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Preface by the General Chair

Like my colleague, Dan Jurafsky, General Chair of ACL-2020, the first ACL conference to be hit by the
virus that has up-ended our world, I am sitting at my laptop, in the same chair I have sat in since March
2020, to welcome you to EMNLP-2020. It is also where I am likely to be sitting for EMNLP-2020 itself.

As in previous years, the purpose of the General Chair’s preface to express thanks — first, to the obvious
people whose heroic efforts brought such a large conference to fruition, including:

e the three Programme Co-Chairs — Trevor Cohn, Yulan He and Yang Liu — who oversaw a process
in which 3677 papers were submitted for review from 57 countries;

e the Senior Area Chairs, Area Chairs and reviewers whose expertise enabled authors to learn from
their reviews and to deliver papers that improved on their original submissions;

e the Publication Co-Chairs — Yang Gao, Veronika Laippala and Philippe Muller — and the
experience they gained from the General Publication Chair, Fei Liu, who met the challenge of
identifying and correcting the myriad ways in which papers could be mis-formatted and assembled
the result into our conference proceedings

e the Co-Chairs of Findings of the ACL — Jing Li and Lemao Liu — ACL’s new publication venue,
and Kushal Arora, who implemented a new process for matching Findings papers to workshops
where they might be presented;

o the Tutorial Co-Chairs — Aline Villavicencio and Benjamin Van Durme — who selected the seven
tutorials to be presented at the conference;

e the Demonstration Co-Chairs — Qun Liu and David Schlangen — who did the same for the 35
demos that we will see over the course of the conference;

e the new Ethics Co-Chairs — Dirk Hovy and Karén Fort — who undertook the delicate task of
checking papers that had been flagged for potential ethics issues;

e our website chair, Andy MacKinlay, who ensured that the EMNLP-2020 website stayed fit for
purpose.

But, in addition, we must also thank others whose support has been critical to both virtualizing EMNLP-
2020 and keeping the community engaged with it —

e the members of the Virtual Infra-structure Committee, co-chaired by Jan-Christoph Klie and
Zhongyu Wei — Eduardo Blanco, Yang Feng and Yansong Feng — helped by advisors from
the ACL-2020 Virtual Infra-structure Committee — Hao Fang, Sudha Rao and Xiruo Ding;

o the Volunteer Coordinator — Kellie Webster — who managed to attract over 200 student and early
career volunteers willing to help make EMNLP a success;

e of those student and early career volunteers, those who shouldered responsibility for important
parts of the infra-structure, including Luciana Benotti and Cyril Weerasooriya (RocketChat), Ed
Howard-Jones (HelpDesk), and Gisela Vallejo (Zoom);

e also of those student and early career volunteers, those who undertook to build booths for our
sponsors — Kaushal Kumar Maurya, Francisco Xavier Sumba Toral, Saichethan M. Reddy,
Shirley Anugrah Hayati, Manan Dey, Eraldo R. Fernandes, Arshiya Aggarwal, Alfredo Lozano,
Jiaxin Pei, Junheng Hao, Reem Al-Yami, Anish Mohan, Christian Kavouras, Tornike Tsereteli,
Emily Chen, Wiem Ben Rim and Chandrahas;
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e the Publicity Co-chairs — Anna Rogers and Ruifeng Xu — who have served as both the voice of
EMNLP in communicating with the community and as its ears, reporting on community concerns
as soon as they were expressed;

o the Workshop Co-chairs — Jackie Chi Kit Cheung and Lonneke van der Plas — whose work in
selecting the 24 workshops for EMNLP-2020 turned out to be only the start of ensuring that the
workshops could successfully run virtually;

e the Diversity & Inclusion Chairs — Isabelle Augenstein and Chris Brew — and the D&I Student
Chairs — Murathan Kurfali and Prathyusha Jwalapuram — who have worked tirelessly to make
EMNLP as welcoming and inclusive as possible for all participants. The activities that they have
worked with community members to create (Birds of a Feather sessions, Affinity Group sessions,
student panels, Mentoring sessions and Coffee Socials) should contribute to reinforcing us as a
community (and as sub-groups within the community), despite not being together physically.

We also want to express special thanks to Priscilla Rasmussen, the ACL Business Manager, first for
booking EMNLP 2020 into a beautiful resort in the Dominican Republic, and then for getting the booking
postponed until EMNLP 2021.

Last but not least, I would like to express gratitude to our sponsors, whose generous support has been
invaluable in building up EMNLP to what it is now. These include our Diamond-level sponsors —
Bloomberg Engineering, Google Research, Apple and Amazon Science; our Platinum-level sponsors —
Baidu, Megagon Labs, Facebook and DeepMind; our Gold-level sponsors — Grammarly, ByteDance
and Zeta Alpha; our Silver-level sponsors — Babelscape, Naver, Adobe, Hitachi and Salesforce; and our
Bronze-level sponsor — USC ISI. DeepMind has also generously contributed to supporting our Diversity
& Inclusion activities.

EMNLP 2020 General Chair

Bonnie Webber, University of Edinburgh, UK
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Preface by the Program Committee Co-Chairs

Welcome to EMNLP 2020!

Due to the unprecedented situation with the Covid-19 pandemic, EMNLP 2020 will be held completely
online this year. We decided to move EMNLP to a virtual format early on, when the pandemic just
started, and postponed the paper submission deadlines by three weeks such that authors affected by the
pandemic could have more time for their paper submissions. This resulted in a much tighter schedule
for paper review and decisions, as well as publications, workshop programs, virtual infrastructure, etc.
However, thanks to everyone’s hard work, we made it.

We received a record number of 3,677 submissions. This is a significant increase of 26% over EMNLP
2019, making it the largest NLP conference to date in terms of paper submissions. After removing
withdrawals and desk rejecting papers which violated our formatting requirements, the anonymity policy,
or double submission policy, 3,359 submissions were sent out for review. Despite the sharp increase in
submissions, we kept the acceptance rates at a similar level as past years. The acceptance statistics are
shown below:

Long | Short | Total
Reviewed 2,455 904 | 3,359
Accepted 602 150 752

Acceptance Rate | 24.6% | 16.6% | 22.4%

It is important to have a well-organized review structure to handle a large number of submissions. We
first set up a total of 21 tracks (including a special Multidisciplinary and Area Chair Conflict of Interest
track) based on the track information in past conferences such as ACL 2020, EMNLP 2019 and NAACL
2019. We used the submission numbers per track from past conferences to estimate the number of Senior
Area Chairs (SACs) and Area Chairs (ACs) required for each track. We eventually recruited 33 SACs
and 196 ACs.

For reviewer recruitment, we started with the reviewer lists from NAACL 2019, EMNLP 2019 and ACL
2020 and sent out initial invitations asking reviewers to express their track preferences. In addition, we
introduced a new policy that in order to submit paper(s) to EMNLP, at least one author must be nominated
to serve as a reviewer (usually the most senior author) and for that author to take on a full load of up to 6
reviews. We filtered out some reviewers who were less experienced in paper review or did not hold a PhD
degree (except those final-year PhD students). We then passed the reviewer list to SACs and asked them
to select from these candidate reviewers based on their expertise and semantic scholar profiles. Overall,
this resulted in a total of 2,633 reviewers.

For AC assignments, we matched papers with ACs automatically based on comparing submissions’
abstracts with ACs’ past papers in ACL* venues, using semantic scholar to harvest this data. For reviewer
assignment, we generated a “seniority score” for each reviewer based on their past publication record and
recent ACL* papers. Where possible, we have ensured every paper has at least one “senior” reviewer
and not more than one “junior” reviewer.

As a result of ever increasing paper submissions, review quality is a pressing issue in our community.
To help improve review quality, this year we prepared review guidelines with explicit dos and don’ts.
We observed many cases where authors called out problems in reviews for these papers based on these
guidelines, ACs took action, and reviewers revised their reviews. Overall the review guidelines seem
to be well received by authors and reviewers, and we feel they lead to improved reviews in aggregate.
Having said this, we emphasize that the guidelines are only a partial solution, and more work is needed
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from the entire community to manage the increasing submissions and continue to maintain or improve
review quality.

Authors resubmitting papers that were previously rejected from another publication venue were given
the option of providing these previous reviews and a rejoinder as part of their submission. This was
designed to accommodate authors who have improved their paper based on previous feedback, and feel
they have addressed the key issues raised, and would benefit from having this considered as part of the
EMNLP review process. Roughly, this is designed to mimic the “revise-and-resubmit” procedure in a
journal. These “sticky reviews” were made available to the AC, SACs and PCs, but not the reviewers,
lest it bias their assessments. A total of 349 submissions used this facility. While we do not have firm
numbers confirming the utility of sticky reviews, we feel that it was useful for making decisions for
borderline submissions, where the past reviews and quality of the rejoinder could be used to justify paper
acceptance.

This year we experimented with “Findings”, a new publication model based on an idea floated in the
ACL reviewing committee, designed to allow more papers to be accepted for publication beyond those
accepted to the main conference. Please see the Preface to the Findings of ACL: EMNLP 2020 for a
detailed description of this new initiative, including the acceptance rate and processes specific to this
publication.

Another “first” was the formation of an ethics committee, which was assembled to provide input on
submissions which were flagged by reviewers, ACs or SACs as needing further consideration on ethical
grounds during the review process. This might relate to potential misuse of the work, the legality of use of
data, ethics approvals for work involving human subjects, suspected plagiarism and more. The committee
provided careful assessment to ensure these papers were treated uniformly and fairly, and these ethics
assessments were considered alongside the reviews when making acceptance decisions. Ideally, authors
would be given a chance to respond to the ethical assessments, however this was not possible given the
reviewing timeline. We recommend this is something that should be factored into future conference
planning.

Finally this year we introduced a Reproducibility Checklist in order to encourage reporting information
necessary for reproducible research (thanks to Jesse Dodge and Noah Smith for initiating this). Many
papers have included more details relating to code, data, and their experimental setup. 78% of reviewers
felt the reproduciblity checklist is useful or somewhat useful. In addition, EMNLP will join several major
Al conferences in the upcoming ML Reproducibility Challenge (https://paperswithcode.com/rc2020).
We hope you can participate in or contribute to the challenge. The current reproducibility checklist may
not be a norm yet for our scientific community, but it is a step forward, and we expect it will lead to more
reproducible published work in the future.

From the accepted papers, 5 papers were selected for awards, include a best long paper and 4 outstanding
papers. Best paper candidates were initially selected based on recommendations from SACs and ACs,
and then evaluated by the best paper committee. The award winners will be announced at the closing
session.

In addition, EMNLP 2020 will feature 25 papers from Transactions of Association for Computational
Linguistics (TACL), and 5 papers from the journal of Computational Linguistics.

We are excited to have three keynote talks, by Professor Claire Cardie (Cornell University) on
information extraction, Dr. Rich Caruana (Microsoft) on interpretability in machine learning, and
Professor Janet Pierrehumbert (University of Oxford) on linguistic behaviour and the realistic testing
of NLP systems. We thank them for accepting our invitation to give the keynote speeches.

Another highlight of the program is the two panel sessions, one industry panel discussing NLP practice
in industry and future directions, and another one on Ethics statements for future NLP paper submissions.
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We thank all the panelists for joining the live discussions.

Putting together a virtual program is challenging. Based on the feedback on the ACL 2020 program, one
of our goals is to provide more opportunities for authors and attendees to interact with each other and
create an experience similar to in-person conferences. We have grouped papers into Zoom QA sessions
(each session with 4-5 papers in similar areas) and Gather.towns (analogous to poster sessions where
attendees can walk around and interact with paper authors). Doing this with timezone constraints is a
hard optimization problem. We tried our best to make the program timezone friendly such that everyone
is able to attend as many sessions as possible. However, the solutions are not perfect, and we appreciate
everyone’s understanding and cooperation.

We are grateful for many people’s contributions in the past year. Without their help, EMNLP 2020 would
not be possible. We thank:

e First our general chair, Bonnie Webber, who has provided us all the guidance we need and helped
with many of our decision processes;

e Past ACL* PCs, including Jing Jiang, Vincent Ng, and Xiaojun Wan (EMNLP 2019), and Joyce
Chai, Natalie Schluter, and Joel Tetreault (ACL 2020) for all the useful tips and suggestions about
organizing NLP conferences;

e Amanda Stent and Graham Neubig for providing the code for reviewer COI detection and paper
assignment, and their time in helping to get it running;

e 33 SACs who have helped us tremendously through the entire review process, from recruiting ACs
and reviewers, paper assignment, to making final paper recommendation decisions and selection
of best paper candidates;

e 196 ACs who led paper discussions, wrote meta reviews, and ensured review quality;

e 2,633 reviewers, 565 secondary reviewers for reviewing papers and actively participating in paper
discussions;

e 8,682 authors for submitting their work to EMNLP;

e Our Publicity chairs Anna Rogers and Ruifeng Xu who keep us connected with the community,
announce conference news on social media, follow EMNLP related online discussions, and collect
feedback from the community;

e Publication chairs Fei Liu, Philippe Muller, Yang Gao, Veronika Laippala, Jing Li, and Lemao
Liu for completing the proceedings within a shortened work period, including additional Findings
proceedings;

e Best paper committee, Mirella Lapata (Chair), Kyunghyun Cho, Vera Demberg, Matt Gardner,
Nizar Habash, Xuanjing Huang, Haizhou Li, Kathleen McKeown, Barbara Plank, Alexander Rush,
for selecting the best papers and outstanding papers;

e The Ethics committee, chaired by Dirk Hovy and Karén Fort, and members: Emily Bender, Ryan
Georgi, Alvin Grissom II, Margot Mieskes, Aurelie Nevol, and Amanda Stent, who graciously
accepted our invitation towards the end of the review period and assessed papers with ethical
concerns in a very tight schedule;

e Infrastructure chairs Eduardo Blanco, Jan-Christoph Klie, Yang Feng, Yansong Feng, Zhongyu
Wei, Hao Fang, Sudha Rao who have made the virtual conference possible;

e Webmaster Andy Mckinlay for keeping the conference website updated;
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e TACL editors-in-chief Mark Johnson, Ani Nenkova, and Brian Roark, TACL Editorial Assistant
Cindy Robinson, and CL Editor-in-Chief Hwee Tou Ng for coordinating TACL and CL
presentations with us;

e Jesse Dodge and Noah Smith for initiating the Reproducibility Checklist, helping the NLP
community with more reproducible results;

e SIGDAT board members that have provided guidance regarding various decisions;

e Rich Gerber from Softconf who set up the EMNLP conference site, has always answered our
questions in a timely manner, and helped us with different new requests such as handling Findings
papers and sharing reviews between EMNLP and workshops;

e Priscilla Rasmussen for various discussions on organizing EMNLP;

e The entire EMNLP organizing committee who have worked together to make EMNLP a success.

We hope you will enjoy the virtual conference, and can participate in as many sessions as possible!

EMNLP 2020 Program Co-Chairs

Trevor Cohn, University of Melbourne, Australia
Yulan He, University of Warwick, UK
Yang Liu, Amazon — Alexa Al, USA
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Invited Speaker: Claire Cardie, Cornell University
Information Extraction Through the Years: How Did We Get Here?

Abstract: In this talk, I'll examine the state of the NLP subfield of information extraction from its
inception almost 30 years ago to its current realization in neural network models. Which aspects of
the original formulation of the task are more or less solved? In what ways are current state-of-the-art
methods still falling short? What’s up next for information extraction?

Bio: Claire Cardie is the John C. Ford Professor of Engineering in the Departments of Computer
Science and Information Science at Cornell University. She has worked since the early 1990’s on
application of machine learning methods to problems in Natural Language Processing — on topics
ranging from information extraction, noun phrase coreference resolution, text summarization and
question answering to the automatic analysis of opinions, argumentation, and deception in text. She
has served on the executive committees of the ACL and AAAI and twice as secretary of NAACL.
She has been Program Chair for ACL/COLING, EMNLP and CoNLL, and General Chair for ACL in
2018. Cardie was named a Fellow of the ACL in 2015 and a Fellow of the Association for Computing
Machinery (ACM) in 2019. At Cornell, she led the development of the university’s academic programs
in Information Science and was the founding Chair of its Information Science Department.
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Invited Speaker: Rich Caruana, Microsoft

Friends Don’t Let Friends Deploy Black-Box Models: The Importance of
Intelligibility in Machine Learning

Abstract: In machine learning sometimes tradeoffs must be made between accuracy and intelligibility:
the most accurate models usually are not very intelligible, and the most intelligible models usually are
less accurate. This can limit the accuracy of models that can safely be deployed in mission-critical
applications where being able to understand, validate, edit, and ultimately trust a model is important.
We have been working on a learning method to escape this tradeoff that is as accurate as full complexity
models such as boosted trees and random forests, but more intelligible than linear models. This makes it
easy to understand what the model has learned and to edit the model when it learns inappropriate things.
Making it possible for humans to understand and repair a model is critical because most training data
has unexpected problems. I'll present several case studies where these high-accuracy GAMs discover
surprising patterns in the data that would have made deploying a black-box model inappropriate. I'll
also show how these models can be used to detect and correct bias. And if there’s time, I’ll briefly
discuss using intelligible GAM models to predict COVID-19 mortality.

Bio: Rich Caruana is a Senior Principal Researcher at Microsoft. His focus is on intelligible/transparent
modeling, machine learning for medical decision making, deep learning, and computational ecology.
Before joining Microsoft, Rich was on the faculty in Computer Science at Cornell, at UCLA’s Medical
School, and at CMU’s Center for Learning and Discovery. Rich’s Ph.D. is from CMU. His work on
Multitask Learning helped create interest in a subfield of machine learning called Transfer Learning.
Rich received an NSF CAREER Award in 2004 (for Meta Clustering), best paper awards in 2005 (with
Alex Niculescu-Mizil), 2007 (with Daria Sorokina), and 2014 (with Todd Kulesza, Saleema Amershi,
Danyel Fisher, and Denis Charles), and co-chaired KDD in 2007 with Xindong Wu.
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Invited Speaker: Janet B. Pierrehumbert, University of
Oxford

Linguistic Behaviour and the Realistic Testing of NLP Systems

Abstract: To evaluate the performance of NLP systems, the standard is to use held-out test data. When
the systems are deployed in real-world applications, they will only be successful if they perform well on
examples that their architects never saw before. Many of these will be examples that nobody ever saw
before; the central observation of generative linguistics, going back to Von Humboldt, is that human
language involves “The infinite use of finite means”.

Predicting the real-world success of NLP systems thus comes down to predicting future human
linguistic behaviour. In this talk, I will discuss some general characteristics of human linguistic
behaviour, and the extent to which they are, or are not addressed in current NLP methodology.
The topics I will address include: look-ahead and prediction; the role of categorization in building
abstractions; effects of context; and variability across individuals.

Bio: Janet B. Pierrehumbert is the Professor of Language Modelling in the Department of Engineering
Science at the University of Oxford. She received her BA in Linguistics and Mathematics at Harvard
in 1975, and her Ph.D in Linguistics from MIT in 1980. Much of her Ph.D dissertation research on
English prosody and intonation was carried out at AT&T Bell Laboratories, where she was also a
Member of Technical Staff from 1982 to 1989. After she moved to Northwestern University in1989,
her research program used a wide variety of experimental and computational methods to explore how
lexical systems emerge in speech communities. She showed that the mental representations of words
are at once abstract and phonetically detailed, and that social factors interact with cognitive factors
as lexical patterns are learned, remembered, and generalized. Pierrehumbert joined the faculty at the
University of Oxford in 2015 as a member of the interdisciplinary Oxford e-Research Centre. Her
current research uses machine-learning methods to model the dynamics of on-line language. Her latest
project, funded by the UK EPSRC, seeks to develop new NLP methods to characterize exaggeration,
cohesion, and fragmentation in on-line forums.

Pierrehumbert is a Fellow of the Linguistic Society of America, the Cognitive Science Society, and the
American Academy of Arts and Sciences. She was elected to the National Academy of Sciences in
2019. She is the recipient of the 2020 Medal for Scientific Achievement from the International Speech
Communication Association.
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Qinxin Wang, Hao Tan, Sheng Shen, Michael Mahoney and Zhewei Yao

Domain-Specific Lexical Grounding in Noisy Visual-Textual Documents
Gregory Yauney, Jack Hessel and David Mimno

HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-
training
Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu and Jingjing Liu

Vokenization: Improving Language Understanding with Contextualized, Visual-
Grounded Supervision

Hao Tan and Mohit Bansal

Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News
Reuben Tan, Bryan Plummer and Kate Saenko
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04:00-05:00

04:00-05:00

04:00-05:00

04:00-05:00

Zoom Q&A Session 5
Zoom Q&A Session 5i: Information Extraction

Enhancing Aspect Term Extraction with Soft Prototypes
Zhuang Chen and Tieyun Qian

FedED: Federated Learning via Ensemble Distillation for Medical Relation Extrac-
tion
Dianbo Sui, Yubo Chen, Jun Zhao, Yantao Jia, Yuantao Xie and Weijian Sun

Multimodal Joint Attribute Prediction and Value Extraction for E-commerce Prod-
uct

Tiangang Zhu, Yue Wang, Haoran Li, Youzheng Wu, Xiaodong He and Bowen
Zhou

A Predicate-Function-Argument Annotation of Natural Language for Open-Domain
Information eXpression
Mingming Sun, Wenyue Hua, Zoey Liu, Xin Wang, Kangjie Zheng and Ping Li

Zoom Q&A Session Sii: Language Generation

Retrofitting Structure-aware Transformer Language Model for End Tasks
Hao Fei, Yafeng Ren and Donghong Ji

Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text Generation
Yan Zhang, Zhijiang Guo, Zhiyang Teng, Wei Lu, Shay B. Cohen, ZUOZHU LIU
and Lidong Bing

If beam search is the answer, what was the question?
Clara Meister, Ryan Cotterell and Tim Vieira

Zoom Q&A Session Siii: Machine Learning for NLP
Understanding the Mechanics of SPIGOT: Surrogate Gradients for Latent Structure

Learning
Tsvetomila Mihaylova, Vlad Niculae and André F. T. Martins
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04:00-05:00

05:00-06:00

05:00-06:00

Is the Best Better? Bayesian Statistical Model Comparison for Natural Language
Processing
Piotr Szymarski and Kyle Gorman

Exploring Logically Dependent Multi-task Learning with Causal Inference
Wenqing Chen, Jidong Tian, Ligiang Xiao, Hao He and Yaohui Jin

Masking as an Efficient Alternative to Finetuning for Pretrained Language Models
Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi and Hinrich Schiitze

Zoom Q&A Session Siv: Machine Translation and Multilinguality
Dynamic Context Selection for Document-level Neural Machine Translation via Re-
inforcement Learning

Xiaomian Kang, Yang Zhao, Jiajun Zhang and Chengqing Zong

Data Rejuvenation: Exploiting Inactive Training Examples for Neural Machine
Translation
Wenxiang Jiao, Xing Wang, Shilin He, Irwin King, Michael Lyu and Zhaopeng Tu

Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses
Prathyusha Jwalapuram, Shafiq Joty and Youlin Shen

Learning Adaptive Segmentation Policy for Simultaneous Translation
Ruiqing Zhang, Chuangiang Zhang, Zhongjun He, Hua Wu and Haifeng Wang

Learn to Cross-lingual Transfer with Meta Graph Learning Across Heterogeneous
Languages

Zheng Li, Mukul Kumar, William Headden, Bing Yin, Ying Wei, Yu Zhang and
Qiang Yang

Zoom Q&A Session 6

Zoom Q&A Session 6i: Syntax: Tagging, Chunking, and Parsing

UDapter: Language Adaptation for Truly Universal Dependency Parsing
Ahmet Ustiin, Arianna Bisazza, Gosse Bouma and Gertjan van Noord

Xcvi
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05:00-06:00

05:00-06:00

Uncertainty-Aware Label Refinement for Sequence Labeling
Tao Gui, Jiacheng Ye, Qi Zhang, Zhengyan Li, Zichu Fei, Yeyun Gong and Xuan-
jing Huang

Adversarial Attack and Defense of Structured Prediction Models
Wenjuan Han, Liwen Zhang, Yong Jiang and Kewei Tu

Position-Aware Tagging for Aspect Sentiment Triplet Extraction
Lu Xu, Hao Li, Wei Lu and Lidong Bing

Zoom Q&A Session 6ii: Machine Translation and Multilinguality

Simultaneous Machine Translation with Visual Context
Ozan Caglayan, Julia Ive, Veneta Haralampieva, Pranava Madhyastha, Loic Barrault
and Lucia Specia

XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
Edoardo Maria Ponti, Goran Glavas, Olga Majewska, Qianchu Liu, Ivan Vulié¢ and
Anna Korhonen

The Secret is in the Spectra: Predicting Cross-lingual Task Performance with Spec-
tral Similarity Measures

Haim Dubossarsky, Ivan Vulié, Roi Reichart and Anna Korhonen

Bridging Linguistic Typology and Multilingual Machine Translation with Multi-
View Language Representations

Arturo Oncevay, Barry Haddow and Alexandra Birch

Zoom Q&A Session 6iii: Question Answering

AnswerFact: Fact Checking in Product Question Answering
Wenxuan Zhang, Yang Deng, Jing Ma and Wai Lam

Context-Aware Answer Extraction in Question Answering
Yeon Seonwoo, Ji-Hoon Kim, Jung-Woo Ha and Alice Oh

What do Models Learn from Question Answering Datasets?
Priyanka Sen and Amir Saffari

Xcvil
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05:00-06:00

06:00-08:00

Discern: Discourse-Aware Entailment Reasoning Network for Conversational Ma-
chine Reading

Yifan Gao, Chien-Sheng Wu, Jingjing Li, Shafiq Joty, Steven C.H. Hoi, Caiming
Xiong, Irwin King and Michael Lyu

Zoom Q&A Session 6iv: Semantics: Sentence-level Semantics, Textual Inference
and Other areas

A Method for Building a Commonsense Inference Dataset based on Basic Events
Kazumasa Omura, Daisuke Kawahara and Sadao Kurohashi

Neural Deepfake Detection with Factual Structure of Text
Wanjun Zhong, Duyu Tang, Zenan Xu, Ruize Wang, Nan Duan, Ming Zhou, Jiahai
Wang and Jian Yin

MultiCQA: Zero-Shot Transfer of Self-Supervised Text Matching Models on a Mas-
sive Scale
Andreas Riicklé, Jonas Pfeiffer and Iryna Gurevych

XL-AMR: Enabling Cross-Lingual AMR Parsing with Transfer Learning Techniques
Rexhina Blloshmi, Rocco Tripodi and Roberto Navigli

Improving AMR Parsing with Sequence-to-Sequence Pre-training
Donggin Xu, Junhui Li, Muhua Zhu, Min Zhang and Guodong Zhou

Gather Session 2i: Computational Social Science and Social Media; Machine
Translation and Multilinguality; Syntax: Tagging, Chunking, and Parsing

Hate-Speech and Offensive Language Detection in Roman Urdu
Hammad Rizwan, Muhammad Haroon Shakeel and Asim Karim

Suicidal Risk Detection for Military Personnel
Sungjoon Park, Kiwoong Park, Jaimeen Ahn and Alice Oh

Comparative Evaluation of Label-Agnostic Selection Bias in Multilingual Hate
Speech Datasets
Nedjma Ousidhoum, Yangqiu Song and Dit-Yan Yeung

HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cy-

berbullying Detection on Social Media
Hsin-Yu Chen and Cheng-Te Li

Xcviil
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Reactive Supervision: A New Method for Collecting Sarcasm Data
Boaz Shmueli, Lun-Wei Ku and Soumya Ray

Self-Induced Curriculum Learning in Self-Supervised Neural Machine Translation
Dana Ruiter, Josef van Genabith and Cristina Espafia-Bonet

Towards Reasonably-Sized Character-Level Transformer NMT by Finetuning Sub-
word Systems
Jindfich Libovicky and Alexander Fraser

Transfer Learning and Distant Supervision for Multilingual Transformer Models:
A Study on African Languages

Michael A. Hedderich, David Adelani, Dawei Zhu, Jesujoba Alabi, Udia Markus
and Dietrich Klakow

Translation Quality Estimation by Jointly Learning to Score and Rank
Jingyi Zhang and Josef van Genabith

Direct Segmentation Models for Streaming Speech Translation
Javier Iranzo-Sanchez, Adria Giménez Pastor, Joan Albert Silvestre-Cerda, Pau
Baquero-Arnal, Jorge Civera Saiz and Alfons Juan

Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New
Datasets for Bengali-English Machine Translation

Tahmid Hasan, Abhik Bhattacharjee, Kazi Samin, Masum Hasan, Madhusudan
Basak, M. Sohel Rahman and Rifat Shahriyar

CSP:Code-Switching Pre-training for Neural Machine Translation
Zhen Yang, Bojie Hu, ambyera han, shen huang and Qi Ju

Type B Reflexivization as an Unambiguous Testbed for Multilingual Multi-Task Gen-
der Bias

Ana Valeria Gonzélez, Maria Barrett, Rasmus Hvingelby, Kellie Webster and An-
ders Sggaard

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment In-
formation

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu, Jiangtao Feng, Hao Zhou and
Lei Li

Losing Heads in the Lottery: Pruning Transformer Attention in Neural Machine
Translation

Maximiliana Behnke and Kenneth Heafield

Towards Enhancing Faithfulness for Neural Machine Translation
Rongxiang Weng, Heng Yu, Xiangpeng Wei and Weihua Luo
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Tuesday, November 17, 2020 (continued)

06:00-08:00

COMET: A Neural Framework for MT Evaluation
Ricardo Rei, Craig Stewart, Ana C Farinha and Alon Lavie

Reusing a Pretrained Language Model on Languages with Limited Corpora for
Unsupervised NMT
Alexandra Chronopoulou, Dario Stojanovski and Alexander Fraser

LNMap: Departures from Isomorphic Assumption in Bilingual Lexicon Induction
Through Non-Linear Mapping in Latent Space
Tasnim Mohiuddin, M Saiful Bari and Shafiq Joty

Uncertainty-Aware Semantic Augmentation for Neural Machine Translation
Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng, Luxi Xing and Weihua Luo

Can Automatic Post-Editing Improve NMT?
Shamil Chollampatt, Raymond Hendy Susanto, Liling Tan and Ewa Szymanska

Parsing Gapping Constructions Based on Grammatical and Semantic Roles
Yoshihide Kato and Shigeki Matsubara

Span-based discontinuous constituency parsing: a family of exact chart-based al-
gorithms with time complexities from O(n"6) down to O(n"3)
Caio Corro

Some Languages Seem Easier to Parse Because Their Treebanks Leak
Anders Sggaard

Discontinuous Constituent Parsing as Sequence Labeling
David Vilares and Carlos Gémez-Rodriguez

Modularized Syntactic Neural Networks for Sentence Classification
Haiyan Wu, Ying Liu and Shaoyun Shi

Gather Session 2ii: Discourse and Pragmatics; Language Generation, Machine
Learning for NLP; Question Answering

TED-CDB: A Large-Scale Chinese Discourse Relation Dataset on TED Talks
Wangiu Long, Bonnie Webber and Deyi Xiong



Tuesday, November 17, 2020 (continued)

QADiscourse - Discourse Relations as QA Pairs: Representation, Crowdsourcing
and Baselines
Valentina Pyatkin, Ayal Klein, Reut Tsarfaty and Ido Dagan

Discourse Self-Attention for Discourse Element Identification in Argumentative Stu-
dent Essays
Wei Song, Ziyao Song, Ruiji Fu, Lizhen Liu, Miaomiao Cheng and Ting Liu

MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Us-
ing Large-Scale Language Models
Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul Puri, Pascale Fung, Anima
Anandkumar and Bryan Catanzaro

Incomplete Utterance Rewriting as Semantic Segmentation
Qian Liu, Bei Chen, Jian-Guang LOU, Bin Zhou and Dongmei Zhang

Improving Grammatical Error Correction Models with Purpose-Built Adversarial
Examples
Lihao Wang and Xiaoqing Zheng

Homophonic Pun Generation with Lexically Constrained Rewriting
Zhiwei Yu, Hongyu Zang and Xiaojun Wan

How to Make Neural Natural Language Generation as Reliable as Templates in
Task-Oriented Dialogue
Henry Elder, Alexander O’ Connor and Jennifer Foster

Multilingual AMR-to-Text Generation
Angela Fan and Claire Gardent

Exploring the Linear Subspace Hypothesis in Gender Bias Mitigation
Francisco Vargas and Ryan Cotterell

Lifelong Language Knowledge Distillation
Yung-Sung Chuang, Shang-Yu Su and Yun-Nung Chen

Sparse Parallel Training of Hierarchical Dirichlet Process Topic Models
Alexander Terenin, Mans Magnusson and Leif Jonsson

Multi-label Few/Zero-shot Learning with Knowledge Aggregated from Multiple La-

bel Graphs
Jueqing Lu, Lan Du, Ming Liu and Joanna Dipnall

ci
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Word Rotator’s Distance
Sho Yokoi, Ryo Takahashi, Reina Akama, Jun Suzuki and Kentaro Inui

Disentangle-based Continual Graph Representation Learning
Xiaoyu Kou, Yankai Lin, Shaobo Liu, Peng Li, Jie Zhou and Yan Zhang

Semi-Supervised Bilingual Lexicon Induction with Two-way Interaction
Xu Zhao, Zihao Wang, Hao Wu and Yong Zhang

Wasserstein Distance Regularized Sequence Representation for Text Matching in
Asymmetrical Domains

Weijie Yu, Chen Xu, Jun Xu, Liang Pang, Xiaopeng Gao, Xiaozhao Wang and Ji-
Rong Wen

A Simple Approach to Learning Unsupervised Multilingual Embeddings
Pratik Jawanpuria, Mayank Meghwanshi and Bamdev Mishra

Bootstrapped Q-learning with Context Relevant Observation Pruning to Generalize
in Text-based Games

Subhajit Chaudhury, Daiki Kimura, Kartik Talamadupula, Michiaki Tatsubori,
Asim Munawar and Ryuki Tachibana

BERT-EMD: Many-to-Many Layer Mapping for BERT Compression with Earth
Mover’s Distance

jianquan li, Xiaokang Liu, Honghong Zhao, Ruifeng Xu, Min Yang and yaohong
jin

Slot Attention with Value Normalization for Multi-Domain Dialogue State Tracking
Yexiang Wang, Yi Guo and Siqi Zhu

Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question
Answering

Yuxiang Wu, Sebastian Riedel, Pasquale Minervini and Pontus Stenetorp

Multi-Step Inference for Reasoning Over Paragraphs
Jiangming Liu, Matt Gardner, Shay B. Cohen and Mirella Lapata

Learning a Cost-Effective Annotation Policy for Question Answering
Bernhard Kratzwald, Stefan Feuerriegel and Huan Sun

Scene Restoring for Narrative Machine Reading Comprehension
Zhixing Tian, Yuanzhe Zhang, Kang Liu, Jun Zhao, Yantao Jia and Zhicheng Sheng
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Tuesday, November 17, 2020 (continued)

06:00-08:00

A Simple and Effective Model for Answering Multi-span Questions
Elad Segal, Avia Efrat, Mor Shoham, Amir Globerson and Jonathan Berant

Gather Session 2iii: Information Retrieval and Text Mining; Interpretability and
Analysis of Models for NLP; Language Grounding to Vision, Robotics and Beyond

Top-Rank-Focused Adaptive Vote Collection for the Evaluation of Domain-Specific
Semantic Models

Pierangelo Lombardo, Alessio Boiardi, Luca Colombo, Angelo Schiavone and
Nicold Tamagnone

Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining
Chengyu Wang, Minghui Qiu, jun huang and XIAOFENG HE

Incorporating Behavioral Hypotheses for Query Generation
Ruey-Cheng Chen and Chia-Jung Lee

Conditional Causal Relationships between Emotions and Causes in Texts
Xinhong Chen, Qing Li and Jianping Wang

COMETA: A Corpus for Medical Entity Linking in the Social Media
Marco Basaldella, Fangyu Liu, Ehsan Shareghi and Nigel Collier

Pareto Probing: Trading Off Accuracy for Complexity
Tiago Pimentel, Naomi Saphra, Adina Williams and Ryan Cotterell

Interpretation of NLP models through input marginalization
Siwon Kim, Jihun Yi, Eunji Kim and Sungroh Yoon

Generating Label Cohesive and Well-Formed Adversarial Claims
Pepa Atanasova, Dustin Wright and Isabelle Augenstein

Are All Good Word Vector Spaces Isomorphic?
Ivan Vuli¢, Sebastian Ruder and Anders Sggaard

Cold-Start and Interpretability: Turning Regular Expressions into Trainable Recur-

rent Neural Networks
Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen and Kewei Tu
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Tuesday, November 17, 2020 (continued)

When BERT Plays the Lottery, All Tickets Are Winning
Sai Prasanna, Anna Rogers and Anna Rumshisky

On the weak link between importance and prunability of attention heads
Aakriti Budhraja, Madhura Pande, Preksha Nema, Pratyush Kumar and Mitesh M.
Khapra

Towards Interpreting BERT for Reading Comprehension Based QA
Sahana Ramnath, Preksha Nema, Deep Sahni and Mitesh M. Khapra

How do Decisions Emerge across Layers in Neural Models? Interpretation with
Differentiable Masking
Nicola De Cao, Michael Sejr Schlichtkrull, Wilker Aziz and Ivan Titov

A Diagnostic Study of Explainability Techniques for Text Classification
Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma and Isabelle Augenstein

STL-CQA': Structure-based Transformers with Localization and Encoding for Chart
Question Answering
Hrituraj Singh and Sumit Shekhar

Learning to Contrast the Counterfactual Samples for Robust Visual Question An-
swering
Zujie Liang, Weitao Jiang, Haifeng Hu and Jiaying Zhu

Learning Physical Common Sense as Knowledge Graph Completion via BERT Data
Augmentation and Constrained Tucker Factorization
Zhenjie Zhao, Evangelos Papalexakis and Xiaojuan Ma

A Visually-grounded First-person Dialogue Dataset with Verbal and Non-verbal
Responses

Hisashi Kamezawa, Noriki Nishida, Nobuyuki Shimizu, Takashi Miyazaki and
Hideki Nakayama

Cross-Media Keyphrase Prediction: A Unified Framework with Multi-Modality
Multi-Head Attention and Image Wordings
Yue Wang, Jing Li, Michael Lyu and Irwin King

VD-BERT: A Unified Vision and Dialog Transformer with BERT
Yue Wang, Shafiq Joty, Michael Lyu, Irwin King, Caiming Xiong and Steven C.H.
Hoi

The Grammar of Emergent Languages
Oskar van der Wal, Silvan de Boer, Elia Bruni and Dieuwke Hupkes
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Tuesday, November 17, 2020 (continued)

06:00-08:00

Sub-Instruction Aware Vision-and-Language Navigation
Yicong Hong, Cristian Rodriguez, Qi Wu and Stephen Gould

Gather Session 2iv: Dialog and Interactive Systems; Semantics: Lexical Semantics;
Sentiment Analysis, Stylistic Analysis, and Argument Mining; Summarization

Knowledge-Grounded Dialogue Generation with Pre-trained Language Models
Xueliang Zhao, wei wu, Can Xu, Chongyang Tao, Dongyan Zhao and Rui Yan

MinTL: Minimalist Transfer Learning for Task-Oriented Dialogue Systems
Zhaojiang Lin, Andrea Madotto, Genta Indra Winata and Pascale Fung

Variational Hierarchical Dialog Autoencoder for Dialog State Tracking Data Aug-
mentation

Kang Min Yoo, Hanbit Lee, Franck Dernoncourt, Trung Bui, Walter Chang and
Sang-goo Lee

Bridging the Gap between Prior and Posterior Knowledge Selection for Knowledge-
Grounded Dialogue Generation

Xiuyi Chen, Fandong Meng, Peng Li, Feilong Chen, Shuang Xu, Bo Xu and Jie
Zhou

Counterfactual Off-Policy Training for Neural Dialogue Generation
Qingfu Zhu, Wei-Nan Zhang, Ting Liu and William Yang Wang

Dialogue Distillation: Open-Domain Dialogue Augmentation Using Unpaired Data
Rongsheng Zhang, Yinhe Zheng, Jianzhi Shao, Xiaoxi Mao, Yadong Xi and Minlie
Huang

Task-Completion Dialogue Policy Learning via Monte Carlo Tree Search with Du-
eling Network
Sihan Wang, kaijie zhou, Kunfeng Lai and Jianping Shen

Learning a Simple and Effective Model for Multi-turn Response Generation with
Auxiliary Tasks
YUFAN ZHAO, Can Xu and wei wu

AtnlO: Knowledge Graph Exploration with In-and-Out Attention Flow for
Knowledge-Grounded Dialogue
Jaehun Jung, Bokyung Son and Sungwon Lyu

Amalgamating Knowledge from Two Teachers for Task-oriented Dialogue System

with Adversarial Training
Wanwei He, Min Yang, Rui Yan, Chengming Li, Ying Shen and Ruifeng Xu

Ccv
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Task-oriented Domain-specific Meta-Embedding for Text Classification
Xin Wu, Yi Cai, Yang Kai, Tao Wang and Qing Li

Don’t Neglect the Obvious: On the Role of Unambiguous Words in Word Sense
Disambiguation
Daniel Loureiro and Jose Camacho-Collados

Within-Between Lexical Relation Classification
Oren Barkan, Avi Caciularu and Ido Dagan

With More Contexts Comes Better Performance: Contextualized Sense Embeddings
for All-Round Word Sense Disambiguation
Bianca Scarlini, Tommaso Pasini and Roberto Navigli

Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sen-
timent Analysis
Mi Zhang and Tieyun Qian

Multi-Instance Multi-Label Learning Networks for Aspect-Category Sentiment
Analysis
Yuncong Li, Cunxiang Yin, Sheng-hua Zhong and Xu Pan

Aspect Sentiment Classification with Aspect-Specific Opinion Spans
Lu Xu, Lidong Bing, Wei Lu and Fei Huang

Emotion-Cause Pair Extraction as Sequence Labeling Based on A Novel Tagging
Scheme
Chaofa Yuan, Chuang Fan, Jianzhu Bao and Ruifeng Xu

End-to-End Emotion-Cause Pair Extraction based on Sliding Window Multi-Label
Learning
Zixiang Ding, Rui Xia and Jianfei Yu

Multi-modal Multi-label Emotion Detection with Modality and Label Dependence
Dong Zhang, Xincheng Ju, Junhui Li, Shoushan Li, Qiaoming Zhu and Guodong
Zhou

Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment
Analysis
Xiaoyu Xing, Zhijing Jin, Di Jin, Bingning Wang, Qi Zhang and Xuanjing Huang

Modeling Content Importance for Summarization with Pre-trained Language Mod-

els
Ligiang Xiao, Lu Wang, Hao He and Yaohui Jin

cvi
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06:00-08:00

Unsupervised Reference-Free Summary Quality Evaluation via Contrastive Learn-

ing
Hanlu Wu, Tengfei Ma, Lingfei Wu, Tariro Manyumwa and Shouling Ji

Neural Extractive Summarization with Hierarchical Attentive Heterogeneous Graph
Network
Ruipeng Jia, Yanan Cao, Hengzhu Tang, Fang Fang, Cong Cao and Shi Wang

Coarse-to-Fine Query Focused Multi-Document Summarization
Yumo Xu and Mirella Lapata

Pre-training for Abstractive Document Summarization by Reinstating Source Text
Yanyan Zou, Xingxing Zhang, Wei Lu, Furu Wei and Ming Zhou

Gather Session 2v: Information Extraction; NLP Applications; Phonology, Mor-
phology and Word Segmentation; Semantics: Sentence-level Semantics, Textual In-
ference and Other areas

Learning from Context or Names? An Empirical Study on Neural Relation Extrac-
tion

Hao Peng, Tianyu Gao, Xu Han, Yankai Lin, Peng Li, Zhiyuan Liu, Maosong Sun
and Jie Zhou

SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction
Xuming Hu, Lijie Wen, Yusong Xu, Chenwei Zhang and Philip Yu

Denoising Relation Extraction from Document-level Distant Supervision
Chaojun Xiao, Yuan Yao, Ruobing Xie, Xu Han, Zhiyuan Liu, Maosong Sun, Fen
Lin and Leyu Lin

Let’s Stop Incorrect Comparisons in End-to-end Relation Extraction!
Bruno Taillé, Vincent Guigue, Geoffrey Scoutheeten and patrick Gallinari

Exposing Shallow Heuristics of Relation Extraction Models with Challenge Data
Shachar Rosenman, Alon Jacovi and Yoav Goldberg

Global-to-Local Neural Networks for Document-Level Relation Extraction
Difeng Wang, Wei Hu, Ermei Cao and Weijian Sun

Recurrent Interaction Network for Jointly Extracting Entities and Classifying Rela-

tions
Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao and xudong Liu
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Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols
Prachi Jain, Sushant Rathi, Mausam and Soumen Chakrabarti

OpenlE6: Iterative Grid Labeling and Coordination Analysis for Open Information
Extraction

Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal, Mausam and Soumen
Chakrabarti

Public Sentiment Drift Analysis Based on Hierarchical Variational Auto-encoder
Wenyue Zhang, Xiaoli Li, Yang Li, Suge Wang, Deyu Li, Jian Liao and Jianxing
Zheng

Point to the Expression: Solving Algebraic Word Problems using the Expression-
Pointer Transformer Model
Bugeun Kim, Kyung Seo Ki, Donggeon Lee and Gahgene Gweon

Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems
Jinghui Qin, Lihui Lin, Xiaodan Liang, Rumin Zhang and Liang Lin

Neural Topic Modeling by Incorporating Document Relationship Graph
Deyu Zhou, Xuemeng Hu and Rui Wang

Routing Enforced Generative Model for Recipe Generation
Zhiwei Yu, Hongyu Zang and Xiaojun Wan

Assessing the Helpfulness of Learning Materials with Inference-Based Learner-Like
Agent

Yun-Hsuan Jen, Chieh-Yang Huang, MeiHua Chen, Ting-Hao Huang and Lun-Wei
Ku

Selection and Generation: Learning towards Multi-Product Advertisement Post
Generation

Zhangming Chan, Yuchi Zhang, Xiuying Chen, Shen Gao, Zhigiang Zhang,
Dongyan Zhao and Rui Yan

Form2Seq : A Framework for Higher-Order Form Structure Extraction
Milan Aggarwal, Hiresh Gupta, Mausoom Sarkar and Balaji Krishnamurthy

Domain Adaptation of Thai Word Segmentation Models using Stacked Ensemble
Peerat Limkonchotiwat, Wannaphong Phatthiyaphaibun, Raheem Sarwar, Ekapol
Chuangsuwanich and Sarana Nutanong

DagoBERT: Generating Derivational Morphology with a Pretrained Language

Model
Valentin Hofmann, Janet Pierrehumbert and Hinrich Schiitze
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11:00-12:00

12:00-13:00

12:00-13:00

Attention Is All You Need for Chinese Word Segmentation
Sufeng Duan and Hai Zhao

A Joint Multiple Criteria Model in Transfer Learning for Cross-domain Chinese
Word Segmentation
Kaiyu Huang, Degen Huang, Zhuang Liu and Fengran Mo

Alignment-free Cross-lingual Semantic Role Labeling
Rui Cai and Mirella Lapata

Leveraging Declarative Knowledge in Text and First-Order Logic for Fine-Grained
Propaganda Detection

Ruize Wang, Duyu Tang, Nan Duan, Wanjun Zhong, Zhongyu Wei, Xuanjing
Huang, Daxin Jiang and Ming Zhou

X-SRL: A Parallel Cross-Lingual Semantic Role Labeling Dataset
Angel Daza and Anette Frank

Graph Convolutions over Constituent Trees for Syntax-Aware Semantic Role Label-
ing

Diego Marcheggiani and Ivan Titov

Fast semantic parsing with well-typedness guarantees
Matthias Lindemann, Jonas Groschwitz and Alexander Koller

Ethics Panel Discussion

Zoom Q&A Session 7

Zoom Q&A Session 7i: Dialog and Interactive Systems

Improving Out-of-Scope Detection in Intent Classification by Using Embeddings of
the Word Graph Space of the Classes

Paulo Cavalin, Victor Henrique Alves Ribeiro, Ana Appel and Claudio Pinhanez

Supervised Seeded Iterated Learning for Interactive Language Learning
Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin and Aaron Courville

cix



Tuesday, November 17, 2020 (continued)

12:00-13:00

12:00-13:00

Spot The Bot: A Robust and Efficient Framework for the Evaluation of Conversa-
tional Dialogue Systems

Jan Deriu, Don Tuggener, Pius von Diniken, Jon Ander Campos, Alvaro Rodrigo,
Thiziri Belkacem, Aitor Soroa, Eneko Agirre and Mark Cieliebak

Human-centric dialog training via offline reinforcement learning
Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata
Lapedriza, Noah Jones, Shixiang Gu and Rosalind Picard

Zoom Q&A Session 7ii: Linguistic Theories, Cognitive Modeling and Psycholin-
guistics

Speakers Fill Lexical Semantic Gaps with Context
Tiago Pimentel, Rowan Hall Maudslay, Damian Blasi and Ryan Cotterell

Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-
Variable Model
Jun Yen Leung, Guy Emerson and Ryan Cotterell

Surprisal Predicts Code-Switching in Chinese-English Bilingual Text
Jesus Calvillo, Le Fang, Jeremy Cole and David Reitter

Word Frequency Does Not Predict Grammatical Knowledge in Language Models
Charles Yu, Ryan Sie, Nicolas Tedeschi and Leon Bergen

Zoom Q&A Session 7iii: Semantics: Lexical Semantics

Improving Word Sense Disambiguation with Translations
Yixing Luan, Bradley Hauer, Lili Mou and Grzegorz Kondrak

Towards Better Context-aware Lexical Semantics:Adjusting Contextualized Repre-
sentations through Static Anchors
Qianchu Liu, Diana McCarthy and Anna Korhonen

Compositional Demographic Word Embeddings
Charles Welch, Jonathan K. Kummerfeld, Verénica Pérez-Rosas and Rada Mihalcea

Do “Undocumented Workers" == “Illegal Aliens"? Differentiating Denotation and
Connotation in Vector Spaces
Albert Webson, Zhizhong Chen, Carsten Eickhoff and Ellie Pavlick

CX
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12:00-13:00

13:00-14:00

13:00-14:00

13:00-14:00

Zoom Q&A Session 7iv: Summarization

Multi-View Sequence-to-Sequence Models with Conversational Structure for Ab-
stractive Dialogue Summarization
Jiaao Chen and Diyi Yang

Few-Shot Learning for Opinion Summarization
Arthur BraZinskas, Mirella Lapata and Ivan Titov

Learning to Fuse Sentences with Transformers for Summarization

Logan Lebanoff, Franck Dernoncourt, Doo Soon Kim, Lidan Wang, Walter Chang
and Fei Liu

Stepwise Extractive Summarization and Planning with Structured Transformers
Shashi Narayan, Joshua Maynez, Jakub Adamek, Daniele Pighin, Blaz Bratanic and
Ryan McDonald

Zoom Q&A Session 8

Zoom Q&A Session 8i: Information Retrieval and Text Mining

CLIRMatrix: A massively large collection of bilingual and multilingual datasets for
Cross-Lingual Information Retrieval

Shuo Sun and Kevin Duh

SLEDGE-Z: A Zero-Shot Baseline for COVID-19 Literature Search
Sean MacAvaney, Arman Cohan and Nazli Goharian

Modularized Transfomer-based Ranking Framework
Luyu Gao, Zhuyun Dai and Jamie Callan

Ad-hoc Document Retrieval using Weak-Supervision with BERT and GPT2
Yosi Mass and Haggai Roitman

Zoom Q&A Session 8ii: Interpretability and Analysis of Models for NLP

Adversarial Semantic Collisions
Congzheng Song, Alexander Rush and Vitaly Shmatikov

cxi
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13:00-14:00

13:00-14:00

Learning Explainable Linguistic Expressions with Neural Inductive Logic Program-
ming for Sentence Classification

Prithviraj Sen, Marina Danilevsky, Yunyao Li, Siddhartha Brahma, Matthias
Boehm, Laura Chiticariu and Rajasekar Krishnamurthy

AutoPrompt: Eliciting Knowledge from Language Models with Automatically Gen-
erated Prompts
Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace and Sameer Singh

Learning Variational Word Masks to Improve the Interpretability of Neural Text
Classifiers
Hanjie Chen and Yangfeng Ji

Zoom Q&A Session 8iii: Language Generation

Sparse Text Generation
Pedro Henrique Martins, Zita Marinho and André F. T. Martins

PlotMachines: Outline-Conditioned Generation with Dynamic Plot State Tracking
Hannah Rashkin, Asli Celikyilmaz, Yejin Choi and Jianfeng Gao

Do sequence-to-sequence VAEs learn global features of sentences?
Tom Bosc and Pascal Vincent

Content Planning for Neural Story Generation with Aristotelian Rescoring
Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph Weischedel and Nanyun
Peng

Generating Dialogue Responses from a Semantic Latent Space
Wei-Jen Ko, Avik Ray, Yilin Shen and Hongxia Jin

Zoom Q&A Session 8iv: Language Grounding to Vision, Robotics and Beyond
Refer, Reuse, Reduce: Generating Subsequent References in Visual and Conversa-
tional Contexts

Ece Takmaz, Mario Giulianelli, Sandro Pezzelle, Arabella Sinclair and Raquel Fer-

nandez

Visually Grounded Compound PCFGs
Yanpeng Zhao and Ivan Titov
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14:00-16:00

ALICE: Active Learning with Contrastive Natural Language Explanations
Weixin Liang, James Zou and Zhou Yu

Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense
Spatiotemporal Grounding
Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie and Jason Baldridge

SSCR: Iterative Language-Based Image Editing via Self-Supervised Counterfactual
Reasoning
Tsu-Jui Fu, Xin Wang, Scott Grafton, Miguel Eckstein and William Yang Wang

Gather Session 3i: Machine Translation and Multilinguality; Semantics: Sentence-
level Semantics, Textual Inference and Other areas

Identifying Elements Essential for BERT’s Multilinguality
Philipp Dufter and Hinrich Schiitze

On Negative Interference in Multilingual Models: Findings and A Meta-Learning
Treatment
Zirui Wang, Zachary C. Lipton and Yulia Tsvetkov

Pre-tokenization of Multi-word Expressions in Cross-lingual Word Embeddings
Naoki Otani, Satoru Ozaki, Xingyuan Zhao, Yucen Li, Micaelah St Johns and Lori
Levin

Monolingual Adapters for Zero-Shot Neural Machine Translation
Jerin Philip, Alexandre Berard, Matthias Gallé and Laurent Besacier

Do Explicit Alignments Robustly Improve Multilingual Encoders?
Shijie Wu and Mark Dredze

From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Mul-
tilingual Transformers
Anne Lauscher, Vinit Ravishankar, Ivan Vuli¢ and Goran Glavas

Distilling Multiple Domains for Neural Machine Translation
Anna Currey, Prashant Mathur and Georgiana Dinu

Making Monolingual Sentence Embeddings Multilingual using Knowledge Distilla-

tion
Nils Reimers and Iryna Gurevych

cxiil
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14:00-16:00

A Streaming Approach For Efficient Batched Beam Search
Kevin Yang, Violet Yao, John DeNero and Dan Klein

Improving Multilingual Models with Language-Clustered Vocabularies
Hyung Won Chung, Dan Garrette, Kiat Chuan Tan and Jason Riesa

Zero-Shot Cross-Lingual Transfer with Meta Learning
Farhad Nooralahzadeh, Giannis Bekoulis, Johannes Bjerva and Isabelle Augenstein

The Multilingual Amazon Reviews Corpus
Phillip Keung, Yichao Lu, Gyorgy Szarvas and Noah A. Smith

GLUCOSE: GeneraLized and COntextualized Story Explanations
Nasrin Mostafazadeh, Aditya Kalyanpur, Lori Moon, David Buchanan, Lauren
Berkowitz, Or Biran and Jennifer Chu-Carroll

Character-level Representations Improve DRS-based Semantic Parsing Even in the
Age of BERT
Rik van Noord, Antonio Toral and Johan Bos

Infusing Disease Knowledge into BERT for Health Question Answering, Medical
Inference and Disease Name Recognition
Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and James Caverlee

Unsupervised Commonsense Question Answering with Self-Talk
Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula and Yejin Choi

Reasoning about Goals, Steps, and Temporal Ordering with WikiHow
Li Zhang, Qing Lyu and Chris Callison-Burch

Gather Session 3ii: Linguistic Theories, Cognitive Modeling and Psycholinguistics;
NLP Applications; Syntax: Tagging, Chunking, and Parsing

Structural Supervision Improves Few-Shot Learning and Syntactic Generalization
in Neural Language Models

Ethan Wilcox, Peng Qian, Richard Futrell, Ryosuke Kohita, Roger Levy and Miguel
Ballesteros

Investigating representations of verb bias in neural language models
Robert Hawkins, Takateru Yamakoshi, Thomas Griffiths and Adele Goldberg

CcXiv
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Generating Image Descriptions via Sequential Cross-Modal Alignment Guided by
Human Gaze
Ece Takmaz, Sandro Pezzelle, Lisa Beinborn and Raquel Fernandez

Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space
Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang and Jian-
feng Gao

BioMegatron: Larger Biomedical Domain Language Model
Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina, Raul Puri, Mostofa Patwary,
Mohammad Shoeybi and Raghav Mani

Text Segmentation by Cross Segment Attention
Michal Lukasik, Boris Dadachev, Kishore Papineni and Goncalo Simoes

RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark
Tatiana Shavrina, Alena Fenogenova, Emelyanov Anton, Denis Shevelev, Ekate-
rina Artemova, Valentin Malykh, Vladislav Mikhailov, Maria Tikhonova, Andrey
Chertok and Andrey Evlampiev

An Empirical Study of Pre-trained Transformers for Arabic Information Extraction
Wuwei Lan, Yang Chen, Wei Xu and Alan Ritter

TNT: Text Normalization based Pre-training of Transformers for Content Modera-
tion
Fei Tan, Yifan Hu, Changwei Hu, Keqgian Li and Kevin Yen

Methods for Numeracy-Preserving Word Embeddings
Dhanasekar Sundararaman, Shijing Si, Vivek Subramanian, Guoyin Wang, Deva-
manyu Hazarika and Lawrence Carin

An Empirical Investigation of Contextualized Number Prediction
Taylor Berg-Kirkpatrick and Daniel Spokoyny

Modeling the Music Genre Perception across Language-Bound Cultures
Elena V. Epure, Guillaume Salha, Manuel Moussallam and Romain Hennequin

Joint Estimation and Analysis of Risk Behavior Ratings in Movie Scripts
Victor Martinez, Krishna Somandepalli, Yalda Tehranian-Uhls and Shrikanth
Narayanan

Keep it Surprisingly Simple: A Simple First Order Graph Based Parsing Model for
Joint Morphosyntactic Parsing in Sanskrit

Amrith Krishna, Ashim Gupta, Deepak Garasangi, Pavankumar Satuluri and Pawan
Goyal

CXV
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14:00-16:00

Unsupervised Parsing via Constituency Tests
Steven Cao, Nikita Kitaev and Dan Klein

Please Mind the Root: Decoding Arborescences for Dependency Parsing
Ran Zmigrod, Tim Vieira and Ryan Cotterell

Unsupervised Cross-Lingual Part-of-Speech Tagging for Truly Low-Resource Sce-
narios
Ramy Eskander, Smaranda Muresan and Michael Collins

Unsupervised Parsing with S-DIORA: Single Tree Encoding for Deep Inside-
Outside Recursive Autoencoders

Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen, Tim O’Gorman, Mohit Iyyer
and Andrew McCallum

Gather Session 3iii: Interpretability and Analysis of Models for NLP; Machine
Learning for NLP

Utility is in the Eye of the User: A Critique of NLP Leaderboards
Kawin Ethayarajh and Dan Jurafsky

An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-
training
Kristjan Arumae, Qing Sun and Parminder Bhatia

Analyzing Individual Neurons in Pre-trained Language Models
Nadir Durrani, Hassan Sajjad, Fahim Dalvi and Yonatan Belinkov

Dissecting Span Identification Tasks with Performance Prediction
Sean Papay, Roman Klinger and Sebastian Pad6

Assessing Phrasal Representation and Composition in Transformers
Lang Yu and Allyson Ettinger

Analyzing Redundancy in Pretrained Transformer Models
Fahim Dalvi, Hassan Sajjad, Nadir Durrani and Yonatan Belinkov

Be More with Less: Hypergraph Attention Networks for Inductive Text Classifica-

tion
Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li and Huan Liu
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14:00-16:00

