale Fung

[S28][SumMARIZATION] A Neural Network Architecture for Multilingual Punctuation
Generation
Miguel Ballesteros and Leo Wanner

[S29][SumMARIZATION] Neural Headline Generation on Abstract Meaning Repre-
sentation
Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao and Masaaki Nagata

[S30][TEXT MINING & APPLICATIONS] Robust Gram Embeddings
Taygun Kekec and David M. J. Tax

[S31][TEXT MINING & APPLICATIONS] SimpleScience: Lexical Simplification of Scien-
tific Terminology
Yea Seul Kim, Jessica Hullman, Matthew Burgess and Eytan Adar

[S32][TEXT MINING & APPLICATIONS] Automatic Features for Essay Scoring — An

Empirical Study
Fei Dong and Yue Zhang

XXX1X



Thursday, November 3, 2016

07:30-17:30

08:00-09:00

09:00-10:00

09:00-10:00

10:00-10:30

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

Registration Day 2

Morning Coffee

Session P5: Plenary Session: Invited Talk by Stefanie Tellex
Learning Models of Language, Action and Perception for Human-Robot Collabo-

ration
Stefanie Tellex

Coffee Break

Session 4A: Semantics and Semantic Parsing (Long Papers)
Semantic Parsing with Semi-Supervised Sequential Autoencoders
Tomas Kocisky, Gabor Melis, Edward Grefenstette, Chris Dyer, Wang Ling, Phil

Blunsom and Karl Moritz Hermann

Equation Parsing : Mapping Sentences to Grounded Equations
Subhro Roy, Shyam Upadhyay and Dan Roth

Automatic Extraction of Implicit Interpretations from Modal Constructions
Jordan Sanders and Eduardo Blanco

Understanding Negation in Positive Terms Using Syntactic Dependencies
Zahra Sarabi and Eduardo Blanco

x1



Thursday, November 3, 2016 (continued)

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

12:10-13:40

Session 4B: NLP for Social Science and Health (Long + TACL Papers)

Demographic Dialectal Variation in Social Media: A Case Study of African-
American English
Su Lin Blodgett, Lisa Green and Brendan O’Connor

Understanding Language Preference for Expression of Opinion and Sentiment:
What do Hindi-English Speakers do on Twitter?

Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika Bali, Monojit Choudhury
and Niloy Ganguly

Detecting and Characterizing Events
Allison Chaney, Hanna Wallach, Matthew Connelly and David Blei

[TACL] Large-scale Analysis of Counseling Conversations: An Application of Nat-
ural Language Processing to Mental Health

Tim Althoff, Kevin Clark and Jure Leskovec

Session 4C: Language Models (Long + TACL Papers)

[TACL] Fast, Small and Exact: Infinite-order Language Modelling with Com-
pressed Suffix Trees

Ehsan Shareghi, Matthias Petri, Gholamreza Haffari and Trevor Cohn

Convolutional Neural Network Language Models
Ngoc-Quan Pham, German Kruszewski and Gemma Boleda

[TACL] Sparse Non-negative Matrix Language Modeling
Joris Pelemans, Noam Shazeer and Ciprian Chelba

Generalizing and Hybridizing Count-based and Neural Language Models
Graham Neubig and Chris Dyer

Lunch
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Thursday, November 3, 2016 (continued)

13:00-13:40

13:40-15:20

13:40-14:05

14:05-14:30

14:30-14:55

14:55-15:20

13:40-15:20

13:40-14:05

14:05-14:30

14:30-14:55

14:55-15:20

Session P6: SIGDAT Business Meeting

Session 5A: Text Generation (Long Papers)

Reasoning about Pragmatics with Neural Listeners and Speakers
Jacob Andreas and Dan Klein

Generating Topical Poetry
Marjan Ghazvininejad, Xing Shi, Yejin Choi and Kevin Knight

Deep Reinforcement Learning for Dialogue Generation
Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley and Jianfeng Gao

Neural Text Generation from Structured Data with Application to the Biography
Domain
Rémi Lebret, David Grangier and Michael Auli

Session 5B: Discourse and Document Structure (Long Papers)

What makes a convincing argument? Empirical analysis and detecting attributes of
convincingness in Web argumentation
Ivan Habernal and Iryna Gurevych

Recognizing Implicit Discourse Relations via Repeated Reading: Neural Networks
with Multi-Level Attention
Yang Liu and Sujian Li

Antecedent Selection for Sluicing: Structure and Content
Pranav Anand and Daniel Hardt

Intra-Sentential Subject Zero Anaphora Resolution using Multi-Column Convolu-
tional Neural Network

Ryu Iida, Kentaro Torisawa, Jong-Hoon Oh, Canasai Kruengkrai and Julien Kloet-
zer
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Thursday, November 3, 2016 (continued)

13:40-15:20

13:40-14:05

14:05-14:30

14:30-14:55

14:55-15:20

15:20-15:50

15:50-17:30

15:50-16:15

16:15-16:40

16:40-17:05

17:05-17:30

Session 5C: Machine Translation and Multilingual Applications (Long Papers)

An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-
Resource Languages
Antonios Anastasopoulos, David Chiang and Long Duong

HUME: Human UCCA-Based Evaluation of Machine Translation
Alexandra Birch, Omri Abend, Ondiej Bojar and Barry Haddow

Improving Multilingual Named Entity Recognition with Wikipedia Entity Type Map-
ping

Jian Ni and Radu Florian

Learning Crosslingual Word Embeddings without Bilingual Corpora

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird and Trevor Cohn

Coffee Break

Session 6A: Neural Sequence-to-Sequence Models (Long Papers)

Sequence-to-Sequence Learning as Beam-Search Optimization
Sam Wiseman and Alexander M. Rush

Online Segment to Segment Neural Transduction
Lei Yu, Jan Buys and Phil Blunsom

Sequence-Level Knowledge Distillation
Yoon Kim and Alexander M. Rush

Controlling Output Length in Neural Encoder-Decoders

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura and Manabu Oku-
mura

xliii



Thursday, November 3, 2016 (continued)

15:50-17:30

15:50-16:15

16:15-16:40

16:40-17:05

17:05-17:30

15:50-17:30

15:50-16:15

16:15-16:40

16:40-17:05

17:05-17:30

17:30-17:45

Session 6B: Text Mining and NLP Applications (Long + TACL Papers)

Poet Admits // Mute Cypher: Beam Search to find Mutually Enciphering Poetic Texts
Cole Peterson and Alona Fyshe

All Fingers are not Equal: Intensity of References in Scientific Articles
Tanmoy Chakraborty and Ramasuri Narayanam

Improving Users’ Demographic Prediction via the Videos They Talk about
Yuan Wang, Yang Xiao, Chao Ma and Zhen Xiao

[TACL] Understanding Satirical Articles Using Common-Sense

Dan Goldwasser and Xiao Zhang

Session 6C: Knowledge Base and Inference (Long Papers)

AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Em-
bedding

Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng Ji and Jiawei Han

Mining Inference Formulas by Goal-Directed Random Walks
Zhuoyu Wei, Jun Zhao and Kang Liu

Lifted Rule Injection for Relation Embeddings
Thomas Demeester, Tim Rocktdschel and Sebastian Riedel

Key-Value Memory Networks for Directly Reading Documents
Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes
and Jason Weston

Break
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Thursday, November 3, 2016 (continued)

17:45-18:15 Session P7: Plenary Session: Half-minute Madness B

18:15-20:15 Session P8: Poster Session B

[LO1][DISCOURSE & DIALOGUE] Analyzing Framing through the Casts of Characters
in the News
Dallas Card, Justin Gross, Amber Boydstun and Noah A. Smith

[LO2][DISCOURSE & DIALOGUE] The Teams Corpus and Entrainment in Multi-Party
Spoken Dialogues
Diane Litman, Susannah Paletz, Zahra Rahimi, Stefani Allegretti and Caitlin Rice

[LO3][DISCOURSE & DIALOGUE] Personalized Emphasis Framing for Persuasive Mes-
sage Generation
Tao Ding and Shimei Pan

[LO4][INFORMATION EXTRACTION] Cross Sentence Inference for Process Knowledge
Samuel Louvan, Chetan Naik, Sadhana Kumaravel, Heeyoung Kwon, Niranjan Bal-
asubramanian and Peter Clark

[LOS][INFORMATION EXTRACTION] Toward Socially-Infused Information Extraction:
Embedding Authors, Mentions, and Entities
Yi Yang, Ming-Wei Chang and Jacob Eisenstein

[LO6][INFORMATION EXTRACTION] Phonologically Aware Neural Model for Named
Entity Recognition in Low Resource Transfer Settings
Akash Bharadwaj, David Mortensen, Chris Dyer and Jaime Carbonell

[LO7][LANGUAGE MODELING] Long-Short Range Context Neural Networks for Lan-
guage Modeling
Youssef Oualil, Mittul Singh, Clayton Greenberg and Dietrich Klakow

[LO8][LANGUAGE & VisioN] Jointly Learning Grounded Task Structures from Lan-
guage Instruction and Visual Demonstration

Changsong Liu, Shaohua Yang, Sari Saba-Sadiya, Nishant Shukla, Yunzhong He,
Song-chun Zhu and Joyce Chai

[LO9][LANGUAGE & VISION] Resolving Language and Vision Ambiguities Together:
Joint Segmentation & Prepositional Attachment Resolution in Captioned Scenes
Gordon Christie, Ankit Laddha, Aishwarya Agrawal, Stanislaw Antol, Yash Goyal,
Kevin Kochersberger and Dhruv Batra

xlv



Thursday, November 3, 2016 (continued)

[L10][MACHINE LEARNING] Charagram: Embedding Words and Sentences via Char-
acter n-grams
John Wieting, Mohit Bansal, Kevin Gimpel and Karen Livescu

[L11][MACHINE LEARNING] Length bias in Encoder Decoder Models and a Case for
Global Conditioning
Pavel Sountsov and Sunita Sarawagi

[L12] [TACL][Machine Learning ] Comparing Apples to Apple: The Effects of Stem-
mers on Topic Models
Alexandra Schofield and David Mimno

[L13][MACHINE TRANSLATION] Does String-Based Neural MT Learn Source Syntax?
Xing Shi, Inkit Padhi and Kevin Knight

[L14][MACHINE TRANSLATION] Exploiting Source-side Monolingual Data in Neural
Machine Translation
Jiajun Zhang and Chengqing Zong

[L15][MACHINE TRANSLATION] Phrase-based Machine Translation is State-of-the-Art
for Automatic Grammatical Error Correction
Marcin Junczys-Dowmunt and Roman Grundkiewicz

[L16][MACHINE TRANSLATION] [Incorporating Discrete Translation Lexicons into
Neural Machine Translation
Philip Arthur, Graham Neubig and Satoshi Nakamura

[L17][MACHINE TRANSLATION] Transfer Learning for Low-Resource Neural Machine
Translation
Barret Zoph, Deniz Yuret, Jonathan May and Kevin Knight

[L18][QUESTION ANSWERING] MixKMeans: Clustering Question-Answer Archives
Deepak P

[L19][QUESTION ANSWERING] [t Takes Three to Tango: Triangulation Approach to
Answer Ranking in Community Question Answering

Preslav Nakov, Lluis Marquez and Francisco Guzman

[L20][QUESTION ANSWERING] Character-Level Question Answering with Attention
Xiaodong He and David Golub

[L21][QUESTION ANSWERING] Learning to Generate Textual Data
Guillaume Bouchard, Pontus Stenetorp and Sebastian Riedel

x1vi



Thursday, November 3, 2016 (continued)

[L22][QUESTION ANSWERING] A Theme-Rewriting Approach for Generating Algebra
Word Problems

Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettlemoyer and Hannaneh Ha-
jishirzi

[L23][SENTIMENT ANALYSIS] Context-Sensitive Lexicon Features for Neural Senti-
ment Analysis
Zhiyang Teng, Duy Tin Vo and Yue Zhang

[L24][SENTIMENT ANALYSIS] Event-Driven Emotion Cause Extraction with Corpus
Construction
Lin Gui, Dongyin Wu, Ruifeng Xu, Qin Lu and Yu Zhou

[L25][SENTIMENT ANALYSIS] Neural Sentiment Classification with User and Product
Attention
Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin and Zhiyuan Liu

[L26][SENTIMENT ANALYSIS] Cached Long Short-Term Memory Neural Networks for
Document-Level Sentiment Classification
Jiacheng Xu, Danlu Chen, Xipeng Qiu and Xuanjing Huang

[L27][SENTIMENT ANALYSIS] Deep Neural Networks with Massive Learned Knowl-
edge
Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov and Eric Xing

[L28][SEMANTICS] De-Conflated Semantic Representations
Mohammad Taher Pilehvar and Nigel Collier

[L29][SEMANTICS] Improving Sparse Word Representations with Distributional In-
ference for Semantic Composition
Thomas Kober, Julie Weeds, Jeremy Reffin and David Weir

[L30][SEMANTICS] Modelling Interaction of Sentence Pair with Coupled-LSTMs
Pengfei Liu, Xipeng Qiu, Yaqian Zhou, Jifan Chen and Xuanjing Huang

[L31][SEMANTICS] Universal Decompositional Semantics on Universal Dependen-
cies

Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng
Zhang, Rachel Rudinger, Kyle Rawlins and Benjamin Van Durme

[L32][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Friends with Motives: Using

Text to Infer Influence on SCOTUS
Yanchuan Sim, Bryan Routledge and Noah A. Smith

x1vii



Thursday, November 3, 2016 (continued)

[L33][SYNTAX & MORPHOLOGY] Verb Phrase Ellipsis Resolution Using Discrimina-
tive and Margin-Infused Algorithms
Kian Kenyon-Dean, Jackie Chi Kit Cheung and Doina Precup

[L34][SYNTAX & MorpHOLOGY] Distilling an Ensemble of Greedy Dependency
Farsers into One MST Parser

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer and Noah A.
Smith

[L35][SYNTAX & MORPHOLOGY] LSTM Shift-Reduce CCG Parsing
Wenduan Xu

[L36][SYNTAX & MORPHOLOGY] An Evaluation of Parser Robustness for Ungrammat-
ical Sentences
Homa B. Hashemi and Rebecca Hwa

[L37]1[SYNTAX & MoRPHOLOGY] Neural Shift-Reduce CCG Semantic Parsing
Dipendra Kumar Misra and Yoav Artzi

[L38][SYNTAX & MORPHOLOGY] Syntactic Parsing of Web Queries
Xiangyan Sun, Haixun Wang, Yanghua Xiao and Zhongyuan Wang

[L39][SUMMARIZATION] Unsupervised Text Recap Extraction for TV Series
Hongliang Yu, Shikun Zhang and Louis-Philippe Morency

[L40][TEXT MINING & APPLICATIONS] On- and Off-Topic Classification and Semantic
Annotation of User-Generated Software Requirements
Markus Dollmann and Michaela Geierhos

[L41][TEXT MINING & APPLICATIONS] Deceptive Review Spam Detection via Exploit-
ing Task Relatedness and Unlabeled Data
Zhen Hai, Peilin Zhao, Peng Cheng, Peng Yang, Xiao-Li Li and Guangxia Li

[L42][TEXT MINING & APPLICATIONS] Regularizing Text Categorization with Clusters
of Words
Konstantinos Skianis, Francois Rousseau and Michalis Vazirgiannis

[L43][TEXT MINING & APPLICATIONS] Deep Reinforcement Learning with a Combina-
torial Action Space for Predicting Popular Reddit Threads

Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li and
Li Deng
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Thursday, November 3, 2016 (continued)

[L44][TEXT MINING & APPLICATIONS] Non-Literal Text Reuse in Historical Texts: An
Approach to Identify Reuse Transformations and its Application to Bible Reuse
Maria Moritz, Andreas Wiederhold, Barbara Pavlek, Yuri Bizzoni and Marco Biich-
ler

[L45][TEXT MINING & APPLICATIONS] A Graph Degeneracy-based Approach to Key-
word Extraction
Antoine Tixier, Fragkiskos Malliaros and Michalis Vazirgiannis

[L46][TEXT MINING & APPLICATIONS] Predicting the Relative Difficulty of Single Sen-
tences With and Without Surrounding Context

Elliot Schumacher, Maxine Eskenazi, Gwen Frishkoff and Kevyn Collins-
Thompson

[L47][TEXT MINING & APPLICATIONS] A Neural Approach to Automated Essay Scoring
Kaveh Taghipour and Hwee Tou Ng

[L48][TEXT MINING & APPLICATIONS] Non-uniform Language Detection in Technical
Writing
Weibo Wang, Abidalrahman Moh’d, Aminul Islam, Axel Soto and Evangelos Milios

[L49][TEXT MINING & APPLICATIONS] Adapting Grammatical Error Correction Based
on the Native Language of Writers with Neural Network Joint Models
Shamil Chollampatt, Duc Tam Hoang and Hwee Tou Ng

[SO1][MACHINE TRANSLATION] Orthographic Syllable as basic unit for SMT between
Related Languages
Anoop Kunchukuttan and Pushpak Bhattacharyya

[SO2][TEXT MINING & APPLICATIONS] Neural Generation of Regular Expressions from
Natural Language with Minimal Domain Knowledge

Nicholas Locascio, Karthik Narasimhan, Eduardo De Leon, Nate Kushman and
Regina Barzilay

[SO3][INFORMATION EXTRACTION] Supervised Keyphrase Extraction as Positive Un-
labeled Learning
Lucas Sterckx, Cornelia Caragea, Thomas Demeester and Chris Develder

[SO4][INFORMATION EXTRACTION] Learning to Answer Questions from Wikipedia In-
foboxes
Alvaro Morales, Varot Premtoon, Cordelia Avery, Sue Felshin and Boris Katz

[SO5][INFORMATION EXTRACTION] Timeline extraction using distant supervision and

Jjoint inference
Savelie Cornegruta and Andreas Vlachos

xlix



Thursday, November 3, 2016 (continued)

[S06][INFORMATION EXTRACTION] Combining Supervised and Unsupervised Enem-
bles for Knowledge Base Population
Nazneen Fatema Rajani and Raymond Mooney

[SO7][LANGUAGE & VisioN] Character Sequence Models for Colorful Words
Kazuya Kawakami, Chris Dyer, Bryan Routledge and Noah A. Smith

[SO8][LANGUAGE & VISION] Analyzing the Behavior of Visual Question Answering
Models
Aishwarya Agrawal, Dhruv Batra and Devi Parikh

[SO9][LANGUAGE & VisioN] Improving LSTM-based Video Description with Linguis-
tic Knowledge Mined from Text

Subhashini Venugopalan, Lisa Anne Hendricks, Raymond Mooney and Kate
Saenko

[S10][SEMANTICS] Representing Verbs with Rich Contexts: an Evaluation on Verb
Similarity

Emmanuele Chersoni, Enrico Santus, Alessandro Lenci, Philippe Blache and Chu-
Ren Huang

[S11][MACHINE LEARNING] Speed-Accuracy Tradeoffs in Tagging with Variable-
Order CRF's and Structured Sparsity
Tim Vieira, Ryan Cotterell and Jason Eisner

[S12][MACHINE LEARNING] Learning Robust Representations of Text
Yitong Li, Trevor Cohn and Timothy Baldwin

[S13][MACHINE LEARNING] Modified Dirichlet Distribution: Allowing Negative Pa-
rameters to Induce Stronger Sparsity
Kewei Tu

[S14][MACHINE LEARNING] Gated Word-Character Recurrent Language Model
Yasumasa Miyamoto and Kyunghyun Cho

[S15][SYNTAX & MoRPHOLOGY] Unsupervised Word Alignment by Agreement Under
ITG Constraint

Hidetaka Kamigaito, Akihiro Tamura, Hiroya Takamura, Manabu Okumura and Ei-
ichiro Sumita

[S16][SYNTAX & MoRPHOLOGY] Training with Exploration Improves a Greedy Stack
LSTM Parser
Miguel Ballesteros, Yoav Goldberg, Chris Dyer and Noah A. Smith



Thursday, November 3, 2016 (continued)

[S17]1[SEMaNTICS] Capturing Argument Relationship for Chinese Semantic Role La-
beling
Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui and Tingsong Jiang

[S18][SEMANTICS] BrainBench: A Brain-Image Test Suite for Distributional Seman-
tic Models
Haoyan Xu, Brian Murphy and Alona Fyshe

[S19][SEMANTICS] Evaluating Induced CCG Parsers on Grounded Semantic Parsing
Yonatan Bisk, Siva Reddy, John Blitzer, Julia Hockenmaier and Mark Steedman

[S20][SEMANTICS] Vector-space models for PPDB paraphrase ranking in context
Marianna Apidianaki

[S21][SENTIMENT ANALYSIS] [Interpreting Neural Networks to Improve Politeness
Comprehension
Malika Aubakirova and Mohit Bansal

[S22][SENTIMENT ANALYSIS] Does ‘well-being’ translate on Tiwitter?
Laura Smith, Salvatore Giorgi, Rishi Solanki, Johannes Eichstaedt, H. Andrew
Schwartz, Muhammad Abdul-Mageed, Anneke Buffone and Lyle Ungar

[S23][SociAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Beyond Canonical Texts: A
Computational Analysis of Fanfiction
Smitha Milli and David Bamman

[S24][SociAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Using Syntactic and Seman-
tic Context to Explore Psychodemographic Differences in Self-reference
Masoud Rouhizadeh, Lyle Ungar, Anneke Buffone and H. Andrew Schwartz

[S25][SociaL MEDIA & COMPUTATIONAL SOCIAL SCIENCE]  Learning to Identify
Metaphors from a Corpus of Proverbs
Gozde Ozbal, Carlo Strapparava, Serra Sinem Tekiroglu and Daniele Pighin

[S26][SociaL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] An Embedding Model for
Predicting Roll-Call Votes
Peter Kraft, Hirsh Jain and Alexander M. Rush

[S27][SPOKEN LANGUAGE PROCESSING] Natural Language Model Re-usability for
Scaling to Different Domains
Young-Bum Kim, Alexandre Rochette and Ruhi Sarikaya

[S28][SPOKEN LANGUAGE PROCESSING] Leveraging Sentence-level Information with

Encoder LSTM for Semantic Slot Filling
Gakuto Kurata, Bing Xiang, Bowen Zhou and Mo Yu
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Thursday, November 3, 2016 (continued)

[S29][SUMMARIZATION] AMR-to-text generation as a Traveling Salesman Problem
Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo Wang and Daniel Gildea

[S30][TEXT MINING & APPLICATIONS] Learning to Capitalize with Character-Level
Recurrent Neural Networks: An Empirical Study
Raymond Hendy Susanto, Hai Leong Chieu and Wei Lu

[S31][TEXT MINING & APPLICATIONS] The Effects of the Content of FOMC Communi-
cations on US Treasury Rates
Christopher Rohlfs, Sunandan Chakraborty and Lakshminarayanan Subramanian

[S32][TEXT MINING & APPLICATIONS] Learning to refine text based recommendations
Youyang Gu, Tao Lei, Regina Barzilay and Tommi Jaakkola

[S33][TEXT MINING & APPLICATIONS] There’s No Comparison: Reference-less Evalu-
ation Metrics in Grammatical Error Correction
Courtney Napoles, Keisuke Sakaguchi and Joel Tetreault

[S34][SocIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Cultural Shift or Linguistic
Drift? Comparing Two Computational Measures of Semantic Change
William L. Hamilton, Jure Leskovec and Dan Jurafsky

Friday, November 4, 2016

07:30-17:30

08:00-09:00

09:00-10:00

09:00-10:00

10:00-10:30

Registration Day 3

Morning Coffee

Session P9: Plenary Session: Invited Talk by Andreas Stolcke

You Talking to Me? Speech-based and Multimodal Approaches for Human versus

Computer Addressee Detection
Andreas Stolcke

Coffee Break
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Friday, November 4, 2016 (continued)

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

Session 7A: Dialogue Systems (Long Papers)

How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised
Evaluation Metrics for Dialogue Response Generation

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin and
Joelle Pineau

Addressee and Response Selection for Multi-Party Conversation
Hiroki Ouchi and Yuta Tsuboi

Nonparametric Bayesian Models for Spoken Language Understanding
Kei Wakabayashi, Johane Takeuchi, Kotaro Funakoshi and Mikio Nakano

Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Tsung-Hsien Wen, Milica Gasic, Nikola Mrksi¢, Lina M. Rojas Barahona, Pei-Hao
Su, Stefan Ultes, David Vandyke and Steve Young

Session 7B: Semantic Similarity (Long Papers)

Relations such as Hypernymy: Identifying and Exploiting Hearst Patterns in Distri-
butional Vectors for Lexical Entailment

Stephen Roller and Katrin Erk

SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity
Daniela Gerz, Ivan Vulié, Felix Hill, Roi Reichart and Anna Korhonen

POLY: Mining Relational Paraphrases from Multilingual Sentences
Adam Grycner and Gerhard Weikum

Exploiting Sentence Similarities for Better Alignments
Tao Li and Vivek Srikumar

liii



Friday, November 4, 2016 (continued)

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

12:10-13:40

13:40-15:25

13:40-13:55

13:55-14:10

14:10-14:25

14:25-14:40

14:40-14:55

14:55-15:10

Session 7C: Dependency Parsing (Long + TACL Papers)

Bi-directional Attention with Agreement for Dependency Parsing
Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao and Li Deng

[TACL] The Galactic Dependencies Treebanks: Getting More Data by Synthesizing
New Languages

Dingquan Wang and Jason Eisner

[TACL] Easy-First Dependency Parsing with Hierarchical Tree LSTMs
Eliyahu Kiperwasser and Yoav Goldberg

Anchoring and Agreement in Syntactic Annotations
Yevgeni Berzak, Yan Huang, Andrei Barbu, Anna Korhonen and Boris Katz

Lunch

Session 8A: Short Paper Oral Session 1

Tense Manages to Predict Implicative Behavior in Verbs
Ellie Pavlick and Chris Callison-Burch

Who did What: A Large-Scale Person-Centered Cloze Dataset
Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel and David McAllester

Building compositional semantics and higher-order inference system for a wide-
coverage Japanese CCG parser

Koji Mineshima, Ribeka Tanaka, Pascual Martinez-Gémez, Yusuke Miyao and
Daisuke Bekki

Learning to Generate Compositional Color Descriptions
Will Monroe, Noah D. Goodman and Christopher Potts

A Decomposable Attention Model for Natural Language Inference
Ankur Parikh, Oscar Téackstrom, Dipanjan Das and Jakob Uszkoreit

Deep Reinforcement Learning for Mention-Ranking Coreference Models
Kevin Clark and Christopher D. Manning

liv



Friday, November 4, 2016 (continued)

15:10-15:25

13:40-15:25

13:40-13:55

13:55-14:10

14:10-14:25

14:25-14:40

14:40-14:55

14:55-15:10

15:10-15:25

A Stacking Gated Neural Architecture for Implicit Discourse Relation Classification
Lianhui Qin, Zhisong Zhang and Hai Zhao

Session 8B: Short Paper Oral Session 11

Insertion Position Selection Model for Flexible Non-Terminals in Dependency Tree-
to-Tree Machine Translation
Toshiaki Nakazawa, John Richardson and Sadao Kurohashi

Why Neural Translations are the Right Length
Xing Shi, Kevin Knight and Deniz Yuret

Supervised Attentions for Neural Machine Translation
Haitao Mi, Zhiguo Wang and Abe Ittycheriah

Learning principled bilingual mappings of word embeddings while preserving
monolingual invariance
Mikel Artetxe, Gorka Labaka and Eneko Agirre

Measuring the behavioral impact of machine translation quality improvements with
A/B testing

Ben Russell and Duncan Gillespie

Creating a Large Benchmark for Open Information Extraction
Gabriel Stanovsky and Ido Dagan

Bilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition
Changxing Wu, xiaodong shi, Yidong Chen, Yanzhou Huang and jinsong su

v



Friday, November 4, 2016 (continued)

13:40-15:25

13:40-13:55

13:55-14:10

14:10-14:25

14:25-14:40

14:40-14:55

14:55-15:10

15:10-15:25

15:25-15:50

Session 8C: Short Paper Oral Session I11

Transition-Based Dependency Parsing with Heuristic Backtracking
Jacob Buckman, Miguel Ballesteros and Chris Dyer

Word Ordering Without Syntax
Allen Schmaltz, Alexander M. Rush and Stuart Shieber

Morphological Segmentation Inside-Out
Ryan Cotterell, Arun Kumar and Hinrich Schiitze

Farsing as Language Modeling
Do Kook Choe and Eugene Charniak

Human-in-the-Loop Parsing
Luheng He, Julian Michael, Mike Lewis and Luke Zettlemoyer

Unsupervised Timeline Generation for Wikipedia History Articles
Sandro Bauer and Simone Teufel

Encoding Temporal Information for Time-Aware Link Prediction
Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang and Zhifang
Sui

Coffee Break

Ivi



Friday, November 4, 2016 (continued)

15:50-17:25

15:50-15:55

15:55-16:20

16:20-16:45

16:45-17:00

17:00-17:25

17:25-17:45

17:25-17:45

Session P10: Plenary Session: Best Paper

Introduction to Best Papers
Program Chairs

Improving Information Extraction by Acquiring External Evidence with Reinforce-
ment Learning

Karthik Narasimhan, Adam Yala and Regina Barzilay

Global Neural CCG Parsing with Optimality Guarantees
Kenton Lee, Mike Lewis and Luke Zettlemoyer

Learning a Lexicon and Translation Model from Phoneme Lattices

Oliver Adams, Graham Neubig, Trevor Cohn, Steven Bird, Quoc Truong Do and
Satoshi Nakamura

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev and Percy Liang

Session P11: Plenary Session: Closing Remarks

Closing Remarks
General Chair

lvii






List of Papers

Span-Based Constituency Parsing with a Structure-Label System and Provably Optimal Dynamic Ora-
cles
James Cross and Liang Huang . .. ... ..o i 1

Rule Extraction for Tree-to-Tree Transducers by Cost Minimization
Pascual Martinez-Gémez and Yusuke Miyao ... 12

A Neural Network for Coordination Boundary Prediction
Jessica Ficler and Yoav Goldberg .. ... i e 23

Using Left-corner Parsing to Encode Universal Structural Constraints in Grammar Induction
Hiroshi Noji, Yusuke Miyao and Mark Johnson......... ... ... o i .. 33

Distinguishing Past, On-going, and Future Events: The EventStatus Corpus
Ruihong Huang, Ignacio Cases, Dan Jurafsky, Cleo Condoravdi and Ellen Riloff............. 44

Nested Propositions in Open Information Extraction
Nikita Bhutani, H V Jagadish and DragomirRadev ............ ... ... ... ..o .. 55

A Position Encoding Convolutional Neural Network Based on Dependency Tree for Relation Classifi-
cation
Yunlun Yang, Yunhai Tong, Shulei Ma and Zhi-Hong Deng................ ... . ..ooo.... 65

Learning to Recognize Discontiguous Entities
Aldrian ObajaMuis and Wei Lu. ... i e 75

Modeling Human Reading with Neural Attention
Michael Hahn and Frank Keller. ....... ... ... i e 85

Comparing Computational Cognitive Models of Generalization in a Language Acquisition Task
Libby Barak, Adele E. Goldberg and Suzanne Stevenson ...............c.ccouiiiiieeennnnnn. 96

Rationalizing Neural Predictions
Tao Lei, Regina Barzilay and Tommi Jaakkola.................. ... .o .. 107

Deep Multi-Task Learning with Shared Memory for Text Classification
Pengfei Liu, Xipeng Qiu and Xuanjing Huang.......... .. ... o i, 118

Natural Language Comprehension with the EpiReader
Adam Trischler, Zheng Ye, Xingdi Yuan, Philip Bachman, Alessandro Sordoni and Kaheer Sule-
00T )+ PO 128

Creating Causal Embeddings for Question Answering with Minimal Supervision
Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Peter Clark and Michael Hammond. ......... 138

lix



Improving Semantic Parsing via Answer Type Inference
Semih Yavuz, [zzeddin Gur, Yu Su, Mudhakar Srivatsa and Xifeng Yan.................... 149

Semantic Parsing to Probabilistic Programs for Situated Question Answering
Jayant Krishnamurthy, Oyvind Tafjord and Aniruddha Kembhavi ......................... 160

Event participant modelling with neural networks
Ottokar Tilk, Vera Demberg, Asad Sayeed, Dietrich Klakow and Stefan Thater ............. 171

Context-Dependent Sense Embedding
Lin Qiu, Kewei Tuand YOng YU .. ...ttt 183

Jointly Embedding Knowledge Graphs and Logical Rules
Shu Guo, Quan Wang, Lihong Wang, Bin Wangand LiGuo.............................. 192

Learning Connective-based Word Representations for Implicit Discourse Relation Identification
Chloé Braud and Pascal Denis .. ... e 203

Aspect Level Sentiment Classification with Deep Memory Network
Duyu Tang, Bing Qin and Ting Liu. .. ... e 214

Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets
Lei Shu, Bing Liu, Hu Xu and Annice Kim ............. i 225

Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment Classification
Jianfei Yuand Jing Jiang . . ... ..o e 236

Attention-based LSTM Network for Cross-Lingual Sentiment Classification
Xinjie Zhou, Xiaojun Wan and Jianguo Xiao .. ........oueiiii i 247

Neural versus Phrase-Based Machine Translation Quality: a Case Study
Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo and Marcello Federico.................. 257

Zero-Resource Translation with Multi-Lingual Neural Machine Translation
Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan, Fatos T. Yarman Vural and Kyunghyun Cho
268

Memory-enhanced Decoder for Neural Machine Translation
Mingxuan Wang, Zhengdong Lu, Hang Liand Qun Liu .................................. 278

Semi-Supervised Learning of Sequence Models with Method of Moments
Zita Marinho, André F. T. Martins, Shay B. Cohen and Noah A. Smith..................... 287

Learning from Explicit and Implicit Supervision Jointly For Algebra Word Problems
Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang and Wen-tau Yih..................... 297

TweeTime : A Minimally Supervised Method for Recognizing and Normalizing Time Expressions in
Twitter
Jeniya Tabassum, Alan Ritter and Wei XU. ..ot 307

1x



Language as a Latent Variable: Discrete Generative Models for Sentence Compression
Yishu Miao and Phil Blunsom ........... 319

Globally Coherent Text Generation with Neural Checklist Models
Chloé Kiddon, Luke Zettlemoyer and Yejin Choi . ... ... 329

A Dataset and Evaluation Metrics for Abstractive Compression of Sentences and Short Paragraphs
Kristina Toutanova, Chris Brockett, Ke M. Tran and Saleema Amershi..................... 340

PaCCSS-IT: A Parallel Corpus of Complex-Simple Sentences for Automatic Text Simplification
Dominique Brunato, Andrea Cimino, Felice Dell’ Orletta and Giulia Venturi................ 351

Discourse Parsing with Attention-based Hierarchical Neural Networks
Qi Li, Tianshi Li and Baobao Chang. ........... ...ttt eiiiieeenns 362

Multi-view Response Selection for Human-Computer Conversation
Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao, Dianhai Yu, Hao Tian, Xuan Liu and Rui

Variational Neural Discourse Relation Recognizer
Biao Zhang, Deyi Xiong, jinsong su, Qun Liu, Rongrong Ji, Hong Duan and Min Zhang . ... 382

Event Detection and Co-reference with Minimal Supervision
Haoruo Peng, Yangqiu Songand DanRoth................ ... ... i i, 392

Learning Term Embeddings for Taxonomic Relation Identification Using Dynamic Weighting Neural
Network
Tuan Luu Anh, Yi Tay, Siu Cheung Hui and See Kiong Ng ...t 403

Relation Schema Induction using Tensor Factorization with Side Information
Madhav Nimishakavi, Uday Singh Saini and Partha Talukdar ............................. 414

Supervised Distributional Hypernym Discovery via Domain Adaptation
Luis Espinosa Anke, Jose Camacho-Collados, Claudio Delli Bovi and Horacio Saggion .. ... 424

Latent Tree Language Model
TomaS BryChCin. ... ... 436

Comparing Data Sources and Architectures for Deep Visual Representation Learning in Semantics
Douwe Kiela, Anita Lilla Verd and Stephen Clark ............. ... ... .ot 447

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell and Marcus Rohrbach
457

The Structured Weighted Violations Perceptron Algorithm
Rotem Dror and Roi Reichart. ... ... 469

How Transferable are Neural Networks in NLP Applications?
Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang and ZhiJin..................... 479

Ixi



Morphological Priors for Probabilistic Neural Word Embeddings
Parminder Bhatia, Robert Guthrie and Jacob Eisenstein ............... ... . ... ... 490

Automatic Cross-Lingual Similarization of Dependency Grammars for Tree-based Machine Translation
Wenbin Jiang, Wen Zhang, Jinan Xu and RangjiaCai .............. ...t 501

IRT-based Aggregation Model of Crowdsourced Pairwise Comparison for Evaluating Machine Trans-
lations
Naoki Otani, Toshiaki Nakazawa, Daisuke Kawahara and Sadao Kurohashi ................ 511

Variational Neural Machine Translation
Biao Zhang, Deyi Xiong, jinsong su, Hong Duan and Min Zhang.......................... 521

Towards a Convex HMM Surrogate for Word Alignment
Andrei Simion, Michael Collins and Cliff Stein......... ... ... .. 531

Solving Verbal Questions in 1Q Test by Knowledge-Powered Word Embedding
Huazheng Wang, Fei Tian, Bin Gao, Chengjieren Zhu, Jiang Bian and Tie-Yan Liu.......... 541

Long Short-Term Memory-Networks for Machine Reading
Jianpeng Cheng, Li Dong and Mirella Lapata ............. ... .. 551

On Generating Characteristic-rich Question Sets for QA Evaluation
Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, [zzeddin Gur, Zenghui Yan and Xifeng Yan
562

Learning to Translate for Multilingual Question Answering
Ferhan Ture and Elizabeth Boschee ......... ... oo i i 573

A Semiparametric Model for Bayesian Reader Identification
Ahmed Abdelwahab, Reinhold Kliegl and Niels Landwehr ............................... 585

Inducing Domain-Specific Sentiment Lexicons from Unlabeled Corpora
William L. Hamilton, Kevin Clark, Jure Leskovec and Dan Jurafsky....................... 595

Attention-based LSTM for Aspect-level Sentiment Classification
Yequan Wang, Minlie Huang, xiaoyan zhuand LiZhao ............... ... ... . ... ... 606

Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis
Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier and Xiaokui Xiao....................... 616

Extracting Aspect Specific Opinion Expressions
Abhishek Laddha and Arjun Mukherjee ... i 627

Emotion Distribution Learning from Texts
Deyu ZHOU, Xuan Zhang, Yin Zhou, Quan Zhao and XinGeng .......................... 638

Building an Evaluation Scale using Item Response Theory
John Lalor, Hlo Wu and hong yu. .. ... ..ot e eie e 648

Ixii



WordRank: Learning Word Embeddings via Robust Ranking
Shihao Ji, Hyokun Yun, Pinar Yanardag, Shin Matsushima and S. V. N. Vishwanathan....... 658

Exploring Semantic Representation in Brain Activity Using Word Embeddings
Yu-Ping Ruan, Zhen-HuaLingand Yu Hu . ....... .o i 669

AMR Parsing with an Incremental Joint Model
Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang QU, Ran Li and Yanhui Gu.......... 680

Identifying Dogmatism in Social Media: Signals and Models
Ethan Fastand Eric HOrvitz . ... ... 690

Enhanced Personalized Search using Social Data
Dong Zhou, Séamus Lawless, Xuan Wu, Wenyu Zhao and Jianxun Liu .................... 700

Effective Greedy Inference for Graph-based Non-Projective Dependency Parsing
Ilan Tchernowitz, Liron Yedidsion and Roi Reichart ..................................... 711

Generating Abbreviations for Chinese Named Entities Using Recurrent Neural Network with Dynamic
Dictionary
Qi Zhang, Jin Qian, Ya Guo, Yaqgian Zhou and Xuanjing Huang........................... 721

Neural Network for Heterogeneous Annotations
Hongshen Chen, Yue Zhang and Qun Liu......... ... .o 731

LAMB: A Good Shepherd of Morphologically Rich Languages
Sebastian Ebert, Thomas Miiller and Hinrich Schiitze . ............ ... ... .o oo 742

Fast Coupled Sequence Labeling on Heterogeneous Annotations via Context-aware Pruning
Zhenghua Li, Jiayuan Chao, Min Zhang and Jiwen Yang ........... ... ... 753

Unsupervised Neural Dependency Parsing
Yong Jiang, Wenjuan Hanand Kewei Tu....... .. ... i 763

Generating Coherent Summaries of Scientific Articles Using Coherence Patterns
Daraksha Parveen, Mohsen Mesgar and Michael Strube ........... ... ... ... . ... 772

News Stream Summarization using Burst Information Networks
Tao Ge, Lei Cui, Baobao Chang, Sujian Li, Ming Zhou and Zhifang Sui ................... 784

Rationale-Augmented Convolutional Neural Networks for Text Classification
Ye Zhang, Iain Marshall and Byron C. Wallace ...............c.cooiiiiiiiiniiiiinennnnnn. 795

Transferring User Interests Across Websites with Unstructured Text for Cold-Start Recommendation
Yu-Yang Huang and Shou-De Lin. ... o e i 805

Speculation and Negation Scope Detection via Convolutional Neural Networks
Zhong Qian, Peifeng Li, Qiaoming Zhu, Guodong Zhou, Zhunchen Luo and Wei Luo ... .... 815

Ixiii



Analyzing Linguistic Knowledge in Sequential Model of Sentence
Peng Qian, Xipeng Qiu and Xuanjing Huang . ......... ... o o i i, 826

Keyphrase Extraction Using Deep Recurrent Neural Networks on Twitter
Qi Zhang, Yang Wang, Yeyun Gong and Xuanjing Huang ................................ 836

Solving and Generating Chinese Character Riddles
Chuangqi Tan, Furu Wei, Li Dong, Weifeng Lvand Ming Zhou ............................ 846

Structured prediction models for RNN based sequence labeling in clinical text
Abhyuday Jagannatha and hong yu....... ... .. i 856

Learning to Represent Review with Tensor Decomposition for Spam Detection
Xuepeng Wang, Kang Liu, Shizhu HeandJunZhao ..................................... 866

Stance Detection with Bidirectional Conditional Encoding
Isabelle Augenstein, Tim Rocktéschel, Andreas Vlachos and Kalina Bontcheva............. 876

Modeling Skip-Grams for Event Detection with Convolutional Neural Networks

Thien Huu Nguyen and Ralph Grishman............... ... .. i .. 886
Porting an Open Information Extraction System from English to German

Tobias Falke, Gabriel Stanovsky, Iryna Gurevych and Ido Dagan.......................... 892
Named Entity Recognition for Novel Types by Transfer Learning

Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Weiwei Hou and Timothy Baldwin............. 899
Extracting Subevents via an Effective Two-phase Approach

Allison Badgett and Ruihong Huang . ........ ... . . . 906
Gaussian Visual-Linguistic Embedding for Zero-Shot Recognition

Tanmoy Mukherjee and Timothy Hospedales................ ..., 912
Question Relevance in VQA: Identifying Non-Visual And False-Premise Questions

Arijit Ray, Gordon Christie, Mohit Bansal, Dhruv Batra and Devi Parikh................... 919
Sort Story: Sorting Jumbled Images and Captions into Stories

Harsh Agrawal, Arjun Chandrasekaran, Dhruv Batra, Devi Parikh and Mohit Bansal . ....... 925
Human Attention in Visual Question Answering: Do Humans and Deep Networks look at the same
regions?

Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh and Dhruv Batra................ 932

Recurrent Residual Learning for Sequence Classification
Yiren Wang and Fei Tian . .. ... o e e 938

Richer Interpolative Smoothing Based on Modified Kneser-Ney Language Modeling
Ehsan Shareghi, Trevor Cohn and Gholamreza Haffari ............... ... .. ... ... ..., 944

Ixiv



A General Regularization Framework for Domain Adaptation
Wei Lu, Hai Leong Chieu and Jonathan Lofgren........... ... o ... 950

Coverage Embedding Models for Neural Machine Translation
Haitao Mi, Baskaran Sankaran, Zhiguo Wang and Abe Ittycheriah......................... 955

Neural Morphological Analysis: Encoding-Decoding Canonical Segments
Katharina Kann, Ryan Cotterell and Hinrich Schiitze................ ... . ... ... ... .. 961

Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network
Peng Shi, Zhiyang Teng and Yue Zhang . ... i 968

The Effects of Data Size and Frequency Range on Distributional Semantic Models
Magnus Sahlgren and Alessandro Lenci ...........cooiiiiii i 975

Multi-Granularity Chinese Word Embedding
Rongchao Yin, Quan Wang, Peng Li, Rui Liand BinWang ................. ... ... ... ... 981

Numerically Grounded Language Models for Semantic Error Correction
Georgios Spithourakis, Isabelle Augenstein and Sebastian Riedel.......................... 987

Towards Semi-Automatic Generation of Proposition Banks for Low-Resource Languages
Alan Akbik, vishwajeet kumar and Yunyao Li......... ... oo i 993

A Hierarchical Model of Reviews for Aspect-based Sentiment Analysis
Sebastian Ruder, Parsa Ghaffari and John G. Breslin........... ... ... . ... .. ... ........ 999

Are Word Embedding-based Features Useful for Sarcasm Detection?
Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya and Mark Carman . ... 1006

Weakly Supervised Tweet Stance Classification by Relational Bootstrapping
Javid Ebrahimi, Dejing Dou and Daniel Lowd................. ... ..., .. 1012

The Gun Violence Database: A new task and data set for NLP
Ellie Pavlick, Heng Ji, Xiaoman Pan and Chris Callison-Burch........................... 1018

Fluency detection on communication networks
Tom Lippincott and Benjamin VanDurme . ............ .. . i, 1025

Characterizing the Language of Online Communities and its Relation to Community Reception
Trang Tran and Mari Ostendorf ... ... . . et 1030

Joint Transition-based Dependency Parsing and Disfluency Detection for Automatic Speech Recogni-
tion Texts
Masashi Yoshikawa, Hiroyuki Shindo and Yuji Matsumoto .....................coooue... 1036

Real-Time Speech Emotion and Sentiment Recognition for Interactive Dialogue Systems
Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu, Yan Wan, Ricky Ho Yin Chan and Pascale

Ixv



A Neural Network Architecture for Multilingual Punctuation Generation

Miguel Ballesteros and Leo Wanner. . ...t 1048
Neural Headline Generation on Abstract Meaning Representation

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao and Masaaki Nagata............ 1054
Robust Gram Embeddings

Taygun Kekec and David M. J. TaxX ... ... e e 1060

SimpleScience: Lexical Simplification of Scientific Terminology
Yea Seul Kim, Jessica Hullman, Matthew Burgess and Eytan Adar....................... 1066

Automatic Features for Essay Scoring — An Empirical Study
FeiDong and Yue Zhang . ... .......uuuiiiiiiii e 1072

Semantic Parsing with Semi-Supervised Sequential Autoencoders
Tomas Kocisky, Gabor Melis, Edward Grefenstette, Chris Dyer, Wang Ling, Phil Blunsom and
Karl Moritz Hermann . .. ... ... 1078

Equation Parsing : Mapping Sentences to Grounded Equations
Subhro Roy, Shyam Upadhyay and DanRoth ............ ... .. . . i i, 1088

Automatic Extraction of Implicit Interpretations from Modal Constructions
Jordan Sanders and Eduardo Blanco........... ..o i i 1098

Understanding Negation in Positive Terms Using Syntactic Dependencies
Zahra Sarabi and Eduardo Blanco......... ... 1108

Demographic Dialectal Variation in Social Media: A Case Study of African-American English
Su Lin Blodgett, Lisa Green and Brendan O’Connor............. ... .. 1119

Understanding Language Preference for Expression of Opinion and Sentiment: What do Hindi-English
Speakers do on Twitter?

Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika Bali, Monojit Choudhury and Niloy Gan-
BULY e 1131

Detecting and Characterizing Events
Allison Chaney, Hanna Wallach, Matthew Connelly and David Blei...................... 1142

Convolutional Neural Network Language Models
Ngoc-Quan Pham, German Kruszewski and Gemma Boleda............................. 1153

Generalizing and Hybridizing Count-based and Neural Language Models
Graham Neubig and Chris Dyer. ........ ... e 1163

Reasoning about Pragmatics with Neural Listeners and Speakers
Jacob Andreas and Dan Klein ....... ..o i 1173

Generating Topical Poetry
Marjan Ghazvininejad, Xing Shi, Yejin Choi and Kevin Knight . ......................... 1183

Ixvi



Deep Reinforcement Learning for Dialogue Generation
Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley and Jianfeng Gao ... ..... 1192

Neural Text Generation from Structured Data with Application to the Biography Domain
Rémi Lebret, David Grangier and Michael Auli ............. ... ... o it 1203

What makes a convincing argument? Empirical analysis and detecting attributes of convincingness in
Web argumentation
Ivan Habernal and Iryna Gurevych. ... e 1214

Recognizing Implicit Discourse Relations via Repeated Reading: Neural Networks with Multi-Level
Attention
Yang Liuand Sujian Li . ... .oo oo 1224

Antecedent Selection for Sluicing: Structure and Content
Pranav Anand and Daniel Hardt . ....... ... . 1234

Intra-Sentential Subject Zero Anaphora Resolution using Multi-Column Convolutional Neural Network
Ryu lida, Kentaro Torisawa, Jong-Hoon Oh, Canasai Kruengkrai and Julien Kloetzer ...... 1244

An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages
Antonios Anastasopoulos, David Chiang and Long Duong. ................... ... ........ 1255

HUME: Human UCCA-Based Evaluation of Machine Translation
Alexandra Birch, Omri Abend, Ondfej Bojar and Barry Haddow ......................... 1264

Improving Multilingual Named Entity Recognition with Wikipedia Entity Type Mapping
Jian Niand Radu Florian. . ... e 1275

Learning Crosslingual Word Embeddings without Bilingual Corpora
Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird and Trevor Cohn .............. 1285

Sequence-to-Sequence Learning as Beam-Search Optimization
Sam Wiseman and Alexander M. Rush ......... . ... i 1296

Online Segment to Segment Neural Transduction
Lei Yu, Jan Buys and Phil Blunsom ......... ... . i i 1307

Sequence-Level Knowledge Distillation
Yoon Kim and Alexander M. Rush. ... ... o 1317

Controlling Output Length in Neural Encoder-Decoders
Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura and Manabu Okumura . .. 1328

Poet Admits // Mute Cypher: Beam Search to find Mutually Enciphering Poetic Texts
Cole Peterson and Alona Fyshe . ..... ... e 1339

All Fingers are not Equal: Intensity of References in Scientific Articles
Tanmoy Chakraborty and Ramasuri Narayanam ................c.oviiiiiieennniinnnn.... 1348

Ixvii



Improving Users’ Demographic Prediction via the Videos They Talk about
Yuan Wang, Yang Xiao, Chao Maand Zhen Xiao..............covviiiiiiiennniinn.... 1359

AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding
Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng Ji and JiaweiHan ................... 1369

Mining Inference Formulas by Goal-Directed Random Walks
Zhuoyu Wei, Jun Zhaoand Kang Liu......... .o i 1379

Lifted Rule Injection for Relation Embeddings
Thomas Demeester, Tim Rocktédschel and Sebastian Riedel .............................. 1389

Key-Value Memory Networks for Directly Reading Documents
Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes and Jason
B VZ2] 7o) o 1400

Analyzing Framing through the Casts of Characters in the News
Dallas Card, Justin Gross, Amber Boydstun and Noah A. Smith.......................... 1410

The Teams Corpus and Entrainment in Multi-Party Spoken Dialogues
Diane Litman, Susannah Paletz, Zahra Rahimi, Stefani Allegretti and Caitlin Rice ......... 1421

Personalized Emphasis Framing for Persuasive Message Generation
Tao Ding and Shimei Pan . ......... ... 1432

Cross Sentence Inference for Process Knowledge
Samuel Louvan, Chetan Naik, Sadhana Kumaravel, Heeyoung Kwon, Niranjan Balasubramanian
and Peter Clark . ... ..o e 1442

Toward Socially-Infused Information Extraction: Embedding Authors, Mentions, and Entities
Yi Yang, Ming-Wei Chang and Jacob Eisenstein..................cooiiiiiiiiiiinnna.... 1452

Phonologically Aware Neural Model for Named Entity Recognition in Low Resource Transfer Settings
Akash Bharadwaj, David Mortensen, Chris Dyer and Jaime Carbonell .................... 1462

Long-Short Range Context Neural Networks for Language Modeling
Youssef Oualil, Mittul Singh, Clayton Greenberg and Dietrich Klakow ................... 1473

Jointly Learning Grounded Task Structures from Language Instruction and Visual Demonstration
Changsong Liu, Shaohua Yang, Sari Saba-Sadiya, Nishant Shukla, Yunzhong He, Song-chun Zhu
ANd JOYCE Chal . ..o e 1482

Resolving Language and Vision Ambiguities Together: Joint Segmentation & Prepositional Attachment
Resolution in Captioned Scenes

Gordon Christie, Ankit Laddha, Aishwarya Agrawal, Stanislaw Antol, Yash Goyal, Kevin Kochers-
berger and Dhruv Batra. . ... ... e e 1493

Charagram: Embedding Words and Sentences via Character n-grams
John Wieting, Mohit Bansal, Kevin Gimpel and Karen Livescu .......................... 1504

Ixviii



Length bias in Encoder Decoder Models and a Case for Global Conditioning
Pavel Sountsov and Sunita Sarawagi ... ........uuuttttnni e 1516

Does String-Based Neural MT Learn Source Syntax?
Xing Shi, Inkit Padhi and Kevin Knight....... ... . .. 1526

Exploiting Source-side Monolingual Data in Neural Machine Translation
Jiajun Zhang and Chengqing Zong . . ...ttt e 1535

Phrase-based Machine Translation is State-of-the-Art for Automatic Grammatical Error Correction
Marcin Junczys-Dowmunt and Roman Grundkiewicz ............... ... .o oL, 1546

Incorporating Discrete Translation Lexicons into Neural Machine Translation
Philip Arthur, Graham Neubig and Satoshi Nakamura......................ccooiiuee.... 1557

Transfer Learning for Low-Resource Neural Machine Translation
Barret Zoph, Deniz Yuret, Jonathan May and Kevin Knight.............................. 1568

MixKMeans: Clustering Question-Answer Archives
Deepak P ... e 1576

It Takes Three to Tango: Triangulation Approach to Answer Ranking in Community Question Answering
Preslav Nakov, Llufs Marquez and Francisco Guzman.............. ..., 1586

Character-Level Question Answering with Attention
Xiaodong He and David Golub . ....... ... . 1598

Learning to Generate Textual Data
Guillaume Bouchard, Pontus Stenetorp and Sebastian Riedel ............................ 1608

A Theme-Rewriting Approach for Generating Algebra Word Problems
Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettlemoyer and Hannaneh Hajishirzi ... ... 1617

Context-Sensitive Lexicon Features for Neural Sentiment Analysis
Zhiyang Teng, Duy Tin Voand Yue Zhang . ...t 1629

Event-Driven Emotion Cause Extraction with Corpus Construction
Lin Gui, Dongyin Wu, Ruifeng Xu, Qin Luand YuZhou............... ... . ... ...... 1639

Neural Sentiment Classification with User and Product Attention
Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin and Zhiyvan Liu .................. 1650

Cached Long Short-Term Memory Neural Networks for Document-Level Sentiment Classification
Jiacheng Xu, Danlu Chen, Xipeng Qiu and Xuanjing Huang ............................. 1660

Deep Neural Networks with Massive Learned Knowledge
Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov and Eric Xing .......................... 1670

De-Conflated Semantic Representations
Mohammad Taher Pilehvar and Nigel Collier .................cc ... 1680

Ixix



Improving Sparse Word Representations with Distributional Inference for Semantic Composition
Thomas Kober, Julie Weeds, Jeremy Reffin and David Weir ............................. 1691

Modelling Interaction of Sentence Pair with Coupled-LSTMs
Pengfei Liu, Xipeng Qiu, Yaqgian Zhou, Jifan Chen and Xuanjing Huang.................. 1703

Universal Decompositional Semantics on Universal Dependencies
Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng Zhang, Rachel
Rudinger, Kyle Rawlins and Benjamin VanDurme . ............. . ... oot 1713

Friends with Motives: Using Text to Infer Influence on SCOTUS
Yanchuan Sim, Bryan Routledge and Noah A. Smith.................................... 1724

Verb Phrase Ellipsis Resolution Using Discriminative and Margin-Infused Algorithms
Kian Kenyon-Dean, Jackie Chi Kit Cheung and Doina Precup ........................... 1734

Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser
Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer and Noah A. Smith ... 1744

LSTM Shift-Reduce CCG Parsing
Wenduan XU . . ..o 1754

An Evaluation of Parser Robustness for Ungrammatical Sentences
Homa B. Hashemi and Rebecca Hwa. ........ .. ... i i, 1765

Neural Shift-Reduce CCG Semantic Parsing
Dipendra Kumar Misra and Yoav ArtzZi. ...ttt iiiieeenns 1775

Syntactic Parsing of Web Queries
Xiangyan Sun, Haixun Wang, Yanghua Xiao and Zhongyuan Wang ...................... 1787

Unsupervised Text Recap Extraction for TV Series
Hongliang Yu, Shikun Zhang and Louis-Philippe Morency ................ ... . ... ..., 1797

On- and Off-Topic Classification and Semantic Annotation of User-Generated Software Requirements
Markus Dollmann and Michaela Geierhos ......... ... ..o i 1807

Deceptive Review Spam Detection via Exploiting Task Relatedness and Unlabeled Data
Zhen Hai, Peilin Zhao, Peng Cheng, Peng Yang, Xiao-Li Li and Guangxia Li ............. 1817

Regularizing Text Categorization with Clusters of Words
Konstantinos Skianis, Francois Rousseau and Michalis Vazirgiannis...................... 1827

Deep Reinforcement Learning with a Combinatorial Action Space for Predicting Popular Reddit Threads
Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li and Li Deng. . 1838

Non-Literal Text Reuse in Historical Texts: An Approach to Identify Reuse Transformations and its
Application to Bible Reuse
Maria Moritz, Andreas Wiederhold, Barbara Pavlek, Yuri Bizzoni and Marco Biichler. ... .. 1849

Ixx



A Graph Degeneracy-based Approach to Keyword Extraction
Antoine Tixier, Fragkiskos Malliaros and Michalis Vazirgiannis.......................... 1860

Predicting the Relative Difficulty of Single Sentences With and Without Surrounding Context
Elliot Schumacher, Maxine Eskenazi, Gwen Frishkoff and Kevyn Collins-Thompson ...... 1871

A Neural Approach to Automated Essay Scoring
Kaveh Taghipour and Hwee Tou Ng. . ... ... e 1882

Non-uniform Language Detection in Technical Writing
Weibo Wang, Abidalrahman Moh’d, Aminul Islam, Axel Soto and Evangelos Milios. . ..... 1892

Adapting Grammatical Error Correction Based on the Native Language of Writers with Neural Network
Joint Models
Shamil Chollampatt, Duc Tam Hoang and Hwee Tou Ng . ........... ... .. ... ... . ..... 1901

Orthographic Syllable as basic unit for SMT between Related Languages
Anoop Kunchukuttan and Pushpak Bhattacharyya............. ... .. ... ... .. ... 1912

Neural Generation of Regular Expressions from Natural Language with Minimal Domain Knowledge
Nicholas Locascio, Karthik Narasimhan, Eduardo De Leon, Nate Kushman and Regina Barzilay
1918

Supervised Keyphrase Extraction as Positive Unlabeled Learning
Lucas Sterckx, Cornelia Caragea, Thomas Demeester and Chris Develder................. 1924

Learning to Answer Questions from Wikipedia Infoboxes
Alvaro Morales, Varot Premtoon, Cordelia Avery, Sue Felshin and Boris Katz............. 1930

Timeline extraction using distant supervision and joint inference
Savelie Cornegruta and Andreas V1achos ..., 1936

Combining Supervised and Unsupervised Enembles for Knowledge Base Population
Nazneen Fatema Rajani and Raymond Mooney.................coiiiiiiiiinnnnnnnn... 1943

Character Sequence Models for Colorful Words
Kazuya Kawakami, Chris Dyer, Bryan Routledge and Noah A. Smith .................... 1949

Analyzing the Behavior of Visual Question Answering Models
Aishwarya Agrawal, Dhruv Batra and Devi Parikh.......... ... . ... ... .. . ... 1955

Improving LSTM-based Video Description with Linguistic Knowledge Mined from Text
Subhashini Venugopalan, Lisa Anne Hendricks, Raymond Mooney and Kate Saenko. ... ... 1961

Representing Verbs with Rich Contexts: an Evaluation on Verb Similarity
Emmanuele Chersoni, Enrico Santus, Alessandro Lenci, Philippe Blache and Chu-Ren Huang
1967

Speed-Accuracy Tradeoffs in Tagging with Variable-Order CRFs and Structured Sparsity
Tim Vieira, Ryan Cotterell and Jason Eisner ........... ... ... o i i 1973

Ixxi



Learning Robust Representations of Text
Yitong Li, Trevor Cohn and Timothy Baldwin............ ... . ... i i, 1979

Modified Dirichlet Distribution: Allowing Negative Parameters to Induce Stronger Sparsity
Kewel Tu. ..o 1986

Gated Word-Character Recurrent Language Model
Yasumasa Miyamoto and Kyunghyun Cho......... ... ... . i 1992

Unsupervised Word Alignment by Agreement Under ITG Constraint
Hidetaka Kamigaito, Akihiro Tamura, Hiroya Takamura, Manabu Okumura and Eiichiro Sumita
1998

Training with Exploration Improves a Greedy Stack LSTM Parser
Miguel Ballesteros, Yoav Goldberg, Chris Dyer and Noah A. Smith...................... 2005

Capturing Argument Relationship for Chinese Semantic Role Labeling
Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui and Tingsong Jiang ...................... 2011

BrainBench: A Brain-Image Test Suite for Distributional Semantic Models
Haoyan Xu, Brian Murphy and Alona Fyshe ........... ... i 2017

Evaluating Induced CCG Parsers on Grounded Semantic Parsing
Yonatan Bisk, Siva Reddy, John Blitzer, Julia Hockenmaier and Mark Steedman........... 2022

Vector-space models for PPDB paraphrase ranking in context
Marianna Apidianaki . . .......o e 2028

Interpreting Neural Networks to Improve Politeness Comprehension
Malika Aubakirova and Mohit Bansal ............ ... ... i i i 2035

Does ‘well-being’ translate on Twitter?
Laura Smith, Salvatore Giorgi, Rishi Solanki, Johannes Eichstaedt, H. Andrew Schwartz, Muham-
mad Abdul-Mageed, Anneke Buffone and Lyle Ungar ............... ... ... iiiiiiinan. 2042

Beyond Canonical Texts: A Computational Analysis of Fanfiction
Smitha Milli and David Bamman . ............ e 2048

Learning to ldentify Metaphors from a Corpus of Proverbs
Gozde Ozbal, Carlo Strapparava, Serra Sinem Tekiroglu and Daniele Pighin .............. 2060

An Embedding Model for Predicting Roll-Call Votes
Peter Kraft, Hirsh Jain and Alexander M. Rush.......... ... i 2066

Natural Language Model Re-usability for Scaling to Different Domains
Young-Bum Kim, Alexandre Rochette and Ruhi Sarikaya ............ ... ... ... ... 2071

Ixxii



Leveraging Sentence-level Information with Encoder LSTM for Semantic Slot Filling
Gakuto Kurata, Bing Xiang, Bowen Zhouand Mo Yu.............. ...t 2077

AMR-to-text generation as a Traveling Salesman Problem
Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo Wang and Daniel Gildea ............. 2084

Learning to Capitalize with Character-Level Recurrent Neural Networks: An Empirical Study
Raymond Hendy Susanto, Hai Leong Chiewand WeiLu .............. ... ... ... ... 2090

The Effects of the Content of FOMC Communications on US Treasury Rates
Christopher Rohlfs, Sunandan Chakraborty and Lakshminarayanan Subramanian. ......... 2096

Learning to refine text based recommendations
Youyang Gu, Tao Lei, Regina Barzilay and Tommi Jaakkola............................. 2103

There’s No Comparison: Reference-less Evaluation Metrics in Grammatical Error Correction
Courtney Napoles, Keisuke Sakaguchi and Joel Tetreault................................ 2109

Cultural Shift or Linguistic Drift? Comparing Two Computational Measures of Semantic Change
William L. Hamilton, Jure Leskovec and Dan Jurafsky ...................... ... ... ... 2116

How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics
for Dialogue Response Generation

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin and Joelle Pineau
2122

Addressee and Response Selection for Multi-Party Conversation
Hiroki Ouchi and Yuta TSubOi . . ... ovviii i e 2133

Nonparametric Bayesian Models for Spoken Language Understanding
Kei Wakabayashi, Johane Takeuchi, Kotaro Funakoshi and Mikio Nakano ................ 2144

Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Tsung-Hsien Wen, Milica Gasic, Nikola Mrksié, Lina M. Rojas Barahona, Pei-Hao Su, Stefan
Ultes, David Vandyke and Steve Young . .......... i 2153

Relations such as Hypernymy: Identifying and Exploiting Hearst Patterns in Distributional Vectors for
Lexical Entailment
Stephen Roller and Katrin Exk . ......... 2163

SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity
Daniela Gerz, Ivan Vulié, Felix Hill, Roi Reichart and Anna Korhonen ................... 2173

POLY: Mining Relational Paraphrases from Multilingual Sentences
Adam Grycner and Gerhard Weikum .. ... i e 2183

Exploiting Sentence Similarities for Better Alignments
Tao Li and Vivek Srikumar. .. ... . e 2193

Ixxiii



Bi-directional Attention with Agreement for Dependency Parsing
Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gaoand LiDeng......................... 2204

Anchoring and Agreement in Syntactic Annotations
Yevgeni Berzak, Yan Huang, Andrei Barbu, Anna Korhonen and Boris Katz .............. 2215

Tense Manages to Predict Implicative Behavior in Verbs
Ellie Pavlick and Chris Callison-Burch ...... ... ... . i 2225

Who did What: A Large-Scale Person-Centered Cloze Dataset
Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel and David McAllester............ 2230

Building compositional semantics and higher-order inference system for a wide-coverage Japanese
CCG parser

Koji Mineshima, Ribeka Tanaka, Pascual Martinez-Gémez, Yusuke Miyao and Daisuke Bekki
2236

Learning to Generate Compositional Color Descriptions

Will Monroe, Noah D. Goodman and Christopher Potts ................................. 2243
A Decomposable Attention Model for Natural Language Inference

Ankur Parikh, Oscar Téackstrom, Dipanjan Das and Jakob Uszkoreit...................... 2249
Deep Reinforcement Learning for Mention-Ranking Coreference Models

Kevin Clark and Christopher D. Manning............. ... o .. 2256
A Stacking Gated Neural Architecture for Implicit Discourse Relation Classification

Lianhui Qin, Zhisong Zhang and Hai Zhao......... ... ... ... i i, 2263
Insertion Position Selection Model for Flexible Non-Terminals in Dependency Tree-to-Tree Machine
Translation

Toshiaki Nakazawa, John Richardson and Sadao Kurohashi ............................. 2271

Why Neural Translations are the Right Length
Xing Shi, Kevin Knight and Deniz Yuret. ....... ... i 2278

Supervised Attentions for Neural Machine Translation
Haitao Mi, Zhiguo Wang and Abe Ittycheriah . .......... .. .. .. ... ... . ... 2283

Learning principled bilingual mappings of word embeddings while preserving monolingual invariance
Mikel Artetxe, Gorka Labaka and Eneko Agirre ............... ..., 2289

Measuring the behavioral impact of machine translation quality improvements with A/B testing
Ben Russell and Duncan Gillespie . .........ooiiin i iiiieee e 2295

Creating a Large Benchmark for Open Information Extraction
Gabriel Stanovsky and Ido Dagan......... ... i 2300

Bilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition
Changxing Wu, xiaodong shi, Yidong Chen, Yanzhou Huang and jinsongsu .............. 2306

Ixxiv



Transition-Based Dependency Parsing with Heuristic Backtracking
Jacob Buckman, Miguel Ballesteros and Chris Dyer ..., 2313

Word Ordering Without Syntax
Allen Schmaltz, Alexander M. Rush and Stuart Shieber .......... ... ... . ... ... .. .... 2319

Morphological Segmentation Inside-Out
Ryan Cotterell, Arun Kumar and Hinrich Schiitze ........... ... . ... ... .. o .. 2325

Parsing as Language Modeling
Do Kook Choe and Eugene Charniak . ........ ... i 2331

Human-in-the-Loop Parsing
Luheng He, Julian Michael, Mike Lewis and Luke Zettlemoyer.......................... 2337

Unsupervised Timeline Generation for Wikipedia History Articles
Sandro Bauer and Simone Teufel .......... . 2343

Encoding Temporal Information for Time-Aware Link Prediction
Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang and Zhifang Sui . .. 2350

Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning
Karthik Narasimhan, Adam Yala and Regina Barzilay.................. ... ... .. ..... 2355

Global Neural CCG Parsing with Optimality Guarantees
Kenton Lee, Mike Lewis and Luke Zettlemoyer . ..., 2366

Learning a Lexicon and Translation Model from Phoneme Lattices
Oliver Adams, Graham Neubig, Trevor Cohn, Steven Bird, Quoc Truong Do and Satoshi Naka-

SQuAD: 100,000+ Questions for Machine Comprehension of Text
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev and Percy Liang ...................... 2383

Ixxv






Span-Based Constituency Parsing with a Structure-Label System and
Provably Optimal Dynamic Oracles

James Cross and Liang Huang
School of EECS, Oregon State University, Corvallis, OR, USA

{james.henry.cross.iii, liang.huang.sh}@gmail.com

Abstract

Parsing accuracy using efficient greedy transi-
tion systems has improved dramatically in re-
cent years thanks to neural networks. Despite
striking results in dependency parsing, how-
ever, neural models have not surpassed state-
of-the-art approaches in constituency parsing.
To remedy this, we introduce a new shift-
reduce system whose stack contains merely
sentence spans, represented by a bare min-
imum of LSTM features. We also design
the first provably optimal dynamic oracle for
constituency parsing, which runs in amortized
O(1) time, compared to O(n?) oracles for
standard dependency parsing. Training with
this oracle, we achieve the best F'; scores on
both English and French of any parser that
does not use reranking or external data.

1 Introduction

Parsing is an important problem in natural language
processing which has been studied extensively for
decades. Between the two basic paradigms of pars-
ing, constituency parsing, the subject of this paper,
has in general proved to be the more difficult than
dependency parsing, both in terms of accuracy and
the run time of parsing algorithms.

There has recently been a huge surge of interest
in using neural networks to make parsing decisions,
and such models continue to dominate the state of
the art in dependency parsing (Andor et al., 2016).
In constituency parsing, however, neural approaches
are still behind the state-of-the-art (Carreras et al.,
2008; Shindo et al., 2012; Thang et al., 2015); see
more details in Section 5.

To remedy this, we design a new parsing frame-
work that is more suitable for constituency parsing,
and that can be accurately modeled by neural net-
works. Observing that constituency parsing is pri-
marily focused on sentence spans (rather than indi-
vidual words, as is dependency parsing), we propose

a novel adaptation of the shift-reduce system which
reflects this focus. In this system, the stack consists
of sentence spans rather than partial trees. It is also
factored into two types of parser actions, structural
and label actions, which alternate during a parse.
The structural actions are a simplified analogue of
shift-reduce actions, omitting the directionality of
reduce actions, while the label actions directly as-
sign nonterminal symbols to sentence spans.

Our neural model processes the sentence once for
each parse with a recurrent network. We represent
parser configurations with a very small number of
span features (4 for structural actions and 3 for label
actions). Extending Wang and Chang (2016), each
span is represented as the difference of recurrent out-
put from multiple layers in each direction. No pre-
trained embeddings are required.

We also extend the idea of dynamic oracles from
dependency to constituency parsing. The latter is
significantly more difficult than the former due to F;
being a combination of precision and recall (Huang,
2008), and yet we propose a simple and extremely
efficient oracle (amortized O(1) time). This oracle is
proved optimal for F'; as well as both of its compo-
nents, precision and recall. Trained with this oracle,
our parser achieves what we believe to be the best
results for any parser without reranking which was
trained only on the Penn Treebank and the French
Treebank, despite the fact that it is not only linear-
time, but also strictly greedy.

We make the following main contributions:

e A novel factored transition parsing system
where the stack elements are sentence spans
rather than partial trees (Section 2).

e A neural model where sentence spans are rep-
resented as differences of output from a multi-
layer bi-directional LSTM (Section 3).

e The first provably optimal dynamic oracle for
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constituency parsing which is also extremely
efficient (amortized O(1) time) (Section 4).

e The best F'; scores of any single-model, closed
training set, parser for English and French.

We are also publicly releasing the source code for
one implementation of our parser.'

2 Parsing System

We present a new transition-based system for con-
stituency parsing whose fundamental unit of com-
putation is the sentence span. It uses a stack in a
similar manner to other transition systems, except
that the stack contains sentence spans with no re-
quirement that each one correspond to a partial tree
structure during a parse.

The parser alternates between two types of ac-
tions, structural and label, where the structural ac-
tions follow a path to make the stack spans corre-
spond to sentence phrases in a bottom-up manner,
while the label actions optionally create tree brack-
ets for the top span on the stack. There are only two
structural actions: shift is the same as other transi-
tion systems, while combine merges the top two sen-
tence spans. The latter is analogous to a reduce ac-
tion, but it does not immediately create a tree struc-
ture and is non-directional. Label actions do create
a partial tree on top of the stack by assigning one or
more non-terminals to the topmost span.

Except for the use of spans, this factored approach
is similar to the odd-even parser from Mi and Huang
(2015). The fact that stack elements do not have to
be tree-structured, however, means that we can cre-
ate productions with arbitrary arity, and no binariza-
tion is required either for training or parsing. This
also allows us to remove the directionality inherent
in the shift-reduce system, which is at best an im-
perfect fit for constituency parsing. We do follow
the practice in that system of labeling unary chains
of non-terminals with a single action, which means
our parser uses a fixed number of steps, (4n — 2) for
a sentence of n words.

Figure 1 shows the formal deductive system for
this parser. The stack o is modeled as a list of strictly
increasing integers whose first element is always

Icode: https://github.com/jhcross/span-parser

input: we - . . Wp—1
axiom: (0, [0], 0)
goal: (2(2n —1), [0,n], t)
z, 07,1
sh < |]> j <mn,even z
(z+1, oljlj+1, t)
(2, olilk|j, t)
comb — even z
(z+1, olilj, t)
z, o|t]j, t
label-X < H] ) odd z
(z+1, oli|j, tU{iX;})
z, o|i|g, t
nolabel G, olili, 1 z2<(4n—1), 0dd 2z

(z+1, alilj, t)

Figure 1: Deductive system for the Structure/Label transition
parser. The stack o is represented as a list of integers where the
span defined by each consecutive pair of elements is a sentence
segment on the stack. Each X is a nonterminal symbol or an
ordered unary chain. The set ¢ contains labeled spans of the

form ; X j, which at the end of a parse, fully define a parse tree.

zero. These numbers are word boundaries which de-
fine the spans on the stack. In a slight abuse of no-
tation, however, we sometimes think of it as a list of
pairs (4, 7), which are the actual sentence spans, i.e.,
every consecutive pair of indices on the stack, ini-
tially empty. We represent stack spans by trapezoids
(;42\;) in the figures to emphasize that they may or
not have tree stucture.

The parser alternates between structural actions
and label actions according to the parity of the parser
step z. In even steps, it takes a structural action, ei-
ther combining the top two stack spans, which re-
quires at least two spans on the stack, or introducing
a new span of unit length, as long as the entire sen-
tence is not already represented on the stack

In odd steps, the parser takes a label action. One
possibility is labeling the top span on the stack, (3, j)
with either a nonterminal label or an ordered unary
chain (since the parser has only one opportunity to
label any given span). Taking no action, designated
nolabel, is also a possibility. This is essentially a
null operation except that it returns the parser to an
even step, and this action reflects the decision that
(i,7) is not a (complete) labeled phrase in the tree.
In the final step, (4n — 2), nolabel is not allowed



/S\ steps | structural action label action | stack after bracket
NP VP 1-2 Sh(I/PRP) label-NP 041 oNP;
\ P 34 sh(do/MD) nolabel 01D
PRP MD VBP S 5-6 sh(like/VBP) nolabel 0/ /ol g
! ! B ! 7-8 comb nolabel 0103
ol 1do ,like /VP\ 9-10 | sh(eating/VBG) nolabel 0/ N3y
VBG NP 11-12 Sh(ﬁSh/NN) label-NP 0/ /N3 g/ 5 | 4NPs
\ \ 13-14 | comb label-S-VP | (/135 355, 3VPs
seating NN 1516 | comb label-VP | o/ 1 VPs
| 17-18 | comb label-S 00 0S5
4 fish 5

(a) gold parse tree

(b) static oracle actions

Figure 2: The running example. It contains one ternary branch and one unary chain (S-VP), and NP-PRP-I and NP-NN-fish are

not unary chains in our system. Each stack is just a list of numbers but is visualized with spans here.

since the parser must produce a tree.

Figure 2 shows a complete example of applying
this parsing system to a very short sentence (“I do
like eating fish”) that we will use throughout this
section and the next. The action in step 2 is label-
NP because “I” is a one-word noun phrase (parts
of speech are taken as input to our parser, though
it could easily be adapted to include POS tagging
in label actions). If a single word is not a complete
phrase (e.g., “do”), then the action after a shift is
nolabel.

The ternary branch in this tree (VP — MD VBP S)
is produced by our parser in a straightforward man-
ner: after the phrase “do like” is combined in step
7, no label is assigned in step 8, successfully delay-
ing the creation of a bracket until the verb phrase is
fully formed on the stack. Note also that the unary
production in the tree is created with a single action,
label-S-VP, in step 14.

The static oracle to train this parser simply con-
sists of taking actions to generate the gold tree
with a “short-stack” heuristic, meaning combine first
whenever combine and shift are both possible.

