Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Tutorial Abstracts

Marcello Federico, Akiko Aizawa (Editors)


Anthology ID:
C16-3
Month:
December
Year:
2016
Address:
Osaka, Japan
Venue:
COLING
SIG:
Publisher:
The COLING 2016 Organizing Committee
URL:
https://aclanthology.org/C16-3
DOI:
Bib Export formats:
BibTeX
PDF:
https://preview.aclanthology.org/emnlp22-frontmatter/C16-3.pdf

pdf bib
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Tutorial Abstracts
Marcello Federico | Akiko Aizawa

pdf bib
Compositional Distributional Models of Meaning
Mehrnoosh Sadrzadeh | Dimitri Kartsaklis

Compositional distributional models of meaning (CDMs) provide a function that produces a vectorial representation for a phrase or a sentence by composing the vectors of its words. Being the natural evolution of the traditional and well-studied distributional models at the word level, CDMs are steadily evolving to a popular and active area of NLP. This COLING 2016 tutorial aims at providing a concise introduction to this emerging field, presenting the different classes of CDMs and the various issues related to them in sufficient detail.

pdf bib
Chinese Textual Sentiment Analysis: Datasets, Resources and Tools
Lun-Wei Ku | Wei-Fan Chen

The rapid accumulation of data in social media (in million and billion scales) has imposed great challenges in information extraction, knowledge discovery, and data mining, and texts bearing sentiment and opinions are one of the major categories of user generated data in social media. Sentiment analysis is the main technology to quickly capture what people think from these text data, and is a research direction with immediate practical value in ‘big data’ era. Learning such techniques will allow data miners to perform advanced mining tasks considering real sentiment and opinions expressed by users in additional to the statistics calculated from the physical actions (such as viewing or purchasing records) user perform, which facilitates the development of real-world applications. However, the situation that most tools are limited to the English language might stop academic or industrial people from doing research or products which cover a wider scope of data, retrieving information from people who speak different languages, or developing applications for worldwide users. More specifically, sentiment analysis determines the polarities and strength of the sentiment-bearing expressions, and it has been an important and attractive research area. In the past decade, resources and tools have been developed for sentiment analysis in order to provide subsequent vital applications, such as product reviews, reputation management, call center robots, automatic public survey, etc. However, most of these resources are for the English language. Being the key to the understanding of business and government issues, sentiment analysis resources and tools are required for other major languages, e.g., Chinese. In this tutorial, audience can learn the skills for retrieving sentiment from texts in another major language, Chinese, to overcome this obstacle. The goal of this tutorial is to introduce the proposed sentiment analysis technologies and datasets in the literature, and give the audience the opportunities to use resources and tools to process Chinese texts from the very basic preprocessing, i.e., word segmentation and part of speech tagging, to sentiment analysis, i.e., applying sentiment dictionaries and obtaining sentiment scores, through step-by-step instructions and a hand-on practice. The basic processing tools are from CKIP Participants can download these resources, use them and solve the problems they encounter in this tutorial. This tutorial will begin from some background knowledge of sentiment analysis, such as how sentiment are categorized, where to find available corpora and which models are commonly applied, especially for the Chinese language. Then a set of basic Chinese text processing tools for word segmentation, tagging and parsing will be introduced for the preparation of mining sentiment and opinions. After bringing the idea of how to pre-process the Chinese language to the audience, I will describe our work on compositional Chinese sentiment analysis from words to sentences, and an application on social media text (Facebook) as an example. All our involved and recently developed related resources, including Chinese Morphological Dataset, Augmented NTU Sentiment Dictionary (aug-NTUSD), E-hownet with sentiment information, Chinese Opinion Treebank, and the CopeOpi Sentiment Scorer, will also be introduced and distributed in this tutorial. The tutorial will end by a hands-on session of how to use these materials and tools to process Chinese sentiment. Content Details, Materials, and Program please refer to the tutorial URL: http://www.lunweiku.com/

pdf
Natural Language Processing for Intelligent Access to Scientific Information
Horacio Saggion | Francesco Ronzano

During the last decade the amount of scientific information available on-line increased at an unprecedented rate. As a consequence, nowadays researchers are overwhelmed by an enormous and continuously growing number of articles to consider when they perform research activities like the exploration of advances in specific topics, peer reviewing, writing and evaluation of proposals. Natural Language Processing Technology represents a key enabling factor in providing scientists with intelligent patterns to access to scientific information. Extracting information from scientific papers, for example, can contribute to the development of rich scientific knowledge bases which can be leveraged to support intelligent knowledge access and question answering. Summarization techniques can reduce the size of long papers to their essential content or automatically generate state-of-the-art-reviews. Paraphrase or textual entailment techniques can contribute to the identification of relations across different scientific textual sources. This tutorial provides an overview of the most relevant tasks related to the processing of scientific documents, including but not limited to the in-depth analysis of the structure of the scientific articles, their semantic interpretation, content extraction and summarization.

pdf
Quality Estimation for Language Output Applications
Carolina Scarton | Gustavo Paetzold | Lucia Specia

Quality Estimation (QE) of language output applications is a research area that has been attracting significant attention. The goal of QE is to estimate the quality of language output applications without the need of human references. Instead, machine learning algorithms are used to build supervised models based on a few labelled training instances. Such models are able to generalise over unseen data and thus QE is a robust method applicable to scenarios where human input is not available or possible. One such a scenario where QE is particularly appealing is that of Machine Translation, where a score for predicted quality can help decide whether or not a translation is useful (e.g. for post-editing) or reliable (e.g. for gisting). Other potential applications within Natural Language Processing (NLP) include Text Summarisation and Text Simplification. In this tutorial we present the task of QE and its application in NLP, focusing on Machine Translation. We also introduce QuEst++, a toolkit for QE that encompasses feature extraction and machine learning, and propose a practical activity to extend this toolkit in various ways.

pdf
Translationese: Between Human and Machine Translation
Shuly Wintner

Translated texts, in any language, have unique characteristics that set them apart from texts originally written in the same language. Translation Studies is a research field that focuses on investigating these characteristics. Until recently, research in machine translation (MT) has been entirely divorced from translation studies. The main goal of this tutorial is to introduce some of the findings of translation studies to researchers interested mainly in machine translation, and to demonstrate that awareness to these findings can result in better, more accurate MT systems.

pdf
Succinct Data Structures for NLP-at-Scale
Matthias Petri | Trevor Cohn

Succinct data structures involve the use of novel data structures, compression technologies, and other mechanisms to allow data to be stored in extremely small memory or disk footprints, while still allowing for efficient access to the underlying data. They have successfully been applied in areas such as Information Retrieval and Bioinformatics to create highly compressible in-memory search indexes which provide efficient search functionality over datasets which traditionally could only be processed using external memory data structures. Modern technologies in this space are not well known within the NLP community, but have the potential to revolutionise NLP, particularly the application to ‘big data’ in the form of terabyte and larger corpora. This tutorial will present a practical introduction to the most important succinct data structures, tools, and applications with the intent of providing the researchers with a jump-start into this domain. The focus of this tutorial will be efficient text processing utilising space efficient representations of suffix arrays, suffix trees and searchable integer compression schemes with specific applications of succinct data structures to common NLP tasks such as n-gram language modelling.

pdf
The Role of Wikipedia in Text Analysis and Retrieval
Marius Paşca

This tutorial examines the characteristics, advantages and limitations of Wikipedia relative to other existing, human-curated resources of knowledge; derivative resources, created by converting semi-structured content in Wikipedia into structured data; the role of Wikipedia and its derivatives in text analysis; and the role of Wikipedia and its derivatives in enhancing information retrieval.