Entities as Experts: Sparse Memory Access with Entity Supervision
Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi and Tom
Kwiatkowski

H2KGAT: Hierarchical Hyperbolic Knowledge Graph Attention Network
Shen Wang, Xiaokai Wei, Cicero Nogueira dos Santos, Zhiguo Wang, Ramesh Nal-
lapati, Andrew Arnold, Bing Xiang and Philip S. Yu

Does the Objective Matter? Comparing Training Objectives for Pronoun Resolu-
tion
Yordan Yordanov, Oana-Maria Camburu, Vid Kocijan and Thomas Lukasiewicz

On Losses for Modern Language Models
Stéphane Aroca-Ouellette and Frank Rudzicz

We Can Detect Your Bias: Predicting the Political Ideology of News Articles
Ramy Baly, Giovanni Da San Martino, James Glass and Preslav Nakov

Semantic Label Smoothing for Sequence to Sequence Problems
Michal Lukasik, Himanshu Jain, Aditya Menon, Seungyeon Kim, Srinadh Bhojana-
palli, Felix Yu and Sanjiv Kumar

Training for Gibbs Sampling on Conditional Random Fields with Neural Scoring
Factors
Sida Gao and Matthew R. Gormley

Multilevel Text Alignment with Cross-Document Attention
Xuhui Zhou, Nikolaos Pappas and Noah A. Smith

Gather Session 3iv: Dialog and Interactive Systems; Language Generation;
Phonology, Morphology and Word Segmentation

Conversational Semantic Parsing

Armen Aghajanyan, Jean Maillard, Akshat Shrivastava, Keith Diedrick, Michael
Haeger, Haoran Li, Yashar Mehdad, Veselin Stoyanov, Anuj Kumar, Mike Lewis
and Sonal Gupta

Probing Task-Oriented Dialogue Representation from Language Models
Chien-Sheng Wu and Caiming Xiong

End-to-End Slot Alignment and Recognition for Cross-Lingual NLU
Weijia Xu, Batool Haider and Saab Mansour
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Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natu-
ral Language Inference

Jianguo Zhang, Kazuma Hashimoto, Wenhao Liu, Chien-Sheng Wu, Yao Wan,
Philip Yu, Richard Socher and Caiming Xiong

Simple Data Augmentation with the Mask Token Improves Domain Adaptation for
Dialog Act Tagging

Semih Yavuz, Kazuma Hashimoto, Wenhao Liu, Nitish Shirish Keskar, Richard
Socher and Caiming Xiong

Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic
Parsing
Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer and Sonal Gupta

Sound Natural: Content Rephrasing in Dialog Systems
Arash Einolghozati, Anchit Gupta, Keith Diedrick and Sonal Gupta

Zero-Shot Crosslingual Sentence Simplification
Jonathan Mallinson, Rico Sennrich and Mirella Lapata

Facilitating the Communication of Politeness through Fine-Grained Paraphrasing
Liye Fu, Susan Fussell and Cristian Danescu-Niculescu-Mizil

CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text
Generation
Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang Li, Jilin Chen, Alex Beutel
and Ed Chi

Seq2Edits: Sequence Transduction Using Span-level Edit Operations
Felix Stahlberg and Shankar Kumar

Controllable Meaning Representation to Text Generation: Linearization and Data
Augmentation Strategies
Chris Kedzie and Kathleen McKeown

Blank Language Models
Tianxiao Shen, Victor Quach, Regina Barzilay and Tommi Jaakkola

COD3S: Diverse Generation with Discrete Semantic Signatures
Nathaniel Weir, Jodo Sedoc and Benjamin Van Durme

Automatic Extraction of Rules Governing Morphological Agreement

Aditi Chaudhary, Antonios Anastasopoulos, Adithya Pratapa, David R. Mortensen,
Zaid Sheikh, Yulia Tsvetkov and Graham Neubig

cXviil
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14:00-16:00

Tackling the Low-resource Challenge for Canonical Segmentation
Manuel Mager, Ozlem Cetinoglu and Katharina Kann

IGT2P: From Interlinear Glossed Texts to Paradigms
Sarah Moeller, Ling Liu, Changbing Yang, Katharina Kann and Mans Hulden

Gather Session 3v: Computational Social Science and Social Media; Information
Extraction; Question Answering

A Computational Approach to Understanding Empathy Expressed in Text-Based
Mental Health Support
Ashish Sharma, Adam Miner, David Atkins and Tim Althoff

Modeling Protagonist Emotions for Emotion-Aware Storytelling
Faeze Brahman and Snigdha Chaturvedi

Help! Need Advice on Identifying Advice
Venkata Subrahmanyan Govindarajan, Benjamin Chen, Rebecca Warholic, Katrin
Erk and Junyi Jessy Li

Quantifying Intimacy in Language
Jiaxin Pei and David Jurgens

Writing Strategies for Science Communication: Data and Computational Analysis
Tal August, Lauren Kim, Katharina Reinecke and Noah A. Smith

Weakly Supervised Subevent Knowledge Acquisition
Wenlin Yao, Zeyu Dai, Maitreyi Ramaswamy, Bonan Min and Ruihong Huang

Biomedical Event Extraction as Sequence Labeling
Alan Ramponi, Rob van der Goot, Rosario Lombardo and Barbara Plank

Annotating Temporal Dependency Graphs via Crowdsourcing
Jiarui Yao, Haoling Qiu, Bonan Min and Nianwen Xue

Introducing a New Dataset for Event Detection in Cybersecurity Texts

Hieu Man Duc Trong, Duc Trong Le, Amir Pouran Ben Veyseh, Thuat Nguyen and
Thien Huu Nguyen

CXiX
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CHARM: Inferring Personal Attributes from Conversations
Anna Tigunova, Andrew Yates, Paramita Mirza and Gerhard Weikum

Event Detection: Gate Diversity and Syntactic Importance Scores for Graph Con-
volution Neural Networks
Viet Dac Lai, Tuan Ngo Nguyen and Thien Huu Nguyen

Severing the Edge Between Before and After: Neural Architectures for Temporal
Ordering of Events

Miguel Ballesteros, Rishita Anubhai, Shuai Wang, Nima Pourdamghani, Yogarshi
Vyas, Jie Ma, Parminder Bhatia, Kathleen McKeown and Yaser Al-Onaizan

How Much Knowledge Can You Pack Into the Parameters of a Language Model?
Adam Roberts, Colin Raffel and Noam Shazeer

EXAMS: A Multi-subject High School Examinations Dataset for Cross-lingual and
Multilingual Question Answering

Momchil Hardalov, Todor Mihaylov, Dimitrina Zlatkova, Yoan Dinkov, Ivan Koy-
chev and Preslav Nakov

End-to-End Synthetic Data Generation for Domain Adaptation of Question Answer-
ing Systems

Siamak Shakeri, Cicero Nogueira dos Santos, Henghui Zhu, Patrick Ng, Feng Nan,
Zhiguo Wang, Ramesh Nallapati and Bing Xiang

Multi-Stage Pre-training for Low-Resource Domain Adaptation
Rong Zhang, Revanth Gangi Reddy, Md Arafat Sultan, Vittorio Castelli, Anthony
Ferritto, Radu Florian, Efsun Sarioglu Kayi, Salim Roukos, Avi Sil and Todd Ward
ISAAQ - Mastering Textbook Questions with Pre-trained Transformers and Bottom-
Up and Top-Down Attention
Jose Manuel Gomez-Perez and Rail Ortega
SubjQA: A Dataset for Subjectivity and Review Comprehension
Johannes Bjerva, Nikita Bhutani, Behzad Golshan, Wang-Chiew Tan and Isabelle
Augenstein

19:00-20:00  Keynote II: Rich Caruana

20:00-21:00 Zoom Q&A Session 9

20:00-21:00 Zoom Q&A Session 9i: Speech and Multimodality

CXX
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20:00-21:00

20:00-21:00

Widget Captioning: Generating Natural Language Description for Mobile User
Interface Elements
Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li and Zhiwei Guan

Unsupervised Natural Language Inference via Decoupled Multimodal Contrastive
Learning
Wanyun Cui, Guangyu Zheng and Wei Wang

Digital Voicing of Silent Speech
David Gaddy and Dan Klein

Zoom Q&A Session 9ii: Machine Learning for NLP

Imitation Attacks and Defenses for Black-box Machine Translation Systems
Eric Wallace, Mitchell Stern and Dawn Song

Sequence-Level Mixed Sample Data Augmentation
Demi Guo, Yoon Kim and Alexander Rush

Consistency of a Recurrent Language Model With Respect to Incomplete Decoding
Sean Welleck, Ilia Kulikov, Jaedeok Kim, Richard Yuanzhe Pang and Kyunghyun
Cho

An Exploration of Arbitrary-Order Sequence Labeling via Energy-Based Inference
Networks
Lifu Tu, Tianyu Liu and Kevin Gimpel

Ensemble Distillation for Structured Prediction: Calibrated, Accurate, Fast—
Choose Three
Steven Reich, David Mueller and Nicholas Andrews

Zoom Q&A Session 9iii: Sentiment Analysis, Stylistic Analysis, and Argument Min-
ing

Inducing Target-Specific Latent Structures for Aspect Sentiment Classification
Chenhua Chen, Zhiyang Teng and Yue Zhang

Affective Event Classification with Discourse-enhanced Self-training
Yuan Zhuang, Tianyu Jiang and Ellen Riloff
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21:00-22:00

21:00-22:00

21:00-22:00

Deep Weighted MaxSAT for Aspect-based Opinion Extraction
Meixi Wu, Wenya Wang and Sinno Jialin Pan

Multi-view Story Characterization from Movie Plot Synopses and Reviews
Sudipta Kar, Gustavo Aguilar, Mirella Lapata and Thamar Solorio

Zoom Q&A Session 10

Zoom Q&A Session 10i: Phonology, Morphology and Word Segmentation

Mind Your Inflections! Improving NLP for Non-Standard Englishes with Base-
Inflection Encoding

Samson Tan, Shafiq Joty, Lav Varshney and Min-Yen Kan

Measuring the Similarity of Grammatical Gender Systems by Comparing Partitions
Arya D. McCarthy, Adina Williams, Shijia Liu, David Yarowsky and Ryan Cotterell

RethinkCWS: Is Chinese Word Segmentation a Solved Task?
Jinlan Fu, Pengfei Liu, Qi Zhang and Xuanjing Huang

Learning to Pronounce Chinese Without a Pronunciation Dictionary
Christopher Chu, Scot Fang and Kevin Knight

Zoom Q&A Session 10ii: Information Extraction

Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse
Knowledge Graph

Xin Lv, Xu Han, Lei Hou, Juanzi Li, Zhiyuan Liu, Wei Zhang, YICHI ZHANG,
Hao Kong and Suhui Wu

Knowledge Association with Hyperbolic Knowledge Graph Embeddings
Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang, Jian Dai and Wei Zhang

Domain Knowledge Empowered Structured Neural Net for End-to-End Event Tem-

poral Relation Extraction
Rujun Han, Yichao Zhou and Nanyun Peng
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21:00-22:00

21:00-22:00

22:00-00:00

TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung and William L. Hamilton

Zoom Q&A Session 10iii: Machine Translation and Multilinguality

Understanding the Difficulty of Training Transformers
Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen and Jiawei Han

An Empirical Study of Generation Order for Machine Translation
William Chan, Mitchell Stern, Jamie Kiros and Jakob Uszkoreit

Inference Strategies for Machine Translation with Conditional Masking
Julia Kreutzer, George Foster and Colin Cherry

Zoom Q&A Session 10iv: Question Answering

AmbigQA: Answering Ambiguous Open-domain Questions
Sewon Min, Julian Michael, Hannaneh Hajishirzi and Luke Zettlemoyer

Tell Me How to Ask Again: Question Data Augmentation with Controllable Rewrit-
ing in Continuous Space

Dayiheng Liu, Yeyun Gong, Jie Fu, Yu Yan, Jiusheng Chen, Jiancheng Lv, Nan
Duan and Ming Zhou

Training Question Answering Models From Synthetic Data
Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa Patwary and Bryan Catan-
zaro

Few-Shot Complex Knowledge Base Question Answering via Meta Reinforcement
Learning

Yuncheng Hua, Yuan-Fang Li, Gholamreza Haffari, Guilin Qi and Tongtong Wu

Gather Session 4i: Computational Social Science and Social Media; Machine
Translation and Multilinguality; Syntax: Tagging, Chunking, and Parsing

Multilingual Offensive Language Identification with Cross-lingual Embeddings
Tharindu Ranasinghe and Marcos Zampieri
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Solving Historical Dictionary Codes with a Neural Language Model
Christopher Chu, Raphael Valenti and Kevin Knight

Toward Micro-Dialect Identification in Diaglossic and Code-Switched Environ-
ments
Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim Elmadany and Lyle Ungar

Investigating African-American Vernacular English in Transformer-Based Text
Generation

Sophie Groenwold, Lily Ou, Aesha Parekh, Samhita Honnavalli, Sharon Levy, Diba
Mirza and William Yang Wang

Iterative Domain-Repaired Back-Translation
Hao-Ran Wei, Zhirui Zhang, Boxing Chen and Weihua Luo

Dynamic Data Selection and Weighting for Iterative Back-Translation
Zi-Yi Dou, Antonios Anastasopoulos and Graham Neubig

Revisiting Modularized Multilingual NMT to Meet Industrial Demands
Sungwon Lyu, Bokyung Son, Kichang Yang and Jaekyoung Bae

LAReQA: Language-Agnostic Answer Retrieval from a Multilingual Pool
Uma Roy, Noah Constant, Rami Al-Rfou, Aditya Barua, Aaron Phillips and Yinfei
Yang

OCR Post Correction for Endangered Language Texts
Shruti Rijhwani, Antonios Anastasopoulos and Graham Neubig

X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language
Models
Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki, Haibo Ding and Graham
Neubig

CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs
Ahmed El-Kishky, Vishrav Chaudhary, Francisco Guzmén and Philipp Koehn

Localizing Open-Ontology QA Semantic Parsers in a Day Using Machine Transla-
tion
Mehrad Moradshahi, Giovanni Campagna, Sina Semnani, Silei Xu and Monica Lam

Interactive Refinement of Cross-Lingual Word Embeddings

Michelle Yuan, Mozhi Zhang, Benjamin Van Durme, Leah Findlater and Jordan
Boyd-Graber
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22:00-00:00

Exploiting Sentence Order in Document Alignment
Brian Thompson and Philipp Koehn

XGLUE: A New Benchmark Datasetfor Cross-lingual Pre-training, Understanding
and Generation

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming
Gong, Linjun Shou, Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang,
Rahul Agrawal, Edward Cui, Sining Wei, Taroon Bharti, Ying Qiao, Jiun-Hung
Chen, Winnie Wu, Shuguang Liu, Fan Yang, Daniel Campos, Rangan Majumder
and Ming Zhou

AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network
Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang
and Kewei Tu

HIT: Nested Named Entity Recognition via Head-Tail Pair and Token Interaction
Yu Wang, Yun Li, Hanghang Tong and Ziye Zhu

Supertagging Combinatory Categorial Grammar with Attentive Graph Convolu-
tional Networks
Yuanhe Tian, Yan Song and Fei Xia

DAGA: Data Augmentation with a Generation Approach forLow-resource Tagging
Tasks

BOSHENG DING, Linlin Liu, Lidong Bing, Canasai Kruengkrai, Thien Hai
Nguyen, Shafiq Joty, Luo Si and Chunyan Miao

Interpretable Multi-dataset Evaluation for Named Entity Recognition
Jinlan Fu, Pengfei Liu and Graham Neubig

Adversarial Semantic Decoupling for Recognizing Open-Vocabulary Slots
Yuanmeng Yan, Keqing He, Hong Xu, Sihong Liu, Fanyu Meng, Min Hu and
Weiran XU

Gather Session 4ii: Machine Learning for NLP; Semantics: Lexical Semantics;
Summarization

Plug and Play Autoencoders for Conditional Text Generation
Florian Mai, Nikolaos Pappas, Ivan Montero, Noah A. Smith and James Henderson

Structure Aware Negative Sampling in Knowledge Graphs
Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L. Hamilton and Avishek
Joey Bose

Neural Mask Generator: Learning to Generate Adaptive Word Maskings for Lan-

guage Model Adaptation
Minki Kang, Moonsu Han and Sung Ju Hwang
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Autoregressive Knowledge Distillation through Imitation Learning
Alexander Lin, Jeremy Wohlwend, Howard Chen and Tao Lei

13: Tree-Autoencoder Constrained Adversarial Text Generation for Targeted Attack
Boxin Wang, Hengzhi Pei, Boyuan Pan, Qian Chen, Shuohang Wang and Bo Li

Structured Pruning of Large Language Models
Ziheng Wang, Jeremy Wohlwend and Tao Lei

Effective Unsupervised Domain Adaptation with Adversarially Trained Language
Models
Thuy-Trang Vu, Dinh Phung and Gholamreza Haffari

BAE: BERT-based Adversarial Examples for Text Classification
Siddhant Garg and Goutham Ramakrishnan

Adversarial Self-Supervised Data-Free Distillation for Text Classification
Xinyin Ma, Yongliang Shen, Gongfan Fang, Chen Chen, Chenghao Jia and Weim-
ing Lu

BERT-ATTACK: Adversarial Attack Against BERT Using BERT
Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue and Xipeng Qiu

The Thieves on Sesame Street are Polyglots - Extracting Multilingual Models from
Monolingual APIs
Nitish Shirish Keskar, Bryan McCann, Caiming Xiong and Richard Socher

When Hearst Is not Enough: Improving Hypernymy Detection from Corpus with
Distributional Models

Changlong Yu, Jialong Han, Peifeng Wang, Yangqiu Song, Hongming Zhang, Wil-
fred Ng and Shuming Shi

Interpreting Open-Domain Modifiers: Decomposition of Wikipedia Categories into
Disambiguated Property-Value Pairs
Marius Pasca

A Synset Relation-enhanced Framework with a Try-again Mechanism for Word
Sense Disambiguation
Ming Wang and Yinglin Wang

Diverse, Controllable, and Keyphrase-Aware: A Corpus and Method for News
Multi-Headline Generation

Dayiheng Liu, Yeyun Gong, Yu Yan, Jie Fu, Bo Shao, Daxin Jiang, Jiancheng Lv
and Nan Duan
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Tuesday, November 17, 2020 (continued)

22:00-00:00

Factual Error Correction for Abstractive Summarization Models
Meng Cao, Yue Dong, Jiapeng Wu and Jackie Chi Kit Cheung

Compressive Summarization with Plausibility and Salience Modeling
Shrey Desai, Jiacheng Xu and Greg Durrett

Understanding Neural Abstractive Summarization Models via Uncertainty
Jiacheng Xu, Shrey Desai and Greg Durrett

Better Highlighting: Creating Sub-Sentence Summary Highlights
Sangwoo Cho, Kaigiang Song, Chen Li, Dong Yu, Hassan Foroosh and Fei Liu

Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Ap-
proach
Bowen Tan, Lianhui Qin, Eric Xing and Zhiting Hu

Gather Session 4iii: Discourse and Pragmatics; Information Extraction; Language
Generation

BERT-enhanced Relational Sentence Ordering Network
Baiyun Cui, Yingming Li and Zhongfei Zhang

Online Conversation Disentanglement with Pointer Networks
Tao Yu and Shafiq Joty

VCDM: Leveraging Variational Bi-encoding and Deep Contextualized Word Rep-
resentations for Improved Definition Modeling
Machel Reid, Edison Marrese-Taylor and Yutaka Matsuo

Coarse-to-Fine Pre-training for Named Entity Recognition
Xue Mengge, Bowen Yu, Zhenyu Zhang, Tingwen Liu, Yue Zhang and Bin Wang

Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment
Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, Zhiyuan Liu and Tat-Seng Chua

Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest

Neighbor Learning
Yi Yang and Arzoo Katiyar
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Tuesday, November 17, 2020 (continued)

Learning Structured Representations of Entity Names using ActiveLearning and
Weak Supervision
Kun Qian, Poornima Chozhiyath Raman, Yunyao Li and Lucian Popa

Entity Enhanced BERT Pre-training for Chinese NER
Chen Jia, Yuefeng Shi, Qinrong Yang and Yue Zhang

Scalable Zero-shot Entity Linking with Dense Entity Retrieval
Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel and Luke Zettlemoyer

A Dataset for Tracking Entities in Open Domain Procedural Text
Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi, Dheeraj Rajagopal, Peter Clark,
Michal Guerquin, Kyle Richardson and Eduard Hovy

Design Challenges in Low-resource Cross-lingual Entity Linking
Xingyu Fu, Weijia Shi, Xiaodong Yu, Zian Zhao and Dan Roth

Efficient One-Pass End-to-End Entity Linking for Questions
Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar Mehdad and Wen-tau Yih

LUKE: Deep Contextualized Entity Representations with Entity-aware Self-
attention
Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda and Yuji Matsumoto

Generating similes effortlessly like a Pro: A Style Transfer Approach for Simile
Generation
Tuhin Chakrabarty, Smaranda Muresan and Nanyun Peng

STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story
Generation
Nader Akoury, Shufan Wang, Josh Whiting, Stephen Hood, Nanyun Peng and Mohit

Iyyer

Substance over Style: Document-Level Targeted Content Transfer
Allison Hegel, Sudha Rao, Asli Celikyilmaz and Bill Dolan

Template Guided Text Generation for Task-Oriented Dialogue
Mihir Kale and Abhinav Rastogi

MOCHA': A Dataset for Training and Evaluating Generative Reading Comprehen-

sion Metrics
Anthony Chen, Gabriel Stanovsky, Sameer Singh and Matt Gardner
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Tuesday, November 17, 2020 (continued)

22:00-00:00

Plan ahead: Self-Supervised Text Planning for Paragraph Completion Task
Dongyeop Kang and Eduard Hovy

Inquisitive Question Generation for High Level Text Comprehension
Wei-Jen Ko, TE-YUAN CHEN, Yiyan Huang, Greg Durrett and Junyi Jessy Li

Gather Session 4iv: Dialog and Interactive Systems; NLP Applications; Question
Answering

Towards Persona-Based Empathetic Conversational Models
Peixiang Zhong, Chen Zhang, Hao Wang, Yong Liu and Chunyan Miao

Personal Information Leakage Detection in Conversations
Qiongkai Xu, Lizhen Qu, Zeyu Gao and Gholamreza Haffari

Response Selection for Multi-Party Conversations with Dynamic Topic Tracking
Weishi Wang, Steven C.H. Hoi and Shafiq Joty

Regularizing Dialogue Generation by Imitating Implicit Scenarios
Shaoxiong Feng, Xuancheng Ren, Hongshen Chen, Bin Sun, Kan Li and Xu SUN

MovieChats: Chat like Humans in a Closed Domain
Hui Su, Xiaoyu Shen, Zhou Xiao, Zheng Zhang, Ernie Chang, Cheng Zhang, Cheng
Niu and Jie Zhou

Conundrums in Entity Coreference Resolution: Making Sense of the State of the Art
Jing Lu and Vincent Ng

Semantic Role Labeling Guided Multi-turn Dialogue ReWriter
Kun Xu, Haochen Tan, Linfeng Song, Han Wu, Haisong Zhang, Lingi Song and
Dong Yu

Continuity of Topic, Interaction, and Query: Learning to Quote in Online Conver-
sations
Lingzhi Wang, Jing Li, Xingshan Zeng, Haisong Zhang and Kam-Fai Wong

Profile Consistency Identification for Open-domain Dialogue Agents

Haoyu Song, Yan Wang, Wei-Nan Zhang, Zhengyu Zhao, Ting Liu and Xiaojiang
Liu
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Tuesday, November 17, 2020 (continued)

An Element-aware Multi-representation Model for Law Article Prediction
Huilin Zhong, Junsheng Zhou, Weiguang QU, Yunfei Long and Yanhui Gu

Recurrent Event Network: Autoregressive Structure Inferenceover Temporal Knowl-
edge Graphs
Woojeong Jin, Meng Qu, Xisen Jin and Xiang Ren

Multi-resolution Annotations for Emoji Prediction
Weicheng Ma, Ruibo Liu, Lili Wang and Soroush Vosoughi

Less is More: Attention Supervision with Counterfactuals for Text Classification
Seungtaek Choi, Haeju Park, Jinyoung Yeo and Seung-won Hwang

MODE-LSTM: A Parameter-efficient Recurrent Network with Multi-Scale for Sen-
tence Classification
Qianli Ma, Zhenxi Lin, Jiangyue Yan, Zipeng Chen and Liuhong Yu

HSCNN: A Hybrid-Siamese Convolutional Neural Network for Extremely Imbal-
anced Multi-label Text Classification
Wenshuo Yang, Jiyi Li, Fumiyo Fukumoto and Yanming Ye

Multi-Stage Pre-training for Automated Chinese Essay Scoring
Wei Song, Kai Zhang, Ruiji Fu, Lizhen Liu, Ting Liu and Miaomiao Cheng

Multi-hop Inference for Question-driven Summarization
Yang Deng, Wenxuan Zhang and Wai Lam

Towards Interpretable Reasoning over Paragraph Effects in Situation
Mucheng Ren, Xiubo Geng, Tao QIN, Heyan Huang and Daxin Jiang

Question Directed Graph Attention Network for Numerical Reasoning over Text
Kunlong Chen, Weidi Xu, Xingyi Cheng, Zou Xiaochuan, Yuyu Zhang, Le Song,
Taifeng Wang, Yuan Qi and Wei Chu

Dense Passage Retrieval for Open-Domain Question Answering
Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Dangi Chen and Wen-tau Yih

Distilling Structured Knowledge for Text-Based Relational Reasoning
Jin Dong, Marc-Antoine Rondeau and William L. Hamilton
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Tuesday, November 17, 2020 (continued)

22:00-00:00  Gather Session 4v: Interpretability and Analysis of Models for NLP; Semantics:
Sentence-level Semantics, Textual Inference and Other areas; Sentiment Analysis,
Stylistic Analysis, and Argument Mining

Asking without Telling: Exploring Latent Ontologies in Contextual Representations
Julian Michael, Jan A. Botha and Ian Tenney

Pretrained Language Model Embryology: The Birth of ALBERT
Cheng-Han Chiang, Sung-Feng Huang and Hung-yi Lee

Learning Music Helps You Read: Using Transfer to Study Linguistic Structure in
Language Models
Isabel Papadimitriou and Dan Jurafsky

What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Lan-
guage Model Positional Encoding
Yu-An Wang and Yun-Nung Chen

“You are grounded!”: Latent Name Artifacts in Pre-trained Language Models
Vered Shwartz, Rachel Rudinger and Oyvind Tafjord

Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge
of Pre-Trained Language Models
Bill Yuchen Lin, Seyeon Lee, Rahul Khanna and Xiang Ren

Grounded Adaptation for Zero-shot Executable Semantic Parsing
Victor Zhong, Mike Lewis, Sida I. Wang and Luke Zettlemoyer

An Imitation Game for Learning Semantic Parsers from User Interaction
Ziyu Yao, Yiqi Tang, Wen-tau Yih, Huan Sun and Yu Su

IGSQL: Database Schema Interaction Graph Based Neural Model for Context-
Dependent Text-to-SQL Generation
Yitao Cai and Xiaojun Wan

"What Do You Mean by That?" A Parser-Independent Interactive Approach for En-
hancing Text-to-SQL

Yuntao Li, Bei Chen, Qian Liu, Yan Gao, Jian-Guang LOU, Yan Zhang and Dong-
mei Zhang

DuSQL: A Large-Scale and Pragmatic Chinese Text-to-SQL Dataset

Lijie Wang, Ao Zhang, Kun Wu, Ke Sun, Zhenghua Li, Hua Wu, Min Zhang and
Haifeng Wang
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Tuesday, November 17, 2020 (continued)

Mention Extraction and Linking for SQL Query Generation
Jiangiang Ma, ZEYU YAN, Shuai Pang, Yang Zhang and Jianping Shen

Re-examining the Role of Schema Linking in Text-to-SQL
Wengiang Lei, Weixin Wang, Zhixin MA, Tian Gan, Wei Lu, Min-Yen Kan and
Tat-Seng Chua

A Multi-Task Incremental Learning Framework with Category Name Embedding for
Aspect-Category Sentiment Analysis
Zehui Dai, Cheng Peng, Huajie Chen and Yadong Ding

Train No Evil: Selective Masking for Task-Guided Pre-Training
Yuxian Gu, Zhengyan Zhang, Xiaozhi Wang, Zhiyuan Liu and Maosong Sun

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic
Knowledge
Pei Ke, Haozhe Ji, Siyang Liu, Xiaoyan Zhu and Minlie Huang

Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment
Topic Embedding
Jiaxin Huang, Yu Meng, Fang Guo, Heng Ji and Jiawei Han

APE: Argument Pair Extraction from Peer Review and Rebuttal via Multi-task
Learning
Liying Cheng, Lidong Bing, Qian Yu, Wei Lu and Luo Si

Diversified Multiple Instance Learning for Document-Level Multi-Aspect Sentiment
Classification
Yunjie Ji, Hao Liu, Bolei He, Xinyan Xiao, Hua Wu and Yanhua Yu

Identifying Exaggerated Language
Li Kong, Chuanyi Li, Jidong Ge, Bin Luo and Vincent Ng

Unified Feature and Instance Based Domain Adaptation for Aspect-Based Senti-

ment Analysis
Chenggong Gong, Jianfei Yu and Rui Xia
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Wednesday, November 18, 2020

04:00-05:00

04:00-05:00

04:00-05:00

Zoom Q&A Session 11
Zoom Q&A Session 11i: Interpretability and Analysis of Models for NLP

Compositional and Lexical Semantics in RoBERTa, BERT and DistilBERT: A Case
Study on CoQA
Ieva Stalitinaité and Ignacio Iacobacci

Attention is Not Only a Weight: Analyzing Transformers with Vector Norms
Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi and Kentaro Inui

F1 is Not Enough! Models and Evaluation Towards User-Centered Explainable
Question Answering
Hendrik Schuff, Heike Adel and Ngoc Thang Vu

On the Ability and Limitations of Transformers to Recognize Formal Languages
Satwik Bhattamishra, Kabir Ahuja and Navin Goyal

Zoom Q&A Session 11ii: NLP Applications

An Unsupervised Joint System for Text Generation from Knowledge Graphs and
Semantic Parsing
Martin Schmitt, Sahand Sharifzadeh, Volker Tresp and Hinrich Schiitze

DGST: a Dual-Generator Network for Text Style Transfer
Xiao Li, Guanyi Chen, Chenghua Lin and Ruizhe Li

A Knowledge-Aware Sequence-to-Tree Network for Math Word Problem Solving
Qinzhuo Wu, Qi Zhang, Jinlan Fu and Xuanjing Huang

Generating Fact Checking Briefs
Angela Fan, Aleksandra Piktus, Fabio Petroni, Guillaume Wenzek, Marzieh Saeidi,
Andreas Vlachos, Antoine Bordes and Sebastian Riedel

Improving the Efficiency of Grammatical Error Correction with Erroneous Span

Detection and Correction
Mengyun Chen, Tao Ge, Xingxing Zhang, Furu Wei and Ming Zhou
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Wednesday, November 18, 2020 (continued)

04:00-05:00

04:00-05:00

05:00-06:00

05:00-06:00

05:00-06:00

Zoom Q&A Session 11iii: Question Answering

Coreferential Reasoning Learning for Language Representation
Deming Ye, Yankai Lin, Jiaju Du, Zhenghao Liu, Peng Li, Maosong Sun and
Zhiyuan Liu

Is Graph Structure Necessary for Multi-hop Question Answering?
Nan Shao, Yiming Cui, Ting Liu, Shijin Wang and Guoping Hu

Zoom Q&A Session 11iv: Semantics: Lexical Semantics

XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization
Alessandro Raganato, Tommaso Pasini, Jose Camacho-Collados and Mohammad
Taher Pilehvar

Generationary or "How We Went beyond Word Sense Inventories and Learned to
Gloss”

Michele Bevilacqua, Marco Maru and Roberto Navigli

Probing Pretrained Language Models for Lexical Semantics

Ivan Vuli¢, Edoardo Maria Ponti, Robert Litschko, Goran Glavas$ and Anna Korho-
nen

Zoom Q&A Session 12

Zoom Q&A Session 12i: Dialog and Interactive Systems

Cross-lingual Spoken Language Understanding with Regularized Representation
Alignment

Zihan Liu, Genta Indra Winata, Peng Xu, Zhaojiang Lin and Pascale Fung

SLURP: A Spoken Language Understanding Resource Package
Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojanski and Verena Rieser

Neural Conversational QA: Learning to Reason vs Exploiting Patterns
Nikhil Verma, Abhishek Sharma, Dhiraj Madan, Danish Contractor, Harshit Kumar

and Sachindra Joshi

Zoom Q&A Session 12ii: Information Extraction
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Wednesday, November 18, 2020 (continued)

05:00-06:00

05:00-06:00

Counterfactual Generator: A Weakly-Supervised Method for Named Entity Recog-
nition
Xiangji Zeng, Yunliang Li, Yuchen Zhai and Yin Zhang

Understanding Procedural Text using Interactive Entity Networks
Jizhi Tang, Yansong Feng and Dongyan Zhao

A Rigorous Study on Named Entity Recognition: Can Fine-tuning Pretrained Model
Lead to the Promised Land?

Hongyu Lin, Yaojie Lu, Jialong Tang, Xianpei Han, Le Sun, Zhicheng Wei and
Nicholas Jing Yuan

Zoom Q&A Session 12iii: Machine Learning for NLP

DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal
Knowledge Graph Completion
Zhen Han, Peng Chen, Yunpu Ma and Volker Tresp

Embedding Words in Non-Vector Space with Unsupervised Graph Learning
Max Ryabinin, Sergei Popov, Liudmila Prokhorenkova and Elena Voita

Debiasing knowledge graph embeddings
Joseph Fisher, Arpit Mittal, Dave Palfrey and Christos Christodoulopoulos

Message Passing for Hyper-Relational Knowledge Graphs
Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck and Jens
Lehmann

Zoom Q&A Session 12iv: Sentiment Analysis, Stylistic Analysis, and Argument Min-
ing

Relation-aware Graph Attention Networks with Relational Position Encodings for
Emotion Recognition in Conversations
Taichi Ishiwatari, Yuki Yasuda, Taro Miyazaki and Jun Goto

BERT Knows Punta Cana is not just beautiful, it’s gorgeous: Ranking Scalar Ad-
Jjectives with Contextualised Representations
Aina Gari Soler and Marianna Apidianaki

Feature Adaptation of Pre-Trained Language Models across Languages and Do-

mains with Robust Self-Training
Hai Ye, Qingyu Tan, Ruidan He, Juntao Li, Hwee Tou Ng and Lidong Bing
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11:00-12:00

12:00-13:00

12:00-13:00

12:00-13:00

Textual Data Augmentation for Efficient Active Learning on Tiny Datasets
Husam Quteineh, Spyridon Samothrakis and Richard Sutcliffe

Keynote Ill: Janet B. Pierrehumbert

Zoom Q&A Session 13
Zoom Q&A Session 13i: Discourse and Pragmatics

"I’d rather just go to bed": Understanding Indirect Answers
Annie Louis, Dan Roth and Filip Radlinski

PowerTransformer: Unsupervised Controllable Revision for Biased Language Cor-
rection
Xinyao Ma, Maarten Sap, Hannah Rashkin and Yejin Choi

MEGA RST Discourse Treebanks with Structure and Nuclearity from Scalable Dis-
tant Sentiment Supervision
Patrick Huber and Giuseppe Carenini

Centering-based Neural Coherence Modeling with Hierarchical Discourse Seg-
ments
Sungho Jeon and Michael Strube

Keeping Up Appearances: Computational Modeling of Face Acts in Persuasion
Oriented Discussions
Ritam Dutt, Rishabh Joshi and Carolyn Rose

Zoom Q&A Session 13ii: NLP Applications

HABERTOR: An Efficient and Effective Deep Hatespeech Detector
Thanh Tran, Yifan Hu, Changwei Hu, Kevin Yen, Fei Tan, Kyumin Lee and Se Rim
Park

An Empirical Study on Large-Scale Multi-Label Text Classification Including Few
and Zero-Shot Labels

Ilias Chalkidis, Manos Fergadiotis, Sotiris Kotitsas, Prodromos Malakasiotis, Niko-
laos Aletras and Ion Androutsopoulos

Which *BERT? A Survey Organizing Contextualized Encoders
Patrick Xia, Shijie Wu and Benjamin Van Durme
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Wednesday, November 18, 2020 (continued)

12:00-13:00

12:00-13:00

13:00-14:00

13:00-14:00

Fact or Fiction: Verifying Scientific Claims
David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen,
Arman Cohan and Hannaneh Hajishirzi

Zoom Q&A Session 13iii: Semantics: Sentence-level Semantics, Textual Inference
and Other areas

Semantic Role Labeling as Syntactic Dependency Parsing
Tianze Shi, Igor Malioutov and Ozan Irsoy

PARADE: A New Dataset for Paraphrase Identification Requiring Computer Sci-
ence Domain Knowledge

Yun He, Zhuoer Wang, Yin Zhang, Ruihong Huang and James Caverlee

Causal Inference of Script Knowledge
Noah Weber, Rachel Rudinger and Benjamin Van Durme

Towards Debiasing NLU Models from Unknown Biases
Prasetya Ajie Utama, Nafise Sadat Moosavi and Iryna Gurevych

Zoom Q&A Session 13iv: Syntax: Tagging, Chunking, and Parsing

On the Role of Supervision in Unsupervised Constituency Parsing
Haoyue Shi, Karen Livescu and Kevin Gimpel

Zoom Q&A Session 14
Zoom Q&A Session 14i: Machine Translation and Multilinguality

Language Model Prior for Low-Resource Neural Machine Translation
Christos Baziotis, Barry Haddow and Alexandra Birch

Detecting Word Sense Disambiguation Biases in Machine Translation for Model-
Agnostic Adversarial Attacks

Denis Emelin, Ivan Titov and Rico Sennrich

MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer
Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych and Sebastian Ruder
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Wednesday, November 18, 2020 (continued)

13:00-14:00

13:00-14:00

13:00-14:00

Translation Artifacts in Cross-lingual Transfer Learning
Mikel Artetxe, Gorka Labaka and Eneko Agirre

Zoom Q&A Session 14ii: Computational Social Science and Social Media

A Time-Aware Transformer Based Model for Suicide Ideation Detection on Social
Media
Ramit Sawhney, Harshit Joshi, Saumya Gandhi and Rajiv Ratn Shah

Weakly Supervised Learning of Nuanced Frames for Analyzing Polarization in News
Media
Shamik Roy and Dan Goldwasser

Where Are the Facts? Searching for Fact-checked Information to Alleviate the
Spread of Fake News
Nguyen Vo and Kyumin Lee

Fortifying Toxic Speech Detectors Against Veiled Toxicity
Xiaochuang Han and Yulia Tsvetkov

Explainable Automated Fact-Checking for Public Health Claims
Neema Kotonya and Francesca Toni

Zoom Q&A Session 14iii: Machine Learning for NLP

Interactive Fiction Game Playing as Multi-Paragraph Reading Comprehension with
Reinforcement Learning

Xiaoxiao Guo, Mo Yu, Yupeng Gao, Chuang Gan, Murray Campbell and Shiyu
Chang

DORB: Dynamically Optimizing Multiple Rewards with Bandits
Ramakanth Pasunuru, Han Guo and Mohit Bansal

Zoom Q&A Session 14iv: Information Extraction
MedFilter: Improving Extraction of Task-relevant Utterances through Integration

of Discourse Structure and Ontological Knowledge
Sopan Khosla, Shikhar Vashishth, Jill Fain Lehman and Carolyn Rose
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Wednesday, November 18, 2020 (continued)

14:00-16:00

Hierarchical Evidence Set Modeling for Automated Fact Extraction and Verification
Shyam Subramanian and Kyumin Lee

Program Enhanced Fact Verification with Verbalization and Graph Attention Net-
work
Xiaoyu Yang, Feng Nie, Yufei Feng, Quan Liu, Zhigang Chen and Xiaodan Zhu

Constrained Fact Verification for FEVER
Adithya Pratapa, Sai Muralidhar Jayanthi and Kavya Nerella

Entity Linking in 100 Languages
Jan A. Botha, Zifei Shan and Daniel Gillick

Gather Session 5i: Machine Learning for NLP; Speech and Multimodality; Sum-
marization

PatchBERT: Just-in-Time, Out-of-Vocabulary Patching
Sangwhan Moon and Naoaki Okazaki

On the importance of pre-training data volume for compact language models
Vincent Micheli, Martin d’Hoffschmidt and Frangois Fleuret

BERT-of-Theseus: Compressing BERT by Progressive Module Replacing
Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei and Ming Zhou

Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less For-
getting
Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu and Xiangzhan Yu

Exploring and Predicting Transferability across NLP Tasks
Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler,
Andrew Mattarella-Micke, Subhransu Maji and Mohit Iyyer

To BERT or Not to BERT: Comparing Task-specific and Task-agnostic Semi-
Supervised Approaches for Sequence Tagging
Kasturi Bhattacharjee, Miguel Ballesteros, Rishita Anubhai, Smaranda Muresan,
Jie Ma, Faisal Ladhak and Yaser Al-Onaizan

Cold-start Active Learning through Self-supervised Language Modeling
Michelle Yuan, Hsuan-Tien Lin and Jordan Boyd-Graber
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Active Learning for BERT: An Empirical Study
Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, Lena Dankin, Leshem
Choshen, Marina Danilevsky, Ranit Aharonov, Yoav Katz and Noam Slonim

Transformer Based Multi-Source Domain Adaptation
Dustin Wright and Isabelle Augenstein

Vector-Vector-Matrix Architecture: A Novel Hardware-Aware Framework for Low-
Latency Inference in NLP Applications

Matthew Khoury, Rumen Dangovski, Longwu Ou, Preslav Nakov, Yichen Shen and
Li Jing

The importance of fillers for text representations of speech transcripts
Tanvi Dinkar, Pierre Colombo, Matthieu Labeau and Chloé Clavel

The role of context in neural pitch accent detection in English
Elizabeth Nielsen, Mark Steedman and Sharon Goldwater

VoITAGE: Volatility Forecasting via Text Audio Fusion with Graph Convolution Net-
works for Earnings Calls

Ramit Sawhney, Piyush Khanna, Arshiya Aggarwal, Taru Jain, Puneet Mathur and
Rajiv Ratn Shah

Effectively pretraining a speech translation decoder with Machine Translation data
Ashkan Alinejad and Anoop Sarkar

A Preliminary Exploration of GANSs for Keyphrase Generation
Avinash Swaminathan, Haimin Zhang, Debanjan Mahata, Rakesh Gosangi, Rajiv
Ratn Shah and Amanda Stent

TESA: A Task in Entity Semantic Aggregation for Abstractive Summarization
Clément Jumel, Annie Louis and Jackie Chi Kit Cheung

MLSUM: The Multilingual Summarization Corpus
Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski and
Jacopo Staiano

Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summariza-
tion of Scientific Articles

Yao Lu, Yue Dong and Laurent Charlin

Intrinsic Evaluation of Summarization Datasets
Rishi Bommasani and Claire Cardie
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14:00-16:00

Gather Session 5ii: Dialog and Interactive Systems; Semantics: Sentence-level Se-
mantics, Textual Inference and Other areas

Iterative Feature Mining for Constraint-Based Data Collection to Increase Data
Diversity and Model Robustness

Stefan Larson, Anthony Zheng, Anish Mahendran, Rishi Tekriwal, Adrian Cheung,
Eric Guldan, Kevin Leach and Jonathan K. Kummerfeld

Conversational Semantic Parsing for Dialog State Tracking

Jianpeng Cheng, Devang Agrawal, Héctor Martinez Alonso, Shruti Bhargava, Joris
Driesen, Federico Flego, Dain Kaplan, Dimitri Kartsaklis, Lin Li, Dhivya Piravipe-
rumal, Jason D Williams, Hong Yu, Diarmuid O Séaghdha and Anders Johannsen

doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset
Song Feng, Hui Wan, Chulaka Gunasekara, Siva Patel, Sachindra Joshi and Luis
Lastras

Interview: Large-scale Modeling of Media Dialog with Discourse Patterns and
Knowledge Grounding
Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni and Julian McAuley

INSPIRED: Toward Sociable Recommendation Dialog Systems
Shirley Anugrah Hayati, Dongyeop Kang, Qingxiaoyang Zhu, Weiyan Shi and Zhou
Yu

Information Seeking in the Spirit of Learning: A Dataset for Conversational Cu-
riosity
Pedro Rodriguez, Paul Crook, Seungwhan Moon and Zhiguang Wang

Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation
Emily Dinan, Angela Fan, Adina Williams, Jack Urbanek, Douwe Kiela and Jason
Weston

Discriminatively-Tuned Generative Classifiers for Robust Natural Language Infer-
ence
Xiaoan Ding, Tianyu Liu, Baobao Chang, Zhifang Sui and Kevin Gimpel

New Protocols and Negative Results for Textual Entailment Data Collection
Samuel R. Bowman, Jennimaria Palomaki, Livio Baldini Soares and Emily Pitler

The Curse of Performance Instability in Analysis Datasets: Consequences, Source,
and Suggestions
Xiang Zhou, Yixin Nie, Hao Tan and Mohit Bansal

Universal Natural Language Processing with Limited Annotations: Try Few-shot
Textual Entailment as a Start

Wenpeng Yin, Nazneen Fatema Rajani, Dragomir Radev, Richard Socher and Caim-
ing Xiong
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14:00-16:00

ConjNLI: Natural Language Inference Over Conjunctive Sentences
Swarnadeep Saha, Yixin Nie and Mohit Bansal

Data and Representation for Turkish Natural Language Inference
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Abstract

Finding attackable sentences in an argument
is the first step toward successful refutation in
argumentation. We present a first large-scale
analysis of sentence attackability in online ar-
guments. We analyze driving reasons for at-
tacks in argumentation and identify relevant
characteristics of sentences. We demonstrate
that a sentence’s attackability is associated
with many of these characteristics regarding
the sentence’s content, proposition types, and
tone, and that an external knowledge source
can provide useful information about attacka-
bility. Building on these findings, we demon-
strate that machine learning models can auto-
matically detect attackable sentences in argu-
ments, significantly better than several base-
lines and comparably well to laypeople.!

1 Introduction

Effectively refuting an argument is an important
skill in persuasion dialogue, and the first step is
to find appropriate points to attack in the argu-
ment. Prior work in NLP has studied argument
quality (Wachsmuth et al., 2017a; Habernal and
Gurevych, 2016a) and counterargument genera-
tion (Hua et al., 2019; Wachsmuth et al., 2018). But
these studies mainly concern an argument’s overall
quality and making counterarguments toward the
main claim, without investigating what parts of an
argument are attackable for successful persuasion.
Nevertheless, attacking specific points of an argu-
ment is common and effective; in our data of online
discussions, challengers who successfully change
the original poster’s view are 1.5 times more likely
to quote specific sentences of the argument for at-
tacks than unsuccessful challengers (Figure 1). In
this paper, we examine how to computationally

'Our data and source code are available at: github.

com/yohanjo/emnlp20_arg_attack

1

That's one of the big problems with communism -
what is equality? Is everyone equal?[...]

Yes there are problems within society but this doesn't
mean there is a fault with society. [...]

furthermore, it is unlikely we could ever get a true
communist society due to human nature. [...]

Figure 1: A comment to a post entitled “I believe that
Communism is not as bad as everyone says”. It quotes

TREL

and attacks some sentences in the post (red with “>

detect attackable sentences in arguments. This at-
tackability information would help people make
persuasive refutations and strengthen an argument
by solidifying potentially attackable points.

To examine the characteristics of attackable sen-
tences in an argument, we first conduct a qualitative
analysis of reasons for attacks in online arguments.
Our data comes from discussions in the Change-
MyView (CMV) forum on Reddit. In CMYV, users
challenge the viewpoints of original posters (OPs),
and those who succeed receive a A from the OPs.
In this setting, sentences that are attacked and lead
to the OP’s view change are considered “attack-
able”, i.e., targets that are worth attacking. Admit-
tedly, persuasion has to do with “how” to attack as
well, but this is beyond the scope of this paper. We
only focus on choosing proper sentences to attack,
which is a prerequisite for effective persuasion.

This analysis of reasons for attacks, along with
argumentation theory and discourse studies, pro-
vide insights into what characteristics of sentences
are relevant to attackability. Informed by these in-
sights, we extract features that represent relevant
sentence characteristics, clustered into four cate-
gories: content, external knowledge, proposition
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types, and tone. We demonstrate the effects of
individual features on sentence attackability, in re-
gard to whether a sentence would be atfacked and
whether a sentence would be attacked successfully.

Building on these findings, we examine the ef-
ficacy of machine learning models in detecting at-
tackable sentences in arguments. We demonstrate
that their decisions match the gold standard signifi-
cantly better than several baselines and comparably
well to laypeople.

To the best of our knowledge, this work is the
first large-scale analysis of sentence attackability
in arguments. Our contributions are as follows:

e We introduce the problem of detecting attack-
able sentences in arguments and release the
processed data from online discussions and
the external knowledge source we used.

e We analyze driving reasons for attacks in ar-
guments and the effects of sentence character-
istics on a sentence’s attackability.

e We demonstrate the performance of machine
learning models for detecting attackable sen-
tences, setting a baseline for this challenging
task and suggesting future directions.

2 Background

The strength of an argument is a long-studied topic,
dating back to Aristotle (2007), who suggested
three aspects of argument persuasiveness: ethos
(the arguer’s credibility), logos (logic), and pathos
(appeal to the hearer’s emotion). More recently,
Wachsmuth et al. (2017b) summarized various as-
pects of argument quality studied in argumentation
theory and NLP, such as clarity, relevance, and
arrangement. Some research took empirical ap-
proaches and collected argument evaluation criteria
from human evaluators (Habernal and Gurevych,
2016a; Wachsmuth et al., 2017a). By adopting
some of these aspects, computational models have
been proposed to automatically evaluate argument
quality in various settings, such as essays (Ke et al.,
2019), online comments (Gu et al., 2018), and
pairwise ranking (Habernal and Gurevych, 2016b).
While these taxonomies help understand and eval-
uate the quality of an argument as a whole, little
empirical analysis has been done in terms of what
to attack in an argument to persuade the arguer.
What can be attacked in an argument has been
studied more in argumentation theory. Particularly,
Walton et al. (2008) present argumentation schemes
and critical questions (CQs). Argument schemes

are reasoning types commonly used in daily argu-
mentation. For instance, the scheme of argument
from cause to effect has the conclusion “B will oc-
cur” supported by the premise “if A occurs, B will
occur. In this case, A occurs”. Each scheme is as-
sociated with a set of CQs for judging the argument
to be good or fallacious. CQs for the above scheme
include “How strong is the causal generalization?”
and “Are there other factors that interfere with the
causal effect?” Unlike the general argument qual-
ity described in the previous paragraph, CQs serve
as an evaluation tool that specify local attackable
points in an argument. They have been adopted
for grading essays (Song et al., 2017) and teach-
ing argumentation skills (Nussbaum et al., 2018).
Some of the sentence characteristics in our work
are informed by argumentation schemes and CQs.

NLP researchers have widely studied the effec-
tiveness of counterarguments on persuasion (Tan
et al., 2016; Cano-Basave and He, 2016; Wei et al.,
2016; Wang et al., 2017; Morio et al., 2019) and
how to generate counterarguments (Hua et al.,
2019; Wachsmuth et al., 2018). Most of the work
focuses on the characteristics of counterarguments
with respect to topics and styles, without consider-
ation of what points to attack. On the other hand,
some studies aimed to model the salience of indi-
vidual sentences in attacked arguments by paying
different degrees of attention to sentences using at-
tention mechanism (Jo et al., 2018; Ji et al., 2018).
While their approaches helped to predict the suc-
cess of persuasion, it was difficult to interpret what
constitute the salience or attackability of sentences.
To address this limitation, we quantify and analyze
the characteristics of sentences that are attacked
and lead to the arguer’s view change.

3 Data

Here we describe how we collected and labeled our
data.

3.1 Data Collection

We use online discussions from the Change-
MyView (CMV) subreddit®. In this forum, users
post their views on various issues and invite other
users to challenge their views. If a comment
changes the original poster (OP)’s view, the OP
acknowledges it by replying to the comment with
a A symbol. The high quality of the discussions
in this forum is maintained through several mod-

https://www.reddit.com/r/changemyview



eration rules, such as the minimum length of an
original post and the maximum response time of
OPs. As a result, CMV discussions have been used
in many NLP studies (Chakrabarty et al., 2019;
Morio et al., 2019; Jo et al., 2018; Musi, 2017; Wei
et al., 2016; Tan et al., 2016).

We scraped CMV posts and comments written
between January 1, 2014 and September 30, 2019,
using the Pushshift API. We split them into a dev
set (Jan 2014—Jan 2018 for training and Feb 2018-
Nov 2018 for validation) and a test set (Dec 2018-
Sep 2019), with the ratio of 6:2:2. We split the
data by time to measure our models’ generality to
unseen subjects.

As the characteristics of arguments vary across
different issues, we categorized the posts into do-
mains using LDA. For each post, we chose as its
domain the topic that has the highest standard score;
topics comprising common words were excluded.
We tried different numbers of topics (25, 30, 35,
40) and finalized on 40, as it achieves the lowest
perplexity. This process resulted in 30 domains
(excluding common-word topics): media, abor-
tion, sex, election, Reddit, human economy, gender,
race, family, life, crime, relationship, movie, world,
game, tax, law, money, drug, war, religion, job,
food, power, school, college, music, gun, and Jew-
ish (from most frequent to least, ranging 5%—2%).

3.2 Labeling Attackability

Since we are interested in which parts of a post are
attacked by comments and whether the attacks lead
to successful view changes, our goal here is to label
each sentence in a post as successfully attacked, un-
successfully attacked, or unattacked. We only con-
sider comments directly replying to each post (top-
level comments), as lower-level comments usually
address the same points as their parent comments
(as will be validated at the end of the section).

Attacked vs. Unattacked: Some comments use
direct quotes with the > symbol to address specific
sentences of the post (Figure 1). Each quote is
matched with the longest sequence of sentences in
the post using the Levenshtein edit distance (allow-
ing a distance of 2 characters for typos). A matched
text span should contain at least one word and four
characters, and cover at least 80% of the quote to
exclude cases where the > symbol is used to quote
external content. As a result, 98% of the matched
spans cover the corresponding quotes entirely. Ad-
ditionally, a sentence in the post is considered to

be quoted if at least four non-stopwords appear in

a comment’s sentence. For example:

Post: ... If you do something, you should be
prepared to accept the consequences. ...

Comment: ... I guess my point is, even if you do
believe that “If you do something, you should
be prepared to accept the consequences,” you
can still feel bad for the victims. ...

We considered manually annotating attacked sen-
tences too, but it turned out to be extremely time-
consuming and subjective (Appendix A). We tried
to automate it using heuristics (word overlap and
vector embeddings), but precision severely deteri-
orated. As we value the precision of labels over
recall, we only use the method described in the pre-
vious paragraph. Chakrabarty et al. (2019) used the
same method to collect attack relations in CMV.

Successfully vs. Unsuccessfully Attacked: Af-
ter each sentence in a post is labeled as attacked
or not, each attacked sentence is further labeled as
successfully attacked if any of the comments that
attack it, or their lower-level comments win a A.

We post-process the resulting labels to increase
their validity. First, as a challenger and the OP
have discussion down the comment thread, the
challenger might attack different sentences than
the originally attacked ones and change the OP’s
view. In this case, it is ambiguous which sen-
tences contribute to the view change. Hence, we
extract quotes from all lower-level comments of
A-winning challengers, and if any of the quotes
attack new sentences, this challenger’s attacks are
excluded from the labeling of successfully attacked.
This case is not common, however (0.2%).

Second, if a comment attacks many sentences
in the post and change the OP’s view, some of
them may not contribute to the view change but
are still labeled as successfully attacked. To reduce
this noise, comments that have more than three
quotes are excluded from the labeling of success-
fully attacked®. This amounts to 12% of top-level
comments (63% of comments have only one quote,
17% two quotes, and 8% three quotes).

Lastly, we verified if quoted sentences are actu-
ally attacked. We randomly selected 500 comments
and checked if each quoted sentence is purely
agreed with without any opposition, challenge, or
question. This case was rare (0.4%)*, so we do

3This allows our subsequent analyses to capture stronger
signals for successful attacks than without this process.

*Further, this case happened in only one out of the 500
comments (0.2%), where the author agreed with 4 quoted
sentences. In CMYV, challengers do use concessions but hardly



Dataset Train Val Test
#posts 25,839 8,763 8,558
Attacked #sentences 420,545 133,090 134,375
#attacked 119,254 40,163 40,354
#posts 3,785 1,235 1,064
Successful #sentences 66,628 20,240 17,129
#successful 8,746 2,718 2,288

Table 1: Data statistics. “Attacked” contains posts with
at least one attacked sentence. ‘““‘Successful” contains
posts with at least one successfully attacked sentence.

R1 Sis true but does not support the main claim (19%)
R2 S misses cases suggesting opposite judgment (18%)
R3 S has exceptions (17%)

R4 Sis false (12%)

RS S misses nuanced distinctions of a concept (8%)

R6 S is unlikely to happen (6%)

R7 S has no evidence (6%)

R8 S uses an invalid assumption or hypothetical (4%)
R9 S contradicts statements in the argument (4%)

R10 Other (4%)

(a) Rationales for attacking a sentence ().

F1 Personal opinion (28%)

F2 Invalid hypothetical (26%)
F3 Invalid generalization (13%)
F4 No evidence (11%)

F5 Absolute statement (7%)

F6 Concession (5%)

F7 Restrictive qualifier (5%)

F8 Other (5%)

(b) Motivating factors for attacks.

Table 2: Rationales and motivating factors for attacks.

not further process this case. Table 1 shows some
statistics of the final data.

4 Quantifying Sentence Characteristics

As the first step for analyzing the characteristics of
attackable sentences, we examine driving reasons
for attacks and quantify relevant characteristics.

4.1 Rationales and Motivation for Attacks

To analyze rationales for attacks, two authors exam-
ined quotes and rebuttals in the training data (one
successful and one unsuccessful comment for each
post). From 156 attacks, we identified 10 main ra-
tionales (Table 2a), which are finer-grained than the
refutation reasons in prior work (Wei et al., 2016).
The most common rationale is that the sentence is
factually correct but is irrelevant to the main claim
(19%). Counterexample-related rationales are also
common: the sentence misses an example suggest-

quote the OP’s sentences just to agree.

ing the opposite judgment to the sentence’s own
(18%) and the sentence has exceptions (17%).
This analysis is based on polished rebuttals,
which mostly emphasize logical aspects, and can-
not fully capture other factors that motivate attacks.
Hence, we conducted a complementary analysis,
where an undergraduate student chose three sen-
tences to attack for each of 50 posts and specified
the reasons in their own terms (Table 2b). The most
common factor is that the sentence is only a per-
sonal opinion (28%). Invalid hypotheticals are also
a common factor (26%). The tone of a sentence
motivates attacks as well, such as generalization
(13%), absoluteness (7%), and concession (5%).

4.2 Feature Extraction

Based on these analyses, we cluster various sen-
tence characteristics into four categories—content,
external knowledge, proposition types, and tone.’

4.2.1 Content

Content and logic play the most important role in
CMV discussions. We extract the content of each
sentence at two levels: TFIDF-weighted n-grams
(n = 1,2, 3) and sentence-level topics. Each sen-
tence is assigned one topic using Sentence LDA (Jo
and Oh, 2011). We train a model on posts in the
training set and apply it to all posts, exploring the
number of topics € {10, 50, 100}.°

4.2.2 External Knowledge

External knowledge sources may provide informa-
tion as to how truthful or convincing a sentence is
(e.g., Table 2a-R2, R3, R4, R7 and Table 2b-F4).
As our knowledge source, we use kialo.com—a
collaborative argument platform over more than
1.4K issues. Each issue has a main statement, and
users can respond to any existing statement with
pro/con statements (1-2 sentences), building an ar-
gumentation tree. Kialo has advantages over struc-
tured knowledge bases and Wikipedia in that it in-
cludes many debatable statements; many attacked
sentences are subjective judgments (§4.1), so fact-
based knowledge sources may have limited utility.
In addition, each statement in Kialo has pro/con
counts, which may reflect the convincingness of
the statement. We scraped 1,417 argumentation
trees and 130K statements (written until Oct 2019).