3 LSTM Span Features

Long short-term memory networks (LSTM) are a
type of recurrent neural network model proposed by
Hochreiter and Schmidhuber (1997) which are very
effective for modeling sequences. They are able
to capture and generalize from interactions among
their sequential inputs even when separated by a
long distance, and thus are a natural fit for analyz-

ing natural language. LSTM models have proved to
be a powerful tool for many learning tasks in natural
language, such as language modeling (Sundermeyer
et al., 2012) and translation (Sutskever et al., 2014).

LSTMs have also been incorporated into parsing
in a variety of ways, such as directly encoding an en-
tire sentence (Vinyals et al., 2015), separately mod-
eling the stack, buffer, and action history (Dyer et
al., 2015), to encode words based on their character
forms (Ballesteros et al., 2015), and as an element
in a recursive structure to combine dependency sub-
trees with their left and right children (Kiperwasser
and Goldberg, 2016a).

For our parsing system, however, we need a way
to model arbitrary sentence spans in the context of
the rest of the sentence. We do this by representing
each sentence span as the elementwise difference of
the vector outputs of the LSTM outputs at different
time steps, which correspond to word boundaries.
If the sequential output of the recurrent network for
the sentence is fy, ..., f5, in the forward direction and
bn, ..., by in the backward direction then the span
(i,7) would be represented as the concatenation of
the vector differences (f; — f;) and (b; — b;).

The spans are represented using output from both
backward and forward LSTM components, as can
be seen in Figure 3. This is essentially the LSTM-
Minus feature representation described by Wang and
Chang (2016) extended to the bi-directional case. In
initial experiments, we found that there was essen-
tially no difference in performance between using
the difference features and concatenating all end-
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Figure 3: Word spans are modeled by differences in LSTM
output. Here the span 3 eating fish 5 is represented by the vector
differences (fs — f3) and (bs — bs). The forward difference
corresponds to LSTM-Minus (Wang and Chang, 2016).

point vectors, but our approach is almost twice as
fast.

This model allows a sentence to be processed
once, and then the same recurrent outputs can be
used to compute span features throughout the parse.
Intuitively, this allows the span differences to learn
to represent the sentence spans in the context of the
rest of the sentence, not in isolation (especially true
for LSTM given the extra hidden recurrent connec-
tion, typically described as a “memory cell”). In
practice, we use a two-layer bi-directional LSTM,
where the input to the second layer combines the
forward and backward outputs from the first layer
at that time step. For each direction, the components
from the first and second layers are concatenated to
form the vectors which go into the span features. See
Cross and Huang (2016) for more details on this ap-
proach.

For the particular case of our transition con-
stituency parser, we use only four span features to
determine a structural action, and three to determine
a label action, in each case partitioning the sentence
exactly. The reason for this is straightforward: when
considering a structural action, the top two spans on
the stack must be considered to determine whether
they should be combined, while for a label action,
only the top span on the stack is important, since that
is the candidate for labeling. In both cases the re-
maining sentence prefix and suffix are also included.
These features are shown in Table 1.

The input to the recurrent network at each time
step consists of vector embeddings for each word

4

Action Stack LSTM Span Features
Structural | o|i|k|j | o 1 ;/\/\; 1,
Label O'|Z|j 0' Ii jl In

Table 1: Features used for the parser. No label or tree-structure

features are required.

and its part-of-speech tag. Parts of speech are pre-
dicted beforehand and taken as input to the parser,
as in much recent work in parsing. In our experi-
ments, the embeddings are randomly initialized and
learned from scratch together with all other network
weights, and we would expect further performance
improvement from incorporating embeddings pre-
trained from a large external corpus.

The network structure after the the span features
consists of a separate multilayer perceptron for each
type of action (structural and label). For each ac-
tion we use a single hidden layer with rectified linear
(ReLU) activation. The model is trained on a per-
action basis using a single correct action for each
parser state, with a negative log softmax loss func-
tion, as in Chen and Manning (2014).

4 Dynamic Oracle

The baseline method of training our parser is what
is known as a static oracle: we simply generate the
sequence of actions to correctly parse each training
sentence, using a short-stack heuristic (i.e., combine
first whenever there is a choice of shift and com-
bine). This method suffers from a well-documeted
problem, however, namely that it only “prepares”
the model for the situation where no mistakes have
been made during parsing, an inevitably incorrect
assumption in practice. To alleviate this problem,
Goldberg and Nivre (2013) define a dynamic oracle
to return the best possible action(s) at any arbitrary
configuration.

In this section, we introduce an easy-to-compute
optimal dynamic oracle for our constituency parser.
We will first define some concepts upon which the
dynamic oracle is built and then show how optimal
actions can be very efficiently computed using this
framework. In broad strokes, in any arbitrary parser
configuration c there is a set of brackets t*(c) from
the gold tree which it is still possible to reach. By
following dynamic oracle actions, all of those brack-
ets and only those brackets will be predicted.



Even though proving the optimality of our dy-
namic oracle (Sec. 4.3) is involved, computing the
oracle actions is extremely simple (Secs. 4.2) and
efficient (Sec. 4.4).

4.1 Preliminaries and Notations

Before describing the computation of our dynamic
oracle, we first need to rigorously establish the de-
sired optimality of dynamic oracle. The structure of
this framework follows Goldberg et al. (2014).

Definition 1. We denote ¢ -, ¢ iff. ¢’ is the result
of action 7 on configuration ¢, also denoted func-
tionally as ¢ = 7(c). We denote - to be the union
of -, for all actions 7, and H* to be the reflexive and
transitive closure of F.

Definition 2 (descendant/reachable trees). We de-
note D(c) to be the set of final descendant trees
derivable from ¢, i.e., D(c) = {t | ¢ F* (2, o, t)}.
This set is also called “reachable trees” from c.

Definition 3 (F'1). We define the standard F'{ metric

of a tree t with respect to gold tree tg as Fi(t) =

2rp _ Itﬁtg| _ ‘tﬂtg|
Hp,wherer— il P =

The following two definitions are similar to those
for dependency parsing by Goldberg et al. (2014).

Definition 4. We extend the F; function to config-
urations to define the maximum possible F'; from a
given configuration: Iy (c) = max;, ep(.) F1(t1).

Definition 5 (oracle). We can now define the desired
dynamic oracle of a configuration c to be the set of
actions that retrain the optimal F:

oracle(c) = {7 | F1(7(c)) = F1(c)}.

This abstract oracle is implemented by dyna(-) in
Sec. 4.2, which we prove to be correct in Sec. 4.3.

Definition 6 (span encompassing). We say span
(i, j) is encompassed by span (p, q), notated (i, j) =
(p,q).iff.p <i<j<q.

Definition 7 (strict encompassing). We say span
(i,7) is strictly encompassed by span (p, ¢), notated
(4,7) < (p,q),iff. (i, 5) = (p,q) and (i, ) # (p,q).
We then extend this relation from spans to brackets,
and notate ; X; < ,Yg iff. (i,7) < (p,q).

like eating fish

Figure 4: Reachable brackets (w.r.t. gold tree in Fig. 1) for
¢ = (10, [0,1,2,4], {oNP;}) which mistakenly combines
“like eating”. Trapezoids indicate stack spans (the top one in
red), and solid triangles denote reachable brackets, with left(c)
in blue and right(c) in cyan. The next reachable bracket,
next(c) = 1VPs, is in bold. Brackets 3VPs and 3Ss (in dot-
ted triangle) cross the top span (thus unreachable), and (NP; is

already recognized (thus not in reach(c) either).

We next define a central concept, reachable
brackets, which is made up of two parts, the left ones
left(c) which encompass (7, j) without crossing any
stack spans, and the right ones right(c) which are
completely on the queue. See Fig. 4 for examples.

Definition 8 (reachable brackets). For any configu-
ration ¢ = (z, o|i|j, t), we define the set of reach-
able gold brackets (with respect to gold tree t¢) as

reach(c) = left(c) U right(c)
where the left- and right-reachable brackets are

left(c):{qu € tag | (Za.]) = (p7 Q), JAAS U|Z}
right(c)={,X, €ta | p>j}

for even z, with the < replaced by =< for odd z.
Special case (initial): reach((0, [0], 0)) = tg.
The notation p € o | ¢ simply means (p, q) does

not “cross” any bracket on the stack. Remember our

stack is just a list of span boundaries, so if p coin-
cides with one of them, (p, ¢)’s left boundary is not
crossing and its right boundary ¢ is not crossing ei-

ther since ¢ > j dueto (4,5) < (p, q).

Also note that reach(c) is strictly disjoint from ¢,

i.e., reach(c) Nt = 0 and reach(c) C tg — t. See

Figure 6 for an illustration.



Definition 9 (next bracket). For any configuration
¢ = (z, oli|j, t), the next reachable gold bracket
(with respect to gold tree tg) is the smallest reach-
able bracket (strictly) encompassing (i, j):

= minz left(c).

4.2 Structural and Label Oracles

next(c)

For an even-step configuration ¢ = (z, o | i | j, ),
we denote the next reachable gold bracket nezt(c)
to be , X, and define the dynamic oracle to be:

{sh}
{comb}
{sh, comb}

ifp=iandqg>j
dyna(c) = ifp<iandqg=j (1)

ifp<iandq > )

As a special case dyna((0, [0], 0)) = {sh}.

Figure 5 shows examples of this policy. The key
insight is, if you follow this policy, you will not miss
the next reachable bracket, but if you do not follow
it, you certainly will. We formalize this fact below
(with proof omitted due to space constraints) which
will be used to prove the central results later.

Lemma 1. For any configuration c, for any T €
dyna(c), we have reach(t(c)) = reach(c); for any
7' ¢ dyna(c), we have reach(7(c)) C reach(c).

The label oracles are much easier than struc-
tural ones. For an odd-step configuration ¢ =
(z, o |i|j, t), we simply check if (¢, ) is a valid
span in the gold tree ¢z and if so, label it accord-
ingly, otherwise no label. More formally,

dyna(c) = {label-X'} if some ;X € tg )
na
Y {nolabel}  otherwise

4.3 Correctness

To show the optimality of our dynamic oracle, we
begin by defining a special tree t*(c) and show that
it is optimal among all trees reachable from config-
uration c. We then show that following our dynamic
oracle (Egs. 1-2) from ¢ will lead to t*(c).

Definition 10 (¢*(c)). For any configuration ¢ =
(z, o, t), we define the optimal tree t*(c) to include
all reachable gold brackets and nothing else. More
formally, t*(c) = t U reach(c).

. oracle
configuration . .
static | dynamic
YASVAVVAV comb| {comb, sh}
I do like Q/Dg\
0/ LN {sh}
t={...,TVPs} é \
I do like
0@1@2&4 {comb, Sh}
undef. /\
I do like eating 18904 \s
0@1@2&455 {comb}
I do like eating fish 1/4X5

Figure 5: Dynamic oracle with respect to the gold parse in
Fig. 2. The last three examples are off the gold path with strike
out indicating structural or label mistakes. Trapezoids denote
stack spans (top one in red) and the blue triangle denotes the

next reachable bracket next(c) which is | VPs in all cases.

We can show by induction that t*(c) is attainable:
Lemma 2. For any configuration c, the optimal tree
is a descendant of ¢, i.e., t*(c) € D(c).

The following Theorem shows that t*(c) is indeed
the best possible tree:

Theorem 1 (optimality of t*). For any configura-
tion ¢, F1(t*(c)) = F1(c).

Proof. (SKETCH) Since t*(c) adds all possible addi-
tional gold brackets (the brackets in reach(c)), it is
not possible to get higher recall. Since it adds no in-
correct brackets, it is not possible to get higher pre-

t ta reach(c)

1 t*(c) = t U reach(c)

Figure 6: The optimal tree t*(c) adds all reachable brackets

and nothing else. Note that reach(c) and ¢ are disjoint.



cision. Since F'; is the harmonic mean of precision
and recall, it also leads to the best possible F;. [

Corollary 1. For any ¢ = (z, o, t), for any t' €
D(c) and t' # t*(c), we have F1(t') < Fi(c).

We now need a final lemma about the policy
dyna(-) (Egs. 1-2) before proving the main result.

Lemma 3. From any ¢ = (z, o, t), for any action
T € dyna(c), we have t*(7(c)) = t*(c). For any
action 7' ¢ dyna(c), we have t*(7'(c)) # t*(c).

Proof. (SKETCH) By case analysis on even/odd z.
O

We are now able to state and prove the main the-
oretical result of this paper (using Lemma 3, Theo-
rem 1 and Corollary 1):

Theorem 2. The function dyna(-) in Egs. (1-2) sat-
isfies the requirement of a dynamic oracle (Def. 5):

dyna(c) = oracle(c) for any configuration c.

4.4 Implementation and Complexity

For any configuration, our dynamic oracle can be
computed in amortized constant time since there
are only O(n) gold brackets and thus bounding
|reach(c)| and the choice of next(c). After each
action, next(c) either remains unchanged, or in
the case of being crossed by a structural action or
mislabeled by a label action, needs to be updated.
This update is simply tracing the parent link to
the next smallest gold bracket repeatedly until the
new bracket encompasses span (i,7). Since there
are at most O(n) choices of next(c) and there are
O(n) steps, the per-step cost is amortized constant
time. Thus our dynamic oracle is much faster than
the super-linear time oracle for arc-standard depen-
dency parsing in Goldberg et al. (2014).

5 Related Work

Neural networks have been used for constituency
parsing in a number of previous instances. For
example, Socher et al. (2013) learn a recursive
network that combines vectors representing partial
trees, Vinyals et al. (2015) adapt a sequence-to-
sequence model to produce parse trees, Watanabe
and Sumita (2015) use a recursive model applying
a shift-reduce system to constituency parsing with

Network architecture

Word embeddings 50

Tag embeddings 20
Morphological embeddings' 10
LSTM layers 2

LSTM units 200 / direction
ReLU hidden units 200 / action type

Training settings

Embedding intialization random
Training epochs 10
Minibatch size 10 sentences
Dropout (on LSTM output) p=20.5
ADADELTA parameters p=099e=1x10"7

Table 2: Hyperparameters. 'French only.

beam search, and Dyer et al. (2016) adapt the Stack-
LSTM dependency parsing approach to this task.
Durrett and Klein (2015) combine both neural and
sparse features for a CKY parsing system. Our own
previous work (Cross and Huang, 2016) use a recur-
rent sentence representation in a head-driven tran-
sition system which allows for greedy parsing but
does not achieve state-of-the-art results.

The concept of “oracles” for constituency parsing
(as the tree that is most similar to ¢g among all pos-
sible trees) was first defined and solved by Huang
(2008) in bottom-up parsing. In transition-based
parsing, the dynamic oracle for shift-reduce depen-
dency parsing costs worst-case O(n?) time (Gold-
berg et al., 2014). On the other hand, after the sub-
mission of our paper we became aware of a paral-
lel work (Coavoux and Crabbé, 2016) that also pro-
posed a dynamic oracle for their own incremental
constituency parser. However, it is not optimal due
to dummy non-terminals from binarization.

6 Experiments

We present experiments on both the Penn English
Treebank (Marcus et al., 1993) and the French Tree-
bank (Abeillé et al., 2003). In both cases, all state-
action training pairs for a given sentence are used
at the same time, greatly increasing training speed
since all examples for the same sentence share the
same forward and backward pass through the recur-
rent part of the network. Updates are performed
in minibatches of 10 sentences, and we shuffle the
training sentences before each epoch. The results
we report are trained for 10 epochs.



The only regularization which we employ during
training is dropout (Hinton et al., 2012), which is
applied with probability 0.5 to the recurrent outputs.
It is applied separately to the input to the second
LSTM layer for each sentence, and to the input to
the ReLU hidden layer (span features) for each state-
action pair. We use the ADADELTA method (Zeiler,
2012) to schedule learning rates for all weights. All
of these design choices are summarized in Table 2.

In order to account for unknown words during
training, we also adopt the strategy described by
Kiperwasser and Goldberg (2016b), where words
in the training set are replaced with the unknown-
word symbol UNK with probability p.;, = —=

z+f(w)
where f(w) is the number of times the word ap-

pears in the training corpus. We choose the pa-
rameter z so that the training and validation cor-
pora have approximately the same proportion of un-
known words. For the Penn Treebank, for exam-
ple, we used z = 0.8375 so that both the validation
set and the (rest of the) training set contain approx-
imately 2.76% unknown words. This approach was
helpful but not critical, improving F; (on dev) by
about 0.1 over training without any unknown words.

6.1 Training with Dynamic Oracle

The most straightforward use of dynamic oracles to
train a neural network model, where we collect all
action examples for a given sentence before updat-
ing, is “training with exploration” as proposed by
Goldberg and Nivre (2013). This involves parsing
each sentence according to the current model and us-
ing the oracle to determine correct actions for train-
ing. We saw very little improvement on the Penn
treebank validation set using this method, however.
Based on the parsing accuracy on the training sen-
tences, this appears to be due to the model overfitting
the training data early during training, thus negating
the benefit of training on erroneous paths.
Accordingly, we also used a method recently pro-
posed by Ballesteros et al. (2016), which specifi-
cally addresses this problem. This method intro-
duces stochasticity into the training data parses by
randomly taking actions according to the softmax
distribution over action scores. This introduces re-
alistic mistakes into the training parses, which we
found was also very effective in our case, leading
to higher F; scores, though it noticeably sacrifices

recall in favor of precision.

This technique can also take a parameter « to flat-
ten or sharpen the raw softmax distribution. The re-
sults on the Penn treebank development set for var-
ious values of « are presented in Table 3. We were
surprised that flattening the distribution seemed to
be the least effective, as training accuracy (taking
into account sampled actions) lagged somewhat be-
hind validation accuracy. Ultimately, the best results
were for « = 1, which we used for final testing.

Model LR LP Fy

Static Oracle 91.34 9143 91.38
Dynamic Oracle 91.14 91.61 91.38
+ Explore (¢=0.5) | 90.59 92.18 91.38
+ Explore («=1.0) | 91.07 92.22 91.64
+ Explore («=1.5) | 91.07 92.12 91.59

Table 3: Comparison of performance on PTB development set

using different oracle training approaches.

6.2 Penn Treebank

Following the literature, we used the Wall Street
Journal portion of the Penn Treebank, with stan-
dard splits for training (secs 2-21), development
(sec 22), and test sets (sec 23). Because our pars-
ing system seamlessly handles non-binary produc-
tions, minimal data preprocessing was required. For
the part-of-speech tags which are a required input to
our parser, we used the Stanford tagger with 10-way
jackknifing.

Table 4 compares test our results on PTB to a
range of other leading constituency parsers. De-
spite being a greedy parser, when trained using dy-
namic oracles with exploration, it achieves the best
F1 score of any closed-set single-model parser.

6.3 French Treebank

We also report results on the French treebank, with
one small change to network structure. Specifically,
we also included morphological features for each
word as input to the recurrent network, using a small
embedding for each such feature, to demonstrate
that our parsing model is able to exploit such ad-
ditional features.

We used the predicted morphological features,
part-of-speech tags, and lemmas (used in place of
word surface forms) supplied with the SPMRL 2014



Closed Training & Single Model | LR LP  F,
Sagae and Lavie (2006) 88.1 87.8 879
Petrov and Klein (2007) 90.1 90.3 90.2
Carreras et al. (2008) 90.7 914 91.1
Shindo et al. (2012) 91.1
tSocher et al. (2013) 90.4
Zhu et al. (2013) 90.2 90.7 90.4
Mi and Huang (2015) 90.7 909 90.8
tWatanabe and Sumita (2015) 90.7
Thang et al. (2015) (A*) 909 912 091.1
t*Dyer et al. (2016) (discrim.) 89.8
1*Cross and Huang (2016) 90.0
t*static oracle 90.7 914 91.0
1*dynamic/exploration 90.5 92.1 913
External/Reranking/Combo

tHenderson (2004) (rerank) 89.8 904 90.1
McClosky et al. (2006) 922 926 924
Zhu et al. (2013) (semi) 91.1 915 91.3
Huang (2008) (forest) 91.7
fVinyals et al. (2015) (ws)* 90.5
tVinyals et al. (2015) (semi) 92.8
tDurrett and Klein (2015)% 91.1
iDyer et al. (2016) (gen. rerank.) 92.4

Table 4: Comparison of performance of different parsers on
PTB test set. tNeural. *Greedy. *External embeddings.

Parser LR LP Fq

Bjorkelund et al. (2014)*F 82.53
Durrett and Klein (2015)* 81.25
Coavoux and Crabbé (2016) 80.56

83.50 82.87 83.18
81.90 84.77 83.31

static oracle
dynamic/exploration

Table 5: Results on French Treebank. *reranking, external.

data set (Seddah et al., 2014). It is thus possible that
results could be improved further using an integrated
or more accurate predictor for those features. Our
parsing and evaluation also includes predicting POS
tags for multi-word expressions as is the standard
practice for the French treebank, though our results
are similar whether or not this aspect is included.

We compare our parser with other recent work in
Table 5. We achieve state-of-the-art results even in
comparison to Bjorkelund et al. (2014), which uti-
lized both external data and reranking in achieving
the best results in the SPMRL 2014 shared task.

6.4 Notes on Experiments

For these experiments, we performed very little hy-
perparameter tuning, due to time and resource con-
traints. We have every reason to believe that per-
formance could be improved still further with such
techniques as random restarts, larger hidden lay-
ers, external embeddings, and hyperparameter grid
search, as demonstrated by Weiss et al. (2015).

We also note that while our parser is very accu-
rate even with greedy decoding, the model is eas-
ily adaptable for beam search, particularly since the
parsing system already uses a fixed number of ac-
tions. Beam search could also be made considerably
more efficient by caching post-hidden-layer feature
components for sentence spans, essentially using the
precomputation trick described by Chen and Man-
ning (2014), but on a per-sentence basis.

7 Conclusion and Future Work

We have developed a new transition-based con-
stituency parser which is built around sentence
spans. It uses a factored system alternating between
structural and label actions. We also describe a fast
dynamic oracle for this parser which can determine
the optimal set of actions with respect to a gold
training tree in an arbitrary state. Using an LSTM
model and only a few sentence spans as features, we
achieve state-of-the-art accuracy on the Penn Tree-
bank for all parsers without reranking, despite using
strictly greedy inference.

In the future, we hope to achieve still better re-
sults using beam search, which is relatively straight-
forward given that the parsing system already uses
a fixed number of actions. Dynamic programming
(Huang and Sagae, 2010) could be especially pow-
erful in this context given the very simple feature
representation used by our parser, as noted also by
Kiperwasser and Goldberg (2016b).
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Abstract

Tree transducers that model expressive
linguistic phenomena often require word-
alignments and a heuristic rule extractor to
induce their grammars. However, when the
corpus of tree/string pairs is small compared
to the size of the vocabulary or the com-
plexity of the grammar, word-alignments
are unreliable. We propose a general rule
extraction algorithm that uses cost functions
over tree fragments, and formulate the extrac-
tion as a cost minimization problem. As a
by-product, we are able to introduce back-off
states at which some cost functions generate
right-hand-sides of previously unseen left-
hand-sides, thus creating transducer rules
“on-the-fly”. We test the generalization power
of our induced tree transducers on a QA task
over a large Knowledge Base, obtaining a
reasonable syntactic accuracy and effectively
overcoming the typical lack of rule coverage.

1 Introduction

Tree transducers are general and solid theoreti-
cal models that have been applied to a variety of
NLP tasks, such as machine translation (Knight and
Graehl, 2005), text summarization (Cohn and Lap-
ata, 2009), question answering (Jones et al., 2012),
paraphrasing and textual entailment (Wu, 2005).
One strategy to obtain transducer rules is by exhaus-
tive enumeration; however, this method is ineffec-
tive when there is a high structural language vari-
ability and we wish to have an expressive model.
Another strategy is to heuristically extract rules from
a corpus of tree/string pairs and word-alignments, as
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GHKM algorithm does (Galley et al., 2004); how-
ever, word-alignments are difficult to estimate when
the corpus is small. This would be the case, for ex-
ample, of machine translation for low-resourced lan-
guages where there is often small numbers of paral-
lel sentences, or in Question Answering (QA) tasks
where the number of Knowledge Base (KB) identi-
fiers (concepts) is much larger than QA datasets.

Our main contribution is an algorithm that formu-
lates the rule extraction as a cost minimization prob-
lem, where the search for the best rules is guided
by an ensemble of cost functions over pairs of tree
fragments. In GHKM, a tree fragment and a se-
quence of words are extracted together if they are
minimal and their word alignments do not fall out-
side of their respective boundaries. However, given
that alignment violations are not allowed, the qual-
ity of the extracted rules degrades as the rate of
misaligned words increases. In our framework, we
can mimic GHKM by assigning an infinite cost to
pairs of tree fragments that violate such conditions
on word alignments and by adding a cost regular-
izer on the size of the tree fragments. Smoother cost
functions, however, would permit controlled mis-
alignments, contributing to generalization. Given
the generality of these cost functions, we believe that
the applicability of tree transducers will be extended.

A by-product of introducing these cost functions
is that some of them may act as rule back-offs,
where transducer rules are built “on-the-fly” when
the transducer is at a predefined back-off state but
there is no rule whose left-hand-side (lhs) matches
the input subtree. These back-off states can be seen
as functions that are capable of generating right-
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hand-sides (rhs) for unseen input subtrees.

Our rule extraction algorithm and back-off
scheme are general, in the sense that they can be
applied to any tree transformation task. However,
in this paper, we extrinsically evaluate the quality
of the extracted rules in a QA task, where the ob-
jective is to transform syntactic trees of questions
into constituent trees that represent Sparql queries
on Freebase, a large Knowledge Base. Implement-
ing all components of a QA system at a sufficient
level is out of the scope of this paper; for that reason,
in order to evaluate our contribution in isolation, we
use the FREE917 corpus released by Cai and Yates
(2013), for which an entity and predicate lexicon is
available'. We show that a tree-to-tree transducer in-
duced using our rule extraction and back-off scheme
is accurate and generalizes well, which was not pre-
viously achieved with tree transducers in semantic
parsing tasks such as QA over large KBs.

2 Related Work

Tree transducers were first proposed by Rounds
(1970) and Thatcher (1970), and have been greatly
developed recently (Knight and Graehl, 2005).
Jones et al. (2012) used tree transducers to seman-
tically parse narrow-domain questions into Prolog
queries for GeoQuery (Wong and Mooney, 2006),
a small database of 700 geographical facts. Rules
were exhaustively enumerated, which was possible
given the small size of the database and low variabil-
ity of questions. Another strategy is that of Li et al.
(2013), where they used a variant of GHKM to in-
duce tree transducers that parse into A-SCFG. Word-
to-node alignments could be reliably estimated with
the IBM models (Brown et al., 1993) given, again,
the small vocabulary and database size of GeoQuery.
In such small-scale tasks, our rule extraction and
back-off scheme offers no obvious advantage. How-
ever, when doing QA over larger and more realistic
KBs (and other tasks with similar characteristics),
exhaustive enumeration of rules or reliable estima-
tions of alignments are not possible, which prevents
the application of tree transducers. Thus, it is on the
latter type of tasks where we focus our contribution.

A similar problem has been considered in the tree

!The entity lexicon was released by the authors of FREE917,
and the predicate lexicon is ours.
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mapping literature in the form of the tree-to-tree edit
distance. In that formulation, three edit operations
are defined, namely, deleting and inserting single
nodes, and replacing the label of a node. These edit
operations have a cost associated to them, and the
task consists of finding the minimum edit cost and its
corresponding edit script’ that transforms a source
into a target tree. The problem was first solved by
Tai (1979), and later Zhang and Shasha (1989) pro-
posed a simpler and faster dynamic programming al-
gorithm that operates in polynomial time, and that
has inspired multiple variations (Bille, 2005).
However, we need edit operations that involve
tree fragments (e.g., noun phrases or parts of verb
phrases), rather than single nodes, when searching
for the best mappings. We address this problem by
searching for non-isomorphic tree mappings, in line
with Eisner (2003), except that our rule extraction
algorithm is guided by an ensemble of cost functions
over pairs of tree fragments. This algorithm is capa-
ble of extracting rules more robustly than GHKM
by permitting misalignments in a controlled man-
ner. Finding a tree mapping solves simultaneously
the alignment and the rule extraction problem.
There is a wide array of tree transducers with dif-
ferent expressive capabilities (Knight and Graehl,
2005). We consider extended® root-to-frontier* lin-
ear’ transducers (Maletti et al., 2009), possibly with
deleting® operations. In this paper, we syntactically
parse the natural language question and transform it
into a meaning representation, similarly to Ge and
Mooney (2005). But instead of using Prolog formu-
lae or A-SCFG, we use constituent representations of
A—DCS expressions (Liang, 2013), which is a for-
mal language convenient to represent Sparql queries
where variables are eliminated by making existential
quantifications implicit (see example in Figure 1).
Another challenge is to construct transducers with
sufficient rule coverage, which would require bil-
lions of lexical rules that map question phrases to
database entities or relations. Even if those rules
were available, estimating their rule probabilities
would be difficult given the small data sets of ques-

2Sequence of edit operations.

3Ihs may have depth larger than 1.

“Top-down transformations.

3[hs variables appear at most once in the rs.

Some variables on the Ihs may not appear in the rhs.



tions paired with their logical representations. We
solve the problem by constructing lexical rules “on-
the-fly” at the decoding stage, similarly to the candi-
date generation stage of entity linking systems (Ling
etal., 2015). Rule weights are also predicted on-the-
fly given rule features and model parameters similar
to Cohn and Lapata (2009).

3 Background

Tree transducers apply to general tree transforma-
tion problems, but for illustrative purposes, we use
the tree pair s and ¢ in Figure 1 (from FREE917) as
arunning example. s is the syntactic constituent tree
of the question “how many teams participate in the
uefa”, whereas t is a constituent tree of an executable
meaning representation in the A—DCS formalism:

count(Team.League.Uefa)
Its corresponding lambda expression is
count(Az.Ja.Team(z, a) A League(a, Uefa))
which can be converted into a Spargl KB query:

SELECT COUNT(?x) WHERE {
?a Team Tx

?a League Uefa .}

Following the terminology of Graehl and Knight
(2004), we define a tree-to-tree transducer as a 5-
tuple (Q,X, A, gstart, R) Where Q is the set of
states, 3 and A are the sets of symbols of the in-
put and output languages, gstart 1S the initial state,
and R is the set of rules. For convenience, define
Ty, as the set of trees with symbols in X, 7 (A) the
set of trees with symbols in ¥ U A where symbols
in A only appear in the leaves, X as the set of vari-
ables {x1,...,2,}, and A.B for the cross-product
of two sets A and B. A rule r € R has the form
q.t; > t,, where g € Qisastate, t; € Txy(X) is the
left-hand-side (lhs) tree pattern (or elementary tree),
to € Ta(Q.X) the right-hand-side (rhs), and s € R
the rule score.

Tree-to-tree transducers apply a sequence of rules
to transform a source s into a target ¢ tree. A root-to-
frontier transducer starts at the root of the source tree
and searches R for a rule whose i) tree pattern ¢; on
the [hs matches the root of the source tree, and ii) the
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Figure 1: (s) Constituent tree of a question; (t) executable
meaning representation; r1 - r5 are typical transducer rules ex-
tracted by our algorithm, where ¢ is a generic state, pred and
bridge are predicate and bridged entity back-off states.

state q of the rule is the initial state of the transducer.
An incipient target tree is created by copying the rhs
of the rule. Then, the transducer recursively and in-
dependently visits the subtrees of the source tree at
the [hs variable positions of the rule from their new
states, and copies the results into the same variable
on the target tree.

In Figure 1, the sequential application of rules 71
to rb is a derivation that transforms the question s
into the query t. For example, rule r1 consumes a
tree fragment of s (e.g. “how”, “many”, “WRB”,
etc.) and produces a tree fragment with terminals
(“COUNT?”, x1, x2) and non-terminals (“ID”’) with



a specific structure. Rules 2 and r3 only consume
but do not produce symbols (other than variables).
The rhs of rules are target tree fragments that con-
nect to each other at the frontier nodes (those with
variables). Rules 74 and r5 are terminal rules, where
r4 produces the predicate Team and rule r5 pro-
duces the entity Uefa and a disambiguating predi-
cate League that has no lexical support on the source
side, similarly to the role that bridging predicates
play in Berant et al. (2013).

Given a corpus of source and target tree pairs, the
learning stage aims to obtain rules such as 71 — 5 in
Figure 1 and their associated probabilities or scores.
We discuss our novel approach to rule extraction in
Section 5. For the assignment of rule scores, we
adopt the latent variable averaged structured percep-
tron, a discriminative procedure similar to Tsochan-
taridis et al. (2005) and Cohn and Lapata (2009).
Here, we instantiate feature values f for every rule,
and reward the weights w of rules that participate in
a derivation (latent variable) that transforms a train-
ing source tree into a meaning representation that
retrieves the correct answer.

At decoding stage, rule scores can be predicted as
s = w - f. However, we cannot expect to have ex-
tracted all necessary rules at the training stage given
the small training data and large-scale KB. For that
reason, we propose in Section 4 a novel rule back-off
scheme to alleviate coverage problems.

4 Back-off rules

As an illustrative example, consider the question
“how many teams participate in the nba”, and the
rules 71 to 5 in Figure 1. When the transducer at-
tempts to transform the noun phrase (NP (DT the)
(NN nba)), no rule’s lhs matches it. However, since
the transducer is at state bridge (as specified by the
rhs of r3), it should be able to produce a list of
bridged entities, among which the target subtree (ID
League NBA) will be hopefully included. Thus, the
following rule should be created for the occasion:

bridge.NP
N S 1D
DT NN — T~
| | League NBA
the nba

This mechanism produces rules “on-the-fly”, allow-
ing us to compensate low rule coverage by consum-
ing and producing tree fragments that were not nec-
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essarily observed in the training data.

Back-off rules are produced when the transducer
is at a back-off state ¢, € Qp C Q, similarly as the
back-off mechanisms in finite-state language models
where we produce estimates (probabilities) of input
structures (sequences) under less conditioning. In
our scheme, a back-off state (or function) ¢, pro-
duces estimates that are target structures to € Ta
with score s € R, given some information of the
source tree fragment t; € Tx. That is, a func-
tion g5 : T, — {(Ta,R),...}. In our QA appli-
cation, we only use the leaves of the input subtree
t1 and use lexicons or entity/predicate linkers to re-
trieve KB entities, KB relations or a compound of
a disambiguating relation and an entity from back-
off states ent, pred and bridge, respectively. Other
back-off functions would transliterate the leaves of
the input tree in machine translation, or produce syn-
onyms/hypernyms in a paraphrasing application.

We associate a score s to these newly created
rules, which we learn to predict using the discrim-
inative training procedure suggested by Tsochan-
taridis et al. (2005), as described in Section 3.

Back-off rules are then constructed on-demand as
Qp-t1 N t2, and the discrete set of rules R is aug-
mented with them. It remains now to recognize
those back-off states when inducing tree transducer
grammars, which is covered in Section 5.1.

5 Rule Extraction

Given a pair of trees, our rule extraction algorithm
finds a tree mapping that implicitly describes the
rules that transform a source into a target tree. In the
search of the best mapping, we need to explore the
space of edit operations, which are substitutions of
source by target tree fragments. We define cost func-
tions for these edit operations, and formulate the tree
mapping as a cost minimization problem. Whereas
our tree mapping algorithm and back-off scheme are
generic and can be used in any tree transformation
task, cost functions depend on the application.

5.1 Cost functions

In general, cost functions are defined over edit op-
erations, which are pairs of source and target tree
fragments, cost : Tx(X) x Ta(Q.X) — R2%, and
they are equivalent to feature functions. Some cost



functions are defined over all pairs of tree fragments.
For this QA application, these are:

csize(ty, o) = |nodes(t1)|? + |nodes(t)|?

which acts as a tree size regularizer, returning a cost
quadratic to the size of the tree fragments, thus en-
couraging small rules. The cost function ccount as-
signs zero cost if (i) “how” and “many” appear in 1,
and (ii) “COUNT” appears in t2. If only either (i) or
(i), the cost is a positive constant. Similarly, other
operators (max, min, argmax, etc.) could be recog-
nized, but this dataset did not require them.

Other cost functions only apply to some pairs of
tree fragments. These are the back-off functions de-
scribed in Section 4, but instead of returning scores
for every target tree fragment, they return a cost, e.g.
cent : Ts, x Ta — RZ°. An ensemble will produce
up to three different costs for every pair of tree frag-
ments, depending on what back-off functions were
triggered. In the case of the entity cost function:

Yent(t1,t2) = A1 - csize(t1,t2)
+ Ao - ccount(ty, t2) (1)
+ A3 - cent(ty, t2)

where )\; € R are scaling factors. In the search
of the lowest-cost mapping, the labels of the cost
functions that are derived from the back-off func-
tions (€.8. Yenr» Vprea) are memorized for the pairs
(t1,t2) for which they were defined and for which
they outputted a cost. These labels are then used as
back-off rule state names when constructing rules.

5.2 Tree Mapping: Optimization Problem

Intuitively, the cost of mapping a source node 7, to
a target node n; is equal to the cost of transforming
a tree fragment 7% (X) rooted at node n; into a tree
fragment Th (Q.X') rooted at node n, plus the sum
of costs of mapping the frontier nodes rooted at the
variables. In order to formalize our tree mapping,
we need a more precise definition of a tree frag-
ment where the locations of variables X are spec-
ified by paths. The notation to specify subtrees is
taken from (Graehl and Knight, 2004), and we in-
troduce the | operator for convenience.

A path p is a tuple, equivalent to a Gorn address,
that uniquely identifies the node of a tree by speci-
fying the sequence of child indices to the node from
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the root. In the tree s of Figure 1, the path to the
VP node is (1,0), whereas in ¢, the path to League
is (1,1,0). The path p = () refers to the root of
a tree. We denote by s | p the subtree of tree s
that is rooted at path p and that has no variables. In
Figure 1, the left-hand-side (lhs) of r5 is the sub-
tree s | (1,0,1,1). In order to introduce variables,
we generalize the notion of subtree into a tree pat-
terns | p L {p1,...,pn}, Where n variables re-
place subtrees s | p; at subpaths p; € {p1,...,pn}-
For example, the /hs of r1 can be represented with
the tree pattern s | () L {(0,1), (1)}, and r2 with
s 4 (1) L {(1,0,1)}. Note that the order of sub-
paths {pi,...,p,} matters. A tree pattern with no
subpaths s | p L {} is simply a subtree s | p, such
as the lhs of rules r4 and r5; a tree pattern with only
one subpath equal to its path s | p L {p} is a single
variable, such as the rhs of rules 2 and r3. Note that
ins ) p Ll {p1,...,pn},all paths p; to variables are
prefixed by p, and that no variables are descendants
of any other variable in the same tree pattern. In
other words, p = {p1, . .., pn} are disjoint subpaths
given p, where p denotes a list of paths.

We can now formalize the tree mapping
algorithm as an optimization problem. Let
v(sdps Lp,tlp L p') be the cost to transform
a source into a target tree pattern, as defined in
Equation 1. To transform s | p, into ¢t | p;, we
need to find the best combination of source sub-
trees rooted at {p1, ..., p,} that can be transformed
at minimum cost to the best combination of target
subtrees at {p}, ..., p,}. The transformation cost of
a certain tree pattern s | ps L {pi1,...,pn} into
t L pe L {p},....,pl,} is equal to the cost of trans-
forming the source tree pattern into the target tree
pattern, plus the minimum cost to transform s | p;
into ¢ | p}, for i > 1. That is:

C(slps,tip) =
glg}{v (sips Lptlp L)+

[p|
d Csiputlp)} @
i=1

subject to |p| = |[p’|, that is, source and tar-

get tree patterns having the same number of vari-
ables. Then, the cost of transforming the source
into the target tree would be given by the expression



C(sd (),td (). Since we are only interested in the
pairs of source and target tree patterns that lead to
the minimum cost, we keep track of subpaths p and
p’ of tree pattern pairs that minimize the cost.