Some rationales in Table 2a (e.g., R1 and R9) are difficult
to operationalize reliably using the current NLP technology
and thus are not included in our features.

SWe also tried features based on semantic frames using
SLING (Ringgaard et al., 2017), but they were not helpful.



For each sentence in CMYV, we retrieve simi-
lar statements in Kialo that have at least 5 com-
mon words’ and compute the following three fea-
tures. Frequency is the number of retrieved state-
ments; sentences that are not suitable for argu-
mentation are unlikely to appear in Kialo. This
feature is computed as logy(N + 1), where N
is the number of retrieved statements. Attrac-
tiveness is the average number of responses for
the matched statements, reflecting how debatable
the sentence is. It is computed as logy(M + 1),
where M = L "N | R; and R; is the number of
responses for the ith retrieved statement. Lastly,
extremeness is % Ef\; 1 |Pi — Nj|, where P; and
N; are the proportions (between 0 and 1) of pro
responses and con responses for the ith retrieved
statement. A sentence that most people would see
flawed would have a high extremeness value.

4.2.3 Proposition Types

Sentences convey different types of propositions,
such as predictions and hypotheticals. No propo-
sition types are fallacious by nature, but some of
them may make it harder to generate a sound argu-
ment. They also communicate different moods,
causing the hearer to react differently. We ex-
tract 13 binary features for proposition types. They
are all based on lexicons and regular expressions,
which are available in Appendix C.

Questions express the intent of information
seeking. Depending on the form, we define three
features: confusion (e.g., I don’t understand),
why/how (e.g., why ...?7), and other.

Normative sentences suggest that an action be
carried out. Due to their imperative mood, they can
sound face-threatening and thus attract attacks.

Prediction sentences predict a future event.
They can be attacked with reasons why the predic-
tion is unlikely (Table 2a-R6), as in critical ques-
tions for argument from cause to effect (Walton
et al., 2008).

Hypothetical sentences may make implausible
assumptions (Table 2a-R8 and Table 2b-F2) or re-
strict the applicability of the argument too much
(Table 2b-F7).

Citation often strengthens a claim using author-
ity, but the credibility of the source could be at-
tacked (Walton et al., 2008).

Comparison may reflect personal preferences
that are vulnerable to attacks (Table 2b-F1).

"Similarity measures based on word embeddings and
knowledge representation did not help (Appendix B).

Examples in a sentence may be attacked for
their invalidity (Walton et al., 2008) or counterex-
amples (Table 2a-R3).

Definitions form a ground for arguments, and
challengers could undermine an argument by at-
tacking this basis (e.g., Table 2a-RS).

Personal stories are the arguer’s experiences,
whose validity is difficult to refute. A sentence with
a personal story has subject I and a non-epistemic
verb; or it has my modifying non-epistemic nouns.

Inclusive sentences that mention you and we en-
gage the hearer into the discourse (Hyland, 2005),
making the argument more vulnerable to attacks.

4.2.4 Tone

Challengers are influenced by the tone of an argu-
ment, e.g., subjectiveness, absoluteness, or confi-
dence (Table 2b). We extract 8 features for the tone
of sentences.

Subjectivity comprises judgments, which are of-
ten attacked due to counterexamples (Table 2a-R2)
or their arbitrariness (Table 2b-F1, Walton et al.
(2008)). The subjectivity of a sentence is the aver-
age subjectivity score of words based on the Sub-
jectivity Lexicon (Wilson et al., 2005) (non-neutral
words of “weaksubj” = 0.5 and “strongsubj” = 1).

Concreteness is the inverse of abstract diction,
whose meaning depends on subjective perceptions
and experiences. The concreteness of a sentence is
the sum of the standardized word scores based on
Brysbaert et al. (2014)’s concreteness lexicon.

Qualification expresses the level of generality
of a claim, where absolute statements can motivate
attacks (Table 2b-R3). The qualification score of
a sentence is the average word score based on our
lexicon of qualifiers and generality words.

Hedging can sound unconvincing (Durik et al.,
2008) and motivate attacks. A sentence’s hedg-
ing score is the sum of word scores based on our
lexicon of downtoners and boosters.

Sentiment represents the valence of a sentence.
Polar judgments may attract more attacks than neu-
tral statements. We calculate the sentiment of each
sentence with BERT (Devlin et al., 2018) trained on
the data of SemEval 2017 Task 4 (Rosenthal et al.,
2017). Sentiment score is a continuous value rang-
ing between -1 (negative) and +1 (positive), and
sentiment categories are nominal (positive, neu-
tral, and negative)®. In addition, we compute the

8We achieved an average recall of 0.705, which is higher
than the winner team’s performance of 0.681.



scores of arousal (intensity) and dominance (con-
trol) as the sum of the standardized word scores
based on Warriner et al. (2013)’s lexicon.

5 Task 1: Attackability Characteristics

One of our goals in this paper is to analyze what
characteristics of sentences are associated with a
sentence’s attackability. Hence, in this section, we
measure the effect size and statistical significance
of each feature toward two labels: (i) whether a
sentence is attacked or not, using the dev set of
the “Attacked” dataset (/N=553,635), (ii) whether a
sentence is attacked successfully or unsuccessfully,
using all attacked sentences (V. =159,417).° Since
the effects of characteristics may depend on the
issue being discussed, the effect of each feature
is estimated conditioned on the domain of each
post using a logistic regression, and the statistical
significance of the effect is assessed using the Wald
test. For interpretation purposes, we use odds ratio
(OR)—the exponent of the effect size.'”

5.1 Content

Attacked sentences tend to mention big issues like
gender, race, and health as revealed in topics 47, 8,
and 6 (Table 3) and n-grams life, weapons, women,
society, and men (Table 7 in Appendix E). These
issues are also positively correlated with successful
attacks. On the other hand, mentioning relatively
personal issues (tv, friends, topic 38) seems neg-
atively correlated with successful attacks. So do
forum-specific messages (cmv, thank, topic 4).

Attacking seemingly evidenced sentences ap-
pears to be effective for persuasion when properly
done. Successfully attacked sentences are likely to
mention specific data (data, %) and be the OP’s
specific reasons under bullet points (2. and 3.).

n-grams capture various characteristics that are
vulnerable to attacks, such as uncertainty and ab-
soluteness (i believe, never), hypotheticals (if i),
questions (2, why), and norms (should).

°Simply measuring the predictive power of features in a
prediction setting provides an incomplete picture of the roles
of the characteristics. Some features may not have drastic
contribution to prediction due to their infrequency, although
they may have significant effects on attackability.

190dds are the ratio of the probability of a sentence being
(successfully) attacked to the probability of being not (suc-
cessfully) attacked; OR 1is the ratio of odds when the value of
the characteristic increases by one unit (Appendix D).

Feature Attacked Successful
Topic47: Gender! 1.37 (*%%*) 1.34 (*%)
g Topic8: Race' 1.19 (¥**) 1.21 (*%)
g Topic6: Food' 1.00 () 1.39 (***)
O Topic38: Movie & Show' 1.03 () 0.78 (¥*%)
Topic4: CMV—SpeciﬁcJr 0.16 (k**) 036 (**)
% Kialo Frequency (log2) 118 (**%)  1.07 (**)
< Kialo Attractiveness (log2) 1.30 (***) 1.18 (***)
E Kialo Extremeness 151 (**%) 1,19 (**)
Question-ConfusionJr 097 ( ) 1.29 ( *)
Question - Why/How' 177 (%*%)  1.27 (***)
Question - Other' .16 (***)  1.11 ( *)
4] Citation' 0.53 (*%F) 117 ( *)
2 Definition' 1.04 ()  1.32 (**)
g Normative' 1.26 (*%)  1.10 (**)
£ Prediction’ 122 (==%)  1.02 ()
§ Hypothetical 129 (&%) 1.07 ()
& ComparisonJr 1.25 (*%%) 1.02 ()
Example’ 120 (&%) 117 ( *)
Personal StoryJr 0.70 (F*%*) 1.09 (*%*)
Use of You' 1.18 (**%)  1.04 ( )
Use of We' 1.24 (***) 098 ( )
Subjectivity* 1.03 (¥%) (.97 (%)
Concreteness? 0.87 (k**) (.92 (H**)
Hedges* 1.04 (*%)  1.06 (**%*)
., Quantification® 0.97 (¥%)  1.02 ()
S Sentiment Score* 0.87 (**%)  1.00 ()
E Sentiment: Positive® 0.76 (***) 099 ( )
Sentiment: Neutral’ 0.82 (**%*) 1.00 ¢ )
Sentiment: NegativeT 1.34 (¥%%) 1.00 ()
Arousal® 1.02 (&%) (.95 (***)
Dominance? 1.07 (¥%*) 1.08 (*¥%*)

Table 3: Odds ratio (OR) and statistical significance of
features. An effect is positive (blue) if OR > 1 and
negative (red) if OR < 1. (: binary, ¥: standardized /
*:p < 0.05, #*: p < 0.01, ***: p < 0.001)

5.2 External Knowledge

The Kialo-based knowledge features provide signif-
icant information about whether a sentence would
be attacked successfully (Table 3). As the fre-
quency of matched statements in Kialo increases
twice, the odds for successful attack increase by
7%. As an example, the following attacked sen-

tence has 18 matched statements in Kialo.

I feel like it is a parents right and responsibility
to make important decisions for their child.

The attractiveness feature has a stronger effect;
as matched statements have twice more responses,
the odds for successful attack increase by 18%,
probably due to higher debatability.

A sentence being completely extreme (i.e., the
matched sentences have only pro or con responses)
increases the odds for successful attack by 19%.

As expected, the argumentative nature of Kialo



allows its statements to match many subjective sen-
tences in CMV and serves as an effective informa-
tion source for a sentence’s attackability.

5.3 Proposition Types

Questions, especially why/how, are effective tar-
gets for successful attack (Table 3). Although chal-
lengers do not pay special attention to expressions
of confusion (see column “Attacked”), they are pos-
itively correlated with successful attack (OR=1.29).
Citations are often used to back up an argument
and have a low chance of being attacked, reducing
the odds by half. However, properly attacking cita-
tions significantly increases the odds for successful
attack by 17%. Similarly, personal stories have a
low chance of being attacked and definitions do not
attract challengers’ attacks, but attacking them is
found to be effective for successful persuasion.
All other features for proposition types have
significantly positive effects on being attacked
(OR=1.18-1.29), but only normative and example
sentences are correlated with successful attack.

5.4 Tone

Successfully attacked sentences tend to have lower
subjectivity and arousal (Table 3), in line with the
previous observation that they are more data- and
reference-based than unsuccessfully attacked sen-
tences. In contrast, sentences about concrete con-
cepts are found to be less attackable.

Uncertainty (high hedging) and absoluteness
(low qualification) both increase the chance of at-
tacks, which aligns with the motivating factors for
attacks (Table 2b), while only hedges are positively
correlated with successful attacks, implying the
importance of addressing the arguer’s uncertainty.

Negative sentences with high arousal and dom-
inance have a high chance of being attacked, but
most of these characteristics have either no or neg-
ative effects on successful attacks.

5.5 Discussion

We have found some evidence that, somewhat
counter-intuitively, seemingly evidenced sentences
are more effective to attack. Such sentences use
specific data (data, %), citations, and definitions.
Although attacking these sentences may require
even stronger evidence and deeper knowledge, ar-
guers seem to change their viewpoints when a fact
they believe with evidence is undermined. In ad-
dition, it seems very important and effective to

identify and address what the arguer is confused
(confusion) or uncertain (hedges) about.

Our analysis also reveals some discrepancies
between the characteristics of sentences that chal-
lengers commonly think are attackable and those
that are indeed attackable. Challengers are often
attracted to subjective and negative sentences with
high arousal, but successfully attacked sentences
have rather lower subjectivity and arousal, and have
no difference in negativity compared to unsuccess-
fully attacked sentences. Furthermore, challengers
pay less attention to personal stories, while success-
ful attacks address personal stories more often.

6 Task 2: Attackability Prediction

Now we examine how well computational models
can detect attackable sentences in arguments.

6.1 Problem Formulation

This task is cast as ranking sentences in each post
by their attackability scores predicted by a regres-
sion model. We consider two types of attackability:
(1) whether a sentence will be attacked or not, (i)
whether a sentence will be successfully attacked
or not (attacked unsuccessfully + unattacked). For
both settings, we consider posts that have at least
one sentence with the positive label (Table 1).

We use three evaluation metrics. P@1 is the
precision of the first ranked sentence, measuring
the model’s accuracy when choosing one sentence
to attack for each post. Less strictly, A@3 gives a
score of 1 if any of the top 3 sentences is a positive
instance and 0 otherwise. AUC measures individ-
ual sentence-level accuracy—how likely positive
sentences are assigned higher probabilities.

6.2 Comparison Models

For machine learning models, we explore two logis-
tic regression models to compute the probability of
the positive label for each sentence, which becomes
the sentence’s attackability score. LR is a basic lo-
gistic regression with our features'' (Section 4) and
binary variables for domains. We explored feature
selection using L1-norm and regularization using
L2-norm.'> BERT is logistic regression where
our features are replaced with the BERT embed-
ding of the input sentence (Devlin et al., 2018).
Contextualized BERT embeddings have achieved

"'We tried the number of topics € {10, 50, 100}, and 50
has the best AUC on the val set for both prediction settings.

2We also tried a multilayer perceptron to model feature
interactions, but it consistently performed worse than LR.



Attacked Successful
P@1 A@3 AUC P@l A@3 AUC
Random 359 66.0 50.1 189 450 50.1
Length 429 737 545 223 521 557
LR 47.1 762 61.7 242 545 593

(x) Content 452 744 581 240 526 570
(x) Knowledge 47.0 760 61.7 24.1 543 59.0
(x)Prop Type 467 759 615 244 536 59.0

(x) Tone 470 760 619 252 562 594
BERT 496 778 644 283 572 620
Humans' 517 80.1 - 278 542 -

Table 4: Prediction accuracy. All LR/BERT scores
(rows 3-8) have standard deviations between 0.1 and
1.1, significantly outperforming “Length”. The aver-
age bootstrap accuracy after resampling 100K times
with sample size 200—the standard deviations of P@1
and A@3 range between 2.1 and 3.5.

state-of-the-art performance in many NLP tasks.
We use the pretrained, uncased base model from
Hugging Face (Wolf et al., 2019) and fine-tune it
during training.!3

We explore two baseline models. Random is to
rank sentences randomly. Length is to rank sen-
tences from longest to shortest, with the intuition
that longer sentences may contain more informa-
tion and thus more content to attack as well.

Lastly, we estimate laypeople’s performance on
this task. Three undergraduate students each read
100 posts and rank three sentences to attack for
each post. Posts that have at least one positive
instance are randomly selected from the test set.'

6.3 Results

All computational models were run 10 times, and
their average accuracy is reported in Table 4. Both
the LR and BERT models significantly outperform
the baselines, while the BERT model performs
best. For predicting attacked sentences, the BERT
model’s top 1 decisions match the gold standard
50% of the time; its decisions match 78% of the
time when three sentences are chosen. Predict-
ing successfully attacked sentences is harder, but
the performance gap between our models and the
baselines gets larger. The BERT model’s top 1 deci-
sions match the gold standard 28% of the time—a
27% and 10% boost from random and length-based
performance, respectively.

Details for reproducibility are in Appendix F.

“We were interested in the performance of young adults
who are academically active and have a moderate level of life
experience. Their performance may not represent the general
population, though.

To examine the contribution of each feature cat-
egory, we did ablation tests based on the best per-
forming LR model (Table 4 rows 4-7). The two
prediction settings show similar tendencies. Re-
garding P@1 for successful attack, content has
the highest contribution, followed by knowledge,
proposition types, and tone. This result reaffirms
the importance of content for a sentence’s attacka-
bility. But the other features still have significant
contribution, yielding higher P@1 and AUC (Table
4 row 4) than the baselines.

It is worth noting that our features, despite the
lower accuracy than the BERT model, are clearly
informative of attackability prediction as Table 4
row 3 shows. Moreover, since they directly opera-
tionalize the sentence characteristics we compiled,
it is pretty transparent that they capture relevant
information that contributes to sentence attackabil-
ity and help us better understand what character-
istics have positive and negative signals for sen-
tence attackability. We speculate that transformer
models like BERT are capable of encoding these
characteristics more sophisticatedly and may in-
clude some additional information, e.g., lexical pat-
terns, leading to higher accuracy. But at the same
time, it is less clear exactly what they capture and
whether they capture relevant information or irrele-
vant statistics, as is often the case in computational
argumentation (Niven and Kao, 2019).

Figure 2 illustrates how LR allows us to inter-
pret the contribution of different features to attack-
ability, by visualizing a post with important fea-
tures highlighted. For instance, external knowledge
plays a crucial role in this post; all successfully at-
tacked sentences match substantially more Kialo
statements than other sentences. The attackability
scores of these sentences are also increased by the
use of hypotheticals and certain n-grams like could.
These features align well with the actual attacks by
successful challengers. For instance, they pointed
out that the expulsion of Russian diplomats (sen-
tence 2) is not an aggressive reaction because the
diplomats can be simply replaced with new ones.
Kialo has a discussion on the relationship between
the U.S. and Russia, and one statement puts for-
ward exactly the same point that the expulsion was
a forceful-looking but indeed a nice gesture. Simi-
larly, a successful challenger pointed out the con-
sistent attitude of the U.S. toward regime change
in North Korea (sentence 3), and the North Korean
regime is a controversial topic in Kialo. Lastly,



I'm typing this post mostly from anxiety Prediction(0.12)
considering recent events, but hopefully this post Personal (-0.20)

5 .. 5 b g Topic37 (-0.21)
will spark optimistic discussion that | don't seeoften .-~ "
in the news or online or such. With the appointment of KialoFreq (0.98)
John Bolton as_the National Security Adviser and Topic5 (0.39)

John P as the s tary of State. two men known KialoAttr (0.05)

KialoExtr (-0.07)

a more aggressive stance i foreign policy, seen with the | KialoFreq (0.75)

. N . " " . Topic5 (0.39)
MMMWMW N Example (0.11)
controversy in_the United Kingdom. Also, despite KijaloAttr (0.07)
planned negotiations with Kim Jong-Un concerning the KialoExtr (-0.07)
future of North Korea, the US, and NK's nuclear arsenal, ........................
President Trump has filled out his cabinet/diplomacy team Topic5 (0.39)
with people who are in favor of things such as a: KialoFreq (0.22)

regime change or attacking North Korea, further stirring; KialoAttr (0.13)
' Hypothetical (-0.06)

things uUp for a potential falling Out. If talks between i e (-0.11)
the two nations break down. the US does not have ... ...
much_more_of a reason to withhold from attacking ; KjaloFreq (0.45)
North Korea, which is_a plan that seems to be: Topic5 (0.39)
favorable among higher officials. Considering_that ﬁ:’:;ggz:((qu)s)
this is also sort Of a proxy scuffle between us and China/ yse of "We" (-0.18)
Russia, attacking OF otherwise provoking North Korea OF ;---------------znnnnn-

K n 3 . : Topic5 (0.39)
Russia_could lead to situations ranging from_a:
Russia could lead to situations ranging from a QuestOther (0.39)

worldwide economic downturn to nuclear holocaust. """ " " "7
Is conflict the current trajectory of international’ Why/How (0.91)
relations? How would we otherwise not engage Use of "We" (-0.18)
in some sort of scuffle? Topic37 (-0.21)

Figure 2: Prediction visualization. Background color
indicates predicted attackability (blue: high, red: low).
Successfully attacked sentences are underlined. Fea-
tures with high/low weights are indicated with blue/red.

one successful challenger attacked the hypothetical
outcomes in sentences 4 and 5, pointing out that
those outcomes are not plausible, and the LR model
also captures the use of hypothetical and the word
could as highly indicative of attackability. More
successful and erroneous cases are in Appendix H.

Laypeople perform significantly better than the
BERT model for predicting attacked sentences, but
only comparably well for successfully attacked sen-
tences (Table 4 row 9). Persuasive argumentation
in CMV requires substantial domain knowledge,
but laypeople do not have such expertise for many
domains. The BERT model, however, seems to take
advantage of the large data and encodes useful lin-
guistic patterns that are predictive of attackability.
A similar tendency has been observed in predict-
ing persuasive refutation (Guo et al., 2020), where
a machine-learned model outperformed laypeople.
Nevertheless, in our task, the humans and the BERT
model seem to make similar decisions; the asso-
ciation between their choices of sentences is high,
with odds ratios ranging between 3.43 (top 1) and
3.33 (top 3). Interestingly, the LR model has a
low association with the human decisions for top 1
(OR=2.65), but the association exceeds the BERT
model for top 3 (OR=3.69). It would be interesting
to further examine the similarities and differences

in how humans and machines choose sentences to
attack.

7 Conclusion

We studied how to detect attackable sentences in
arguments for successful persuasion. Using on-
line arguments, we demonstrated that a sentence’s
attackability is associated with many of its char-
acteristics regarding its content, proposition types,
and tone, and that Kialo provides useful informa-
tion about attackability. Based on these findings
we demonstrated that machine learning models can
automatically detect attackable sentences, compa-
rably well to laypeople.

Our work contributes a new application to the
growing literature on causal inference from text
(Egami et al., 2018), in the setting of “text as a
treatment”. Specifically, our findings in Section 5
pave the way towards answering the causal ques-
tion: would attacking a certain type of sentence
(e.g., questions or expressions of confusion) in an
argument increase the probability of persuading
the opinion holder? While our findings suggest
initial hypotheses about the characteristics of sen-
tences that can be successfully attacked, establish-
ing causality in a credible manner would require
addressing confounders, such as the challenger’s
reputation (Manzoor et al., 2020) and persuasive
skill reflected in their attack (Tan et al., 2014). We
leave this analysis to future work.

Our work could be improved also by includ-
ing discourse properties (coherence, cohesiveness).
Further, argumentation structure (support relations
between sentences or lack thereof) might provide
useful information about each sentence’s attacka-
bility.
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Appendices
A Annotating Attacked Sentences

We tried capturing sentences in posts that are ad-
dressed by comments but not directly quoted. To
see its feasibility, we randomly sampled 100 post-
comment pairs that do not contain direct quotes
and then asked an undergraduate native speaker of
English (who has no knowledge about this work) to
mark attacked sentences in each post, if any. This
revealed two challenges. First, human annotation
is subjective when compared to a co-author’s re-
sult and very time-consuming (2.5 min/comment).
Second, we tried several methods to automatically
identify attacked sentences. We compared the sim-
ilarity between each post sentence with the com-
ment (first sentence of the comment, first sentence
of each paragraph, or all comment text) based on
word overlap with/without synonym expansion and
the GloVe embeddings. But it turned out to be dif-
ficult to get similar results to human annotations.
Therefore, we decided to use only those sentences
that are direct quoted or have at least 4 common
words with a comment’s sentence as the most reli-
able labels.

B External Knowledge

In this section, we describe the methods that we
explored to use Kialo as a knowledge base but that
were not successful.

B.1 UKP Sentence Embedding-Based
Retrieval

We measured the similarity between CMV sen-
tences and Kialo statements using the UKP sen-
tence embedding—BERT embeddings fine-tuned
to measure argument similarity (Reimers et al.,
2019). Specifically, the authors provide pretrained
embeddings constructed by appending a final soft-
max layer to BERT to predict a numerical dissimi-
larity score between 0 and 1 for each sentence pair
in the UKP ASPECT corpus. The 3,595 sentence
pairs in this corpus were drawn from 28 contro-
versial topics and annotated via crowd workers to
be “unrelated” or of “no”, “some” or “high” simi-
larity. They report a mean F1-score of 65.39% on
a held-out subset of this corpus, which was clos-
est to human performance (F1=78.34%) among all
competing methods that were not provided with
additional information about the argument topic.

We used this fine-tuned model to measure the dis-
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similarity between each CMV sentence and Kialo
statements. Based on this information, we ex-
tracted the feature UKP Avg Distance 10, which is
the average dissimilarity score of the 10 Kialo state-
ments that are closest to the sentence. This score
is expected to be low if a sentence has many simi-
lar statements in Kialo. In addition, we extracted
the same frequency, attractiveness, and extreme-
ness features as in §4.2.2. Here, we determine
whether a CMV sentence and a Kialo statement are
“matched” based on several dissimilarity thresholds
(0.1, 0.2, 0.3, 0.4); A Kialo statement is considered
matched with a CMV sentence if the dissimilarity
is below the selected threshold.

B.2 Semantic Frame-Based Knowledge

We extracted semantic frames from CMV sentences
and Kialo statements, using Google SLING (Ring-
gaard et al., 2017). For each frame in a sentence
or statement, a “knowledge piece” is defined as
the concatenation of the predicate and arguments
(except negation); the predicate is lemmatized and
the arguments are stemmed to remove differences
in verb/noun forms. We also mark each knowledge
piece as negated if the frame contains negation.
Example knowledge pieces include:
o ARGO:peopl-ARG1:right-ARGM-
MOD:should-PRED:have (Negation:
true)

e ARGl :person-ARG2:abl-ARGM-
MOD:should-PRED:be (Negation: false)

For each CMYV sentence, we extracted two fea-
tures: the count of knowledge pieces in Kialo that
are consistent with those in the sentence, and the
count of knowledge pieces in Kialo that are con-
flicting with those in the sentence. Two knowl-
edge pieces are considered consistent if they are
identical, and conflicting if they are identical but
negated. Attackable sentences are expected to have
many consistent and conflicting knowledge pieces
in Kialo. If we assume that most statements in
Kialo are truthful, attackable sentences may have
more conflicting knowledge pieces than consistent
knowledge pieces.

B.3 Word Sequence-Based Knowledge

Treating each frame as a separate knowledge piece
does not capture the dependencies between multi-
ple predicates within a sentence. Hence, we tried a
simple method to capture this information, where a
knowledge pieces is defined as the concatenation of



Knowledge Feature Attacked Successful
Word Overlap Frequency (log2) 1.18 (*%*) 1.07 (¥%*)
Word Overlap Attractiveness (log2) 1.30 (*%%) 1.18 (*%%)
Word Overlap Extremeness 151 (¥%%) 1.19 (¥%*)
UKP Avg Distance 10* 0.93 (***) 098 ( *)
UKP 0.1 Frequency® 1.08 (*) 099 ( )
UKP 0.1 Attractiveness’ LIL(*) 108 ()
UKP 0.1 Extremeness 349 (*) 677 ( )
UKP 0.2 Frequency' 1.02 (*%) 101 ()
UKP 0.2 Attractiveness’ 1.05 (*%%) 1.06 ()
UKP 0.2 Extremeness 1.69 (¥**) 1.76 ()
UKP 0.3 FrequencyT 1.04 (**%) 1.01 ¢ )
UKP 0.3 Attractiveness’ 1.09 (***) 1.02 ()
UKP 0.3 Extremeness 2.44 (k) 1.40 ()
UKP 0.4 Frequenchr 1.04 (***) 1.01 (**)
UKP 0.4 Attractiveness' 1.12 (¥%%) 1.01 ()
UKP 0.4 Extremeness 2.35 (k*%*) 1.02 ()
Frame Knowledge Consistent 1.28 (¥%*) 1.01 ()
Frame Knowledge Conflict 1.37 (*%%*) 1.08 ()
Word Sequence Knowledge Consistent .05 ¢ ) 098 ( )
Word Sequence Knowledge Conflict 1.18 () 1.49 ()

Table 5: Odds ratio (OR) and statistical significance of features. An effect is positive (blue) if OR > 1 and negative
(red) if OR < 1. (*: log2, *: standardized / *: p < 0.05, **: p < 0.01, ***: p < 0.001)

verbs, nouns, adjectives, modal, prepositions, sub-
ordinating conjunctions, numbers, and existential
there within a sentence; but independent clauses
(e.g., a because clause) were separated off. All
words were lemmatized. Each knowledge piece
is negated if the source text has negation words.
Example knowledge pieces include:
e gender-be-social-construct (Negation: true)

e congress-shall-make-law-respect-
establishment-of-religion-prohibit-free-
exercise (Negation: false)

For each CMYV sentence, we extracted the same
two features as in semantic frame-based knowledge
pieces: the count of knowledge pieces in Kialo
that are consistent with those in the sentence, and
the count of knowledge pieces in Kialo that are
conflicting with those in the sentence.

B.4 Effects and Statistical Significance

The effects and statistical significance of the above
features were estimated in the same way as §5
and are shown in Table 5. Word sequence-based
knowledge has no effect, probably because not
many knowledge pieces are matched. Most of the
other features have significant effects only for “At-
tacked”. We speculate that a difficulty comes from
the fact that both vector embedding-based matching
and frame-based matching are inaccurate in many
cases. UKP sentence embeddings often retrieve
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Kialo statements that are only topically related to a
CMV sentence. Similarly, frame-based knowledge
pieces often cannot capture complex information
conveyed in a CMV sentence. In contrast, word
overlap-based matching seems to be more reliable
and better retrieve Kialo statements that have simi-
lar content to a CMV sentence.



C Lexicons

Table 6 shows the lexicons and regular expressions
used in feature extraction. r"pattern" repre-
sents a regular expression.
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Feature Pattern

Question - Confusion r" ("] )i (\S + ){,2} (not|n’t|never) (understand]|know)?",

r" (not|n’t) make sense",r" (| )i (\S + ){,2} (curious|confused)",
r" ("] )i (\S + ){,2}wonder", r" (me|myself) wonder"

Question - Why/How r" ("] ) (why|how) .x\?"

Question - Other ?

Normative should, must, “(have|has) to”, “have got to”, ““ve got to”, gotta, need, needs

Prediction r" (am$|S$'m$|Sares|S$ ' re$|$iss$|S$’s) (not )?(going to$|Sgonna)",
will, won’t, would, shall

Hypothetical r" ("], )iflunless"

Citation r" {PATTERN} that [".,!?]" (PATTERN: said, reported, mentioned, declared,
claimed, admitted, explained, insisted, promised, suggested, recommended, denied, blamed,
apologized, agreed, answered, argued, complained, confirmed, proposed, replied, stated, told,
warned, revealed), according to, r"https?:"

Comparison than, compared to

Examples r" ("] ) (for example|for instance|such as|e\.g\.) ( |$)"

Definition define, definition

Personal Story

Use of You
Use of We

Epistemic verbs: think, believe, see, know, feel, say, understand, mean, sure, agree, argue,
consider, guess, realize, hope, support, aware, disagree, post, mention, admit, accept, assume,
convince, wish, appreciate, speak, suppose, doubt, explain, wonder, discuss, view, suggest,
recognize, respond, acknowledge, clarity, state, sorry, advocate, propose, define, apologize,
curious, figure, claim, concede, debate, list, oppose, describe, suspect, reply, bet, realise,
defend, convinced, offend, concern, intend, certain, conclude, reject, challenge, thank, con-
done, value, skeptical, contend, anticipate, maintain, justify, recommend, confident, promise,
guarantee, comment, unsure, elaborate, posit, swear, dispute, imply, misunderstand. Epis-
temic nouns: view, opinion, mind, point, argument, belief, post, head, position, reasoning,
understanding, thought, reason, question, knowledge, perspective, idea, way, stance, vote,
best, cmv, response, definition, viewpoint, example, claim, logic, conclusion, thinking, com-
ment, statement, theory, bias, assumption, answer, perception, intention, contention, word,
proposal, thesis, interpretation, reply, guess, evidence, explanation, hypothesis, assertion,
objection, criticism, worldview, impression, apology, philosophy

you, your, yours

r" (7] )we | (?<!the) (us|our|ours) ( [$)"

Subjectivity
Concreteness
Hedges

Qualification

Arousal
Dominance

Wilson et al. (2005)

Brysbaert et al. (2014)

Downtoners (score=1): allegedly, apparently, appear to, conceivably, could be, doubtful,
fairly, hopefully, i assume, i believe, i do not believe, i doubt, i feel, i do not feel, i guess, i
speculate, i think, i do not think, if anything, imo, imply, in my mind, in my opinion, in my
understanding, in my view, it be possible, it look like, it do not look like, kind of, mainly, may,
maybe, might, my impression be, my thinking be, my understanding be, perhaps, possibly,
potentially, presumably, probably, quite, rather, relatively, seem, somehow, somewhat, sort of,
supposedly, to my knowledge, virtually, would. Boosters (score=-1): be definite, definitely,
directly, enormously, entirely, evidently, exactly, explicitly, extremely, fundamentally, greatly,
highly, in fact, incredibly, indeed, inevitably, intrinsically, invariably, literally, necessarily,
no way, be obvious, obviously, perfectly, precisely, really, be self-evident, be sure, surely,
totally, truly, be unambiguous, unambiguously, be undeniable, undeniably, undoubtedly, be
unquestionable, unquestionably, very, wholly (Hyland, 2005; URL1; URL?2)

Qualifiers (score=1): a bit, a few, a large amount of, a little, a lot of, a number of, almost,
approximately, except, generally, if, in general, largely, likely, lots of, majority of, many,
more or less, most, mostly, much, nearly, normally, occasionally, often, overall, partly, plenty
of, rarely, roughly, several, some, sometimes, tend, ton of, tons of, typically, unless, unlikely,
usually. Generality words (score=-1): all, always, every, everybody, everyone, everything,
never, no, no one, nobody, none, neither, not any, ever, forever (Hyland, 2005; URL2; URL3)
Warriner et al. (2013)

Warriner et al. (2013)

Table 6: Lexicons and regular expressions used in feature extraction.
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D Statistical Model for Feature Effects

For each feature, we use the following logistic re-
gression model:

P(Y = 1)

S\t =0 X D +--- D
T—P(Y = 1) Bo+ BxX +a1D1+--- 4+ ajpD)p

log
where X is a continuous or binary explanatory vari-
able that takes the value of a characteristic that we
are interested in. Dy (d = 1,--- ,|D|) is a binary
variable that takes 1 if the sentence belongs to the
d-th domain. Y is a binary response variable that
takes 1 if the sentence is attacked or if the sen-
tence is attacked successfully. Sx is the regression
coefficient of the characteristic X, which is the
main value of our interest for examining the associ-
ation between the characteristic and the response;
exp (Bx) is the odds ratio (OR) that is interpreted
as the change of odds (i.e., the ratio of the proba-
bility that a sentence is (successfully) attacked to
the probability that a sentence is not (successfully)
attacked) when the value of the characteristic in-
creases by one unit. If Sx is significant, we can
infer that X has an effect on Y. If Sx is positive
(and significant), we can infer that the characteris-
tic and the response have positive association, and
vice versa.

)
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E Important n-gram Features

Table 7 shows the top 100 n-grams that have the
highest or lowest weights for attacked sentences
(vs. unattacked sentences) and for successfully
attacked sentences (vs. unsuccessfully attacked).
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Attacked (vs. Unattacked)

Attacked Successfully (vs. Unsuccessfully)

High

Low

is are no - ? life why women should to society men a
nothing 1_) would money if_i they n’t people if *
someone 2_. human never believe 2_) 3_. your i_believe
and 5_. americans tax 4 , being :_- :_* feel because *_the
than could republicans do be government ) sex 3_)
nobody why_should the_government ”_i seems religion
their ca ca_n’t less 4_. pay world war an )_the 6_.
without ,_why science 4_) reason humans animals racism
military selfish racist of when social 3 gun makes you
speech climate get kids have can white should_i ,_is *_**
proven how_can

edit cmv i/_7 / thanks (edit_: [ ! post ] ]_( this thank
thank_you comments please view — &gt; discussion
here topic sorry changed my_view some cmv_. posts ._”
my delta comment i_will points responses :_1_. of_you
/_) article title i_’1I ’11 = thanks_for now 'm &amp; got
i-’m was **_edit above recently reddit view_. lot i_was
below change_my hi ’s a_few edit_2 on_this again ““)_.
my_view_. this_post discuss arguments you_all deltas
few there_are 1_. i_’ve /_)_— i_have currently edit_2_:
comments_. let_me a_lot hello let i_still here._.
background course )_.— context you_guys appreciate
thread perspective and_i posted

is without are ? would public life women weapons data
how_can usa no should if sex of . ,_would n’t why
money % someone the_us customers coffee since 1_:
skills are_a end 3_. available ,_they technology 2_. - ,_if
people_with cost need a car the pretty_much racist
so_many to_know third such_as white dog could_be
towards_the americans song actions seems formal ,_he
gender_is nothing this_: power see teams job years
videos rates why_would cream expectations ca god
people feet global i_believe sounds n’t_the 100
think_that_it crime to_pay firstly because ,_.why immoral
and_not can_also scooby ”_i issues %_of ca_n’t
marriages ability in_many
edit cmv i thanks / edit_: view this thank ! 1_. definitely
] post discussion thank_you some ’s_a changed that_this
here i_have tv points today responses above ,_it_’s ]_(
perspective both thought i_was to_any do_this ( there_are
&gt; continue_to currently :_i delta comments certainly
taxes my you_can discuss matters person_a please let_me
got ,_that not_all ’'m i_’m more_of n’t_want_to obvious
posts friends has_been honest true_. background great
hypocritical case_. work_, account not_the results article
bit all_the that_-would_be grow whose thread fine_.
point_. do_you remember still hope now standard
thanks_for asking try_to go started wealth = bitcoin
series arguments super does_n’t

Table 7: n-grams (n = 1, 2, 3) with the highest/lowest weights. Different n-grams are split by a space, and words

@ 9

within an n-gram are split by “_”.
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F Reproducibility Checklist

Criterion

LR

BERT

Computing infrastructure

Average runtime

Number of parameters
Validation performance

Intel(R) Core(TM) i7-3770K CPU @
3.50GHz / 19GiB System memory

Attacked: 225.9 mins / Successful:
31.5 mins
20,105
Attacked: P@1=47.4, A@3=75.8,
AUC=61.8 / Successful: P@1=26.5,
A@3=54.6, AUC=60.1

Intel(R) Core(TM) i7-8700K CPU @
3.70GHz / 31GiB System memory /
NVIDIA GP102 [TITAN Xp]
Attacked: 279.5 mins / Successful:
43.4 mins
108M
Attacked: P@1=50.3, A@3=77.6,
AUC=64.6 / Successful: P@1=28.3,
A@3=57.2, AUC=62.0

Bounds for hyperparameters

Hyperparameter configurations for best-
performing models

Number of hyperparameter search trials
Method of choosing hyperparameter val-
ues

Criterion for selecting optimal hyperpa-
rameter values

Norm: {L1, L2} / Regularization
weight: {le-4, le-3, le-2, le-1}
Norm: L2 / Regularization weight:
le-1
8
Grid search

AUC

Learning rate: le-5/ Adam e: 1e-8
Learning rate: le-5/ Adam e: 1le-8

(No hyperparameter search)
(No hyperparameter search)

(No hyperparameter search)

Table 8: Reproducibility checklist.
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G Prediction Results

Table 9 shows the prediction accuracy with an additional metric mean average precision (MAP).

Attacked Successfully Attacked

P@1 Any@3 MAP AUC P@1 Any@3 MAP AUC
Random 359 66.0 48.0 50.1 18.9 45.0 34.0 50.1
Length 429 73.7 53.7 54.5 223 52.1 38.8 55.7
Logistic Regression 47.1 76.2 56.5 61.7 242 54.5 41.0 59.3
(x) Content 45.2 74.4 54.7 58.1 24.0 52.6 39.9 57.0
(x) Knowledge 47.0 76.0 56.4 61.7 24.1 543 40.5 59.0
(x) Prop Types 46.7 75.9 56.2 61.5 24.4 53.6 40.7 59.0
(x) Tone 47.0 76.0 56.4 61.9 25.2 56.2 414 59.4
BERT 49.6 77.8 57.9 64.4 28.3 57.2 43.1 62.0
Human 51.7 80.1 - - 27.8 542 - -

Table 9: Prediction accuracy.
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H Visualization Examples

For the successful example in Figure 3a, the model
finds evidence for the successfully attacked sen-
tences 3 and 5 from the external knowledge source
(Kialo). Although some of the other sentences
(7-8) also match Kialo statements, the degree of
match is relatively low, and the model determines
that their n-grams reduce attackability (many, think,
needs). Sentence 4 is properly found to have high
attackability, since it makes a comparison and con-
tains many n-grams predictive of attackability (be-
cause, Democrats, Republicans, opposing).

For the successful example in Figure 3b, topics
play important roles for determining attackability.
The topics of the successfully attacked sentences
2-4 all increase attackability, whereas the topics of
other sentences 5-9 reduce attackability.

For the erroneous example in Figure 4a, all sen-
tences have relatively little evidence for attackabil-
ity/unattackability. The model determines sentence
5 to have relatively high attackability because of
many n-grams that increase attackability (know,
absolutely, nothing). On the other hand, the suc-
cessfully attacked sentence 6 is assigned a low at-
tackability score despite its match with Kialo state-
ments, because its use of we, personal stories, and
certain n-grams (many, times, and friends).

For the erroneous example in Figure 4b, the
model finds sentence 4 to have high attackability
because it matches with Kialo statements, makes
a comparison and prediction, and certain n-grams
(believe, presence, society, market). Sentence 5 is
also assigned a relatively high attackability score
due to its use of examples and certain n-grams
(know, committed, weapons). However, these sen-
tences were not successfully attacked. In contrast,
the successfully attacked sentences 2—4 do not have
strong enough evidence for attackability compared
to their negatively signals, such as personal stories
and n-grams own and I.
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The last Presidential election (2016) and most succeeding

elections have proven that elections are more about party

affiliations than actual views or the character of the individual /=777

being elected. In one of the most extreme examples, Roy Moore’

was backed by the Republican Party even though he was

accused Of sexual misconduct and sexual assault of minors,

simply because he was a Republican. KialoFreq (0.72)
KialoFreq (0.14)

Prediction (0.12)
KialoExtr (-0.08)
Comparison (0.20)
Topic39 (-0.12)

Comparison (0.20)

because Democrats and Republicans are more
n

focu. n in ne_another than th I
velopin tual solution: i lik n_control _an

- KialoFreq (0.86)
KialoAttr (0.20)

 Use of "We" (-0.19)

KialoFreq (0.23)
i KialoAttr (0.14)
. KialoExtr (-0.12)
A{so, many young vote.rs do not. thlnl.( this ! KialoFreq (0.23)
way--many Americans are becoming disenfranchised with the. kiajoAttr (0.22)
entire political system. This is an outdated system, and either ~Normative (0.18)
needs to adapt or change completely to better fit the needs Topic33 (0.08)

of the people. KialoExtr (-0.12)

(a) Successful example 2.
I believe that socialism is an obvious and humanitarian

next step for the U.S. _It §hQ_ul_d be_the responsibility of Taplc5(039) """"

vastly successful people to provide a tiny fraction of their

income to provide services for people who were not given
ities Normative (0.18)

Topic28 (0.16)

 KialoFreq (0.93)
! KialoAttr (0.09)

Topic46 (0.06)

1 KialoExtr (-0.11)

community they leach off of (wages or fax and it Sh

be_the responsibility of the government to make sure they,/' Topic30 (-0.17)

do.  When many people speak about socialism they quote Topica0 (-0.17)

nations like the U.S.SR. (SovietUnion). I believe that the :---

problems with these nations are a weak constitution that stems K:':;gl:rt:;y(‘(’bg:):‘)
from a violent revolution instead of a political one.; Topic30(-0.17)
Socialism /S an economic policy and can be Elsed in cooperation .~ KlanFreq (036) """
with the current governing body. 1 believe that many kialoattr (0.18)
European country's sudo-socialist ideas (like universal Topic2(-0.54)

healthcare) are a perfect example of how socialism can be.” yse of "You" (-0.15)

beneficial to people. Personal (-0.20)
Topic9 (-1.04)

(b) Successful example 3.

Figure 3: Successful examples.
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my type.

stranger, because of their physical appearance.

ith my frien
h
a relationship with them.

bmi le"

(a) Erroneous example 1.
I realize I'have a bias because | grew up in a big city
in Canada and not a single person | knew owned a
gun and most law enforcement officers / saw on the
street also didn't carry guns and / perceive Canada to
generally be safer than the open carry US state that |
now live in. 1 Ssee zero reason to own a gun. not

even for hunting. [ think hunters should use bows

committed with other weapons such as knives or
running Someone over with a car. But we have".
laws about who can drive a car and it's actually
more difficult to kill people with such things and
less efficient.

(b) Erroneous example 2.

Figure 4: Erroneous examples.
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I'm compatible with both of them on a platonic level, but l only "
take a romantic interest in Bailey because she's (physically)
Not fo say that Amanda is ugly, just that I'm not™
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Abstract

Argumentation accommodates various rhetori-
cal devices, such as questions, reported speech,
and imperatives. These rhetorical tools usu-
ally assert argumentatively relevant proposi-
tions rather implicitly, so understanding their
true meaning is key to understanding certain
arguments properly. However, most argument
mining systems and computational linguistics
research have paid little attention to implicitly
asserted propositions in argumentation. In this
paper, we examine a wide range of computa-
tional methods for extracting propositions that
are implicitly asserted in questions, reported
speech, and imperatives in argumentation. By
evaluating the models on a corpus of 2016 U.S.
presidential debates and online commentary,
we demonstrate the effectiveness and limita-
tions of the computational models. Our study
may inform future research on argument min-
ing and the semantics of these rhetorical de-
vices in argumentation.'

1 Introduction

Argument mining is a growing research field
in computational linguistics. One of its main
goals is to automatically identify pro- and counter-
arguments underlying argumentative discourse.
The foundational step for argument mining is to
extract the elementary units of arguments in the
discourse, after which the support or attack rela-
tions between these units are identified. According
to argumentation theory, the elementary units in
argumentation are asserted propositions (Eemeren
and Grootendorst, 1984). However, the dominant
approach to extracting elementary units from text—
often called argumentative discourse unit segmen-
tation (Ajjour et al., 2017; Persing and Ng, 2016;
Jo et al., 2019)—is rather simplistic and may even

'Our data and source code are available at github . com/

yohanjo/emnlp20_prop_extr. All details for repro-
ducibility are in Appendix A.
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seem inconsistent with the theory. This approach
segments text into smaller pieces (e.g., clauses)
and treats each segment as an elementary unit of
arguments. But these segments include locutions
that are seemingly not assertives, such as questions
and imperatives used as rhetorical devices. In fact,
questions, imperatives, and reported speech in ar-
gumentation often assert propositions implicitly.
Therefore, in order to understand certain argumen-
tation and identify pro-/counter-arguments prop-
erly, locutions in argumentation should not be taken
literally in their surface forms; instead, we need
to go further and understand what propositions are
implicitly asserted and argumentatively relevant in
those locutions. Our work provides some computa-
tional solutions to this problem, namely, extracting
implicitly asserted propositions in argumentation.
The following example dialogue illustrates how
questions, reported speech, and imperatives assert
propositions implicitly in argumentation.

A : All human should be vegan. (D
Look at how unethical the meat 2)
production industry is.

Environmental scientists proved that 3)
vegan diets reduce meat production by 73%.
B : Well, don’t vegan diets lack essential 4)

nutrients, though?

In this dialogue, speaker A is supporting conclu-
sion 1 using sentences 2 and 3, whereas speaker B
is attacking the conclusion using sentence 4. Sen-
tence 2 is an imperative, but in this argumentation,
it is asserting that the meat production industry is
unethical. In sentence 3, the primary proposition
asserted in support of the conclusion is the con-
tent of this reported speech—*“vegan diets reduce
meat production by 73%”’; the “environmental sci-
entists” is presented as the source of this content
in order to strengthen the main proposition in this

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 24-38,
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sentence. Lastly, sentence 4 is in question form, but
it is in fact asserting that vegan diets lack essential
nutrients. These examples suggest that properly
understanding arguments requires comprehension
of what is meant by questions, reported speech, and
imperatives, that is, what they assert implicitly.

In this paper, we test various computational
methods to extract propositions that are implic-
itly asserted in questions, reported speech, and
imperatives. Across the tasks, we explore a wide
range of computational methods. For questions, we
develop neural and rule-based methods for trans-
forming questions into asserted propositions. For
reported speech, we present feature-based and neu-
ral models to identify speech content (the primary
proposition asserted) and speech source. Lastly,
for imperatives, we test a simple transformation
rule manually and analyze the patterns of how they
assert propositions. By evaluating our models on
a corpus of the 2016 U.S. presidential debates and
online commentary, we demonstrate their effective-
ness and limitations.

Our contributions are as follows:

e Our work is a first computational study of
extracting propositions asserted in questions,
reported speech, and imperatives in argumen-
tation. We demonstrate the effectiveness and
limitations of various computational models.
This problem is fundamental in argument min-
ing, albeit understudied.

We find the evidence of strong syntactic reg-
ularities in how propositions are asserted in
question form.

We show the robust performance of a state-of-
the-art language model for identifying speech
content and source in reported speech.

Our case study of how imperatives implicitly
assert propositions is novel in computational
linguistics and argumentation theory. This
study may inform future research on the se-
mantics of imperatives in argumentation.

2 Background

Argumentation is an illocutionary act of sup-
porting or attacking an expressed opinion by
asserting propositions, according to Pragma-
Dialectics (Eemeren and Grootendorst, 1984). This
definition might seem counterintuitive, as argumen-
tation often accommodates locutions that are not
assertives, such as questions and imperatives. We
will draw upon theory and discuss how proposi-
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tions are asserted implicitly in questions, reported
speech, and imperatives in argumentation. But for
the sake of the readability of the paper, we will
defer this discussion to the respective sections of
questions (§4), reported speech (§5), and impera-
tives (§6).

On the other hand, one of the main goals of
argument mining is to identify pro- and counter-
relations between asserted propositions. In most
argument mining systems, asserted propositions
are approximated and substituted by argumenta-
tive discourse units (ADUs). An ADU is the mini-
mal locution that performs an argumentative func-
tion. Given an utterance, ADUs may be identified
based on syntactic rules, such as phrases (Stede
et al., 2016), clauses (Peldszus and Stede, 2015),
or a series of clauses (Al Khatib et al., 2016), or
by machine learning models, such as neural net-
works (Ajjour et al., 2017) or retrieval (Persing and
Ng, 2016). None of these methods go further to
understand what propositions are asserted in each
ADU.

More recently, a computational framework has
been proposed to extract asserted propositions from
ADUs (Jo et al., 2019). This cascade model pro-
poses how to detect reported speech, questions,
and imperatives, reconstruct any missing subjects,
and make final revisions for grammar correction.
While this model was built upon the same goal of
extracting asserted propositions from locutions, it
does not present computational models to extract
implicit propositions in questions, reported speech,
and imperatives. Hence, our work fills this gap in
the cascade model.

3 Domain

The domain we focus on is 2016 U.S. presidential
debates and online commentary on Reddit (Visser
et al., 2019). This corpus includes the first Repub-
lican candidates debate for the primaries, the first
Democratic candidates debate for the primaries,
and the first general election debate. The corpus
also includes Reddit discussions on these debates.

Each utterance has been segmented into ADUs,
and each ADU has been further annotated with
an asserted proposition. The inter-annotator agree-
ment is Cohen’s k of 0.61 (substantial agreement).
These debates are ideal for our analysis, since they
accommodate questions, reported speech, and im-
peratives from various speakers and in both formal
and informal debate settings.



Our work uses the data pre-processed by Jo
et al. (2019). This dataset has resolved anaphors in
ADUs and paired ADUs with asserted propositions
in a readily-available format®. While most of our
work is based on this dataset, individual tasks need
additional processing or additional data. They will
be described in the respective section.

4 Questions

In this section, we extract implicit propositions
from questions in argumentation. The task is for-
mulated as transforming a question into its asserted
proposition.

4.1 Theoretical Background

Questions in argumentation may be categorized
into rhetorical questions and pure questions.
Rhetorical questions are not intended to require
an answer; instead, they often make an implicit as-
sertive (as in sentence 4). Zhang et al. (2017) iden-
tified finer-grained types of rhetorical questions,
such as sharing concerns, agreeing, and conceding.
Our work is not aiming to classify these types, but
instead focuses on extracting implicit assertives in
rhetorical questions.

Pure questions, on the other hand, are intended to
seek information. According to the speech act the-
ory, non-binary questions have incomplete propo-
sitions (Searle, 1969). For instance, the question
“How many people were arrested?” has the proposi-
tion “X people were arrested”’, with the questioned
part underspecified and denoted by X. Although
the proposition is semantically underspecified, sub-
sequent arguments may build on this, making this
proposition an important argumentative component.
Hence, our work covers extracting semantically un-
derspecified propositions from pure questions as
well. (See Bhattasali et al. (2015) for computa-
tional methods to distinguish between rhetorical
questions and pure questions.)

4.2 Models

We explore two neural seq2seq models and one
rule-based model. For all these models, both input
and output are a sequence of words.

4.2.1 Neural Models

We test two RNN-based seq2seq models. First, the
basic model encodes a question using BiLSTM
and decodes a proposition using LSTM and the

https://github.com/yohanjo/amwl9
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standard attention mechanism (Luong et al., 2015).
Figure 1 illustrates the snapshot of the model for
the jth output word.

Formally, the input is a sequence of words
w, - wk, and the embedding of w? is denoted
by w¥. BiLSTM encodes each word w¥ and out-

%
puts forward/backward hidden states h f and %F :

- —
RE nE =BiLSTM(w?, KE |, hE ),
7E E
hy = hyy =0

For the jth word to be generated, an LSTM de-
coder encodes the concatenation of the previously
generated word wﬁl and context vector ﬁf_l (ex-
plained below), and the previous hidden state:
D D .¢E D
hy = LSTM([wj; hj_ 1], hi ),

%
hi =[h{; hy].

Next, the decoder attends to the encoder’s hidden
states using an attention mechanism. The attention
weight of the ¢th hidden state is the dot product of
the hidden states from the encoder and the dejcoder:
D E. J7E] exp(aj;
aji=hP [RERE), ay = ot
> exp(agir)
B -~ TE.SE
i

The probability of the vth word in the vocabulary
being generated is calculated as in the standard
attention decoder mechanism:

Pg(w,) = softmax(We [hP; hY] + bg)u,
where W and b are trainable weight matrix and
bias vector.

The basic seq2seq model requires a lot of train-
ing data, whereas according to our observation,
question transformation is often formulaic, consist-
ing largely of word reordering. Hence, our copy
model uses a copying mechanism to learn to re-use
input words. A prior model (Gu et al., 2016) does
not perform well in our task, so we modified it as
follows (Figure 1).

Our copy model is based on the basic model
and has the same process for the generating part.
When an output word is copied from the input text,
instead of being generated, the probability of the
tth input word being copied is proportional to the
attention weight of the +th hidden state. That is, the
probability of the vth word in the vocabulary being
copied is:

N
Po(wy) = Z ajil(wf = wy).
i=1

The final probability of w, being output is a
weighted sum of P (w,) and Pg(w,), where the
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Figure 1: Basic model and copy model for question transformation. The snapshots for the jth output word.

weight J is calculated as
§; = o(Wsh% + bs),

P(wy) = 0Pc(wy) + (1 — 0)Pg(wy),
where Wy and by are trainable weight matrix and
bias vector. The main difference of our model from
existing ones is that we compute the mixture weight
d; for Pc and Pg using a separate neural network.
In contrast, existing models do not explicitly com-
pute this weight (Gu et al., 2016) or do not use
attentional hidden states (Allamanis et al., 2016).

We try the following hyperparameter values:

e Encoder/decoder hidden dim: 96, 128, 160,
192 (basic model) / 128, 192 (copy model)
Beam size: 4

Optimizer: Adam

Learning rate: 0.001

Gradient clipping: 1

Word embedding: GloVe 840B

4.2.2 Rule-Based Model

As question transformation is often formulaic, a
rule-based method may be effective for small data.
For each question, the most relevant parts for trans-
formation are the first word (wh-adverb or auxiliary
verb), subject, auxiliary verb, negation, and main
verb (i.e., be+adjective, be+gerund, or else). For
instance, the question “Why would you not pay the
tax?” might be rearranged to “@M 1@ the
tax”, where why and not are removed. We com-
pile rules that match combinations of these com-
ponents, starting with a rule that has a high cover-
age and breaking it down to more specific ones if
the rule makes many errors. An example rule is
“Why [MODAL] [SUBJECT] not” — “[SUBJECT]

27

[MODALY]”, which applies to the above example.
As a result, we compiled total 94 rules for 21 first
words (4.5 rules per first word on average) based
on the US2016 dataset (see Table 7 in Appendix B
for a summary of these rules).

4.3 Data

US2016: Our main data is Jo et al. (2019)’s
dataset of the 2016 U.S. presidential debates and
commentary. We filtered 565 pairs of an ADU and
its asserted proposition that are annotated with the
following question types:

e Pure: e.g., “Who is Chafee?” — “Chafee
is xxx”; “Do lives matter?” — “Lives do /
do not matter” (Semantically underspecified
parts are denoted by xxx and the slash /.)

o Assertive: e.g., “What does that say about
your ability to handle challenging crises as
president?” — “Clinton does not have the
ability to handle challenging crises as presi-
dent”

e Challenge: c.g., “What has he not answered?”
— “He has answered questions”

e Directive: e.g., “Any specific examples?” —
“Provide any specific examples”

Note that only pure questions are semantically un-
derspecified (indicated by xxx and /); the other
types contain concrete propositions to be asserted.
Our models are trained on all question types.

MoralMaze: This dataset consists of 8 episodes
of the BBC Moral Maze Radio 4 program from the
2012 summer season’> (Lawrence et al., 2015). The

‘http://corpora.aifdb.org/mm2012



US2016 MoralMaze
BLEU %M BLEU %M
Original Questions 47.5 - 50.7 -
Basic Model 5.3 - 6.5 -
Copy Model 41.5 - 44.1 -
Rules 54.5  64% 51.9 48%
Rules (well-formed) 56.7 85% 54.5  69%

Table 1: Accuracy of extracting implicitly asserted
propositions from questions. “%M?” is the percentage
of questions matched with any hand-crafted rules.

episodes deal with various issues, such as the bank-
ing system, welfare state, and British empire. In
each episode, the BBC Radio presenter moderates
argumentation among four regular panelists and
three guest participants. This dataset has been an-
notated in the same way as US2016, and we filtered
314 pairs of a question and its asserted proposition.
This dataset is not used for training or compiling
rules; instead, it is only used as a test set to examine
the domain-generality of the models.

4.4 Experiment Settings

For the neural models, we conduct two sets of ex-
periments. First, we train and test the models on
US2016 using 5-fold cross validation. Second, to
examine domain generality, we train the models on
the entire US2016 dataset and test on MoralMaze.

For the rule-based model, we compile the rules
based on US2016 and test them on US2016 (previ-
ously seen) and MoralMaze (unseen).

The accuracy of the models is measured in terms
of the BLEU score, where the references are as-
serted propositions annotated in the dataset.

4.5 Result

As shown in Table 1, the basic seq2seq model (row
2) performs poorly, because of the small size of the
training data. On the other hand, the copy model
(row 3) significantly improves the BLEU scores
by 36.2-37.6 points, by learning to re-use words
in input texts*. However, it still suffers the small
data size, and its outputs are worse than the original
questions without any transformation (row 1).

In contrast, the hand-crafted rules (rows 4-5)
significantly improve performance and outperform
the original questions. The effectiveness of the rule-
based method on MoralMaze, which was not used
for compiling the rules, indicates that these rules

*Our model also outperforms a prior copy model (Gu et al.,
2016) by more than 20 BLEU scores.
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generalize across argumentative dialogue®. The ef-
fectiveness of the rule-based method also suggests
that there exist a high degree of syntactic regulari-
ties in how propositions are asserted implicitly in
question form, and the hand-crafted rules provide
interpretable insights into these regularities (see
Table 7 in Appendix B for the rules).

Taking a closer look at the rule-based method,
we find that many questions are subordinated or
ill-formed, and thus the rules match only 64% of
questions for US2016 and 48% of questions for
MoralMaze. When we focus only on well-formed
questions (that begin with a wh-adverb or auxiliary
verb), the rules match 85% and 69% of questions
for the respective dataset, and the BLEU scores im-
prove by 2.2-2.6 points (row 4 vs. row 5). When
analyzed by the first word of a question, ques-
tions beginning with have, do, and modal verbs
achieve the highest BLEU scores. Why-questions
achieve the lowest, probably due to many vari-
ants possible; for example, “why isn’t [SUBJECT]
[ADJECTIVE]?” is most likely to be transformed
to “[SUBJECT] is [ADJECTIVE]”, whereas “why
isn’t [SUBJECT] [VERB]?” is to “[SUBJECT]
should be [VERB]”.

One limitation of the rule-based method, how-
ever, is that it cannot distinguish between questions
that have the same syntactic structure but assert op-
posite propositions. For example, “Would you ...?”
can mean both “You would ...” and “You would
not ...” depending on the context. In order to sep-
arate these cases properly, we may need to take
into account more nuanced features and context,
and machine learning with large data would be the
most promising direction eventually.

5 Reported Speech

In this section, we extract speech content (i.e.,
propositions that are often asserted as the pri-
mary contribution to the argumentation) and speech
source in reported speech. This task is formulated
as sequence tagging: words that constitute speech
content or source are tagged with B followed by I,
and all other words are tagged with O.

5.1 Theoretical Background

Reported speech consists of speech content that
is borrowed from a speech source external to the

>Yet, we do not believe these rules would be effective be-
yond argumentation if the distribution of rhetorical questions
and pure questions is significantly different from argumenta-
tive dialogue.



speaker. Speech content can be a direct quote of
the original utterance or an indirect, possibly para-
phrased utterance. Reported speech is a common
rhetorical device in argumentation and performs
various functions, including:

e Appeals to authority by referencing experts or
rules (Walton et al., 2008) (e.g., “Environmen-
tal scientists proved that vegan diets reduce
meat production by 73%.”)

Sets a stage for dis/agreeing with the posi-
tion (Janier and Reed, 2017) (e.g., “You say
that you want attention, but, at the same time,
you don’t want me to bring attention to you.”)
Commits straw man fallacies by distorting the
original representation or selecting part of the
original utterance (Talisse and Aikin, 2006)

While reported speech as a whole is an assertion, its
primary contribution to the argumentation usually
comes from the speech content (e.g., “vegan diets
reduce meat production by 73%”), and the speech
source (e.g., “environmental scientists”) is used to
support the speech content.

Due to the important roles of speech content
and source, computational models have been pro-
posed to identify them, based on rules (Krestel
et al., 2008), conditional random fields (Pareti et al.,
2013), and a semi-Markov model (Scheible et al.,
2016). Our work is different from these studies
in two ways. First, they are based on news arti-
cles, whereas our work is on argumentative dia-
logue. Second, they use rules or features that re-
flect typical words and structures used in reported
speech, whereas our work explores a neural method
that does not require feature engineering. We aim
to show how well a state-of-the-art neural tech-
nique performs on extraction of speech content and
source. A slightly different but related strain of
work is to identify authority claims in Wikipedia
discussions (Bender et al., 2011), but this work
does not identify speech content and source.

5.2 Models

We explore three models: a conditional random
field (CRF) with hand-crafted features, the BERT
token classifier with a pretrained language model,
and a semi-Markov model as the baseline. For all
models, the input is a sequence of words and the
output is a BIO tag for each word. We conduct sep-
arate experiments for content and source, because
we do not assume that they are mutually exclusive
(although they are in most cases).
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5.2.1 Conditional Random Field (CRF)
Our CREF uses the following features:

Current word.

Named entity type of the word.

POS tag of the word.

Unigram and bigram preceding the word.
Unigram and bigram following the word.
Indicator of if the word is a subject (“nsubj*”
on the dependency parse tree).

Indicator of if the current word is the begin-
ning/end of a clause (“S” on the parse tree).

The features were extracted using Stanford
CoreNLP 0.9.2 (Manning et al., 2014).

For model parameters, we explore two optimiza-
tion functions: (i) L-BFGS with the combinations
of L1/L2 regularization coefficients {0, .05, .1, .2};
(i1) Passive Aggressive with aggressiveness param-
eter values {.5,1,2,4}. The model was imple-
mented using sklearn_crfsuite 0.3.6.

5.2.2 BERT

The second model is the BERT token classifier (De-
vlin et al., 2018), which classifies the tag of each
word. BERT has shown significant performance
boosts in many NLP tasks and does not require
hand-crafted features. We use the pretrained, un-
cased base model with the implementation pro-
vided by Hugging Face (Wolf et al., 2019). The
model is fine-tuned during training.

5.2.3 Baseline

The baseline is the state-of-the-art semi-Markov
model for speech content identification (Scheible
et al., 2016). This model first identifies cue words
(e.g., reporting verbs) and iteratively identifies the
boundaries of speech content using a set of hand-
crafted features. This model does not identify
speech sources and thus is compared with other
models only for content identification.

For a methodological note, the original source
code was hard-coded to work for the PARC3.0
dataset, and we could not replicate the model to
train on other data. Therefore, all accuracies of
this model in the next section result from training
it on the training set of the PARC3.0 dataset (Sec-
tion 5.3). We will show its performance on both
PARC3.0 and US2016.

5.3 Data

PARC3.0: The first dataset is 18,201 instances
of reported speech in news data (Pareti, 2016). The
original dataset was built upon the Wall Street



Journal articles in the Penn Discourse TreeBank
(PDTB) (Prasad et al., 2008), where each instance
of reported speech has been annotated with the con-
tent, source, and cue word (e.g., reporting verbs).
The reliability of the annotations were measured by
the overlap of annotated text spans between anno-
tators. The overlap for speech content is 94% and
that for speech source is 91%, suggesting the high
reliability of the annotations.

This dataset consists of 24 sections correspond-
ing to the PDTB sections. The original paper sug-
gests using sections 00-22 for training (16,370 in-
stances), section 23 for testing (667 instances), and
section 24 for validation (1,164 instances).

US2016: The second dataset is the instances of
reported speech in the corpus of the 2016 U.S. pres-
idential debates and commentary, prepared by Jo
et al. (2020)°. This dataset includes 242 instances
of reported speech annotated with speech content
and source. The reliability of the annotations was
measured by the number non-overlapping words
between annotators. The average number of words
that are outside of the overlapping text span was
0.2 for speech content and 0.5 for speech sources,
suggesting the high reliability of the annotations.

5.3.1 Experiment Settings

The CRF and BERT models are trained and tested
on both PARC3.0 and US2016, separately. For
PARC3.0, we use the split of train, validation, and
test as suggested by the original paper. For US2016,
we use 5-fold cross validation; for each iteration,
three folds are used for training, one for testing, and
the other for choosing the optimal hyperparameters
(CRF) or the optimal number of epochs (BERT).

The baseline model is trained and tested on
PARC3.0 using the same training, validation, and
test split. US2016 is used only for testing after it
is trained on the training set of PARC3.0 (as men-
tioned in 5.2.3).

We use various evaluation metrics. For speech
content, the F1-score is calculated based on the
true and predicted BIO tags of individual words, as
well as the BLEU score of the predicted text span
against the true text span. For speech sources, the
F1-score is calculated based on the match between
the true source’s text and the predicted text. Two
texts are considered matched if they are identical
(Strict) or if their words overlap (Relaxed). We
do not measure the F1-score based on BIO tags for

*https://github.com/yohanjo/lrec20
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PARC3.0 US2016
F1 BLEU Fl BLEU
Scheible (All) 64.4 57.1 37.9 234
Scheible (Matched) 75.8 72.7 79.3 76.5
CRF 71.3 66.3 72.5 68.7
BERT 82.6 82.0 87.1 89.3

(a) Accuracy of identifying speech content. The accuracies
of Scheible for US2016 (italic) result from training it on the
training data of PARC3.0.

PARC3.0 US2016
Strict F1 ~ Relaxed F1 ~ Strict F1 ~ Relaxed F1
CRF 52.4 59.8 62.4 71.6
BERT 71.0 78.6 70.3 84.8

(b) Accuracy of identifying speech source.

Table 2: Accuracy of identifying speech content and
source.

speech sources, because the source may be men-
tioned multiple times in reported speech and we
do not want to penalize the model when the men-
tion identified by the model is the true source but
different from the annotated mention.

5.4 Result

Content Identification: The accuracies of all
models are summarized in Table 2a. The base-
line model (Scheible) has two rows: row 1 is its
accuracy on all test instances, and row 2 is on test
instances where the model was able to identify
cue words. We find that the BERT model (row 4)
outperforms the feature-based CRF and the base-
line model for both corpora, achieving a macro F1-
score of 82.6% at tag levels and a BLEU score of
82.0% for PARC3.0 and an F1-score of 87.1% and
a BLEU score of 89.3% for US2016. These scores
show the high reliability of the BERT model for
extracting main propositions asserted in reported
speech. In addition, the high accuracy on US2016
despite its small size suggests that the pretrained
language model effectively encodes important se-
mantic information, such as reporting verbs and
dependencies among subject, verb, and object.
The baseline model, which was trained on
PARC3.0, performs poorly on US2016 (row 1).
The main obstacle is that it fails to detect cue words
(e.g., reporting verbs) in 168 out of 242 instances
(69%). This shows one weakness of the base-
line model: since this model works at two steps—
detect cue words and find content boundaries—
identifying speech content is strongly subject to



cue word detection. When the baseline is evalu-
ated only on the instances where a cue word was
detected, its accuracy boosts significantly (row 2),
outperforming the CRF but still worse than BERT.

A qualitative analysis of the BERT model reveals
that most instances are tagged accurately, and er-
rors are concentrated on a few instances. One of the
main issues is whether a reporting verb should be
included or not as speech content. In the annotation
process for US2016, a reporting verb was included
as speech content only if the verb has meaning
other than merely “to report” (e.g., blamed his idea,
declared their candidacy). As a result, the model
often has difficulty judging a reporting verb to be
part of the speech content or not.

In some cases, the exact boundary of speech
content is ambiguous. For instance, in the sentence

“Bush has promised four percent eco-
nomic growth and 19 million new jobs
if Bush is fortunate enough to serve two
terms as president.”

the annotated speech content is in bold, while the
model included the if-clause as the content (under-
lined). However, it may seem more appropriate to
include the if-clause as part of the promise.

Source Identification: The accuracies of all
models are summarized in Table 2b. The BERT
model (row 2) again significantly outperforms the
CRF (row 1), achieving Fl-scores of 75.7% for
strict evaluation (exact match) and 85.1% for re-
laxed evaluation (overlap allowed). It is usually
when a source is a long noun phrase that a pre-
dicted source and the true source overlap without
exact match (e.g., President Obama vs. Obama).
Our qualitative analysis of the BERT model re-
veals two common error cases. First, the model
tends to capture subjects and person names as a
speech source, which is not correct in some cases:

“We have been told through investigative
reporting that he owes about $650 mil-
lion to Wall Street and foreign banks”

where the model identifies we as the speech source,
while the true source is the investigative report-
ing. The model also sometimes fails to detect any
source candidate if reported speech has an uncom-
mon structure, such as “The record shows that ...”
and “No one is arguing ... except for racists”, where
the speech sources are underlined. These problems
may be rectified with larger training data that in-
clude more diverse forms of reported speech.
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6 Imperatives

In this section, we collect imperatives in argumen-
tative dialogue and examine a simple method for
extracting propositions asserted in them. We do
not build automated models for transformation (as
in questions), because US2016 had no clear guide-
lines on how to annotate asserted propositions in
imperatives when the dataset was built.

6.1 Theoretical Background

Imperatives are common in argumentation as in
“Stop raising the sales tax” and “Look how bad the
system is”. However, to our knowledge, there is lit-
tle theoretical work on what propositional content
is asserted by imperatives in argumentation. There
have been theories about the semantics of imper-
atives in general context; for example, the you-
should theory suggests that an imperative of the
form “Do X may imply “X should be done” (Ham-
blin, 1987; Schwager, 2005). While applicable
in many general cases, this mechanism is not sat-
isfactory in argumentation. For instance, while
this transformation preserves the literal meaning of
both the first and second examples above, it does
not capture the main proposition asserted in the sec-
ond example. This example is unlikely arguing for
“looking” per se; it rather asserts that the system is
bad, which is the main content that contributes to
the argumentation. No simple transformation rules
apply here, and such irregularities call for more
case studies. Our work aims to make an initial
contribution in that direction.

6.2 Model

No automated model is used in this section, but
instead, we examine the applicability of the you-
should theory in argumentation. Specifically, we
analyze whether each imperative preserves the orig-
inal intent when it is transformed to an assertive by
adding “should”, along with appropriate changes
in the verb form, (implicit) subject, and object. We
additionally analyze the argumentative relevancy
of the transformed verb, that is, whether the imper-
ative is mainly asserting that it should happen.

6.3 Data

We use imperatives in US2016 (Jo et al., 2019).
We assume that a sentence is an imperative if its
root is a verb in the bare infinitive form and has
no explicit subject. Using Stanford CoreNLP, we
chose locutions that are not questions and whose



Top 1-8 Top 9-16 Top 17-24 Top 25-32
let (39) fuck (5) say (3) bring (2)
look (7) stop (5) ask (2) love (2)
have (7) do (4) vote (2) drink (2)
wait (6) check (3) help (2) pay (2)
thank (6) give (3) keep (2) are (2)
please (6) make (3) find (2) believe (2)
go (5) get (3) think (2) talk (2)
take (5) use (3) forget (2) screw (2)

Table 3: Root verbs and counts in imperatives.

root is a verb with base form or second-person
present case (VB/VBP), neither marked (e.g., to
go) nor modified by an auxiliary modal verb (e.g.,
would go). We found total 191 imperatives, and the
most common root verbs are listed in Table 3.

6.4 Result

We found that 74% of the imperatives can be trans-
formed to an assertion by adding should while pre-
serving their original meaning’. And 80% of the
transformed assertions were found to be argumenta-
tively relevant content. For example, the imperative
“Take away some of the pressure placed on it”’ can
be transformed to (and at the same time asserts that)
“some of the pressure placed on it should be taken
away”. This result suggests that we can apply the
you-should theory to many imperatives and extract
implicitly asserted propositions in consistent ways.

Some imperatives were found to be rather rhetor-
ical, and the propositions they assert cannot be
obtained simply by adding should. Those imper-
atives commonly include such verbs as let, fuck,
look, wait, and have. The verb let can assert dif-
ferent things. For instance, “Let’s talk about the
real issues facing america” asserts that “there are
real issues facing america”, while “Let’s solve
this problem in an international way” asserts that
“we should solve this problem in an international
way”. The words fuck and screw are used to show
strong disagreement and often assert that some-
thing should go away or be ignored.

We cannot apply the same transformation rule to
the same verb blindly, as a verb can be argumen-
tatively relevant sometimes and only rhetorical at
other times depending on the context. For instance,
the verb take in the above example is argumenta-
tively relevant, but it can also be used only rhetori-
cally as in “Take clean energy (as an example)”.

"Many of the other cases are attributed to subject drop
(e.g., “Thank you”, “Doesn’t work”) and CoreNLP errors (e.g.,
“Please nothing on abortion”, “So do police jobs™).
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Based on our analyses, we propose rough two-
step guidelines for annotating propositions that are
implicitly asserted in imperatives. First, we may
group imperatives by their semantics based on the-
ories, such as you-should and you-will (Schwager,
2005). Second, for these imperatives, we may an-
notate whether the root verb is argumentatively
relevant. For instance, if the you-should theory
is applicable to an imperative, we may annotate
whether its verb is at the core of the main argu-
mentative content that the speaker asserts should
happen; the assertive form of this imperative is
likely to be a statement that proposes a policy or ac-
tion (Park and Cardie, 2018). Argumentatively rel-
evant imperatives may be annotated with asserted
propositions using predefined transformation tem-
plates appropriate for their semantics. On the other
hand, argumentatively irrelevant verbs may simply
be rhetorical and need to be replaced properly. An-
notation of these imperatives should handle many
irregular cases, relying on the domain of the argu-
mentation and the annotator’s expertise.

7 Conclusion

Identifying implicitly asserted propositions in ar-
gumentation is key to understanding arguments
properly. We presented and tested computational
methods for extracting implicit propositions from
questions and reported speech in argumentation.
For transforming questions to propositions, hand-
crafted rules were significantly more effective than
neural models and provided insights into the regu-
larities in how propositions are implicitly asserted
in question form. Since rule-based methods do
not take context into account, however, more an-
notated data would be needed for better question
transformation based on machine learning. For re-
ported speech, BERT-based models demonstrated
high effectiveness in identifying speech content and
source by utilizing the rich semantic information
in the pretrained model. Lastly, for imperatives,
we demonstrated some regularities and irregulari-
ties in how propositions are asserted in imperatives.
We find evidence that some verbs may need to be
treated specially, while many other verbs could be
treated in consistent ways.
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Appendices
A Reproducibility Checklist

Model settings for extracting implicit propositions
from questions (Table 1) are summarized in Table
4.

Model settings for extracting speech source from
reported speech (Table 2b) are summarized in Table
5.

Model settings for extracting speech content
from reported speech (Table 2a) are summarized in
Table 6.
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Basic Copy

Criterion US2016 MoralMaze US2016 MoralMaze
Computing infrastructure Intel(R) Core(TM) 17-8700K CPU @ 3.70GHz / 31GiB System memory

/ NVIDIA GP102 [TITAN Xp]
Number of parameters 4,680,010 3,248,580 4,680,203 3,248,773
Validation performance BLEU=10.7 BLEU=11.6 BLEU=47.1 BLEU=49.7
Encoder/decoder hidden dim {96, 128, 160, 192} 192 {128, 192} 192
Other hyperparameters Beam size: 4

Optimizer: Adam
Learning rate: 0.001
Gradient clipping: 1
Word embedding: GloVe 840B

Optimal encoder/decoder hid- 192 192 192 192
den dim
Number of hyperparameter 4 (No hyperparameter 2 (No hyperparameter
search trials search) search)
Method of choosing hyperpa- Grid search
rameter values
Criterion for selecting opti- BLEU
mal hyperparameter values

Table 4: Reproducibility checklist for question transformation (Table 1).

CRF BERT
Criterion PARC3.0 US2016 PARC3.0 US2016
Computing infrastructure 3.1 GHz Dual-Core Intel Core i7 Intel(R) Core(TM) i7-8700K CPU
/16 GB 1867 MHz DDR3 @ 3.70GHz

/ 31GiB System memory
/ NVIDIA GP102 [TITAN Xp]

Average runtime 17.6 mins 0.03 mins 314.6 mins 11.9 mins
Number of parameters 173,749 7,569 108M
Validation performance F1=75.7, F1=75.6, F1=84.4, F1=88.1,
BLEU=72.2 BLEU=72.5 BLEU=83.8 BLEU=90.4
Bounds for hyperparameters (i) Optimization function: L-BFGS, Learning rate: le-5,
L1/L2 regularization Adam €: 1le-8

coefficients: {0,.05,.1,.2}
(ii) Optimization function:
Passive Aggressive,
Aggressive parameter values:

{.5,1,2,4}
Optimal  hyperparameter L-BFGS +L1=0.1 + L-BFGS + L1=0.05 Learning rate=1e-5 + Adam e=1e-8
configuration L2=0.2 +12=0.1
Number of hyperparameter 20 (No hyperparameter search)
search trials
Method of choosing hyper- Grid search (No hyperparameter search)
parameter values
Criterion for selecting opti- F1 (No hyperparameter search)

mal hyperparameter values

Table 5: Reproducibility checklist for extracting speech content from reported speech (Table 2a).
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CRF BERT
Criterion PARC3.0 US2016 PARC3.0 US2016
Computing infrastructure 3.1 GHz Dual-Core Intel Core i7 Intel(R) Core(TM) 17-8700K CPU
/16 GB 1867 MHz DDR3 @ 3.70GHz

Average runtime
Number of parameters
Validation performance

12.6 mins
289,631
Strict F1=61.7, Strict F1=68.3,

Relaxed F1=67.8 Relaxed F1=74.6

0.02 mins
7,250

/ 31GiB System memory
/ NVIDIA GP102 [TITAN Xp]
314.7 mins 15.7 mins
108M
Strict F1=76.3,
Relaxed F1=89.1

Strict F1=75.0,
Relaxed F1=80.7

Bounds for hyperparameters

Optimal  hyperparameter
configuration

Number of hyperparameter
search trials

Method of choosing hyper-
parameter values

Criterion for selecting opti-
mal hyperparameter values

(1) Optimization function: L-BFGS,
L1/L2 regularization
coefficients: {0,.05,.1,.2}
(ii) Optimization function:
Passive Aggressive,
Aggressive parameter values:
{.5,1,2,4}
Passive Aggressive +
Aggressive=1 L2=0.2
20

Grid search

Strict F1

L-BFGS + L1=0 +

Learning rate: le-5,
Adam €: le-8

Learning rate=1e-5 + Adam e=1e-8
(No hyperparameter search)
(No hyperparameter search)

(No hyperparameter search)

Table 6: Reproducibility checklist for extracting speech source from reported speech (Table 2b).
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B Question Transformation Rules

From To

why [MD]1 [SBJ]2 [*]3? [SBJ]2 [MD]1 not [*]s.

why [MD]; not [SBI]2 [*]5? [SBJ]2 [MD]1 [*]s.

why do [SBJ]1 [*]2? [SBI]1 [*]2.

why [does|did]; [SBJ]2 [*]s? [SBJ]2 [does|did]1 [*]s.

why is [SBJ]1 [*]2? [SBI]1 is [*]2 because xxx.

why [are|were|was]y [SBI]2 [*]3? [SBJ]2 [are|were|was]1 [*]s.
why [is|are|am]; not [SBJ]2 [ADJ]3? [SBJ]2 [is|are|am]; [ADJ]s.
why [is|are|am]; not [SBJ]2 [VP]3? [SBJ]2 should be [VP]s.

why not [VP],? should [VP];.

where [do|did|does|MD]y [SBJ]2 [*]3? [SBJ]2 [do|did|does|MD]; [*]s at xXX.
when [did|has]: [SBJ]2 [*]3? [SBJ]2 [did|has]1 not [*]s.

how can [SBJ]; [*]2? [SBJ]1 cannot [*]2.

how [MD\can]; [SBJ]2 [*]3? [SBJ]2 [MD\can]; [*]3 by xxx.
how [do|does]: [SBI]2 [*]3? [SBJ]2 [*]s by xxx.

how [MD|do|does|did]: [SBJ]2 not [*]3? [SBJ]2 should [*]5.

how are [SBJ]; going to [*]2? [SBJ]1 need to [*]2.

how are [SBJ]; supposed to [*]2? [SBJ]1 cannot [*]s.

how [am|are|is]: [SBJ]2 not [*]3? [SBI]2 should be [*]s.

how much [*]1? XXX [*]1.

how [ADJ|ADV]; [VB|MD]s [SBI]5 [VP]4?  [SBJ]s [VB|MD]s [VP]s.

what [MD|did]1 [SBJ]2 [VB]3 [*]4? [SBJ]2 [MD|did]1 [VB]s xxx [*]4.
what [does|do]; [SBJ]2 [VB]s [¥]4? [SBJ]2 [VB]3 xxX [*]4.

what am [SBJ]1 [VB]2 [¥]3? [SBJ]; am [VB]s xxx [*]s.
what [is|was|are]: [SBJ]2? [SBJ]2 [is|was|are]; xxx.

what [VB\did|does|do|am|wasl|is|are]; [*]2?  xxx [VB\did|does|do|am|wasl|is|are]1 [*]2.
which [¥\VB]; [¥]2? [¥\VB]; Xxx.

which [*\VB]; [VB]2 [SBJ]3 [*]4? [SBJ13 [VB]2 [*]4 [*\VB]1 xxx.
who [VB]: [SBJ]2 [VP]5? [SBJ]> [VB]1 [VP]3 xxx.

who is [SBJ]1? [SBI]; is xxx.

who is [VP]1? xxx is [VP];.

who [*\is]1 [*]2? xxx [*¥\is]1 [*]2.

have you not [*];? you have not [*];.

[have|has]; [SBJ\you]s [*]3? [SBJ\you]z [have|has]; [*]s.

is [SBJ]1 [NP]2? [SBI]1 is [NP]o.

is [SBJ]1 [*\NP]2? [SBJ]1 is / is not [*\NP]s.

are [SBJ]1 [*]2? [SBJ]; are not [*]s.

[was|were]; [SBI]2 [*]3? [SBJ]2 [was|were]r [*]s.
[is|are|was|were]1 not [SBJ]2 [*]3? [SBJ]2 [is|are|was|were]1 [*]3.
can [SBJ]1 [VP]2? [SBJ]: can [VP]a.

[MD\can]; [SBJ]2 [VP]3? [SBJ]2 [MD\can]; / [MD\can]; not [VP]s.
[MD]: not [SBJ]2 [VP]5? [SBJ]2 [MD]: [VP]s.

does [SBI]; [VP]2? [SBJ]1 does not [VP]a.
[does|do]; not [SBJ]z [VP]3? [SBI]2 [VP]s.

[does|do]:1 [SBJ]2 not [VP]3? [SBJ]2 [VP]s.

do [SBI]1 [VP]2? [SBJ]1 do / do not [VP]o.

did [SBI]; [*]2? [SBJ]; did not [*]2.

did not [SBJ]1 [¥]2? [SBJ]: did not [+]s.

Table 7: A summary of question transformation rules. Some rules have been combined into one rule expression
for clarity. (Notations) SBJ: subject, MD: modal verb, VB: verb, VP: verb phrase, ADJ: adjective, ADV: adverb,
NP: noun phrase, backslash (\): exclusion. “xxx” and a forward slash indicate being semantically underspecified
(Section 2).
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Abstract

When summarizing a collection of views, ar-
guments or opinions on some topic, it is of-
ten desirable not only to extract the most
salient points, but also to quantify their preva-
lence. Work on multi-document summariza-
tion has traditionally focused on creating tex-
tual summaries, which lack this quantitative
aspect. Recent work has proposed to summa-
rize arguments by mapping them to a small
set of expert-generated key points, where the
salience of each key point corresponds to the
number of its matching arguments. The cur-
rent work advances key point analysis in two
important respects: first, we develop a method
for automatic extraction of key points, which
enables fully automatic analysis, and is shown
to achieve performance comparable to a hu-
man expert. Second, we demonstrate that
the applicability of key point analysis goes
well beyond argumentation data. Using mod-
els trained on publicly available argumentation
datasets, we achieve promising results in two
additional domains: municipal surveys and
user reviews. An additional contribution is an
in-depth evaluation of argument-to-key point
matching models, where we substantially out-
perform previous results.

1 Introduction

The need for summarizing views, arguments and
opinions on a given topic is common to many text
analytics applications, across a variety of domains.
Some prominent examples for this type of data
are responses to open-ended questions in surveys,
user reviews on products and services, and posts
in online discussion forums. We will hereafter
refer to such utterances that express an opinion,
view, argument, ask, or suggestion, collectively as
comments.

*First two authors equally contributed to this work.
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Compressing such textual collections into short
summaries relies on their inherent redundancy. The
goal of Multi-Document Summarization (MDS) al-
gorithms is to create short textual summaries from
document clusters sharing the same topic. These
summaries aim to capture most of the relevant infor-
mation in the input clusters, while removing redun-
dancies. However, in many cases we would also
like to quantify the prevalence of each of the points
included in the summary. For example, when ana-
lyzing the responses of a municipal survey, it would
be desirable to let the policy makers know that
the point “The city needs better public transporta-
tion” in the summary matches 8% of the comments,
while the points “Please consider increasing the
number of parks, walking and biking trails.” and
“electric rates are too high” match 4% and 2% of
the comments, respectively. The users may also
want to drill down to view the comments that were
mapped to a specific point in the summary.

Recently, Bar-Haim et al. (2020) proposed key
point analysis as a summarization framework that
meets the above desiderata, in the context of argu-
ment summarization. Given a collection of argu-
ments on some topic, their approach aims to match
each argument to a short list of key points, defined
as high-level arguments. In their work, key points
were manually composed by an expert, while the
matching of arguments to key points was done au-
tomatically.

The current work promotes this line of research
in two important respects. First, we develop a
method for automatic key point extraction (Sec-
tion 3), allowing fully automatic key point analysis.
Our method first selects short, high quality com-
ments as key point candidates. It then leverages
previous work on argument-to-key-point matching
to select a subset of the candidates that achieve high
coverage of the data. We show that this relatively
simple approach for key point extraction achieves

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 39-49,
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results on argumentation data that are on par with
human experts.

The second major contribution of this work is
demonstrating the applicability of key point anal-
ysis in additional domains beyond argumentation.
We report promising results on two datasets: munic-
ipal surveys and user reviews. Remarkably, the re-
sults are achieved using the same argument match-
ing and argument quality models that were trained
on argumentation data, and require only minimal
parameter tuning, but no domain-specific labeled
data.

An additional contribution is an extensive com-
parison of pre-trained Transformer models for ar-
gument matching, in terms of both accuracy and
run time, which results in substantial improvement
over the best results reported by Bar-Haim et al.
(Section 2).

2 Matching Comments to Key Points

The goal of key point analysis is to extract key
points and to match comments to these key points.
As mentioned in the previous section (and will be
further detailed in the next section), our key point
selection algorithm is also based on matching com-
ments to key points, making it a critical component
in our system.

We build on the work of Bar-Haim et al. (2020),
who developed a large-scale labeled dataset for the
task of matching arguments to key points. The
dataset, termed ArgKP, contains about 24K (ar-
gument, key point) pairs, for 28 controversial top-
ics. Each of the pairs is labeled as matching/non-
matching. Given a set of key points for a topic,
an argument could be matched to one or more key
points, or to none of them. The arguments in this
dataset are a subset of a larger dataset, the /BM-
ArgQ-Rank-30kArgs dataset, which contains 71 top-
ics, with stance and argument quality annotations
for each argument (Gretz et al., 2020).

Bar-Haim et al. only experimented with BERT
(Devlin et al., 2019) as a supervised model for argu-
ment matching, which they trained on the ArgKP
dataset. We aimed to improve their results by
testing several more recent transformer-based pre-
trained models that were shown to substantially out-
perform BERT on various tasks (Wang et al., 2018),
and in particular on the related task of Recognis-
ing Textual Entailment (RTE). We used the Hug-
gingFace transformers framework and fine-tuned
four different models: bert-large-uncased (Devlin
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etal., 2019) (BERT), xInet-large-cased (Yang et al.,
2019) (XLNet), roberta-large (Liu et al., 2019)
(RoBERTa) and albert-xxlarge-v1 (Lan et al., 2020)
(ALBERT).!

We ran 4-fold cross-validation on the ArgKP
dataset, where each fold had a train set of 17 topics,
development set (dev-set) of 4 topics and test set
of 7 topics. The learning rate for each model was
tuned based on the final training loss in one of the
splits. This learning rate was then used in all four
splits. The selected learning rates were 2e-5 for
BERT, 7e-6 for XLNet, 5e-6 for RoBERTa and le-
5 for ALBERT. For choosing the number of epochs,
we trained each model with 3 epochs and 9 epochs
and selected the one that performed better on the
dev-set. All models were better when trained for 9
epochs, except BERT that was better when trained
for 3 epochs.

The evaluation results for these models with the
above parameters are shown in Table 1. First, we
ran inference with each model over all the (argu-
ment, key point) pairs in the dev-set and test-set.
We then evaluated the following selection policies
defined by Bar-Haim et al. A selection policy de-
fines how to match an argument to one or more
key points, based on the classifier’s match score for
each key point (kp), and a given threshold ¢:

o The threshold (TH) policy matches the argu-
ment to all the kps with match score > ¢.

e The best match (BM) policy matches the argu-
ment to the kp with the highest match score.

o The best match+threshold (BM+TH) policy
matches the argument to the kp with the high-
est match score, if the match score > t.

For each fold, we selected the threshold ¢ that max-
imizes the F1 score over the dev-set.

The model that achieves the best F1 score is
ALBERT with an F1 score of 0.809. RoBERTa
is second best with an F1 score of 0.773. How-
ever, inference time of ROBERTA is about 6 times
faster than ALBERT (run times for each model
are detailed in Appendix A). Taking run time into
account, we decided, for practical reasons, to use
the ROBERTa model in the rest of the experiments.
We apply this model to arguments, as well as other
types of comments in different domains. Notably,
both ALBERT and RoBERTa substantially outper-
form BERT, which only reaches F1 score of 0.721

"https://github.com/huggingface/
transformers



[ Model | Selection Policy | Accuracy [ Precision [ Recall [ FI |
TH 0.867 0.677 0.700 | 0.685
BERT BM 0.879 0.705 0.716 | 0.710
BM+TH 0.893 0.788 0.665 | 0.721
TH 0.897 0.750 0.759 | 0.752
XLNet BM 0.894 0.743 0.751 | 0.747
BM+TH 0.908 0.834 0.709 | 0.765
TH 0.897 0.731 0.803 | 0.765
RoBERTa | BM 0.895 0.745 0.753 | 0.749
BM+TH 0.913 0.849 0.711 | 0.773
TH 0.909 0.779 0.794 | 0.784
ALBERT | BM 0.908 0.778 0.785 | 0.780
BM+TH 0.926 0.877 0.751 | 0.809

Table 1: Argument-to-Key Point matching results on the ArgKP dataset.

(similar to the F1 of 0.713, reported for BERT by
Bar-Haim et al.).

3 Key Point Extraction

In addition to the matching of comments to given
key points, we wish to extract the key points au-
tomatically from the set of comments, to enable
fully-automatic key point analysis. Extraction is
performed in two steps: first, a set of key point
candidates is selected from the comments and sec-
ond, the most salient candidates are selected as key
points.

3.1 Candidate Extraction

Our approach assumes that the desired key points
can be found among the given comments. We start
by collecting concise, high quality candidates. We
consider only single sentences, and filter out sen-
tences whose length exceed a certain number of
tokens. In order to ensure the high quality and argu-
mentative nature of the selected comments, we use
the publicly available IBM-ArgQ-Rank-30kArgs
dataset of Gretz et al. (2020), which consists of
around 30k arguments annotated for point-wise
quality to train an argument quality ranking model.

We then use this model to compute the argument
quality score of each comment, and include only
high quality candidates. In addition, we filter out
sentences starting with pronouns in order to keep
the key points self-contained.

3.2 Key Point Selection

After the set of candidates is extracted, we use the
matching model described in Section 2 to obtain a
match score between each comment and candidate,
and between each pair of candidates.

First, to achieve high coverage of the selected
key points, we match comments to candidates by

41

applying the BM+TH selection policy using the
matching model and a threshold ¢, and sort the
candidates in descending order according to their
coverage, i.e., the number of matched comments.
Second, in order to avoid redundancy among the
selected key points, we traverse the candidates and
remove from the list each candidate whose match-
ing score with a higher-ranked candidate exceeded
the threshold.” The removed candidates and their
matched comments are then matched to the remain-
ing candidates. Finally, the candidates are resorted
to form a ranked list of top key points.

The pseudo-code of the algorithm can be found
in Appendix B.

4 [Experiments

4.1 Evaluaton Method

Let D be a dataset, T the set of topics3 in D, C;
the set of comments for a topic ¢t € T, and K; the
set of key points extracted for ¢. Key point analysis
finds for each t € T a set of key points K; and
a mapping from a subset of C; to K;. We define
precision as the fraction of mapped comments for
which the mapping was correct, and coverage as
the fraction of mapped comments out of all the
comments.

Our goal is to achieve both high precision and
high coverage, however there is typically a tradeoff
between the two. This tradeoff can be controlled by
setting a threshold on the match score, and applying
the BM+TH selection policy to match only a subset
of the comments to the key points.

We explore this tradeoff by measuring the preci-
sion for different levels of coverage. The precision

2 As the match scoring function is not symmetric, we com-
pute the match score in both directions and take the average.

3Topics may be debate motions in argumentation data,
products in user reviews, etc.



at coverage c is defined as the maximal precision
such that the coverage is at least ¢ (which can be
found by searching over possible threshold val-
ues). We measure precision at coverage levels of
0.2,0.4...,1.0.

All the configurations in the following experi-
ments use the matching model that was selected as
described in Section 2, and differ only in the set
of key points K; generated for each of the topics
t € T in the dataset D.

The evaluation of each configuration is per-
formed as follows:

1. Foreacht € T,c € C; we map c to its best
matching key point k£ in K, with matching

SCOre s.

. We randomly select from the dataset 500 com-
ments with uniform distribution over the top-
ics. For each sampled comment, we add the
tuple [(c, k), s] to our sample.

. The (¢, k) pairs are manually labeled as
matched/unmatched (cf. Section 4.4).

. Based on the manual labeling of the sample,
we measure precision at coverage levels of
0.2,0.4...,1.0.

4.2 Datasets

We test our key point analysis method on three
datasets: Arguments, Survey and Reviews.

Arguments Dataset. The [BM-ArgQ-Rank-
30kArgs dataset (Gretz et al., 2020) contains 30k
arguments actively collected for and against 71
debatable topics, such as “Homeopathy brings
more harm than good”*. Arguments in the dataset
have strict length limitations. Each argument
is annotated for its stance towards the topic
it discusses and for its quality. As previously
mentioned, ArgKP was created based on part of
this dataset (28/71 topics).

Survey Dataset. Open-ended comments pro-
vided by respondents to the Austin Community Sur-
vey, which took place in 2016 and 2017°. Com-
ments were written in response to the following
question: “If there was ONE thing you could share
with the Mayor regarding the City of Austin (any
comment, suggestion, etc.), what would it be?”.

‘nttps://www.research.ibm.com/haifa/
dept/vst/debating_data.shtml

Shttps://data.world/cityofaustin/
mf9f-kvkk
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These comments are raw and unedited, and some-
times contain a few sentences each. The dataset
contains 3, 188 comments. Since over 90% of the
arguments in our training data are single sentences,
and in order to avoid sentences with missing con-
text, only the first sentence of each comment was
included in our set.®

Reviews Dataset. The Opinosis dataset (Gane-
san et al., 2010) contains sentences extracted from
user reviews on a given topic’. Each topic is a
combination of product name and review aspect,
such as sound quality of ipod nano. The dataset
contains 51 topics and 7, 086 review sentences, ob-
tained from Tripadvisor (hotels), Edmunds.com
(cars) and Amazon.com (various electronics).

4.3 Experimental Setup

Data Splits and Model Training. We used the
28 topics of the ArgKP dataset as training set (24
topics) and development set (4 topics) for the com-
ment matching classifier, which used the selected
model as described in Section 2. This model was
applied to all three datasets. The remaining 43 top-
ics in the Arguments dataset were used as the test
set. Following Bar-Haim et al., we perform key
point analysis per topic+stance, 86 pairs in total.

We trained two versions of the argument qual-
ity classifier’. One was applied to the Arguments
test set, so it was only trained on the 24 training
topics, with the 4 development topics serving as
a development (dev) set. For the Survey and Re-
views datasets, we trained a second model on all
the available 71 topics.

We did not have training data for the Survey
and Reviews datasets. However, we split each of
them into test/dev sets, and used the dev set for
experimentation and manual parameter tuning. The
Survey dataset was split into 314 dev and 2,840 test
comments (after comments filtering, as described
below). The Reviews dataset was split into 10 dev
and 41 test topics.

Filtering and Parameter Tuning. We applied
the following filters to each of the datasets. First,
comments with non-ascii characters, less than 10

® About 50% of the comments contain a single sentence,
and in many of the multi-sentence comments, the first sentence
captures the main point of the comment.

"nttps://github.com/kavgan/
opinosis-summarization/blob/master/
OpinosisDatasetl.0_0.zip

8Replicating the BERT _FTpic model of Gretz et al.
(2020).



characters, under 4 or over 30 tokens (excluding
punctuation marks) were removed. In the Argu-
ments dataset, we also removed 10% of the com-
ments that had the lowest quality, as predicted by
the argument quality classifier. We did not apply
this filter to the other datasets, as we found the
quality predictions to be less indicative for their
comments. Table 2 lists the number of topics and
comments in the three datasets, before and after
filtering.

When selecting key point candidates, we aimed
to extract about 20% of the shorter, higher quality
comments. Since the datasets vary in their char-
acteristics, we adjusted the thresholds for each of
them using the respective dev-set. We selected
candidates of up to 12 tokens in Arguments and
Reviews, and 10 for Survey. The argument quality
thresholds were 0.7, 0.4 and 0.35 for Arguments,
Survey and Reviews, respectively.

Finally, the key point selection algorithm re-
quires a matching threshold (parameter ¢ in Sec-
tion 3.2). We tuned this parameter on the dev set of
the Arguments dataset, and selected the threshold
that maximized the F1, using the BM+TH selection
policy. The best threshold (0.856), was used for
both the Arguments and Surveys datasets, where
key points were extracted for broad topics. The Re-
views dataset, however, required finer granularity,
as topics were specific aspects of products”®. There-
fore, its threshold was manually set to 0.999 after a
few iterations of running the algorithm on the dev
set and reviewing the results.

4.4 Human Evaluation

Annotation Process. Using the Appen crowd la-
beling platform'’, we annotated pairs of comments
and key points for match. The instructions stated
that “A key point matches a comment if it captures
the gist of the comment, or is directly supported
by a point made in the comment”. In addition to
this binary choice, there was also an option to in-
dicate that either key point or comment were not
clear (which we considered as no match in our as-
sessment). Each comment and key point pair was
annotated by 7 crowd annotators. There were three
variants of this task:

e Argumentative data - which presented the
topic as the context for each comment and

“When using threshold 0.856, around 90% of the com-
ments for most topics were clustered under a single key point.
Yhttps://appen.com/
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key point pair. It also included an additional
question regarding the stance of the comment
towards the topic, which we used for quality
control.

Survey data - which mentioned the general
context in which the comments were written
(a community survey about the city of Austin).

Product review data - which presented prod-
uct and review aspect as the context for each
comment and key point pair.

For each variant, examples matching the type of
data labeled were offered in the guidelines.

We employed the following measures to ensure
the annotations quality:

e Annotator- score - a score measuring inter
annotator agreement, averaging all pair-wise
Cohen’s Kappa for a given annotator, for any
annotator sharing at least 50 judgements with
at least 5 other annotators, as introduced in
Toledo et al. (2019). Judgements of annotators
with annotator-x < 0.1 were ignored.

Selected group of trusted annotators - access
to the task was limited to a group of annotators
with trusted quality, based on previous tasks
that were performed for our team, as in Gretz
et al. (2020).

Hidden test questions - for the tasks on argu-
mentative data, stance questions functioned as
hidden test questions. As they are based on the
IBM-ArgQ-Rank-30kArgs dataset, their stance
was known. Annotators choosing the wrong
stance in more than 15% of their annotations,
were ignored.

We consider a pair as a match if it was labeled
as a match by more than 50% of the annotators.

Annotations Consistency. Fleiss’ Kappa for the
match question on this task was 0.38. In the Ar-
guments dataset, where stance was also labeled,
stance Fleiss’ Kappa was 0.86. Both were calcu-
lated prior to any filtering performed on the results.

Previous work has shown for a variety of NLP
annotation tasks that while individual crowd anno-
tations have lower quality than expert annotations,
expert-level annotation quality can be achieved by
aggregating over sufficient number of crowd an-
notations (Snow et al., 2008). Therefore, crowd
annotation quality should be assessed primarily by
considering the final, aggregated label.

To this end, we tested the consistency of the la-



Train Dev Test
Dataset # Topics | Comments Before/ | # Topics | Comments Before/ | # Topics | Comments Before /
After filtering After filtering After filtering
Arguments || 24 10,324/10,324 4 1,775/1,599 43 18,398/16,488
Survey - - 3147272 1 2,840/2,425
Reviews - - 10 1,208/1,094 41 5,878/4,845

Table 2: Number of topics and comments per dataset

beled results over different sets of annotators as fol-
lows: 300 random comment-key point pairs were
selected from the Arguments dataset!!. Each pair
was annotated by 14 different annotators. Anno-
tations for each pair were randomly split to two
sets, such that each pair in each set had 7 annota-
tions. After processing each set to produce majority
labels, Cohen’s Kappa obtained between the pair
labels of each set was 0.63.

4.5 Results and Discussion

The results for the three datasets are summarized
in Table 3. Fully automatic key point analysis is
shown to perform well on the Arguments test set:
precision of 0.752 and 0.792 when matching all
the comments to 5 and 10 key points, respectively.
When matching 60% of the comments, we achieve
precision above 90%. Table 4 shows an example
for key points generated for one of the topic+stance
pairs in the Arguments datasets, and their distribu-
tion over the comments for that topic and stance.

We also compared our automatic key point ex-
traction to the approach taken by (Bar-Haim et al.,
2020), where key points were manually created by
a debate expert. Following Bar-Haim et al., the
expert composed 7 key points per topic+stance,
based on his domain knowledge, and without be-
ing exposed to the comments. A total of 70 key
points were composed, for 10 randomly-sampled
topic+stance pairs from the test set. Comparing the
results for these key points with our automatic re-
sults for the same number of key points shows that
we were able to achieve similar precision (0.696 vs.
0.708) over all the comments (coverage of 100%).
The precision for coverage of 80% is also compa-
rable (0.8 vs. 0808). For lower coverage rates, the
precision for the manual key points is higher.

To evaluate the similarity between our automati-
cally extracted key points and the ones generated
by the human expert, we attempted to match each

"This dataset had the lowest Fleiss kappa of the three -
0.34. Survey dataset kappa was 0.41 and Reviews dataset
kappa was 0.37
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automatic key point to an associated manually com-
posed key point. Out of the 70 KPs, 10 were classi-
fied as Matching - the key points are essentially the
same; 32 were Related - the key points reflect a sim-
ilar point or one key point is entailed by the other;
16 were Remote - the key points are connected
but there exists a distinct change that makes them
different in essence, and only 12 were unrelated.
These results suggest that the automatic process
was able, to a large extent, to mimic the analysis of
a human expert. We also found that manually com-
posed key points tend to be more abstract, and in
some cases a single manual point matched several
more specific automatically extracted points.

Remarkably, our method, which makes use of
models trained on argumentation data, performs
reasonably well also when applied to survey and
user reviews data. Presumably, the comments in
these datasets also contain argumentation, which
allows to transfer the knowledge learned from the
argumentation dataset to these domains. The ar-
gumentation in the Arguments dataset is more ex-
plicit, though, as the contributors to this dataset
were asked to provide pro and con arguments for
the given controversial topics.

For the Survey dataset, we achieve precision of
0.763 when matching 60% of the comments in the
labeled sample to 20 key points'?. Table 5 shows
KP analysis results for this coverage rate, including
the extracted key points, their distribution, com-
ment matching precision per key point, and the top
two matching comments for each key point. While
the extracted key points are largely concise and
to the point, the results could be further improved
with some manual post-processing. For example,
the first KP can be rephrased as “Reduce traffic con-
gestion”, removing the extra part about a monorail
system, which is not mentioned in the top com-
ments. We can then re-match the comments to the
revised KPs, and the process can iterate, until both

2We used here a larger number of key points since, unlike
the other two datasets, the Survey test set contains a single
topic with more than 2, 400 comments.



Precision
Arguments Arguments Survey Reviews
Dataset (All) (Subset)
Confieuration Auto Auto Auto | Expert Auto Auto Gold
& 5 KPs | 10 KPs 7KPs | 7KPs 20 KPs 2 KPs | 2 KPs
° 0.2 0911 0.933 0.843 | 0.948 0.873 0.814 | 0.811
ep 0.4 0.911 0.932 0.843 | 0.948 0.824 0.796 | 0.770
’§ 0.6 0.906 0.915 0.837 | 0.905 0.763 0.731 | 0.642
8 0.8 0.854 0.883 0.800 | 0.808 0.638 0.670 | 0.544
1.0 0.752 0.792 0.696 | 0.708 0.514 0.568 | 0.454
Table 3: Results for the Arguments, Survey, and Reviews datasets.
| Key Point : | % | We obtained precision of 0.731 for coverage of
People who have three minor offences are | 30% 60%, and 0.568 for 100% coverage, better than the
unfairly punished. .
The three strike law has not proved effective | 15% results for the key points that were based on the
in reducing criminality gold summaries (0.642 and 0.454, respectively).
grl;gee strike law prohibits reform of of- | 12% The precision differences in coverage levels of 0.6
N . . . . 13
Many people could pay long sentences for | 12% and above are statistically significant'’. Table 6
nonviolent crimes . shows both the automatically extracted key points
Zrl:)‘:’yggdeel;rsitsréﬁs law has resulted in over- | 8% and the key points selected from human summaries,
The 3 strikes law doesn’t allow judicial dis- | 7% along with their coverage, for several selected top-
cretion in sentencing ics.
The three-strikes law costs tax payers too 6%
much money. Error Analysis. The dominant types of match-
The three-strikes law is inequitable and tar- | 5% . differed t the datasets. Th t
gets men of color. ing errors di e.re am'ongs e datasets. The mos
The three strike law is too strict for some | 5% common type in Reviews data was the comment
offenders and KP having opposite polarity. This was ex-

Table 4: Top key points and their coverage for the
topic “We should abolish the three-strikes laws” and
Pro stance from the Arguments dataset, when generat-
ing up to 10 key points using the selection algorithm.
After generating the key points list, each of the 267
comments is matched to a key point using the BM se-
lection policy.

coverage and precision are satisfactory.

The precision over all the comments was 0.514.
We note that key point analysis can be effectively
applied even if the matching precision is not very
high. For example, suppose that 10% of the com-
ments were matched to a certain key point with
precision of only 50%. This means that in practice,
5% of the comments do match this key point, so it
is an important point nonetheless.

For the Reviews dataset, we selected two key
points per topic, since this was the length of sum-
maries in the experiments conducted by Ganesan
et al. on this data. We compared our results to a
configuration where the key point candidates are
the union of the sentences in the human-generated
gold summaries that were released as part of this
dataset.
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pected, since in the ArgKP training data, the ar-
gument and the key point always have the same
polarity. The highest proportion of comments that
were not related to the key point was in the Survey
dataset. This is likely an outcome of analyzing all
the comments in this dataset under a single topic.
The dominant issue in the Arguments dataset was
key points that were related to the comment but had
slight changes that altered their meaning. For exam-
ple: “if people have been committing crimes any-
way, they deserve to be caught through whatever
means necessary, including the use of entrapment.”
was matched to “sometimes the only way police
can catch a criminal is by entrapment.”, where the
phrase “the only way” was crucial for capturing
the right meaning of the key point.

5 Related Work

The task of Multi-document summarization (MDS)
is defined as creating a summary that is both con-
cise and comprehensive from multiple texts with
a shared theme, e.g., news articles covering the
same event (McKeown et al., 2002). A major chal-

3Using Z test for two population proportions, with p =
0.05 for coverage of 0.6, and p = 0.01 for coverage of 0.8
and 1.0.



[ Key Point [ % [ P [ Top Comments
Consider a monorail system to help | 9% | 0.74 | Need much, much better traffic flow, (example, 183 or 620,
traffic congestion Palmer).
Traffic flow is terrible!
Austin needs better public transporta- | 8% | 0.90 | For a progressive city, Austin is lacking in public transportation.
tion
Make improvements to public transportation in north Austin.
Affordability of housing and livingin | 5% | 0.85 | Address rapidly increasing cost of living
Austin
The cost of living here is insane.
Rising property values and taxes. 5% | 0.77 | Reduce property taxes and housing costs so that retiring and still
living here is a real possibility.
*This city 1s not affordable due to horrendous tax and service
fees including all city service bills - electric, water, etc.
Please consider increasing the number | 4% | 0.84 | Consider better developed bike lanes throughout the city.
of parks,walking and biking trails.
Developing of greenery areas and more parks.
Austin utility services need an | 4% | 0.78 | City needs to fix serious drainage issues, and let citizens protect
overhaul-especially water/wastewater. their homes while they await a cure.
Water/wastewater rates are ridiculous.

Table 5: Top key points for the City of Austin Community Survey. Match threshold was set so that the extracted 20
key points cover 60% of the sampled comments. For each key point we show the percentage of matching comments
(out of the sampled comments), the precision of matched comments and the top two matching comments. All
comments shown in the tables were judged as correct matches, except for the one marked with **’.

Topic [[ KPs Extracted from Gold Summaries [ % [|  KPs Extracted from Reviews | %
Accuracy of The garmin seems to be generally 73% Most of the times, this info was very 2%
. . very accurate. accurate.
ik Set-up and usage are considered to Easy to use, excellent accuracy, nice
GPS 13% AN 16%
be very easy. and intuitive interface.
Battery-life of ffreyt;i‘;‘r’:y life of the ipod nano is 79% || The only bad thing is it's battery life. | 90%
iPod Nano 8GB It seems to continue using battery even . L
. . . . Long battery life and easy directions
when the ipod is not in use, otherwise, 8% ke thi 7%
it’s a great product. make this a snap to use.
Good, clean and tidy rooms and The hotel had nice, well, decorated,
gootms (:fm Hotel bathroom. 39% fairly, modern rooms. 30%
estweste ote The rooms are a bit small, but not
SFO The rooms were small. 25% . 18%
unusual for San Francisco.

Table 6: Top two key points extracted from gold summaries and from original reviews, on selected topics from the
Reviews dataset. For each key point we show the percentage of matching comments, with match threshold 0.999.
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lenge for applying supervised learning to MDS has
been the limited amount of available training data.
Most of the approaches applied to the task were
extractive, operating over graph-based representa-
tions of sentences or passages (Erkan and Radev,
2004; Christensen et al., 2013). Recently, Liu et al.
(2018) proposed a method for creating a large-scale
dataset from Wikipedia (WikiSum), which allowed
training an abstractive neural model for this task.
Key point analysis adds a quantitative dimension
that is not addressed by MDS, by measuring the
prevalence of each point in the summary.

Many of the works on Opinion Summariza-
tion take an alternative, sentiment-based approach.
These works aim to identify the main aspects dis-
cussed in user reviews, and quantify the sentiment
towards each of these aspects (Hu and Liu, 2004;
Snyder and Barzilay, 2007; Titov and McDonald,
2008). However, as noted by Ganesan et al. (2010),
it is still hard for a user to understand why an as-
pect received a particular rating. As demonstrated
in Table 6, key points can address this limitation
by providing a more informative summary of user
reviews. However, the detection of the stance (or
sentiment) of each key point with respect to the
topic was left out of the scope of the current work,
and we plan to address it in future work.

In computational argumentation, several works
have focused on pairwise argument similarity and
clustering (Ajjour et al., 2019; Reimers et al., 2019;
Misra et al., 2016). These works, however, did
not attempt to create textual summaries from the
resulting clusters. Egan et al. (2016) summarized
argumentative discussions through the extraction of
salient “points”, where each point is a verb and its
syntactic arguments. The current work also extracts
points from argumentative data, but our goal is to
go beyond textual summaries, by matching each
key point to its corresponding sentences in the input
data. Similar to Egan et al., we also experimented
with extracting syntactic subtrees as key points, but
found that this often results in incomplete sentences
or omission of important information. Selecting
short, high quality sentences as key points was
found to perform better in our experiments.

The line of research that is most relevant to
the current work deals with matching argumenta-
tive texts to predefined, short lists of manually-
composed arguments or points (Hasan and Ng,
2014; Boltuzi¢ and §najder, 2014; Naderi, 2016).
Bar-Haim et al. (2020) matched crowd-contributed
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arguments, taken from the dataset of Gretz et al.
(2020), to key points composed by a debate expert.
We used the labeled dataset developed by Bar-Haim
et al. to train our comment matching model.

As previously discussed, the main contributions
we make to this line of work are (i) Fully-automatic
key point analysis, enabled by automatic key point
extraction, and (ii) Demonstrating the applicability
of key point analysis to additional domains besides
argumentation, including surveys and user reviews.
Furthermore, we were able to achieve promising
results on these domains using models that were
only trained on argumentation data.

6 Conclusion

Key Point Analysis is a novel framework for sum-
marizing arguments, opinions and views. It pro-
vides both textual and quantitative view of the main
points in the summarized data, and allows the user
to interactively drill down from points to the actual
sentences they cover. Previous work only applied
key point analysis in the context of argumentation
data, and required a domain expert for writing the
key points.

The current work addresses both of the above
limitations. First, we present an automatic method
for key point extraction, which is shown to perform
on par with a human expert. Second, our work
demonstrates the potential of key point analysis in
multiple domains besides argumentation. Further-
more, we show that the necessary knowledge for
key point analysis, once acquired by supervised
learning from argumentation data, can be success-
fully applied cross-domain, making it unnecessary
to collect domain specific labeled data for each
target domain.

In future work, we would like to improve com-
ment matching, e.g., by making it stance-aware.
We also plan to experiment with sequence-to-
sequence neural models for generating key point
candidates from comments.
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Appendices
A Matching Models Run Times

Table 7 lists run-time measurements for one of the
splits of the ArgKP dataset: training over 15,235
argument-kp pairs in the train-set and inference
over 3,776 pairs in the dev-set and 6,839 pairs in
the test-set, using an NVIDIA Tesla V100 GPU.

[ [[ Train [ Dev [ Test ]
BERT 00:18:59 | 00:00:17 | 00:00:32
XLNet 01:09:38 | 00:00:23 | 00:00:42
RoBERTa 00:59:43 | 00:00:17 | 00:00:31
ALBERT 01:06:50 | 00:01:39 | 00:03:03

Table 7: Run time (hours:minutes:seconds)
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B

Key Point Selection Algorithm

The pseudo-code of the key point selection algo-
rithm (Section 3.2) is listed in Algorithm 1. Given
a set of comments, a set of key point candidates
and a threshold ¢, the algorithm outputs a sorted
list of selected key points.

Algorithm 1 Key Point Selection
Input: Comments C, KP Candidates K, Threshold ¢
Output: A ranked subset of K

24
25:
26:
27:
28:

29

R A

: procedure SELECT_KEY_POINTS(C, K, t)

k_to_c + Get_Matches(C, K,t)
K < sort_descending(keys of k_to_c) by #matches
R ]
for k1 in K do
for k2 in K up to and excluding k1 do
s < Avg(Score(kl, k2), Score(k2, k1))
if s > t then
add k1 U k_toc[kl] to R
remove k1 from k_to_c
break
end if
end for
end for
kps < keys of k_to_c
kp-to_c + k_to_.cU Get_Matches(R, kps, t)
return sort_descending(keys of kp_to_c) by #matches
: end procedure

: procedure GET_MATCHES(C, K, t)
ktoc+ {}
for cin C do
match_c < argmax, . Score(c, k)
if Score(c, match_c) > t then
add c to k_to_c[match_c]
end if
end for
return k_to_c
: end procedure
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Abstract

Social media platforms have become an essen-
tial venue for online deliberation where users
discuss arguments, debate, and form opin-
ions. In this paper, we propose an unsuper-
vised method to detect the stance of argumen-
tative claims with respect to a topic. Most
related work focuses on topic-specific super-
vised models that need to be trained for every
emergent debate topic. To address this limita-
tion, we propose a topic independent approach
that focuses on a frequently encountered class
of arguments, specifically, on arguments from
consequences. We do this by extracting the
effects that claims refer to, and proposing a
means for inferring if the effect is a good or
bad consequence. Our experiments provide
promising results that are comparable to, and
in particular regards even outperform BERT.
Furthermore, we publish a novel dataset of ar-
guments relating to consequences, annotated
with Amazon Mechanical Turk.

1 Introduction

In the context of decision making it is crucial to
compare positive and negative effects that result
from a potential decision. Indeed, arguing for or
against something because of its possible conse-
quences is a frequent form of argumentation (Reis-
ert et al., 2018; Al-Khatib et al., 2020). In this pa-
per, we address the classical stance detection prob-
lem paying special attention to such arguments.
Stance detection, also called stance classifica-
tion, is the task to decide whether a text is in favor
of, against, or unrelated to a given topic. This prob-
lem is related to opinion mining, but while opinion
mining focuses on the sentiment polarity explicitly
expressed by a text, stance detection aims to deter-
mine the position that the text holds with respect
to a topic that is generally more abstract and might
not be mentioned in the text. As such, in stance
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detection, texts can transmit a negative sentiment
or opinion, but be in favor of the targeted topic. For
example, the text Holocaust denial psychologically
harms Holocaust survivors expresses a negative
opinion, but its stance towards Criminalization of
Holocaust denial is positive.'

Recently, the problem of stance detection has
received growing attention from the scientific com-
munity, as shown by the recent survey of Kiiciik
and Can (2020). Most approaches tackle this prob-
lem by learning stance classification models for
each topic. While this can achieve good results,
new models need to be trained for each new topic of
interest, generally entailing large annotation stud-
ies.

While we admit that a one-size-fits-all approach
to stance detection is currently unfeasible, we take
a different perspective. Rather than targeting topic-
dependent models, we target a subclass of argu-
ments. Specifically, we focus on arguments that
have been classified by Walton et al. (2008) under
the argument from consequences scheme. They
contain a premise of the form If A is brought about,
then good (bad) consequences will (may plausibly)
occur, and a conclusion A should (not) be brought
about. In most real-life arguments of this type, the
consequences are expressed, but the interpretation
that they are good or bad, as well as the conclusion,
are most often implicit. The task of stance detec-
tion is then to determine if the argument is against
or in favor of A. Our solution to find the stance
of such arguments revolves around extracting and
analyzing cause-effect relations in order to infer if
the consequences are good or bad.