5.3 Algorithm
5.3.1 Overview

This problem can be solved for small depths of
tree patterns and a small number of variables by stor-
ing intermediate results in the computation of Eq. 2.
However, an exact implementation needs to enumer-
ate all pairs of source and target disjoint subpaths (p
and p’), which has a computational complexity that
grows combinatorially with |p| (variable permuta-
tions), and exponentially with the number of descen-
dant nodes of p; and p; (powerset of variables).

Instead, we use a beam search algorithm (see Al-
gorithm 1) that constructs source and target disjoint
paths (p and p’) hierarchically (function GENER-
ATEDISJOINT) in a bottom-up order, for any given
path pair (ps,p;). First, n-best solutions (pairs of
disjoint paths) are computed for children; then those
partial solutions are combined into their parent us-
ing the cross-product. Solutions (with their associ-
ated cost) for every pair of paths (ps, p;) are stored in
a weighted hypergraph, from which we can extract
n-best derivations (sequences of rules). In the pseu-
docode, we use a helper function, paths(s | ps),
which denotes the list of subtree paths in bottom-up
order: from the leaves up to p; (including the latter).

5.3.2 Detailed Description

For a certain path pair (ps,p;), there are three
cases. The first case (line 34-35) considers a pair of
empty disjoint subpaths (p,p’) = ({},{}), where
the cost ¢ of transforming s | ps L {} into ¢t | p; L
{} is evaluated and the empty disjoint subpaths are
added to the priority queue P, indexed with ps. Such
indexing is useful to retrieve the n-best pairs of dis-
joint subpaths accumulated at every tree node.

The second case (line 28 to 31) evaluates the
cost of transforming single-variable tree patterns:
s L ps L {pc}intot | pr L {p.}. In this
case, variables substitute entire subtrees rooted at
paths p. and p. on the source and target tree pat-
terns, respectively. Note that p. ranges over all node

"https://github.com/pasmargo/t2t-qga
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Algorithm 1 Extraction of optimal sequence of rules
to transform a source s into a target tree .
Input: Trees s and ¢, and ensemble of cost functions ~.
Output: Sequence of optimal rules for s =" ¢.
1: let H = (V, E) be a hypergraph of solutions with
V « {} vertices and E + {} hyperedges.

2: for (ps,pt) € paths(s) x paths(t) do
3:  add vertex v = (ps,pt) to V.
4: PP < GENERATEDISJOINT(s | ps, t | pt,7y)
5. for (p,p’) € PP do
6: > Get cost of tree pattern pair.
7. c(slps Lp,tlp Lp)
8 addedge (ps,p:) > (p,p') to E
9: end for
10: end for

11: return HYPERGRAPHSEARCH(H)

12: function GENERATEDISJOINT(s | ps, t | D¢, 7)
13: P < {} a priority queue of partial disjoint paths.
14:  for every p. € paths(s | ps) do

15: > Costs when variables combined from children.
16: for every p;. immediate child of p,. (if any) do
17: > Retrieve n-best subpaths p and p’ from p;e.
18: C <« argming, ,n{c| (pic, P, ', ¢) € P}
19: > Combine subpaths with those accumulated
20: > from previous siblings and stored at path p..
21: A < argmin(y, ,n{c| (pe, P, P's ¢) € P}

22: for (p,p’) € (CU(C.A)) do

23: ce7y(slps Lptip Lp)

24: add (p., p, p’, ¢) to priority queue P

25: end for

26: end for

27: > Cost of tree patterns with one variable.

28: for every p/, € paths(t | p;) do

29: cy(sdps L{pc},tdpe L {pc})

30: add (pe, {pc}, {pL}, ¢) to priority queue P

31 end for

32:  end for

33: > Cost of tree patterns with no variables.

34 cey(sdps L{htdp L{})

35:  add (ps,{}, {}, ¢) to priority queue P

36: return arg min?p,p,){c | (ps,p,P’,¢) € P}
37: end function

addresses that are descendant of p; (including py),
and similarly for p... The pairs of disjoint subpaths
(p,p') = ({pc},{p.}) are added into the priority
queue, indexed by p,.

The third case (line 16 to 26) performs the com-
bination of subpaths hierarchically from children to
parents, and incrementally across children. For ev-
ery path p. € paths(s | ps), it visits its imme-



diate children p;. one by one, and retrieves into C'
the n-best disjoint subpaths (line 18) that have al-
ready been obtained during previous iterations for
Pic. Then, we retrieve into A the n-best disjoint sub-
paths indexed at p., which is a list of the best sub-
paths that were combined from previous immediate
children (the list is empty if this is the first immedi-
ate child that we visit). The cross-product of disjoint
subpaths in C' and A, that is C. A, is then evaluated
and the best combinations are stored in the priority
queue indexed at p..

As an example of a cross-product between two
lists C' and A of pairs of disjoint paths, let C' =

{(p1,p1"), (P2, pP2’)} and A = {(ps,ps’)}. Then
the cross-product C. A would be:

C.A={(p1-p3 P} P3), (P2 P3,P5 - P3)}

where p1 - p3 = {(0,1),(0,2),(0,3),(0,4)} if
p1 = {(0,1),(0,2)} and p3 = {(0,3),(0,4)}. At
this stage, subpaths p; or p/, that are not disjoint are
discarded, together with disjoint paths that produce
tree patterns with depth larger than a certain user-
defined threshold, or whose number of subpaths is
larger than the number of variables allowed.

In line 24, the disjoint subpaths of C' (in addition
to their cross-product C.A) are also evaluated and
added to the priority queue indexed by p., to propa-
gate upwards in the hierarchy of solutions the deci-
sion of not combining disjoint subpaths.

Finally, GENERATEDISJOINT returns the n-best
pairs of disjoint subpaths of minimum cost (p, p’)
that accumulated in the priority queue P for path p;.

5.3.3 Other Considerations

The n-best source and target pairs of disjoint sub-
paths are stored at every pair of source and target
paths (ps, pt) (lines 2-10), forming a hypergraph, as
in Figure 2. Then, with a hypergraph search (Huang
and Chiang, 2007) we can retrieve at least n-best
sequences of rules (derivations) that transform the
source into the target tree (line 11).

To maintain diversity of partial disjoint subpaths,
we divide P into a matrix of buckets with as many
rows and columns as the number of non-variable ter-
minals of the source and target tree patterns, trading
memory for more effective search (Koehn, 2015).
This operation is implicit in lines 24, 30 and 35.
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Figure 2: Hypergraph with 2-best pairs of disjoint subpaths for
(ps, p+). Vertices are pairs of source and target paths. Hyper-
edges are pairs of tree patterns. The hyperedge with cost .3 de-

notes the pair s | ps L {p1,p2,ps} and t | pe L {p1,p5,p3}.
The one with cost .5, s | ps L {p1,ps}andt | p: L {p5,p5}.

6 Experiments

6.1 Experiment Settings

Data The training data is a corpus of questions an-
notated with their logical forms that can be exe-
cuted on Freebase to obtain a precise answer. For
an unseen set of questions, the task is to obtain au-
tomatically their logical forms and retrieve the cor-
rect answer. Our objective is to evaluate the gen-
eralization capabilities of a transducer induced us-
ing our rule extraction on an unseen open-domain
test set. We parsed questions from FREE917 into
source constituent trees using the Stanford caseless
model (Klein and Manning, 2003). Target con-
stituent (meaning) representations were obtained by
a simple heuristic conversion from the A—DCS ex-
pressions released by Berant et al. (2013). We evalu-
ate on the same training and testing split as in Berant
et al. (2013). Tree pairs (2.9%) for which the gold
executable meaning representation did not retrieve
valid results were filtered out.

Baselines We compared to two baselines. The
first one is SEMPRE (Berant et al., 2013), a state-
of-the-art semantic parser that uses a target language
grammar to over-generate trees, and a log-linear
model to estimate the parameters that guide the de-
coder towards trees that generate correct answers.
For FREE917, SEMPRE uses a manually-created
entity lexicon released by (Cai and Yates, 2013), but
an automatically generated predicate lexicon. In-



stead, our system and the second baseline use manu-
ally created entity and predicate lexicons, where the
latter was created by selecting all words from every
question that relate to the target predicate. For ex-
ample, for the question “what olympics has egypt
participated in”, we created an entry that maps the
discontinuous phrase “olympics participated in” to
the predicate OlympicsParticipatedIn.

The second baseline is a tree-to-tree transducer
whose rules are extracted using a straightforward
adaptation of the GHKM algorithm (Galley et al.,
2004) for pairs of trees. Word-to-concept align-
ments are extracted using three different strategies:
1) ghkm-g uses the IBM models (Brown et al., 1993)
as implemented in GIZA++ (Och and Ney, 2003),
i1) ghkm-m maps KB concepts (target leaves) to as
many source words as present in the entity/predicate
lexicons, and iii) ghkm-c¢ maps KB concepts as in ii)
but only retaining the longest contiguous sequence
of source words (or right-most sequence if there is
a tie). Bridging predicates are assumed when a KB
concept does not align (according to the lexicon) to
any source word. Finally, rule state names are set
according to the mechanism described in Section 5.

Our ent, pred and bridge cost/back-off functions
assign a low cost (or high score) to source and target
tree patterns with no variables whose leaves appear
in either the entity or the predicate lexicons. Scal-
ing factors \; (see Eq. 1) were subjectively tuned on
20 training examples. When used as back-off func-
tions, they generate as many rhs as entities or pred-
icates can be retrieved from the lexicons by at least
one of the words in the source tree pattern. Bridging
predicates are dispreferred by adding an extra con-
stant cost. At back-off, this score function generates
a variable predicate, acting as a wildcard in Sparql.

Our system t2t For the rule extraction, we use a
beam size of 10, and we output 100 derivations for
every tree pair. We do not impose any limit in the
depth of lhs or rhs, or in the number of variables.
To increase the coverage of our rules, we produce
deleting tree transducers by replacing fully lexical-
ized branches that are directly attached to the root of
a lhs with a deleting variable.

For the parameter estimation, we used 3 iterations
of the latent variable averaged structured perceptron,
where the number of iterations was selected on 20%
of held-out training data. To assess the equality be-
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tween the gold and the decoded tree, we compare
their denotations. The features for the discrimina-
tive training were the lhs and rhs roots, the number
of variables, deleting variables and leaves, the pres-
ence of entities or predicates in the rhs, the rule state
and children states, and several measures of charac-
ter overlaps between the leaves of the source and in-
formation associated to leaves in target tree patterns.

For decoding, we used standard techniques
(Graehl and Knight, 2004) to constrain and prune
weighted regular tree grammars given a tree trans-
ducer and a source tree, and used the cube-growing
algorithm to generate 10, 000 derivations, converted
them to Sparql queries, and retained those that were
valid (either syntactically correct or that retrieved
any result). We compute the accuracy of the system
as the percentage of questions for which the 1-best
output tree retrieves the correct answer, and the cov-
erage as the percentage for which the correct answer
is within the 10,000 best derivations. The average
rule extraction time per tree pair when using beam
size 1 was 0.46 seconds (median 0.35, maximum
2.94 seconds). When using beam size 10, the aver-
age was 4.7 seconds (median 2.02, maximum 104.4
seconds), which gives us a glimpse of how the beam
size influences the computational complexity for the
typical tree size of FREE917 questions.

6.2 Results

Results are in Table 1. Note that although we
compare our results to those obtained with SEM-
PRE (Berant et al., 2013), the systems cannot really
be compared since Berant et al. (2013) did not have
access to a manually created lexicon of predicates.
When comparing the average number of entity and
predicate rules that the back-off functions generate,
we see that the number of predicate rules is much
larger, implying a higher ambiguity. Despite this,
our base system still produces promising results in
terms of accuracy and coverage.

We also carried out several ablation experiments
to investigate what are the characteristics of the sys-
tem that contribute the most to the accuracy: In no
nbest, we only extract one sequence of rules that
transform a source into a target tree. In no del, we
do not introduce deleting variables. In beam 1, we
use beam size 1 in rule extraction. In no size, no
tree size regularizer cost function is used. And in



Systems Acc. Cov. | #Preds. #Ents. # Rules
SEMPRE | .62 — — — —
ghkm-c 49 .80 155 14 384
ghkm-m A48 .77 147 14 399
ghkm-g .08 .57 102 5 135
t2t .64 .78 187 19 437
t2t-e .69 .85 191 20 430
no del .64 .78 187 19 437
no size b9 .78 195 19 483
no nbest b8 .70 93 5 128
beam 1 .53 .65 84 5 112
no back .00 .01 0 0 175
train-600 .62 .78 187 19 429
train-500 .61 .77 184 19 413
train-400 .62 .75 178 19 390
train-300 b9 75 177 18 363
train-200 b2 74 169 17 317
train-100 b2 .67 138 14 317

Table 1: Accuracy and coverage results; average number of

predicate rules, entity rules and all rules per input tree.

no back, no rule back-offs are used. As we see,
removing the back-off rule capabilities is critical in
this setting and makes the QA task unfeasible. We
also studied the impact of the size of the training
data in the generalization of our system, by train-
ing the system in {100, 200, . .., 600} examples. We
found that the accuracy saturates at only 400 train-
ing instances, which might be advantageous in tasks
where training resources are scarce. Finally, in or-
der to estimate the upper bound in the coverage and
accuracy of our approach on FREE917, we also run
our pipeline t2t-e with a refined version of Cai and
Yates (2013)’s entity lexicon, where 65 missing en-
tities are added (7.8% of the total). We can observe
a significant increase in the accuracy and coverage
of the system, suggesting that the bottleneck may lie
in the entity/predicate linking procedures.

7 Future Work

One step further in the generalization of the rule ex-
traction is to remove the necessity of explicitly pro-
viding cost functions such as word-to-word hard-
alignments or costs between tree fragments. This
would allow us to remove the bias introduced by en-
gineered cost functions and to obtain rules that are
globally optimal. In this setup, the parameters of the
cost functions are to be learned with the objective
to maximize the likelihood on the training data or
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a downstream application performance. However,
since rules (or tree mappings) would become hid-
den variables, this generalized rule extraction may
require faster methods to enumerate plausible rules.
Another extension would be to make the rule extrac-
tion more robust against parsing errors, using pairs
of forests instead of pairs of trees, similarly as in Liu
et al. (2009).

Regarding the QA application, there are two nat-
ural extensions that we want to address, namely to
develop general and automatic entity and predicate
linking mechanisms for large knowledge bases, and
to test our approach in datasets that require higher
levels of compositionality such as the QALD chal-
lenges (Unger et al., 2015) or those datasets pro-
duced by Wang et al. (2015).

8 Conclusion

We proposed to induce tree to tree transducers us-
ing a rule extraction algorithm that uses cost func-
tions over pairs of tree fragments (instead of word-
alignments), which increases the applicability of
these models. Some cost functions may act as
rule back-offs, generating new rhs given unseen lhs,
thus producing transducer rules “on-the-fly”. The
scores of these rules are obtained on demand using
a discriminative training procedure that estimates
weights for rule features. This strategy was useful to
compensate the lack of rule coverage when inducing
tree transducers from small tree corpora.

As a proof-of-concept, we tested the tree trans-
ducer induced with our algorithm on a QA task over
a large KB, a domain in which tree transducers have
not been effective before. In this task, lexicon map-
pings were naturally introduced as cost functions
and rule back-offs, without loss of generality. De-
spite using a manually created lexicon of predicates,
we showed a high accuracy and coverage of non-
final rules, which are promising results.
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Abstract

We propose a neural-network based model for
coordination boundary prediction. The net-
work is designed to incorporate two signals:
the similarity between conjuncts and the ob-
servation that replacing the whole coordina-
tion phrase with a conjunct tends to produce
a coherent sentences. The modeling makes
use of several LSTM networks. The model
is trained solely on conjunction annotations in
a Treebank, without using external resources.
We show improvements on predicting coor-
dination boundaries on the PTB compared to
two state-of-the-art parsers; as well as im-
provement over previous coordination bound-
ary prediction systems on the Genia corpus.

1 Introduction

Coordination is a common syntactic phenomena, ap-
pearing in 38.8% of the sentences in the Penn Tree-
bank (PTB) (Marcus et al., 1993), and in 60.71%
of the sentences in the Genia Treebank (Ohta et al.,
2002). However, predicting the correct conjuncts
span remain one of the biggest challenges for state-
of-the-art syntactic parsers. Both the Berkeley and
Zpar phrase-structure parsers (Petrov et al., 2006;
Zhang and Clark, 2011) achieve F1 scores of around
69% when evaluated on their ability to recover coor-
dination boundaries on the PTB test set. For exam-
ple, in:

“He has the government’s blessing to [build churches]
and [spread Unificationism] in that country.”

the conjuncts are incorrectly predicted by both
parsers:
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Berkeley: “He has the government’s blessing to [build
churches] and [spread Unificationism in that country].”
Zpar: “He [has the government’s blessing to build

churches] and [spread Unificationism in that country].”

In this work we focus on coordination boundary
prediction, and suggest a specialized model for this
task. We treat it as a ranking task, and learn a scor-
ing function over conjuncts candidates such that the
correct candidate pair is scored above all other can-
didates. The scoring model is a neural network with
two LSTM-based components, each modeling a dif-
ferent linguistic principle: (1) conjuncts tend to be
similar (“symmetry”); and (2) replacing the coor-
dination phrase with each of the conjuncts usually
result in a coherent sentence (“replacement”). The
symmetry component takes into account the con-
juncts’ syntactic structures, allowing to capture sim-
ilarities that occur in different levels of the syntac-
tic structure. The replacement component considers
the coherence of the sequence that is produced when
connecting the participant parts. Both of these sig-
nals are syntactic in nature, and are learned solely
based on information in the Penn Treebank. Our
model substantially outperforms both the Berkeley
and Zpar parsers on the coordination prediction task,
while using the exact same training corpus. Seman-
tic signals (which are likely to be based on resources
external to the treebank) are also relevant for coor-
dination disambiguation (Kawahara and Kurohashi,
2008; Hogan, 2007) and provide complementary in-
formation. We plan to incorporate such signals in
future work.

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 23-32,
Austin, Texas, November 1-5, 2016. (©2016 Association for Computational Linguistics



2 Background

Coordination is a very common syntactic construc-
tion in which several sentential elements (called con-
juncts) are linked. For example, in:

“The Jon Bon Jovi Soul Foundation [was founded in
2006] and; [exists to combat issues that force (fam-
ilies) ands (individuals) into economic despair].”

The coordinator and; links the conjuncts surrounded
with square brackets and the coordinator ands links
the conjuncts surrounded with round brackets.

Coordination between NPs and between VPs are
the most common, but other grammatical functions
can also be coordinated: “[relatively active]apjp
but [unfocused]apjp” ; “[in];n and [out];n the
market”. While coordination mostly occurs be-
tween elements with the same syntactic category,
cross-category conjunctions are also possible: (“Al-
ice will visit Earth [tomorrow]np or [in the next
decade]pp”). Less common coordinations involve
non-constituent elements “[equal to] or [higher
than]”, argument clusters (“Alice visited [4 plan-
ets] [in 2014] and [3 more] [since then]”), and gap-
ping (“/Bob lives on Earth] and [Alice on Saturn]”)
(Dowty, 1988).

2.1 Symmetry between conjuncts

Coordinated conjuncts tend to be semantically re-
lated and have a similar syntactic structure. For ex-
ample, in (a) and (b) the conjuncts include similar
words (China/Asia, marks/yen) and have identical
syntactic structures.

PP
NP
PP CcC PP
PR \ PN
IN NP and IN NP NP cC NP
\ \ \ \ N \ N
for NNP for NNP CD NNS and CD NNS
[ \ \ \ \ \
China Asia 1.8690 marks 139.75  yen
(@ (b)
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Symmetry holds also in larger conjuncts, such as in:

|
44444 1
\‘\ PP VBZ PP
. |
mcome /\ xpenditures /\
Ii\' NP IN NP
o TN o T
/NP\ PRN NP PRN
—_
op NNs  (USS 693.4) Qr/\\'\'s (USS 790.2)
— | |
(C) 129.9 billion  rubles 189.9 billion rubles

Similarity between conjuncts was used as a guiding
principle in previous work on coordination disam-
biguation (Hogan, 2007; Shimbo and Hara, 2007,
Hara et al., 2009).

2.2 Replaceability

Replacing a conjunct with the whole coordination
phrase usually produce a coherent sentence (Hud-
dleston et al., 2002). For example, in “Ethan has
developed [new products] and [a new strategy]”,
replacement results in: “Ethan has developed new
products”; and “Ethan has developed a new strat-
egy”, both valid sentences. Conjuncts replace-
ment holds also for conjuncts of different syntac-
tic types, e.g.: “inactivation of tumor-suppressor
genes, [alone] or [in combination], appears crucial
to the development of such scourges as cancer.”.

While both symmetry and replacebility are strong
characteristics of coordination, neither principle
holds universally. Coordination between syntacti-
cally dissimilar conjuncts is possible (“tomorrow
and for the entirety of the next decade”), and the
replacement principle fails in cases of ellipsis, gap-
ping and others (“The bank employs [8,000 people
in Spain] and [2,000 abroad]”).

2.3 Coordination in the PTB

Coordination annotation in the Penn Treebank (Mar-
cus et al., 1993) is inconsistent (Hogan, 2007) and
lacks internal structure for NPs with nominal mod-
ifiers (Bies et al., 1995). In addition, conjuncts in
the PTB are not explicitly marked. These deficien-
cies led previous works on coordination disambigua-
tion (Shimbo and Hara, 2007; Hara et al., 2009;
Hanamoto et al., 2012) to use the Genia treebank
of biomedical text (Ohta et al., 2002) which explic-
itly marks coordination phrases. However, using the
Genia corpus is not ideal since it is in a specialized



domain and much smaller than the PTB. In this work
we rely on a version of the PTB released by Ficler
and Goldberg (2016) in which the above deficiencies
are manually resolved. In particular, coordinating
elements, coordination phrases and conjunct bound-
aries are explicitly marked with specialized function
labels.

2.4 Neural Networks and Notation

We use wj., to indicate a list of vectors
w1, W, . .. W, and wy.1 to indicate the reversed list.
We use o for vector concatenation. When a discrete
symbol w is used as a neural network’s input, the
corresponding embedding vector is assumed.

A multi-layer perceptron (MLP) is a non linear
classifier. In this work we take MLP to mean a
classifier with a single hidden layer: M LP(x) =
V - g(Wzx + b) where x is the network’s input, g
is an activation function such as ReLU or Sigmoid,
and W, V and b are trainable parameters. Recurrent
Neural Networks (RNNs) (Elman, 1990) allow the
representation of arbitrary sized sequences. In this
work we use LSTMs (Hochreiter and Schmidhuber,
1997), a variant of RNN that was proven effective in
many NLP tasks. LSTM(w1.y,) is the outcome vec-
tor resulting from feeding the sequence wy.,, into the
LSTM in order. A bi-directional LSTM (biLSTM)
takes into account both the past wi.; and the future
w;., when representing the element in position ¢:

biLSTM (wr.p, 1) = LSTMp(wis) o LSTMp(wh:;)

where LST MF reads the sequence in its regular or-
der and LST M p reads it in reverse.

3 Task Definition and Architecture

Given a coordination word in a sentence, the coor-
dination prediction task aims to returns the two con-
juncts that are connected by it, or NONE if the word
does not function as a coordinating conjunction of a
relevant type.! Figure 1 provides an example.

Our system works in three phases: first, we deter-
mine if the coordinating word is indeed part of a con-
junction of a desired type. We then extract a ranked
list of candidate conjuncts, where a candidate is a

"We consider and, or, but, nor as coordination words. In
case of more than two coordinated elements (conjuncts), we fo-
cus on the two conjuncts which are closest to the coordinator.
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Sentence:

And, the city decided to treat its guests more

like royalty ors rock stars than factory owners.
Expected output:

and;: NONE

ory: (11-11) royalty ; (12-13) rock stars
Sentence:

The president is expected to visit Minnesota, New
York and, North Dakota by the end of the year.
Expected output:

andq: (9-10) New York ; (12-13) North Dakota

Figure 1: The coordination prediction task.

pair of spans of the form ((¢,5), (I, m)). The can-
didates are then scored and the highest scoring pair
is returned. Section 4 describes the scoring model,
which is the main contribution of this work. The
coordination classification and candidate extraction
components are described in Section 5.

4 Candidate Conjunctions Scoring

Our scoring model takes into account two signals,
symmetry between conjuncts and the possibility of
replacing the whole coordination phrase with its par-
ticipating conjuncts.

4.1 The Symmetry Component

As noted in Section 2.1, many conjuncts spans have
similar syntactic structure. However, while the sim-
ilarity is clear to human readers, it is often not easy
to formally define, such as in:

“about/IN half/NN its/PRPS$ revenue/NN
and/CC
more/JJR than/IN half/NN its/PRPS$ profit/NN”

If we could score the amount of similarity be-
tween two spans, we could use that to identify cor-
rect coordination structures. However, we do not
know the similarity function. We approach this by
training the similarity function in a data-dependent
manner. Specifically, we train an encoder that en-
codes spans into vectors such that vectors of similar
spans will have a small Euclidean distance between
them. This architecture is similar to Siamese Net-
works, which are used for learning similarity func-
tions in vision tasks (Chopra et al., 2005).
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Figure 2: Tlustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
tree is decomposed into paths that are fed into the path-LSTMs (squares). The resulting vectors are fed into the symmetry LSTM
function (circles). The outcome vectors (blue circles) are then fed into the euclidean distance function.

Given two spans of lengths £ and m with cor-
responding vector sequences u1.; and vi., we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u.g, Vi) = ||LSTM (u1.) — LSTM (v1.m)]|

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represent
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors u; to cor-
respond to embeddings of the ¢th POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher

level than POS tags. For example, in:
NP

NP cC NP
NN PP or /\
[ N NP PP
tomorrow IN CD /\ o~
[ IN CD
at  16:00 NP PP | |
=~ T~ at 12:00
the day  “after tomorrow

the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.” For example, the projections for
the first conjunct in Figure 2 are:

2Similar in spirit to the spines used in Carreras et al. (2008)
and Shen et al. (2003).
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VP VP
VP N‘P N‘P
V‘B PR‘P$ ,\',‘\'S
(’1‘1t th‘eir riiks

This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:

L
V‘ P VP
R ! L
v NP N
V‘ B PR‘P$ A\'A‘\'S

cut their risks

The lowest common ancestor of “their” and “risks”
is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the



Sentence:

Rudolph Agnew, [55 years old] and [former chairman of CGF PLC| ,was named a nonexecutive director.
wi_1 w; w; Wy wy Wy Wit
Pre Conjl Conj2 Post
Expansions:
Rudolph Agnew, 55 years old ,was named a nonexecutive director.
Rudolph Agnew, former chairman of CGF PLC ,was named a nonexecutive director.

Figure 3: The correct conjuncts spans of the coordinator and in the sentence and the outcome expansions.

corresponding cell in the CKY chart.®> In both ap-
proaches, the POS embeddings are initialized with
vectors that are pre-trained by running word2vec
(Mikolov et al., 2013) on the POS sequences in PTB
training set.

4.2 The Replacement Component

The replacement component is based on the obser-
vation that, in many cases, the coordination phrase
can be replaced with either one of its conjuncts while
still preserving a grammatical and semantically co-
herent sentence (Section 2.2)

When attempting such a replacement on incorrect
conjuncts, the resulting sentence is likely to be either
syntactically or semantically incorrect. For exam-
ple, in the following erroneous analysis: “Rudolph
Agnew, [55 years old] and [former chairman] of
Consolidated Gold Fields PLC” replacing the con-
junction with the first conjunct results in the se-
mantically incoherent sequence “Rudolph Agnew,
55 years old of Consolidated Golden Fields, PLC » 4

Our goal is to distinguish replacements resulting
from correct conjuncts from those resulting from er-
roneous ones. To this end, we focus on the connec-
tion points. A connection point in a resulting sen-
tence is the point where the sentence splits into two
sequences that were not connected in the original
sentence. For example, consider the sentence in Fig-
ure 3. It has four parts, marked as Pre, Conjl, Conj2
and Post. Replacing the coordination phrase Conjl/
and Conj2 with Conj2 results in a connection point

3The parser’s CKY chart did not include a tree for 10% of
the candidate spans, which have inside probability 0 and outside
probability > 0. For those, we obtained the syntactic structure
by running the parser on the span words only.

*While uncommon, incorrect conjuncts may also result in
valid sentences, e.g. “He paid $ 7 for cold [drinks] and [pizza]
that just came out of the oven.”
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between Pre and Conj2. Likewise, replacing the co-
ordination phrase with Conjl results in connection
point between Conjl and Post.

In order to model the validity of the connection
points, we represent each connection point as the
concatenation of a forward and reverse LSTMs cen-
tered around that point. Specifically, for the spans in
Figure 3 the two connection points are represented
as:

LSTMp(Rudolph,...,01d)oLSTMpg(director,...,was,, )
and
LSTMp(Rudolph,Agnew,, JoLSTMp(director,...,former)

Formally, assuming words wjy.,, in a sentence with
coordination at position &£ and conjuncts w;.; and
Wiem» the connection points are between wi.; and
Wm+1:m; and between wi,;—1 and wy.,. The two
connection points representations are then concate-
nated, resulting in a replacement vector:

REPL(w1:p, %, J,1,m) =

CONPOINT (w1, ¢ — 1,1) 0 CONPOINT(w1.p,, j, m + 1)

where:

CONPOINT(w1:n, %, j) =
LST]V[F (wlzi) o LST]L[B (’w":]‘)

We use two variants of the replacement vectors,
corresponding to two levels of representation. The
first variant is based on the sentence’s words, while
the second is based on its POS-tags.

4.3 Parser based Features

In addition to the symmetry and replacement sig-
nals, we also incorporate some scores that are de-
rived from the Berkeley parser. As detailed in Sec-
tion 5, a list of conjuncts candidates are extracted

SUsually j = k — 1 and I = k 4+ 1, but in some cases
punctuation symbols may interfere.



from the CKY chart of the parser. The candidates
are then sorted in descending order according to the
multiplication of inside and outside scores of the
candidate’s spans:® L 5y X O gy X Lm) X O,m)-
Each candidate {(i,7), ({,m)} is assigned two nu-
merical features based on this ranking: its position in
the ranking, and the ratio between its score and the
score of the adjacent higher-ranked candidate. We
add an additional binary feature indicating whether
the candidate spans are in the 1-best tree predicted
by the parser. These three features are denoted as
Feats(i,j,l,m).

4.4 Final Scoring and Training

Finally, the score of a candidate {(7, ), (I,m)} in a
sentence with words w;.,, and POS tags p;.,, is com-
puted as:

SCORE(wl:nvpl:nv {(17.7) (lv m)}) =
MLP(

Sym (q)Pqth Path

i:j 2 Vlim

o Repl(wium, i,7,1,m)
o Repl(piim,i,7,1,m)
o Feats(i,j,l,m) )

where vfj“th and v %" are the vectors resulting from

the path LSTMs, and Sym, Repl and Feats are the
networks defined in Sections 4.1 — 4.3 above. The
network is trained jointly, attempting to minimize a
pairwise ranking loss function, where the loss for
each training case is given by:

loss = max(0,1 — (J — yg))

where ¢ is the highest scoring candidate and y, is
the correct candidate. The model is trained on all
the coordination cases in Section 2—21 in the PTB.

5 Candidates Extraction and Supporting
Classifiers

Candidates Extraction We extract candidate
spans based on the inside-outside probabilities as-
signed by the Berkeley parser. Specifically, to obtain

SInside-Outside probabilities (Goodman, 1998) represent
the probability of a span with a given non-terminal symbol.
The inside probability I ;,j) is the probability of generating
words w;, W41, ..., w; given that the root is the non-terminal
N. The outside probability Oy ; ;) is the probability of gen-
erating words w1, wa, ..., w;—1, the non-terminal N and the
words wj41, Wjt2, ..., W, With the root S.

28

candidates for conjunct span we collect spans that
are marked with COORD, are adjacent to the coor-
dinating word, and have non-zero inside or outside
probabilities. We then take as candidates all possi-
ble pairs of collected spans. On the PTB dev set,
this method produces 6.25 candidates for each co-
ordinating word on average and includes the correct
candidates for 94% of the coordinations.

Coordination Classification We decide whether a
coordination word wy, in a sentence wi., functions
as a coordinator by feeding the biLSTM vector cen-
tered around wy, into a logistic classifier:

o(v - biILSTM(wi.p, k) + b).

The training examples are all the coordination words
(marked with CC) in the PTB training set. The
model achieves 99.46 F1 on development set and
99.19 F1 on test set.

NP coordinations amount to about half of the
coordination cases in the PTB, and previous work
is often evaluated specifically on NP coordination.
When evaluating on NP coordination, we depart
from the unrealistic scenario used in most previous
work where the type of coordination is assumed to
be known a-priori, and train a specialized model for
predicting the coordination type. For a coordination
candidate {(7, j), (,m)} with a coordinator wy, we
predict if it is NP coordination or not by feeding
a logistic classifier with a biLSTM vector centered
around the coordinator and constrained to the candi-
date spans:

o(v - BILSTM(w;.m, k) + b).

The training examples are coordinations in the PTB
training set, where where a coordinator is consid-
ered of type NP if its head is labeled with NP or
NX. Evaluating on gold coordinations results in F1
scores of 95.06 (dev) and 93.89 (test).

6 Experiments

We evaluate our models on their ability to identify
conjunction boundaries in the extended Penn Tree-
bank (Ficler and Goldberg, 2016) and Genia Tree-
bank (Ohta et al., 2002)”.

When evaluating on the PTB, we compare to the
conjunction boundary predictions of the generative

Thttp://www-tsujii.is.s.u-tokyo.ac.jp/GENIA



Dev Test
P R F P R F
Berkeley | 70.14 | 70.72 | 70.42 | 68.52 | 69.33 | 68.92
Zpar 7221 | 72.72 | 72.46 | 68.24 | 69.42 | 68.82
Ours 7234 | 72.25 | 7229 | 72.81 | 72.61 | 72.7

Table 1: Coordination prediction on PTB (All coordinations).

Dev Test
P R F P R F
Berkeley | 67.53 | 70.93 | 69.18 | 69.51 | 72.61 | 71.02
Zpar 69.14 | 72.31 | 70.68 | 69.81 | 72.92 | 71.33
Ours 75.17 | 74.82 | 74.99 | 76.91 | 75.31 | 76.1

Table 2: Coordination prediction on PTB (NP coordinations).

Berkeley parser (Petrov et al., 2006) and the discrim-
inative Zpar parser (Zhang and Clark, 2011). When
evaluating on the Genia treebank, we compare to the
results of the discriminative coordination-prediction
model of Hara et al. (2009).8

6.1 Evaluation on PTB

Baseline Our baseline is the performance of the
Berkeley and Zpar parsers on the task presented in
Section 3, namely: for a given coordinating word,
determine the two spans that are being conjoined
by it, and return NONE if the coordinator is not
conjoining spans or conjoins spans that are not of
the expected type. We convert predicted trees to
conjunction predictions by taking the two phrases
that are immediately adjacent to the coordinator
on both sides (ignoring phrases that contain solely
punctuation). For example, in the following Zpar-
predicted parse tree the conjunct prediction is (“Feb.
8, 1990”,“May 10, 1990”).

NP
NP CC NP R ADJP
\ \
Feb. 8, 1990 and May 10, 1990 respectively

Cases in which the coordination word is the left-
most or right-most non-punctuation element in its
phrase (e.g. (PRN (P -) (CC and) (S it’s
been painful) (P -))) are considered as no-
coordination (“None”).

8 Another relevant model in the literature is (Hanamoto et al.,
2012), however the results are not directly comparable as they
use a slightly different definition of conjuncts, and evaluate on
a subset of the Genia treebank, containing only trees that were
properly converted to an HPSG formalism.
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We consider two setups. In the first we are inter-
ested in all occurrences of coordination, and in the
second we focus on NP coordination. The second
scenario requires typed coordinations. We take the
type of a parser-predicted coordination to be the type
of the phrase immediately dominating the coordina-
tion word.

Evaluation Metrics We measure precision and re-
call compared to the gold-annotated coordination
spans in the extended PTB, where an example
is considered correct if both conjunct boundaries
match exactly. When focusing on NPs coordina-
tions, the type of the phrase above the CC level must
match as well, and phrases of type NP/NX are con-
sidered as NP coordination.

Results Tables (1) and (2) summarize the results.
The Berkeley and Zpar parsers perform similarly
on the coordination prediction task. Our proposed
model outperforms both parsers, with a test-set F
score of 72.7 (3.78 F points gain over the better
parser) when considering all coordinations, and test-
set I score of 76.1 (4.77 F} points gain) when con-
sidering NP coordination.

6.2 Evaluation on Genia

To compare our model to previous work, we evalu-
ate also on the Genia treebank (Beta), a collection
of constituency trees for 4529 sentences from Med-
line abstracts. The Genia treebank coordination an-
notation explicitly marks coordination phrases with
a special function label (COOD), making the cor-
pus an appealing resource for previous work on co-
ordination boundary prediction (Shimbo and Hara,
2007; Hara et al., 2009; Hanamoto et al., 2012).
Following Hara et al. (2009), we evaluate the mod-
els’ ability to predict the span of the entire coordi-
nation phrase, disregarding the individual conjuncts.
For example, in “My plan is to visit Seychelles, ko
Samui and Sardinia by the end of the year” the goal
is to recover “Seychelles, ko Samui and Sardinia”.
This is a recall measure. We follow the exact proto-
col of Hara et al. (2009) and train and evaluate the
model on 3598 coordination phrases in Genia Tree-
bank Beta and report the micro-averaged results of
a five-fold cross validation run.® As shown by Hara

“We thank Kazuo Hara for providing us with the exact de-
tails of their splits.



Sym Correct:  Retail sales volume was [down 0.5% from the previous three months] and [up 1.2% from a year earlier].
i Incorrect: Everyone was concerned about the [general narrowness of the rally] and [failure of the OTC market] to get into plus territory.
Rep Correct:  The newsletter said [she is 44 years old] and [she studied at the University of Puerto Rico School of Medicine].
“ | Incorrect: But Robert Showalter said no special [bulletins] or [emergency meetings of the investors’ clubs] are planned .
Rep Correct:  [On the Big Board floor| and [on trading desks], traders yelped their approval.
P | Incorrect: It suddenly burst upward 7.5 as Goldman, Sachs & Co. [stepped in| and [bought almost] every share offer, traders said.
Figure 4: Correct in incorrect predictions by the individual components.
COOD # Our Model | Hara et al. All types NPs
Overall | 3598 64.14 61.5 P R F P R F
NP 2317 65.08 64.2 Sym || 67.13 | 67.06 | 67.09 || 69.69 | 72.08 | 70.86
VP 465 71.82 54.2 Rep, || 69.26 | 69.18 | 69.21 || 69.73 | 71.16 | 70.43
ADJP | 321 74.76 80.4 Repy, || 56.97 | 56.9 | 56.93 | 59.78 | 64.3 | 61.95
S 188 17.02 229 Feats || 70.92 | 70.83 | 70.87 || 72.23 | 73.22 | 72.72
PP 167 56.28 59.9 Joint || 72.34 | 72.25 | 72.29 || 75.17 | 74.82 | 74.99
Ucp | 60 51.66 36.7 Table 4: Performance of the individual components on PTB
SBAR 56 91.07 51.8 .
ADVP | 21 30.95 85.7 section 22 (dev). Sym: Symmetry. Rep,: POS replace-
Others 3 3333 66.7 ment. Rep,,: Word replacement. Feats: features extracted from

Table 3: Recall on the Beta version of Genia corpus. Numbers
for Hara et al. are taken from their paper.

et al. (2009), syntactic parsers do not perform well
on the Genia treebank. Thus, in our symmetry com-
ponent we opted to not rely on predicted tree struc-
tures, and instead use the simpler option of repre-
senting each conjunct by its sequence of POS tags.
To handle coordination phrases with more than two
conjuncts, we extract candidates which includes up
to 7 spans and integrate the first and the last span
in the model features. Like Hara et al., we use gold
POS.

Results Table 3 summarizes the results. Our pro-
posed model achieves Recall score of 64.14 (2.64
Recall points gain over Hara et al.) and significantly
improves the score of several coordination types.

6.3 Technical Details

The neural networks (candidate scoring model and
supporting classifiers) are implemented using the
pyCNN package. .

In the supporting models we use words embed-
ding of size 50 and the Sigmoid activation function.
The LSTMs have a dimension of 50 as well. The
models are trained using SGD for 10 iterations over
the train-set, where samples are randomly shuffled
before each iteration. We choose the model with the
highest F1 score on the development set.

All the LSTMs in the candidate scoring model
have a dimension of 50. The input vectors for the

"https://github.com/clab/cnn/tree/master/pycnn
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Berkeley parser. Joint: the complete model.

symmetry LSTM is of size 50 as well. The MLP
in the candidate scoring model uses the Relu acti-
vation function, and the model is trained using the
Adam optimizer. The words and POS embeddings
are shared between the symmetry and replacment
components. The syntactic label embeddings are for
the path-encoding LSTM, We perform grid search
with 5 different seeds and the following: [1] MLP
hidden layer size (100, 200, 400); [2] input embed-
dings size for words, POS and syntactic labels (100,
300). We train for 20 iterations over the train set,
randomly shuffling the examples before each itera-
tion. We choose the model that achieves the highest
F1 score on the dev set.

7 Analysis

Our model combines four signals: symmetry, word-
level replacement, POS-level replacement and fea-
tures from Berkeley parser. Table 4 shows the PTB
dev-set performance of each sub-model in isolation.
On their own, each of the components’ signals is
relatively weak, seldom outperforming the parsers.
However, they provide complementary information,
as evident by the strong performance of the joint
model. Figure 4 lists correct and incorrect predic-
tions by each of the components, indicating that the
individual models are indeed capturing the patterns
they were designed to capture — though these pat-
terns do not always lead to correct predictions.



8 Related Work

The similarity property between conjuncts was ex-
plored in several previous works on coordination
disambiguation. Hogan (2007) incorporated this
principle in a generative parsing model by changing
the generative process of coordinated NPs to condi-
tion on properties of the first conjunct when gener-
ating the second one. Shimbo and Hara (2007) pro-
posed a discriminative sequence alignment model to
detect similar conjuncts. They focused on disam-
biguation of non-nested coordination based on the
learned edit distance between two conjuncts. Their
work was extended by Hara et al. (2009) to han-
dle nested coordinations as well. The discrimina-
tive edit distance model in these works is similar in
spirit to our symmetry component, but is restricted
to sequences of POS-tags, and makes use of a se-
quence alignment algorithm. We compare our re-
sults to Hara et al.’s in Section 6.2. Hanamoto et al.
(2012) extended the previous method with dual de-
composition and HPSG parsing. In contrast to these
symmetry-directed efforts, Kawahara et al. (2008)
focuses on the dependency relations that surround
the conjuncts. This kind of semantic information
provides an additional signal which is complemen-
tary to the syntactic signals explored in our work.
Our neural-network based model easily supports in-
corporation of additional signals, and we plan to ex-
plore such semantic signals in future work.

9 Conclusions

We presented an neural-network based model for re-
solving conjuncts boundaries. Our model is based
on the observation that (a) conjuncts tend to be sim-
ilar and (b) that replacing the coordination phrase
with a conjunct results in a coherent sentence. Our
models rely on syntactic information and do not
incorporate resources external to the training tree-
banks, yet improve over state-of-the-art parsers on
the coordination boundary prediction task.
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Abstract

Center-embedding is difficult to process and is
known as a rare syntactic construction across
languages. In this paper we describe a method
to incorporate this assumption into the gram-
mar induction tasks by restricting the search
space of a model to trees with limited center-
embedding. The key idea is the tabulation
of left-corner parsing, which captures the de-
gree of center-embedding of a parse via its
stack depth. We apply the technique to learn-
ing of famous generative model, the depen-
dency model with valence (Klein and Man-
ning, 2004). Cross-linguistic experiments on
Universal Dependencies show that often our
method boosts the performance from the base-
line, and competes with the current state-of-
the-art model in a number of languages.

1 Introduction

Human languages in the world are divergent, but
they also exhibit many striking similarities (Green-
berg, 1963; Hawkins, 2014). At the level of syn-
tax, one attractive hypothesis for such regularities is
that any grammars of languages have evolved un-
der the pressures, or biases, to avoid structures that
are difficult to process. For example it is known that
many languages have a preference for shorter depen-
dencies (Gildea and Temperley, 2010; Futrell et al.,
2015), which originates from the difficulty in pro-
cessing longer dependencies (Gibson, 2000).

Such syntactic regularities can also be useful in
applications, in particular in unsupervised (Klein
and Manning, 2004; Marecek and Zabokrtsky,
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2012; Bisk and Hockenmaier, 2013) or weakly-
supervised (Garrette et al., 2015) grammar induc-
tion tasks, where the models try to recover the syn-
tactic structure of language without access to the
syntactically annotated data, e.g., from raw or part-
of-speech tagged text only. In these settings, find-
ing better syntactic regularities universal across lan-
guages is essential, as they work as a small cue to
the correct linguistic structures. A preference ex-
ploited in many previous works is favoring shorter
dependencies, which has been encoded in various
ways, e.g., initialization of EM (Klein and Man-
ning, 2004), or model parameters (Smith and Eis-
ner, 2006), and this has been the key to success of
learning (Gimpel and Smith, 2012).

In this paper, we explore the utility for another
universal syntactic bias that has not yet been ex-
ploited in grammar induction: a bias against center-
embedding. Center-embedding is a syntactic con-
struction on which a clause is embedded into another
one. An example is “The reporter [who the senator
[who Mary met] attacked] ignored the president.”,
where “who Mary met” is embedded in a larger
relative clause. These constructions are known to
cause memory overflow (Miller and Chomsky, 1963;
Gibson, 2000), and also are rarely observed cross-
linguistically (Karlsson, 2007; Noji and Miyao,
2014). Our learning method exploits this universal
property of language. Intuitively during learning our
models explore the restricted search space, which
excludes linguistically implausible trees, i.e., those
with deeper levels of center-embedding.

We describe how these constraints can be imposed
in EM with the inside-outside algorithm. The central

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 33—43,
Austin, Texas, November 1-5, 2016. (©2016 Association for Computational Linguistics
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Figure 1: A set of transitions in left-corner parsing.
The rules on the right side are the side conditions, in
which P is the set of rules of a given CFG.

idea is to tabulate left-corner parsing, on which its
stack depth captures the degree of center-embedding
of a partial parse. Each chart item keeps the cur-
rent stack depth and we discard all items where the
depth exceeds some threshold. The technique is gen-
eral and can be applicable to any model on PCFG;
in this paper, specifically, we describe how to ap-
ply the idea on the dependency model with valence
(DMV) (Klein and Manning, 2004), a famous gen-
erative model for dependency grammar induction.

We focus our evaluation on grammar induction
from part-of-speech tagged text, comparing the ef-
fect of several biases including the one against
longer dependencies. Our main empirical finding is
that though two biases, avoiding center-embedding
and favoring shorter dependencies, are conceptually
similar (both favor simpler grammars), often they
capture different aspects of syntax, leading to dif-
ferent grammars. In particular our bias cooperates
well with additional small syntactic cue such as the
one that the sentence root tends to be a verb or
a noun, with which our models compete with the
strong baseline relying on a larger number of hand
crafted rules on POS tags (Naseem et al., 2010).

Our contributions are: the idea to utilize left-
corner parsing for a tool to constrain the models of
syntax (Section 3), the formulation of this idea for
DMV (Section 4), and cross-linguistic experiments
across 25 languages to evaluate the universality of
the proposed approach (Sections 5 and 6).

2 Left-corner parsing

We first describe (arc-eager) left-corner (LC) pars-
ing as a push-down automaton (PDA), and then re-
formulate it as a grammar transform. In previous
work this algorithm has been called right-corner
parsing (e.g., Schuler et al. (2010)); we avoid this
term and instead treat it as a variant of LC parsing
following more recent studies, e.g., van Schijndel
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Figure 2: COMP combines two subtrees on the top
of the stack. ¢, j, k are indices of spans.

and Schuler (2013). The central motivation for this
technique is to detect center-embedding in a parse
efficiently. We describe this mechanism after pro-
viding the algorithm itself. We then give historical
notes on LC parsing at the end of this section.

PDA Let us assume a CFG is given, and it is in
CNF. We formulate LC parsing as a set of transi-
tions between configurations, each of which is a pair
of the stack and the input position (next input sym-
bol). In Figure 1 a transition o > &5 means that
the stack is changed from o to o9 by reading the
next input symbol a. We use a vertical bar to sig-
nify the append operation, e.g., o = o¢’|o; denotes
o1 is the topmost symbol of o. Each stack symbol is
either a nonterminal, or a pair of nonterminals, e.g.,
A/ B, which represents a subtree rooted at A and is
awaiting symbol B. We also decorate each symbol
with depth; for example, o/ ' | A/ means the current
stack depth is d, and the depth of the topmost sym-
bol in ¢ is d — 1. The bottom symbol on the stack is
always the empty symbol ¢’ with depth 0. Parsing
begins with . Given the start symbol of CFG S, it
finishes when S' is found on the stack.

The key transition here is COMP (Figure 2).! Ba-
sically the algorithm builds a tree by expanding the
hypothesis from left to right. In COMP, a subtree
rooted at A is combined with the second top subtree
(D/B) on the stack. This can be done by first pre-
dicting that A’s parent symbol is B and its sibling is
C; then it unifies two different Bs to combine them.
PRED is simpler, and it just predicts the parent and
sibling symbols of A. The input symbols are read
by SHIFT and SCAN: SHIFT addes a new element
on the stack while SCAN fills in the predicted sib-
ling symbol. For an example, Figure 3 shows how

lvan Schijndel and Schuler (2013) employ different transi-
tion names, e.g., L- and L+; we avoid them as they are less
informative.



Step  Transition  Stack Next input symbol

0 € e
1 SHIFT E! f
2 PRED D/B! f
3 SHIFT D/B' F? g
4  PRED D/B' A/G? ¢
5 ScaN D/B' A? c
6 Cowmp D/C! c
7  ScAN D!

Figure 3: Sequence of transitions in LC PDA to
parse the tree in Figure 4(a).

D\
/\
D D/C! c
/\ —
E B D/B! A?
‘ Py | N
e A C E! A/G? g
PN | | )
F G c e F?
L |
f g f
(a) (b)

Figure 4: An example of LC transform: (a) the orig-
inal parse; and (b) the transformed parse.

this PDA works for parsing a tree in Figure 4(a).

Grammar transform The algorithm above can be
reformulated as a grammar transform, which be-
comes the starting point for our application to gram-
mar induction. This can be done by extracting the
operated top symbols on the stack in each transition:

SHIFT: A” 5 a (A — a € P);

ScaN: B! - B/AYa (A — a € P);

PRED: B/C? — A? (B — AC € P);

Comp: D/C? — D/B? A% (B— AC € P).

where a rule on the right side is a condition given the
set of rules P in the CFG.

Figure 4 shows an example of this transform. The
essential point is that each CFG rule in the trans-
formed parse (b) corresponds to a transition in the
original algorithm (Figure 1). For example a rule
D/C' — D/B' A” in the parse indicates that the
stack configuration D/B'|A? occurs during parsing
(just corresponding to the step 5 in Figure 3) and
CoMP is then applied. This can also be seen as an
instantiation of Figure 2.

Stack depth and center-embedding We use the
term center-embedding to distinguish just the tree
structures, i.e., ignoring symbols. That is, the tree
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in Figure 4(a) is the minimal, one degree of center-
embedded tree, where the constituent rooted at A
is embedded into a larger constituent rooted at D.
Multiple, or degree > 2 of center-embedding oc-
curs if this constituent is also embedded into another
larger constituent.

Note that it is only COMP that consumes the top
two symbols on the stack. This means that a larger
stack depth occurs only when COMP is needed. Fur-
thermore, from Figure 2 COMP always induces a
subtree involving new center-embedding, and this is
the underlying mechanism that the stack depth of the
algorithm captures the degree of center-embedding.

One thing to note is that to precisely associate the
stack depth and the degree of center-embedding the
depth calculation in COMP should be revised as:

Comp: D/C? — D/BT A" (B— AC € P)
J - d  (SPANLEN(A) =1)
d+1

(otherwise),

where SPANLEN(A) calculates the span length of
the constituent rooted at A, which is 2 in Figure 4(b).
This modification is necessary since COMP for a sin-
gle token occurs for building purely right-branching
structures.” Formally, then, given a tree with de-
gree A of center-embedding the largest stack depth
d* during parsing this tree is: d* = A + 1.

Schuler et al. (2010) found that on English tree-
banks larger stack depth such as 3 or 4 rarely oc-
curs while Noji and Miyao (2014) validated the lan-
guage universality of this observation through cross-
linguistic experiments. These suggest we may uti-
lize LC parsing as a tool for exploiting universal syn-
tactic biases as we discuss in Section 3.

ey

Historical notes Rosenkrantz and Lewis (1970)
first presented the idea of LC parsing as a gram-
mar transform. This is arc-standard, and has no
relevance to center-embedding; Resnik (1992) and
Johnson (1998) formulated an arc-eager variant by
extending this algorithm. The presented algorithm
here is the same as Schuler et al. (2010), and is
slightly different from Johnson (1998). The dif-
ference is in the start and end conditions: while

2Schuler et al. (2010) skip this subtlety by only concerning
stack depth after PRED or COMP. We do not take this approach
since ours allows a flexible extension described in Section 3.



our parser begins with an empty symbol, Johnson’s
parser begins with the predicted start symbol, and
finishes with an empty symbol.

3 Learning with structural constraints

Now we discuss how to utilize LC parsing for gram-
mar induction in general. An important observation
in the above transform is that if we perform chart
parsing, e.g., CKY, we can detect center-embedded
trees efficiently in a chart. For example, by set-
ting a threshold of stack depth §, we can eliminate
any parses involving center-embedding up to degree
d—1. Note that in a probabilistic setting, each weight
of a transformed rule comes from the corresponding
underlying CFG rule (i.e., the condition).

For learning, our goal is to estimate # of a gen-
erative model p(z,xz|0) for parse z and its yields
(words) x. We take an EM-based simplest approach,
and multiply the original model by a constraint fac-
tor f(z,z) € [0, 1] to obtain a new model:

p'(z,210) o< p(z, z]0) f (2, ), 2)

and then optimize € based on p/(z,z|#). This is
essentially the same approach as Smith and Eisner
(2006). As shown in Smith (2006), when training
with EM we can increase the likelihood of p/(z, x|6)
by just using the expected counts from an E-step on
the unnormalized distribution p(z, z|0) f(z, z).

We investigate the following constraints in our ex-
periments:

_J 0 (df>9)
fz ) = { 1 (otherwise), )
where d is the largest stack depth for z in LC pars-
ing and 9 is the threshold. This is a hard constraint,
and can easily be achieved by removing all chart
items (of LC transformed grammar) on which the
depth of the symbol exceeds . For example, when
0 = 1 the model only explores trees without center-
embedding, i.e., right- or left-linear trees.

Length-based constraints By d = 2, the model is
allowed to explore trees with one degree of center-
embedding. Besides these simple ones, we also in-
vestigate relaxing § = 1 that results in an intermedi-
ate between & = 1 and 2. Specifically, we relax the
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depth calculation in COMP (Eq. 1) as follows:

d
! __
d_{d+1

where £ > 1 controls the minimal length of a span
regarded as embedded into another one. For exam-
ple, when £ = 2, the parse in Figure 4(a) is not re-
garded as center-embedded because the span length
of the constituent reduced by COMP (i.e., A) is 2.
This modification is motivated with our observa-
tion that in many cases center-embedded construc-
tions arise due to embedding of small chunks, rather
than clauses. An example is “... prepared [the cat
’s] dinner”, where “the cat ’s” is center-embedded
in our definition. For this sentence, by relaxing the
condition with, e.g., £ = 3, we can suppress the in-
crease of stack depth. We treat £ as a hyperparameter
in our experiments, and in practice, we find that this
relaxed constraint leads to higher performance.

(SPANLEN(A) < ¢)
(otherwise),

“)

4 Dependency grammar induction

In this section we discuss how we can formulate
the dependency model with valence (DMV) (Klein
and Manning, 2004), a famous generative model
for dependency grammar induction, on LC parsing.
Though as we will see, applying LC parsing for a de-
pendency model is a little involved compared to sim-
ple PCFG models, dependency models have been
the central for the grammar induction tasks, and we
consider it is most appropriate for assessing effec-
tiveness of our approach.

DMV is a head-outward generative model of a
dependency tree, controlled by two types of multi-
nomial distributions. For stop € {STOP, —STOP},
Os(stop|h, dir, adj) is a Bernoulli random variable to
decide whether or not to attach further dependents
in dir € {+,—} direction. The adjacency adj €
{TRUE, FALSE} is the key factor to distinguish the
distributions of the first and the other dependents,
which is TRUE if h has no dependent yet in dir di-
rection. Another type of parameter is 6, (a|h, dir), a
probability that h takes a as a dependent in dir di-
rection.

For this particular model, we take the following
approach to formulate it in LC parsing: 1) convert-
ing a dependency tree into a binary CFG parse; 2)
applying LC transform on it; and 3) encoding DMV



X[ran] X[ran]
/\ /\
X[ran] Xl[fast]  X[dogs] X[ran]
X[dogs]  X][ran] fast dogs X[ran]  X[fast]
[ | \ \
dogs ran ran fast
(a) ©

X[ran] 1 X([ran]'
— —
X[ran/fast]’ fast X[ran/fast]' fast
\ —
X[ran]1 X[ran/ran]" X[ran]"
|
X[ran/ran]] ran X[dogs]' r’c‘ln
\ [
X[dogs]! dogs
|
dogs (d)
(b)

Figure 5: Two CFG parses for “dogs ran fast” and
the results of LC transform ((a) — (b); (¢c) — (d)).
X]a/b] is an abbreviation for X[a]/X[b].

parameters into each CFG rule of the transformed
grammar.’ Below we discuss a problem for (1) and
(2), and then consider parameterization.*

Spurious ambiguity The central issue for apply-
ing LC parsing is the spurious ambiguity in depen-
dency grammars. That is, there are more than one
(binary) CFG parses corresponding to a given de-
pendency tree. This is problematic mainly for two
reasons: 1) we cannot specify the degree of center-
embedding in a dependency tree uniquely; and
2) this one-to-many mapping prevents the inside-
outside algorithm to work correctly (Eisner, 2000).
As a concrete example, Figures 5(a) and 5(c)
show two CFG parses corresponding to the depen-
dency tree dogs” ran”fast. We approach this prob-
lem by first providing a grammar transform, which
generates all valid LC transformed parses (e.g., Fig-
ures 5(b) and 5(d)) and then restricting the grammar

3 Another approach might be just applying the technique in
Section 3 to some PCFG that encodes DMV, e.g., Headden III
et al. (2009). The problem with this approach, in particular
with split-head grammars (Johnson, 2007), is that the calculated
stack depth no longer reflects the degree of center-embedding in
the original parse correctly. As we discuss later, instead, we can
speed up inference by applying head-splitting after obtaining
the LC transformed grammar.

“Technical details including the chart algorithm for split-
head grammars can be found in the Ph.D. thesis of the first au-
thor (Noji, 2016).
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X[wp] X[wp /wp] X[wp /wp]
i h g t h jp i Jjp

Figure 6: The senses of the symbols as a chart item.
X[wp, /wy] predicts the next dependent outside of the
span while X[w,,/w,] predicts the head.

b
/\
b d
/\/\
a b ¢ d
VTN PN
a b ¢ d e ROOT d e

Figure 7: Implicit binarization of the restricted
grammar. For each token, if its parent is in the right
side (e.g., b), it attaches all left children first. The be-
havior is opposed when the parent is in its left (e.g.,
d). A dummy root token is placed at the end.

for generating particular parses only.

Naive method Let us begin with the grammar be-
low, which suffers from the spurious ambiguity:

SHIFT: X[wp]? — wy,

ScAN: X[wy]? — X[wp /wp]? w,

L-PRED: X[wy,/wp]" — X[wp]? (wiw,);

R-PRED: X[wy, /w,]? — X[wp]? () wp);

L-CoMP: X[wy, /w,]? — X[wp /wy] X[wa]” (ww,);
R-CoMP: X[wy, /wa]? — X[wp /w,] " X[w,]” (W wg).

Here X[a/b] denotes X[a]/X[b] while wy, denotes
the h-th word in the sentence w. We can interpret
these rules as the operations on chart items (Figure
6). Note that only PRED and COMP create new de-
pendency arcs and we divide them depending on the
direction of the created arcs (L and R). d’ is calcu-
lated by Eq. 4. Note also that for L-COMP and R-
CoMP h might equal p; X[ran/fast]" — X[ran/ran]’
X([ran]” in Figure 5(d) is such a case for R-COMP.

Removing spurious ambiguity We can show that
by restricting conditions for some rules, the spurious
ambiguity can be eliminated (the proof is omitted).

1. Prohibit R-COMP when h = p;

2. Assume the span of X[w,]” is (i,7) (i < p <
7). Then allow R-COMP only when ¢ = p.

Intuitively, these conditions constraint the order that
each word collects its left and right children. For



example, by the condition 1, this grammar is pro-
hibited to generate the parse of Figure 5(d).

Binarization Note that two CFG parses in Fig-
ures 5(a) and 5(c) differ in how we binarize a given
dependency tree. This observation indicates that
our restricted grammar implicitly binarizes a depen-
dency tree, and the incurred stack depth (or the de-
gree of center-embedding) is determined based on
the structure of the binarized tree. Specifically, we
can show that the presented grammar performs op-
timal binarization; i.e., it minimizes the incurred
stack depth. Figure 7 shows an example, which is
not regarded as center-embedded in our procedure.
In summary, our method detects center-embedding
for a dependency tree, but the degree is determined
based on the structure of the binarized CFG parse.

Parameterization We can encode DMV parame-
ters into each rule. A new arc is introduced by one
of {L/R}-{PRED/COMP}, and the stop probabilities
can be assigned appropriately in each rule by cal-
culating the valence from indices in the rule. For
example, after L-PRED, wy, does not take any right
dependents so 05 (stop|wp,, —, h = j), where j is the
right span index of X[wp], is multiplied.

Improvement Though we omit the details, we can
improve the time complexity of the above grammar
from O(n®%) to O(n*) applying the technique simi-
lar to Eisner and Satta (1999) without changing the
binarization mechanism mentioned above. We im-
plemented this improved grammar.

S Experimental setup

A sound evaluation metric in grammar induction is
known as an open problem (Schwartz et al., 2011;
Bisk and Hockenmaier, 2013), which essentially
arises from the ambiguity in the notion of head. For
example, Universal dependencies (UD) is the recent
standard in annotation and prefers content words to
be heads, but as shown below this is very different
from the conventional style, e.g., the one in CoNLL
shared tasks (Johansson and Nugues, 2007):

w [ [ —

Ivan is the best dancer
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The problem is that both trees are correct under
some linguistic theories but the standard metric, un-
labeled attachment score (UAS), only takes into ac-
count the annotation of the current gold data.

Our goal in this experiment is to assess the ef-
fect of our structural constraints. To this end, we try
to eliminate such arbitrariness in our evaluation as
much as possible in the following way:

e We experiment on UD, in which every treebank
follows the consistent UD style annotation.

e We restrict the model to explore only trees that
follow the UD style annotation during learn-
ing>, by prohibiting every function word® in a
sentence to have any dependents.

e We calculate UAS in a standard way.

We use UD of version 1.2. Some treebanks are very
small, so we select the top 25 largest languages.
The input to the model is coarse universal POS tags.
Punctuations are stripped off. All models are trained
on sentences of length < 15 and tested on < 40.

Initialization Much previous work of dependency
grammar induction relies on the technique called
harmonic initialization, which also biases the model
towards shorter dependencies (Klein and Manning,
2004). Since our focus is to see the effect of struc-
tural constraints, we do not try this and initialize
models uniformly. However, we add a baseline
model with this initialization in our comparison to
see the relative strength of our approach.

Models For the baseline, we employ a variant of
DMV with features (Berg-Kirkpatrick et al., 2010),
which is simple yet known to boost the performance
well. The feature templates are almost the same;
the only change is that we add backoff features for
STOP probabilities that ignore both direction and ad-
jacency, which we found slightly improves the per-
formance in a preliminary experiment. We set the
regularization parameter to 10 though in practice we
found the model is less sensitive to this value. We
run 100 iterations of EM for each setting. The dif-

>We remove the restriction at test time though we found it
does not affect the performance.

A word with one of the following POS tags: ADP, AUX,
CONJ, DET, PART, and SCONJ.



ference of each model is then the type of constraints
imposed during the E-step’, or initialization:

e Baseline (FUNC): Function word constraints;
e HARM: FUNC with harmonic initialization;
e DEP: FUNC + stack depth constraints (Eq. 3);

e LEN: FUNC + soft dependency length bias,
which we describe below.

For DEP, we use § = 1.£ to denote the relaxed max-
imum depth allowing span length up to & (Eq. 4).
LEN is the previously explored structural bias
(Smith and Eisner, 2006), which penalizes longer
dependencies by modifying each attachment score:

0’ (alh, dir) = 0,(alh, dir) - e Ih=al=1D — (5)

where v (> 0) determines the strength of the bias
and |h — a is (string) distance between h and a.
Note that DEP and LEN are closely related; gen-
erally center-embedded constructions are accompa-
nied by longer dependencies so LEN also penalizes
center-embedding implicitly. However, the opposite
is not true and there exist many constructions with
longer dependencies without center-embedding. By
comparing these two settings, we discuss the worth
of focusing on constraining center-embedding rela-
tive to the simpler bias on dependency length.
Finally we also add the system of Naseem et al.
(2010) in our comparison. This system encodes
many manually crafted rules between POS tags with
the posterior regularization technique. For example,
the model is encouraged to find NOUN — ADJ re-
lationship. Our systems cannot access to these core
grammatical rules so it is our strongest baseline.®

Constraining root word We also see the effects
of the constraints when a small amount of grammat-
ical rule is provided. In particular, we restrict the
candidate root words of the sentence to a noun or a
verb; similar rules have been encoded in past work
such as Gimpel and Smith (2012) and the CCG in-
duction system of Bisk and Hockenmaier (2013).

"We again remove the restrictions at decoding as we ob-
served that the effects are very small.

8We encode the customized rules that follow UD scheme.
The following 13 rules are used: ROOT — VERB, ROOT —
NOUN, VERB — NOUN, VERB — ADV, VERB — VERB, VERB
— AUX, NOUN — ADJ, NOUN — DET, NOUN — NUM, NOUN
— NOUN, NOUN — CONJ, NOUN — ADP, ADJ — ADV.
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Figure 8: UAS for various settings on (UD) WSJ.

Hyperparameters Selecting hyperparameters in
multilingual grammar induction is difficult; some
works tune values for each language based on the
development set (Smith and Eisner, 2006; Bisk et
al., 2015), but this violates the assumption of unsu-
pervised learning. We instead follow many works
(Mare¢ek and Zabokrtsky, 2012; Naseem et al.,
2010) and select the values with the English data.
For this, we use the WSJ data, which we obtain in
UD style from the Stanford CoreNLP (ver. 3.6.0).°

6 Experiments

WSJ Figure 8 shows the result on WSJ. Both DEP
and LEN have one parameter: the maximum depth
0, and v (Eq. 5), and the figure shows the sensitivity
on them. Note that x-axis = 0 represents FUNC.

For LEN, we can see the optimal parameter -y is
0.1, and degrades the performance when increasing
the value; i.e., the small bias is the best. For DEP, we
find the best setting is 1.3, i.e., allowing embedded
constituents of length 3 or less (£ = 3 in Eq. 4). We
can see that allowing depth 2 degrades the perfor-
mance, indicating that depth 2 allows too many trees
and does not reduce the search space effectively.'’

Multilingual results Table 1 shows the main mul-
tilingual results. When we see “No root constraint”
block, we notice that our DEP boosts the perfor-
mance in many languages (e.g., Bulgarian, French,

Note that the English data in UD is Web Treebank (Silveira
et al., 2014), not the standard WSJ Penn treebank.

'"We see the same effects when training with longer sen-
tences (e.g., length < 20). This is probably because a looser
constraint does nothing for shorter sentences. In other words,
the model can restrict the search space only for longer sen-
tences, which are relatively small in the data.



No root constraint + root constraint
Func Dep LEN HARM | FUNC Dep LEN HARM | N10
A-Greek 359 316 347 378 379 450 344 377 |40.1
Arabic 48.6 387 49.8 428 459 443 496 314 | 378
Basque 417 46.1 450 249 425 448 448 253 | 50.1
Bulgarian 456 690 648 664 69.1 711 619 68.0 |58.6
Croatian 40.8 322 50.7 478 40.7 422 476 477 | 41.0

Czech 56.0 62.0 527 537 472 622 560 522 | 520
Danish 425 427 423 472 42.6 428 423  46.6 | 428
Dutch 257 266 28.0 262 257 275 287 264 |40.6
English 372 398 521 375 375 400 384 382 |514
Estonian 685 674 68.0 68.6 680 67.8 651 685 |67.3
Finnish 262 245 279 257 257 273 279 205 | 446
French 36.7 48.0 368 365 365 546 363 367 | 533
German 44.6 48.0 463 436 439 504 479 439 |535
Hebrew 584 544 585 591 554 597 594 590 | 569
Hindi 547 526 160 558 558 52.6 488 557 | 558
Indonesian | 36.0 529 45.6 40.1 304 531 405 400 |S5I.1
Italian 638 678 684 650 63.1 657 688 629 | 563

Japanese 46.8 445 738 479 476 467 723 479 |513
Latin-ITT | 423 43.8 4211 410 424 437 384 416 | 384
Norwegian | 44.7 453 45.1 519 448 454 452 457 | 554
Persian 449 39.0 373 366 44.1 46.6 372 436 | 552
Portuguese | 48.4 61.1 61.6 559 492 61.1 614 446 |47.1
Slovenian 65.6 61.0 50.1 627 65.1 60.7 494 636 |53.1
Spanish 522 546 625 49.1 444 538 60.0 484 |553
Swedish 427 481 514 481 43.1 428 427 47.6 | 467
Avg 46.0 48.1 485 469 459 501 482 458 | 502

Table 1: Attachment scores on UD with or without
root POS constraints. A-Greek = Ancient Greek.
N10 = Naseem et al. (2010) with modified rules.

Indonesian, and Portuguese), though LEN performs
equally well and in average, LEN performs slightly
better. Harmonic initialization does not work well.
We then move on to the settings with the con-
straint on root tags. Interestingly, in these settings
DEP performs the best. The model competes with
Naseem et al.’s system in average, and outperforms
it in many languages, e.g., Bulgarian, Czech, etc.
LEN, on the other hand, decreases the average score.

Analysis Why does DEP perform well in particu-
lar with the restriction on root candidates? To shed
light on this, we inspected the output parses of En-
glish with no root constraints, and found that the
types of errors are very different across constraints.

Figure 9 shows a typical example of the differ-
ence. One difference between trees is in the con-
structions of phrase “On ... pictures”. LEN pre-
dicts that “On the next two”” comprises a constituent,
which modifies “pictures” while DEP predicts that
“the ... pictures” comprises a constituent, which is
correct, although the head of the determiner is in-
correctly predicted. On the other hand, LEN works
well to find more primitive dependency arcs between
POS tags, such as arcs from verbs to nouns, which
are often incorrectly recognized by DEP.

These observations may partially answer the
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Figure 9: A comparison of output parses by DEP
and LEN (with no root constraints). Dashed arcs are
misclassified ones.

Prec. Recall Fl
FunNc (English) 11.6 18.4 14.1
DEP (English) 224 371 279
LEN (English) 21.6  31.0 255
FUNC (Avg.) 225 30.0 256
DEP (Avg.) 278 345 305
LEN (Avg.) 240 337 279
FUNC + ROOT (Avg.) | 220 294 25.0
DEP + ROOT (Avg.) 281 352 31.0
LEN + ROOT (Avg.) 21.8 312 256

Table 2: Unlabeled bracket scores in various set-
tings. Avg. is the average score across languages.

question above. The main source of improvements
by DEP is detections of constituents, but this con-
straint itself does not help to resolve some core
dependency relationships, e.g., arcs from verbs to
nouns. The constraint on root POS tags is thus or-
thogonal to this approach, and it may help to find
such core dependencies. On the other hand, the de-
pendency length bias is the most effective to find
basic dependency relationships between POS tags
while the resulting tree may involve implausible
constituents. Thus the effect of the length bias seems
somewhat overlapped with the root POS constraints,
which may be the reason why they do not well col-
laborate with each other.

Bracket scores We verify the above intuition
quantitatively. To this end, we convert both the pre-
dicted and gold dependency trees into the unlabeled
bracket structures, and then compare them on the
standard PARSEVAL metrics. This bracket tree is
not binarized; for example, we extract (X a b (X
¢ d)) from the tree a0 ¢">d. Table 2 shows the
results, and we can see that DEP always performs
the best, showing that DEP leads to the models that
find better constituent structures. Of particular note



| UAS  FI

DEP 48.1 30.5
LEN 48.5 279
DEP+LEN | 49.2 27.0

Table 3: Average scores of DEP, LEN, and the com-
bination.

is in Enlgish the bracket and dependency scores are
only loosely correlated. In Table 1, UASs for FUNC,
DEP, and LEN are 37.2, 39.8, and 52.1, respectively,
though F1 of DEP is substantially higher. This sug-
gests that DEP often finds more linguistically plausi-
ble structures even when the improvement in UAS is
modest. We conjecture that this performance change
between constraints essentially arise due to the na-
ture of DEP, which eliminates center-embedding,
i.e., implausible constituent structures, rather than
dependency arcs.

Combining DEP and LEN These results suggest
DEP and LEN capture different aspects of syntax. To
furuther understand this difference, we now evaluate
the models with both constraints. Table 3 shows the
average scores across languages (without root con-
straints). Interestingly, the combination (DEP+LEN)
performs the best in UAS while the worst in bracket
F1. This indicates the ability of DEP to find good
constituent boundaries is diminished by combining
LEN. We feel the results are expected observing that
center-embedded constructions are a special case of
longer dependency constructions. In other words,
LEN is a stronger constraint than DEP in that the
structures penalized by DEP are only a subset of
structures penalized by LEN. Thus when LEN and
DEP are combined LEN overwhelms, and the ad-
vantage of DEP is weakened. This also suggests not
penalizing all longer dependencies is important for
learning accurate grammars. The improvement of
UAS suggests there are also collaborative effects in
some aspect.

7 Conclusion

We have shown that a syntactic constraint that elim-
inates center-embedding is helpful in dependency
grammar induction. In particular, we found that
our method facilitates to find linguistically correct
constituent structures, and given an additional cue
on dependency, the models compete with the sys-
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tem relying on a significant amount of prior lin-
guistic knowledge. Future work includes applying
our DEP constraint into other PCFG-based gram-
mar induction tasks beyond dependency grammars.
In particular, it would be fruitful to apply our idea
into constituent structure induction for which, to
our knowledge, there has been no successful PCFG-
based learning algorithm. As discussed in de Mar-
cken (1999) one reason for the failures of previous
work is the lack of necessary syntactic biases, and
our approach could be useful to alleviate this issue.
Finally, though we have focused on unsupervised
learning for simplicity, we believe our syntactic bias
also leads to better learning in more practical scenar-
ios, e.g., weakly supervised learning (Garrette et al.,
2015).
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Abstract

Determining whether a major societal event
has already happened, is still on-going, or may
occur in the future is crucial for event pre-
diction, timeline generation, and news sum-
marization. We introduce a new task and a
new corpus, EventStatus, which has 4500 En-
glish and Spanish articles about civil unrest
events labeled as PAST, ON-GOING, or FuU-
TURE. We show that the temporal status of
these events is difficult to classify because lo-
cal tense and aspect cues are often lacking,
time expressions are insufficient, and the lin-
guistic contexts have rich semantic composi-
tionality. We explore two approaches for event
status classification: (1) a feature-based SVM
classifier augmented with a novel induced lex-
icon of future-oriented verbs, such as “threat-
ened” and “planned”, and (2) a convolutional
neural net. Both types of classifiers improve
event status recognition over a state-of-the-art
TempEval model, and our analysis offers lin-
guistic insights into the semantic composition-
ality challenges for this new task.

1 Introduction

When a major societal event is mentioned in the
news (e.g., civil unrest, terrorism, natural disaster), it
is important to understand whether the event has al-
ready happened (PAST), is currently happening (ON-
GOING), or may happen in the future (FUTURE). We
introduce a new task and corpus for studying the
temporal/aspectual properties of major events. The
EventStatus corpus consists of 4500 English and
Spanish news articles about civil unrest events, such
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as protests, demonstrations, marches, and strikes, in
which each event is annotated as PAST, ON-GOING,
or FUTURE (sublabeled as PLANNED, ALERT or
POSSIBLE). This task bridges event extraction re-
search and temporal research in the tradition of
TIMEBANK (Pustejovsky et al., 2003) and TempE-
val (Verhagen et al., 2007; Verhagen et al., 2010;
UzZaman et al., 2013). Previous corpora have be-
gun this association: TIMEBANK, for example, in-
cludes temporal relations linking events with Doc-
ument Creation Times (DCT). But the EventStatus
task and corpus offers several new research direc-
tions.