We conducted an Amazon Mechanical Turk
(AMT) study, in which we crowdsourced anno-
tations for 1894 arguments extracted from Debate-
pedia. We compared our system’s performance

'All arguments presented in this paper are from http:
//www.debatepedia.org.
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to a sentiment analysis baseline and a fine-tuned
BERT model. The results show that our results
are comparable and, in some settings, even bet-
ter than BERT’s.> Aside from not needing anno-
tated training data, we stress the advantage of our
approach for providing human-understandable ex-
planations to the results, and to provide, as a by-
product, cause-effect relations between concepts
brought up in arguments.

The paper is structured as follows. Section 2 po-
sitions our contributions with respect to related
literature. Section 3 presents our proposed ap-
proach. Section 4 describes our crowdsourced
dataset, which we use in Section 5 to evaluate our
approach. Lastly, Section 6 concludes the paper.

2 Related Work

Stance detection has been studied on various types
of formal texts such as congressional debates
(Thomas et al., 2006) and company-internal discus-
sions (Murakami and Raymond, 2010). However,
like most recent related work on the topic, we are
particularly interested in informal texts from online
social media.

The vast majority of previous approaches pro-
poses supervised methods, using traditional ma-
chine learning algorithms (Somasundaran and
Wiebe, 2010; Anand et al., 2011; Hasan and Ng,
2013; Faulkner, 2014; Sobhani et al., 2016; Adda-
wood et al., 2017) and more recently, various deep
neural networks architectures (Sun et al., 2018; Du
et al., 2017; Dey et al., 2018; Ghosh et al., 2019).
These approaches, most of which have been trig-
gered by a recent SemEval shared task® (Moham-
mad et al., 2016), learn topic-specific models. Thus,
new topics require new models whose training en-
tails large user annotation studies. In contrast, we
propose a fully unsupervised, topic-independent
method, and rather target a particular but frequent
class of claims, those that refer to consequences.

Among the unsupervised approaches, the most
prominent one is this of Somasundaran and Wiebe
(2009), which got extended by Konjengbam et al.
(2018) and Ghosh et al. (2018). However, they
focus on non-ideological topics (usually products,
e.g., iPhone vs. Galaxy). In contrast, we target
ideological topics (e.g., Gay Marriage, Abortion)
whose stance is harder to detect due to less fre-

2Our data and source code are publicly available at

https://github.com/dwslab/StArCon.
Shttp://alt.qgcri.org/semeval2016/task6
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quent use of sentiment words and a wider variety of
brought up issues and arguments (Rajendran et al.,
2016; Wang et al., 2019). On the one hand, these
works extract topic aspects (e.g., screen resolution,
battery) and polarities towards these aspects, a step
that is unfeasible for ideological topics. On the
other hand, like these works, we also use syntactic
rules, but not for pairing aspects to opinions, but
for extracting triples that correspond to statements
about effects over opinion words.

Another class of stance detection approaches
uses the context of the post, such as its relations to
other posts in the debate, the network of authors, or
the author’s identity (Hasan and Ng, 2013; Sridhar
etal.,2014; Addawood et al., 2017; Bar-Haim et al.,
2017b). By contrast, we target claim-topic pairs in
isolation.

Another aspect that sets our work apart from
most related work is that, except for the approaches
that target tweets, most focus on longer texts while
we consider short, one-sentence claims. In this re-
gard, but not only, the stance detection work that
is closest to ours is the partly supervised system of
Bar-Haim et al. (2017a). They also propose a topic-
independent solution to stance detection for short
claims without considering context, but they do not
specifically address arguments from consequences.
While they follow a similar sequence of steps as we
do, they propose different approaches for each step.
For instance, they propose a supervised approach
to detect the target of a claim’s opinion, while we
do it in an unsupervised manner. They focus pri-
marily on detecting contrastive relations between
phrases, while our focus is on detecting effects.
In this last regard, the works can be considered
complementary.

Regarding the analysis of arguments from con-
sequences, Reisert et al. (2018) provide and use
scheme dependent templates to analyze the struc-
ture of arguments. Their work is rather concep-
tual and focuses on annotations. Very recently,
Al-Khatib et al. (2020) built, on similar intuitions
as ours, an approach for creating argumentation
knowledge graphs based on cause-effect relations.
Their work comes to reinforce the usefulness of
addressing arguments from consequences.

To sum up, our contribution is three-fold: (i) we
propose a fully unsupervised approach for stance
detection, focusing on arguments that refer to con-
sequences; (ii) we define rules over grammatical
dependencies that exploit sentiment as well as ef-



fect words in order to determine good and bad con-
sequences; (iii) we publish a new stance detection
dataset that labels claims that refer to consequences,
and which was crowdsourced on AMT.

3 Our Approach

Given an argumentative claim and a topic, our task
is to detect the stance that the claim has with respect
to the topic. Statements such as the claim or topic
usually express a positive (favorable) or negative
(unfavorable) position to a concept that we call
the target. As such, the target is a phrase that
belongs to the statement. In the example shown

Topic:
Claim:

Medical marijuana dispensaries
Legalizing medical marijuana does not
increase use and abuse

Table 1: Example of topic-claim pair

in Table 1, the target of both topic and claim is
medical marijuana. Our solution starts by first
determining the stance of the claim and of the topic
towards their respective targets 71 and 7;. We then
use these stances and the semantic relation between
the targets to determine the claim’s stance towards
the topic.

The overarching intuition behind our approach
is that when the stance of a statement towards its
target is favorable, the text either highlights the
desirable consequences of the target being brought
about (e.g., Electing an EU president directly will
increase accountability), or it highlights the nega-
tive consequences if the target is not brought about
(e.g., Sinking organic blooms can render the deep
sea anoxic).

At the core of our approach resides what we
call the effect triple. The effect triple is a triple
of the form < (T, dir), (P, eff ), (O, sent) >. The
(T, dir) pair represents the target 1" of the state-
ment and if the statement refers to a magnification
(dir = 1) (e.g. legalizing medical marijuana), or
a reduction (dir = —1) of the target (e.g. banning
medical marijuana). The (P, eff ) pair represents
the predicate P that has 7" as the subject, together
with the effect eff that it has over the object O.
The effect can be positive (eff = +1) or negative
(eff = —1). Lastly, the (O, sent) pair represents
the object over which T has the effect P. We ex-
pect the sentiment of an object to reflect whether it
is generally regarded as a good thing (sent = +1)
or a bad thing (sent = —1).
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Our approach’s core idea is to distill such an
effect triple from the claim and use it to infer the
claim’s stance towards 7,.. We further determine
(T3, dir) to infer the topic’s stance towards 7;. Us-
ing these stances, together with the relation be-
tween the claim’s and the topic’s target, we finally
decide the claim’s stance with respect to the topic.
We now describe the lexicons we use as well as
each of these steps in more detail.

3.1 Lexicons

For determining dir, eff, and sent, we use an ef-
fect verb lexicon and a sentiment lexicon that we
describe in the following.

The ECF Effect Lexicon To identify verbs and
nominalized verbs that indicate effects on their
direct objects, we extend the connotation frames
(Rashkin et al., 2016). The connotation frames
lexicon consists of a list of 947 verbs, manually an-
notated with values in the [—1, 1] range, indicating
if the verb implies a positive or negative effect over
its object. We consider the entries with scores in
the range [—0.1,0.1] as a neutral effect (e.g., use,
say, seem), and we filter them out. We call the 845
remaining words in the lexicon effect words. We
extend the list of effect words by adding all words
in the same WordNet (Fellbaum, 2010) synset as
the effect words, as long as there is no contradic-
tion. A contradiction occurs when a new candidate
effect word shares a synset with both a negative and
a positive effect word. This way, we obtain 2508
effect words. We call this lexicon the extended
connotation frames lexicon (ECF). As ECF only
contains verbs, we use it via the stems of the words,
mainly to also get the effects of nominalized verbs.
In our experiments, we compare the performance
of this lexicon with +/-EffectWordNet (Choi and
Wiebe, 2014)(EWN).

The Sentiment Lexicon In order to determine
if the object of the effect is something good or
bad, we combine several commonly used senti-
ment lexicons: (i) the MPQA lexicon* (Wilson
et al., 2005), (ii) the opinion lexicon of Hu and Liu
(2004), and (iii) the sentiment lexicon of Toledo-
Ronen et al. (2018) (uni- and bigrams, using a
threshold of £0.2). The composed lexicon con-
tains sentiment values in the range [—1, 1].

*We used an American English dictionary to correct ortho-
graphic mistakes resp. to add American English versions of
British English words.



For many words, the polarities of their sentiment
and of their effect are the same (e.g., kill, love).
Still, there are important exceptions, such as reduce,
which has neutral sentiment but indicates a negative
effect, or conquer, which has a slightly positive
sentiment but indicates a negative effect.

3.2 Effect Triple Extraction

Target Identification To detect the targets of the
claim (7}) and topic (1}), we assume that 7 is se-
mantically related to the topic, or more specifically,
to ;. Thus, we identify 7T, and T} simultaneously
by following three strategies. The use of the second
and third strategies is conditioned on the previous
strategies to have failed to identify a pair of targets.
First, we look for a pair of nouns that are identical
or have the same lemma. We use Stanford Core
NLP (Manning et al., 2014) for POS tagging and
lemmatizing. Second, we look for a pair consisting
of an acronym (e.g., ICC) and a word sequence
whose first letters form the acronym (e.g., Interna-
tional Criminal Court). Third, we look for pairs of
nouns that are synonyms or antonyms according to
Thesaurus.plus’.

Besides returning 7. and 7T}, we also return a
value » = +1 if the two targets have been found
to be synonyms and » = —1 if they are antonyms.
Thus, first and second strategies only return r = 1
while the third strategy returns 1 or —1.

Target Direction Determination As described
earlier, each target is accompanied by a dir value
which indicates if the statement refers to a phe-
nomenon of amplification or reduction of the target.
We detect this by searching for a word whose ob-
ject is the target by using Patterns 1 and 2 shown
in Table 2. The word is then looked-up in the ef-
fect lexicon. If a negative effect is found, then
dir = —1, otherwise dir = 1. We call the word
the rarget effector, or just effector. In the claim in
Table 1, the effector is legalizing and expresses an
amplification of the target (dir = 1).

Detecting Predicates and Their Effects Effect
words are commonly used in arguments from con-
sequences to express a (potential) effect that the
target has or might have over another object. For
example, in the claim in Table 1, the effect word
increase expresses a positive effect that the (ampli-
fied) target has over the objects use, abuse.

>We use only the synonyms and antonyms shown at

https://thesaurus.plus/thesaurus/xxx where
xxx is a placeholder for concrete words
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We detect this effect of the target by using Pat-
tern 3 to find a predicate whose subject is either
the target or its effector, and by looking up this
predicate in the effect lexicon. We thereby set eff
to 1 or —1, depending on if the effect is positive or
negative. In our running example, the (P, eff ) pair
becomes (increase, —1) because of the negation,
as we explain below.

Telling good from bad The last effect triple com-
ponent we detect is (O, sent). To this end, we
search the dependency graph for instantiations of
Patterns 1 or 2, where P is the predicate that has
been detected to express the target’s effect. If such
an object is found, we use the sentiment lexicon
by first searching for the exact word and, if not
available, for the word’s lemma. We set sent to —1
if the word bears a negative sentiment or to 1 other-
wise. In our example, the (O, sent) pair becomes
(abuse, —1) because the word use is neutral per se.

The sentiment of a word is overwritten by the
sentiment of its modifiers, as shown in Pattern 4
in Table 2. In the provided example in the table,
one can see that the modifier terrorist dominates
the sentiment of the positive word haven. Conse-
quently, both terrorist haven and terrorist attack
are considered generally bad.

Negation We deal with negations for each effect
triple component. We identify negations by look-
ing for Patterns 5, 6, and 7, as shown in Table 2.
Patterns 5 and 6 make use of a manually created list
of all negative English prepositions®. The existence
of a negation affecting the target, predicate, or ob-
ject toggles the sign of the corresponding value -
dir, eff or sent, respectively.

3.3 Inferring the Stance Towards the Target

To infer the stance that a statement expresses
towards its target, we use the intuition that the
stance is unfavorable when the text expresses
negative consequences of the target, and posi-
tive otherwise. Thus, we define that the stance
towards the target is positive in exactly the fol-
lowing four cases: (i) the target’s amplification
implies a positive effect over something good
(dir = eff = sent = +1); (ii) the target’s ampli-
fication implies a negative effect over something
bad (dir = +1, eff = sent = —1); (iii) the target’s
reduction implies a negative effect over something

%Those are except, less, minus, opposite, sans, unlike, ver-
sus, without, w/o, vice, instead (of), lack.



Pattern Interpretation Example
1 PSSO P has object O Insurance mandates violate the rights of employers.
dobj N
prep pobj . - . . .
2 P—7"—0 P has object O The military industrial complex profits from escalation
in Afg. prep N pobj A
3 PSS P has subject S Holocaust denial is inherently descriminatory and
damaging. nsubj
4 X l> M, sent(M) #0 sent(X) := sent(M)  W/o more troops, Afgh will become terrorist haven
amod
bj .
5 NegP ﬂ) X X is negated Free speech without Fairness Doctrine can harm
policy-making pobj
bj . . .
6 X — NegP,#NegP 20 Xis negated W/o more troops, Afgh will become terrorist haven
nn
neg .
7T X — X is negated Solar energy does not damage air quality.

N neg|

Table 2: Dependency graph patterns. * € {dobj, nsubjpass, cobj, csubjpass, nmod, xcomp};
o € {nsubj, csubj}; T € {amod, nn,advmod}; NegP stands for negative preposition

good (dir = eff = —1, sent = +1); (iv) the target’s
reduction implies a positive effect over something
bad (dir = +1, eff = —1, sent = +1). Hence, the
stance is favorable towards the target if the mul-
tiplication of the three components’ values is +1.
Consequently, we define the stance of a statement
towards the target as s = dir- eff - val and interpret
s = 1 as In favor and s = —1 as Against.

3.4 Inferring the Stance of the Claim
Towards the Topic

The steps above can be executed analogously for
the claim and the topic. However, due to the na-
ture of the text expressing the topic, we only aim
to extract an effect triple from the claim. For the
topic, we detect its target and set the stance to its
corresponding dir value. We denote the stances of
the claim and topic towards their respective targets
as s. and s;. To infer the claim’s stance towards
the topic, we need to consider the relation between
T. and T}, i.e., the value of r as described in Sec-
tion 3.2. We then define the final result of the
analysis as Il = s. - s; - 7.

Table 3 presents further examples of how our ap-
proach detects the stance of the claim towards the
topic. As illustrated in the examples, the straightfor-
ward interpretability of the stance detection process
can be easily used for producing human-readable
explanations for the returned results. This is partic-
ularly relevant for helping users get more control
over the process, particularly in light of subsequent
applications on top of stance detection.
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Porn watching may ac- | Pornography
tually reduce rape rates

T, dir Porn, +1 Pornography, +1

P, eff reduce, —1

O, sent | rape rates, —1

s 1 1

T 1

11 1 (In favor)
Holocaust denial psy- | Criminalization
chologically harms Ho- | of = Holocaust
locaust survivors denial

T, dir Holocaust denial, 1 Hol. denial, —1

P, eff harms, —1

O, sent | survivors, +1

s -1 —1

T 1

11 1 (In favor)

Table 3: Worked out Examples

3.5 Alternative Strategies

We denote the process in which all the previous
steps are fulfilled and an effect triple is extracted
as TPO. However, due to a variety of reasons that
we analyze in Section 5.4, we might fail to extract
a complete effect triple. One such case is when an
adjective expresses an effect, for instance, Holo-
caust denial is discriminatory. For that reason, if
we identify 7" and P, but not O, we set eff to the
sentiment polarity of P, and sent to +1 by default.
We refer to this strategy as TP.

Another potential situation is that the system
detects (P, eff ) and (O, sent), but it can not relate
them to 7'. One cause can be that we fail to identify
T. If so, dir = +1 by default. Another cause
can be that 7" is found, but we can not infer its
relation to P. In this case, we consider that the



identified target is the subject of P and set (7', dir)
accordingly. We refer to this strategy as PO.
Lastly, if all above strategies fail to create an
effect triple, we use a heuristic: if 7' was found, dir
is set accordingly. Otherwise dir = 1 by default.
For the remaining words in the statement, we check
their sentiment score, still using Pattern 4, toggling
the sign if it is negated. The sum of the sentiment
scores is then multiplied with dir. The stance is
considered favorable or not depending on the sign
of the result. We refer to this strategy as Heuristic.

4 Dataset Generation

To evaluate our approach, we need stance annotated
topic-claim pairs, as well as annotations if the topic-
claim pair refers to a consequence or not.

4.1 Data Collection

To create such a corpus, we run an AMT crowd-
sourcing study, where we annotate claims and top-
ics extracted from Debatepedia’. We only use the
236 Featured Debate Digest articles as they are
of higher quality. They contain more than 10,000
arguments labeled by their author as either pro or
con the debate’s topic. Usually, the arguments start
with a bolded, one-sentence summary, which serves
as the argument’s claim. We exclusively use these
claims and pair them to the debate’s topic. We ex-
clude 16 debates whose topics contain vs or or (e.g.
Democrats vs. Republicans), and 30 debates with-
out a title question. To create a balanced dataset
that covers a large variety of topics, we randomly
selected 5 pro and 5 con arguments of each debate.
If a debate contains less than 5 pro and 5 con ar-
guments, we select the maximum equal number of
pro and con arguments. We obtain 190 different
topics and 1894 arguments.

4.2 Crowdsourcing Study

The annotation task consisted of the debate’s topic,
one of its claims, and two questions. The first ques-
tion was to select the stance of the claim towards
the topic, out of the following choices: in favor,
against, neither and I don’t know. Although we
have the original arguments’ stances, this question
helps us check how clear the claim is when taken
out of the debate’s context. The second question
was whether the claim refers to a consequence re-
lated to the topic, with possible answers yes, no and
I don’t know. Each topic-claim pair was annotated

"http://www.debatepedia.org
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Valid Stance Consequence
Annotations | rate K K| rate kK
6 002 -10 -20 | .001 -17 -1
7 .013 11 .15 | .008 .04 .10
8 .051 24 32| .036 06 24
9 183 34 .58 | 207 23 44
10 7151 520 74 | 748 25 .58
Weight. Avg A7 .68 24 53

Table 4: Fleiss’ Kappa dependent on the number of
valid annotations

o

o

Consequence

Figure 1: Reliability of annotators according to MACE:
The higher the score, the more reliable the annotator is.

by 10 annotators living in the US with a HIT ap-
proval rate greater than 98% and more than 10,000
approved HITs in total. Overall, 277 annotators
worked on the task.

4.3 Agreement and Reliability

Table 4 shows the inter-annotator agreement per
number of valid annotations, i.e., annotations that
are not / don’t know. Since we have many anno-
tators, Fleiss x is particularly low on consequence
annotation, but still indicates higher agreement than
random. To give an agreement estimate less sen-
sitive to individual outliers, we also compute «’
as the Fleiss kappa between two “experts”’, where
each expert brings together half of the number
of annotators and its annotation is decided with
MACE (Hovy et al., 2013).

Figure 1 shows the reliability of individual anno-
tators. Although there is a weak correlation among
the reliability of the two tasks (Pearson .41), some
annotators are quite reliable in annotating stances,
but highly unreliable in annotating consequences.
This indicates that the latter task was unclear to
some of the annotators. To understand why the
annotators usually disagree, we investigated such



instances and identified several possible reasons:
Complexity In the topic-claim pair Criminal-
ization of Holocaust denial — Danger of public
accepting holocaust denial should be fought by
logic, both topic and claim have a negative stance
towards holocaust denial, which suggests the label
in favor. Still, by proposing a different solution
than criminalization, the claim is against the topic.

Missing Background Knowledge Many argu-
ments involve non-trivial background knowledge:
Israeli military assault in Gaza — Hamas was first
to escalate conflict following end of ceasefire.

Ambiguity According to the pair 2009 US eco-
nomic stimulus — Stimulus risks being too small not
too large, a small stimulus is bad while an appro-
priate stimulus is good.

Ethical Judgement Different judgments on
what is good and bad can lead to different stance
labels: Ban on human reproductive cloning —
Cloning will involve the creation of children for
predetermined roles.

Lack of Conceptual Clarity Especially decid-
ing whether the claim refers to a consequence re-
lated to the topic can be a matter of judgment. For
example, in Health insurance mandates — Insur-
ance mandates violate the rights of employers, the
violation of rights can be seen as a consequence or
as a property of insurance mandates.

4.4 Final Dataset

To account for unreliable annotators, we compute
the annotation result with MACE. As such, we find
that for 81.36% of the annotated arguments, the
stance label obtained via MACE is the same as the
original stance label. By comparison, the majority
vote matches 79.30% of the original stance labels.
Since disagreements between the MACE annota-
tion and the original stance might indicate that the
claim’s stance is unclear outside the debate’s con-
text, we exclude from the dataset all such pairs. For
example, the original label of the pair Is Wikipedia
valuable? — Wikipedia is online and interactive,
unlike other encyclopedias is con, because, in its
context, it was discussed whether Wikipedia is an
encyclopedia or not. In contrast, the result of our
annotation is pro. Since the original labels are only
pro or con, all pairs that our study determined as
neither are removed. This filter resulted in a total of
1502 pairs, out of which 822 have been annotated
to relate to consequences.
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conseq other debate wiki
pro con | pro con | pro con | pro con
376 446 | 370 310 | 746 756 | 1195 1199

Table 5: Class distributions

5 Evaluation

5.1 Data

We report results both on the 822 pairs that relate
to consequences, denoted by conseq, and on the
rest of the pairs, denoted by other, as well as on
their union, denoted by debate.

For checking the performance of the systems
on an independent dataset, we also use the claim
stance dataset® published by Bar-Haim et al.
(2017a). This dataset contains 55 topics of ide-
bate® and 2394 manually collected claims from
Wikipedia. We denote this dataset by wiki. As Bar-
Haim et al. (2017a,b) do, when working with this
dataset, we use only the topic’s target and not the
entire topic to ensure comparability.

Table 5 shows the class distribution of the
datasets.

5.2 Compared systems

We evaluate our system with the effect lexicon lexi-
con that we describe in Section 3.1 (ECF), as well
as with the +/-EffectWordNet (EWN). For compar-
ison, we implement two other approaches:

sent As a baseline, we use a system that simply
sums up all the sentiment scores in the claim. For
the wiki dataset, the sign is switched if the topic
sentiment is negative.

BERT As state of the art, we use BERT (Devlin
et al., 2019), which was recently shown to outper-
form a series of alternative stance detection sys-
tems (Ghosh et al., 2019). We fine-tune BERT us-
ing the large, uncased pre-trained weights.'? Just as
Schiller et al. (2020), we set the number of epochs
to 5 and the batch size to 16. The input are topic-
claim pairs. We perform 10-fold cross-validation
with a train-dev-test ratio of (70/20/10), ensuring
that each topic exclusively occurs in one set.

5.3 Results and Discussion

The results that compare our system to BERT and
the sentiment detection baseline are presented in

8 Available at https://www.research.ibm.com/
haifa/dept/vst/debating_data.shtml

‘https://idebate.org/

""We worked with the original release:
github.com/google-research/bert

https://



- BERT std deviation || .33 .08 .20 .13| .06 .31
our system ECF J2 74 73 73| .69 .56
our system EWN || .70 .72 .71 71| .66 .53

conseq other debate wiki
pro con mac acc| pro con mac acc| pro con mac acc| pro con mac acc
sent 62 .67 .65 65| .64 47 .56 57| .63 .59 .61 .61| .61 .58 .60 .60
BERT .65 82 .74 78| .73 48 .60 .66| .63 .72 .67 .71|.72 .65 .68 .70

A7 11| .32 18 .21 15| .07 .24 .15 .11
63 64| .71 67 .69 .69| .66 .63 .64 .64
.60 .61| .68 .64 .66 .66| .64 .61 .63 .63

Table 6: Experimental results. F1 scores per stance class (pro and con), macro-F1 (mac), and Accuracy (acc). For
BERT, we show the mean of the respective cross-validation results and their standard deviation.

Table 6. First, as expected, our system performs
better on arguments related to consequences than
on other arguments, with a macro-F1 difference of
10pp between conseq and other. Further, our sys-
tem with both lexicon settings consistently outper-
forms the sent baseline, but its macro-F1 score is
outperformed by BERT on conseq and wiki, and its
accuracy is outperformed by BERT on all datasets.
This is not surprising, given that we use BERT
pre-trained and then fine-tuned to our data. In-
terestingly, our system with ECF achieves better
results than BERT in terms of macro F1 score on
the arguments that are not related to consequences
(other), and on the complete debate dataset. This
indicates that our method can deal reasonably well
with arguments that are not from consequences.

Concerning the two stance classes, with both
lexicon settings, our system is better than BERT
at predicting the pro class in arguments from con-
sequences, but is outperformed on the con class.
Another interesting result is that on conseq, our
system has a quite similar performance on the pro
and con classes with both lexicon settings . In con-
trast, BERT’s performance varies drastically, with
a difference of approximately 17pp in favor of the
con class. BERT’s high variability is also indicated
by the high standard deviation on the 10 folds. For
comparison, we also computed the F1 macro stan-
dard deviation of our system with ECF when run
on the same 10 folds, and the values lie between
.03 on debate and .07 on conseq. This indicates
that our unsupervised approach is more robust with
more predictable performance.

Concerning the two effect lexicons, our system
performs consistently better when using ECF than
when using EWN. Our analysis indicates that the
high coverage of the EWN lexicon comes at the
expense of accuracy. Therefore, in the following,
we will only refer to our system using ECF.

Regarding the two datasets debate and wiki,
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conseq | other | debate wiki
r F1| » F1| r FIl| r Fl
Total 1 73] 1 63] 1 .69 1 .64
Target found 82 .74 76 .64| .80 .70| .53 .67
-Word/Lemma || .75 74| .72 .64| .74 70| 42 .67
-Acronym .02 .80 .01 .89| .02 .83| .00 -
-Syn/Ant 05 69| .03 50| .04 .64| .11 .66
TPO/TP/PO .60 .76 39 .64| .51 72| 54 .67
-TPO 23 741 .05 .65| .15 73| .07 .81
-TP 21 .84| .18 74| .20 .80| .10 .77
-PO 16 .69] .16 .53| .16 .62| .36 .62
Heuristic 40 .68] .61 .61| 49 .65| 46 .61

Table 7: Evaluation of the target identification and
stance detection strategies; r denotes the rate of data
instances.

BERT outperforms our system, with quite a high
margin particularly on the wiki data. The accu-
racy that Bar-Haim et al. (2017a,b) report on the
wiki data, when no context features are used, is
.68 which is lower than BERT’s (.70) but higher
than ours (.65 for evaluating on the dedicated test
set). This is not surprising given that the data con-
tains general arguments. Nevertheless, as our ap-
proach only targets a subclass of these arguments,
the results are quite promising. Unfortunately, Bar-
Haim et al. (2017a,b)’s system is proprietary and
we could not evaluate it on our conseq data.

Table 7 provides further insights into our solu-
tion. First, on all Debatepedia based datasets, we
find a target in more than .75 of the data instances,
and overall, the results are slightly better when a
target is found. Most of the targets are found by
word similarity and the fewest by the acronym. The
results obtained on the instances where the target
was found by synonym/antonym relations are sig-
nificantly lower than those obtained when the target
was found with the other two strategies. This in-
dicates that the approach is sensitive to semantic
drift in target identification.

Overall, we identify a potential consequence
(TPO/TP/PO) for .6 of the arguments in conseq.



While the results are quite good on all datasets
when we detect a complete effect triple (TPO), they
are overtaken by results of the 7P cases. Together,
the instances solved with 7PO and TP strategies
amount to .44 of the conseq dataset but to much
lower on the other datasets (e.g., only .17 on the
wiki). The performance on the PO cases is com-
parable to the performance on the Heuristic cases,
and significantly lower than when TPO or TP could
be applied. Depending on the dataset, the system
needed to apply the Heuristic strategy on .4 to .61
of the instances. Our efforts for future work are
directed towards helping the system make sense of
more of the claims so that the number of times it
needs to fallback to PO and Heuristic are reduced.

5.4 Error Analysis

To better understand the limitations of our ap-
proach, we analyzed the errors on the conseq data
and found several reasons for wrong predictions:

Incomplete list of patterns Some arguments
cannot be meaningfully analyzed with our current
list of patterns. We plan to extend this list with
more complex patterns, while we are also working
on automatically learning such patterns from data.

Conceptual errors We assume that positive ef-
fects on something negative result in something
negative (e.g., War in Iraq has helped terrorist re-
cruitment.). However, this is not always the case
(e.g., Privatizing social security helps the poor.).

Finding the targets As shown in Table 7, we
often fail to detect targets. For example, our tar-
get detection strategies fail on the claim-topic pair
Standardized tests ensure students learn essential
information. — No Child Left Behind Act. In this
specific case, there is a hypernym relation between
the topic and Standardized tests. Further, we found
that our straightforward approach to identifying
targets and the relations between them is one of
the core reasons for our approach’s poorer perfor-
mance on the wiki data compared to the debate data.
Improving the target finding strategy by leveraging
additional semantic knowledge is one of the core
directions for our future work.

Missing / wrong lexicon entries For many
words, we are missing an entry in our lexicons,
or the entry exists but is questionable. For instance,
in the sentiment lexicon, Palestinian is annotated
with a negative sentiment. Also, sometimes the
effect on the object seems to be mixed up with the
word’s overall effect. For example, solve has a pos-
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itive effect on the object in both ECF and EWN
lexicons, but arguably when a problem is solved, it
undergoes a reduction (e.g. Reforestation,|...] can
help solve global warming).

Ambiguity Some words have a positive or nega-
tive effect depending on the sense with which they
are used (e.g., push vs. push for). In the effect lexi-
con, we have only one entry per word. In the EWN,
there are multiple senses, but we always use the
most probable effect. Word sense disambiguation
is required for these cases, which is known to be
very challenging for verbs. However, a potential
solution could be to annotate VerbNet frames with
effects, but this is outside the scope of this work.

Text parsing errors As our method relies on
the output of the dependency parser, the Lemma-
tizer, the POS tagger, and the Stemmer, their errors
naturally propagate.

6 Conclusion and Future Work

We propose a fully unsupervised method to detect
the stance of arguments from consequences in on-
line debates. The method exploits grammatical
dependencies and lexicons to identify effect words
and their impact. For our evaluation, we annotated
arguments from Debatepedia regarding their stance
and whether they involve consequences or not. The
results we obtained are motivating. Our method is
comparable to BERT while being more robust.

Besides the future extensions of this approach
that we mentioned in our results discussion and
error analysis, this work opens several interesting
research paths. Mainly, its good performance on
the claims that refer to consequences reinforces our
intuition that designing systems tailored for partic-
ular argumentation schemes might be a good alter-
native to topic-specific models. Therefore, we plan
to complement this work with approaches for other
frequently applied schemes such as arguments by
expert opinion and arguments by example.
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Abstract

The quality of automatic metrics for machine
translation has been increasingly called into
question, especially for high-quality systems.
This paper demonstrates that, while choice
of metric is important, the nature of the ref-
erences is also critical. We study differ-
ent methods to collect references and com-
pare their value in automated evaluation by
reporting correlation with human evaluation
for a variety of systems and metrics. Mo-
tivated by the finding that typical references
exhibit poor diversity, concentrating around
translationese language, we develop a para-
phrasing task for linguists to perform on exist-
ing reference translations, which counteracts
this bias. Our method yields higher correla-
tion with human judgment not only for the
submissions of WMT 2019 English—German,
but also for Back-translation and APE aug-
mented MT output, which have been shown
to have low correlation with automatic met-
rics using standard references. We demon-
strate that our methodology improves corre-
lation with all modern evaluation metrics we
look at, including embedding-based methods.
To complete this picture, we reveal that multi-
reference BLEU does not improve the corre-
lation for high quality output, and present an
alternative multi-reference formulation that is
more effective.

1 Introduction

Machine Translation (MT) quality has greatly im-
proved in recent years (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017). This
progress has cast doubt on the reliability of au-
tomated metrics, especially in the high accuracy
regime. For instance, the WMT English—German
evaluation in the last two years had a different top
system when looking at automated or human eval-
uation (Bojar et al., 2018; Barrault et al., 2019).
Such discrepancies have also been observed in the
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past, especially when comparing rule-based and
statistical systems (Bojar et al., 2016b; Koehn and
Monz, 2006; Callison-Burch et al., 2006).

Automated evaluations are however of crucial
importance, especially for system development.
Most decisions for architecture selection, hyper-
parameter search and data filtering rely on auto-
mated evaluation at a pace and scale that would
not be sustainable with human evaluations. Au-
tomated evaluation (Koehn, 2010; Papineni et al.,
2002) typically relies on two crucial ingredients:
a metric and a reference translation. Metrics gen-
erally measure the quality of a translation by as-
sessing the overlap between the system output and
the reference translation. Different overlap metrics
have been proposed, aiming to improve correla-
tion between human and automated evaluations.
Such metrics range from n-gram matching, e.g.
BLEU (Papineni et al., 2002), to accounting for syn-
onyms, e.g. METEOR (Banerjee and Lavie, 2005),
to considering distributed word representation, e.g.
BERTScore (Zhang et al., 2019). Orthogonal to
metric quality (Ma et al., 2019), reference quality
is also essential in improving correlation between
human and automated evaluation.

This work studies how different reference col-
lection methods impact the reliability of automatic
evaluation. It also highlights that the reference
sentences typically collected with current (human)
translation methodology are biased to assign higher
automatic scores to MT output that share a similar
style as the reference. Human translators tend to
generate translation which exhibit translationese
language, i.e. sentences with source artifacts (Kop-
pel and Ordan, 2011). This is problematic because
collecting only a single style of references fails
to reward systems that might produce alternative
but equally accurate translations (Popovic¢, 2019).
Because of this lack of diversity, multi-reference
evaluations like multi-reference BLEU are also bi-
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ased to prefer that specific style of translation.

As a better solution, we show that paraphras-
ing translations, when done carefully, can improve
the quality of automated evaluations more broadly.
Paraphrased translations increase diversity and
steer evaluation away from rewarding translation
artifacts. Experiments with the official submissions
of WMT 2019 English—German for a variety of
different metrics demonstrate the increased correla-
tion with human judgement. Further, we run addi-
tional experiments for MT systems that are known
to have low correlation with automatic metrics cal-
culated with standard references. In particular, we
investigated MT systems augmented with either
back-translation or automatic post-editing (APE).
We show that paraphrased references overcome the
problems of automatic metrics and generate the
same order as human ratings.

Our contributions are four-fold: (i) We collect
different types of references on the same test set
and show that it is possible to report strong corre-
lation between automated evaluation with human
metrics, even for high accuracy systems. (ii) We
gather more natural and diverse valid translations
by collecting human paraphrases of reference trans-
lations. We show that (human) paraphrases cor-
relate well with human judgments when used as
reference in automatic evaluations. (iii) We present
an alternative multi-reference formulation that is
more effective than multi reference BLEU for high
quality output. (iv) We release' a rich set of di-
verse references to encourage research in systems
producing other types of translations, and reward a
wider range of generated language.

2 Related Work

Evaluation of machine translation is of crucial im-
portance for system development and deployment
decisions (Moorkens et al., 2018). Human eval-
uation typically reports adequacy of translations,
often complemented with fluency scores (White,
1994; Graham et al., 2013). Evaluation by hu-
man raters can be conducted through system com-
parisons, rankings (Bojar et al., 2016a), or abso-
lute judgments, direct assessments (Graham et al.,
2013). Absolute judgments allow one to efficiently
compare a large number of systems. The evalua-
tion of translations as isolated sentences, full para-
graphs or documents is also an important factor

'https://github.com/google/
wmtl9-paraphrased-references
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in the cost/quality trade-offs (Carpuat and Simard,
2012). Isolated sentence evaluation is generally
more efficient but fails to penalize contextual mis-
takes (Tu et al., 2018; Hardmeier et al., 2015).

Automatic evaluation typically collects human
reference translations and relies on an automatic
metric to compare human references to system
outputs. Automatic metrics typically measure the
overlap between references and system outputs. A
wide variety of metrics has been proposed, and
automated metrics is still an active area of re-
search. BLEU (Papineni et al., 2002) is the most
common metric. It measures the geometric aver-
age of the precision over hypothesis n-grams with
an additional penalty to discourage short transla-
tions. NIST (Doddington, 2002) is similar but
considers up-weighting rare, informative n-grams.
TER (Snover et al., 2006) measures an edit dis-
tance, as a way to estimate the amount of work to
post-edit the hypothesis into the reference. ME-
TEOR (Banerjee and Lavie, 2005) suggested re-
warding n-gram beyond exact matches, considering
synonyms. Others are proposing to use contextu-
alized word embeddings, like BERTscore (Zhang
et al., 2019). Rewarding multiple alternative for-
mulations is also the primary motivation behind
multiple-reference based evaluation (Nielen et al.,
2000). Dreyer and Marcu (2012) introduced an
annotation tool and process that can be used to cre-
ate meaning-equivalent networks that encode an
exponential number of translations for a given sen-
tence. Orthogonal to the number of references, the
quality of the reference translations is also essen-
tial to the reliability of automated evaluation (Zbib
et al., 2013). This topic itself raises the question of
human translation assessment, which is beyond the
scope of this paper (Moorkens et al., 2018).

Meta-evaluation studies the correlation be-
tween human assessments and automatic evalua-
tions (Callison-Burch et al., 2006, 2008; Callison-
Burch, 2009). Indeed, automatic evaluation is use-
ful only if it rewards hypotheses perceived as fluent
and adequate by a human. Interestingly, previous
work (Bojar et al., 2016a) has shown that a higher
correlation can be achieved when comparing sim-
ilar systems than when comparing different types
of systems, e.g. phrase-based vs neural vs rule-
based. In particular, rule-based systems can be pe-
nalized as they produce less common translations,
even when such translations are fluent and adequate.
Similarly, recent benchmark results comparing neu-



ral systems on high resource languages (Bojar et al.,
2018; Barrault et al., 2019) have shown mismatches
between the systems with highest BLEU score and
the systems faring the best in human evaluations.
Freitag et al. (2019); Edunov et al. (2019) study
this mismatch in the context of systems trained
with back-translation (Sennrich et al., 2016) and
noisy back-translation (Edunov et al., 2018). They
observe that systems training with or without back-
translation (BT) can reach a similar level of overlap
(BLEU) with the reference, but hypotheses from
BT systems are more fluent, both measured by hu-
mans and by a language model (LM). They suggest
considering LM scores in addition to BLEU.

Freitag et al. (2019); Edunov et al. (2019) point
at translationese as a major source of mismatch be-
tween BLEU and human evaluation. Translationese
refers to artifacts from the source language present
in the translations, i.e. human translations are often
less fluent than natural target sentences due to word
order and lexical choices influenced by the source
language (Koppel and Ordan, 2011). The impact of
translationese on evaluation has recently received
attention (Toral et al., 2018; Zhang and Toral, 2019;
Graham et al., 2019). In the present work, we are
specifically concerned that the presence of transla-
tionese in the references might cause overlap-based
metrics to reward hypotheses with translationese
language more than hypotheses using more natural
language. The question of bias to a specific refer-
ence has also been raised in the case of monolingual
human evaluation (Fomicheva and Specia, 2016;
Ma et al., 2017). The impact of translationese in
test sets is related to but different from the impact
of translationese in the training data (Kurokawa
et al., 2009; Lembersky et al., 2012; Bogoychev
and Sennrich, 2019; Riley et al., 2019).

In this work, we explore collecting a single refer-
ence translation, using human paraphrases to steer
away as much as possible from biases in the ref-
erence translation that affect the automatic met-
rics to prefer MT output with the same style (e.g.
translationese). Automatic methods to extract para-
phrase n-grams (Zhou et al., 2006) or full sentence
paraphrases (Kauchak and Barzilay, 2006; Bawden
et al., 2020; Thompson and Post, 2020) have been
used to consider multiple references. In contrast,
we generate a single unbiased reference translation
generated by humans instead of trying to cover a
wider space of possible translations. In contrast
to human paraphrasing (our instructions asked for
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most diverse paraphrases), automatic paraphrasing
are still far from perfect (Roy and Grangier, 2019)
and mostly generate local changes that do not steer
away from biases as e.g. introducing different sen-
tence structures.

3 Collecting High Quality and Diverse
References

We acquired two types of new reference transla-
tions: first, we asked a professional translation ser-
vice to provide an additional reference translation.
Second, we used the same service to paraphrase ex-
isting references, asking a different set of linguists.

3.1 Additional Standard References

We asked a professional translation service to cre-
ate additional high quality references to measure
the effect of different reference translations. The
work was equally shared by 10 professional lin-
guists. The use of CAT tools (dictionaries, trans-
lation memory, MT) was specifically disallowed,
and the translation service employed a tool to dis-
able copying from the source field and pasting
anything into the target field. The translations
were produced by experienced linguists who are
native speakers in the target language. The original
WMT English—German newstest2019 reference
translations have been generated in sequence while
keeping an 1-1 alignment between sentences. This
should help the linguists to use some kind of docu-
ment context. We instead shuffled the sentences to
also get translations from different linguists within
a document and avoid systematic biases within a
document. The collection of additional references
not only may yield better references, but also al-
lows us to conduct various types of multi-reference
evaluation. In addition of applying multi-reference
BLEU, it also allows us to select the most adequate
option among the alternative references for each
sentence, composing a higher quality set.

3.2 Diversified Paraphrased References

The product of human translation is assumed to
be ontologically different from natural texts (Kop-
pel and Ordan, 2011) and is therefore often called
translationese (Gellerstam, 1986). Translationese
includes the effects of interference, the process by
which the source language leaves distinct marks
in the translation, e.g. word order, sentence struc-
ture (monotonic translation) or lexical choices. It
also often brings simplification (Laviosa, 1997), as



Task: Paraphrase the sentence as much as possible:

the original sentence.

2. Note down key concepts

that remain too similar
Some suggestions:

2. Use as many synonyms as possible

To paraphrase a source, you have to rewrite a sentence without changing the meaning of
1. Read the sentence several times to fully understand the meaning

3. Write your version of the text without looking at the original
4. Compare your paraphrased text with the original and make minor adjustments to phrases

Please try to change as much as you can without changing the meaning of the original sentence.
1. Start your first sentence at a different point from that of the original source (if possible)

3. Change the sentence structure (if possible)

Figure 1: Instructions used to paraphrase an existing translation as much as possible.

Source

The Bells of St. Martin’s Fall Silent 'as | Churches in Harlem Struggle .

Translation

Die Glocken von St. Martin verstummen , da |Kirchen in Harlem Probleme haben .

Paraphrase

Die Probleme in [Harlems Kirchen lassen die Glocken von St. Martin verstummen .

Paraphrase

St. Martin nicht mehr .

Die Kirchen in Harlem| kdmpfen mit Problemen , und so lduten die Glocken von

Table 1: Reference examples of a typical translation and two different paraphrases of this translation. The para-
phrases are not only very different from the source sentence (e.g. sentence structure), but also differ a lot when

compared to each other.

the translator might impoverish the message, the
language, or both. The troubling implication is
that a reference set of translationese sentences is
biased to assign higher word overlap scores to MT
outputs that produces a similar translationese style,
and penalizes MT output with more natural targets
(Freitag et al., 2019). Collecting a different type
of reference could uncover alternative high quality
systems producing different styles of outputs.

We explore collecting diverse references using
paraphrasing to steer away from translationese,
with the ultimate goal of generating a natural-to-
natural test set, where neither the source sentences
nor the reference sentences contain translationese
artifacts. In an initial experiment on a sample of
100 sentences, we asked linguists to paraphrase
(translated) sentences. The paraphrased references
had only minor changes and consequently only mi-
nor impact on the automatic metrics. Therefore,
we changed the instructions and asked linguists to
paraphrase the sentence as much as possible while
also suggesting using synonyms and different sen-
tence structures. The paraphrase instructions are
shown in Figure 1. These instructions satisfy not
only our goal to generate an unbiased sentence,
but also have the side effect that two paraphrases
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of the same sentence are quite different. All our
paraphrase experiments in this paper are done with
these instructions. One might be concerned that
paraphrasing “as much as possible” might yield ex-
cessive reformulation at the expense of adequacy in
some cases. To compensate for this in the present
paper, we collect adequacy ratings for all produced
paraphrases. These ratings allow us to select the
most adequate paraphrase from among available
alternatives for the same sentence, which results in
a composite high paraphrase set with strong ade-
quacy ratings (see Table 2). A paraphrase example
is given in Table 1. Even without speaking any
German, one can easily see that the paraphrases
have a different sentence structure than the source
sentence, and both paraphrases are quite different.

4 Experimental Set-up

4.1 Data and Models

We use the official submissions of the WMT 2019
English—German news translation task (Barrault
et al., 2019) to measure automatic scores for differ-
ent kinds of references. We then report correlations
with the WMT human ratings from the same eval-
uation campaign. We chose English—German as
this track had the most submissions and the outputs



with the highest adequacy ratings.

4.2 Human Evaluation

We use the same direct assessment template as
was used in the WMT 2019 evaluation campaign.
Human raters are asked to assess a given translation
by how adequately it expresses the meaning of the
corresponding source sentence on an absolute 0-
100 rating scale. We acquire 3 ratings per sentence
and take the average as the final sentence score. In
contrast to WMT, we do not normalize the scores,
and report the average absolute ratings.

S Experiments

We generate three additional references for the
WMT 2019 English—German news translation
task. In addition to acquiring an additional ref-
erence (AR), we also asked linguists to paraphrase
the existing WMT reference and the AR reference
(see Section 3 for details). We refer to these para-
phrases as WMT.p and AR.p.

5.1 Human Evaluation of References

It is often believed that the most accurate transla-
tions should also yield the highest correlation with
humans ratings when used as reference for an auto-
matic metric. For that reason, we run a human eval-
uation (Section 4.2) for all reference translations to
test this hypothesis (Table 2). While all reference
translations yield high scores, the paraphrased refer-
ences are rated as slightly less accurate. We suspect
that this may at least in part be an artifact of the rat-
ing methodology. Specifically, translations whose
word order matches that of the source (i.e. transla-
tionese) are easier to rate than translations that use
very different sentence structures and phrasing than
the source sentence. We generated our paraphrased
reference translation with the instructions to mod-
ify the translations as much as possible. Therefore,
the non-translationese, perhaps more natural, na-
ture of the paraphrased translations make it more
demanding to assign an accurate rating.

As a by-product of these ratings, we consider
selecting the best rated references among alterna-
tives for each sentence. Representing this method
of combining reference sets with the HQ() func-
tion, we generate 3 new reference sets. These
are (a) HQ(WMT, AR), abbreviated as HQ(R); (b)
HQ(WMT.p, AR.p), abbreviated as HQ(P); and
(c) HQ(WMT, AR, AR.p, WMT.p), abbreviated as
HQ(all 4). Interestingly, the combined paraphrased
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reference HQ(P) has a higher human rating than
WMT or AR alone.

H

| adequacy rating ||

WMT 85.3
WMTp 81.8
AR 86.7
AR p 80.8
HQ(R) [WMT+AR] 92.8
HQ(P) [WMT.p+AR p] 89.1
HQ(all 4) [all 4] 953

Table 2: Human adequacy assessments for different
kinds of references, over the full set of 1997 sentences.

5.2 Correlation with Human Judgement

Table 3 provides the system-level rank-correlations
(Spearman’s p and Kendall’s 7)> of BLEU (cal-
culated with sacreBLEU (Post, 2018)) evaluat-
ing translations of newstest2019 for different refer-
ences. On the full set of 22 submissions, all 3 new
references (AR, WMT.p, AR.p) show higher corre-
lation with human judgment than the original WMT
reference, with the paraphrased references WMT.p
coming out on top. Furthermore, each paraphrased
reference set shows higher correlation when com-
pared to the reference set that it was paraphrased
from.

H Full Set (22) H Reference H P \ T H
WMT 0.88 | 0.72
sinele ref AR 0.89 | 0.76
& WMT.p 0.91 | 0.79
AR.p 0.89 | 0.77
HQ(R) 0.91 | 0.78
single ref HQ(P) 091 | 0.78
HQ(all 4) 0.91 | 0.79
AR+WMT 0.90 | 0.75
multi ref AR.p+WMT.p || 0.90 | 0.79
all 4 0.90 | 0.75
Table 3: Spearman’s p and Kendall’s 7 for the
WMT2019 English—German official submissions

with human ratings conducted by the WMT organizers.

Although, the combined reference HQ(R) (Sec-
tion 5.1) improves correlation when compared to
the non-paraphrased reference sets (WMT and AR),
not one of the three combined references HQ(R),

We used the scipy implementation in all our ex-
periments: https://docs.scipy.org/doc/scipy/
reference/stats.html

3BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+test.wmt19+tok.intl+version.1.4.2



HQ(P), HQ(all 4) shows higher correlation than the
paraphrased reference set WMT.p. This result casts
doubt on the belief that if references are rated as
more adequate, it necessarily implies that such ref-
erences will yield more reliable automated scores.

We further find that multi-reference BLEU (cal-
culated with sacreBLEU) does not exhibit bet-
ter correlation with human judgments either than
single-reference BLEU or than the composed ref-
erence sets HQ(x). It is generally assumed that
multi-reference BLEU yields higher correlation
with human judgements due to the increased diver-
sity in the reference translations. However, combin-
ing two translated reference sets that likely share
the same systematic translationese biases does still
prefers translationese translations. Interestingly,
multi-reference BLEU with multiple paraphrases
also does not show higher correlation than single-
reference BLEU. Combining all 4 references with
multi reference BLEU shows the same correlation
numbers as the combination of AR+WMT. As we
will see later, the BLEU scores calculated with
paraphrased references are much lower than those
calculated with standard references. They have
fewer n-gram matches, which are mostly only a
subset of the n-gram matches of the standard ref-
erences. Adding paraphrased references to a mix
of standard references therefore has a small effect
on the total number of n-gram matches, and as a
consequence the scores are not much affected.

Note that the correlation numbers already appear
relatively high for the full set of systems. This is
because both Kendall’s 7 and Spearman’s p rank
correlation operate over all possible pairs of sys-
tems. Since the submissions to WMT2019 covered
a wide range of translation qualities, any metric
able to distinguish the highest-scoring and lowest-
scoring systems will already have a high correla-
tion. Therefore, small numeric increases as demon-
strated in Table 3 can correspond to much larger
improvements in the local ranking of systems.

As a consequence, we looked deeper into the cor-
relation between a subset of the systems that per-
formed best in human evaluation, where correlation
for metrics calculated on the standard reference is
known to break down. Kendall’s 7 rank correlation
as a function of the top k systems can be seen in
Figure 2. During the WMT 2019 Metric task (Ma
etal., 2019), all official submissions (using the orig-
inal WMT reference) had low correlation scores
with human ratings. The paraphrased references
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improve especially on high quality system output,
and every paraphrased reference set (dotted line)
outperforms its corresponding unparaphrased set
(same-color solid line).

= WMT = AR =HQ(R) -* WMTp -+ ARp - HQ(P)

O

0.5

0.0

-0.5

-1.0
345678 910111213141516171819202122

top k systems

Figure 2: Kendall’s 7 correlation of BLEU for the best
k systems (based on human ratings).

These improvements in ranking can be seen in
Table 4, which reports the actual BLEU scores of
the top seven submissions with four different ref-
erences. Since we asked humans to paraphrase the
WMT reference as much as possible (Section 3) to
get very different sentences, the paraphrased BLEU
scores are much lower than what one expects for
a high-quality system. Nevertheless, the system
outputs are better ranked and show the highest cor-
relation of any references explored in this paper.

H

[WMT|HQ(R)|WMT.p|HQ(P) | human |

FB 43.6 | 423 | 151 | 15.0 | 0.347
Micr.sd|| 44.8 | 42.1 149 | 149 |0.311
Micrdl || 44.8 | 422 | 149 | 149 | 0.296
MSRA || 46.0 | 42.1 142 | 14.1 | 0.214
UCAM|| 44.1 | 404 | 142 | 142 | 0.213
NEU 44.6 | 40.8 | 14.0 | 14.1 | 0.208
MLLP || 424 | 383 | 133 | 13.4 | 0.189

Table 4: BLEU scores of the best submissions of
WMT2019 English—German.

5.3 Alternative Metrics

Any reference-based metric can be used with
our new reference translations. In addition to
BLEU, we consider TER (Snover et al., 2006), ME-
TEOR (Banerjee and Lavie, 2005), chrF (Popovi,
2015), the f-score variant of BERTScore (Zhang
et al., 2019) and Yisi-1 (Lo, 2019) (winning sys-
tem of WMT 2019 English—German metric task).
Table 5 compares these metrics. As we saw in Fig-
ure 2, the paraphrased version of each reference
set yields higher correlation with human evaluation



across all evaluated metrics than the correspond-
ing original references, with the only exception of
TER for HQ(P). Comparing the two paraphrased
references, we see that HQ(P) shows higher corre-
lation for chrF and Yisi when compared to WMT.p.
In particular Yisi (which is based on word embed-
dings) seems to benefit from the higher accuracy
of the reference translation.

[metric [[WMT|HQ(R)|WMT.p|HQ(P)|[HQ(all) ||

BLEU || 0.72 | 0.78 | 0.79 | 0.79 | 0.79
1-TER| 0.71 | 0.74 | 0.71 | 0.67 | 0.74
chrF 0.74 | 0.81 | 0.78 | 0.82 | 0.78
MET 074 | 0.81 | 0.81 | 0.81 | 0.80
BERTS| 0.78 | 0.82 | 0.82 | 0.82 | 0.81
Yisi-1 || 0.78 | 0.84 | 0.84 | 0.86 | 0.84

Table 5: WMT 2019 English—German: Correlations
(Kendall’s 7) of alternative metrics: BLEU, 1.0 - TER,
chrF, METEOR, BERTScore, and Yisi-1.

54 WMT18

We acquired a paraphrased as-much-as-
possible reference (WMT.p) for newstest2018
English—German with the same instruction as
used before (Figure 1). The test set newstest2018
is a joint test set which means that half of the
sentences have been originally written in English
and translated into German, and vice versa. We
paraphrased the reference sentences for the forward
translated half only as we want to have a natural
English source sentence. Correlation with human
rankings of the WMT18 evaluation campaign are
summarized in Table 6. The paraphrased reference
WMT.p show higher correlations with human
judgement for all metrics.

[ref  [[BLEU|chrf[METEOR |BERTS] Yisi-1|
WMT [| 0.75 [0.76] 0.75 | 0.80 | 0.82
WMT.p|| 091 [0.82] 0.84 | 0.90 | 091

Table 6: WMT 2018 English—German: Kendall’s 7.

6 Why Paraphrases?

While the top WMT submissions use very similar
approaches, there are some techniques in MT that
are known to produce more natural (less transla-
tionese) output than others. We run experiments
with a variety of models that have been shown that
their actual quality scores have low correlation with
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automatic metrics. In particular, we focus on back-
translation (Sennrich et al., 2016) and Automatic
Post Editing (APE, Freitag et al. (2019)) augmented
systems trained on WMT 2014 English—German.
All these systems have in common that they gen-
erate less translationese output, and thus BLEU
with translationese references under-estimate their
quality. The experiment in this section follows the
setup described in Freitag et al. (2019).

We run adequacy evaluation on WMT newstest
2019 for the 3 systems, as described in Section 4.2.
Both the APE and the BT models, which use addi-
tional target-side monolingual data, are rated higher
by humans than the system relying only on bitext.
Table 7 summarizes the BLEU scores for our differ-
ent reference translations. All references generated
with human translations (WMT, HQ(R) and HQ(all
4)) show negative correlation with human ratings
for these extreme cases and produce the wrong
order. On the other hand, all references that rely
purely on paraphrased references do produce the
correct ranking of these three systems. This further
suggests that reference translations based on hu-
man translations bias the metrics to generate higher
scores for translationese outputs. By paraphras-
ing the reference translations, we undo this bias,
and the metric can measure the true quality of the
underlying systems with greater accuracy.

H Reference H bitext \ APE \ BT \ correct? H

human 84.5 | 86.1 | 87.8 v
WMT 394 | 34.6 | 379 X
WMT.p 125 | 12.7 | 12.9 v
HQR) 35.0 | 32.1 | 349 X
HQ(p) 124 | 12.8 | 13.0 v
HQ(all 4) 272 | 25.8 | 27.5 X

Table 7: BLEU scores for WMT newstest 2019

English—German for MT systems trained on bitext,
augmented with BT or using APE as text naturalizer.
The correct column indicates if the model ranking
agrees with human judgments.

This finding, that existing reference translation
methodology may systematically bias against mod-
elling techniques known to improve human-judged
quality, raises the question of whether previous re-
search has incorrectly discarded approaches that
actually improved the quality of MT. Releasing
all reference translations gives the community a
chance to revisit some of their decisions and mea-
sure quality differences for high quality systems.



7 Characterizing Paraphrases

7.1 Alignment

One typical characteristic of translationese is that
humans prefer to translate a sentence phrase-by-
phrase instead of coming up with a different sen-
tence structure, resulting in ‘monotonic’ transla-
tions. To measure the monotonicity of the different
reference translations, we compute an alignment
with fast-align (Dyer et al., 2013) on the WMT
2014 English-German parallel data and compare
the alignments of all four references. Table 8 sum-
marizes the average absolute distance of two align-
ment points for each reference. The paraphrased
translations are less monotonic and use a different
sentence structure than a pure human translation.

| WMT [ AR | WMTp | ARp ||
| 517 [527] 643 | 6.88 |

Table 8: Average absolute distance per alignment point,
as a proxy for word-by-word (‘monotonic’) translation.
Lower scores indicate more monotonic translation.

7.2 Matched n-grams

The actual BLEU scores calculated with the para-
phrased references are much lower compared to
BLEU scores calculated with standard references
(Table 4). Nevertheless, the paraphrased refer-
ences show higher correlation with human judg-
ment, which motivates us to investigate which n-
grams of the MT output are actually matching
the paraphrased references during BLEU calcula-
tion. The n-grams responsible for the most overlap
with standard references are generic, common n-
grams. In the winning submission of the WMT
2019 English—German evaluation campaign from
Facebook, the 4grams with the highest number of
matches are:

e ,sagte er . — 28 times (, he said.)
e ¢ sagte er — 14 times (", he said)
o fiigte hinzu , dass — 8 times (added that)

These matches are crucial to reach high > 40
BLEU scores, and appear in translation when using
the same sentence structure as the source sentence.
On the other hand, the n-grams overlapping with
the paraphrased references show a different pic-
ture. They usually reward n-grams that express the
semantic meaning of the sentence. The 4-grams
with the highest number of matches with the para-
phrased references for the same system are:
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o Wheeling , West Virginia — 3 times (Wheel-
ing , West Virginia)

e von Christine Blasey Ford — 3 times (from
Christine Blasey Ford)

e Erdbeben der Stirke 7,5 — 3 times (7.5
magnitude earthquake)

8 Conclusions

This work presents a study on the impact of refer-
ence quality on the reliability of automated evalua-
tion of machine translation. We consider collecting
additional human translations as well as generat-
ing more diverse and natural references through
paraphrasing. We observe that the paraphrased
references result in more reliable automated evalua-
tions, i.e. stronger correlation with human eval-
uation for the submissions of the WMT 2019
English—German evaluation campaign. These
findings are confirmed across a wide range of auto-
mated metrics, including BLEU, chrF, METEOR,
BERTScore and Yisi. We further demonstrate that
the paraphrased references correlate especially well
for the top submissions of WMT, and additionally
are able to correctly distinguish baselines from sys-
tems known to produce more natural output (those
augmented with either BT or APE), whose qual-
ity tends to be underestimated by references with
translationese artifacts.

We explore two different approaches to multi-
reference evaluation: (a) standard multi-reference
BLEU, and (b) selecting the best-rated references
for each sentence. Contrary to conventional wis-
dom, we find that multi-reference BLEU does not
exhibit better correlation with human judgments
than single-reference BLEU. Combining two stan-
dard reference translations by selecting the best
rated reference, on the other hand, did increase
correlation for the standard reference translations.
Nevertheless, the combined paraphrasing refer-
ences are of higher quality for all techniques when
compared to the standard reference counter part.

We suggest using a single paraphrased reference
for more reliable automatic evaluation going for-
ward. Although a combined paraphrased reference
shows slightly higher correlation for embedding
based metrics, it is over twice as expensive to con-
struct such a reference set. To drive this point home,
our experiments suggest that standard reference
translations may systematically bias against mod-
elling techniques known to improve human-judged
quality, raising the question of whether previous



research has incorrectly discarded approaches that
actually improved the quality of MT. Releasing
all reference translations gives the community a
chance to revisit some of their decisions and mea-
sure quality differences for high quality systems
and modelling techniques that produce more natu-
ral or fluent output.