First, major societal events are often discussed be-
fore they happen, or while they are still happening,
because they have the potential to impact a large
number of people. News outlets frequently report
on impending natural disasters (e.g., hurricanes), an-
ticipated disease outbreaks (e.g., Zika virus), threats
of terrorism, and plans or warnings of potential civil
unrest (e.g., strikes and protests). Traditional event
extraction research has focused primarily on recog-
nizing events that have already happened. Further-
more, the linguistic contexts of on-going and future
events involve complex compositionality, and fea-
tures like explicit time expressions are less useful.
Our results demonstrate that a state-of-the-art Tem-
pEval system has difficulty identifying on-going and
future events, mislabeling examples like these:

(1) The metro workers’ strike in Bucharest has entered
the fifth day. (On-Going)

(2) BBC unions demand more talks amid threat of new
strikes. (Future)

(3) Pro-reform groups have called for nationwide
protests on polling day. (Future)

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 44-54,
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Second, we intentionally created the EventSta-
tus corpus to concentrate on one particular event
frame (class of events): civil unrest. In contrast,
previous temporally annotated corpora focus on a
wide variety of events. Focusing on one frame (se-
mantic depth instead of breadth) makes this corpus
analogous to domain-specific event extraction data
sets, and therefore appropriate for evaluating rich
tasks like event extraction and temporal question an-
swering, which require more knowledge about event
frames and schemata than might be represented in
large broad corpora like TIMEBANK (UzZaman et
al., 2012; Llorens et al., 2015).

Third, the EventStatus corpus focuses on specific
instances of high-level events, in contrast to the low-
level and often non-specific or generic events that
dominate other temporal datasets.! Mentions of spe-
cific events are much more likely to be realized in
non-finite form (as nouns or infinitives, such as “the
strike” or “to protest”) than randomly selected event
keywords. In breadth-based corpora like the Event-
CorefBank (ECB) corpus (Bejan and Harabagiu,
2008), 34% of the events have non-finite realization;
in TIMEBANK, 45% of the events have non-finite
realization. By contrast, in a frame-based corpus
like ACE2005 (ACE, 2005), 59% of the events have
non-finite forms. In the EventStatus corpus, 80% of
the events have non-finite forms. Whether this is due
to differences in labeling or to intrinsic properties of
these events, the result is that they are much harder
to label because tense and aspect are less available
than for events realized as finite verbs.

Fourth, the EventStatus data set is multilingual:
we collected data from both English and Spanish
texts, allowing us to compare events representing
the same event frame across two languages that are
known to differ in their typological properties for de-
scribing events (Talmy, 1985).

Using the new EventStatus corpus, we investigate
two approaches for recognizing the temporal status
of events. We create a SVM classifier that incor-
porates features drawn from prior TempEval work
(Bethard, 2013; Chambers et al., 2014; Llorens et
al., 2010) as well as a new automatically induced

"For example in TIMEBANK almost half the annotated
events (3720 of 7935) are hypothetical or generic, i.e., PERCEP-
TION, REPORTING, ASPECTUAL, I_ACTION, STATE or I_STATE
rather than the specific OCCURRENCE.
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lexicon of 411 English and 348 Spanish “future-
oriented” matrix verbs—yverbs like “threaten” and
“fear” whose complement clause or nominal direct
object argument is likely to describe a future event.
We show that the SVM outperforms a state-of-the-
art TempEval system and that the induced lexicon
further improves performance for both English and
Spanish. We also introduce a Convolutional Neu-
ral Network (CNN) to detect the temporal status of
events. Our analysis shows that it successfully mod-
els semantic compositionality for some challenging
temporal contexts. The CNN model again improves
performance in both English and Spanish, providing
strong initial results for this new task and corpus.

2 The EventStatus Corpus

For major societal events, it can be very impor-
tant to know whether the event has ended or if it
is still in progress (e.g., are people still rioting in
the streets?). And sometimes events are anticipated
before they actually happen, such as labor strikes,
marches and parades, social demonstrations, politi-
cal events (e.g., debates and elections), and acts of
war. The EventStatus corpus represents the tempo-
ral status of an event as one of five categories:

Past: An event that has started and has ended. There
should be no reason to believe that it may still be in
progress.

On-going: An event that has started and is still in

progress or likely to resume? in the immediate fu-
ture. There should be no reason to believe that it has
ended.

Future Planned: An event that has not yet started,
but a person or group has planned for or explicitly
committed to an instance of the event in the future.
There should be near certainty it will happen.
Future Alert: An event that has not yet started, but
a person or group has been threatening, warning, or
advocating for a future instance of the event.
Future Possible: An event that has not yet started,
but the context suggests that its occurrence is a live
possibility (e.g., it is anticipated, feared, hinted at,
or is mentioned conditionally).

The three subtypes of future events are important

For example, demonstrators have gone home for the day
but are expected to return in the morning.



Past
[EN] Today’s demonstration ended without violence.
An estimated 2,000 people protested against the government in Peru.
[SP] Termind la manifestacion de los kurdos en la UNESCO de Paris.
On-going
[EN] Negotiations continue with no end in sight for the 2 week old strike.
Yesterday’s rallies have caused police to fear more today.
[SP] Pacifistas latinoamericanos no cesan sus protestas contra guerra en Irak.
Future Planned
[EN] 77 percent of German steelworkers voted to strike to raise their wages.
Peace groups have already started organizing mass protests in Sydney.
[SP] Miedo en la City en vispera de masivas protestas que la toman por blanco.
Future Alert
[EN] Farmers have threatened to hold demonstrations on Monday.
Nurses are warning they intend to walkout if conditions don’t improve.
[SP] Indigenas hondurefios amenazan con declararse en huelga de hambre.
Future Possible
[EN] Residents fear riots if the policeman who killed the boy is acquitted.
The military is preparing for possible protests at the G8 summit.
[SP] Policia Militar analiza la posibilidad de decretar una huelga nacional.

Table 1: Examples of event status categories for civil unrest events, showing two examples in English [EN] and one in Spanish

[SP].

in marking not just temporal status but also what we
might call predictive status. Events very likely to oc-
cur are distinguished from events whose occurrence
depends on other contingencies (Future Planned vs.
Alert/Possible). Warnings or mentions of a potential
event by a likely actor are further distinguished from
events whose occurrence is more open-ended (Fu-
ture Alert vs. Possible). The status of future events
is not due just to lexical semantics or local context
but also other qualifiers in the sentence (e.g. “may”),
the larger discourse context, and world knowledge.
The annotation guidelines are formulated with that
in mind. The categories for future events are not
incompatible with one another but are meant to be
informationally ordered (e.g. “future alert” implies
“future possible”). Annotators are instructed to go
for the strongest implication supported by the over-
all context. Table 1 presents examples of each cate-
gory in news reports about civil unrest events, with
the event keywords in italics.

2.1 EventStatus Annotations

The EventStatus dataset consists of English and
Spanish news articles. We manually identified 6
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English words® and 13 Spanish words* and phrases
associated with civil unrest events, and added their
morphological variants. We then randomly selected
2954 and 1491° news stories from the English Gi-
gaword 5th Ed. (Parker et al., 2011) and Spanish
Gigaword 3rd Ed. (Mendon et al., 2011) corpora,
respectively, that contain at least one civil unrest
phrase. Events of a specific type are very sparsely
distributed in a large corpus like the Gigaword, so
we used keyword matching just as a first pass to
identify candidate event mentions.

ELIYS LI

3The English keywords are “protest”, “strike”, “march”,
“rally”, “riot” and “occupy”. These correspond to the most fre-
quent words in the relevant frame in the Media Frames corpus
(Card et al., 2015). Because “march” most commonly refers to
the month, we removed the word itself and only kept its other
morphological variations.

4Spanish keywords:
nar(se)”, “manifestar(se)”, “huelga”,
bio”, “motin”, “ocupar * la calle”, *
las calles”, “lanzarse a las calles”, “cacerolas vacias”, “cacero-
lazo”, “cacerolada”. Asterisks could be replaced by up to 4
words. The last three terms are common expressions for protest
marches in many countries of Latin America and Spain.

346 (out of 3000) and 9 (out of 1500) stories were removed

due to keyword errors.

“marchar”, “protestar”, “amoti-
manifestacion”, “distur-

tomar * la calle”, “salir *



Future Not

Past Ongoing (Plan,Alert,Possible) Multiple Event
EN 1735 583 292 (197,48,47) 28 186
SP 1545 739 360 (279,61,30) 21 72

Table 2: Counts of Temporal Status Labels in EventStatus.

Because many keyword instances don’t refer to
a specific event, primarily due to lexical ambiguity
and generic descriptions (e.g., “Protests are often
facilitated by ...”), we used a two-stage annotation
process. First, we extracted sentences containing at
least one key phrase, and had three human anno-
tators judge whether the sentence describes a spe-
cific civil unrest event. Next, for each sentence that
mentions a specific event, the annotators assigned an
event status to every civil unrest key phrase in that
sentence. In both annotation phases, we asked the
annotators to consider the context of the entire arti-
cle.

In the first annotation phase, the average pairwise
inter-annotator agreement (Cohen’s k) among the
annotators was x = 0.84 on the English data and 0.70
on the Spanish data. We then assigned the majority
label among the three annotators to each sentence.
In the English data, of the 5085 sentences with at
least one key phrase, 2492 (49%) were judged to
be about a specific civil unrest event. In the Span-
ish data, 3249 sentences contained at least one key
phrase and 2466 (76%) described a specific event.

In the second phase, the annotators assigned one
of the five temporal status categories listed in Sec-
tion 2 to each event keyword in a relevant sentence.
In addition, we provided a Not Event label.® Occa-
sionally, a single instance of a keyword can refer to
multiple events (e.g., “Both last week’s and today’s
protests...”), so we permitted multiple labels to be
assigned to an event phrase. However this happened
for only 28 cases in English and 21 cases in Spanish.

The average pairwise inter-annotator agreement
among the three human annotators for the tempo-
ral status labels was x=.78 for English and x=.80
for Spanish. We used the majority label among the
three annotators as the gold status. In total, 2907
English and 2807 Spanish event phrases exist in the
relevant sentences and were annotated. However

A sentence can contain multiple keyword instances. So
even in a relevant sentence, some instances may not refer to
a specific event.
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there were 83 English cases (~2.9%) and 70 Span-
ish cases (=2.5%) where the labels among the three
annotators were all different, so we discarded these
cases. Table 2 shows the final distribution of labels
in the EventStatus corpus. The EventStatus corpus’
is available through the LDC.

2.2 Linguistic Properties of Event Mentions

Next, we investigated the linguistic properties of the
event status categories, lumping together the 3 fu-
ture subcategories. Table 3 shows the distribution
of syntactic forms of the event mentions in two com-
monly used event datasets, ACE2005 (ACE, 2005)
and EventCorefBank (Bejan and Harabagiu, 2008),
and our new EventStatus corpus. In the introduction,
we mentioned the high frequency of non-finite event
expressions; Table 3 provides the evidence: non-
finite forms (nouns and infinitives) constitute 59% in
ACE2005, 34% in EventCorefBank, and a very high
80% of the events in the EventStatus dataset. The
distribution is even more skewed for future events,
which are 95% (English) and 96% (Spanish) real-
ized by non-finite surface forms.

Finite Inf.
Verbs Nouns Verbs Other
ACE Dataset
2201 (41) 2566 (48) 352 (7) 243 (5)
ECB Dataset
1151 (66) 488 (28) 77(4) 25(1)
EventStatus, English Section
PA  331(19) 1295(75) 103 (6) 6(0)
0OG 58(10) 476 (82) 29(5) 20(3)
FU 15 (5) 245 (84) 32(11) 0(0)
EventStatus, Spanish Section
PA  315(20) 1145(74) 84(5) 1(0)
oG 41 (6) 685 (93) 12(2) 1)
FU 14 (4) 309 (86) 36 (10) 1(0)

Table 3: Number and % (in parentheses) of event mentions by
syntactic form. PA = Past; OG = On-going; FU = Future

2.3 Future Oriented Verbs

We observed that many future event mentions are
preceded by a set of lexical (non-aux) verbs that we
call future oriented verbs, such as “threatened” in (4)
and “fear” in (5). These verbs project the events in
the lower clause into the future.

"http://faculty.cse.tamu.edu/huangrh/
EventStatus_corpus.html



(4) They threatened to protest if Kmart does not ac-
knowledge their request for a meeting.

(5) People fear renewed rioting during the coming
days.

Categories of future oriented verbs include mental
activity (“anticipate”, “expect”), affective (“fear”,
“worry”), planning (“plan”, “prepare”, “schedule”),
threatening (“threaten”, “advocate”, “warn”), and
inchoative verbs (“start”, “initiate”, and “launch”).
We found that these categories correlate with the
predictive status of the events they embed. We drew
on these insights to induce a lexicon of future ori-
ented verbs.

We harvested matrix verbs whose complement
unambiguously describes a future event using two
heuristics. One heuristic looks for examples with
a tense conflict between the matrix verb and its
complement: a matrix verb in the past tense (like
“planned” below) whose complement event is an in-
finitive verb or deverbal noun modified by a future
time expression (like “tomorrow” or “next week”),
hence in the future (e.g., “strike” below): 8

(6) The union planned to strike next week.

Future events are often marked by conditional

clauses, so the second heuristic considers an event

to be future if it was post-modified by a conditional

clause (beginning with “if” or “unless”):

(7) The union threatened to strike if their appeal
was rejected.

Finally, to increase precision, we only harvested
a verb as future-oriented if it functioned as a matrix
both in sentences with an embedded future time ex-
pression and in sentences with a conditional clause.

Future Oriented Verb Categories: We ran the
algorithm on the English and Spanish Gigaword cor-
pora (Parker et al., 2011; Mendon et al., 2011), ob-
taining 411 English verbs and 348 Spanish verbs.
To better understand the structure of the learned lex-
icon, we mapped each English verb to Framenet
(Baker et al., 1998); 86% (355) of the English verbs
occurred in Framenet, in 306 unique frames. We

8For English, we extract events linked by the “xcomp” de-
pendency using the Stanford dependency parser (Marneffe et
al., 2006), with a future time expression attached to the second
event with the “tmod” relation. For Spanish, we consider two
events related if they are at most 5 words apart, and the second
event is modified by a time expression, at most 5 words apart.
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clustered these into 102 frames® and grouped the
Spanish verbs following English Framenet, identi-
fying 67 categories. (Some learned verbs, such as
“poise” , “slate” , “compel” and “hesitate”, had a
clear future orientation but didn’t exist in Framenet.)
Table 4 shows examples of learned verbs for En-
glish and their categories.

Commitment: threaten, vow, promise, pledge,
commit, declare, claim, volunteer, anticipate

Coming_to_be: enter, emerge, plunge, kick,
mount reach, edge, soar, promote, increase,
climb, double

Purpose: plan, intend, project, aim, object, target

Permitting: allow, permit, approve, subpoena

Experiencer_subj: fear, scare, hate

Waiting: expect, wait

Scheduling: arrange, schedule

Deciding: decide, opt, elect, pick, select, settle

Request: ask, urge, order, encourage, demand,
appeal, request, summon, implore, advise, invite

Evoking: raise, press, back, recall, pressure,
force, rush, pull, drag, respond

Table 4: Examples from Future Oriented Verb Lexicon

In the next sections we propose two classifiers,
an SVM classifier using standard TempEval features
plus our new future-oriented lexicon, and a Convo-
lutional Neural Net, as a pilot exploration of what
features and architecture work well for the EventSta-
tus task. For these studies we combine the Future
Planned, Future Alert and Future Possible categories
into a single Future event status because we first
wanted to establish how well classifiers can detect
the primary temporal distinctions between Past vs.
Ongoing vs. Future. The future subcategories are,
of course, relatively smaller and we expect that the
most effective approach will be to design a classifier
that sits on top of the primary classifier to further
subcategorize the Future instances. We leave the
task of subcategorizing future events for later work.

By merging frames that share frame elements (e.g., “Pur-
pose” and “Project” share the frame element “plan’)



3 SVM Event Status Model

Our first classifier is a linear SVM classifier.' We
trained three binary classifiers (one per class) us-
ing one-vs.-rest, and label an event mention with
the class that assigned the highest score to the men-
tion. We used features inspired by prior TempEval
work and by the previous analysis, including words,
tense and aspect features, time expressions, and the
new future-oriented verb lexicon. We also experi-
mented with other features used by TempEval sys-
tems (including bigrams, POS tags, and two-hop de-
pendency features), but they did not improve perfor-
mance. !

Bag-Of-Words Features: For bag-of-words uni-
gram features we used a window size of 7 (7 left and
7 right) for the English data and 6 for the Spanish
data; this size was optimized on the tuning sets.

Tense, Aspect and Time Expressions: Because
these features are known to be the most impor-
tant for relating events to document creation time
(Bethard, 2013; Llorens et al., 2010), we used
TIPSem (Llorens et al., 2010) to generate the tense
and aspect of events and find time expressions in
both languages. TIPSem infers the tense and as-
pect of nominal and infinitival event mentions using
heuristics without relying on syntactic dependen-
cies. For the English data set, we also generated syn-
tactic dependencies using Stanford CoreNLP (Marn-
effe et al., 2006) and applied several rules to cre-
ate additional tense and aspect features based on the
governing words of event mentions'?. Time indi-
cation features are created by comparing document
creation time to time expressions linked to an event
mention detected by TIPSem. If TIPSem detects no
linked time expressions for an event mention, we
take the nearest time expression in the same sen-
tence.

Governing Words: Governing words have been
useful in prior work. Our version of the feature

!%Trained using LIBSVM (Chang and Lin, 2011) with linear
kernels (polynomial kernels yielded worse performance).

"Previous TempEval work reported that those additional fea-
tures were useful when computing temporal relations between
two events but not when relating an event to the Document Cre-
ation Time, for which tense, aspect, and time expression fea-
tures were the most useful (Llorens et al., 2010; Bethard, 2013).

2We did not imitate this procedure for Spanish because the
quality of our generated Spanish dependencies is poor.
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pairs the governing word of an event mention with
the dependency relation in between. We used Stan-
ford CoreNLP (Marneffe et al., 2006) to generate
dependencies for the English data. For the Spanish
data, we used Stanford CoreNLP to generate Part-
of-Speech tags'® and then applied the MaltParser
(Nivre et al., 2004) to generate dependencies.

4 Convolutional Neural Network Model

Convolutional neural networks (CNNs) have been
shown to be effective in modeling natural language
semantics (Collobert et al., 2011). We were espe-
cially keen to find out whether the convolution op-
erations of CNNs can model the semantic composi-
tionality needed to detect temporal-aspectual status.
For our experiments, we trained a simple CNN with
one convolution layer followed by one max pooling
layer (Kim, 2014; Collobert et al., 2011),

The convolution layer has 300 hidden units. In
each unit, the same affine transformation is applied
to every consecutive 5 words (a filter instance) in
the input sequence of words. A different affine
transformation is applied to each hidden unit. After
each affine transformation, a Rectified Linear Units
(ReLLU) (Nair and Hinton, 2010) non-linearity is ap-
plied. For each hidden unit, the max pooling layer
selects the maximum value from the pool of real val-
ues generated from each filter instance.

After the max pooling layer, a softmax classifier
predicts probabilites for each of the three classes,
Past, Ongoing and Future. To alleviate overfitting
of the CNN model, we applied dropout (Hinton et
al., 2012) on the convolution layer and the following
pooling layer with a keeping rate of 0.5.

Our experiments used the 300-dimension En-
glish word2vec embeddings'# trained on 100 billion
words of Google News. We trained our own 300-
dimension Spanish embeddings, running word2vec
(Mikolov et al., 2013) over both Spanish Giga-
word (Mendon et al., 2011)— tokenized using Stan-
ford CoreNLP SpanishTokenizer (Manning et al.,
2014)— and the pre-tokenized Spanish Wikipedia
dump (Al-Rfou et al., 2013). The vectors were then
tuned during backpropagation for our specific task.

3Stanford CoreNLP has no support for generating syntactic

dependencies for Spanish.

14
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Row Method PA oG FU Macro Micro
1 TIPSem 26/80/39  8/32/13 4/23/7 13/45/20 20/68/31
2 TIPSem with transitivity 75/76/75  14/22/17  4/21/7 | 31/40/35 55/67/61
3 SVM with all features 91/81/86 33/47/39 45/58/51 | 56/62/59 75/75/75
4 SVM with BOW features only | 88/80/84 37/46/41 40/53/45 | 55/60/57 72/72/72
5 +Tense/Aspect/Time 89/81/85 40/50/44  42/52/46 | 57/61/59 73/73/73
6 +Governing Word 90/81/85 43/56/48 42/55/47 | 58/64/61 75/75/75
7 +Future Oriented Lexicon 90/82/86 44/56/49 48/62/54 | 61/66/63 T6/76/76
8 Convolutional Neural Net 91/83/87 46/57/51 49/67/57 | 62/69/65 77/77/77
Table 6: Experimental Results on English Data. Each cell shows Recall/Precision/F-score.
Row Method PA oG FU Macro Micro
1 TIPSem 19/84/31 14/38/20  4/53/8 12/58/20 16/65/25
2 TIPSem with transitivity 69/70/70 40/35/37 12/62/20 | 40/56/47 54/59/56
3 SVM with all features 84/77/80 48/51/49 42/57/48 | 58/62/60 69/69/69
4 SVM with BOW features only | 82/75/78 53/56/54 34/52/41 | 56/61/59 68/68/68
5 +Tense/Aspect/Time 82/77/79 55/57/56  45/61/52 | 61/65/63 70/70/70
6 +Governing Word 83/75/79 51/56/53  42/58/49 | 59/63/61 69/69/69
7 +Future Oriented Lexicon 82/77/79 55/57/56  47/63/54 | 61/65/63 70/70/70
8 Convolutional Neural Net 84/80/82 60/58/59 44/59/50 | 62/66/64 72/72/72
Table 7: Experimental Results on Spanish Data. Each cell shows Recall/Precision/F-score.
PA oG FU Time. We applied TIPSem to our test set, mapping
English 1385 (68%) 427 (21%) 233 (11%) the DCT relations to our three event status classes'>.
Spanish 1251 (59%) 589 (28%) 280 (13%) Row 1 of Tables 6 and 7 shows TIPSem re-

Table 5: Label Distributions in the Test Set

5 Evaluations

For all subsequent evaluations, we use gold event
mentions. We randomly sampled around 20% of the
annotated documents as the parameter tuning set and
used the rest as the test set. Rather than training once
on a distinct training set, all our experiment results
are based on 10-fold cross validation on the test set,
(1191 Spanish documents, 2364 English documents;
see Table 5 for the distribution of event mentions).

5.1 Comparing with a TempEval System

We begin with a baseline: applying a TempEval sys-
tem to classify each event. Most of our features are
already drawn from TempEval, but our goal was to
see if an off-the-shelf system could be directly ap-
plied to our task. We chose TIPSem (Llorens et al.,
2010), a CRF system trained on TimeBank that uses
linguistic features, has achieved top performance in
TempEval competitions for both English and Span-
ish (Verhagen et al., 2010), and can compute the
relation of each event with the Document Creation
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sults. The columns show results for each category
separately, as well as macro-average and micro-
average results across the three categories. Each cell
shows the Recall/Precision/F-score numbers. Since
TIPSem linked relatively few event mentions to the
DCT, we next leveraged the transitivity of tempo-
ral relations (UzZaman et al., 2012; Llorens et al.,
2015), linking an event to a DCT if the temporal re-
lation between another event in the same sentence
and the DCT is transferable. For instance, if event
A is AFTER its DCT, and event B is AFTER event A,
then event B is also AFTER the DCT.!6 Row 2 shows
the results of TIPSem with temporal transitivity.
Even augmented by transitivity, TIPSem fails to
detect many Ongoing (OG) and Future (FU) events;
most mislabeled OG and FU events were nominal.
Confusion matrices (Table 8) show that most of the

SWe used the obvious mappings from TIPSem relations:
“BEFORE” to “PA”, “AFTER” to “FU” , and “INCLUDES”
(for English) and “OVERLAP” (for Spanish) to “OG”.

'®Some transitivity rules are ambiguous: if event A is AF-
TER DCT, event B INCLUDES event A, event B can be AFTER
or INCLUDES DCT. We ran experiments and chose rules that
improved performance the most for TipSem.



missed OG events were labeled as Past (PA) while
FU events were commonly mislabeled as both PA
and OG. Below are some examples of OG and FU
events mislabeled as PA:

(8) Jego said Sunday on arriving in Guadeloupe that he
would stay as long as it took to bring an end to the
strike organised by the Collective against Extreme
Exploitation (LKP). (OG)

(9) A massive protest planned for Kathmandu on Tues-
day has been re-baptised a victory parade. (FU)

Predicted (EN) Predicted (SP)

PA OG FU | PA OG FU
Gold PA | 718 96 15 | 653 231 6
Gold OG | 156 35 11 | 196 160 10
Gold FU | 72 30 7 78 72 26

Table 8: Confusion Matrices for TIPSem (with transitivity).

SVM Results Next, we compare TIPSem’s results
with our SVM classifier. An issue is that TIPSem
identifies only 72% and 78% of the gold event men-
tions, for English and Spanish respectively!”. To
have a fair comparison, we applied the SVM to only
the event mentions that TipSem recognized. Row
3 shows these results for the SVM classifier using
its full feature set. The SVM outperforms TipSem
on all three categories, for both languages, with the
largest improvements on Future events.

Next, we ran ablation experiments with the SVM
to evaluate the impact of different subsets of its fea-
tures. For these experiments, we applied the SVM to
all gold event mentions, thus Rows 1-3 of Tables 6
and 7 report on fewer event mentions than rows 4-8.
Row 4 shows results using only bag-of-words fea-
tures'®. Row 5 shows results when additionally in-
cluding the tense, aspect, and time features provided
by TIPSem (Llorens et al., 2010). Unsurprisingly,
in both languages'? these features improve over just
bag-of-word features.

Row 6 further adds governing word features.
These improve English performance, especially for
On-Going events. For Spanish, governing word fea-

7We were not able to decouple TipSem’s event recognition
component and force it to process all event mentions.

'8Replacing each word feature with a word2vec embedding
resulted in slightly worse performance.

We always obtain even recall and precision for the micro
average metric because we only apply classifiers to event men-
tions that refer to a civil unrest event.
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tures slightly decrease performance, likely due to the
poor quality of the Spanish dependencies.

Row 7 adds the future oriented lexicon features°.
For both English and Spanish, the future oriented
lexicon increased overall performance, and (as ex-
pected) especially for Future events.

CNN Results Row 8 shows the results using CNN
models. For English and Spanish, the same window
(7 words for English, 6 words for Spanish) was used
to compute bag-of-word features for SVMs as for
training the CNN models. For English, the CNN
model further increased recall and precision across
all three classes. The CNN improved Spanish per-
formance on both Past and On-going events, but the
SVM outperformed the CNN for Future events when
the future oriented lexicon features were included.

6 Analysis

To better understand whether the CNN model’s
strong performance was related to handling com-
positionality, we examined some English examples
that were correctly recognized by the CNN model
but mislabeled by the SVM classifier with bag-of-
words features. The examples below (event men-
tions are in italics) suggest that the CNN may be
capturing the compositional impact of local cues like

“possibility” or “since”:

(10) Raising the possibility of a strike on New Year’s Eve,
the president of New York City’s largest union is
calling for a 30 percent raise over three years. (FU)

(11) The lockout was announced in the wake of a go-slow
and partial strike by the union since July 12 after
management turned down its demand. (OG)

We also conducted an error analysis by randomly
sampling and then analyzing 50 of the 473 errors
by the CNN model. Many cases (26/50) are am-
biguous from the sentence alone, requiring discourse
information. The first example below is caused by
the well-known “double access” ambiguity of the
complement of a communication verb (Smith, 1978;
Abusch, 1997; Giorgi, 2010).

(12) Chavez also said he discussed the strike with UN
Secretary General Kofi Annan and told him the strike
organizers were “terrorists.” (OG)

2For Spanish, we removed the governing word features be-
cause of the poor quality of the Spanish dependencies.



(13) Students and teachers protest over education budget
(PA)

In 9/50 cases, the contexts that imply temporal status
are complex and fall out of our +7 word range, e.g.,:

(14) Protesters on Saturday also occupied two gymnas-
tics halls near Gorleben which are to be used as ac-
commodation for police. They were later forcibly
dispersed by policemen. (PA)

The remaining 15/50 cases contain enough local
cues to be solvable by humans, but both the CNN
and SVM models nonetheless failed:

(15) Eastern leaders have grown weary of the protest
movement led mostly by Aymara. (OG)

7 Related Work

Our work overlaps with two communities of tasks
and corpora: the task of classifying temporal or-
der between event mentions and Document Creation
Time (DCT) in TempEval (Verhagen et al., 2007;
Verhagen et al., 2010; UzZaman et al., 2013), and
the task of extracting events, associated with cor-
pora such as ACE2005 (ACE, 2005) and the Event-
CorefBank (ECB) (Bejan and Harabagiu, 2008). By
studying the events in a particular frame (civil un-
rest), but focusing on their temporal status, our work
has the potential to draw these communities to-
gether. Most event extraction work (Freitag, 1998;
Appelt et al., 1993; Ciravegna, 2001; Chieu and Ng,
2002; Riloff and Jones, 1999; Roth and Yih, 2001;
Zelenko et al., 2003; Bunescu and Mooney, 2007)
has focused on extracting event slots or frames for
past events and assigning dates. The TempEval task
of linking events to DCT has not focused on events
that tend to have non-finite realizations, nor has it
focused on subtypes of future events. Our work, in-
cluding the corpus and the future-oriented verb lex-
icon, has the potential to benefit related tasks like
generating event timelines from news articles (Allan
et al., 2000; Yan et al., 2011) or social media sources
(Li and Cardie, 2014; Ritter et al., 2012), or explor-
ing the psychological implications of future oriented
language (Nie et al., 2015; Schwartz et al., 2015).

8 Conclusions

We have proposed a new task of recognizing the
past, on-going, or future temporal status of ma-
jor events, introducing a new resource for study-
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ing events in two languages. Besides its importance
for studying time and aspectuality, the EventStatus
dataset offers a rich resource for any future investi-
gation of information extraction from major societal
events.

The strong performance of the convolutional net
system suggests the power of latent representations
to model temporal compositionality, and points to
extensions of our work using deeper and more pow-
erful networks.

Finally, our investigation of the role of context
and semantic composition in conveying temporal in-
formation also has implications for our understand-
ing of temporality and aspectuality and their linguis-
tic expression. Many of the errors made by our CNN
system are complex ambiguities, like the double ac-
cess readings, that cannot be solved without infor-
mation from the wider discourse context. Our work
can thus also be seen as a call for the further use
of rich discourse information in the computational
study of temporal processing.
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Abstract

The challenges of Machine Reading and
Knowledge Extraction at a web scale re-
quire a system capable of extracting diverse
information from large, heterogeneous cor-
pora. The Open Information Extraction (OIE)
paradigm aims at extracting assertions from
large corpora without requiring a vocabulary
or relation-specific training data. Most sys-
tems built on this paradigm extract binary re-
lations from arbitrary sentences, ignoring the
context under which the assertions are cor-
rect and complete. They lack the expres-
siveness needed to properly represent and ex-
tract complex assertions commonly found in
the text. To address the lack of representa-
tion power, we propose NESTIE, which uses
a nested representation to extract higher-order
relations, and complex, interdependent asser-
tions. Nesting the extracted propositions al-
lows NESTIE to more accurately reflect the
meaning of the original sentence. Our ex-
perimental study on real-world datasets sug-
gests that NESTIE obtains comparable preci-
sion with better minimality and informative-
ness than existing approaches. NESTIE pro-
duces 1.7-1.8 times more minimal extractions
and achieves 1.1-1.2 times higher informative-
ness than CLAUSIE.

1 Introduction

Syntactic analyses produced by syntactic parsers are
a long way from representing the full meaning of the
sentences parsed. In particular, they cannot support
questions like “Who did what to whom?”, “Where
did what happen?”. Owing to the large, hetero-
geneous corpora available at web scale, traditional
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approaches to information extraction (Brin, 1998;
Agichtein and Gravano, 2000) fail to scale to the
millions of relations found on the web. As a re-
sponse, the paradigm of Open Information Extrac-
tion (OIE) (Banko et al., 2007) has seen a rise in
interest as it eliminates the need for domain knowl-
edge or relation-specific annotated data. OIE sys-
tems use a collection of patterns over the surface
form or dependency tree of a sentence to extract
propositions of the form (argl, rel,arg?2).

However, state-of-the-art OIE systems, REVERB
(Fader et al., 2011) and OLLIE (Schmitz et al., 2012)
focus on extracting binary assertions and suffer from
three key drawbacks. First, lack of expressivity of
representation leads to significant information loss
for higher-order relations and complex assertions.
This results in incomplete, uniformative and inco-
herent prepositions. Consider Example 1 in Fig-
ure 1. Important contextual information is either
ignored or is subsumed in over-specified argument
and relation phrases. It is not possible to fix such
nuances by post-processing the propositions. This
affects downstream applications like Question An-
swering (Fader et al., 2014) which rely on correct-
ness and completeness of the propositions.

Second, natural language frequently includes re-
lations presented in a non-canonical form that can-
not be captured by a small set of extraction pat-
terns that only extract relation mediated by verbs
or a subset of verbal patterns. Consider Ex-
ample 2 in Figure 1 that asserts, “Rozsa Hill
is the third hill near the river”, “Rozsa Hill is
Rose Hill” and “Rozsa Hill lies north of Cas-
tle Hill”. A verb-mediated pattern would extract

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 55-64,
Austin, Texas, November 1-5, 2016. (©2016 Association for Computational Linguistics



1. After giving 5,000 people a second chance at life,
doctors are celebrating the 25th anniversary of
Britain's first heart transplant.

P1: (doctors, are celebrating the 25th anniversary of,

R: Britain 's first heart transplant)

P1: (doctors, are celebrating, the 25th anniversary of

0: Britain's first heart transplant)

P1: (doctors, are celebrating, the 25th anniversary of
Britain's first heart transplant)

P2: (doctors, giving, second chance at life)

P3: (P1, after, P2)

2. Rozsa ( Rose ) Hill , the third hill near the river, lies
north of Castle Hill.

R: P1: (the third hill, lies north of, Castle Hill)
O: | P1: (the third hill, lies north of, Castle Hill)

P1: (Rozsa, lies, north of Castle Hill)
N: P2: (Rozsa Hill, is, third hill near the river)
P3: (Rozsa Hill, is, Rose)

3. “A senior official in Iraq said the body, which was
found by U.S. military police, appeared to have been
thrown from a vehicle.”

P1: (Iraq, said, the body)
P2: (the body, was found by, U.S. military police)

R:

P1: (A senior official in Iraq, said, the body which was

0: found by U.S. military police)

P1: (body, appeared to have been thrown, @)
P2: (P1, from, vehicle)

P3: (A senior official in Iraq, said, P2)

P4: (U.S. military police, found, body)

Figure 1: Example propositions from OIE systems: REVERB
(R), OLLIE (O) and NESTIE(N).

a triple, (the third hill, lies north
of, Castle Hill) thatis less informative than
atriple, (Rozsa, lies, north of Castle
Hill) which is not mediated by a verb in the
original sentence. Furthermore, these propositions
are not complete. Specifically, queries of the form
‘What is the other name of Rozsa Hill?”, “Where is
Rozsa Hill located?”, “Which is the third hill near
the river?” will either return no answer or return an
uninformative answer with these propositions. Since
information is encoded at various granularity levels,
there is a need for a representation rich enough to ex-
press such complex relations and sentence construc-
tions.

Third, OIE systems tend to extract propositions
with long argument phrases that are not minimal
and are difficult to disambiguate or aggregate for
downstream applications. For instance, the argu-
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ment phrase, body which was found by U.S. military
police, is less likely to be useful than the argument
phrase, body in Example 3 in Figure 1.

In this paper we present NESTIE, which over-
comes these limitations by 1) expanding the propo-
sition representation to nested expressions so addi-
tional contextual information can be captured, 2)
expanding the syntactic scope of relation phrases
to allow relations mediated by other syntactic en-
tities like nouns, adjectives and nominal modifiers.
NESTIE bootstraps a small set of extraction pat-
terns that cover simple sentences and learns broad-
coverage relation-independent patterns. We believe
that it is possible to adapt OIE systems that extract
verb-based relations to process assertions denoting
events with many arguments, and learn other non-
clausal relations found in the text. With weakly-
supervised learning techniques, patterns encoding
these relations can be learned from a limited amount
of data containing sentence equivalence pairs.

This article is organized as follows. We pro-
vide background on OIE in Sec. 2 followed by an
overview of our proposed solution in Sec. 3. We
then discuss how the extraction patterns for nested
representations are learned in Sec. 4. In Sec. 5,
we compare NESTIE against alternative methods on
two datasets: Wikipedia and News. In Sec. 6, we
discuss related work on pattern-based information
extraction.

2 Background

The key goal of OIE is to obtain a shallow seman-
tic representation of the text in the form of tuples
consisting of argument phrases and a phrase that
expresses the relation between the arguments. The
phrases are identified automatically using domain-
independent syntactic and lexical constraints. Some
OIE systems are:

TextRunner (Yates et al., 2007) WOE (Wu and
Weld, 2010): They use a sequence-labeling graph-
ical model on extractions labeled automatically us-
ing heuristics or distant supervision. Consequently,
long-range dependencies, holistic and lexical as-
pects of relations tend to get ignored.

ReVerb (Fader et al., 2011): Trained with shallow
syntactic features, REVERB uses a logistic regres-
sion classifier to extract relations that begin with a



verb and occur between argument phrases.

Ollie (Schmitz et al., 2012): Bootstrapping from
REVERB extractions, OLLIE learns syntactic and
lexical dependency parse-tree patterns for extrac-
tion. Some patterns reduce higher order relations
to ReVerb-style relation phrases. Also, representa-
tion is extended optionally to capture contextual in-
formation about conditional truth and attribution for
extractions.

ClauslE (Del Corro and Gemulla, 2013): Us-
ing linguistic knowledge and a small set of domain-
independent lexica, CLAUSIE identifies and classi-
fies clauses into clause types, and then generates ex-
tractions based on the clause type. It relies on a pre-
defined set of rules on how to extract assertions in-
stead of learning extraction patterns. Also, it doesn’t
capture the relations between the clauses.

There has been some work in open-domain in-
formation extraction to extract higher-order rela-
tions. KRAKEN (Akbik and Loser, 2012) uses a
predefined set of rules based on dependency parse
to identify fact phrases and argument heads within
fact phrases. But unlike alternative approaches,
it doesn’t canonicalize the fact phrases. There is
another body of work in natural language under-
standing that shares tasks with OIE. AMR parsing
(Banarescu et al., ), semantic role labeling (SRL)
(Toutanova et al., 2008; Punyakanok et al., 2008)
and frame-semantic parsing (Das et al., 2014). In
these tasks, verbs or nouns are analyzed to identify
their arguments. The verb or noun is then mapped to
a semantic frame and roles of each argument in the
frame are identified. These techniques have gained
interest with the advent of hand-constructed seman-
tic resources like PropBank and FrameNet (Kings-
bury and Palmer, 2002; Baker et al., 1998). Gener-
ally, the verb/noun and the semantically labeled ar-
guments correspond to OIE propositions and, there-
fore, the two tasks are considered similar. Systems
like SRL-IE (Christensen et al., 2010) explore if
these techniques can be used for OIE. However,
while OIE aims to identify the relation/predicate be-
tween a pair of arguments, frame-based techniques
aim to identify arguments and their roles with re-
spect to a predicate. Hence, the frames won’t corre-
spond to propositions when both the arguments can-
not be identified for a binary relation or when the
correct argument is buried in long argument phrases.
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Figure 2: System Architecture of NESTIE.