As a closing note, we would like to empha-
size that it is more difficult for a human rater to
rate a paraphrased translation than a translationese
sentence, because the latter may share a similar
structure and lexical choice to the source. We sus-
pect that human evaluation is also less reliable for
complex translations. Future work, can investigate
whether finer ratings could correct the bias in favor
of lower effort ratings, and how this may interact
with document-level evaluation.
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Abstract

The term translationese has been used to de-
scribe features of translated text, and in this pa-
per, we provide detailed analysis of potential
adverse effects of translationese on machine
translation evaluation. Our analysis shows
differences in conclusions drawn from evalu-
ations that include translationese in test data
compared to experiments that tested only with
text originally composed in that language. For
this reason we recommend that reverse-created
test data be omitted from future machine trans-
lation test sets. In addition, we provide a re-
evaluation of a past machine translation eval-
uation claiming human-parity of MT. One im-
portant issue not previously considered is sta-
tistical power of significance tests applied to
comparison of human and machine translation.
Since the very aim of past evaluations was the
investigation of ties between human and MT
systems, power analysis is of particular impor-
tance, to avoid, for example, claims of human
parity simply corresponding to Type II error
resulting from the application of a low pow-
ered test. We provide detailed analysis of tests
used in such evaluations to provide an indica-
tion of a suitable minimum sample size for fu-
ture studies.

1 Introduction

Human-translated text is thought to display features
that deviate to some degree from those of text orig-
inally composed in that language. Baker (1993)
report that translated text can: be more explicit
than the original source, less ambiguous, simplified
(Iexical, syntactically and stylistically); display a
preference for conventional grammaticality; avoid
repetition; exaggerate target language features; as
well as display features of the source language.
The term translationese is often used to describe
the presence of such phenomena in translated text.

Standard evaluation protocol in Machine Trans-
lation (MT) comprises system tests on a sample of
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human-translated text. Since creating this human-
translated text is expensive, re-use of test sets
for both directions of translation is commonplace,
without regard to whether source or target contain
features of translationese. For example, translation
shared tasks at the Conference on Machine Trans-
lation (WMT) (Bojar et al., 2018) generally test
translation between a given language pair with two
portions of data combined to make up the overall
test set. Portion (a) of the test data (accounting
for approximately 50% of sentences) is made up
of text that originated in Chinese that was human-
translated into English, while portion (b) (i.e. the
remaining 50%), was translated in the opposite
direction, originating in English with manual trans-
lation into Chinese. The motivation for creating the
test data in this way is to create test sets for both
directions simultaneously (so at no extra cost).!
Although translationese has been cited as a likely
confound in MT evaluation results in the past (Lam-
bersky et al., 2012; Toral et al., 2018; Laubli et al.,
2018), to the best of our knowledge, no detailed
investigation into the impact of translationese on
the accuracy of MT evaluation has been reported
to date. With this aim, we examine the degree to
which translationese phenomena may impact hu-
man and automatic evaluation results in MT. We
firstly examine past results of WMT shared tasks,
a main venue for MT evaluation, and reveal that
although system rankings are overall very similar
for human evaluation of forward and reverse test
data, in a small number of cases system rankings
diverge to a more serious degree. For example, for
Turkish-English translation at WMT-18 forward
and reverse system rankings correlate at only r =
0.703 in one case. Apart from human evaluation,

'WMT news task ceased employing reverse-created test
data in 2019, motivated by the analysis provided in this current
work published in an earlier archival version (Graham et al.,
2019).
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much more concerning is the divergence in forward
and reverse rankings when BLEU is relied upon for
evaluation of systems, where the correlation can be
as low as 0.106 in the worst case.

Subsequently, we provide a reassessment of a
human evaluation previously criticized for includ-
ing reverse-created test data that claimed human
parity of Chinese to English MT. We reveal insights
into additional potential sources of inaccuracy of
conclusions beyond the presence of translationese
with the aim of preventing future inaccuracies.

2 Related Work

Hassan et al. (2018) provide one of the earliest
claims in MT of systems achieving human-parity in
terms of the quality of translations. The reliability
of these claims was quickly contested in follow-
up studies by Laubli et al. (2018) and Toral et al.
(2018), who both drew attention to the 50/50 set-up
of test data creation, highlighting the inclusion of
reverse-created test data as a likely confound. In
their repeat of the human evaluation of the transla-
tions produced by Hassan et al. (2018), both Laubli
et al. (2018) and Toral et al. (2018) used only test
data that originated in the source language.

Inspired by this work, other authors considered
the effect of the 50/50 set-up on evaluation us-
ing WMT data. Edunov et al. (2019) questioned
whether improvements in performance due to back-
translation were just an artifact of the test set con-
struction. They found that, whilst back-translation
had a disproportionately large positive effect on
BLEU for reverse-created test sets, human eval-
uation showed that back-translation did indeed
provide robust improvements to MT for forward-
created text. Related to this, Freitag et al. (2019)
also showed BLEU to be misleading on the reverse-
created part of the test sets, when analysing why
their automatic post-editing (APE) method pro-
duced improved translations according to human
evaluation, but not according to BLEU. Given the
concern in the community about using reverse-
created test sets, the organisers of the WMT19
news translation task used only forward-created
sentences in all their test sets (Barrault et al., 2019).
In this current paper we provide detailed evidence
to justify this decision.

We note that Zhang and Toral (2019) also pro-
vide analysis of the effect of reverse-created test
sets on WMT evaluation campaigns. However they
focus only on the effect of translationese with re-
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spect to human evaluation, without considering its
differing effect on automatic evaluation. Also, they
do not consider the problem of statistical power in
human evaluation, which we raise below.

The use of reverse-created test sets was not the
only concern raised by Laubli et al. (2018) and
Toral et al. (2018). Both used more context than
the original sentence-level evaluation in Hassan
et al. (2018), Léubli et al. (2018) now asking hu-
man judges to assess entire documents, and Toral
et al. (2018) involving assessment of MT output
sentences in the order that they appeared in orig-
inal documents. Furthermore, in contrast to the
use of Direct Assessment (Graham et al., 2016)
by Hassan et al. (2018), both reassessments used
relative ranking, a method formerly used in WMT
for evaluation (Callison-Burch et al., 2007, 2008,
2009, 2010, 2011, 2012; Bojar et al., 2013, 2014,
2015, 2016), but now abandoned, partly due to low
inter-annotator agreement.

Therefore, although both re-evaluations im-
proved the methodology employed in two respects,
by eliminating reverse-created test data and includ-
ing more context, both potentially include other
sources of inaccuracy, such as lack of reliability
of human judges when human evaluation takes the
form of relative ranking.

Furthermore, Toral et al. (2018) employ
Trueskill to reach the conclusion that the MT sys-
tem in question has not achieved human perfor-
mance, and although Trueskill has been used in
past WMT evaluations to produce system rankings,
its aim is to minimize the number of judgments
required to produce those rankings when resources
are limited. So results may not be directly compara-
ble with results of standard statistical significance
tests, now current practice at WMT evaluations.

Finally, neither Toral et al. (2018) nor Laubli
et al. (2018) discuss statistical power of signifi-
cance tests used to distinguish the performance of
system and human, an important aspect of evalua-
tion and one of particular importance with respect
to evaluations that aim to investigate claims of hu-
man parity, where Type II error could result in false
claims.

Besides criticisms already made of the human
evaluation in Hassan et al. (2018), an additional
aspect of importance not yet highlighted is the pro-
portion of distinct translations that were included in
the original human-parity evaluation of systems, a
consideration that also relates strongly to the ques-



tion of statistical power. In most MT human eval-
uations, it is not feasible to evaluate the full test
set of sentences for all systems and it is common
to instead evaluate a sample of translations, usu-
ally drawn at random from the test data. In cur-
rent WMT evaluations, for example, translations
of all test sentences produced by all participating
systems are pooled and a random sample is human-
evaluated. This method ensures that as great a
number as possible of distinct test sentences are ex-
amined. Alongside system performance estimates,
WMT also reports the number of distinct test sen-
tences evaluated, n, and it is this number that they
consider the sample size used for statistical signifi-
cance tests subsequently used to draw conclusions
about which competing systems outperform others.
For example, all else being equal, a difference in
system performance estimates for a pair of systems
computed from a larger set of distinct translations
is interpreted as more reliable.

Ave z n N System
67.1 0.185 92 828 Reference-HT
64.8 0.048 92 828 Combo-5
64.3 0.042 92 828 Combo-6
a 64.3 0.023 92 828 Combo-4
E 64.1 0.020 92 828 Reference-PE
61.1 —0.144 92 828 Reference-WMT
56.2 —0.345 92 828 Sogou
50.9 —0.580 92 828 Online-A-1710
48.5 —0.717 92 828 Online-B-1710
Ave z n N System
73.8 0434 89 801 Combo-6
73.2 0393 89 802 Combo-5
72.8 0392 89 801 Combo-4
>
g‘J 70.3 0.256 89 801 Reference-PE
70.0 0252 89 801 Reference-HT
68.8 0.167 89 801 Sogou
63.0 —0.089 89 801 Reference-WMT
60.0 —0.214 89 801 Online-B-1710
61.1 —0.217 89 802 Online-A-1710
Ave z n N System
69.0 0.235 181 1,629 Combo-6
68.5 0.218 181 1,629 Reference-HT
68.9 0.218 181 1,630 Combo-5
E 68.5 0.204 181 1,629 Combo-4
COQ 67.1 0.136 181 1,629 Reference-PE
62.4 —0.093 181 1,629 Sogou
62.0 —0.117 181 1,629  Reference-WMT
55.9 —0.402 181 1,630 Online-A-1710
54.1 —0.469 181 1,629 Online-B-1710

Table 1: Results of Hassan et al. (2018) for forward, re-
verse and both test set creation directions. N = number
of human judgments; n = number of distinct transla-
tions, Reference-HT = human translations created by
(Hassan et al., 2018), Reference-PE = post-edited on-
line MT system; Reference-WMT = original WMT ref-
erence translations; horizontal lines denote clusters ac-
cording to Wilcoxon rank sum test at p < 0.05.
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Other MT human evaluations, despite claims of
following WMT human evaluation methodology,
have diverged from this method of sample size
computation, however, including the human-parity
evaluation of Hassan et al. (2018) and Laubli et al.
(2018). For example, although a large sample of hu-
man judgments is reported as n > 1,827 per system
in Hassan et al. (2018), firstly this number in fact in-
cluded quality control check translations, generally
removed from data before computing sample sizes.
More importantly however, very high numbers of
repeat evaluations of the same translations were
included in the human-parity evaluation of Hassan
et al. (2018). In other words, a very low number of
distinct test sentences were in fact human evaluated
despite reporting a large sample size. The method
of computing sample size therefore diverges from
that reported of WMT evaluations in a small but
important way. The sample size reported instead
corresponds to the total number of human ratings
collected as opposed to distinct test sentences (as in
WMT evaluations). In this current work, we make
this important distinction explicit by referring to
the number of distinct test sentences evaluated as n
and the number of human judgments collected as
N. We also recommend this distinction be made
and adopted as common practice in future human
evaluations of MT or that the number of distinct
translations (as opposed to the number of human
evaluations) be reported as the sample size.

Table 1 shows results reproduced from the Has-
san et al. (2018) data set, where we now report both
the number of human judgments collected, NV, and
the number of distinct test sentences included, n, in
addition to adding separate results for forward and
reverse-created test data. Only when tested on the
less legitimate reverse direction data does MT now
appear to outperform human translation. Nonethe-
less, when interpreting results in Table 1, it is im-
portant to remember, however, that the reliability of
even the conclusions drawn from forward-created
test data only is still uncertain however, due to the
small n, as only 92 distinct translations were in fact
included in the evaluation claiming human parity.
It remains a possibility that, for example, had the
number of distinct test sentences evaluated been
higher, distinct conclusions would also be drawn.

We therefore rerun the evaluation using the origi-
nal translation data included in Hassan et al. (2018)
with entirely up-to-date WMT human evaluation
methodology in addition to ensuring that a suf-
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Figure 1: Differences in human evaluation Direct Assessment (DA) scores for test sentences created in the reverse
direction to testing and those created in the same/forward direction to testing broken down by language pair,
showing that reverse human evaluation scores higher than forward ones in almost all cases.

ficiently large sample of distinct translations are
assessed by human judges. We also take into ac-
count the very legitimate criticism made by both
Toral et al. (2018) and Laubli et al. (2018) and
include document-level context in the human eval-
uation. Furthermore, since no previous evaluation
has included statistical power analysis, prior to run-
ning our own human evaluation, we examine the
power of significance tests to estimate a suitable
sample size to decrease the likelihood of Type 11
error leading to conclusions of human parity due to
the application of a low powered test.

Additionally, we examine potential issues for
MT evaluation when test data created in the reverse
direction to testing is included. Despite being iden-
tified by Toral et al. (2018) and Laubli et al. (2018)
as a serious cause of concern in MT evaluations, to
the best of our knowledge no previous study exists
that examines in detail the degree to which reverse-
created test data may have skewed past results. The
sections that follow therefore include an investiga-
tion into the issue of translationese in M T evalua-
tion, in addition to a re-evaluation of Hassan et al.
(2018) data with all potential sources of criticism,
in terms of test data and evaluation methodology,
now taken into account and corrected.

3 Translationese

Using reverse-created test data is thought to unreal-
istically decrease the difficulty of MT evaluations
(Toral et al., 2018; Laubli et al., 2018), because
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in real-world MT scenarios, input text is unlikely
to very often comprise text that has already been
translated from the target language. We therefore
compare results of systems when test data is split
according to the creation direction and examine
differences in scores for systems in terms of both
human and automatic metrics.

3.1 Human Evaluation

In order to examine differences in human evalua-
tion results when translationese is in test data, we
firstly examine WMT-17 and WMT-18 systems
and compute two separate human evaluation scores
for each system. For each individual system, we
compute its forward Direct Assessment (DA) score,
comprising the average DA score computed only
for test sentences that were created in the same
direction as testing, and a corresponding reverse
DA score from test data created in the opposite di-
rection to testing. Then, to examine the extremity
to which MT human evaluation results may differ
when systems are tested in the reverse as opposed
to forward direction, we subtract a given system’s
forward DA score (expected to be lower than its
reverse counterpart) from its reverse DA score (ex-
pected to be higher than its forward counterpart).
This provides the difference in human DA scores
for each system, with positive differences expected
in general since reverse-created test data is hypothe-
sised to be an artificially easier test for MT systems.

Figure 1 shows the distribution of DA score dif-
ferences (reverse DA — forward DA) for all sys-
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Figure 2: Differences in BLEU scores for systems participating in WMT-15-WMT-18 news translation task com-
puted for test sentences created in the reverse direction to testing and those created in the same/forward direction
to testing broken down by language pair, showing a mix of positive and negative differences in BLEU scores

depending on test set creation direction.

tems participating in WMT-17 and WMT-18 news
translation shared task broken down by language
pair, where positive differences for systems indi-
cate a higher human evaluation score when systems
are tested in the reverse direction relative to the cor-
responding forward direction DA score.

As can be seen from the box plot in Figure 1
almost all reverse DA scores are higher than equiv-
alent forward DA scores. This confirms the sus-
picion that absolute human evaluation results are
in general higher when test data is created in the
reverse direction to testing.

3.2 BLEU

Besides human evaluation, the performance of MT
systems is often measured using automatic metrics,
the most common of which remains to be the BLEU
score (Papineni et al., 2002). Figure 2 shows a box
plot of absolute differences in BLEU scores for
systems (reverse BLEU — forward BLEU) partici-
pating in WMT news translation tasks from 2015
to 2018. Counter expectation there is a clear mix
of positive and negative BLEU score differences
for several language pairs.

Comparison of BLEU scores is not as straight-
forward as human evaluation however, and there
are further consideration to be made before draw-
ing conclusions from the mix of positive and neg-
ative absolute BLEU score differences described
above. For example, the fact that splitting the test
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set into forward and reverse directions creates two
test sets comprised of distinct sentences is likely
to impact how each distinct BLEU score should
be interpreted, as BLEU is not a simple arithmetic
average of sentence scores (like human evaluation
DA scores).

3.3 Relative Differences

Besides absolute differences in BLEU scores for in-
dividual systems, we also consider how differences
correspond to one another for pairs of systems com-
peting in the same competition. For example, for
an individual competition, the problems associated
with test data creation are more problematic if they
occur differently for different systems and less se-
vere if they affect all systems in the same way, as
system scores are mainly interpreted relative to one
another.

The scatter plot in Figure 3 shows relative dif-
ferences in BLEU scores when we change from
forward to reverse test data for all pairs of systems
participating in WMT-15 to WMT-18, as well as
differences in human DA scores for systems partic-
ipating in WMT-17 to WMT-18. The absence of
systems in the upper-left and lower-right quadrants
reassuringly shows that although extreme changes
in BLEU and human scores do occur when test
set creation direction is altered, the changes are at
least somewhat systematic in the sense that when
a difference in scores occurs (a drop or increase
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Figure 3: Differences in BLEU and human scores for
pairs of systems participating in WMT-15 to WMT-18
and WMT-17 to WMT-18 respective news translation
tasks for test sentences created in the reverse and for-
ward directions.

when we change from forward to reverse test data),
it occurs similarly for pairs of systems participating
in the same competition. However, although there
is a diagonal orientation in the plot, it still is some-
what worryingly broad and it remains possible that
inclusion of reverse test data could bias BLEU and
human scores in different ways for different types
of systems.

3.4 System Rankings

Figure 4 shows Pearson, Spearman and Kendall’s
T correlation of forward and reverse scores for sys-
tems participating individual competitions from
WMT-15-WMT-18 terms of both BLEU and hu-
man evaluation. As can be seen, the correspon-
dence between forward and reverse rank correlation
of systems according to BLEU varies considerably
across different evaluation test sets, from as low as
a 7 of 0.2 (tr-en newstest2018), where BLEU score
rankings are extremely different depending on test
data creation direction, up to a 7 of 1.0, where rank
correlation is identical (cs-en; fi-en newstest2017;
fi-en; en-cs newstest2018).

In overall summary, our analysis of differences
in both BLEU and human evaluation scores re-
veal differences in system rankings when tested on
reverse and forward-created test data, differences
substantial in some cases. Subsequently we have
confirmed the validity of suspicions about lack of
reliability of test data raised by Toral et al. (2018)
and Liubli et al. (2018) caused by inclusion of
reverse-created test data. However, as stated previ-
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Figure 4: Pearson, Spearman and Kendall’s 7 cor-
relation of forward and reverse BLEU and HUMAN
scores of data for all available systems from WMT-15
— WMT-18 news translation task for BLEU and WMT-
17-WMT-18 for human assessment.

ously, neither reassessments of Hassan et al. (2018)
ticked all boxes in terms of valid human evaluation
methodologies and in the section that follows we
therefore once again reassess the original evalua-
tion.

4 Re-evaluation of Human Parity Claims

As described in detail in Section 2, past re-
evaluations of human parity claims were hampered
by sub-optimal test settings. In our re-evaluation,
we firstly carry out statistical power analysis so
that, in the case of encountering any ties between
systems or indeed human and system, tests used
to draw conclusions will have sufficient statisti-
cal power to avoid human-parity claims that in
fact simply correspond to Type II error. Statistical
power is of particular importance when considering
document-level evaluation due to the fact that gath-
ering ratings of documents as opposed to sentences
requires substantially more annotation time and for
this reason is highly likely to result in a reduction
in the number of assessments collected in any eval-
uation. For example, Laubli et al. (2018) included
as few as 55 documents in their re-evaluation of
Hassan et al. (2018). Our concern about a poten-
tial substantial reduction in sample size in future
document-level evaluations is well-founded there-
fore, especially considering standard segment-level
MT human evaluations commonly include a sam-
ple of 1,500 segments. In the case of Léubli et al.
(2018) this corresponds to an extreme reduction of



approximately 96% to the sample size. Since the
very nature of the question being investigated in-
volves a potential tie between human and machine,
such a small sample size is a serious risk to the
reliability of conclusions drawn simply due to its
impact in terms of statistical power.

As a rough guide to what constitutes sufficient
statistical power, we borrow the five-eighty conven-
tion from the behavioural sciences that provides a
balance between Type I versus Type II error, where
significance and power levels are set at 0.05 and
0.8 respectively (Cohen, 1988). Table 2 shows the
statistical power, the probability of identifying a
significant difference when one exists, of the statis-
tical test applied in WMT evaluations, Wilcoxon
rank-sum test, for a range of effect and sample sizes
(n), where for the purpose of the test the appropri-
ate effect size is the probability of the translations
of system A being scored lower than those of sys-
tem B. As shown in Table 2 for the usual sample
size employed in WMT evaluations, 1,500, statis-
tical power even for closely performing systems,
where the effect size, the probability of the transla-
tions of system A being scored lower than those of
system B, is 0.47, statistical power remains above
0.8. For such pairs of systems, however, if we
were to employ the smaller sample size of 55 docu-
ments, as in Laubli et al. (2018), the power of the
test to identify a significant difference falls to as
low as 0.081, approaching one tenth of acceptable
statistical power levels.?

A good compromise between fully document-
level evaluation, where only ratings of documents
are collected, and fully segment-level evaluations,
in which segments are presented to human judges
in isolation of the document, is collection of rat-
ings of segments with the wider document context
available to the human assessor and have the seg-
ments evaluated in their original order. In this way,
a sufficient sample size can still be achieved to en-
sure appropriate levels of statistical power with the
added aim of human judges being able to take into
account the quality of translations within the wider
document context.>

We therefore plan our re-evaluation as follows:
(i) collect segment ratings for documents produced

2In Liubli et al. (2018) the Sign test was used as opposed
to Wilcoxon rank sum and has similar statistical power for
such an effect size.

3This approach is not that of Toral et al. (2018), where
document context was only available in for the source input
document as opposed to MT output document.
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by a single system within the correct document
context; (ii) aim to collect direct assessments of
a sufficient number of translations exceeding the
minimum acceptable sample size in terms of power
analysis, approximately 385 distinct translations;
(iii) use n, the number of distinct translations as
opposed to repeat human assessments as the sam-
ple size; (iv) employ Direct Assessment, the most
up to date technology for this purpose and that em-
ployed by WMT for the official results since 2017,
a method shown to produce highly repeatable re-
sults; (v) only employ forward-created test data;
(vi) only draw conclusions specific to Chinese to
English translation and news domain; (vii) produce
clusters with a standard significance test, Wilcoxon
rank-sum test.

4.1 Re-evaluation Results

Direct Assessment (DA) HITs were set up and run
as in WMT human evaluations on Mechanical Turk
but with the distinction of segments being evaluated
in the correct order in which they appeared in a doc-
ument, comprising an initial set of results, which
we refer to as segment rating + document context
(SR+DC). In addition to the segment rating, work-
ers were additionally shown entire documents and
asked to rate them, providing a secondary set of
results for comparison purposes. We refer to these
fully document-level results as document rating +
document context (DR+DC) configuration. As is
usual in DA evaluations, translations were rated in
a 0-100 scale and quality control was applied.

131 workers participated producing a total of
13,214 assessments of translations, of which 6,606
(49.99%) were from workers who passed DA’s qual-
ity control checks. Table 3 shows results of our re-
evaluation* of the top systems originally included
in Hassan et al. (2018), where REF-HT is the origi-
nal set of human translations produced by Hassan
et al. (2018) themselves and against which human-
parity of MT was claimed, while REF-PE is ma-
chine translated outputs that have been post-edited
by humans, and Combo-6 is the best-performing
system in Hassan et al. (2018).

Results when segments are rated by human
judges within the correct document context (Seg-
ment Rating + Document Context) show that the
DA score achieved by the human reference trans-
lation, REF-HT, is significantly higher than both

“All  evaluation data is publicly available at
https://www.scss.tcd.ie/~ygraham/
emnlp2020-translationese



n 0.330

0.340

0.350

0.360

0.370

0.380

0.390

0.400

effect size

55 0.886
330 1.000
385 1.000
440 1.000

1485 1.000
1540 1.000
1595 1.000

0.842
1.000
1.000
1.000
1.000
1.000
1.000

0.788
1.000
1.000
1.000
1.000
1.000
1.000

0.725
1.000
1.000
1.000
1.000
1.000
1.000

0.659
1.000
1.000
1.000
1.000
1.000
1.000

0.586
1.000
1.000
1.000
1.000
1.000
1.000

0.512
0.999
1.000
1.000
1.000
1.000
1.000

0.438
0.995
0.998
0.999
1.000
1.000
1.000

0410 0420 0430 0440 0450 0460 0470 0480  0.490
0367 0300 0243 0188  0.144 0111 0081 0066  0.056
0982 0947 0878 0763 0604 0427 0265 0144 0073
0992 0971 0924 0824 0672 0485 0302 0159  0.077
0997 098 0951 0870 0730 0538 0338 0176 0.8l
1000 1.000  1.000 1000 0997  0.965 0809 0471  0.156
1000 1000  1.000 1.000 0998 0971 0821 0485  0.161
1000 1.000  1.000 1000 0998  0.975 0838 0499  0.164

Table 2: Statistical Power of two-sided Wilcoxon Rank Sum Test for a range of sample and effect sizes; power >

0.8 highlighted in bold.
Segment Rating + Document Context
Ave. Ave.z n N System
80.3 0.143* 902 1811 REF-HT
76.6  0.038 904 1646  REF-PE
76.5 0.036 863 1805 Combo-6

Document Rating + Document Context

Ave. Ave.z n N System

789 0.184 114 216 REF-HT
775 0.090 107 218 REF-PE
76.0 0.050 106 238 Combo-6

Table 3: Re-evaluation of human-parity-claimed Chi-
nese to English system of Hassan et al. (2018); * de-
notes system that significantly outperforms all lower
ranked systems according to a two-sided Wilcoxon
rank-sum test p < 0.05

REF-PE and Combo-6, agreeing with results of
both Laubli et al. (2018) and Toral et al. (2018).
Since this approach has a large enough sample size
to ensure sufficient statistical power, the tie be-
tween REF-PE and Combo-6 is a legitimate one
however. Although this tie does indeed indicate
high performance of Combo-6, since REF-PE is in
fact post-edited MT output however, this tie does
not provide legitimate evidence to support a human-
parity claim.

Although we already know from the power anal-
ysis carried out for planning the current evaluation
that fully document-level evaluations in which hu-
man assessors are required to rate documents (as
opposed to segments) will encounter problems in
terms of sufficient statistical power when ties oc-
cur, we nonetheless run this kind of evaluation for
demonstration purposes. Document Rating + Doc-
ument Context results in Table 3 do indeed pro-
duce what appears to be a statistical tie between the
three sets of outputs as no “system” significantly
outperforms all lower ranking ones. However, a
conclusion of human parity cannot legitimately
be claimed from this tie due to the low statisti-
cal power of the test caused by the small sample
of documents that were rated. Ties in this case do
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not indicate human-parity but simply that the test
is too weak to identify significant differences.

In summary, similar to Toral et al. (2018) and
Laubli et al. (2018), our results show evidence that
the original system, Combo-6, was outperformed
by human translation. It should be noted however
that from our results it cannot be inferred that ma-
chine translation in general has not yet reached
human performance but simply that the system that
originally claimed human-parity in fact did not
achieve it, as tested on WMT-17 newstask data.

5 Conclusion

We explore issues relating to the reliability of ma-
chine translation evaluations. Firstly, we provide
a detailed analysis of how the presence of transla-
tionese phenomena can adversely affect machine
translation results. In terms of the legitimacy of
machine translation evaluation results, our analysis
provides sufficient evidence that translationese is a
problem for evaluation of systems, in particular in
terms of comparison of system performance with
automatic metrics such as BLEU. This results in
our first recommendation in future MT evaluations
to avoid the use of source side test data that was
created via human translation from another lan-
guage. We provided guidance in relation to sample
size and statistical power to help planning future
human evaluations of MT, particularly relevant to
document-level human-parity investigations. This
guidance will help to avoid false conclusions due
to the application of low powered statistical tests.



Acknowledgments

This study was supported by the ADAPT Centre for
Digital Content Technology (www.adaptcentre.ie)
at Trinity College Dublin funded under the SFI
Research Centres Programme (Grant 13/RC/2106)
co-funded under the European Regional Develop-
ment Fund, and it has received funding from the
European Union’s Horizon 2020 research and in-
novation programme under grant agreement No.
825299 (Gourmet). We would also like to thank
the anonymous reviewers for their feedback.

References

Mona Baker. 1993. Corpus linguistics and translation
studies: Implications and applications. In Text and
Technology: In Honour of John Sinclair, Nether-
lands. John Benjamins Publishing Company.

Loic Barrault, Ondfej Bojar, Marta R. Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Miiller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (wmt19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1-61, Florence, Italy. As-
sociation for Computational Linguistics.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Ales
Tamchyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12-58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Ondfej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Proceed-
ings of the Eighth Workshop on Statistical Machine
Translation, pages 1-44, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the First
Conference on Machine Translation, pages 131-198,
Berlin, Germany. Association for Computational
Linguistics.

80

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 workshop on statistical machine translation. In
Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1-46, Lisbon, Portugal.
Association for Computational Linguistics.

Ondrej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, and Christof Monz. 2018. Find-
ings of the 2018 conference on machine translation
(wmtl8). In Proceedings of the Third Conference on
Machine Translation, Volume 2: Shared Task Papers,
pages 272-307, Belgium, Brussels. Association for
Computational Linguistics.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2007.
(meta-) evaluation of machine translation. In Pro-
ceedings of the Second Workshop on Statistical Ma-
chine Translation, pages 136—158, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2008.
Further meta-evaluation of machine translation. In
Proceedings of the Third Workshop on Statisti-
cal Machine Translation, pages 70-106, Columbus,
Ohio. Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar Zaidan.
2010. Findings of the 2010 joint workshop on sta-
tistical machine translation and metrics for machine
translation. In Proceedings of the Joint Fifth Work-
shop on Statistical Machine Translation and Met-
ricsMATR, pages 17-53, Uppsala, Sweden. Associa-
tion for Computational Linguistics. Revised August
2010.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 workshop on statistical ma-
chine translation. In Proceedings of the Seventh
Workshop on Statistical Machine Translation, pages
10-51, Montréal, Canada. Association for Computa-
tional Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1-28, Athens, Greece.
Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar Zaidan. 2011. Findings of the 2011 work-
shop on statistical machine translation. In Proceed-
ings of the Sixth Workshop on Statistical Machine
Translation, pages 22—64, Edinburgh, Scotland. As-
sociation for Computational Linguistics.



Jacob Cohen. 1988. Statistical power analysis for the
social sciences. Hillsdale, NJ: Erlbaum.

Sergey Edunov, Myle Ott, Marc’ Aurelio Ranzato, and
Michael Auli. 2019. On The Evaluation of Machine
Translation Systems Trained With Back-Translation.
arXiv e-prints, page arXiv:1908.05204.

Markus Freitag, Isaac Caswell, and Scott Roy. 2019.
Ape at scale and its implications on mt evaluation
biases. In Proceedings of the Fourth Conference on
Machine Translation (Volume 1: Research Papers),
pages 34-44, Florence, Italy. Association for Com-
putational Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2016. Can machine translation sys-
tems be evaluated by the crowd alone. Natural Lan-
guage Engineering, FirstView:1-28.

Yvette Graham, Barry Haddow, and Philipp Koehn.
2019. Translationese in Machine Translation Eval-
uation. arXiv e-prints, page arXiv:1906.09833.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Rengian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce
Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving human parity on auto-
matic chinese to english news translation. CoRR,
abs/1803.05567.

Gennadi Lambersky, Noam Ordan, and Shuly Wint-
ner. 2012. Language models for machine translation:
Original vs. translated texts. Computational Linguis-
tics, 38:4.

Samuel Liubli, Rico Sennrich, and Martin Volk. 2018.
Has Neural Machine Translation Achieved Human
Parity? A Case for Document-level Evaluation. In
EMNLP 2018, Brussels, Belgium. Association for
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311-318,
Philadelphia, Pennsylvania.

Antonio Toral, Sheila Castilho, Ke Hu, and Andy
Way. 2018. Attaining the unattainable? reassessing
claims of human parity in neural machine translation.
CoRR, abs/1808.10432.

Mike Zhang and Antonio Toral. 2019. The effect of
translationese in machine translation test sets. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 1: Research Papers), pages 73—
81, Florence, Italy. Association for Computational
Linguistics.

81



Simulated Multiple Reference Training
Improves Low-Resource Machine Translation

Huda Khayrallah Brian Thompson

Matt Post and Philipp Koehn

Johns Hopkins University
{huda, brian.thompson, phi}@jhu.edu, post@cs.jhu.edu

Abstract

Many valid translations exist for a given sen-
tence, yet machine translation (MT) is trained
with a single reference translation, exacerbat-
ing data sparsity in low-resource settings. We
introduce Simulated Multiple Reference Train-
ing (SMRT), a novel MT training method that
approximates the full space of possible transla-
tions by sampling a paraphrase of the reference
sentence from a paraphraser and training the
MT model to predict the paraphraser’s distri-
bution over possible tokens. We demonstrate
the effectiveness of SMRT in low-resource set-
tings when translating to English, with im-
provements of 1.2 to 7.0 BLEU. We also find
SMRT is complementary to back-translation.

1 Introduction

Variability and expressiveness are core features of
language, and they extend to translation as well.
Dreyer and Marcu (2012) showed that naturally oc-
curring sentences have billions of valid translations.
Despite this variety, machine translation (MT) mod-
els are optimized toward a single translation of each
sentence in the training corpus. Training a high re-
source MT model on millions of sentence pairs
likely exposes it to similar sentences translated dif-
ferent ways, but training a low-resource MT model
with a single translation for each sentence (out of
potentially billions) exacerbates data sparsity.

We hypothesize that the discrepancy between
linguistic diversity and standard single-reference
training hinders MT performance. This was previ-
ously impractical to address, since obtaining multi-
ple human translations of training data is typically
not feasible. However, recent neural sentential para-
phrasers produce fluent, meaning-preserving En-
glish paraphrases. We introduce a novel method
that incorporates such a paraphraser directly in the
training objective, and uses it to simulate the full
space of translations.

82

’

v

M) to
v . \°$\ @, — & —
The grabbit” \s"@,% e Wi
K @y
\'{ e, ~ ~Lrzg
Figure 1: Some of the origi-

nal reference, ‘The tortoise beat the hare,’ for the
Dutch source sentence, ‘De schildpad versloeg de haas.’

We demonstrate the effectiveness of our method
on two corpora from the low-resource MATERIAL
program, and on bitext from GlobalVoices. We
release data & code: data.statmt.org/smrt

2 Method

We propose Simulated Multiple Reference Training
(SMRT), which uses a paraphraser to approximate
the full space of possible translations, since explic-
itly training on billions of possible translations per
sentence is intractable.

In standard neural MT training, the reference
is: (1) used in the training objective; and (2) con-
ditioned on as the previous target token.! We ap-
proximate the full space of possible translations
by: (1) training the MT model to predict the distri-
bution over possible tokens from the paraphraser
at each time step; and (2) sampling the previous
target token from the paraphraser distribution. Fig-
ure 1 shows an example of possible paraphrases
and highlights a sampled path and some of the other
tokens used in the training objective distribution.

'In autoregressive NMT inference, predictions condition
on the previous target tokens. In training, predictions typically
condition on the previous tokens in the reference, not the
model’s output (teacher forcing; Williams and Zipser, 1989).

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8§2—89,
November 16-20, 2020. (©)2020 Association for Computational Linguistics



We review the standard NLL training objective,
and then introduce our proposed objective.

NLL Objective The standard negative log likeli-
hood (NLL) training objective in NMT, for the ;"
target word in the reference y is:

LaL=-) []l{yi = v}

veY

)

x log pur(y; = v $7yj<z‘)}

where V is the vocabulary, 1{-} is the indicator
function, and pyr is the MT output distribution
(conditioned on the source x, and on the previous
tokens in the reference y;<;). Equation 1 computes
the cross-entropy between the MT model’s distri-
bution and the one-hot reference.

Proposed Objective We compute the cross en-
tropy between the distribution of the MT model
and the distribution from a paraphraser conditioned
on the original reference:

Lsmrr = — Z [ppara(yg =vly, y;‘<i) 2)
veEV

x log pwr(y; = v, y;’<i)

where 3/ is a paraphrase of the original reference .
Ppara 18 the output distribution from the paraphraser
(conditioned on the reference y and the previous
tokens in the sentence produced by the paraphraser
y} <i)- Pmr is the MT output distribution (condi-
tioned on the source sentence, = and the previous
tokens in the sentence produced by the paraphraser,
yg <;)- At each time step we sample a target to-
ken y; from the paraphraser’s output distribution to
cover the space of translations. We condition on
the sampled y/_, as the previous target token for
both the MT model and paraphraser.
For a visualization see Figure 1, which shows
of the reference, ‘The tortoise
beat the hare.” The paraphraser and MT model
condition on the paraphrase (') as the previous
output. The paraphrase (y') and the rest of the
tokens in the paraphraser’s distribution make up

Drara, Which is used to compute Lsmrr.

3 Experimental Setup

3.1 Paraphraser

For use as an English paraphraser, we train a Trans-
former model (Vaswani et al., 2017) in FAIRSEQ
(Ott et al., 2019) with an 8-layer encoder and de-
coder, 1024 dimensional embeddings, 16 encoder
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and decoder attention heads, and 0.3 dropout. We
optimize using Adam (Kingma and Ba, 2015). We
train on PARABANK2 (Hu et al., 2019c¢), an En-
glish paraphrase dataset.” PARABANK2 was gen-
erated by training an MT system on CzEng 1.7 (a
Czech—English bitext with over 50 million lines
(Bojar et al., 2016)), re-translating the Czech train-
ing sentences, and pairing the English output with
the original English translation.

3.2 NMT models

We train Transformer NMT models in FAIRSEQ
using the FLORES low-resource benchmark param-
eters (Guzman et al., 2019): 5-layer encoder and
decoder, 512-dimensional embeddings, and 2 en-
coder and decoder attention heads. We regularize
with 0.2 label smoothing and 0.4 dropout. We opti-
mize using Adam with a learning rate of 1073, We
train for 200 epochs, and select the best checkpoint
based on validation set perplexity. We translate
with a beam size of 5. For our method we use the
proposed objective Lgyrr With probability p = 0.5
and standard Lnp . on the original reference with
probability 1 — p. We sample from only the 100
highest probability vocabulary items at a given time
step when sampling from the paraphraser distribu-
tion to avoid very unlikely tokens (Fan et al., 2018).

Using our English paraphraser, we aim to demon-
strate improvements in low-resource settings, since
these remain a challenge in NMT (Koehn and
Knowles, 2017; Sennrich and Zhang, 2019). We
use Tagalog (tl) to English and Swahili (sw) to
English bitext from the MATERIAL low-resource
program (Rubino, 2018). We also report results on
MT bitext from GlobalVoices, a non-profit news
site that publishes in 53 languages.’ We evaluate
on the 10 lowest-resource settings that have at least
10,000 lines of parallel text with English: Hungar-
ian (hu), Indonesian (id), Czech (cs), Serbian (sr),
Catalan (ca), Swahili (sw),* Dutch (nl), Polish (p)),
Macedonian (mk), Arabic (ar).

We use 2,000 lines each for a validation set for
model selection from checkpoints and a test set for
reporting results. The approximate number of lines
of training data is in the top of Table 1. We train an
English SentencePiece model (Kudo and Richard-

Hu et al. released a trained SOCKEYE paraphraser but we
implement our method in FAIRSEQ.

3We use v2017q3 released on Opus (Tiedemann, 2012,
opus.nlpl.eu/GlobalVoices.php).

*Swahili is in both. MATERIAL data is not widely avail-
able, so we separate them to keep GlobalVoices reproducible.



dataset ‘ GlobalVoices ‘ MATERIAL
* —en hu id cs st ca SW nl pl mk ar SW tl

train lines | 8k 8 11k 14k 15k 24k 32k 40k 44k 47k | 19k 46k
baseline 23 53 34 118 160 179 222 160 270 12.7 | 37.8 325
this work 54 123 6.6 161 200 205 248 18.0 28.2 149 | 39.0 33.7
A | 431 +7.0 432 +43 +40 +2.6 +2.6 +20 +12 422|412 +1.2

Table 1: BLEU scores on the test set. We bold the best value; all improvements are statistically significant at the
95% confidence level. ‘train lines’ indicates amount of training bitext.

son, 2018) on the paraphraser data, and apply it
to the target (English) side of the MT bitext, so
that the paraphraser and MT models have the same
output vocabulary. We also train SentencePiece
models on the source-side of the bitexts. We use a
subword vocabulary size of 4,000 for each.

4 Results

Results are shown in Table 1. Our method improves
over the baseline in all settings, by between 1.2 and
7.0 BLEU (all statistically significant at the 95%
confidence level (Koehn, 2004)).> We see larger
improvements for lower-resource corpora.

5 Analysis

We analyze our method to explore: (1) how it per-
forms at a various resource levels; (2) how it com-
bines with back-translation; (3) how the different
components of the method impact performance;
and (4) how it compares to sequence-level para-
phrastic data augmentation.

5.1 MT Data Ablation

In order to better understand how our method per-
forms across data sizes on the same corpus, we
ablate Bengali-English bitext from Global Voices.

Figure 2 plots the performance of our method
and the baseline against the log of the data amount.
Our improvements of 2.7, 3.7, 1.6, and 0.8 BLEU at
the 15k, 25k, 50k, and 100k subsets are statistically
significant at the 95% confidence level; the 0.1
improvement for the full 132k data amount is not.
Similar to Table 1, we see larger improvements in
lower-resource ablations.

5.2 Back-translation

Back-translation (Sennrich et al., 2016) is the de
facto method for incorporating non-parallel data

5 All BLEU scores are SacreBLEU (Post, 2018).
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Figure 2: Bengali-English data ablation. Improve-

ments of 2.7, 3.7, 1.6, and 0.8 BLEU at the 15k, 25k,
50k, and 100k subsets are statistically significant.

in NMT, so we investigate how our method in-
teracts with it. Table 2 shows the results for
back-translation, our work, and the combination
of both.® Adding our method to back-translation
improves results by an additional 0.5 to 5.7 BLEU.”

For all language pairs, the best performance
is achieved by our method combined with back-
translation, or our method alone. For 9 of 12 cor-
pora, back-translation and our proposed method
are complementary, with improvements of 1.2 to
7.8 BLEU” over the baseline when combining the
two. For cs-en and tl-en, adding back-translation to
our method does not change BLEU. In the lowest-
resource setting (hu-en) our method alone outper-
forms the baseline by 3.1 BLEU, but adding back-
translation reduces the improvement by 0.5 BLEU.

5.3 Method Ablation

In Table 3 we analyze the contributions of each
part of our proposed method. We compare four

®We use a 1:1 ratio of bitext to back-translated bitext.
We use newscrawl2016 (data.statmt.org/news-crawl)
as monolingual text. When combining with our work, we run
our method on both the original and back-translation data.

7 All statistically significant at the 95% confidence level.



dataset Global Voices MATERIAL
* —en hu id ¢ st ca sw nl pl mk ar | sw tl
train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k | 19k 46k
baseline 23 53 34 118 160 179 222 16.0 27.0 127|378 32.5
baseline w/ back-translation | 2.8 7.1 4.6 17.6 20.1 20.7 269 19.3 29.1 16.0|388 33.0
this work 54 123 6.6 16.1 20.0 205 24.8 18.0 282 149|39.0 33.7
this work w/ back-translation | 4.9 12.8 6.6 19.6 234 23.0 27.5 20.2 29.7 16.8|39.3 33.7

Table 2: Comparison between back-translation and this work. We bold the best BLEU score on the test set, as well
as any result where the difference from it is not statistically significant at the 95% confidence level.

dataset ‘ Global Voices ‘ MATERIAL
dist. paraphrase *—en |hu id c¢s sr ca sw nl pl mk ar | sw tl
loss sampling train lines | 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k | 19k 46k
X n/a baseline ‘2.3 5.3 34 11.8 16.0 17.9 22.2 16.0 27.0 12.7\37.8 325
X X (1) 29 88 4.6 145 17.8 19.2 234 17.6 27.0 142|357 29.9
X v (2) 5.1 11.6 6.5 15.6 19.7 20.2 244 18.1 279 15.0|38.1 32.0
v X 3) 4.0 10.5 6.5 152 18.8 19.8 23.9 18.0 27.6 14.4|37.6 31.6
v v (4) this work ‘5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9|39.0 33.7

Table 3: We compare four conditions to the baseline: (1) paraphrasing the reference, without sampling or the
distribution in the loss; (2) sampling from the paraphraser in the training objective, without the distribution; (3)
using the distribution in the training objective, without sampling; and (4) the proposed method. We bold the best
test set BLEU score, and others where the difference is not statistically significant at the 95% confidence level.

conditions to the baseline:® (1) paraphrasing the
reference, without sampling or the distribution in
the loss;’ (2) sampling from the paraphraser, with-
out the distribution in the loss; (3) using the distri-
bution in the training objective, without sampling
the paraphrase; and (4) the proposed method.

We find that sampling is particularly important
to the success for the method; removing it signifi-
cantly degrades performance in all but 3 language
pairs. Since we sample a paraphrase each batch,
this exposes the model to a wide variety of different
paraphrases. Using the distribution in the loss func-
tion is also beneficial, particularly for the lower
resource settings and in the MATERIAL corpora.

5.4 Sequence-Level Paraphrastic Data
Augmentation

As a contrastive experiment, we use the paraphraser
to generate additional target-side data for use in
data augmentation. For each target sentence (y) in

8 All use settings from § 3.2: we use the original reference
with LniL with 1 — p = 0.5 probability, and when sampling
we sample from the top w = 100 tokens.

°This is equivalent to Lxi1. using a paraphrase generated
with greedy-search as the reference, see § 5.4.
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the training data, we generate a paraphrase (y'). We
then concatenate the original source-target pairs
(z,y) with the paraphrased pairs (z,%’) and per-
form standard standard Lnpp training. We con-
sider 3 methods for generating paraphrases: beam
search (beam of 5), greedy search, sampling (top-
100 sampling). Greedy search tends to work best:
see Table 4. It improves over the baseline for the
10 Global Voices datasets, but not for the two MA-
TERIAL ones. Overall, our proposed method is
more effective than this contrastive method. We
hypothesize this is due to the wider variety of para-
prhases SMRT introduces by sampling and training
toward the full distribution from the paraphraser.

6 Related Work

Knowledge Distillation Our proposed objective
is similarly structured to word-level knowledge dis-
tillation (KD; Hinton et al., 2015; Kim and Rush,
2016), where a student model is trained to match
the output distribution of a teacher model. Para-
phrasing as preprocessed data augmentation, as dis-
cussed in § 5.4, is similarly analogous to sequence-
level knowledge distillation (Kim and Rush, 2016).



dataset | Global Voices | MATERIAL
* —en hu id ¢ st ca sw nl pl mk ar | sw tl
train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k | 19k 46k
baseline ‘ 23 53 34 118 16.0 179 222 16.0 27.0 12.7 ‘ 37.8 325
beam-search paraphrase | 2.6 8.7 4.7 135 163 184 22.6 16.6 26.6 122|359 294
greedy paraphrase 32 94 46 148 183 19.6 244 18.0 275 14.7|358 303
sampled paraphrase 28 8.0 5.1 139 16.8 195 239 176 27.6 142|372 31.6
this work 54 123 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 |39.0 33.7

Table 4: We compare three ways of generating paraphrases for preprocessed data augmentation: beam search,
greedy search, and sampling. We bold the best BLEU score on the test set, as well as any result where the
difference from it is not statistically significant at the 95% confidence level.

In typical KD both the student and teacher mod-
els are translation models trained on the same data,
have the same input and output languages, and use
the original reference for the previous token. In
contrast, our teacher model is a paraphraser, which
takes as input the original reference sentence (in
the target language), with the sampled paraphrase
as the previous token. KD is usually used to train
smaller models and does not typically incorporate
additional data sources, though it has been used
for domain adaptation (Dakwale and Monz, 2017;
Khayrallah et al., 2018).

Paraphrasing in MT Hu et al. (2019a) present
case studies on paraphrastic data augmentation for
NLP tasks, including NMT. They use sequence-
level augmentation with heuristic constraints on
the model’s output. SMRT differs in that we train
toward the paraphraser distribution, and we sample
from the distribution rather than using heuristics.

Wieting et al. (2019a) used a paraphrastic-
similarity metric for minimum risk training (MRT;
Shen et al., 2016) in NMT. They note MRT is slow,
and, following prior work, use it for fine-tuning
after NLL training. While our method is about 3
times slower than standard Ly, this is not pro-
hibitive in low-resource conditions.

Paraphrasing was also used for statistical MT,
including: source-side phrase table augmentation
(Callison-Burch et al., 2006; Marton et al., 2009),
and generation of additional references for tuning
(Madnani et al., 2007, 2008).

Data Augmentation in NMT Back-translation
(BT) translates target-language monolingual text to
create synthetic source sentences (Sennrich et al.,
2016). BT needs a reverse translation model for
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each language pair. In contrast, we need a para-
phraser for each target language. Zhou et al. (2019)
found BT is harmful in some low-resource settings,
but a strong paraphraser can be trained as long as
the target language is sufficiently high resource.

Fadaee et al. (2017) insert rare words in novel
contexts in the existing bitext, using automatic
word alignment and a language model. RAML
(Norouzi et al., 2016) and SwitchOut (Wang et al.,
2018) randomly replace words others from the vo-
cabulary. In contrast to random or targeted word
replacement, we generate semantically similar sen-
tential paraphrases.

Label Smoothing Label smoothing (which we
use when training with Lnp1) spreads probabil-
ity mass over all non-reference tokens equally
(Szegedy et al., 2016); Lsmrr places higher proba-
bility on semantically plausible tokens.

7 Conclusion

We present Simulated Multiple Reference Train-
ing (SMRT), which significantly improves per-
formance in low-resource settings—by 1.2 to 7.0
BLEU—and is complementary to back-translation.
Neural paraphrasers are rapidly improving (Wiet-
ing et al., 2017, 2019b; Li et al., 2018; Wieting and
Gimpel, 2018; Hu et al., 2019a,b,c), and the con-
currently released PRISM multi-lingual paraphraser
Thompson and Post (2020a,b) has coverage of 39
languages and outperforms prior work in English
paraphrasing. As paraphrasing continues to im-
prove and cover more languages, we are optimistic
SMRT will provide larger improvements across the
board—including for higher-resource MT and for
additional target languages beyond English.
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Automatic Machine Translation Evaluation in Many Languages
via Zero-Shot Paraphrasing
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Abstract

We frame the task of machine translation
evaluation as one of scoring machine transla-
tion output with a sequence-to-sequence para-
phraser, conditioned on a human reference.
We propose training the paraphraser as a multi-
lingual NMT system, treating paraphrasing as
a zero-shot translation task (e.g., Czech to
Czech). This results in the paraphraser’s out-
put mode being centered around a copy of the
input sequence, which represents the best case
scenario where the MT system output matches
a human reference. Our method is simple and
intuitive, and does not require human judge-
ments for training. Our single model (trained
in 39 languages) outperforms or statistically
ties with all prior metrics on the WMT 2019
segment-level shared metrics task in all lan-
guages (excluding Gujarati where the model
had no training data). We also explore us-
ing our model for the task of quality estima-
tion as a metric—conditioning on the source
instead of the reference—and find that it sig-
nificantly outperforms every submission to the
WMT 2019 shared task on quality estimation
in every language pair.

1 Introduction

Machine Translation (MT) systems have improved
dramatically in the past several years. This is
largely due to advances in neural MT (NMT)
methods, but the pace of improvement would not
have been possible without automatic MT metrics,
which provide immediate feedback on MT qual-
ity without the time and expense associated with
obtaining human judgments of MT output.
However, the improvements that existing auto-
matic metrics helped enable are now causing the
correlation between human judgments and auto-
matic metrics to break down (Ma et al., 2019;
Mathur et al., 2020) especially for BLEU (Papineni
et al., 2002), which has been the de facto standard
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TRAINING: Salut I'ami
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Agnostic
Represen-
tation

Ciao amico <FR>

world (p=.6)

SCORING:

Hi (p=.3)

Language-
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Represen-
tation

1

Hi

Hello world <EN>

Figure 1: Our model is trained on multilingual paral-
lel examples such as “Ciao amico” translated to French
is “Salut ’ami.” At evaluation time, the model is
used in zero-shot mode to score MT system outputs
conditioned on their corresponding human references.
For example, the MT system output “Hi world” condi-
tioned on the human reference “Hello world” is found
to have token probabilities [0.3, 0.6].

metric since its introduction almost two decades
ago. The problem currently appears limited to very
strong systems, but as hardware, modeling, and
available training data improve, it is likely BLEU
will fail more frequently in the future. This could
prove extremely detrimental if the MT community
fails to adopt an improved metric, as good ideas
could quietly be discarded or rejected from publi-
cation because they do not correlate with BLEU.
In fact, this may already be happening.

We propose using a sentential, sequence-to-
sequence paraphraser to force-decode and score
MT outputs conditioned on their corresponding hu-
man references. Our model implicitly represents
the entire (exponentially large) set of potential para-
phrases of a sentence, both valid and invalid; by
“querying” the model with a particular system out-

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 90-121,
November 16-20, 2020. (©)2020 Association for Computational Linguistics



put, we can use the model score to measure how
well the system output paraphrases the human ref-
erence translation. Our model is not trained on any
human quality judgements, which are not available
in many domains and/or language pairs.

The best possible MT output is one which per-
fectly matches a human reference; therefore, for
evaluation, an ideal paraphraser would be one with
an output distribution centered around a copy of
its input sentence. We denote such a model a “lex-
ically/syntactically unbiased paraphraser” to dis-
tinguish it from a standard paraphraser trained to
produce output which conveys the meaning of the
input while also being lexically and/or syntacti-
cally different from it. For this reason, we propose
using a multilingual NMT system as an unbiased
paraphraser by treating paraphrasing as zero-shot
“translation” (e.g., Czech to Czech). We show that
a multilingual NMT model is much closer to an
ideal lexically/syntactically unbiased paraphraser
than a generative paraphraser trained on synthetic
paraphrases. It also allows a single model to work
in many languages, and can be applied to the task
of “Quality estimation (QE) as a metric” (Fonseca
et al., 2019) by conditioning on the source instead
of the reference. Figure 1 illustrates our method,
which we denote Prism (Probability is the metric).

We train a single model in 39 languages and
show that it:

* Outperforms or ties with prior metrics and
several contrastive neural methods on the
segment-level WMT 2019 MT metrics task
in every language pair;'

Is able to discriminate between very strong
neural systems at the system level, addressing
a problem raised at WMT 2019; and

Significantly outperforms all QE metrics sub-
mitted to the WMT 2019 QE shared task

Finally, we contrast the effectiveness of our model
when scoring MT output using the source vs the hu-
man reference. We observe that human references
substantially improve performance, and, crucially,
allow our model to rank systems that are substan-
tially better than our model at the task of transla-
tion. This is important because it establishes that
our method does not require building a state-of-the-
art multilingual NMT model in order to produce
a state-of-the-art MT metric capable of evaluating
state-of-the-art MT systems.

"Except for Gujarati, where we had no training data.
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We release our model, metrics toolkit, and pre-
processed training data.”

2 Related Work

MT Metrics Early MT metrics like BLEU (Pa-
pineni et al., 2002) and NIST (Doddington, 2002)
use token-level n-gram overlap between the MT
output and the human reference. Overlap can
also be measured at the character level (Popovié,
2015, 2017) or using edit distance (Snover et al.,
2006). Many metrics use word- and/or sentence-
level embeddings, including ReVal (Gupta et al.,
2015), RUSE (Shimanaka et al., 2018), WMDO
(Chow et al., 2019), and ESIM (Mathur et al., 2019).
MEANT (Lo and Wu, 2011) and MEANT 2.0 (Lo,
2017) measure similarity between semantic frames
and role fillers. State-of-the-art methods including
YiSi (Lo, 2019) and BERTscore (Zhang et al., 2019,
2020) rely on contextualized embeddings (Devlin
et al., 2019) trained on large (non-parallel) corpora.
BLEURT (Sellam et al., 2020) applies fine tuning
of BERT, including training on prior human judge-
ments. In contrast, our work exploits parallel bitext
and doesn’t require training on human judgements.

Paraphrase Databases Prior work explored us-
ing parallel bitext to identify phrase level para-
phrases (Bannard and Callison-Burch, 2005; Gan-
itkevitch et al., 2013) including bitext in multiple
language pairs (Ganitkevitch and Callison-Burch,
2014). Paraphrase tables were, in turn, used in MT
metrics to reward systems for paraphrasing words
(Banerjee and Lavie, 2005) or phrases (Zhou et al.,
2006; Denkowski and Lavie, 2010) from the human
reference. Our work can be viewed as extending
this idea to the sentence level, without having to
enumerate the millions or billions of paraphrases
(Dreyer and Marcu, 2012) for each sentence.

Multilingual NMT Multilingual NMT (Dong
et al., 2015) has been shown to rival performance
of single language pair models in high-resource
languages (Aharoni et al., 2019; Arivazhagan et al.,
2019) while also improving low-resource trans-
lation via transfer learning from higher-resource
languages (Zoph et al., 2016; Nguyen and Chi-
ang, 2017; Neubig and Hu, 2018). An extreme
low-resource setting is where the system translates
between languages seen during training, but in a
language pair where it did not see any training

https://github.com/thompsonb/prism



Word-level paraphraser log probabilities

H(out|in) sSBLEU LASER

Jason went to school at

the University of Madrid

<EOS>

Copy -0.08 -0.26 -0.16 -0.16 -0.12-0.11 -0.14 ~ -0.10 -0.10 -0.11 -0.10 -0.13 1000 1.000
. Jason went school at University of Madrid . <EOS>
Disfluent "y 08 026 721 -0.12 481  -0.10 -0.11 -0.11 -0.10 143 355 0989
Jason will go to school at the University of Madrid <EOS> 0.99 70.8 0.960
Tnadequate -0.08 -9.77 -0.76 -0.22 -0.19 -0.14 -0.15 -0.16 ~-0.10 -0.10 -0.12 -0.10 " : :
Jason went to school at the University of Berlin <EOS>
20.08 -0.26 -0.16 -0.16 -0.12-0.11 -0.14  -0.10 -10.34 -0.12 -0.10 106 783 0957
Fluent & Jason attended the University of Madrid <EOS> 057 411 0.918
Adequate -0.08 -2.01 -1.63 -042 -0.10 -0.09 -0.16 -0.10 -0. : :

Table 1: Example token-level log probabilities from our model for various output sentences, conditioned on input
sentence (i.e., human reference) “Jason went to school at the University of Madrid.” H(out|in) denotes the average
token-level log probability. We observe that our model generally penalizes any deviations (bolded) from the input
sentence, but tends to penalize deviations which change the meaning of the sentence or introduce a disfluency
more harshly than those which are fluent and adequate. Sentence-level BLEU with smoothing=1 (“sBLEU”) and
LASER embedding cosine similarity (“LASER”) are shown for comparison. We note that LASER appears fairly
insensitive to disfluencies, and sentenceBLEU struggles to reward valid paraphrases.

data, denoted ‘zero-shot’ translation. Despite ev-
idence that intermediate representations are not
truly language-agnostic (Kudugunta et al., 2019),
zero-shot translation has been shown successful, es-
pecially between related languages (Johnson et al.,
2017; Gu et al., 2018; Pham et al., 2019).

Generative Paraphrasing Sentential paraphras-
ing can be accomplished by training an MT sys-
tem on paraphrase examples instead of translation
pairs (Quirk et al., 2004). While natural paraphrase
datasets do exist (Quirk et al., 2004; Coster and
Kauchak, 2011; Fader et al., 2013; Lin et al., 2014;
Federmann et al., 2019), they are somewhat lim-
ited. An alternative is to start with much more
plentiful bitext and back-translate one side into
the language of the other to create synthetic para-
phrases on which to train (Prakash et al., 2016;
Wieting and Gimpel, 2018; Hu et al., 2019a,b,c).
Tiedemann and Scherrer (2019) propose using para-
phrasing as a way to measure the semantic abstrac-
tion of multilingual NMT. They also propose using
a multilingual NMT model as a generative para-
phraser.’