3 Task Definition and NestIE Overview

Task: We focus on the task of OIE, where the sys-
tem takes a natural language statement and extracts
the supported assertions. This is achieved by us-
ing an extractor that uses nested representations to
extract propositions and a linker that connects ex-
tracted propositions to capture context.

Proposition-based Extractor: We propose a
framework to extend open-domain binary-relation
extractors to extract n-ary and complex rela-
tions. As not all assertions can be expressed as
(argl, rel, arg2), we learn syntactic patterns
for relations that are expressed as nested templates
like, (argl, rel, (arg2,rel2,arg3)),
((argl,rel,arg2),rel2,arg3).

Proposition Linking: In practice, it is infeasible
to enumerate simple syntactic pattern templates that
capture the entire meaning of a sentence. Also, in-
creasing the complexity of templates would lead to
sparsity issues while bootstrapping. We assume that
there is a finite set of inter-proposition relations that
can be captured using a small set of rules which take
into account the structural properties of the propo-
sitions and syntactic dependencies between the rela-
tion phrases of the propositions.

System Evaluation: To compare NESTIE to
other alternative methods, we conduct an experi-
mental study on two real-world datasets: Wikipedia
and News. Propositions from each system are eval-
uated for correctness, minimality, and informative-
ness.



Template

Example

nsubjpass nmod:agent

Representation: T: (arg1, [rel, by], arg2)

Pattern:

A body has been found by police.

(body, [found, by], police)

Pattern:

nsubj - cop -

Representation: T: (arg1, be, arg2)

Fallujah is an Iraqi city.

(Fallujah, is, city)

Pattern:

nsubj cop

Representation: T: (arg1, be, [arg2, rel2, arg3])

rel2 = nmod(?!:agent).

Ghazi al-Yawar is new president of Iraq.

*

(Yawar, is, [president, of, Iraq])

-----

rel2 = nmod.” nsubj .-*"dob|

T2: (T1, rel3, arg4)

j A

Pattern: | arg3 [« <—| rellVB*| | arg_2_l____'| arg4 | 10,000 people in Africa died of Ebola.
rel3 = nmod(?!:agent).*

Representation: T1:([arg1, rel2, arg3], rel, arg2] T1: ([people, in, Africa], died, @)

T2: (T1, of, Ebola)

Figure 3: Seed templates and corresponding representation.

4 Proposition Extraction

Figure 2 illustrates the system architecture of
NESTIE. First, a set of high-precision seed tem-
plates is used to extract propositions. A template
maps a dependency parse-tree pattern to a triple
representation such as (argl, rel, arg2) for bi-
nary relations, or a nested triple representation such
as ((argl,rel,arg2),rel2,arg3) for n-
ary relations. Furthermore, an argument is allowed
to be a sequence of words, “arg2 rel2 arg3”
to capture its nominal modifiers. Then, using a RTE
dataset that contains syntactic paraphrases, NESTIE
learns equivalent parse-tree patterns for each tem-
plate in the seed set. These patterns are used to ex-
tract propositions which are then linked.

4.1 Constructing Seed Set

We use a set of 13 hand-written templates. Each
template maps an extraction pattern for a simple
sentence to corresponding representation. A sub-
set of these templates is shown in Figure 3. To
create a seed set of propositions, we use the RTE
dataset which is comprised of statements and their
entailed hypotheses. We observed that most of the
hypotheses were syntactic variants of the facts in
their corresponding statements. These hypotheses
were also short with a single, independent clause.
These shared sentence constructions could be cap-
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tured with a small set of templates. We iteratively
create templates until at least one proposition could
be extracted for each hypothesis. The propositions
from the hypotheses form the set for bootstrapping.

For each seed proposition extracted from a hy-
pothesis, the statement entailing the hypothesis con-
tains all the content words of the proposition and
expresses the same information as the proposition.
However, there is a closed class of words, such as
prepositions, a subset of adverbs, determiners, verbs
etc. that does not modify the underlying meaning of
the hypothesis or the statement and can be consid-
ered auxiliary. These were ignored while construct-
ing the seed set.

Example 1 Consider a statement-hypothesis pair,
Statement: Paul Bremer, the top U.S. civilian admin-
istrator in Iraq, and Iraq’s new president, Ghazi al-
Yawar, visited the northern Iraqi city of Kirkuk.
Hypothesis: Ghazi al-Yawar is the president of Iraq.
The hypothesis is entailed in the statement.
The seed templates extract propositions from
the hypothesis: (al-Yawar,is,president,
(al-Yawar, is,president of Iraq), and
(al-Yawar, is president of,Iraq).

Bootstrapping is a popular technique to gener-
ate positive training data for information extraction
(Collins and Singer, 1999; Hoffmann et al., 2011).
We extend the bootstrapping techniques employed



in OLLIE and RENOUN, for n-ary and complex re-
lations. First, instead of learning dependency parse-
tree patterns connecting the heads of the argument
phrases and the relation phrase connecting them, we
learn the dependency parse-tree patterns connect-
ing the heads of all argument and relation phrases
in the template. This allows greater coverage of
context for the propositions and prevents the argu-
ments/relations from being over-specified and/or un-
informative. Second, some of the relations in the
representation are derived from the type of depen-
dency, e.g. type of nominal modifier. As these
relations are implicit, and might not be present in
the paraphrase, they are ignored for learning. In-
tuitively, with such constraints, paraphrases “Mary
gave John a car” and “Mary gave a car to John”
can map to the same representation.

4.2 Extraction Pattern Learning

The biggest challenge in information extraction is
the multitude of ways in which information can be
expressed. Since it is not possible to enumerate
all the different syntactic variations of an assertion,
there is a need to learn general patterns that encode
the various ways of expressing the assertion. In par-
ticular, we learn the various syntactic patterns that
can encode the same information as the seed patterns
and hence can be mapped to same representation.
NESTIE tries to learn the different ways in which
the content words of a seed proposition from a hy-
pothesis can be expressed in the statement that en-
tails this hypothesis. We use the Stanford depen-
dency parser (De Marneffe et al., 2006) to parse
the statement and identify the path connecting the
content words in the parse tree. If such a path ex-
ists, we retain the syntactic constraints on the nodes
and edges in the path and ignore the surface forms
of the nodes in the path. This helps generalize the
learned patterns to unseen relations and arguments.
NESTIE could learn 183 templates from the 13 seed
templates. Figure 4 shows a subset of these patterns.

Example 2 Consider dependency parse-subtree of
the statement and hypothesis from Example 1,
Statement: Iraq P president PP ol — Yawar

. bj .
Hypothesis: al —Y awar T president LNy raq
A seed extraction pattern maps the parse-
tree of the hypothesis to the representation,
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(argl, be, arg2), returning proposition,
(al-Yawar, is,president of Iraq).
With bootstrapping, the syntactic pattern from the
statement is mapped to the same representation.

4.3 Pattern Matching

Once the extraction patterns are learned, we use
these patterns to extract propositions from new un-
seen sentences. We first parse a new sentence and
match the patterns against the parse tree. As the pat-
terns only capture the heads of the arguments and
relations, we expand the extracted propositions to
increase the coverage of context of the arguments
as in the original sentence.

Example 3 In the statement from Example 1, the
extraction patterns capture the dependency path con-
necting the head words: Irag, administrator
and Paul Bremer. However, to capture the con-
textual information, further qualification of the argu-
ment node, administrator, is required.

Following this observation, we expand the

arguments on nmod, amod, compound,
nummod, det, neg edges. We expand the
relations on advmod, neg, aux, auxpass,

cop, nmod edges. Only the dependency edges not
captured in the pattern are considered for expansion.
Also, the order of words from the original sentence
is retained in the argument phrases.

4.4 Proposition Linking

NESTIE uses a nested representation to capture the
context of extracted propositions. The context could
include condition, attribution, belief, order, reason
and more. Since it is not possible to generate or learn
patterns that can express these complex assertions
as a whole, NESTIE links the various propositions
from the previous step to generate nested proposi-
tions that are complete and closer in meaning to the
original statement.

The proposition linking module is based on the
assumption that the inter-proposition relation can be
inferred from the dependency parse of the sentence
from which propositions were extracted. Some of
the rules employed to link the propositions are:

e The relation of proposition P1 has a relation-
ship to the relation of proposition P2.



Template Seed Pattern

Learned Pattern

Pattern:

nsubjpass nmod:agent

Representation:  T: (arg1, [rel, by], arg2)

Representation:  T: (arg1, be, arg2)

nsubj —
Pattern: argl [« arg2 > rel

nsubj ar92

Pattern: | rel |

| arg3 |

| slot1 %ﬂJ arg2 | JJ lLUbH arg1 |

Representation: | T: (arg1, be, [arg2, rel2, arg3])

rel2 = nmod(?!:agent).*

ccomp

rel2 =nmod.*  nsubj

| arg3 |< | argi |<—| rel | VB*

_dobj
=9
arg2

Pattern:

vI arg4 | | arg1 |4—| slot1 |—>\|ar92|/'| rel | VB*

Representation:

rel3 = nmod(?!:agent).”
T1:([arg1, rel2, arg3], rel, arg2], T2: (T1, rel3, arg4)

xcomp

Figure 4: Syntactic Patterns learned using bootstrapping.

Consider the statement, “The accident happened af-
ter the chief guest had left the event.” and propo-
sitions, P1: (accident, happen, ¢) and P2:
(chief guest, had left, event). Us-
ing dependency edge, nmod : after, the linking re-
turns (P1,after,P2).

e Proposition P1 is argument in proposition P2.

Consider the statement, “A senior offi-
cial said the body appeared to have been
thrown from a vehicle” and propositions,
P1: (body, appeared to have been
thrown from,vehicle) and P2: (senior
official, said, ¢). The linking updates P2 to
(senior official,said,Pl).

e An inner nested proposition is replaced with a
more descriptive alternative proposition.

We use dependency parse patterns to link proposi-
tions. We find correspondences between: a ccomp
edge and a clausal complement, an advcl edge and
a conditional, a nmod edge and a relation modi-
fier. For clausal complements, a null argument in the
source proposition is updated with the target propo-
sition. For conditionals and nominal modifiers, a
new proposition is created with the source and target
propositions as arguments. The relation of the new
proposition is derived from the target of the mark
edge from the relation head of target proposition.
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4.5 Comparison with Ollie

NESTIE uses an approach similar to OLLIE and
WOE to learn dependency parse based syntactic pat-
terns. However, there are significant differences.
First, OLLIE and WOE rely on extractions from
REVERB and Wikipedia info-boxes respectively for
bootstrapping. Most of these relations are binary.
On the contrary, our algorithm is based on high-
confidence seed templates that are more expressive
and hence learn patterns expressing different ways in
which the proposition as a whole can be expressed.
Though the arguments in OLLIE can be expanded to
include the n-ary arguments, NESTIE encodes them
in the seed templates and learns different ways of
expressing these arguments. Also, similar to OL-
LIE, NESTIE can extract propositions that are not
just mediated by verbs.

5 Experiments

We conducted an experimental study to compare
NESTIE to other state-of-the-art extractors. We
found that it achieves higher informativeness and
produces more correct and minimal propositions
than other extractors.

5.1 Experimental Setup

We used two datasets released by (Del Corro and
Gemulla, 2013) in our experiments: 200 random
sentences from Wikipedia, and 200 random sen-
tences from New York Times (NYT). We compared



Dataset

Reverb

Ollie

ClauslE

NestIE

NYT dataset

Avg. Informativeness

1.437/5

2.09/5

2.32/5

2.762/5

Correct

187/275 (0.680)

359/529 (0.678)

527/882 (0.597)

469/914 (0.513)

Minimal (among correct)

161/187 (0.861)

238/359 (0.663)

199/527 (0.377)

355/469 (0.757)

Avg. Informativeness

1.63/5

2.267/5

2.432/5

2.602/5

Wikipedia dataset

Correct

194/258 (0.752)

336/582 (0.577)

453/769 (0.589)

415/827 (0.501)

Minimal (among correct)

171/194 (0.881)

256/336 (0.761)

214/453 (0.472)

362/415 (0.872)

Figure 5: Informativeness and number of correct and minimal extractions as fraction of total extractions.

NESTIE against three OIE systems: REVERB, OL-
LIE and CLAUSIE. Since the source code for each of
the extractors was available, we independently ran
the extractors on the two datasets. Next, to make the
extractions comparable, we configured the extrac-
tors to generate triple propositions. REVERB and
CLAUSIE extractions were available as triples by
default. OLLIE extends its triple proposition repre-
sentation. So, we generated an additional extraction
for each of the possible extensions of a proposition.
NESTIE uses a nested representation. So, we simply
extracted the innermost proposition in a nested rep-
resentation as a triple and allowed the subject and
the object in the outer proposition to contain a ref-
erence to the inner triple. By preserving references
the context of a proposition is retained while allow-
ing for queries at various granularity levels.

We manually labeled the extractions obtained
from all extractors to 1) maintain consistency, 2)
additionally, assess if extracted triples were infor-
mative and minimal. Some extractors use heuris-
tics to identify arguments and/or relation phrase
boundaries, which leads to over-specific arguments
that render the extractions unusable for other down-
stream applications. To assess the usability of ex-
tractions, we evaluated them for minimality (Bast
and Haussmann, 2013). Furthermore, the goal of
our system is to extract as many propositions as pos-
sible and lose as little information as possible. We
measure this as informativeness of the set of the ex-
tractions for a sentence. Since computing informa-
tiveness as a percentage of text contained in at least
one extraction could be biased towards long extrac-
tions, we used an explicit rating scale to measure
informativeness.

Two CS graduate student labeled each extraction
for correctness (0 or 1) and minimality (0 or 1). For
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each sentence, they label the set of extractions for in-
formativeness (0-5). An extraction is marked correct
if it is asserted in the text and correctly captures the
contextual information. An extraction is considered
minimal if the arguments are not over-specified i.e.
they don’t subsume another extraction or have con-
junctions or are excessively long. Lastly, they rank
the set of extractions on a scale of 0-5 (0 for bad,
5 for good) based on the coverage of information in
the original sentence. The agreement between label-
ers was measured in terms of Cohens Kappa.

5.2 Comparative Results

The results of our experimental study are summa-
rized in Figure 5 which shows the number of cor-
rect and minimal extractions, as well as the total
number of extractions for each extractor and dataset.
For each dataset, we also report the macro-average
of informativeness reported by the labelers. We
found moderate inter-annotator agreement: 0.59 on
correctness and 0.53 on minimality for both the
datasets. Each extractor also includes a confidence
score for the propositions. But since each extractor
has its unique method to find confidence, we com-
pare the precision over all the extractions instead of
a subset of high-confidence extractions.

NESTIE produced many more extractions, and
more informative extractions than other systems.
There appears to be a trade-off between informa-
tiveness and correctness (which are akin to recall
and precision, respectively). CLAUSEIE is the sys-
tem with results closer to NESTIE than other sys-
tems. However, the nested representation and propo-
sition linking used by NESTIE produce substantially
more (1.7-1.8 times more) minimal extractions than
CLAUSEIE, which generates propositions from the
constituents of the clause. Learning non-verb medi-



ated extraction patterns and proposition linking also
increase the syntactic scope of relation expressions
and context. This is also reflected in the average
informativeness score of the extractions. NESTIE
achieves 1.1-1.9 times higher informativeness score
than the other systems.

We believe that nested representation directly im-
proves minimality, independent of other aspects of
extractor design. To explore this idea, we conducted
experiments on OLLIE, which does not expand the
context of the arguments heuristically unlike other
extractors. Of the extractions labeled correct but not
minimal by the annotators on the Wikipedia dataset,
we identified extractions that satisfy one of: 1) has
an argument for which there is an equivalent extrac-
tion (nested extractions), 2) shares the same subject
with another extraction whose relation phrase con-
tains the relation and object of this extraction (n-
ary extractions), 3) has an object with conjunction.
Any such extractions can be made minimal and in-
formative with a nested representation. 73.75% of
the non-minimal correct extractions met at least one
of these conditions, so by a post-processing step,
we could raise the minimality score of OLLIE by
17.65%, from 76.1% to 93.75%.

5.3 Error Analysis of NestIE

We did a preliminary analysis of the errors made
by NESTIE. We found that in most of the cases
(about 33%-35%), extraction errors were due to in-
correct dependency parsing. This is not surprising as
NESTIE relies heavily on the parser for learning ex-
traction patterns and linking propositions. An incor-
rect parse affects NESTIE more than other systems
which are not focused on extracting finer grained in-
formation and can trade-off minimality for correct-
ness. An incorrect parse not only affects the pattern
matching but also proposition linking which either
fails to link two propositions or produces an incor-
rect proposition.

Example 4 Consider the statement, “A day after
strong winds stirred up the Hauraki Gulf and broke
the mast of Team New Zealand, a lack of wind
caused Race 5 of the America’s Cup to be aban-
doned today.”. The statement entails following as-
sertions:

Al: “strong winds stirred up the Hauraki Gulf”
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A2: “strong winds broke the mast of Team New
Zealand”

A3: “alack of wind caused Race 5 of the America’s
Cup to be abandoned”

Al and A2 are parsed correctly. A3 is parsed
incorrectly with Race 5 as object of the verb
caused. Some extractors either don’t capture A3
or return an over-specified extraction, (a lack of
wind, caused, Race 5 of the America ’s Cup to be
abandoned today). Such an extraction is correct but
not minimal.

To maintain minimality, NESTIE aims to extract
propositions, P1: (Race 5 of the America ’s Cup, be
abandoned, ¢) and P2: (a lack of wind, caused, P1).
However, it fails because of parser errors. It extracts
incorrect proposition, P3: (a lack of wind, caused,
Race 5) corresponding to A3 and links it to propo-
sitions for Al and A2. Linking an incorrect propo-
sition generates more incorrect propositions which
hurt the system performance.

However, we hope this problem can be allevi-
ated to some extent as parsers become more robust.
Another approach could be to use clause segmenta-
tion to first identify clause boundaries and then use
NESTIE on reduced clauses. As the problem be-
comes more severe for longer sentences, we wish to
explore clause processing for complex sentences in
future.

Another source of errors was under-specified
propositions. Since our nested representation al-
lows null arguments for intransitive verb phrases
and for linking propositions, failure to find an ar-
gument/proposition results in an under-specified ex-
traction. We found that 27% of the errors were be-
cause of null arguments. However, by ignoring ex-
tractions with null arguments we found that preci-
sion increases by only 4%-6% (on Wikipedia). This
explains that many of the extractions with empty ar-
guments were correct, and need special handling.
Other sources of errors were: aggressive general-
ization of an extraction pattern to unseen relations
(24%), unidentified dependency types while parsing
long, complex sentences (21%), and errors in ex-
panding the scope of arguments and linking extrac-
tions (20%).



6 Related Work

As OIE has gained popularity to extract propositions
from large corpora of unstructured text, the problem
of the extractions being uninformative and incom-
plete has surfaced. A recent paper (Bast and Hauss-
mann, 2014) pointed out that a significant fraction
of the extracted propositions is not informative. A
simple inference algorithm was proposed that uses
generic rules for each semantic class of predicate to
derive new triples from extracted triples. Though it
improved the informativeness of extracted triples, it
did not alleviate the problem of lost context in com-
plex sentences. We, therefore, create our own ex-
tractions.

Some recent works (Bast and Haussmann, 2013;
Angeli et al., 2015) have tried to address the prob-
lem of long and uninformative extractions in open-
domain information extraction by finding short en-
tailment or clusters of semantically related con-
stituents from a longer utterance. These clusters are
reduced to triples using schema mapping to known
relation types or using a set of hand-crafted rules.
NESTIE shares similar objectives but uses boot-
strapping to learn extraction patterns.

Bootstrapping and pattern learning has a long his-
tory in traditional information extraction. Systems
like DIPRE (Brin, 1998), SNOWBALL (Agichtein
and Gravano, 2000), NELL (Mitchell, 2010), and
OLLIE bootstrap based on seed instances of a rela-
tion and then learn patterns for extraction. We fol-
low a similar bootstrapping algorithm to learn ex-
traction patterns for n-ary and nested propositions.

Using a nested representation to express com-
plex and n-ary assertions has been studied in closed-
domain or ontology-aided information extraction.
Yago (Suchanek et al., 2008) and (Nakashole and
Mitchell, 2015) extend binary relations to capture
temporal, geospatial and prepositional context infor-
mation. We study such a representation for open-
domain information extraction.

7 Conclusions

We presented NESTIE, a novel open information ex-
tractor that uses nested representation for expressing
complex propositions and inter-propositional rela-
tions. It extends the bootstrapping techniques of pre-
vious approaches to learn syntactic extraction pat-
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terns for the nested representation. This allows it to
obtain higher informativeness and minimality scores
for extractions at comparable precision. It produces
1.7-1.8 times more minimal extractions and achieves
1.1-1.2 times higher informativeness than CLAU-
SEIE. Thus far, we have tested our bootstrap learn-
ing and proposition linking approaches only on a
small dataset. We believe that its performance will
improve with larger datasets. NESTIE can be seen
as a step towards a system that has a greater aware-
ness of the context of each extraction and provides
informative extractions to downstream applications.
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Abstract

With the renaissance of neural network in re-
cent years, relation classification has again
become a research hotspot in natural lan-
guage processing, and leveraging parse trees
is a common and effective method of tack-
ling this problem. In this work, we offer a
new perspective on utilizing syntactic infor-
mation of dependency parse tree and present
a position encoding convolutional neural net-
work (PECNN) based on dependency parse
tree for relation classification. First, tree-
based position features are proposed to en-
code the relative positions of words in depen-
dency trees and help enhance the word repre-
sentations. Then, based on a redefinition of
“context”, we design two kinds of tree-based
convolution kernels for capturing the semantic
and structural information provided by depen-
dency trees. Finally, the features extracted by
convolution module are fed to a classifier for
labelling the semantic relations. Experiments
on the benchmark dataset show that PECNN
outperforms state-of-the-art approaches. We
also compare the effect of different position
features and visualize the influence of tree-
based position feature by tracing back the con-
volution process.

1 Introduction

Relation classification focuses on classifying the se-
mantic relations between pairs of marked entities in
given sentences (Hendrickx et al., 2010). It is a fun-
damental task which can serve as a pre-existing sys-
tem and provide prior knowledge for information ex-
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traction, natural language understanding, informa-
tion retrieval, etc. However, automatic recognition
of semantic relation is challenging. Traditional fea-
ture based approaches rely heavily on the quantity
and quality of hand-crafted features and lexical re-
sources, and it is time-consuming to select an op-
timal subset of relevant features in order to maxi-
mize performance. Though kernel based methods
get rid of the feature selection process, they need
elaborately designed kernels and are also computa-
tionally expensive.

Recently, with the renaissance of neural network,
deep learning techniques have been adopted to pro-
vide end-to-end solutions for many classic NLP
tasks, such as sentence modeling (Socher, 2014;
Kim, 2014) and machine translation (Cho et al.,
2014). Recursive Neural Network (RNN) (Socher
et al., 2012) and Convolutional Neural Network
(CNN) (Zeng et al., 2014) have proven powerful
in relation classification. In contrast to traditional
approaches, neural network based methods own the
ability of automatic feature learning and alleviate the
problem of severe dependence on human-designed
features and kernels.

However, previous researches (Socher et al.,
2012) imply that some features exploited by tradi-
tional methods are still informative and can help en-
hance the performance of neural network in relation
classification. One simple but effective approach is
to concatenate lexical level features to features ex-
tracted by neural network and directly pass the com-
bined vector to classifier. In this way, Socher et al.
(2012), Liu et al. (2015) achieve better performances
when considering some external features produced
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by existing NLP tools. Another more sophisticated
method adjusts the structure of neural network ac-
cording to the parse trees of input sentences. The
results of (Li et al., 2015) empirically suggest syn-
tactic structures from recursive models might offer
useful power in relation classification. Besides rela-
tion classification, parse tree also gives neural net-
work a big boost in other NLP tasks (Mou et al.,
2015; Tai et al., 2015).

caused

A A
SN
/ N\
[Convulsions] are by
X
N\
\
occur [fever]
that after a

DTaP

[Convulsions] that occur after DTaP are caused by a [fever].

Figure 1: A dependency tree example. Words in square brack-
ets are marked entities. The red dashed-line arrows indicate the

path between two entities.

Dependency parse tree is valuable in relation clas-
sification task. According to our observation, depen-
dency tree usually shortens the distances between
pairs of marked entities and helps trim off redundant
words, when comparing with plain text. For exam-
ple, in the sentence shown in Figure 1, two marked
entities span the whole sentence, which brings much
noise to the recognition of their relation. By con-
trast, in the dependency tree corresponding to the
sentence, the path between two marked entities com-
prises only four words and extracts a key phrase
“caused by” that clearly implies the relation of enti-
ties. This property of dependency tree is ubiquitous
and consistent with the Shortest Path Hypothesis
which is accepted by previous studies (Bunescu and
Mooney, 2005; Xu et al., 2015a; Xu et al., 2015b).

To better utilize the powerful neural network and
make the best of the abundant linguistic knowledge
provided by parse tree, we propose a position encod-
ing convolutional neural network (PECNN) based
on dependency parse tree for relation classification.
In our model, to sufficiently benefit from the impor-
tant property of dependency tree, we introduce the
position feature and modify it in the context of parse

66

tree. Tree-based position features encode the rela-
tive positions between each word and marked en-
tities in a dependency tree, and help the network
pay more attention to the key phrases in sentences.
Moreover, with a redefinition of “context”, we de-
sign two kinds of tree-based convolution kernels for
capturing the structural information and salient fea-
tures of sentences.
To sum up, our contributions are:

1) We propose a novel convolutional neural network
with tree-based convolution kernels for relation
classification.

2) We confirm the feasibility of transferring the po-
sition feature from plain text to dependency tree,
and compare the performances of different posi-
tion features by experiments.

3) Experimental results on the benchmark dataset
show that our proposed method outperforms the
state-of-the-art approaches. To make the mech-
anism of our model clear, we also visualize the
influence of tree-based position feature on rela-
tion classification task.

2 Related Work

Recent studies usually present the task of relation
classification in a supervised perspective, and tra-
ditional supervised approaches can be divided into
feature based methods and kernel methods.

Feature based methods focus on extracting and
selecting relevant feature for relation classifica-
tion. Kambhatla (2004) leverages lexical, syntactic
and semantic features, and feeds them to a maxi-
mum entropy model. Hendrickx et al. (2010) show
that the winner of SemEval-2010 Task 8 used the
most types of features and resources, among all par-
ticipants. Nevertheless, it is difficult to find an opti-
mal feature set, since traversing all combinations of
features is time-consuming for feature based meth-
ods.

To remedy the problem of feature selection men-
tioned above, kernel methods represent the input
data by computing the structural commonness be-
tween sentences, based on carefully designed ker-
nels. Mooney and Bunescu (2005) split sentences
into subsequences and compute the similarities us-
ing the proposed subsequence kernel. Bunescu and
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[fever]

word representation: word embedding +
tree-based position feature

convolution with
tree-based kernels

fully connected layer +

max-poolin .
P 9 softmax classifier

Figure 2: The framework of PECNN. The red and blue circles represent the word embeddings and tree-based position features of

words. The yellow and green circles stand for the feature maps extracted by two kinds of convolution kernels respectively.

Mooney (2005) propose a dependency tree kernel
and extract information from the Shortest Depen-
dency Path (SDP) between marked entities. Since
kernel methods require similarity computation be-
tween input samples, they are relatively computa-
tionally expensive when facing large-scale datasets.

Nowadays, deep neural network based ap-
proaches have become the main solutions to relation
classification. Among them, some handle this task
by modifying sentence modeling methods. Socher et
al. (2012) build RNN on constituency trees of sen-
tences, and apply the model to relation recognition
task. Zeng et al. (2014) propose the use of position
feature for improving the performance of CNN in
relation classification. dos Santos et al. (2015) di-
minish the impact of noisy class by using a pairwise
ranking loss function based CNN. Meanwhile, in-
spired by the ideas of traditional methods, some re-
cent researches concentrate on mining information
from the SDP. Xu et al. (2015b) use a multichan-
nel LSTM network to model the SDP in given sen-
tences. Liu et al. (2015) reserve the subtrees attached
to the SDP and propose an augmented SDP based
CNN. Neural network based methods offer the ad-
vantage of automatic feature learning and also scale
well with large amounts of data.

3 Proposed Model

Given a sentence s with two marked entities el and
€2, we aim to identify the semantic relation between
el and e2 in relation classification. As the set of
target relations is predefined, this task can be formu-
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lated as a multi-class classification problem. In this
section, we detailedly describe our proposed model
designed for this problem.

3.1 Framework

The schematic illustration of the framework is
shown in Figure 2.

First, the dependency tree of a sentence is gen-
erated by the Stanford Parser (Klein and Manning,
2003). For each word in the tree, its word embed-
ding and tree-based position features are concate-
nated as its representation. The position feature of a
word is determined by the relative position between
the word and marked entities in the dependency tree.

Next, with tree-based kernels, convolution opera-
tions are conducted on each node of the dependency
tree. Compared with plain text, dependency tree
could provide a word with more meaningful con-
text, thus making tree-based kernel more effective.
After convolution, we apply max-pooling over the
extracted feature maps to capture the most important
features.

At last, the output of max-pooling layer, i.e. the
feature vector of input sentence, is fed to a softmax
classifier for labelling the semantic relation of enti-
ties in each sentence.

3.2 Word Represetation

The representation of a word is composed of two
parts: word embedding and tree-based position fea-
ture.



3.2.1 Word Embedding

Distributed representation of words in a vector
space help learning algorithms to achieve better per-
formance in NLP tasks (Mikolov et al., 2013). Such
representation is usually called word embedding in
recent works. High-quality word embedding is able
to capture precise syntactic and semantic informa-
tion by training unsupervisedly on large-scale cor-
pora.

In our model, we initialize the word embeddings
by pretraining them on a large corpus and further
fine-tune them in training phase.

3.2.2 Tree-based Position Feature

Position Feature (PF) is first proposed by (Col-
lobert et al., 2011) for semantic role labeling. (Zeng
et al., 2014) exploit position feature as a substitute
for traditional structure features in relation classifi-
cation. The main idea of position feature is to map
each discrete distance to a real-valued vector. It is
similar to word embedding, except that words are
replaced by discrete distances. For instance, let us
examine again the sentence shown in Figure 1,

[Convulsions].; that occur after DTaP are caused by
a [fever]es.

the relative distances of caused to Convulsions and
fever are respectively 6 and —3. Each relative dis-
tance is further mapped to a d,,; (a hyperparameter)
dimensional vector, which is randomly initialized.
Supposing p f and p f_3 are the corresponding vec-
tors of distance 6 and —3, the position feature of
caused is given by concatenating these two vectors
[pfe, pf-3]-

Position feature on plain text proves to be infor-
mative (dos Santos et al., 2015), while it may suf-
fer from several problems. According to our case
study, adverbs or unrelated entities that appear be-
tween two entities in a sentence could significantly
affect the performance of position feature, as these
words only change the relative distance to entities
without providing any more useful information for
relation classification. Similarly, position feature of-
ten fails to handle sentences in which marked enti-
ties are too far from each other.

On the other hand, dependency tree focuses on the
action and agents in a sentence (Socher et al., 2014),
which is valuable for relation classification. As we
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have mentioned above, dependency tree is able to
shorten the distances between pairs of marked enti-
ties and help trim off redundant words. Therefore,
it is straightforward and reasonable to transfer the
position feature from plain text to dependency tree.

We propose two kinds of Tree-based Position Fea-
ture which we refer as TPF1 and TPF2.

TPF1 encodes the relative distances of current
word to marked entities in dependency trees. The
“relative distance” here refers to the length of the
shortest dependency path between current word and
target entity. The sign of the distance is used to dis-
tinguish whether current word is a descendant of tar-
get entity. After calculating the relative distances of
words in the tree, we can get their TPF1 by mapping
relative distances to corresponding vectors, which is
the same as the PF in plain text.

To more precisely describe the position of a word,
TPF2 incorporates more information given by de-
pendency tree. TPF2 represents the relative posi-
tions between current word and marked entities by
encoding their shortest paths. For a word and an en-
tity, the shortest path between them can be separated
by their lowest common ancestor, and the lengths
of the two sub-paths are sufficient for encoding the
shortest path and the relative position between the
word and the entity. As a result, we formally rep-
resent the relative position using a 2-tuple, in which
two elements are the lengths of the two separated
sub-paths respectively. Thereafter, each unique rel-
ative position is mapped to a real-valued vector.

1 caused (1,0)

AN

0 [Convulsions] are 2by(1,1)
/ 0,0 2 (11 \
-1 occur (0,1) 3 [fever](1,2)
-2 that (0,2) -2 after (0,2) 4 a(1,3)
-3 DTaP(0,3)

Figure 3: Example of Tree-based Position Features. The red
numbers are relative distances in TPF1. The blue 2-tuples are

relative positions in TPF2.

For example, in Figure 3, the path between Con-
vulsions and by is Convulsions— caused<—by. In



TPF1, the relative distance of by to Convulsions is 2,
the length of this path. In TPF2, the lowest common
ancestor caused splits the path into two subpaths of
length 1, so the relative position between Convul-
sions and by is (1, 1) (encoded in 2-tuple). More ex-
amples of the tree-based position features are shown
in Figure 3.

TPF1 and TPF2 both offer good strategies for en-
coding word position in dependency tree. TPF2 is
more fine-grained than TPF1 and TPF1 is a simpli-
fied version of TPF2.

In our model, for each word in dependency trees,
its word embedding and tree-based position feature
are concatenated to form its representation, which is
subsequently fed to the convolutional layer.

3.3 Convolution Methods

In the classic CNN architecture of (Collobert et al.,
2011) and its variants (Kim, 2014), a convolution
window covers a word and its context, i.e. its neigh-
boring words. Thus convolution only captures local
features around each word. Words that are not in a
same window will not interact, even if they are syn-
tactically related.

Compared with plain text, dependency tree could
provide a word with more meaningful context. In
a dependency tree, words are connected if they are
in some dependency relationship. To capitalize on
these syntactic information, we regard the parent and
children of a word (i.e. nodes neighboring this word)
as its new context. Changing the definition of “con-
text” leads to modification of convolution kernel. To
implement this idea, we design two kinds of tree-
based kernels (Kernel-1 and Kernel-2), and apply
them to sentences in dependency tree form.

Formally, for a word x in the dependency tree,
let p be its parent and cy, - - - , ¢, be its n children.
Their vector representation are respectively denoted
by x,p,ci,--- ,c, € RE The convolution process
of Kernel-1 is formulated as

z}m- :g(le~a:+Wpl-p+Wcl~ci)

1
for )

1=1,---,n
where z!, € R™ and n; is the number of Kernel-1,

and W, Wpl, Wl € R™*d are weight parameters
corresponding to the word, its parent and children
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respectively. g is the non-linear activation function.
For leaf nodes which have no child, i.e. n = 0, we
assign each of them a child of which the vector rep-
resentation is 0. For the root node, p is set to be
0.

Similarly, the output of Kernel-2 is given by

zoi=g(W2 -z + Wi ci+ W ciy1)

for @

i=1,---,n—1

where 22, € R™ and ny is the number of Kernel-
2, and W2, W2, W2 € R™2%4 are weight parame-
ters associated with the word and its two neighbor-
ing children. If n < 1, we simply add one or two O
children, just like the zero padding strategy.

Kernel-1 aims at extracting features from words
of multiple levels in dependency tree, while Kernel-
2 focuses on mining the semantic information be-
tween words which share the same parent. Kernel-
1 and Kernel-2 both consider 3 words at a time
because the experimental results of previous re-
searches (Zeng et al., 2014; dos Santos et al., 2015)
suggest that trigram features are relatively more use-
ful in relation classification. And it is also straight-
forward to extend these kernels to a larger size and
apply them to other tasks.

After convolution with tree-based kernels, we ap-
ply a global max-pooling operation over extracted
features by taking the maximum value in each di-
mension, which is formulated as

h! = elemax z!, 3)
T,

h? = elemax 22, 4)
T,
where h' € R™, h? € R™, and elemax is the op-
eration which gives the element-wise maximum of
all input vectors. As a consequence, the output of
convolution process is [h!, h?], the combination of
features extracted by two kinds of kernels.

3.4 Output and Training Objective

After convolution, the extracted feature is further
passed to a fully connected softmax layer whose out-
put is the probability distribution over all types of
relations.



Since we treat the relation classification task as a
multi-class classification problem, the training ob-
jective is the cross-entropy error. For regularization,
we apply dropout (Srivastava et al., 2014) to the fea-
ture vector extracted by convolution and penalize the
fully connected layer with [ regularizer as well.

Some other dependency tree based methods like
(Liu et al., 2015), (Xu et al., 2015a) and (Xu et al.,
2015b), all focus on using different kinds of neu-
ral networks to model the shortest dependency path
(SDP) between entities. By contrast, PECNN ex-
tracts features from the whole dependency tree, so
that the information out of SDP will be taken into
consideration as well. The empirical results of (dos
Santos et al., 2015) suggest that when position fea-
tures exist, modeling the full sentence yields a bet-
ter performance than only using the subsentence be-
tween entities. With the help of tree-based position
feature, our model is capable of evaluating the im-
portance of different parts of dependency trees and
tends to pay relatively more attention to SDP.

Some methods enhancing their performances by
proposing dataset-specific strategies. dos Santos et
al. (2015) treat the class Other as a special class and
omit its embedding. Xu et al. (2015a) take the re-
lation dimensionality into account and introduce a
negative sampling strategy to double the number of
training samples, which can be regarded as data aug-
mentation. These strategies do not conflict with our
model, but we decide not to integrate them into our
methods as we aim to offer a general and effective
feature extraction model for relation classification.

4 Experiments

4.1 Dataset and Evaluation Metric

To evaluate our method, we conduct experiments on
the SemEval2010 Task 8 dataset which is a widely
used benchmark for relation classification. The
dataset contains 8, 000 training sentences and 2, 717
test sentences. In each sentence, two entities are
marked as target entities.

The predefined target relations include 9 directed
relations and an undirected Other class. The 9
directed relations are Cause-Effect, Component-
Whole, Content-Container, Entity- Destination,
Entity-Origin, Instrument-Agency, Member-
Collection, Message-Topic and Product-Producer.
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“Directed” here means, for example, Cause-
Effect(e1,e2) and Cause-Effect(es,e1) are two
different relations. In another word, the direction-
ality of relation also matters. And sentences that
do not belong to any directed relation are labelled
as Other. Therefore, relation classification on this
dataset is a 19-class classification problem.

Following previous studies, we use the official
evaluation metric, macro-averaged F1-score with di-
rectionality taken into account and the Other class
ignored.

4.2 Training Details

Since there is no official validation set, 10% of the
training sentences are taken out for hyperparameter
tuning and early stopping.

When converting sentences to dependency trees,
we note that some prepositions such as “by”, “in”
and “of”’, might be important clues to relation clas-
sification. To reserve these valuable information, we
use the Stanford Parser without the collapsed op-
tion.

In the dataset, there are some entities consisting of
multiple words, which make the calculation of rela-
tive position ambiguous. To solve this problem, we
take the last word as the representation of an entity,
as the last word is usually the predominant word.