Semantic Similarity Parallel corpora in many
language pairs have been used to produce
fixed-size, multilingual sentence representations
(Schwenk and Douze, 2017; Wieting et al., 2017;
Artetxe and Schwenk, 2018; Wieting et al., 2019;
Raganato et al.,, 2019). LASER (Artetxe and

3We find that generating from a well trained multilingual

NMT system tends to produce copies of the input, as opposed
to interesting paraphrases (see Appendix A).
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Schwenk, 2018), for example, trains a variant of
NMT with a fixed-size intermediate representation
in 93 languages. Embeddings produced by the
encoder can be compared to measure intra- or inter-
lingual semantic similarity.

3 Method

We propose using a paraphraser to force-decode
and estimate probabilities of MT system outputs,
conditioned on their corresponding human refer-
ences. Let p(y¢|yi<¢, x) be the probability our para-
phraser assigns to the ¢ token in output sequence
Yy, given the previous output tokens y;~; and the
input sequence x. Table 1 shows an example of
how token-level probabilities from our model (de-
scribed in §4) penalize both fluency and adequacy
errors given a human reference. We consider two
ways of combining token-level probabilities from
the model—sequence-level log probability (G) and
average token-level log probability (H):

|yl

G(ylr) = log p(yilyi<t, v)
t=1

H(ylz) = ‘;G@rx)

Let sys denote an MT system output, ref denote a
human reference, and src denote the source. We
expect scoring sys conditioned on ref to be most
indicative of the quality of sys. However, we also
explore scoring ref conditioned on sys as we find
qualitatively that output sentences which drop some



meaning conveyed by the input sentence are penal-
ized less harshly by the model than output sen-
tences which contain extra information not present
in the input. Scoring in both directions to penalize
the presence of information in one sentence but not
the other is similar, in spirit, to methods which use
bi-directional textual entailment as an MT metric
(Padé et al., 2009; Khobragade et al., 2019).4

We postulate that the output sentence that best
represents the meaning of an input sentence is, in
fact, simply a copy of the input sentence, as precise
word order and choice often convey subtle connota-
tions. As such, we seek a model whose output dis-
tribution is centered around a copy of the input sen-
tence, which we denote a “lexically/syntactically
unbiased paraphraser.” While a standard generative
paraphraser is trained to retain semantic meaning,
it does not meet our criteria because it is simul-
taneously trained to produce output which is lex-
ically/syntactically different than its input, a key
element in generative paraphrasing (Bhagat and
Hovy, 2013).

We propose using a multilingual NMT system
as a lexically/syntactically unbiased paraphraser. A
multilingual NMT system consists of an encoder
which maps a sentence in to an (ideally) language-
agnostic semantic representation, and decoder to
map that representation back to a sentence. The
model has only seen bitext in training, but we pro-
pose to treat paraphrasing as a zero-shot “transla-
tion” (e.g., Czech to Czech).

Because our model is multilingual, we can also
score MT system output conditioned on the source
sentence instead of the human reference. This task
is known as “quality estimation (QE) as a metric,”
and was part of the WMT19 QE shared task (Fon-
seca et al., 2019). We use “Prism-ref” to denote our
reference-based metric and ‘“Prism-src” to denote
our system applied as a QE metric.

Our final metric and QE metric are defined based
on results on our development set (see §5.2) as
follows:

1 1
Prism-ref = §H(sys|ref) + §H(ref\sys)
Prism-src = H (sys|src)
To obtain system-level scores, we average segment-

level scores over all segments in the test set.

*Conditional probabilities of MT systems in each direc-
tion have been shown effective at filtering MT training data
(Junczys-Dowmunt, 2018).
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4 Experiments

We train a multilingual NMT model and ex-
plore the extent to which it functions as a lexi-
cally/syntactically unbiased paraphraser. We then
conduct several preliminary experiments on the
WMT18 MT metrics data (Ma et al., 2018) to de-
termine how to best utilize the token-level probabil-
ities from the paraphraser, and report results on the
WMT19 system- and segment-level metric tasks
(Ma et al., 2019) and QE as a metric task (Fonseca
etal., 2019).

4.1 Data Preparation

Our method requires a model, which in turn re-
lies heavily on the data on which it is trained, so
we describe here the rationale behind the design
decisions made regarding the training data. Full
details sufficient for replication are provided in Ap-
pendix B.

Language-Agnostic Representations To en-
courage our intermediate representation to be as
language-agnostic as possible, we choose datasets
with as much language pair diversity as possible
(i.e., not just en—* and *—en), as Kudugunta et al.
(2019) has shown that encoder representation is
affected by both the source language and target
language. While it is common to append the target
language token to the source sentence, we instead
prepend it to the target sentence so that the encoder
cannot do anything target-language specific with
this tag. At test time, we force-decode the desired
language tag prior to scoring.

Noise NMT systems are known to be sensi-
tive to noise, including sentence alignment errors
(Khayrallah and Koehn, 2018), so we perform fil-
tering with LASER (Schwenk, 2018; Chaudhary
et al., 2019). We also perform language ID filtering
using FastText (Joulin et al., 2016) to avoid training
the decoder with incorrect language tags.

Number of Languages Aharoni et al. (2019)
found that performance of zero-shot translation
in a related language pair increased substantially
when increasing the number of languages from
5 languages and 25, with a performance plateau
somewhere between 25 and 50 languages. We view
paraphrasing as zero-shot translation between sen-
tences in the same language, so we expect to need
a similar number of languages.



Copies We filter sentence pairs with excessive
copies and partial copies, as multiple studies (Ott
et al., 2018; Khayrallah and Koehn, 2018) have
noted that MT performance degrades substantially
when systems are exposed to copies in training.

4.2 Model Training

We train a Transformer (Vaswani et al., 2017)
model with approximately 745M parameters to
translate between 39 languages. The full list of
languages and data amounts used is provided in
Appendix B, and model training details sufficient
for replication are given in Appendix C. Train-
ing a single large model consumed the majority of
our compute budget, thus performing ablations is
beyond the scope of this work.

Our data comes primarily from WikiMatrix
(Schwenk et al., 2019), Global Voices,” EuroParl
(Koehn, 2005), SETimes,® and United Nations
(Eisele and Chen, 2010). The data processing de-
scribed above and in Appendix B results in 99.8M
sentence pairs in 39 languages.’” The most common
language is English, at 16.7% of our data, while
the least common 20 languages account for 21.9%.

4.3 Baselines and Contrastive Methods

We compare to all systems from the WMT19
shared metrics task, as well as BERTscore (Zhang
et al., 2020) and the recent BLEURT method (Sel-
lam et al., 2020). We also explore several con-
trastive methods. Training details sufficient for
replication for each model/baseline are given in
Appendix C.

Generative Sentential Paraphraser We com-
pare scoring with our Prism model vs a standard,
English-only paraphraser trained on the ParaBank
2 dataset (Hu et al., 2019c¢). ParaBank 2 contains
~ 50M synthetic paraphrastic pairs derived from
back-translating a Czech—English corpus, and the
authors report state-of-the-art paraphrasing results.

Auto-encoder Auto-encoders provide an alterna-
tive means of training seq2seq models, without the
need for parallel bitext. We compare to scoring
with the “multilingual denoising pre-trained model”
(mBART) of Liu et al. (2020), as it works in all
languages of interest.

Shttp://casmacat.eu/corpus/
global-voices.html

®http://nlp.ffzg.hr/resources/corpora/
setimes/

"For every sentence pair (a,b) in our 99.8M examples, we
train on both (a,b) and (b,a)
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LASER We explore using the cosine distance be-
tween LASER embeddings of the MT output and
human reference, using the pretrained 93-language
model provided by the authors.® We are particu-
larly interested in LASER as it, like our model, is
trained on parallel bitext in many languages.

Language Model We find qualitatively that
LASER is fairly insensitive to disfluencies (see
Table 1), so we also explore augmenting it with
language model (LM) scores of the system outputs.
We train a multilingual language model (see Ap-
pendix C) on the same data as our multilingual
NMT system.

4.4 Paraphraser Bias

We expect that a lexically/syntactically unbiased
measure of translation quality should (on average)
increase with increased lexical similarity between
a translation and reference. To explore the extent
to which Prism and the model trained on ParaBank
2 are biased, we consider average H (sys|ref) as a
function of binned lexical similarity (approximated
by sentBLEU, with smoothing=1) for all (sys, ref)
pairs for all systems submitted to WMT19 in all
language pairs into English. We also contrast the
conditional probabilities of three outputs for the
same input: (1) the sequence generated by the
model via beam search; (2) a copy of the input;
and (3) a human paraphrase of the input. Finally,
we generate from the model using beam search and
examine the outputs to see how much they differ
from the inputs.

4.5 MT Metrics Evaluation

We report results and statistical significance us-
ing scripts released with the WMT19 shared task.
Segment-level performance is reported as the
Kendall’s 7 variant used in the shared task, and
system-level performance is reported as Pearson
correlation with the mean of the human judgments.
Bootstrap resampling (Koehn, 2004; Graham et al.,
2014) is used to estimate confidence intervals for
each metric, and metrics with non-overlapping 95%
confidence intervals are identified as having a sta-
tistically significant difference in performance.
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Figure 2: Average H (sys|ref) as a function of average lexical difference (as measured by sentBLEU) for every
English (sys, ref) pair submitted to WMT19, for both the Prism and ParaBank 2 paraphrasers. (sys, ref) pairs are
splitinto 10 sentBLEU bins of uniform width. Fraction of total data in each bin is shown on x-axis (in parentheses).

en—cs en-de en—fi en—gu en-kk en-lt en-ru en-zh | de—cs de-fr fr-de
BERTSCORE (Zhang et al., 2020) 0.485 0.345 0.524 0.558 0.533 0.463 0.580 0.347| 0.352 0.325 0.274
EED* (Stanchev et al., 2019) 0431 0.315 0.508 0.568 0.518 0.425 0.546 0.257 | 0.345 0.301 0.267
Y1S1-1* (Lo, 2019) 0475 0.351 0.537 0.551 0.546 0.470 0.585 0.355| 0.376 0.349 0.310
Y1S1-1_srL* (Lo, 2019) — 0.368 - — — — —  0.361 - — 0.299
Prism-ref (This Work) 0.582 0.427 0.591 0.313 0.531 0.558 0.584 0.376 | 0.458 0.453 0.426
LASER + LM (Contrastive) 0.535 0.401 0.568 0.306 0.408 0.503 0.640 0.356 | 0.431 0.401 0.381
mBART (Contrastive) 0.345 0.302 0401 0.528 0.462 0.365 0.443 0.280 | 0.262 0.255 0.236
de-en fi-en gu-en kk-en It-en ru-en zh-en
BERTSCORE (Zhang et al., 2020) 0.176 0.345 0.320 0.432 0.381 0.223 0.430
BLEURT (Sellam et al., 2020) 0.204 0.367 0311 0.447 0.387 0.228 0.423
ESIM?* (Chen et al., 2017; Mathur et al., 2019)  0.167 0.337 0.303 0.435 0.359 0.201 0.396
Y1S1-1% (Lo, 2019) 0.164 0347 0312 0440 0376 0.217 0.426
Y1S1-1_SRL* (Lo, 2019) 0.199 0346 0306 0.442 0380 0.222 0.431
Prism-ref (This Work) 0.204 0.357 0313 0.434 0382 0.225 0.438
Prism-ref w/ ParaBank 2 (Contrastive) 0.184 0.341 0.326 0.425 0.373 0.207 0.432
LASER + LM (Contrastive) 0.190 0.335 0.319 0428 0.368 0.207 0.416
mBART (Contrastive) 0.136 0.255 0246 0.377 0.298 0.162 0.349

Table 2: WMT19 segment-level human correlation (7), to non-English (top) and to English (bottom). Bold denotes
top scoring method and any other methods with whose 95% confidence interval overlaps with that of a top method.
1:WMT19 Metric Submission. For brevity, only competitive baselines are shown. For complete results see Ap-
pendix E. Our models were not trained on Gujarati (gu). “LASER + LM” denotes the optimal linear combination

found on the development set.

5 Results

5.1 Paraphraser Bias Results

We find H (sys|ref) increases monotonically with
sentBLEU for the Prism model, but the model
trained on ParaBank 2 has nearly the same scores
for output with sentBLEU in the range of 60 to 100;
however that range accounts for only about 8.5%
of all system outputs (see Figure 2). We find that
a copy of the input is almost as probable as beam
search output for the Prism model. In contrast, the

$https://github.com/facebookresearch/
LASER
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model trained on ParaBank 2 prefers its own beam
search output to a copy of the input. Addition-
ally, beam search from our model produces output
which is more lexically similar to the input (BLEU
of 82.8 with respect to input, vs 31.9 for ParaBank
2). ParaBank 2 tends to change the output in ways
which occasionally significantly alter the meaning
of the sentence. See Appendix A for more details.
All of these findings support our hypothesis that our
model is closer to an ideal lexically/syntactically
unbiased paraphraser than the contrastive model
trained on synthetic paraphrases.



5.2 Preliminary (Development) Results

We find that length-normalized log probability (H)
slightly outperforms un-normalized log probability
(G). When using the reference, we find an equal
weighting of H (sys|ref) and H (ref|sys) to be ap-
proximately optimal, but we find that when using
the source, H (src|sys) does not appear to add use-
ful information to H (sys|src). Full results can be
found in Appendix D. These findings were used to
select the Prism-ref and Prism-src definitions (§3).

We find that the probability of sys as estimated
by an LM, as well as and the cosine distance be-
tween LASER embeddings of sys and ref, both
have decent correlation with human judgments and
are complementary. However, cosine distance be-
tween LASER embeddings of sys and src have
only weak correlation.

5.3 Segment-Level Metric Results

Segment-level metric results are shown in Table 2.
On language pairs into non-English, we outperform
prior work by a statistically significant margin in 7
of 11 language pairs® and are statistically tied for
best in the rest, with the exception of Gujarati (gu)
where the model had no training data. Into English,
our metric is statistically tied with the best prior
work in every language pair. Our metric tends to
significantly outperform our contrastive LASER +
LM and mBART methods, although LASER + LM
performs surprisingly well in en—ru.

5.4 System-Level Metric Results

Table 3 shows system-level metric performance on
the top four systems submitted to WMT19 com-
pared to selected metrics. While correlations are
not high in all cases for Prism, they are at least
all positive. In contrast, BLEU has negative cor-
relation in 5 language pairs, and BERTscore and
YiSi-1 variants are each negative in at least two.
BLEURT has positive correlations in all language
pairs into English, but is English-only. Note that
Pearson’s correlation coefficient may be unstable
in this setting (Mathur et al., 2020). For full top
four system-level results see Appendix F.

We do not find the system-level results computed
against all submitted MT systems (see Appendix G)
to be particularly interesting; as noted by Ma et al.
(2019), a single weak system can result in high

°In en-ru, Prism-ref is statistically tied with YiSi-1, ESIM,
and BERT'score.
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overall system-level correlation even for a very
poor metric.

5.5 QE as a Metric Results

We find that our reference-less Prism-src outper-
forms all QE as a metrics systems from the WMT19
shared task by a statistically significant margin, in
every language pair at segment-level human corre-
lation (Table 4), and outperforms or statistically ties
at system-level human correlation (Appendix G).

6 Analysis and Discussion

How helpful are human references? The fact
that our model is multilingual allows us to explore
the extent to which the human reference actually
improves our model’s ability to judge MT system
output, compared to using the source instead. The
underlying assumption with any MT metric is that
the work done by the human translator makes it
easier to automatically judge the quality of MT
output. However, if our model or the MT systems
being judged were strong enough, we would expect
this assumption to break down.

Comparing the performance of our method with
access to the human reference (Prism-ref) vs our
method with access to only the source (Prism-src),
we find that the reference-based method statisti-
cally outperforms the source-based method in all
but one language pair. We find the case where they
are not statistically different, de—cs, to be particu-
larly interesting: de—cs was the only language pair
in WMT19 where the systems were unsupervised
(i.e., did not use parallel training data). As a re-
sult, it is the only language pair where our model
outperformed the best WMT system at translation.
In most cases, our model is substantially worse at
translation than the best WMT systems. For exam-
ple, in en—de and zh—en, two language pairs where
strong NMT systems were especially problematic
for MT metrics, the Prism model is 6.8 and 19.2
BLEU points behind the strongest WMT systems,
respectively (see Table 5 for the Prism model com-
pared to the best system submitted in each WMT19
language pair). Thus the performance difference
between Prism-ref and Prism-src would suggest
that the model needs no help in judging MT sys-
tems which are weaker than it is, but the human ref-
erences are assisting our model in evaluating MT
systems which are stronger than it is. This means
that we have not simply reduced the task of MT
evaluation to that of building a state-of-the-art MT



en—cs en—de en—fi en—gu en-kk en-lt en-ru en—zh |de—cs de—fr fr-de
BERTSCORE (Zhang et al., 2020) 0.868 -0.722 0.859 0.922 0.288 0.955 0.953 0.982]0.976 0.707 0.973
BLEU" (Papineni et al., 2002) 0.930 -0.370 0.898 0.860 0.181 0.925 0.753 0.987 | 0.812 0.495 0.983
Yi1S1-1* (Lo, 2019) 0.847 -0.220 0976 0917 0.342 0.838 0.963 0.990 | 0.967 0.677 0.967
Y1S1-1_SrL* (Lo, 2019) — -0.378 — — — — — 0.9% — — 0974
Prism-ref (This Work) 0.952 0.278 0.886 0.863 0.693 0.862 0.975 0.966 | 0.968 0.648 0.998
LASER + LM (Contrastive) 0.961 0.377 0.903 0.509 0.605 0.743 0.962 0.985| 0.947 0.774 0.975
mBART (Contrastive) 0.936 -0.834 0966 0912 0224 0.946 0.968 0.986 | 0.964 0.944 0.874

de-en fi-en gu-en kk-en It-en ru-en zh-en

BERTSCORE (Zhang et al., 2020) 0.272 0.683 0.913 0.897 0.753 0.456 -0.220

BLEU' (Papineni et al., 2002) -0.822 -0.275 0966 0.958 0.625 -0.356 -0.694

BLEURT (Sellam et al., 2020) 0953 0.714 0.881 0.929 0.841 0.522 0.660

Yi1S1-1% (Lo, 2019) 0.045 0.610 0962 0.887 0.552 0.365 -0.067

Y1S1-1_SRL* (Lo, 2019) 0.081 0.580 0.959 0.874 0.560 0.342 -0.069

Prism-ref (This Work) 0401 0.719 0.896 0.796 0.877 0.431 0.523

LASER + LM (Contrastive) 0957 0.768 0.867 0.870 0.615 0.596 0.733

mBART (Contrastive) -0.739 0559 0913 0902 0491 -0.103 -0.295

Table 3: WMT19 system-level human correlation (Pearson), for top 4 systems only, to non-English (top) and to
English (bottom), for selected metrics. Negative correlations with human judgments shown in red for emphasis.
T:WMT19 Baseline ::WMT19 Metric Submission. “LASER + LM” denotes the optimal linear combination found
on the development set. Our models were not trained on Gujarati (gu).

en—cs en-de

en—fi en—-gu en-kk en-lt en-ru en-zh \ de—cs de—fr fr-de

Best WMT19 QE as Metric  0.069° 0.236" 0.351° 0.147* 0.187* 0.003* 0.226° 0.044°
0.470 0.402 0.555 0.215 0.507 0.499 0.486 0.287

Prism-src (This work)

0.199* 0.186* 0.066"
0.444 0.371 0.316

de-en

fi-en

gu—en Kkk-en It-en ru-en zh-en

Best WMT19 QE as Metric  0.068*° 0.211¢ —0.001° 0.096* 0.075* 0.089¢ 0.253°

Prism-src (This work) 0.109

0.300

0.102 0.391 0.356 0.178 0.336

Table 4: WMT19 segment-level human correlation (7) for QE as Metric systems (which have access to the source
only, not the reference). Bold denotes top scoring method and any other methods with whose 95% confidence
interval overlaps with that of a top method. Our models were not trained on Gujarati (gu). For brevity, only the
best QE-metric for each language pair is shown—for full results see Appendix G. a:Y1S1-2 (Lo, 2019) b:YISI-
2_SRL (Lo, 2019) c:UNI (Yankovskaya et al., 2019) d:UNI+ (Yankovskaya et al., 2019).

system. We see that a good (but not state-of-the-art)
multilingual NMT system can be a state-of-the-art
MT metric and judge state-of-the-art MT systems.

Finally, with the exception of de—cs discussed
above, we see statistically significant improve-
ments for Prism-ref over Prism-src both into En-
glish (where human judgments were reference-
based) and into non-English (where human judg-
ments were source-based). This suggests that the
high correlation of Prism-ref with human judge-
ments is not simply the result of reference bias
(Fomicheva and Specia, 2016).

Does paraphraser bias matter? Our lexi-
cally/syntactically unbiased paraphraser tends to
outperforms the generative English-only ParaBank
2 paraphraser, but usually not by a statistically
significant margin. Analysis indicate the lexi-
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cal/syntactic bias is only harmful in somewhat in-
frequent cases where MT systems match or nearly
match the reference, suggesting it would be more
detrimental with stronger systems or multiple ref-
erences. Our multilingual training method is much
simpler than the alternative of creating synthetic
paraphrases and training individual models in 39
languages, and our model may benefit from transfer
learning to lower-resource languages.

Does fluency matter? Despite NMT being very
fluent, our results suggest that fluency is fairly dis-
criminative, especially in non-English: LM scoring
outperforms sentenceBLEU at segment-level cor-
relation in 7/10 language pairs to non-English lan-
guages (excluding Gujarati), for example. This is
consistent with recent findings that LM scores can
be used to augment BLEU (Edunov et al., 2020).



Lang BLEU

Pair WMTI19 Best Multilingual A
de—cs 20.1% 21.8 +1.7
de—en 42.8 35.5 -7.3
de—fr 37.3 33.9 34
en—cs 29.9 24.2 -5.7
en—de 44.9 38.1 -6.8
en—fi 27.4 21.9 -5.5
en—gu 28.2 0.0f -28.2
en—kk 11.1 8.6 -2.5
en—It 20.1 15.0 -5.1
en—ru 36.3 28.1 -8.2
en—zh 44.6 30.1 -14.5
fi—en 33.0 26.2 -6.8
fr—de 35.0 26.4 -8.6
gu—en 24.9 04% -24.5
kk—en 30.5 27.7 -2.8
It—en 36.3 28.5 -7.8
ru—en 40.1 36.1 -4.0
zh—en 39.9 20.6  -19.3

Table 5: BLEU scores for our multilingual NMT sys-
tem on WMT 19 testsets, compared to best system from
WMT19. Our multilingual system achieves state-of-
the-art performance as an MT metric despite substan-
tially under performing all the best WMT19 MT sys-
tems at translation (excluding unsupervised). : WMT
systems were unsupervised (no parallel data). £: Multi-
lingual system did not train on Gujarati (gu). Systems
are not trained on the same data, so this should not be
interpreted as a comparison between multilingual and
single-language pair MT. ISO 639-1 language codes.

Can we measure adequacy and fluency sepa-
rately? The proposed method significantly out-
performs the contrastive LASER-based method in
most language pairs, even when LASER is aug-
mented with a language model. This suggests that
jointly optimizing a model for adequacy and flu-
ency is better than optimizing them independently
and combining after the fact—this is unsurprising
given that neural MT has shown significant im-
provements over statistical MT, where a phrase
table and language model were trained separately.

Can we train on monolingual data instead of
bitext? The proposed method significantly out-
performs scoring with the mBART auto-encoder,
which is trained on large amounts of monolin-
gual data, despite using substantially less compute
power (1.3 weeks on 8 V100s for Prism vs 2.5
weeks on 256 V100s for mBART).
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7 Conclusion and Future Work

We show that a multilingual NMT system can be
used as a lexically/syntactically unbiased, multi-
lingual paraphraser, and that the resulting para-
phraser can be used as an MT metric and QE metric.
Our method achieves state-of-the-art performance
on the most recent WMT shared metrics and QE
tasks, without training on prior human judgements.

We release a single model which supports 39 lan-
guages. To the best of our knowledge, we are the
first to release a large multilingual NMT system,
and we hope others follow suit. We are optimistic
our method will improve further as stronger multi-
lingual NMT models become publicly available.

We compare our method to several contrastive
methods and present analysis showing that we have
not simply reduced the task of evaluation to that
of building a state-of-the-art MT system; the work
done by the human translator to create references
helps the evaluation model to judge systems that
are stronger (at translation) than it is.

Nothing in our method is specific to sentence-
level MT. In future work, we would like to extend
Prism to paragraph- or document-level evaluation
by training a paragraph- or document-level multi-
lingual NMT system, as there is growing evidence
that MT evaluation would be better conducted at
the document level, rather than the sentence level
(Laubli et al., 2018).
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A Generation Examples

Figure 3 shows sentences generated from both our model and the model trained on ParaBank 2.

We also contrast the conditional probabilities of three outputs for the same input: (1) the sequence
generated by the model via beam search; (2) a copy of the input; and (3) a human paraphrase of the
input. We use the English side of the zh—en newstest17 (Bojar et al., 2017) as input, so that we can use
the second human reference released by Hassan et al. (2018) as a human paraphrase. Table 6 shows the
results of scoring a copy of the input, a human paraphrase of the input, and a model’s beam search output,
for both our multilingual paraphraser and the ParaBank 2 model.

ParaBank 2  This Work

H(BS|r0) -0.501 -0.225
H(r0|r0) -1.157 -0.303
H(r1|r0) -2.246 -2.187
BLEU(BS, r0) 31.9 82.8

Table 6: Average token log probability (H) for a sequence generated via beam search (B.S), a copy of the input
(r0), and a high-quality human paraphrase of the input (1), for a generative paraphraser vs our model, conditioned
on 70 in all cases. BLEU is also computed for the beam search output of each model, with respect to 0. Note that
BLEU for r1 with respect to 70 is 17.1.
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REFERENCE

28-Year-Old Chef Found Dead at San Francisco Mall

THIS WORK 28-Year-Old Chef Found Dead at San Francisco Mall

PARABANK 2 28-year-old chef found dead in a mall in San Francisco

REFERENCE A 28-year-old chef who had recently moved to San Francisco was found dead in the stairwell of a local
mall this week.

THIS WORK A 28-year-old chef who had recently moved to San Francisco was found dead in the stairwell of a local
mall this week.

PARABANK 2  Earlier this week, a 28-year-old chef who had recently moved to San Francisco was found dead on
the steps of a local department store.

REFERENCE  But the victim’s brother says he can’t think of anyone who would want to hurt him, saying, “Things
were finally going well for him.”

THIS WORK But the victim’s brother says he can’t think of anyone who would want to hurt him, saying, ”Things
were finally going well for him.”

PARABANK 2  But the victim’s brother said he couldn’t think of anyone who’d want to hurt him, and he said he was
finally okay.

REFERENCE  The body found at the Westfield Mall Wednesday morning was identified as 28-year-old San Francisco
resident Frank Galicia, the San Francisco Medical Examiner’s Office said.

THIS WORK The body found at the Westfield Mall Wednesday morning was identified as 28-year-old San Francisco
resident Frank Galicia, the San Francisco Medical Examiner’s Office said.

PARABANK 2  The body found Wednesday morning at the Westfield Mall has been identified by the San Francisco
Medical Examiner’s Office as 28-year-old San-Franseiseo-resident Frank Galicia.

REFERENCE  The San Francisco Police Department said the death was ruled a homicide and an investigation is
ongoing.

THIS WORK The San Francisco Police Department said the death was deemed a homicide and an investigation is
ongoing.

PARABANK 2 Fhe San Francisco P.D. says the death has been ruled a murder and is under investigation.

REFERENCE The victim’s brother, Louis Galicia, told ABC station KGO in San Francisco that Frank, previously
a line cook in Boston, had landed his dream job as line chef at San Francisco’s Sons & Daughters
restaurant six months ago.

THIS WORK The victim’s brother, Louis Galicia, told ABC station KGO in San Francisco that Frank, formerly a line
cook in Boston, had landed his dream job as line chef at San Francisco’s Sons & Daughters restaurant
six months ago.

PARABANK 2  The Victim’s brother, Louis Galicia, told ABC station KGO in San Francisco that Frank, who used to
be a line chef in Boston, quit his dream job six months ago as a line chef at the Sons & Daughters
Restaurant in San Francisco.

REFERENCE A spokesperson for Sons & Daughters said they were “shocked and devastated” by his death.

THIS WORK A spokesperson for Sons & Daughters said they were ”shocked and devastated” by his death

PARABANK 2 A spokesman for Sons & Daughters said that his death ”shocked and devastated them.”

REFERENCE = "We are a small team that operates like a close knit family and he will be dearly missed,” the spokesper-
son said.

THIS WORK ”We are a small team that operates like a close-knit family and he will be dearly missed,” the spokesman
said.

PARABANK 2 ”We are a small team, operating as a close-knit family, and we will miss him dearly,” said the
spokesman.

REFERENCE Our thoughts and condolences are with Frank’s family and friends at this difficult time.

THIS WORK Our thoughts and condolences are with Frank’s family and friends at this difficult time.

PARABANK 2 Our thoughts and condolences go out to Frank’s family and friends in these difficult times.

REFERENCE  Louis Galicia said Frank initially stayed in hostels, but recently, "Things were finally going well for
him.”

THIS WORK Louis Galicia said Frank initially stayed in hostels, but recently, "Things were finally going well for
him.”

PARABANK 2  Louis Galicia said that Frank initially stayed in the dormitory, but lately, ”"He’s finally doing okay.”

Figure 3: Sentences generated via beam search (beamwidth 5) for the multilingual model presented in this work
vs ParaBank 2. We note that our model tends to produces copies or near copies of the input, which is the desired
behavior for our application. Changes are emphasized with bold or strikethreugh. The model trained on ParaBank
2 tends to produce output with lexical/syntactic changes, which occasionally also significantly change the meaning

of the sentence (denoted in red). References (paraphraser inputs) are the first ten sentences of WMT17 zh—en.
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B Data Details for Replication

Much of our data comes from WikiMatrix (Schwenk et al., 2019), a large collection of parallel data
extracted from Wikipedia, and for more domain variety, we added Global Voices,'? EuroParl (Koehn,
2005) (random subset of to 100k sentence pairs per language pair), SETimes,!! United Nations (Eisele
and Chen, 2010) (random sample of 1M sentence pairs per language pair). We also included WMT
Kazakh—English and Kazakh—Russian data from WMT, to be able to evaluate on Kazakh.

WMT Kazakh—English and Kazakh—Russian were limited to the best 1M and 200k sentence pairs,
respectively, as judged by LASER. We used a margin threshold of 1.05 for WikiMatrix and a threshold of
1.04 for the remaining datasets, as we expect them to be cleaner. We find that FastText classifies many
sentences as non-English when they contain mostly English but also contain a few non-English words,
especially from lower resource languages. To remedy this, we performed language identification (LID)
on 5-grams and filtered out sentences for which LID did not classify at least half of the 5-grams as the
expected language.

We filtered out sentences where there was more than 60% overlap in 3-grams or 40% overlap in
4-grams. Via manual inspection, this seemed to provide a good trade-off between allowing numbers and
named entities to be copied, and filtering out sentences that were clearly not translated. We perform
tokenization with SentencePiece (Kudo and Richardson, 2018) prior to filtering, using a 200k vocabulary
for all language pairs, to account for languages like Chinese which do not denote word boundaries. Note
that this vocabulary was used only for filtering, not for training the final model.

We limited training to languages with at least 1M examples, which resulted in 39 languages. Figure 4
shows the languages and amount of data in each language.

15M

12.5M

10M

en es fr I pt de it ar zh €S el T bg nl pl €@ uk SV hu fi damk sk et tr It vi sl id ja S9 lv NO SI' he kk €O hr bn

Figure 4: Distribution of the 39 languages (ISO 639-1 language code) of the 99.8M training sentences. English
accounts for 16.7%. Spanish, French, Russian, Portuguese, German, and Italian account for a combined 34.3%.
The bottom 20 languages account for only 21.9% combined.

Ohttp://casmacat.eu/corpus/global-voices.html
"nttp://nlp.ffzg.hr/resources/corpora/setimes/
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C Model Training Details for Replication
C.1 Primary Model

We train a SentencePiece (Kudo and Richardson, 2018) model with a 64k vocabulary size on the con-
catenation of all data, and filter sentences with length greater than 200 subwords. Multilingual NMT
performance has been found to increase significantly with model size — tor example, the best performance
of Huang et al. (2019) is with their largest model which has 6 billion parameters. Training such a model is
well beyond the scope of this work, but we train a model as large a feasible given our compute budget
constraints. We train a Transformer (Vaswani et al., 2017) in fairseq (Ott et al., 2019) with eight encoder
layers, eight decoder layers, an embedding size of 1280, feed forward layer size of 12288, 20 attention
heads, learning rate of 0.0004, batch size of 1800 tokens with gradient accumulation over 200 batches,
gradient clipping of 1.2, and dropout of 0.1. The model has approximately 745M parameters for 39
languages. We train for 6 epochs, which takes approximately 9 days on a p3.16x1arge instance rented
from Amazon AWS, which has 8 Volta V100 GPUs with 16 GB of memory each. No hyperparameters
were swept, as training a single model used the majority of our compute budget (the total cost for training
this model was approximately $13,000 USD). However, we did restart training after discovering that LID
was not performing well and adding the 5-gram LID filtering.

C.2 ParaBank 2 Model

We train a contrastive, English-only paraphraser on the ParaBank 2 dataset (Hu et al., 2019¢). We train a
Transformer with an 8-layer encoder, 8-layer decoder, 1024 dimensional embeddings, embedding sizes
of 1024, feed-forward size of 4096, and 16 attention heads. We use a SentencePiece model with a 16k
vocabulary size. Dropout is 0.3, label smoothing is 0.1, and learning rate is 0.0005. The model has
approximately 253M parameters for 1 language. Batch size is 31200 tokens, and the model trains for
approximately 6 weeks (33 epochs) on 4 Nvidia 2080 GPUs.

C.3 Language Model

We train a multilingual language model on the same data as our multilingual NMT system.

The model architecture is based on GPT-2 (Radford et al., 2019), and we use the fairseq
transformer_lm_gpt2_small implementation. We train for 200k updates (18 epochs) of ap-
proximately 131k tokens. The model has 369M parameters for 39 languages. We train with shared
embeddings and a learning rate of 0.0005, and we stop gradients at sentence boundaries, using
-—sample-break-mode eos as the model will be used to evaluate individual sentences. Other
parameters match the fairseq defaults. The model trained for approximately 4 weeks on 4 Nvidia TITAN
RTX GPUs.

C.4 Autoencoder

We use the pretrained “multilingual denoising pre-trained model” (mBART) model of Liu et al. (2020), as
it works in all languages of interest. Their model is designed to be fine-tuned to translation tasks, and
their fine-tuning introduces subtle changes to the decoder that are required for inference. In order to adapt
it to our task, we therefore fine-tune for a single update with a learning rate of 0. We then produce scores
with the model in the same manner as Prism-ref. The model has approximately 680M parameters for 25
languages. We did not train this model but note that doing so required substantial compute power — Liu
et al. (2020) note that they trained for approximately 2.5 weeks on 256 Nvidia V100 GPUS, each with
32GB of memory.

C.5 Baselines

We compare to BLEURT (Sellam et al., 2020) using the authors’ recommended “BLEURT-Base 128”2
We compare to BERTscore F1 (Zhang et al., 2020) using the model and code provided by the authors.'?

Phttps://github.com/google-research/bleurt
Bhttps://github.com/Tiiiger/bert_score
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The remaining baseline results are computed using the metric scores as submitted to (Ma et al., 2019)'

Yhttp://data.statmt.org/wmt19/translation-task/wmt19-submitted-data-v3.tgz
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D WMT 2018 (Development set) Results: System-level, Segment-level, and Sweeps

Figure 5 shows results on the development set (WMT18) for sweeping various linear combinations.
Table 7, Table 8, Table 9 and Table 10, show full segment- and system- level results, into and out of
English, for the WMT 2018 MT metrics shared task, along with all baselines and submitted systems.

w/ Reference w/o Reference

0.5 1 .
£ 0.4 - . /;/" """""""
: 7
& 7
< 0.3 1 17
& |7
[
>
< 0.2 /

0.1 - T - : : .

0 0.5 10 0.5 1
[ [0

w/ Reference (MT Metric):
—— (1 —«) H(ref|sys) + a H(sys|ref)
=== (1—a)G(reflsys) + aG(sys|ref)
(1 —«a) H(sys) + 10a LASER(sys,ref)
w/o Reference (QE as Metric):
—=—- (1 —«) H(src|sys) + a H(sys|src)
""" (1 — a) G(src|sys) + a G(sys|src)
(1 — ) H(sys) + 10a« LASER(sys, src)

Figure 5: Linear combinations of scoring each direction using length-normalized (H) vs un-normalized (G) log
probability for our method, and length-normalized language model probabilities (H) vs LASER for our contrastive
method. In both cases, we explore scoring using the human reference ref vs the source src. Results are segment-
level 7 on our development set (WMT18), averaged across all language pairs.
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cs—en de-en et-en fi-en ru-en tr-en zh-en
n 5110 77811 56721 15648 10404 8525 33357

BEER? (Stanojevi¢ and Sima’an, 2015) 0.295 0481 0341 0.232 0.288 0.229 0.214
BERTSCORE (Zhang et al., 2019, 2020)  0.404 0.550 0.397 0.296 0.340 0.292 0.253

BLEND* (Ma et al., 2017) 0.322 0492 0354 0226 0.290 0.232 0.217
CHARACTER?* (Wang et al., 2016) 0.256 0450 0.286 0.185 0.244 0.172 0.202
CHRF" (Popovié, 2015) 0.288 0479 0328 0229 0.269 0.210 0.208
CHRF+ (Popovi¢, 2017) 0.288 0479 0332 0234 0.279 0.218 0.207
ITER® (Panja and Naskar, 2018) 0.198 0396 0.235 0.128 0.139 -0.029 0.144
METEOR++* (Shimanaka et al., 2018) 0.270 0457 0329 0.207 0.253 0.204 0.179
RUSE* (Shimanaka et al., 2018) 0.347 0498 0368 0273 0311 0.259 0.218
SENTBLEU' (Papineni et al., 2002) 0.233 0415 0.285 0.154 0.228 0.145 0.178
UHH_TSKM? (Duma and Menzel, 2017) 0.274 0.436 0.300 0.168 0235 0.154 0.151
Y1S1-0% (Lo, 2019) 0.301 0474 0330 0225 0.294 0.215 0.205
Yi1SI-17 (Lo, 2019) 0.319 0488 0351 0.231 0300 0.234 0211
Yi1S1-1_SRL* (Lo, 2019) 0.317 0483 0345 0.237 0.306 0.233 0.209
Prism-ref (This Work) 0.423 0.560 0.409 0.317 0.366 0.309 0.263
Prism-ref w/ ParaBank 2 (Contrastive) 0.386 0.538 0.399 0.309 0.340 0.275 0.244
LASER + LM (Contrastive) 0.364 0.526 0378 0.265 0.305 0.257 0.243
Prism-src (This work) 0.355 0.515 0370 0.257 0.308 0.213  0.194
LM 0.285 0.438 0.285 0.198 0.280 0.123 0.192
LASER 0.310 0494 0364 0232 0.257 0.248 0.207
mBART (Contrastive) 0.251 0.455 0315 0.199 0.248 0.196 0.181

Table 7: WMT18 Segment-level results, to English. n denotes number of pairwise judgments. Bold denotes top
scoring method and any other methods with whose 95% confidence interval overlaps with that of a top method.
We exclude BLEURT (Sellam et al., 2020) as it was directly trained on WMT18 judgements. 1:WMT18 Baseline
(Ma et al., 2018) £:WMT18 Metric Submission (Ma et al., 2018)

en—-cs en—-de en—et en-fi en-ru en-tr en—zh
n 5413 19711 32202 9809 22181 1358 28602

BEER* (Stanojevi¢ and Sima’an, 2015) 0.518 0.686 0.558 0.511 0.403 0.374 0.302
BERTSCORE (Zhang et al., 2019, 2020) 0.559 0.727 0.584 0.538 0.424 0.389 0.364

BLEND? (Ma et al., 2017) - - - — 0394 - -
CHARACTER? (Wang et al., 2016) 0.414 0.604 0464 0403 0.352 0404 0313
CHRF' (Popovié, 2015) 0.516 0.677 0.572 0.520 0.383 0.409 0.328
CHRF+' (Popovié, 2017) 0.513 0.680 0.573 0.525 0.392 0.405 0.328
ITER* (Panja and Naskar, 2018) 0.333 0.610 0.392 0311 0.291 0.236 —
SENTBLEU' (Papineni et al., 2002) 0.389 0.620 0414 0.355 0.330 0.261 0.311
Y1S1-0* (Lo, 2019) 0.471 0.661 0.531 0464 0.394 0376 0.318
Y1S1-1% (Lo, 2019) 0.496 0.691 0.546 0.504 0407 0418 0.323
Y1S1-1_SRL* (Lo, 2019) —0.69 - - - — 0310
Prism-ref (This Work) 0.667 0.799 0.705 0.667 0.469 0.574 0.371
LASER + LM (Contrastive) 0.587 0.746 0.628 0.629 0.450 0.501 0.367
Prism-src (This work) 0.552 0.732 0.636 0.626 0.409 0.505 0.298
LM 0459 0.655 0.408 0.511 0.375 0331 0.221
LASER 0480 0.677 0.585 0.511 0.402 0.432 0.338
mBART (Contrastive) 0.404 0.594 0.405 0.410 0.356 0.303 0.305

Table 8: WMT18 Segment-level results, from English. n denotes number of pairwise judgments. Bold denotes
top scoring method and any other methods with whose 95% confidence interval overlaps with that of a top method.
T:WMT18 Baseline (Ma et al., 2018) £:WMT18 Metric Submission (Ma et al., 2018)

111



cs—en de-en et—en fi-en ru—en tr-en zh-en
n 5 16 14 9 8 5 14

BEER? (Stanojevi¢ and Sima’an, 2015)  0.958 0.994 0.985 0.991 0.982 0.870 0.976
BERTSCORE (Zhang et al., 2019, 2020)  0.990 0.999 0.990 0.998 0.935 0.499 0.956

BLEND* (Ma et al., 2017) 0973 0991 0.985 0.994 0.993 0.801 0.976
BLEU" (Papineni et al., 2002) 0970 0971 0.986 0.973 0.979 0.657 0.978
CDER' (Leusch et al., 2006) 0.972 0980 0.990 0.984 0.980 0.664 0.982
CHARACTER? (Wang et al., 2016) 0.970 0993 0.979 0.989 0.991 0.782 0.950
CHRF' (Popovi¢, 2015) 0.966 0994 0.981 0.987 0.990 0.452 0.960
CHRF+' (Popovi¢, 2017) 0.966 0.993 0.981 0.989 0.990 0.174 0.964
ITER? (Panja and Naskar, 2018) 0.975 0990 0.975 0.996 0.937 0.861 0.980
METEOR++* (Shimanaka et al., 2018) 0945 0991 0.978 0.971 0.995 0.864 0.962
NIST' (Doddington, 2002) 0.954 0984 0.983 0.975 0.973 0970 0.968
PER' 0.970 0985 0.983 0.993 0.967 0.159 0.931
RUSE? (Shimanaka et al., 2018) 0981 0997 0.990 0.991 0.988 0.853 0.981
TER' (Snover et al., 2006) 0.950 0.970 0.990 0.968 0.970 0.533 0.975
UHH_TSKM?* (Duma and Menzel, 2017) 0.952 0.980 0.989 0.982 0.980 0.547 0.981
WER' 0.951 0.961 0991 0961 0.968 0.041 0.975
Y1S1-0% (Lo, 2019) 0.956 0.994 0.975 0978 0.988 0.954 0.957
Y1S1-1* (Lo, 2019) 0.950 0.992 0.979 0.973 0991 0.958 00951
Y1S1-1_srRL* (Lo, 2019) 0.965 0.995 0.981 0.977 0.992 0.869 0.962
Prism-ref (This Work) 0.988 0.995 0.971 0.998 0.995 0.730 0.989
Prism-ref w/ ParaBank 2 (Contrastive) 0992 0989 0.964 0.998 0.996 0.896 0.986
LASER + LM (Contrastive) 0.988 0.991 0.965 0.994 0.745 0.297 0.890
Prism-src (This work) 0.984 0991 0.964 0987 0.970 0.896 0.958
LM 0986 0970 0.954 0.898 0.951 0.891 0.972
LASER 0.978 0986 0.953 0.984 0.489 0.968 0.591
mBART (Contrastive) 0.955 0.996 0.987 0.995 0.981 0.721 0.980

Table 9: WMT18 System-level results, to English. n denotes number of MT systems. Bold denotes top scoring
method and any other methods with whose 95% confidence interval overlaps with that of a top method. We exclude
BLEURT (Sellam et al., 2020) as it was directly trained on WMT18 judgements. 1:WMT18 Baseline (Ma et al.,
2018) £:WMT18 Metric Submission (Ma et al., 2018)

en—cs en—de en—-et en-fi en-ru en-tr en-zh
n 5 16 14 12 9 8 14

BEER* (Stanojevi¢ and Sima’an, 2015) 0.992 0.991 0.980 0.961 0.988 0.965 0.928
BERTSCORE (Zhang et al., 2019, 2020) 0.997 0.989 0.982 0.972 0.990 0.908 0.967

BLEND* (Maet al., 2017) - - - - 0.988 - -
BLEU" (Papineni et al., 2002) 0.995 0.981 0.975 0.962 0.983 0.826 0.947
CDER" (Leusch et al., 2006) 0.997 0.986 0.984 0.964 0.984 0.861 0.961
CHARACTER? (Wang et al., 2016) 0.993 0.989 0.956 0.974 0983 0.833 0.983
CHRF' (Popovi¢, 2015) 0.990 0.990 0.981 0.969 0.989 0.948 0.944
CHRF+" (Popovié, 2017) 0.990 0.989 0.982 0.970 0.989 0.943 0.943
ITER® (Panja and Naskar, 2018) 0.915 0.984 0.981 0.973 0975 0.865 -
NIST' (Doddington, 2002) 0.999 0.986 0.983 0.949 0.990 0.902 0.950
PER' 0.991 0.981 0.958 0.906 0.988 0.859 0.964
TER' (Snover et al., 2006) 0.997 0.988 0.981 0.942 0.987 0.867 0.963
WER' 0.997 0.986 0.981 0.945 0.985 0.853 0.957
Y1S1-0% (Lo, 2019) 0.973 0.985 0.968 0.944 0.990 0.990 0.957
Y1S1-1% (Lo, 2019) 0.987 0.985 0.979 0.940 0.992 0.976 0.963
Y1S1-1_srRL* (Lo, 2019) — 0.990 - - - — 0952
Prism-ref (This Work) 0.962 0.987 0.973 0976 0.989 0.894 0.977
LASER + LM (Contrastive) 0.953 0.984 0.980 0.976 0.984 0927 0.982
Prism-src (This work) 0.850 0.984 0.949 0.964 0.960 0.864 0.940
LM 0.854 0.985 0.837 0.938 0.959 0.830 0.859
LASER 0.995 0.965 0.937 0978 0.993 0.895 0.978
mBART (Contrastive) 0.985 0.989 0.977 0.959 0.987 0.963 0.689

Table 10: WMT18 System-level results, from English. n denotes number of MT systems. Bold denotes top scoring
method and any other methods with whose 95% confidence interval overlaps with that of a top method. 7:-WMT18
Baseline (Ma et al., 2018) $:WMT18 Metric Submission (Ma et al., 2018)
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E WMT 2019 Metric and QE as Metric Segment-Level Results

Table 11, Table 12, and Table 13 show segment-level metrics (excluding QE as a metric) results, for
language pairs into, out of, and not including English, for the WMT 2019 MT metrics shared task, along
with all baselines and submitted systems.

Table 14, Table 15, and Table 16 show segment-level QE as a metric results, for language pairs into,
out of, and not including English, for the WMT 2019 MT metrics shared task, along with all baselines
and submitted systems.

de-en fi-en gu-en kk-en It-en ru-en zh-en

n 85365 38307 31139 27094 21862 46172 31070
BEER (Stanojevi¢ and Sima’an, 2015) 0.128 0.283 0.260 0.421 0315 0.189 0.371
BERTR* (Mathur et al., 2019) 0.142 0.331 0.291 0421 0.353 0.195 0.399
BERTSCORE (Zhang et al., 2019, 2020) 0.176 0.345 0.320 0.432 0.381 0.223 0.430
BLEURT (Sellam et al., 2020) 0.204 0.367 0.311 0.447 0.387 0.228 0.423
CHARACTER® (Wang et al., 2016) 0.101 0.253 0.190 0340 0.254 0.155 0.337
CHRF' (Popovié, 2015) 0.122 0.286 0.256 0.389 0.301 0.180 0.371
CHRF+" (Popovié, 2017) 0.125 0.289 0.257 0.394 0.303 0.182 0.374
EED* (Stanchev et al., 2019) 0.120 0.281 0.264 0.392 0.298 0.176 0.376
ESIM? (Chen et al., 2017; Mathur et al., 2019) 0.167 0.337 0.303 0435 0.359 0.201 0.396
HLEPORA_BASELINE' (Han et al., 2012, 2013) - - — 0372 - — 0.339
METEOR++_2.0(SYNTAX)* (Guo and Hu, 2019) 0.084 0.274 0.237 0395 0.291 0.156 0.370
METEOR++_2.0(SYNTAX+COPY)! (Guo and Hu, 2019)  0.094 0.273 0244 0402 0.287 0.163 0.367
PREP* (Yoshimura et al., 2019) 0.030 0.197 0.192 0386 0.193 0.124 0.267
SENTBLEU' (Papineni et al., 2002) 0.056 0.233 0.188 0377 0.262 0.125 0.323
WMDO? (Chow et al., 2019) 0.096 0.281 0.260 0.420 0.300 0.162 0.362
Y1S1-0% (Lo, 2019) 0.117 0.271 0.263 0.402 0.289 0.178 0.355
Y1S1-1% (Lo, 2019) 0.164 0.347 0312 0.440 0376 0.217 0.426
Y1S1-1_SRL* (Lo, 2019) 0.199 0.346 0.306 0.442 0.380 0.222 0.431
Prism-ref (This Work) 0.204 0.357 0.313 0.434 0.382 0.225 0.438
Prism-ref w/ ParaBank 2 (Contrastive) 0.184 0.341 0.326 0.425 0373 0.207 0.432
LASER + LM (Contrastive) 0.190 0.335 0.319 0428 0.368 0.207 0.416
LM 0.083 0.253 0.165 0.120 0.281 0.130 0.210
LASER 0.151 0.301 0.305 0.420 0.325 0.193 0.397
mBART (Contrastive) 0.136  0.255 0.246 0377 0.298 0.162 0.349

Table 11: WMT19 Segment-level results, metrics (excludes QE as metric), to English. n denotes number of
pairwise judgments. Bold denotes top scoring method and any other methods with whose 95% confidence interval
overlaps with that of a top method. T:WMT19 Baseline (Ma et al., 2019) £:WMT19 Metric Submission (Ma et al.,
2019)
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en—cs en—-de en—fi en—-gu en—-kk en-lt en-ru en-zh

n 27178 99840 31820 11355 18172 17401 24334 18658
BEER? (Stanojevi¢ and Sima’an, 2015) 0443 0.316 0.514 0.537 0.516 0441 0.542 0232
BERTSCORE (Zhang et al., 2019, 2020) 0.485 0.345 0524 0.558 0.533 0.463 0.580 0.347
CHARACTER? (Wang et al., 2016) 0.349 0.264 0.404 0500 0.351 0.311 0432 0.094
CHRF' (Popovi¢, 2015) 0.455 0.326 0514 0534 0479 0446 0.539 0.301
CHRF+" (Popovié, 2017) 0.458 0.327 0514 0538 0.491 0448 0.543 0.296
EED* (Stanchev et al., 2019) 0.431 0.315 0508 0.568 0.518 0.425 0.546 0.257
ESIM?* (Chen et al., 2017; Mathur et al., 2019) — 0329 0.511 — 0510 0428 0.572 0.339
HLEPORA _BASELINE® (Han et al., 2012, 2013) - - — 0463 0.390 - — -
SENTBLEU" (Papineni et al., 2002) 0.367 0.248 0396 0465 0.392 0.334 0469 0.270
Y1S1-0* (Lo, 2019) 0.406 0.304 0.483 0539 0494 0402 0.535 0.266
Y1S1-1* (Lo, 2019) 0475 0.351 0537 0.551 0.546 0470 0.585 0.355
Y1S1-1_SRL* (Lo, 2019) — 0.368 - - - - — 0.361
Prism-ref (This Work) 0.582 0.427 0.591 0.313 0.531 0.558 0.584 0.376
LASER + LM (Contrastive) 0.535 0401 0568 0306 0.408 0.503 0.640 0.356
LM 0439 0.329 0477 0.181 0.284 0.430 0.586 0.279
LASER 0.408 0.334 0509 0340 0.363 0.396 0.511 0.284
mBART (Contrastive) 0.345 0.302 0.401 0.528 0462 0.365 0.443 0.280

Table 12: WMT19 Segment-level results, metrics (excludes QE as metric results), from English. n denotes number
of pairwise judgments. Bold denotes top scoring method and any other methods with whose 95% confidence
interval overlaps with that of a top method. {:WMT19 Baseline (Ma et al., 2019) £:WMT19 Metric Submission
Ma et al., 2019)

de-cs de-fr fr-de

n 35793 4862 1369
BEER? (Stanojevi¢ and Sima’an, 2015) 0.337 0.293 0.265
BERTSCORE (Zhang et al., 2019, 2020) 0.352 0.325 0.274
CHARACTER?* (Wang et al., 2016) 0.232 0.251 0.224
CHRF' (Popovié, 2015) 0.326 0.284 0.275
CHRF+' (Popovi¢, 2017) 0.326 0.284 0.278
EED? (Stanchev et al., 2019) 0.345 0.301 0.267

ESIM?* (Chen et al., 2017; Mathur et al., 2019) 0.331 0.290 0.289
HLEPORA_BASELINE? (Han et al., 2012, 2013) 0.207 0.239 —

SENTBLEU' (Papineni et al., 2002) 0.203 0.235 0.179
Y1S1-0% (Lo, 2019) 0.331 0.296 0.277
Y1S1-1% (Lo, 2019) 0.376 0.349 0.310
Y1S1-1_SRL (Lo, 2019) - - 0.299
Prism-ref (This Work) 0.458 0.453 0.426
LASER + LM (Contrastive) 0.431 0.401 0.381
LM 0.294 0.235 0.138
LASER 0.397 0.352 0.348
mBART (Contrastive) 0.262 0.255 0.236

Table 13: WMT19 Segment-level results, metrics (excludes QE as metric), non-English. n denotes number of
pairwise judgments. Bold denotes top scoring method and any other methods with whose 95% confidence interval
overlaps with that of a top method. 1:WMT19 Baseline (Ma et al., 2019) £:WMT19 Metric Submission (Ma et al.,
2019)
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de—en fi-en gu-en kk-en It-en ru-en zh-en

n 85365 38307 31139 27094 21862 46172 31070
IBM1-MORPHEME" (Popovié et al., 2011) -0.074  0.009 — - 0.069 - -
IBM1-POS4GRAM" (Popovié et al., 2011) -0.153 — — — — — —
LASIM* -0.024 — - — - 0.022 —
LP* -0.096 - - - — -0.035 -
UNT" (Yankovskaya et al., 2019) 0.022 0.202 — - —  0.084 —
UNI+" (Yankovskaya et al., 2019) 0.015 0.211 — — — 0.089 —
Y1S1-2* (Lo, 2019) 0.068 0.126 -0.001 0.096 0.075 0.053 0.253
Y1S1-2_srRL" (Lo, 2019) 0.068 - - - — — 0.246
Prism-src (This work) 0.109 0.300 0.102 0.391 0.356 0.178 0.336

Table 14: WMT19 Segment-level results, QE as a metric, to English. n denotes number of pairwise judgments.
Bold denotes top scoring method and any other methods with whose 95% confidence interval overlaps with that of
a top method. *x:WMT19 QE-as-Metric Submission (Fonseca et al., 2019)

en—cs en—de en—fi en—gu en-kk en-It en-ru en-zh

n 27178 99840 31820 11355 18172 17401 24334 18658
IBM |-MORPHEME" (Popovic et al., 2011) -0.135 -0.003 -0.005 — — -0.165 - -
IBM1-POS4GRAM™ (Popovic et al., 2011) — -0.123 — — — — — —
LASIM* —  0.147 — — — — -0.240 —
LP* — -0.119 - — — — -0.158 —
UNTI" (Yankovskaya et al., 2019) 0.060 0.129 0.351 — - —  0.226 —
UNI+" (Yankovskaya et al., 2019) - — — - — —  0.222 —
USFD* (Ive et al., 2018) — -0.029 - — - — 0.136 —
USFD-TL" (Ive et al., 2018) — -0.037 - — — — 0.191 —
Y1S1-2* (Lo, 2019) 0.069 0.212 0.239 0.147 0.187 0.003 -0.155 0.04

Y1S1-2_srRL" (Lo, 2019) — 0.236 - - - - — 0.034
Prism-src (This work) 0.470 0.402 0.555 0.215 0.507 0.499 0.486 0.287

Table 15: WMT19 Segment-level results, QE as a metric, from English. n denotes number of pairwise judgments.
Bold denotes top scoring method and any other methods with whose 95% confidence interval overlaps with that of
a top method. *x:WMT19 QE-as-Metric Submission (Fonseca et al., 2019)

de-cs de—fr fr-de

n 35793 4862 1369
IBM1-MORPHEME" (Popovié et al., 2011)  0.048 -0.013 -0.053
IBM1-POS4GRAM" (Popovic et al., 2011) — -0.074 -0.097
Y1S1-2* (Lo, 2019) 0.199 0.186 0.066
Prism-src (This work) 0.444 0.371 0.316

Table 16: WMT19 Segment-level results, QE as a metric, non-English. n denotes number of pairwise judgments.
Bold denotes top scoring method and any other methods with whose 95% confidence interval overlaps with that of
a top method. *:WMT19 QE-as-Metric Submission (Fonseca et al., 2019)
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F  WMT 2019 System-Level results for Top 4 Systems

Table 17 Table 18, and Table 19 show system-level results for just the top 4 systems, for language pairs
into, out of, and not including English, for WMT 2019. We show statistical significance following the
shared task but note it appears extremely noisy.