For word embeddings, we initialize them using
the 300-dimensional word2vec vectors!. The vec-
tors are trained on 100 billion words from Google
News. Words not present in the word2vec vectors
are initialized by sampling each dimension from a
uniform distribution (Kim, 2014). Tree-based posi-
tion features are 50-dimensional and initialized ran-
domly. Therefore the representation of each word
has dimensionality of 400.

We use ReLU as the activation function. The
number of convolution kernels is 500 for each kind,
1,000 in total. The dropout rate is 0.5, and the co-
efficient of /5 penalty of fully connected layer is set
to 1075. These parameters are selected through grid
search on validation set. The network is trained with
the Adadelta update rule (Zeiler, 2012). The net-
work is implemented with Theano (Theano Devel-
opment Team, 2016).

'https://code.google.com/p/word2vec/



Classifier | Features 1
Without External Lexical Features
MVRNN | word embedding, constituency tree 79.1
CNN word embedding, position feature 78.9
word embedding 82.8*
CR-CNN word embedding, position feature 84.1%
word embedding, dependency tree 81.9
depLCNN word embedding, dependency tree 84.0°
SDP-LSTM | word embedding, dependency tree 83.0
PECNN word embedding, dependency tree, tree-based position feature 84.0
With External Lexical Features
POS, prefixes, morphological, WordNet, dependency parse
SVM Levin classes, PropBankFrameNet, NomLex-Plus, Google n-gram 82.2
paraphrases, TextRunner
MVRNN | word embedding, constituency tree, POS, NER, WordNet 82.4
CNN word embedding, position feature, WordNet 82.7
DeoNN word embedding, dependency tree, WordNet 83.0
P word embedding, dependency tree, NER 83.6
word embedding, dependency tree, WordNet 83.7
depLCNN word embedding, dependency tree, WordNet 85.6°
word embedding, dependency tree, POS embedding
SDP-LSTM WordNet embedding, grammar relation embedding 83.7
word embedding, dependency tree, tree-based position feature, POS
PECNN NER, WordNet 84.6

Table 1: Comparison of different relation classification models. The symbol * indicates the results with special treatment of the

class Other. The symbol ° indicates the results with data augmentation strategy.

4.3 Results

The performances of our proposed model and other
state-of-the-art methods are shown in Table 1.

First, we compare PECNN with the following
baselines when no external lexical feature is used.

Socher et al. (2012) assign a vector and a matrix
to each word for the purpose of semantic composi-
tion, and build recursive neural network along con-
stituency tree (MVRNN). It is noteworthy that this
work is the first one who confirms the feasibility of
applying neural network to relation classification.

Following the ideas of (Collobert et al., 2011),
Zeng et al. (2014) first solve relation classifica-
tion using convolutional neural network (CNN). The
position feature introduced by them proves effec-
tive. dos Santos et al. (2015) build a similar CNN
called CR-CNN but replace the objective function
with a pairwise ranking loss. By treating the noisy
class Other as a special class, this method achieves
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an F'1 of 84.1. The F'1 score is 82.7 if no special
treatment is applied.

The rest two baselines focus on modeling the
Shortest Dependency Paths (SDP) between marked
entities. Xu et al. (2015a)) (depLCNN) integrate the
relation directionality into CNN and achieve an F'1
of 84.0 with a data augmentation strategy called
negative sampling. Without such data augmenta-
tion, their F'1 score is 81.9. Xu et al. (2015b) (SDP-
LSTM) represent heterogeneous features as embed-
dings and propose a multichannel LSTM based re-
current neural network for picking up information
along the SDP. Their F'1 score is 83.0 when only
word embedding is used as the word representation.

Without considering any external lexical feature
and dataset-specific strategy, our model achieve an
F1 of 84.0, suggesting that tree-based position fea-
tures and kernels are effective. Comparing with the
CNN based on plain text, our model benefits from
dependency tree based network and obtain a notable
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Figure 4: Visualization of the effect of tree-based position feature. The proportions of words change with the use of tree-based

position feature.

improvement.

When external lexical features are available, we
take two more baselines into account. The first one
(SVM) is a typical example of traditional feature-
based methods which rely largely on hand-crafted
features. Benefitting from various features and re-
sources, this method won the SemEval 2010 Task 8
by a large margin (Hendrickx et al., 2010). Liu et al.
(2015) (DepNN) reserve the subtrees attached to the
SDP and propose an augmented SDP based CNN.

Most of these baselines concatenate external lex-
ical features to features extracted by neural network
and directly pass the combined vector to classifier.
SDP-LSTM represents lexical features as embed-
dings and enhances its word representation. For fair
comparison, we add three features (POS tags, NER
tags and WordNet hypernyms of marked entities) to
the vector extracted by our model and retrain the net-
work. Thus, our model achieves an F'1 of 84.6 and
outperforms all existing baselines in a fair condition
where no data augmentation strategy is adopted. The
enhancement we gain from external features is less,
comparing with other baselines. This implies that
our model is able to mine useful features from lim-
ited resources, even no extra information is avail-
able.

4.4 Effect of Different Position Features

Position Feature | F'1
plain text PF 83.21
TPF1 83.99
TPF2 83.90

Table 2: Comparison of different position features.
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Table 2 summarizes the performances of proposed
model when different position features are exploited.
To concentrate on studying the effect of position fea-
tures, we do not involve lexical features in this sec-
tion. As the table shows, the position feature on
plain text is still effective in our model and we ac-
credit its satisfactory result to the dependency in-
formation and tree-based kernels. The F'1 scores of
tree-based position features are higher since they are
“specially designed” for our model.

Contrary to our expectation, the more fine-grained
TPF2 does not yield a better performance than
TPF1, and two kinds of TPF give fairly close results.
One possible reason is that the influence of a more
elaborated definition of relative position is minimal.
As most sentences in this dataset are of short length
and their dependency trees are not so complicated,
replacing TPF1 with TPF2 usually brings little new
structural information and thus results in a similar
F'1 score.

However, though the performances of different
position features are close, tree-based position fea-
ture is an essential part of our model. The F'1 score
is severely reduced to 75.22 when we remove the
tree-based position feature in PECNN.

4.5 Effect of Tree-based Position Feature

For shallow CNN in NLP, visualization offers clear
and convincing explanations for the mechanism of
neural networks (dos Santos and Gatti, 2014; Mou
et al., 2015). Moreover, it is easy to implement.
Note that in the max-pooling step, for each ker-
nel, we select the feature which has the largest value.
This feature corresponds to 3 words in the convolu-



tion step, and we regard them as the most relevant
words extracted by this kernel, with respect to the
sentence . Since there are 1,000 kernels in total, we
count 3, 000 words (0 will be ignored) and calculate
the proportion of each different word. Intuitively,
the more important a word is in this task, the larger
its proportion will be.

In Figure 4, we compare the proportions of words
in the example sentence when tree-based position
feature (TPF) is used and not. As we can see, the
proportions of two entities, Convulsions and fever,
and the phrase caused by all increase visibly with
the presence of TPF, suggesting that TPF is effec-
tive in helping the neural network pay more atten-
tion to the crucial words and phrases in a sentence.
The word occur is also picked up by our model since
it is an important candidate clue to relation classifi-
cation. Meanwhile, the influence of irrelevant entity
D1aP is remarkably diminished as expected.

5 Conclusion

This work presents a dependency parse tree based
convolutional neural network for relation classifica-
tion. We propose tree-based position features to en-
code the relative positions of words in a dependency
tree. Meanwhile, tree-based convolution kernels are
designed to gather semantic and syntactic informa-
tion in dependency trees. Experimental results prove
the effectiveness of our model. Comparing with
plain text based CNN, our proposed kernels and po-
sition features boost the performance of network by
utilizing dependency trees in a new perspective.
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Abstract

This paper focuses on the study of recognizing
discontiguous entities. Motivated by a previ-
ous work, we propose to use a novel hyper-
graph representation to jointly encode discon-
tiguous entities of unbounded length, which
can overlap with one another. To compare
with existing approaches, we first formally in-
troduce the notion of model ambiguity, which
defines the difficulty level of interpreting the
outputs of a model, and then formally analyze
the theoretical advantages of our model over
previous existing approaches based on linear-
chain CRFs. Our empirical results also show
that our model is able to achieve significantly
better results when evaluated on standard data
with many discontiguous entities.

1 Introduction

Building effective automatic named entity recogni-
tion (NER) systems that is capable of extracting
useful semantic shallow information from texts has
been one of the most important tasks in the field of
natural language processing. An effective NER sys-
tem can typically play an important role in certain
downstream NLP tasks such as relation extraction,
event extraction, and knowledge base construction
(Hasegawa et al., 2004; Al-Rfou and Skiena, 2012).

Most traditional NER systems are capable of ex-
tracting entities! as short spans of texts. Two ba-
sic assumptions are typically made when extract-

'0r sometimes mentions are considered, which can be
named, nominal or pronominal references to entities (Florian

et al.,, 2004). In this paper we use “mentions” and “entities”
interchangeably.
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EGD showed [hiatal hernia), and vertical [laceration],
in distal [esophagus], with [blood in [stomach].]; and
overlying [lac]s.

Figure 1: Discontiguous entities in a medical domain. Words
annotated with the same index are part of the same entity. Note

that entity 3 and entity 4 overlap with one another.

ing entities: 1) entities do not overlap with one an-
other, and 2) each entity consists of a contiguous se-
quence of words. These assumptions allow the task
to be modeled as a sequence labeling task, for which
many existing models are readily available, such as
linear-chain CRFs (McCallum and Li, 2003).

While the above two assumptions are valid for
most cases, they are not always true. For example,
in the entity University of New Hampshire of type
ORG there exists another entity New Hampshire of
type LOC. This violates the first assumption above,
yet it is crucial to extract both entities for subsequent
tasks such as relation extraction and knowledge base
construction. Researchers therefore have proposed
to tackle the above issues in NER using more so-
phisticated models (Finkel and Manning, 2009; Lu
and Roth, 2015). Such efforts still largely rely on
the second assumption.

Unfortunately, the second assumption is also not
always true in practice. There are also cases where
the entities are composed of multiple discontiguous
sequences of words, such as in disorder mention
recognition in clinical texts (Pradhan et al., 2014b),
where the entities (disorder mentions in this case)
may be discontiguous. Consider the example shown
in Figure 1. In this example there are four enti-

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 75-84,
Austin, Texas, November 1-5, 2016. (©2016 Association for Computational Linguistics



ties, the first one, hiatal hernia, is a conventional
contiguous entity. The second one, laceration ...
esophagus, is a discontiguous entity, consisting of
two parts. The third and fourth ones, blood in stom-
ach and stomach ... lac (for stomach laceration),
are overlapping with each other, with the fourth be-
ing discontiguous at the same time.

For such discontiguous entities which can poten-
tially overlap with other entities in complex man-
ners, existing approaches such as those based on
simple sequence tagging models have difficulties
handling them accurately. This stems from the fact
that there is a very large number of possible entity
combinations in a sentence when the entities can be
discontiguous and overlapping.

Motivated by this, in this paper we propose a
novel model that can better represent both contigu-
ous and discontiguous entities which can overlap
with one another. Our major contributions can be
summarized as follows:

e We propose a novel model that is able to repre-
sent both contiguous and discontiguous entities.

e Theoretically, we introduce the notion of model
ambiguity for quantifying the ambiguity of dif-
ferent NER models that can handle discontigu-
ous entities. We present a study and make com-
parisons about different models’ ambiguity un-
der this theoretical framework.

e Empirically, we demonstrate that our model
can significantly outperform conventional ap-
proaches designed for handling discontiguous
entities on data which contains many discontigu-
ous entities.

2 Related Work

Learning to recognize named entities is a popular
task in the field of natural language processing. A
survey by Nadeau (2007) lists several approaches
in NER, including Hidden Markov Models (HMM)
(Bikel et al., 1997), Decision Trees (Sekine, 1998),
Maximum Entropy Models (Borthwick and Sterling,
1998), Support Vector Machines (SVM) (Asahara
and Matsumoto, 2003), and also semi-supervised
and unsupervised approaches. Ratinov (2009) uti-
lizes averaged perceptron to solve this problem and
also focused on four key design decisions, achiev-
ing state-of-the-art in MUC-7 dataset. These ap-
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proaches work on standard texts, such as news ar-
ticles, and the entities to be recognized are defined
to be contiguous and non-overlapping.

Noticing that many named entities contain other
named entities inside them, Finkel and Manning
(2009) proposed a model that is capable of extract-
ing nested named entities by representing the sen-
tence as a constituency parse tree, with named enti-
ties as phrases. As a parsing-based model, the ap-
proach has a time complexity that is cubic in the
number of words in the sentence.

Recently, Lu and Roth (2015) proposed a model
that can represent overlapping entities. In addition to
supporting nested entities, theoretically this model
can also represent overlapping entities where nei-
ther is nested in another. The model represents each
sentence as a hypergraph with nodes indicating en-
tity types and boundaries. Compared to the previ-
ous model, this model has a lower time complexity,
which is linear in the number of words in the sen-
tence.

All the above models focus on NER in conven-
tional texts, where the assumption of contiguous en-
tities is valid. In the past few years, there is a grow-
ing body of works on recognizing disorder mentions
in clinical text. These disorder mentions may be
discontiguous and also overlapping. To tackle such
an issue, a research group from University of Texas
Health Science Center at Houston (Tang et al., 2013;
Zhang et al., 2014; Xu et al., 2015) first utilized a
conventional linear-chain CRF to recognize disorder
mention parts by extending the standard BIO (Begin,
Inside, Outside) format, and next did some postpro-
cessing to combine different components. Though
effective, as we will see later, such a model comes
with some drawbacks. Nevertheless, their work mo-
tivated us to perform further analysis on this issue
and propose a novel model specifically designed for
discontiguous entity extraction.

3 Models

3.1 Linear-chain CRF Model

Before we present our approach, we would like to
spend some time to discuss a simple approach based
on linear-chain CRFs (Lafferty et al., 2001). This
approach is primarily based on the system by Tang
et al. (2013), and this will be the baseline system



EGD showed hiatal(g) herniajy and vertical laceration gp,
in distal esophagusgp) with blood ) injy stomach gy and
overlying lacgp).

Infarctions gy either water gp) shed ip) or embolicgp)

Figure 2: Entity encoding in the linear-chain model. Top: for
the example in Fig 1. Bottom: for the second example in Fig 4.

The O labels are not shown.

that we will make comparison with in later sections.

The problem is regarded as a sequence prediction
task, where each word is assigned a label similar to
BIO format often used for NER. We used the en-
coding used by Tang et al. (2013), which uses 7
tags to handle entities that can be discontiguous and
overlapping. Specifically, we used B, I, O, BD, ID,
BH, and IH to denote Beginning of entity, Inside en-
tity, Outside of entity, Beginning of Discontiguous
entity, Inside of Discontiguous entity, Beginning of
Head, and Inside of Head. To encode a sentence
in this format, first we identify the contiguous word
sequences which are parts of multiple entities. We
call these head components and we label each word
inside each component with BH (for the first word
in each component) or IH. Then we find contiguous
word sequences which are parts of a discontiguous
entity, which we call the body components. Words
inside those components which have not been la-
beled are labeled with BD (for the first word in each
component) or ID. Finally, words that are parts of a
contiguous entity are called contiguous component,
and, if they have not been labeled, are labeled as B
(for the first word in each component) or L.

This encoding is lossy, since the information
on which parts constitute the same entity is lost.
The top example in Figure 2 is the encoding of
the example shown in Figure 1. During decod-
ing, based on the labels only it is not entirely
clear whether “laceration” should be combined with
“esophagus” or with “stomach” to form a single
mention. For the bottom example, we cannot deduce
that “Infarctions” alone is a mention, since there
is no difference in the encoding of a sentence with
only two mentions {“Infarctions ...water shed”,
“Infarctions ... embolic”} or having three mentions
with “Infarctions” as another mention, since in both
cases, the word “Infarctions” is labeled with BH.
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Also, it should be noted that some of the label se-
quences are not valid. For example, a sentence in
which there is only one word labeled as BD is in-
valid, since a discontiguous entity requires at least
two words to be labeled as BD or BH. This is, how-
ever, a possible output from the linear CRF model,
due to the Markov assumption inherent in linear
CRF models. Later we see that our models do not
have this problem.

3.2 Our Model

Linear-chain CRF models are limited in their repre-
sentational power when handling complex entities,
especially when they can be discontiguous and can
overlap with one another. While recent models have
been proposed to effectively handle overlapping en-
tities, how to effectively handle discontiguous en-
tities remains a research question to be answered.
Motivated by previous efforts on handling overlap-
ping entities (Lu and Roth, 2015), in this work we
propose a model based on hypergraphs that can bet-
ter represent entities that can be discontiguous and
at the same time be overlapping with each other.

Unlike the previous work (Lu and Roth, 2015), we
establish a novel theoretical framework to formally
quantify the ambiguity of our hypergraph-based
models and justify their effectiveness by making
comparisons with the linear-chain CRF approach.

Now let us introduce our novel hypergraph rep-
resentation. A hypergraph can be used to represent
entities of different types and their combinations in
a given sentence. Specifically, a hypergraph is con-
structed as follows. For the word at position k, we
have the following nodes:

e AF: this node represents all entities that begin
with the current or a future word (to the right of
the current word).

e E*: this node represents all entities that begin
with the current word.

e T%: this node represents entities of certain spe-
cific type ¢ that begin with the current word.
There is one T¥ for each different type.

° Bfi: this node indicates that the current word is
part of the ¢-th component of an entity of type ¢.

. O’;i: this node indicates that the current word
appears in between (i-1)-th and i-th components
of an entity of type t.



There is also a special leaf node, X-node, which
indicates the end (i.e., right boundary) of an entity.

The nodes are connected by directed hyperedges,
which for the purpose of explaining our models are
defined as those edges that connect one node, called
the parent node, to one or more child nodes. For ease
of notation, in the rest of this paper we use edge to
refer to directed hyperedge.

The edges Each AF is a parent to EF and A*+1,
encoding the fact that the set of all entities at position
k is the union of the set of entities starting exactly at
current position (E¥) with the set of entities starting
at or after position k + 1 (A**1),

Each EF is a parent to T ..., Tf} , where T 1s
the total number of possible types that we consider.
Each T has two edges where it serves as a parent,
within one it is parent to Bf ¢ o and within another it is
to X. These edges encode the fact that at position k,
either there is an entity of type ¢ that begins with the
current word (to Bf, o), or there is no entity of type ¢
that begins with the current word (to X).

In the full hypergraph, each Bt ; 1s a parent to
ijl (encoding the fact that the next word also be-
lor{gs to the same component of the same entity),
to O'“H]L (encoding the fact that this word is part
of a discontiguous entity, and the next word is the
first word separating current component and the next
component), and to X (representing that the entity
ends at this word). Also there are edges with all pos-
sible combinations of B"‘“‘Jr1 Ofﬁl, and X as the
child nodes, representing overlapplng entities. For
example, the edge Bfﬂ» — (BFF1 X ) denotes that
there is an entity which continues to the next word
(the edge to Bkﬂ) while there is another entity end-
ing at k-th word (the edge to X). In total there are 7

edges in which Bfi ; 1s a parent, which are:
* B, = (X)
° sz (Of;:h)
° sz - (Of;:ll » X)
e B, — (B{")
e B}, » (Bj{',X)
« B, -+ (B!, OF11))

b Bllfcz (B]H_l ij_—s}l 7X)

Analogously, Oﬁ ; has three edges that connect to
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[[[Infarctions];]2]3 either [water shed]y or [embolic];3
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Figure 3: The hypergraph for SHARED model for the second
example in Figure 4. The type information in T, B, and O-
nodes is not shown. The X-node is drawn multiple times for

better visualization.

OkJrl Bfﬁl, and both. Note that Ofﬂ- is not a par-

entto X by definition.

During testing, the model will predict a subgraph
which will result in the predicted entities after de-
coding. We call this subgraph representing certain
entity combination entity-encoded hypergraph.

For example, Figure 3 shows the entity-encoded
hypergraph of our model encoding the three men-
tions in the second example in Figure 4. The edge
from the T-node for the first word to the B-node for
the first word shows that there is at least one entity
starting with this word. The three places where an
X-node is connected to a B-node show the end of
the three entities. Note that this hypergraph clearly
shows the presence of the three mentions without
ambiguity, unlike a linear-chain encoding of this ex-
ample where it cannot be inferred that “Infarctions”
alone is a mention, as discussed previously. In this
paper, we set the maximum number of components
to be 3 since the dataset does not contain any men-
tion with more than 3 components.

Also note that this model supports discontiguous
and overlapping mentions of different types since
each type has its own set of O-nodes and B-nodes,
unlike the linear-chain model, which supports only
overlapping mentions of the same type.

We also experimented with a variant of this
model, where we split the T-nodes, B-nodes, and
O-nodes further according to the number of com-

ponents. We split Bk into Bfw, 1=1...5,5 =



1...3 which represents that the word is part of the
i-th component of a mention with total j compo-
nents. Similarly we split Of; ; into Oﬁ ;,; and T% into
Tﬁ i We call the original version SHARED model,
and this variant SPLIT model. The motivation for
this variant is that the majority of overlaps in the
data are between discontiguous and contiguous enti-
ties, and so splitting the two cases — one component
(contiguous) and more (discontiguous) — will reduce
ambiguity for those cases.

These models are still ambiguous to some degree,
for example when an O-node has two child nodes
and two parents, we cannot decide which of the par-
ent node is paired with which child node. However,
in this paper we argue that:

e This model is less ambiguous compared to the
linear-chain model, as we will show later theo-
retically and empirically.

e Every output of our model is a valid prediction,
unlike the linear-chain model since this model
will always produce a valid path from T-nodes
to the X-nodes representing some entities.

We will also show through experiments that our
models can encode the entities more accurately.

3.3 Interpreting Output Structures

Both the linear-chain CRF model and our models are
still ambiguous to some degree, so we need to handle
the ambiguity in interpreting the output structures
into entities. For all models, we define two gen-
eral heuristics: ENOUGH and ALL. The ENOUGH
heuristic handles ambiguity by trying to produce a
minimal set of entities which encodes to the one pro-
duced by the model, while ALL heuristic handles
ambiguity by producing the union of all possible en-
tity combinations that encode to the one produced
by the model. For more details on how these heuris-
tics are implemented for each model, please refer to
the supplementary material.

3.4 Training

For both models, the training follows a log-linear
formulation, by maximizing the loglikelihood of the
training data D:

L) =) | D [W(e)] —log Zuw(x) [=Allwl?

(x,y)€D| ec&(x,y)
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Here (x,y) is a training instance consisting of
the sentence x and the entity-encoded hypergraph
y € Y where ) is the set of all possible mention-
encoded hypergraphs. The vector w consists of fea-
ture weights, which are the model parameters to be
learned. The set £(x,y) consists of all edges present
in the entity-encoded hypergraph y for input x. The
function f(e) returns the features defined over the
edge e, Zw (x) is the normalization term which gives
the sum of scores over all possible entity-encoded
hypergraphs in Y that is relevant to the input x, and
finally A is the /»-regularization parameter.

4 Model Ambiguity

The main aim of this paper is to assess how well
each model can represent the discontiguous entities,
even in the presence of overlapping entities.

In this section, we will theoretically compare the
models’ ambiguity, which is defined as the aver-
age number of mention combinations that map to
the same encoding in a model. Now, to compare
two models, instead of calculating the ambiguity di-
rectly, we can calculate the relative ambiguity be-
tween the two models directly by comparing the
number of canonical encodings in the two models.

A canonical encoding is a fixed, selected repre-
sentation of a particular set of mentions in a sen-
tence, among (possibly) several alternative represen-
tations. Several alternatives may be present due to
the ambiguity of the encoding-decoding process and
also since the output of the model is not restricted
to a specific rule. For example, for the text “John
Smith”, a model trained in BIO format might output
“B-PER I-PER” or “I-PER I-PER”, and both will
still mean that “John Smith” is a person, although
the “correct” encoding would of course be “B-PER
I-PER”, which is selected as the canonical encoding.
Intuitively, a canonical encoding is a formal way to
say that we only consider the “correct” encodings.

A model with larger number of canonical encod-
ings will, on average, have less ambiguity compared
to the one with smaller number of canonical encod-
ings. Subsequently, a model with less ambiguity will
be more precise in predicting entities.

Let Mp(n), Msu(n), Msp(n) denote the num-
ber of canonical encodings of the linear-chain,
SHARED, and SPLIT model, respectively, for a sen-



tence with n words. Then we formally define the
relative ambiguity of model M; over model Mo,
A (M, Ms), as follows:

] log E 7'1:1 MMZ (Z)
, M 7]\4 =1 ?7, ),
A ( 1 2) nggo log E i=1 MM1 (Z)

A (My, M3) > 1 means model M is more am-
biguous than M>. Now, we claim the following:

Theorem 4.1. A, (L1, SH) > 1

We provide a proof sketch below. Due to space
limitation, we cannot provide the full dynamic pro-
gramming calculation. We refer the reader to the
supplementary material for the details.

ey

Proof Sketch The number of canonical encodings
in the linear-chain model is less than 7" since there
are 7 possible tags for each of the n words and not
all of the 7" tag sequences are canonical encodings.
So we have My (n) < 7" and thus we can derive
log > 7", Mpi(7) < 3nlog2.

For our models, by employing some dynamic pro-
gramming adapted from the inside algorithm (Baker,
1979), we can calculate the growth order of the num-
ber of canonical encodings for SHARED model to ar-
rive at a conclusion that Yn > ng, > | Msy(i) >
C - 2'07 for some constants ng, C. Then we have:

logC'+10nlog2 10
: 3nlog?2 : :§>1 @
O

Theorem 4.1 says that the linear-chain model is
more ambiguous compared to our SHARED model.
Similarly, we can also establish A, (SH, SP) > 1.
Later we also see this empirically from experiments.

A, (L1, SH) > lim

n—o0

5 Experiments

5.1 Data

To allow us to conduct experiments to empirically
assess different models’ capability in handling en-
tities that can be discontiguous and can potentially
overlap with one another, we need a text corpus an-
notated with entities which can be discontiguous and
overlapping with other entities. We found the largest
of such corpus to be the dataset from the task to
recognize disorder mentions in clinical text, initially
organized by ShARe/CLEF eHealth Evaluation Lab
(SHEL) in 2013 (Suominen et al., 2013) and contin-
ued in SemEval-2014 (Pradhan et al., 2014a).
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The definition of the task is to recognize men-
tions of concepts that belong to the Unified Medi-
cal Language System (UMLS) semantic group dis-
orders from a set of clinical texts. Each text has been
annotated with a list of disorder mentions by two
professional coders trained for this task, followed by
an open adjudication step (Suominen et al., 2013).

Unfortunately, even in this dataset, only 8.95% of
the mentions are discontiguous. Working directly
on such data would prevent us from understanding
the true effectiveness of different models when han-
dling entities which can be discontiguous and over-
lapping. In order to truly understand how different
models behave on data with discontiguous entities,
we consider a subset of the data where we consider
those sentences which contain at least one discon-
tiguous entity. We call the resulting subset the “Dis-
contiguous” subset of the “Original” dataset. Later
we will also still use the training data of the “Origi-
nal” dataset in the experiments.

Note that this “Discontiguous” subset still con-
tains contiguous entities since a sentence usually
contains more than one entity. The subset is a bal-
anced dataset with 53.61% of the entities being dis-
contiguous and the rest contiguous. We then split
this dataset into training, development, and test set,
according to the split given in SemEval 2014 setting
(henceforth LARGE dataset). To see the impact of
dataset size, we also experiment on a subset of the
LARGE dataset, following the SHEL 2013 setting,
with the development set in the LARGE dataset used
as test set (henceforth SMALL dataset). The training
and development set of the SMALL dataset comes
from a random 80% (Tr80) and 20% (Tr20) split of
the training set in LARGE dataset.

The statistics of the datasets, including the num-
ber of overlaps between the entities in the “All” col-
umn, are shown in Table 1.

We note that this dataset only contains one type of
entity. In later experiments, in order to evaluate the
models on multiple types, we create another dataset
where we split the entities based on the entity-level
semantic category. This information is available for
some entities through the Concept Unique Identifier
(CUI) annotation in the data. In total we have three
types: two types (type A and B) based on the seman-
tic category, and one type (type N) for those entities



. Number of mentions #Overlaps
Split |#Sentences .
part|2 parts | 3 parts | Total | All| Diff
Train 534| 544 607 4411,195]205| 58
- Tr80 416| 448| 476 33| 957(164| 48
- Tr20 118 96| 131 11| 238 41 10
Dev 303 357 421 18| 796|240 28
Test 430 584| 610 16|1,210(327| o6l

Table 1: The statistics of the data. Tr80 and Tr20 refers to the
80% and 20% partitions of the full training data.

having no semantic category information. See the
supplementary material for more details. The num-
ber of overlaps between different types is shown in
the “Diff” column in Table 1. Except for a handful
overlaps in development set, all overlaps involve at
least one discontiguous entity. Our main result will
still be based on the dataset with one type of entity.

The patient had blood in his mouth and on his tongue,
pupils were pinpoint and reactive.

- blood in his mouth

-blood ...on his tongue

- pupils ... pinpoint

Infarctions either water shed or embolic
- Infarctions

- Infarctions ... water shed

- Infarctions ... embolic

You see blood or dark/black material when you vomit or
have a bowel movement.

- blood ...vomit

- blood ... bowel movement

-dark ... material ... vomit

-dark ... bowel movement

- black material . .. vomit

- black material . .. bowel movement

Figure 4: Examples of discontiguous and overlapping men-
tions, taken from the dataset.

Figure 4 shows some examples of the mentions.
The first example shows two discontiguous men-
tions that do not overlap. The second example shows
a typical discontiguous and overlapping case. The
last example shows a very hard case of overlapping

21t is tempting to just ignore these entities since the N type
does not convey any specific information about the entities in
it. However, due to the dataset size, excluding this type will
lead to very small number of interactions between types. So we
decided to keep this type
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and discontiguous mentions, as each of the compo-
nents in {blood, dark, black material} is paired with
each of the word in {vomit, bowel movement}, re-
sulting in six mentions in total, with one having three
components (dark ... material ... vomit).

5.2 Features

Motivated by the features used by Zhang et
al. (2014), for both the linear-chain CRF model and
our models we use the following features: neigh-
bouring words with relative position information
(we consider previous and next k words, where
k=1, 2, 3), neighbouring words with relative posi-
tion information paired with the current word, word
n-grams containing the current word (n=2,3), POS
tag for the current word, POS tag n-grams con-
taining the current word (n=2,3), orthographic fea-
tures (prefix, suffix, capitalization, lemma), note
type (discharge summary, echo report, radiology,
and ECG report), section name (e.g. Medications,
Past Medical History)®, Brown cluster, and word-
level semantic category information*. We used Stan-
ford POS tagger (Toutanova et al., 2003) for POS
tagging, and NLP4J package’ for lemmatization.
For Brown cluster features, following Tang et al.
(2013), we used 1,000 clusters from the combina-
tion of training, development, and test set, and used
all the subpaths of the cluster IDs as features.

5.3 Experimental Setup

We evaluated the three models on the SMALL dataset
and the LARGE dataset.

Note that in both the SMALL and LARGE dataset,
about half of all mentions are discontiguous, both in
training and test set. We also want to see whether
training on a set where the majority of the mentions
are contiguous will affect the performance on rec-
ognizing discontiguous mentions. So we also per-
formed another experiment where we trained each
model on the original training set where the major-
ity of the entities are contiguous. We refer to this
original dataset as “Train-Orig” (it contains 10,405
sentences, including those with no entities) and the

3Section names were determined by some heuristics, refer
to the supplementary material for more information

“This is standard information that can be extracted from
UMLS. See (Zhang et al., 2014) for more details.

Shttp://www.github.com/emorynlp/nlp4j/



SMALL LARGE
Train-Disc Train-Orig Train-Disc Train-Orig
P R Fl P R Fl P R Fl P R Fl
LI-ENH | 59.7 39.8 47.8 |71.0 458 55.7| 547 412 47.0]|64.1 465 539
LI-ALL | 16.6 43.5 24.1 | 555 49.2 522|152 449 227|528 494 51.1
SH-ENH | 859 39.7 543|822 48.0 60.6| 769 40.1 527|739 49.1 59.0
SH-ALL | 859 39.7 543|822 48.0 60.6| 76.0 40.5 52.8|73.4 49.5 59.1
SP-ENH | 86.7 37.8 52.7 | 82.5 48.0 60.7 | 79.4 38.6 52.0|753 488 59.2
SP-ALL | 86.7 37.8 52.7|82.5 48.0 60.7 | 79.4 38.6 52.0|753 488 59.2

Table 2: Results on the two datasets and two different training data after optimizing regularization hyperparameter A in development

set. The -ENH and -ALL suffixes refer to the ENOUGH and ALL heuristics. The best result in each column is put in boldface.

earlier one as “Train-Disc”.

First we trained each model on the training set,
varying the regularization hyperparameter \,° then
the \ with best result in the development set using
the respective ENOUGH heuristic for each model is
chosen for final result in the test set.

For each experiment setting, we show precision
(P), recall (R) and F1 measure. Precision is the
percentage of the mentions predicted by the model
which are correct, recall is the percentage of men-
tions in the dataset correctly discovered by the
model, and F1 measure is the harmonic mean of pre-
cision and recall.

5.4 Results and Discussions

The full results are recorded in Table 2.

We see that in general our models have higher pre-
cision compared to the linear-chain baseline. This
is expected, since our models have less ambiguity,
which means that from a given output structure it is
easier in our model to get the correct interpretation.
We will explore this more in Section 5.5.

The ALL heuristic, as expected, results in higher
recall, and this is more pronounced in the linear-
chain model, with up to 4% increase from the
ENOUGH heuristic, achieving the highest recall in
three out of four settings. The high recall of the ALL
heuristic in the linear-chain model can be explained
by the high level of ambiguity the model has. Since
it has more ambiguity compared to our models, one
label sequence predicted by the model produces a lot
of entities, and so it is more likely to overlap with the
gold entities. But this has the drawback of very low
precision as we can see in the result.

We see switching from one heuristic to the other

Taken from the set {0.125, 0.25, 0.5, 1.0, 2.0}
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does not affect the results of our models much.
Looking at the output of our models, they tend to
produce output structures with less ambiguity, which
causes little difference in the two heuristics.

One example where the baseline made a mis-
take is the sentence: ‘“Ethanol Intoxication and
withdrawal”.  The gold mentions are “Ethanol
Intoxication” and “Ethanol withdrawal”.  But
the linear-chain model labeled it as “[Ethanol][B]
[Intoxication][l] and [Withdrawal][BD]”, which is in-
consistent since there is only one discontiguous
component. Our models do not have this issue be-
cause in our models every subgraph that may be pre-
dicted translates to valid mention combinations, as
discussed in Section 3.2.

In the “Train-Orig” column, we see that all mod-
els can recognize discontiguous entities better when
given more data, even though the majority of the en-
tities in “Train-Orig” are contiguous.

5.5 Experiments on Ambiguity

To see the ambiguity of each model empirically,
we run the decoding process for each model given
the gold output structure, which is the true label
sequence for the linear-chain model and the true
mention-encoded hypergraph for our models.

We used the entities from the training and devel-
opment sets for this experiment, and we compare the
“Original” datasets with the “Discontiguous” subset
to see that the ambiguity is more pronounced when
there are more discontiguous entities. Then we show
the precision and recall errors (defined as 1 — P and
1 — R, respectively) in Table 3.

Since the ALL heuristics generates all possible
mentions from the given encoding, theoretically it
should give perfect recall. However, due to errors
in the training data, there are mentions which can-



Discontiguous Original

Prec Err  Rec Err || Prec Err  Rec Err
Li-ALL | 63.66% 0.30% || 23.81% 0.17%
SH-ALL | 1.73%  0.30% 0.35% 0.17%
Sp-ALL | 1.05%  0.30% 0.22%  0.17%
LI-ENH | 2.74% 3.82% 0.52%  0.90%
SH-ENH | 1.21% 1.46% 0.25%  0.38%
SP-ENH | 0.75%  0.90% 0.17%  0.28%

Table 3: Precision and recall errors (%) of each model in the
“Discontiguous” and “Original” datasets when given the gold
output structure (label sequence in linear-chain model, hyper-

graph in our models). Lower numbers are better.

Linear-chain SHARED SPLIT
Type | #Ent

P R F|P R F|P R F
A 289(69.8 59.9 64.4(79.4 56.1 65.7|81.0 56.1 66.3
B 41850.0 34.0 40.5|56.8 29.0 38.4|58.2 28.0 37.8
N 503(62.1 37.8 47.0(84.8 43.3 57.4|84.9 42.4 56.5
Total|1210(60.3 41.7 49.3|74.3 41.4 53.2|75.5 40.7 52.9

Table 4: Results on the LARGE dataset when entities are split
into three types: A, B, and N. #Ent is the number of entities

not be properly encoded in the models’. Removing
these errors results in perfect recall (0% recall er-
ror). This means that all models are complete: they
can encode any mention combinations.

We see however, a very huge difference on the
precision error between the linear-chain model and
our models, even more when most of the entities
are discontiguous. For the discontiguous subset with
the ALL heuristic, the linear-chain model produced
5,463 entities, while the SHARED and SPLIT model
produced 2,020 and 2,006 entities, respectively. The
total number of gold entities is 1,991. This means
one encoding in the linear-chain model produces
much more distinct mention combinations compared
to our model, which again shows that the linear-
chain model has more ambiguity. Similarly, we can
deduce that the SHARED model has slightly more
ambiguity compared to the SPLIT model. This con-
firms our theoretical result presented previously.

It is also worth noting that in the ENOUGH heuris-
tic our models have smaller errors compared to the
linear-chain model, showing that when both mod-
els can predict the true output structure (the correct

"There are 19 errors in the original dataset, and 6 in the dis-

contiguous subset, which include duplicate mentions and men-
tions with incorrect boundaries

&3

label sequence for the baseline model and mention-
encoded hypergraph for our models), it is easier in
our models to get the desired mention combinations.

5.6 Experiments on Multiple Entity Types

We used the LARGE dataset with the multiple-type
entities for this experiment. We ran our two models
and the linear-chain CRF model with the ENOUGH
heuristic on this multi-type dataset, in the same set-
ting as Train-Orig in previous experiments, and the
result is shown in Table 4. We used the best lambda
from the main experiment for this experiment.

There is a performance drop compared to the
LARGE-Train-Orig results in Table 2, which is ex-
pected since the presence of multiple types make the
task harder. But in general we still see that our mod-
els are still better than the baseline, especially the
SPLIT model, which shows that in the presence of
multiple types, our models can still work better than
the baseline model.

6 Conclusions and Future Work

In this paper we proposed new models that can bet-
ter represent discontiguous entities that can be over-
lapping at the same time. We validated our claims
through theoretical analysis and empirical analysis
on the models’ ambiguity, as well as their perfor-
mances on the task of recognizing disorder men-
tions on datasets with a substantial number of dis-
contiguous entities. When the true output structure
is given, which is still ambiguous in all models, our
models show that it is easier to produce the desired
mention combinations compared to the linear-chain
CRF model with reasonable heuristics. We note that
an extension similar to semi-Markov or weak semi-
Markov (Muis and Lu, 2016) is possible for our
models. We leave this for future investigations.

The supplementary material and our implementa-
tions for the models are available at:

http://statnlp.org/research/ie
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