de—en fi-en gu-en kk-en It-en ru-en zh-en

n 4 4 4 4 4 4 4
BEER* (Stanojevi¢ and Sima’an, 2015) -0.760 0.065 0981 0.957 0.423 -0.122 -0.625
BERTR* (Mathur et al., 2019) 0.251 0.430 0.966 0.864 0.518 0.505 0.402
BERTSCORE (Zhang et al., 2019, 2020) 0.272 0.683 0913 0.897 0.753 0.456 -0.220
BLEU' (Papineni et al., 2002) -0.822 -0.275 0.966 0.958 0.625 -0.356 -0.694
BLEURT (Sellam et al., 2020) 0953 0.714 0.881 0929 0.841 0.522 0.660
CDER' (Leusch et al., 2006) -0.740 -0.214 0940 0948 0.389 -0.108 -0.611
CHARACTER?* (Wang et al., 2016) -0.664 -0.079 0980 0.924 0.386 0.052 -0.092
CHRF' (Popovié, 2015) -0.610 0.170 0986 0.893 0.377 -0.043 -0.147
CHRF+' (Popovi¢, 2017) -0.612 0.157 0982 0.886 0.341 -0.019 -0.093
EED* (Stanchev et al., 2019) -0.503 0.125 0978 0.904 0.323 0.033 -0.06
ESIM? (Chen et al., 2017; Mathur et al., 2019) 0.895 0.740 0.847 0965 0.896 0.534 0.819
HLEPORA_BASELINE* (Han et al., 2012, 2013) — — — 0816 — — 0312
HLEPORB_BASELINE? (Han et al., 2012, 2013) — — — 0816 0.257 — 0312
METEOR++_2.0(SYNTAX)* (Guo and Hu, 2019) -0.591 0.349 0978 0912 0413 0.024 -0.214
METEOR++_2.0(SYNTAX+COPY)* (Guo and Hu, 2019) -0.587 0.399 0.980 0.888 0.413 0.051 -0.17
NIST' (Doddington, 2002) -0.82 0.111 0963 0913 0.746 -0.458 -0.906
PER' -0.787 0.232 0945 0.731 0.086 -0.081 0.730
PREP? (Yoshimura et al., 2019) -0.981 0.754 0976 0.863 0.171 -0.357 -0.927
SACREBLEU.BLEU" (Post, 2018) -0.823 -0.333 0.966 0.958 0.426 -0.217 -0.694
SACREBLEU.CHRF' (Post, 2018) -0.633 0.113 0954 0.875 0.311 -0.094 0.347
TER' (Snover et al., 2006) -0.798 0.032 0942 0.963 0.585 -0.137 -0.845
WER' -0.816 -0.125 0940 0.958 0.621 -0.153 -0.859
WMDO? (Chow et al., 2019) -0.711  0.344 0943 0921 0290 0.114 -0.352
Y1S1-0% (Lo, 2019) -0.714  0.074 0991 0.946 0.540 -0.079 -0.663
Y1S1-1% (Lo, 2019) 0.045 0.610 0.962 0.887 0.552 0.365 -0.067
Y1S1-1_SRL* (Lo, 2019) 0.081 0.580 0.959 0.874 0.560 0.342 -0.069
IBM | -MORPHEME" (Popovi¢ et al., 2011) -0.643  0.065 - — -0.952 - -
IBM1-POS4GRAM™ (Popovié et al., 2011) -0.831 — — — - - —
LASIM* -0.855 - - — — -0.353 -
LP.1" 0.777 — — — — 0442 —
UNT" (Yankovskaya et al., 2019) 0.703 0.830 — — —  0.738 —
UNI+" (Yankovskaya et al., 2019) 0.796 0.791 — — - 0.777 —
YiS1-2* (Lo, 2019) -0.809 0.780 -0.125 0.834 -0.362 -0.325 -0.889
Y1S1-2_srL" (Lo, 2019) -0.749 — — — — - -0.83
Prism-ref (This Work) 0.401 0.719 0.896 0.796 0.877 0.431 0.523
Prism-ref w/ ParaBank 2 (Contrastive) 0957 0.788 0.871 0.759 0.939 0.625 0.899
LASER + LM (Contrastive) 0.957 0.768 0.867 0.870 0.615 0.596 0.733
Prism-src (This work) 0.502 0.802 0.608 0.558 -0.301 0.437 0.958
LM 0.973 0.754 0.619 0.498 -0.006 0.779 0.973
LASER -0.458 0.718 0984 0926 0.662 0.262 -0.528
mBART (Contrastive) -0.739 0.559 0913 0902 0491 -0.103 -0.295

Table 17: WMT19 System-level results, to English for the top 4 systems (as judged by humans) for each language
pair. n denotes number of MT systems. Bold denotes top scoring method and any other methods with whose 95%
confidence interval overlaps with that of a top method. {:WMT19 Baseline (Ma et al., 2019) £:WMT19 Metric
Submission (Ma et al., 2019) =:WMT19 QE-as-Metric Submission (Fonseca et al., 2019)
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en—cs en—de en-fi en-gu en-kk en-It en-ru en-zh

n 4 4 4 4 4 4 4 4
BEER® (Stanojevi¢ and Sima’an, 2015) 0.872 -0.801 0.960 0.899 0.226 0.888 0.961 0.992
BERTSCORE (Zhang et al., 2019, 2020) 0.868 -0.722 0.859 0.922 0.288 0.955 0.953 0.982
BLEU' (Papineni et al., 2002) 0.930 -0.37 0.898 0.860 0.181 0.925 0.753 0.987
CDER' (Leusch et al., 2006) 0.946 -0.975 0.837 0.900 -0.011 0.880 0.917 0.986
CHARACTER? (Wang et al., 2016) 0.828 -0.777 0.887 0.902 0.295 0.675 0.974 0.997
CHRF' (Popovi¢, 2015) 0.799 -0.590 0.936 0926 0.277 0901 0.954 0.987
CHRF+" (Popovié, 2017) 0.816 -0.605 0.921 0.923 0.283 0.858 0.940 0.996
EED* (Stanchev et al., 2019) 0.825 -0.552 0939 0913 0.267 0.921 0.961 0.997
ESIM? (Chen et al., 2017; Mathur et al., 2019) — -0.796 0.957 — 0418 0.997 0.986 0.987
HLEPORA_BASELINE* (Han et al., 2012, 2013) — — — 0915 0.062 — — —
HLEPORB_BASELINE® (Han et al., 2012, 2013) - - — 0915 0.062 0.821 - -
NIST" (Doddington, 2002) 0.946 -0.233 0971 0.893 0.082 0.988 0.724 0.979
PER' 0.916 -0.995 0.850 0.887 -0.260 0.390 0.911 0.980
SACREBLEU.BLEU" (Post, 2018) 0.970 -0.976 0.845 0.859 0.181 0.638 0.878 0.962
SACREBLEU.CHRF' (Post, 2018) 0.907 -0.816 0.921 0.902 0.239 0.980 0.970 0.963
TER' (Snover et al., 2006) 0.969 -0.989 0.889 0.874 -0.060 0.988 0.895 0.984
WER' 0.973 -0.993 0.876 0.868 -0.058 0.973 0.894 0.987
Y1S1-0* (Lo, 2019) 0.879 -0.796 0.975 0920 0.196 0.787 0.940 0.982
Y1S1-1* (Lo, 2019) 0.847 -0.220 0976 0.917 0.342 0.838 0.963 0.990
Y1S1-1_SRL* (Lo, 2019) — -0.378 - - - - — 0.99%4
IBM1-MORPHEME" (Popovic et al., 2011) -0.771 -0.425 0.430 — — 0.969 — —
IBM1-POS4GRAM™ (Popovic et al., 2011) — -0.502 - — — — - -
LASIM* — -0914 — - — — 0.223 —
LP.1" — 0949 - — - — -0.407 —
UNT" (Yankovskaya et al., 2019) 0.587 -0.96 0.637 — — — 0.655 —
UNI+" (Yankovskaya et al., 2019) - - - - - — 0.644 -
USFD” (Ive et al., 2018) - -0.729 — - — — 0.985 —
USFD-TL" (Ive et al., 2018) — -0.390 — — — —  0.698 —
Y1S1-2* (Lo, 2019) 0.793 -0.933 -0.991 -0.389 0.851 -0.504 0.075 0.983
Y1S1-2_srRL" (Lo, 2019) — -0.915 - — - - — 0991
Prism-ref (This Work) 0.952 0.278 0.886 0.863 0.693 0.862 0.975 0.966
LASER + LM (Contrastive) 0.961 0.377 0.903 0.509 0.605 0.743 0.962 0.985
Prism-src (This work) 0.973 -0.408 0.765 -0.703 0.833 -0.003 0.708 0.863
LM 0.833 0.425 0.763 -0.712 0.953 0.633 0916 0.846
LASER 0.851 0.246 0.983 0.568 0.328 0.263 0.995 0.988
mBART (Contrastive) 0.936 -0.834 0966 0.912 0.224 0.946 0.968 0.986

Table 18: WMT19 System-level results, from English for the top 4 systems (as judged by humans) for each
language pair. n denotes number of MT systems. Bold denotes top scoring method and any other methods with
whose 95% confidence interval overlaps with that of a top method. 1:WMT19 Baseline (Maet al., 2019) ::WMT19
Metric Submission (Ma et al., 2019) *:WMT19 QE-as-Metric Submission (Fonseca et al., 2019)
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de-cs de—fr fr-de

n 4 4 4
BEER? (Stanojevi¢ and Sima’an, 2015) 0.961 0.590 0.978
BERTSCORE (Zhang et al., 2019, 2020) 0.976 0.707 0.973
BLEU' (Papineni et al., 2002) 0.812 0.495 0.983
CDER' (Leusch et al., 2006) 0.860 0.544 0.959
CHARACTER?* (Wang et al., 2016) 0.871 0.626 0.963
CHRF' (Popovié, 2015) 0.920 0.531 0.952
CHRF+" (Popovié, 2017) 0.909 0.522 0.946
EED* (Stanchev et al., 2019) 0.873 0.582 0.945

ESIM? (Chen et al., 2017; Mathur et al., 2019)  0.977 0.702  0.991
HLEPORA_BASELINE* (Han et al., 2012, 2013) 0.771 0.314
HLEPORB_BASELINE* (Han et al., 2012, 2013) 0.754 0.314

NIST' (Doddington, 2002) 0.754 0.561 0.990
PER' 0.913 0.401 0.990
SACREBLEU.BLEU" (Post, 2018) 0.888 0.495 0.958
SACREBLEU.CHRF' (Post, 2018) 0.964 0.575 0.920
TERT (Snover et al., 2006) 0.999 0.541 0.989
WER' 0.997 0.566 0.991
Y1S1-0% (Lo, 2019) 0.838 0.655 0.961
Y1S1-1¥ (Lo, 2019) 0.967 0.677 0.967
Y1S1-1_SrL* (Lo, 2019) - — 0974
IBM1-MORPHEME" (Popovic et al., 2011) 0.645 -0.885 -0.339
IBM1-POS4GRAM™ (Popovié et al., 2011) — -0.106 -0.33
Y1S1-2* (Lo, 2019) 0.368 0.209 -0.687
Prism-ref (This Work) 0.968 0.648 0.998
LASER + LM (Contrastive) 0.947 0.774 0.975
Prism-src (This work) 0.903 0.600 0.181
LM 0.336 0.770 -0.903
LASER 0.552 0.713 0.953
mBART (Contrastive) 0.806 0.615 0.972

Table 19: WMT19 System-level results, non-English for the top 4 systems (as judged by humans) for each language
pair. n denotes number of MT systems. Bold denotes top scoring method and any other methods with whose 95%
confidence interval overlaps with that of a top method. 1:WMT19 Baseline (Ma et al., 2019) ::WMT19 Metric
Submission (Ma et al., 2019) «:WMT19 QE-as-Metric Submission (Fonseca et al., 2019)
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G WMT 2019 Metric and QE as Metric System-Level Results

Table 20, Table 21, and Table 22, show system-level results, for metrics (excludes QE as metric) for
language pairs into, out of, and not including English, for the WMT 2019 MT metrics shared task, along
with all baselines and submitted systems.

Table 23, Table 24, and Table 25, show system-level results, for QE as metric, for language pairs into,
out of, and not including English, for the WMT 2019 MT metrics shared task, along with all baselines
and submitted systems.

de-en fi-en gu-en kk-en It-en ru-en zh-en

n 16 12 11 11 11 14 15
BEER? (Stanojevi¢ and Sima’an, 2015) 0.906 0.993 00952 0.986 0947 0915 0.942
BERTR* (Mathur et al., 2019) 0.926 0.984 00938 0.990 0948 0.971 0.974
BERTSCORE (Zhang et al., 2019, 2020) 0.949 0.987 0.981 0.980 0962 0.921 0.983
BLEU" (Papineni et al., 2002) 0.849 0.982 0.834 0.946 0961 0.879 0.899
BLEURT (Sellam et al., 2020) 0.940 0.978 0.878 0.993 0.991 0.977 0.984
CDER' (Leusch et al., 2006) 0.890 0.988 0.876 0.967 0975 0.892 0.917
CHARACTER? (Wang et al., 2016) 0.898 0.990 0922 0.953 0955 0.923 0.943
CHRF' (Popovi¢, 2015) 0917 0.992 00955 0.978 0940 0.945 0.956
CHRF+" (Popovié, 2017) 0916 0.992 0947 0.976 0940 0.945 0.956
EED? (Stanchev et al., 2019) 0.903 0.994 0976 0.980 0929 0.950 0.949
ESIM?* (Chen et al., 2017; Mathur et al., 2019) 0.941 0971 0.885 0.986 0.989 0.968 0.988
HLEPORA _BASELINE® (Han et al., 2012, 2013) - - — 0975 - —  0.947
HLEPORB_BASELINE® (Han et al., 2012, 2013) - - — 0.975 0.906 - 0.947
METEOR++_2.0(SYNTAX)* (Guo and Hu, 2019) 0.887 0.995 0909 0.974 0928 0.950 0.948
METEOR++_2.0(SYNTAX+COPY)* (Guo and Hu, 2019)  0.896 0.995 0.900 0.971 0.927 0.952 0.952
NIST? (Doddington, 2002) 0.813 0.986 00930 0.942 0944 0.925 0.921
PER' 0.883 0.991 0910 0.737 0947 0.922 0.952
PREP? (Yoshimura et al., 2019) 0.575 0.614 0.773 0.776 0.494 0.782 0.592
SACREBLEU.BLEU" (Post, 2018) 0.813 0.985 0.834 0.946 0955 0.873 0.903
SACREBLEU.CHRF' (Post, 2018) 0.910 0.990 0952 0.969 0935 0.919 0.955
TER' (Snover et al., 2006) 0.874 0.984 0.890 0.799 0960 0.917 0.840
WER' 0.863 0.983 0.861 0.793 0961 0.911 0.820
WMDO* (Chow et al., 2019) 0.872 0.987 0983 0.998 0900 0.942 0.943
Y1S1-0* (Lo, 2019) 0.902 0.993 0.993 0.991 0927 0.958 0.937
Yi1S1-1* (Lo, 2019) 0.949 0.989 0924 0.994 0981 0.979 0.979
Y1S1-1_SRL* (Lo, 2019) 0.950 0.989 0918 0.994 0983 0.978 0.977
Prism-ref (This Work) 0.954 00983 0.764 0.998 0.995 0.914 0.992
Prism-ref w/ ParaBank 2 (Contrastive) 0.949 0.979 00925 0.993 0981 0.948 0.994
LASER + LM (Contrastive) 0.938 0.974 0974 0.997 0.996 0.940 0.988
mBART (Contrastive) 0.906 0.991 0949 0.974 0917 0.880 0.956

Table 20: WMT19 System-level results, to English. n denotes number of MT systems. Bold denotes top scoring
method and any other methods with whose 95% confidence interval overlaps with that of a top method. T:WMT19
Baseline (Ma et al., 2019) $::WMT19 Metric Submission (Ma et al., 2019)
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en—cs en—-de en-fi en—gu en-kk en-It en-ru en-zh

n 11 22 12 11 11 12 12 12
BEER (Stanojevi¢ and Sima’an, 2015) 0.990 0.983 0.989 0.829 0.971 0.982 0.977 0.803
BERTSCORE (Zhang et al., 2019, 2020) 0.981 0990 0970 0.922 00981 0978 0.989 0.925
BLEU (Papineni et al., 2002) 0.897 0921 0969 0.737 0.852 0.989 0986 0.901
CDER (Leusch et al., 2006) 0.985 0973 0978 0.840 0.927 0985 0.993 0.905
CHARACTER? (Wang et al., 2016) 0994 0986 0968 0910 00936 0954 0.985 0.862
CHRF' (Popovi¢, 2015) 0.990 0.979 0986 0.841 0.972 0.981 0.943 0.880
CHRF+' (Popovi¢, 2017) 0.991 0981 0986 0.848 0974 0.982 0.950 0.879
EED? (Stancheyv et al., 2019) 0.993 0.985 0987 0.897 0979 0975 0967 0.856
ESIM?* (Chen et al., 2017; Mathur et al., 2019) — 0991 00957 — 0980 0.989 0.989 0.931
HLEPORA_BASELINE* (Han et al., 2012, 2013) — — — 0.841 0.968 — — —
HLEPORB_BASELINE! (Han et al., 2012, 2013) — — — 0.841 0.968 0.980 — —
NIST' (Doddington, 2002) 0.896 0.321 0971 0.786 0.930 0.993 0.988 0.884
PER' 0976 0.970 0.982 0.839 0.921 0.985 0.981 0.895
SACREBLEU.BLEU" (Post, 2018) 0994 0.969 0.966 0.736 0.852 0.986 0.977 0.801
SACREBLEU.CHRF' (Post, 2018) 0.983 0.976 0980 0.841 0.967 0.966 0.985 0.796
TER' (Snover et al., 2006) 0.980 0.969 0981 0.865 0940 0.994 0.995 0.856
WER' 0.982 0.966 0.980 0.861 0.939 0.991 0.994 0.875
Y1S1-0% (Lo, 2019) 0.992 0.985 0.987 0.863 0.974 0974 0.953 0.861
Y1S1-1% (Lo, 2019) 0.962 0.991 0.971 0.909 0.985 0.963 0.992 0.951
Y1S1-1_SRL* (Lo, 2019) — 0991 - — - — — 0948
Prism-ref (This Work) 0958 0.988 0949 0.624 0.978 0.937 0.918 0.898
LASER + LM (Contrastive) 0.962 0.989 0957 0.775 0.969 0958 0.987 0.950
mBART (Contrastive) 0.987 0.988 0.982 0917 0.981 0.965 0.978 0.866

Table 21: WMT19 System-level results, from English. n denotes number of MT systems. Bold denotes top scoring
method and any other methods with whose 95% confidence interval overlaps with that of a top method. T:WMT19
Baseline (Ma et al., 2019) ::WMT19 Metric Submission (Ma et al., 2019)

de-cs de-fr fr-de

n 11 11 10
BEER? (Stanojevi¢ and Sima’an, 2015) 0.978 0.941 0.848
BERTSCORE (Zhang et al., 2019, 2020) 0.969 0.971 0.899
BLEU' (Papineni et al., 2002) 0.941 0.891 0.864
CDER' (Leusch et al., 2006) 0.864 0.949 0.852
CHARACTER?* (Wang et al., 2016) 0.965 0.928 0.849
CHRF' (Popovié, 2015) 0.974 0.931 0.864
CHRF+" (Popovié, 2017) 0.972 0.936 0.848
EED? (Stanchev et al., 2019) 0.982 0.940 0.851

ESIM* (Chen et al., 2017; Mathur et al., 2019)  0.980 0.950 0.942
HLEPORA_BASELINE? (Han et al., 2012, 2013) 0.941 0.814 —
HLEPORB_BASELINE? (Han et al., 2012, 2013) 0.959 0.814 0.862

NIST' (Doddington, 2002) 0.954 0.916 0.899
PER' 0.875 0.857 0.869
SACREBLEU.BLEU" (Post, 2018) 0.869 0.891 0.882
SACREBLEU.CHRF' (Post, 2018) 0.975 0.952 0.895
TER' (Snover et al., 2006) 0.890 0.956 0.894
WER 0.872 0.956 0.820
Y1S1-0* (Lo, 2019) 0.978 0.952 0.908
Y1S1-1# (Lo, 2019) 0.973 0.969 0.912
Prism-ref (This Work) 0.976 0.936 0.911
LASER + LM (Contrastive) 0.990 0.935 0.924
mBART (Contrastive) 0.964 0.944 0.874

Table 22: WMT19 System-level results, non-English. n denotes number of MT systems. Bold denotes top scoring
method and any other methods with whose 95% confidence interval overlaps with that of a top method. 7:WMT19
Baseline (Ma et al., 2019) £::WMT19 Metric Submission (Ma et al., 2019)
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de—en fi-en gu-en kk-en It-en ru-en zh-en

n 16 12 11 11 11 14 15
IBM1-MORPHEME" (Popovié et al., 2011) -0.345 0.740 — — 0487 - -
IBM1-POS4GRAM™ (Popovic et al., 2011)  -0.339 — — — — — —
LASIM* 0.247 — - — — -0.310 —
LP.1" -0.474 - — — — -0.488 —
UNTI" (Yankovskaya et al., 2019) 0.846 0.930 — - —  0.805 —
UNI+" (Yankovskaya et al., 2019) 0.850 0.924 — — —  0.808 —
Y1S1-2* (Lo, 2019) 0.796 0.642 -0.566 -0.324 0.442 -0.339 0.94

Y1S1-2_srL" (Lo, 2019) 0.804 — - - — — 0947
Prism-src (This work) 0.890 0941 0.171 0.961 0989 0.845 0.971

Table 23: WMT19 System-level results, QE as a metric, to English. n denotes number of MT systems. Bold
denotes top scoring method and any other methods with whose 95% confidence interval overlaps with that of a top
method. *WMT19 QE-as-Metric Submission (Fonseca et al., 2019)

en—cs en—-de en-fi en-gu en-kk en-It en-ru en-zh

n 11 22 12 11 11 12 12 12
IBM |-MORPHEME" (Popovic¢ et al., 2011) -0.871 0.870 0.084 — — -0.81 — —
IBM1-POS4GRAM™ (Popovic et al., 2011) — 0393 — — — — — —
LASIM* —  0.871 — - - — -0.823 —
LP.1" — -0.569 — - - — -0.661 —
UNTI" (Yankovskaya et al., 2019) 0.028 0.841 0.907 - - - 0919 —
UNI+" (Yankovskaya et al., 2019) — — — — — — 0918 —
USFD* (Ive et al., 2018) — -0.224 — - - - 0.857 —
USFD-TL" (Ive et al., 2018) — -0.091 — - - - 0771 —
YI1S1-2* (Lo, 2019) 0.324 0.924 0.696 0.314 0.339 0.055 -0.766 -0.09

Y1S1-2_srL" (Lo, 2019) — 0936 - - - - — -0.118
Prism-src (This work) 0.865 0.976 0.933 0.444 0.959 0.908 0.822 0.793

Table 24: WMT19 System-level results, QE as a metric, from English. n denotes number of MT systems. Bold
denotes top scoring method and any other methods with whose 95% confidence interval overlaps with that of a top
method. *WMT19 QE-as-Metric Submission (Fonseca et al., 2019)

de-cs de—fr fr-de
n 11 11 10

IBM1-MORPHEME" (Popovié et al., 2011) 0.355 -0.509 -0.625
IBM1-POS4GRAM" (Popovié et al., 2011) — 0.085 -0.478
YI1S1-2* (Lo, 2019) 0.606 0.721 -0.53

Prism-src (This work) 0.973 0.889 0.739

Table 25: WMT19 System-level results, QE as a metric, non-English. n denotes number of MT systems. Bold
denotes top scoring method and any other methods with whose 95% confidence interval overlaps with that of a top
method. «:WMT19 QE-as-Metric Submission (Fonseca et al., 2019)
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Abstract

Recent work by Clark et al. (2020) shows
that transformers can act as “soft theorem
provers” by answering questions over explic-
itly provided knowledge in natural language.
In our work, we take a step closer to emu-
lating formal theorem provers, by proposing
PROVER, an interpretable transformer-based
model that jointly answers binary questions
over rule-bases and generates the correspond-
ing proofs. Our model learns to predict nodes
and edges corresponding to proof graphs in an
efficient constrained training paradigm. Dur-
ing inference, a valid proof, satisfying a set
of global constraints is generated. We con-
duct experiments on synthetic, hand-authored,
and human-paraphrased rule-bases to show
promising results for QA and proof generation,
with strong generalization performance. First,
PROVER generates proofs with an accuracy
of 87%, while retaining or improving perfor-
mance on the QA task, compared to RuleTak-
ers (up to 6% improvement on zero-shot eval-
uation). Second, when trained on questions re-
quiring lower depths of reasoning, it general-
izes significantly better to higher depths (up to
15% improvement). Third, PROVER obtains
near perfect QA accuracy of 98% using only
40% of the training data. However, generating
proofs for questions requiring higher depths of
reasoning becomes challenging, and the accu-
racy drops to 65% for “depth 5”, indicating sig-
nificant scope for future work.'

1 Introduction

Developing systems that can understand and rea-
son over explicitly provided knowledge has been a
fundamental goal of AI (Newell and Simon, 1956).
Owing to the challenges posed in reasoning over
formal representations (Musen and Van Der Lei,

'Our code and models are publicly available at https :
//github.com/swarnaHub/PRover.
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Figure 1: Block diagram showing that PROVER is a
closer linguistic analog of formal reasoning.

1988), and backed by the recent successes of trans-
formers (Vaswani et al., 2017) in NLP, Clark et al.
(2020) propose a new version of the problem by
replacing the formal representations of rule-bases
with natural language (English). Specifically, their
task requires predicting the truth value of a state-
ment by reasoning over a set of facts and rules,
all expressed in natural language. Figure 2 shows
some examples of the task. Clark et al. (2020)
propose RuleTakers, a fine-tuned RoOBERTa model
(Liu et al., 2019b) to show that transformers can
act as “soft theorem provers” by predicting the fi-
nal answer in such reasoning-based problems with
high accuracy.

We argue that to use transformers for natural
language reasoning reliably, they should be able
to generate proofs that provide rationales for the
predicted answer. Proof generation is vital for em-
ulating formal reasoning but also for moving to-
wards human-interpretable models that alleviate
concerns about the black-box nature of deep archi-
tectures (Rudin, 2019). Towards this, we present
PROVER, a transformer-based model that jointly
answers questions over natural language rule-bases
and generates corresponding proofs. Figure 1 il-
lustrates our method as a closer linguistic analog

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 122-136,
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of formal reasoning, as it generates proofs along
with answers. However, unlike formal reasoners,
PROVER can operate on natural language text that
provides the underlying theory, rather than rely on
formal logical representations. Such methods that
combine interpretability and flexibility in reasoning
can have wide applications across domains.
PROVER’s architecture consists of three modules
that together generate answers along with proofs.
In this work, proofs are represented as directed
graphs consisting of the relevant rules and facts
needed to prove or disprove the question statement.
Section 3.1 contains details of this representation.
A QA module predicts a binary answer for the ques-
tion, a node module chooses which rules and facts
are part of the proof, and an edge module predicts
the presence and the direction of the edges between
the chosen nodes. Model training minimizes a joint
cross-entropy loss over the three modules. To guide
the model to predict edges between valid nodes
only, we enforce global constraints on the structure
of the proof during training, by masking out labels
for impossible edges, resulting in a more efficient
learning problem. PROVER generates valid proofs
during inference by solving an ILP over the edge
potentials, subject to multiple semantic constraints,
such as ensuring proof graph connectivity. Our
contributions are:
We present PROVER, an interpretable joint
model that learns to reason over natural language
rule-bases and generate corresponding proofs.
PROVER performs similarly or improves upon
state-of-the-art QA accuracy for the task, with up
to 6% improvement on zero-shot evaluation, and
generates exact proofs at 87% accuracy. Unlike
RuleTakers, it does not require additional fine-
tuning on the RACE (Lai et al., 2017) dataset.
PROVER demonstrates significantly better gen-
eralization. When trained on lower depth ques-
tions, it shows better QA accuracy (up to 15%)
on higher depth ones.

2 Related Work

Our work is related to multiple bodies of previous
work in NLP and formal reasoning.

QA and NLI: The rule reasoning task is related
to reasoning tasks that have been proposed recently.
These include tasks in the bAbI dataset (Weston
et al., 2015), synthetically generated probe tasks
(Richardson et al., 2020) or reading comprehension
tasks in datasets such as QuaRTz (Tafjord et al.,
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2019) and ROPES (Lin et al., 2019). Unlike our
task, most of these require reasoning over implicit
rules, the focus being on language understanding
and one step of rule application. Multi-hop QA
datasets like HotpotQA (Yang et al., 2018) require
multiple reasoning steps, but the inference rules
needed are again implicitly inferred, rather than
explicitly provided. Our task also bears similar-
ity with Natural Language Inference (MacCartney
and Manning, 2014), but NLI also allows unsup-
ported inferences by filling gaps in explicitly stated
knowledge (Dagan et al., 2013).

Formal Reasoning and Neural Theorem Prov-
ing: Semantic parsing (Zettlemoyer and Collins,
2005; Berant et al., 2013; Berant and Liang, 2014)
of multi-sentence texts into logical forms has
proved to be challenging, restricting the application
of semantic parsers to formal reasoning systems
(Kamath and Das, 2019). PROVER bypasses this
expensive and error-prone process and attempts to
solve the problem in an end-to-end manner, without
any intermediate logical representations.

Our approach is conceptually similar to a body
of work on Neural Theorem Proving (Weber et al.,
2019) that has focused on developing theorem
provers by combining reasoning from symbolic
techniques with the possibility of differentiable
learning from neural networks. These include
neuro-symbolic methods for table comprehension
(Neelakantan et al., 2016), executing basic com-
positional programs (Reed and de Freitas, 2016),
SAT solving (Selsam et al., 2019), formula embed-
ding (Abdelaziz et al., 2020), approximate (DNF)
model counting (Abboud et al., 2020), etc. How-
ever, PROVER diverges from these in working with
free-form natural language input to generate proofs
similar to formal reasoners.

Model Interpretability: PROVER follows a sig-
nificant body of previous work on developing in-
terpretable neural models for NLP tasks to fos-
ter explainability. Several approaches have fo-
cused on formalizing the notion of interpretabil-
ity (Rudin, 2019; Doshi-Velez and Kim, 2017;
Hase and Bansal, 2020), tweaking features for local
model interpretability (Ribeiro et al., 2016, 2018)
and exploring interpretability in latent spaces (Joshi
et al., 2018; Samangouei et al., 2018). Our work
can be seen as generating explanations in the form
of proofs for an NLP task. While there has been
prior work on generating natural language explana-



Facts : Rules:
F4: The circuit includes the battery. F,: The wire is metal.
F3: The circuit includes the bell.

Re: If the circuit is powered and the circuit is complete and the wire is conducting then
the current runs through the circuit.

Rules : Ry: If the current runs through the circuit and the circuit includes the light bulb then the

Ry: If the circuit includes the battery and the battery is not flat
then the circuit is powered.

Ry: If the circuit includes the switch and the switch is on then the
circuit is complete.

R;: If the circuit does not have the switch then the circuit is
complete.

Ry: If the wire is metal then the wire is conducting.

Rs: If the wire is plastic then the wire is not conducting.

Q1: The wire is not

[Answer T]

current runs through the light bulb.

Rg: If the current runs through the circuit and the circuit includes the bell then current
runs through the bell.

Rq: If the current runs through the circuit and the circuit includes the radio then current
runs through the radio.

Ryo: If the current runs through the light bulb then the light bulb is glowing.

Ry4: If the current runs through the bell then the light bell is ringing.

R2: If the current runs through the radio then the radio is playing.

| ' Qg: The current runs ‘\ N ‘4_‘4_
conducting. [ Answer : F ] | ! through the circuit. ‘ /’ FAIL

Qs Ol

Q3 The radio is playing. [ Answer : F]
=& ®->

Facts : Rules :

F4: The bald eagle eats the lion. Ry: If the lion is green and the lion is not kind then the lion sees the bald eagle.
F: The bald eagle sees the tiger. R;: If someone sees the lion then they eat the mouse.

F3: The lion chases the bald eagle. R;: If someone is kind and not green then they see the bald eagle.

F4: The lion eats the mouse.
Fs: The mouse eats the tiger.

Ry: If someone is rough then they see the lion.
Rs: If someone sees the lion and they do not eat the tiger then the tiger is rough.

Fe: The tiger eats the bald eagle. Rg: If someone eats the bald eagle and the bald eagle is not kind then the bald eagle is rough.
F7: The tiger is red. R;: If someone does not eat the lion then the lion is big.
Rg: If someone is kind then they do not eat the mouse.

Qg: The bald eagle eats the mouse. [ Answer : T]

:,c ®->® |

Q5 The tiger does not eat the mouse. [ Answer : F ]

\
Q/‘ O H+@—®

'I

Figure 2: Diagram showing two rule-bases with rules, facts, questions, answers and proofs. PROVER answers all
the questions correctly and also generates all the corresponding proofs accurately in the above scenarios.

tions for multiple NLP tasks, including NLI (Cam-
buru et al., 2018), commonsense reasoning (Rajani
et al., 2019; Zhang et al., 2020) and generic text
classification tasks (Liu et al., 2019a), our nov-
elty lies in generating compositional explanations
consisting of proof graphs that detail the chain of
reasoning, starting from language. We use a max-
flow ILP formulation for checking proof graph con-
nectivity (Even and Tarjan, 1975). Multiple ap-
proaches for NLP tasks such as sentiment analysis
and content selection (Pang and Lee, 2004; Barzi-
lay and Lapata, 2005; Bansal et al., 2008) have
been framed as optimal flow problems on graphs.

Program Synthesis with Transformers: Exist-
ing works show that transformers already capture
some knowledge from pre-training for algorithm
emulation (Talmor et al., 2019) or can be fine-tuned
for tasks like semantic parsing (He and Choi, 2020),
translation (Wang et al., 2019), symbolic integra-
tion (Lample and Charton, 2020) and mathematics
(Saxton et al., 2019). In our work, we also employ
a transformer-based pre-trained language model
(RoBERTa (Liu et al., 2019b)) but for the down-
stream task of rule-based reasoning.

3 Method

Each input to PROVER is a context C' (consisting
of facts F' and rules R) and a question (), about
the context. PROVER predicts the answer A €

{True, False} and generates a proof P.

3.1 Proof Representation

A proof, P = (N,E), is a directed graph with
nodes n € N and edges e € £. Each node is
either a fact f € F', arule r € R or a special NAF
node (Negation As Failure, as described below).
Edges in the proof are directed either from a fact (or
NAF)toarule or from a rule to another rule. These
indicate that a fact (or NAF’) is consumed by a rule,
or the output of a rule (a new fact) is consumed by
another rule, respectively. We use these constraints
both during PROVER’s training and inference, as
described later in the paper. Formally, we have:

N CRUFUNAF
ECN XN

Figure 2 shows examples of two contexts (consist-
ing of facts and rules), five questions about the con-
texts, along with their answers and proofs. Each
proof has a depth (Q)1’s proof has a depth of 1).
The maximum proof depth in all the datasets con-
sidered in this work (Clark et al., 2020) is 5. Proofs
in the datasets are of three types:

Successful proof with NAF: The proof of (J; in
Figure 2 is one such such example. F3 acts on Ry
to prove that “The wire is conducting.” and hence
the answer is false.
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Successful proof with NAF: Given a statement
s, NAF in logic programming is a non-monotonic
inference rule used to derive “not s” (negation of
the statement) from failure to derive s. Hence, a
proof may contain NAF' node(s), representing the
truthfulness of the negation of statement(s) that
cannot be proved using the set of rules. Consider
the proofs for Q4 and Q5 where the NAF node in
(4 represents “The bald eagle is not kind.”.

Failed proof: This happens when a statement
cannot be derived using the given rule-base and
the shallowest branch of the proof tree that fails is
shown. @3’s proof in Figure 2 is an example as
“The radio is playing.” cannot be proved.

Note that a proof can have edges between two
rules in both directions. E.g., consider the edges
R4y — Rsand Rs — R4 in Q5’s proof in Figure 2.
A node can have more than two incoming edges —
the node Rg in ()2 has three incoming edges from
Rl, Rg, and R4.

3.2 Task Description

Each training example is a tuple (C;
{F;, R;},Q;, A;, P;) consisting of a context (set
of rules and facts), a question, the corresponding
answer, and a proof. Generating a proof graph
requires (1) identifying the nodes (set of relevant
facts, NAF and rules) that are part of the proof,
(2) identifying the edges connecting these nodes,
and (3) verifying a set of global constraints such as
proof connectivity that ensure a valid proof.

For the first, we predict a binary label over each
rule, fact and NAF' denoting their presence or ab-
sence in the proof. For the second, we also predict
binary labels denoting the presence or absence of
each edge. For the third, we enforce constraints
during both training and inference (Section 3.4).
During training, we mask out the edge labels” cor-
responding to (1) self-loops, (2) edges between
absent nodes, and (3) edges between facts to facts
and rules to facts. This enforces a semantic con-
straint that the set of candidate edges in the ensuing
proof is consistent with the chosen set of nodes,
and also simplifies the learning problem, since a
smaller number of edges need to be labeled.

3.3 PROVER: Joint QA and Proof
Generation Model

Figure 3 shows the architecture of PROVER, built
on top of ROBERTa (Liu et al., 2019b). Our model

The masked edges do not contribute to the training loss.
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consists of three modules: (1) QA module, (2)
Node module, and (3) Edge module. The QA mod-
ule is exactly the same as the RuleTakers model
(Clark et al., 2020), thus allowing us to directly
evaluate the effectiveness of our node and edge
modules. The input to RoOBERTa is the concate-
nation of the context and the question, separated
by the [SEP] tokens. The context is represented
by concatenating the text consisting of facts and
rules. Formally, if the rules and facts are denoted
by { RE;}*_, and the question by @, the input is

[CLS] {RE}}r_, [SEP][SEP] Q [SEP]

QA Module: The output of RoOBERTa contains
an embedding for each token in the context and
a global embedding corresponding to the [C'LS]
token. The QA classification head Hg4 is a se-
quence of two linear layers with dropout proba-
bility of p. Formally, if ¢ ,s) denotes the [C'LS]
token embedding, we obtain the class-wise prob-
ability values P4 using the softmax function o.

Pga = o(Hga(ticLs)))

Node Module: Let {wj(-l) L) denotes the m to-
kens corresponding to RF;. Assuming the corre-
sponding RoBERTa embeddings are denoted by
{t @ }j=1, we learn a representation ¢ g, for each

RF;, by performing a mean pooling MP of the
constituent token embeddings.

trRr;, = MP({tw§i> Fie1)

We also learn a representation of the NAF node
tnAp as a linear transformation on tioLs)- Note
that due to the self-attention layers of ROBERTa,
t(crs) summarizes the set of all derivable facts
given the context and the question. We want the
NAF node to encode information about all facts
containing negation (e.g.,"“The bald eagle is not
kind” in Q4’s proof of Figure 2) in the context.
These are taken as true as their positive counter-
parts (“The bald eagle is kind””) are non-derivable
given the context. Thus, if a statement s cannot be
derived from the facts and the rules in a context,
the NAF node should infer that “not s” is true. We
model this notion of the negation of all unprovable
statements (given a context) by learning NAF as
a function of everything provable in the context,
encoded by the tjc ) embedding.’

3We note that a proof can have multiple NAF nodes, each
representing a different negated fact. Since the datasets label
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Figure 3: Architecture diagram of PROVER. The presence and absence of nodes/edges are labeled by 1 and O respectively while

-100 represents masked out edges.

The node classifier H .4 has a similar architecture
to the QA classifier and predicts a presence and
absence probability score for each node.

PNode = 0(HNode({trE, 111, tNaF))

Edge Module: Now, given the representations
of each fact, rule and NAF, we learn a represen-
tation for each edge between these. Formally, we
define the edge embedding t(rr, rr;) from node
RF; to node RF; by concatenating their individual
embeddings trr, and tr F with their element-wise
difference (which gives the directionality vector).

t(rF,,rRF;) = [tRF;, tRE;, (tRF; — tRF,)]

The above formulation also helps learn separate
representations for edges RF; — RF; and RE; —
RF;. This is essential for our task as a proof can
have edges between two rules in both directions.
In Section 4.7, we see that this formulation leads
to a near perfect empirical performance in predict-
ing the directionality of edges. The edge classifier
HEqg4e outputs probability scores representing the
presence and absence of each edge.

Prage = 0(Hpage({t(rF, rF;) o 121))
lRF, ., = INAF
We train our model by using binary cross-entropy
loss for each of the three modules. Formally, if

all these as NAF, we collapse all the NA F' nodes into a single
node and learn a unified representation for them.

Lga, Lnode and L gqq4e denote the three losses, the
overall loss L is given by:

L= LQA + LNode + LEdge
3.4 ILP Inference for Global Constraints

As mentioned previously, during inference, we en-
force additional constraints on the structure of the
predicted proof graph. For this, we frame infer-
ence as Integer Linear Program (ILP) optimization,
which we describe next. We follow the generative
process of a graph wherein the nodes are defined
first, followed by the edges on that set of nodes.
Thus, we fix the nodes first based on the predictions
by the node module of our model and maximize
a global score over the set of edges only. This re-
duces the large search space and ensures that all
constraints can be expressed as linear expressions.

Proof Connectivity Formulation: An impor-
tant constraint is to ensure that the predicted
proof graphs are connected.* To check if a proof
graph P is connected, we define an augmented
graph Pyyg = (N, aug> Eaug) With two added nodes
“source” and “sink”. We add an edge from the
source to any one of the nodes x in P. We also
define edges from all nodes in P to the sink.

Naug = N U {source, sink}
Eaug = E U {(source,x)} U{(n, sink)¥n € N'}
Having defined Pg,4, we can reduce the graph
connectivity in P to a maximum flow problem

*Proofs are directed graphs. We check connectivity in the
equivalent undirected graphs.
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(Leighton and Rao, 1999) in Pg,4 (Even and Tar-
jan, 1975). For this, we define the capacity variable
C(m,n) for each edge, m — n in Py, as follows.

C(source,r) = [N|and ¢z source) = 0
Vn € N, ¢nsink) = 1 and ¢(ging ) = 0
Ym,n € N, Cim,n) = ‘N|

Cmp) = 0if m ¢ Norn ¢ N

Now, there can be a maximum total flow of ||
from the source to the sink, if and only if the graph
is connected. We use this flow formulation to pro-
vide additional constraints for our ILP inference
procedure that ensure connectivity of proof graphs.

Final Optimization Problem: Our maximiza-
tion objective, subject to the connectivity constraint
and all other constraints (that ensure a valid proof)
is as follows. Let ¢, ) represent the probability
that an edge m — n is present, as predicted by
PROVER. We want to infer 0/1 assignments for our
optimization variables €, ,,) (a value of 1 means
the edge is part of the proof, while 0 means it is
not) such that the following objective is maximized:

argmazx Z (¢(m,n)e(m,n)+

e(m,n)vf(m,n) m7n,m?§n
(1 - ¢(m,n))(1

subject to constraints:

- e(m,n)))

Vm,n € FURUNAF, ey, € {0,1} (1)
emm) = 0,ifm g Norn ¢ N' (2)

€mm) = 0,iffm € Fandne F' (3)

€(m,n) = 0,fme Randne FF (4)

¥, n € Naug, 0 < fimn) < Commy )

Vn € Naug, Z

m:(m,n)E€aug

f(m,n)

= Z f(n,o) (6)
0:(n,0)€Equg
f(source,x) = |N| (7)

Vm,n € Naug, €m,n) + €(n,m)
~(fmm) /WD) 20 (8)

Note that A/, F, and R refer to the set of pre-
dicted nodes (from the model), the set of facts, and
the set of rules, respectively. Equations 2, 3 and
4 ensure that edges are present only when the cor-
responding nodes are present and that there are
no edges between two facts and from a rule to a

fact. Next, to ensure proof connectivity, we first
define the flow constraints in Equations 5 and 6 con-
strained by the flow variables f(,, ,,) for each edge
m — n. These maintain the capacity constraints
(the flow at each edge should be less than its ca-
pacity) and the flow conservation constraints (the
total flow through the incoming edges at a node is
equal to the total flow through the outgoing edges).
Equation 7 ensures connectivity in the proof graph,
by enforcing the total flow to be |A|. Finally, we
ensure that the proof connectivity is checked on
the valid edges only (which are part of the proof)
through the last constraint, since a max-flow of ||
is achievable for any connected graph.

4 Experiments

Our experiments evaluate the effectiveness of
PROVER (PR), our joint QA, and proof model
against RuleTakers (RT). Details of our experimen-
tal setup are in the appendix.

4.1 Datasets and Evaluation Metrics

We conduct experiments on all the three sets of
datasets introduced in Clark et al. (2020) and con-
sisting of gold answers and proofs. Further details
of the datasets can be found in the appendix.
DUO0-DUS: The first set consists of five datasets,
each containing 100k questions with theories in
synthetic language and requiring reasoning paths
up todepth D (D = 0,1, 2, 3,5). We refer to these
datasets as DUO, DU1, DU2, DU3 and DUS, where
DU stands for “Depth Upto™.
Birds-Electricity: It consists of two test-only
datasets of 5k samples used to evaluate the out-
of-distribution performance of the models.
ParaRules: ParaRules consists of 40k questions
against 2k theories expressed in paraphrased natu-
ral language, obtained through crowdsourcing.
We evaluate QA performance through accuracy.
For proofs, we introduce three metrics: (1) Node
Accuracy (NA): Fraction of examples where the
predicted node set matches exactly with the gold
node set, (2) Edge Accuracy (EA): Fraction of ex-
amples where the predicted edge set match exactly
with the gold set, and (3) Proof Accuracy (PA):
Fraction of examples where the generated proof
matches exactly with the gold proof. For examples
with multiple gold proofs, we give credit if the pre-
diction matches exactly with any one of the proofs.
We also evaluate Full Accuracy (FA), denoting the
fraction of samples where both the answer and the
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QA

QA

D Cnt NA EA PA FA Cnt NA EA PA FA
RT PR RT PR
0 6299 100 100 98.6 985 984 984 B1 40 975 950 925 925 925 925
1 4434 984 99.0 933 951 932 931 B2 40 100 950 950 950 950 950
2 2915 984 98.8 859 848 848 848 El 162 969 100 951 963 951 95.1
3 2396 98.8 991 823 80.5 80.5 80.5 E2 180 983 100 917 933 91.7 91.7
4 2134 992 988 777 725 725 724 E3 624 918 897 723 731 723 718
5 2003 99.8 993 76.0 651 651 651 E4 4224 767 848 81.4 813 806 80.6
All 20192 992 993 892 875 871 87.1 All 5270 80.1 86.5 813 814 80.7 805

Table 1: QA comparison between RT and PR for vary-
ing depths along with node, edge, proof and full accu-
racy for PROVER on DUS. Cnt = Sample Count.

proof are exactly correct.

4.2

We first train and evaluate PROVER on the train
and test splits of the DUS dataset, and compare its
QA performance with RuleTakers for questions
of varying depths (D). Table 1 shows these re-
sults and the proof-related metrics for PROVER.
The corresponding validation set results can be
found in the appendix. Overall, and at each depth,
PROVER matches the QA performance of Rule-
Takers. PROVER is also able to generate exact
proofs fairly accurately at 87%. Perhaps unsur-
prisingly, we find that edge prediction is a harder
task than node prediction, and performance wors-
ens with increasing depth due to an increasingly
large number of edges to be labeled. The proof
accuracy matches the edge accuracy at each depth,
suggesting that proofs are almost always correct if
the edges are correct. Similarly, the full accuracy
matches the proof accuracy, showing that the pre-
dicted answer is almost always correct when the
corresponding proof is correct. This points to an
interesting observation — QA is easier than node
prediction, which in turn is easier than edge pre-
diction. All the datasets experimented with exhibit
this behavior, as we also describe later. Proof gen-
eration becomes harder with increasing depth (and
hence, more nodes and edges), as the exact proof
generation accuracy drops to 65% for depth 5. On
analyzing further, we find that on average, PROVER
correctly predicts 6 out of 7 edges present in a
depth 5 proof. Overall, PROVER is interpretable
yet efficient, as it generates proofs fairly accurately
without any loss in QA performance.

QA and Proof Results for Varying Depths

4.3 Zero-Shot Evaluation

Following previous work (Clark et al., 2020), we
now test the out-of-distribution performance of
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Table 2: Zero-shot performance comparison on the
Birds-Electricity dataset after training on DUS.

—e—RT —m—PR

Accuracy on DUS
3

bu1l
Train Datasets

Figure 4: QA performance comparison between
PROVER and RuleTakers with models trained on DUOQ,
DU1, DU2 and DU3 and tested on DUS.

PROVER on the Birds-Electricity dataset (Table 2).
The DUS5-trained model is tested on six datasets,
two from the birds domain (B1, B2) and another
four from the electricity domain (E1, E2, E3, E4).
Overall, our model achieves a 6% QA improve-
ment over RuleTakers. More importantly, PROVER
outperforms RuleTakers by 8% on the hardest and
largest E4 subset of the data. The proof accuracy is
also fairly high, demonstrating good proof genera-
tion ability of our model for out-of-distribution data
as well. Similar to the test results on DUS, the full
accuracy matches the proof accuracy, demonstrat-
ing proof consistency with the predicted answers.
We show examples of proofs generated by PROVER
in Figure 2 and in the appendix.

4.4 Generalization to Higher Depths

We evaluate the generalization ability of PROVER
compared to RuleTakers by training models on the
train splits of DUO, DU1, DU2 and DU3, and test-
ing the QA performance on the overall test set for
DUS, which includes questions with higher depth
than seen during training. The corresponding val-
idation set and proof-related results can be found
in the appendix. As shown in Figure 4, PROVER,
when trained on depth 0 examples only, performs
significantly better than RuleTakers with an im-
provement of 15%. A similar trend is observed for
DU1 and DU2, where PROVER improves by 10%



QA

D Cnt NA EA PA FA
RT PR
0 2968 998 99.7 995 999 995 994
1 2406 993 986 98.0 989 98.0 973
2 1443 982 982 892 889 889 887
3 1036  96.7 965 921 90.0 90.0 899
4 142 901 880 873 76.1 76.1 76.1
All 8008 988 984 96.0 958 954 95.1

Table 3: Comparison of models trained on DU3 and
ParaRules training sets and tested on ParaRules test set.

and 6%, respectively. On DU3, both models show
high and comparable performance. PROVER’s su-
perior generalization ability can be attributed to
the extra training supervision incorporated in the
form of proofs and an inductive bias for making
proof-based predictions. While proof construction
for supervised training is expensive, PROVER’s su-
perior QA results on out-of-distribution data (Table
2) and higher depth questions is a potential first
step to showing that limited proof supervision can
still lead to effective generalization.

4.5 Varying Training Data Size

We explore varying the amount of training data
from 10k to 30k to all the examples (70k) in DUS.
As shown in Table 4, when trained with only 40%
of the data, PROVER obtains a near-perfect QA
accuracy of 97.8%. Thus, for QA, PROVER’s joint
training with proofs can compensate for the lack of
training data. Proof generation, however, is much
harder and with increased training data, the rate of
increase in proof accuracy is much more gradual.

4.6 Evaluation on Complex Language

We also test PROVER’s ability to generate proofs
for more human-like natural language theories.
More details on the ParaRules dataset can be found
in the appendix. Following Clark et al. (2020), we
train a model by combining the DU3 and ParaRules
training partitions and test on the ParaRules test par-
tition. Table 3 again shows that PROVER matches
the QA performance of RuleTakers, and also gen-
erates proofs with a high accuracy of 95%. Follow-
ing previous trends, the proof accuracy drops as
the depth increases, and QA performance is higher
than for node prediction, which in turn is higher
than for edge prediction.

4.7 Ablation and Error Analysis

Table 5 analyzes the effectiveness of the individ-
ual components of PROVER through an ablation
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Count QA NA EA PA FA
10k 87.1 48.1 447 440 427
30k 978 719 732 725 724
70k 99.3 892 875 871 8&7.1

Table 4: Comparison of PROVER models trained with
varying amount of training data on DUS. Count = Num-
ber of training examples.

study. These ablated variants also provide natural
baselines for our proof-related results. Specifically,
we train and test the following models on DUS5: (1)
QA+Node: We train a model consisting of only
the QA and Node modules; (2) No NAF: We train
a model using random NAF embeddings; (3) Un-
constrained Train (UT) + No ILP: We remove
constraints both during training and inference; (4)
Unconstrained Train (UT) + ILP: We remove
constraints only during training; (5) No Connec-
tivity: Finally, we train a model where we only re-
move the connectivity constraint during inference.
More details about these models in appendix.

The QA accuracy is mostly unaffected in all our
models and all but “No NAF” have similar node
accuracy. The “No NAF” model does not learn a
representation for NAF, leading to 5-6% drop in
both node and edge accuracy. The 5-6% drop in
edge and proof accuracy for the “Unconstrained
Train + No ILP” model, compared to PROVER,
shows that removing constraints results in a harder
learning problem and the model fails to automati-
cally learn all the constraints. The proof accuracy
improves slightly when we add constraints only dur-
ing inference (‘“Unconstrained Train + ILP”). The
connectivity constraint provides only marginal im-
provement as our model mostly predicts connected
proofs without any explicit supervision. Specifi-
cally, only 57 examples have disconnected proofs
without this constraint. The overall PROVER model
outperforms all variants in full accuracy.

To better understand the loss of accuracy for
higher depth proofs, we perform error analysis of
PROVER for the depth 5 subset of DU5. We find
that our NAF learning module is highly accurate —
PROVER correctly predicts NAF in a proof 95% of
the time. Among all examples with incorrectly pre-
dicted node sets, 42% are such that the predicted set
is a subset of the gold set while for 25% examples,
it is a superset, demonstrating that our model tends
to underestimate the number of essential rules and
facts. PROVER almost perfectly identifies the di-
rection of edges. We find only 1 example where
the proof is incorrect solely due to the incorrect



QA NA EA PA FA
QA+N+E (PR) 993 892 875 87.1 87.1
QA+N 994  88.9 - - -
QA (RT) 99.2 - - - -
No NAF 995 83.1 823 817 817
UT + No ILP 994 90.1 830 819 819
UT +ILP 99.4 90.1 834 829 828
No Connectivity 99.3 89.2 87.8 87.0 87.0

Table 5: Ablation studies of PROVER showing the im-
portance of each component and constraints.

identification of directionality. Further, 21% of the
incorrectly predicted edges are subsets of the gold
sets, while 35% are supersets.

5 Discussion and Future Work

Graph-based Explanations: While we have
presented PROVER as a model that can emulate
formal reasoning, it has further potential use as an
explanation generation system. PROVER generates
compositional explanations in the form of graphs
and QA systems, in general, can potentially benefit
from generating such graphical explanations. For
example, in multi-hop QA tasks, the node module
can choose all the relevant sentences in the context
and the edge module can identify the flow of infor-
mation between these to arrive at the answer (in
the presence of task-specific constraints). Graph-
ical explanations, in contrast to natural language
ones, are more structured and can allow explicit
modeling of causality (and are easier to evaluate, as
opposed to free-form natural language generation).
We hope that PROVER will encourage further work
towards developing interpretable NLP models with
structured explanations.

QA and Proof Consistency: Currently,
PROVER predicts the answer and generates the
proof by jointly optimizing the QA, node and edge
modules using a shared ROBERTa model. Another
modeling choice could explicitly condition the
QA module on the node and edge modules so
that the answer is predicted from the proof. We
empirically verify the consistency between the
predicted answer and the generated proof by
showing that the full accuracy matches the proof
accuracy. However, in scenarios where questions
have open-ended answers, generating answer
from a ‘proof’ in a consistent manner needs
more exploration. PROVER’s constraints like
ensuring connectivity are necessary constraints
for generating valid proofs for any graph-based
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explanation generation system. However, other
tasks may require imposing additional constraints
to ensure valid explanations.PROVER’s inference
mechanism can be extended to incorporate these.

Broader Implications in Formal Logic:
PROVER’s framework is not conceptually
constrained to a particular logic fragment.
PROVER uses the idea that applying a rule to
fact(s) can produce new fact(s). All logic frag-
ments from formal logic fit this idea and may only
differ in the nature of the graphs generated. For
a fact “Robin is a bird” and a rule with universal
quantification “All birds can fly”, PROVER’s graph
will have an edge from the fact to the rule to
generate “Robin can fly”. We experiment with
datasets which already contain negations in facts.
While these datasets currently do not contain
disjunctions, our graphical representations of
proofs allow an easy extension in such scenarios.
E.g., if there is a disjunction rule “If X or Y then
7 instead of a conjunction rule “If X and Y then
7", only the shape of the graph changes. In the
former, Z is proved by either an edge from X
or from Y to the rule, while in the latter, both
edges have to be necessarily present. Inferences
over modals like “might” and disjunction rules
like “If X then Y or Z” will mean that both the
answer and the proof will be probabilistic. In such
scenarios, PROVER’s unweighted proof graphs
can be extended to weighted ones to represent this
probabilistic nature.

6 Conclusion

We introduce PROVER, an interpretable joint
model that answers binary questions over natural
language rule-bases and generates corresponding
proofs. The proofs are generated through the node
and edge modules of the model in the presence
of multiple global constraints during training and
ILP inference. Our model improves state-of-the-
art QA accuracy in the zero-shot scenario by 6%
and generates proofs accurately. PROVER also
generalizes much better to higher depth questions
with up to 15% absolute improvement in QA per-
formance over RuleTakers. PROVER’s modeling
is relatively generic, and similar proof generation
methods can be explored in traditional multi-hop
QA tasks. PROVER can also be a helpful aid to
formal reasoners in scenarios where rules are fuzzy
and creating rule-bases in a formal language is te-
dious or infeasible.
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A Appendix

A.1 Experimental Setup

We build our model on top of the Hugging Face
Transformers library (Wolf et al., 2019).> All hyper-
paramters are chosen based on the best validation
set performance (Full Accuracy) of the correspond-
ing dataset. We use RoBERTa-large (Liu et al.,
2019b) as the pre-trained Language Model and all
our models are trained using a batch size of 8 and
a maximum sequence length of 300. We train the
models for a maximum of 5 epochs using an ini-
tial learning rate of 10~5, with linear decay and a
weight decay of 0.1 . The dropout probability is
chosen to be 0.1. The random seed used in all the
experiments is 42. Each epoch of PROVER takes
2.5 hours to run on one V100 Volta GPU. The total
number of parameters of PROVER is similar to that
of RoBERTa-large (355M). Batch size and learn-
ing rate are manually tuned in the range {8,16} and
{1075, 2% 1075} respectively. The ILP is modeled
using PuLP.% Proofs in the datasets are represented
as bracketed strings, which are pre-processed into
graph representations consisting of unique nodes
and edges. The maximum number of facts and
rules corresponding to a context is 25.7

A.2 Dataset Details

Below we briefly describe the three sets of datasets
we conduct experiments on.® Each dataset has a

Shttps://github.com/huggingface/
transformers

*https://pypi.org/project/PulP/

"Further details of our best hyperparameters can be found
in the attached code as part of the supplementary material.

8https ://rule-reasoning.apps.allenai.
org/
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train, validation and test split, except for the zero-
shot test-only one. Further details about these can
be found in Clark et al. (2020).

DUO-DUS: The first set consists of five datasets,
each containing 100k questions with theories in
synthetic language and requiring reasoning paths
up to depth D (D = 0,1,2,3,5). For example,
D = 0 means the true facts can be proved by sim-
ple lookup in the context. The samples are ran-
domly split 70/10/20 into train/dev/test partitions
such that there is no overlap of theories between
the partitions.

Birds-Electricity: The second set consists of
two test-only datasets used to evaluate robustness
and out-of-distribution performance of the models.
The contexts are about birds and an electric circuit,
and consist of 5k samples in total. The vocabulary
of entities, attributes and predicates, apart from
is () are all new at test time.

ParaRules: The final dataset, ParaRules consists
of 40k questions against 2k theories expressed in
paraphrased natural language, obtained through
crowdsourcing. While the previous datasets con-
tain synthetic language, ParaRules tests the models’
ability to reason over more human-like paraphrased
language.

A.3 QA and Proof Results for Varying
Depths

Table 7 shows the DUS5 validation set performance
of PROVER trained on the training split of DUS.
PROVER obtains a near perfect QA accuracy and
a proof accuracy of 88%. While the QA accuracy
remains equally high at all depths, the proof accu-
racy drops with increasing depth. Full accuracy
matches the proof accuracy, demonstrating consis-
tency between the predicted answers and generated
proofs.

A.4 Generalization to Higher Depths

In Table 6, we provide detailed results of
PROVER’s generalization ability to higher depth
questions. Specifically, we evaluate four models,
trained on the training splits of DUO, DU1, DU2
and DU3 and tested on the validation and test splits
of DUS5. We have shown previously that PROVER
does significantly better than RuleTakers (Clark
et al., 2020) on QA generalization. The proofs,
however, do not generalize that well. Note that
depth O proofs are rather simple (consisting of a



QA NA EA PA FA
Dev Test Dev Test Dev Test Dev Test Dev Test
DUO 683 687 453 460 493 495 438 444 423 428
DU1 732 737 664 663 645 643 639 638 61.8 619
DU2 893 896 76,6 764 73.1 731 726 726 723 723
DU3 983 98.6 855 850 799 795 794 79.1 794 79.1

Table 6: Performance of PROVER trained on the training splits of DUO, DU1, DU2 and DU3 and tested on the

validation and test splits of DUS.

D Cnt QA NA EA PA FA
0 3116 100 98.7 98.6 98.5 985
1 2304 988 925 949 922 922
2 1436 992 86.1 856 856 85.6
3 1165 98.7 851 828 82.8 828
4 1041 98.8 812 769 769 769
5 990 993 783 674 674 674
All 10068 993 90.0 886 88.0 88.0

Table 7: Performance of PROVER trained on the train-
ing split of DUS5 and tested on the validation split of
DUS.

D Cnt QA NA EA PA FA
0 1485 999 996 99.7 995 995
1 1180 99.7 993 995 993 993
2 727 994 915 915 915 913
3 524 985 920 903 903 903
4 & 100 87.6 728 728 728
5 7 100 100 0 0 0
All 4004 99.6 96.8 962 96.1 96.0

Table 8: PROVER results on the ParaRules validation
set after training on DU3+ParaRules training splits.

single fact) and a model trained on only such proofs,
unsuprisingly, fails to generate proofs for higher
depth questions. However, the proof results start
improving as the model gets trained on more c