2023
pdf
abs
Rethinking Dictionaries and Glyphs for Chinese Language Pre-training
Yuxuan Wang
|
Jack Wang
|
Dongyan Zhao
|
Zilong Zheng
Findings of the Association for Computational Linguistics: ACL 2023
We introduce CDBert, a new learning paradigm that enhances the semantics understanding ability of the Chinese PLMs with dictionary knowledge and structure of Chinese characters. We name the two core modules of CDBert as Shuowen and Jiezi, where Shuowen refers to the process of retrieving the most appropriate meaning from Chinese dictionaries and Jiezi refers to the process of enhancing characters’ glyph representations with structure understanding. To facilitate dictionary understanding, we propose three pre-training tasks, i.e.„ Masked Entry Modeling, Contrastive Learning for Synonym and Antonym, and Example Learning. We evaluate our method on both modern Chinese understanding benchmark CLUE and ancient Chinese benchmark CCLUE. Moreover, we propose a new polysemy discrimination task PolyMRC based on the collected dictionary of ancient Chinese. Our paradigm demonstrates consistent improvements on previous Chinese PLMs across all tasks. Moreover, our approach yields significant boosting on few-shot setting of ancient Chinese understanding.
pdf
abs
Semi-automatic Data Enhancement for Document-Level Relation Extraction with Distant Supervision from Large Language Models
Junpeng Li
|
Zixia Jia
|
Zilong Zheng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Document-level Relation Extraction (DocRE), which aims to extract relations from a long context, is a critical challenge in achieving fine-grained structural comprehension and generating interpretable document representations. Inspired by recent advances in in-context learning capabilities emergent from large language models (LLMs), such as ChatGPT, we aim to design an automated annotation method for DocRE with minimum human effort. Unfortunately, vanilla in-context learning is infeasible for DocRE due to the plenty of predefined fine-grained relation types and the uncontrolled generations of LLMs. To tackle this issue, we propose a method integrating an LLM and a natural language inference (NLI) module to generate relation triples, thereby augmenting document-level relation datasets. We demonstrate the effectiveness of our approach by introducing an enhanced dataset known as DocGNRE, which excels in re-annotating numerous long-tail relation types. We are confident that our method holds the potential for broader applications in domain-specific relation type definitions and offers tangible benefits in advancing generalized language semantic comprehension.
pdf
abs
VSTAR: A Video-grounded Dialogue Dataset for Situated Semantic Understanding with Scene and Topic Transitions
Yuxuan Wang
|
Zilong Zheng
|
Xueliang Zhao
|
Jinpeng Li
|
Yueqian Wang
|
Dongyan Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Video-grounded dialogue understanding is a challenging problem that requires machine to perceive, parse and reason over situated semantics extracted from weakly aligned video and dialogues. Most existing benchmarks treat both modalities the same as a frame-independent visual understanding task, while neglecting the intrinsic attributes in multimodal dialogues, such as scene and topic transitions. In this paper, we present Video-grounded Scene&Topic AwaRe dialogue (VSTAR) dataset, a large scale video-grounded dialogue understanding dataset based on 395 TV series. Based on VSTAR, we propose two benchmarks for video-grounded dialogue understanding: scene segmentation and topic segmentation, and one benchmark for video-grounded dialogue generation. Comprehensive experiments are performed on these benchmarks to demonstrate the importance of multimodal information and segments in video-grounded dialogue understanding and generation.
pdf
abs
Modeling Instance Interactions for Joint Information Extraction with Neural High-Order Conditional Random Field
Zixia Jia
|
Zhaohui Yan
|
Wenjuan Han
|
Zilong Zheng
|
Kewei Tu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Prior works on joint Information Extraction (IE) typically model instance (e.g., event triggers, entities, roles, relations) interactions by representation enhancement, type dependencies scoring, or global decoding. We find that the previous models generally consider binary type dependency scoring of a pair of instances, and leverage local search such as beam search to approximate global solutions. To better integrate cross-instance interactions, in this work, we introduce a joint IE framework (CRFIE) that formulates joint IE as a high-order Conditional Random Field. Specifically, we design binary factors and ternary factors to directly model interactions between not only a pair of instances but also triplets. Then, these factors are utilized to jointly predict labels of all instances. To address the intractability problem of exact high-order inference, we incorporate a high-order neural decoder that is unfolded from a mean-field variational inference method, which achieves consistent learning and inference. The experimental results show that our approach achieves consistent improvements on three IE tasks compared with our baseline and prior work.
2022
pdf
abs
SHARP: Search-Based Adversarial Attack for Structured Prediction
Liwen Zhang
|
Zixia Jia
|
Wenjuan Han
|
Zilong Zheng
|
Kewei Tu
Findings of the Association for Computational Linguistics: NAACL 2022
Adversarial attack of structured prediction models faces various challenges such as the difficulty of perturbing discrete words, the sentence quality issue, and the sensitivity of outputs to small perturbations. In this work, we introduce SHARP, a new attack method that formulates the black-box adversarial attack as a search-based optimization problem with a specially designed objective function considering sentence fluency, meaning preservation and attacking effectiveness. Additionally, three different searching strategies are analyzed and compared, i.e., Beam Search, Metropolis-Hastings Sampling, and Hybrid Search. We demonstrate the effectiveness of our attacking strategies on two challenging structured prediction tasks: Pos-tagging and dependency parsing. Through automatic and human evaluations, we show that our method performs a more potent attack compared with pioneer arts. Moreover, the generated adversarial examples can be used to successfully boost the robustness and performance of the victim model via adversarial training.
pdf
bib
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)
Wenjuan Han
|
Zilong Zheng
|
Zhouhan Lin
|
Lifeng Jin
|
Yikang Shen
|
Yoon Kim
|
Kewei Tu
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)
2021
pdf
GRICE: A Grammar-based Dataset for Recovering Implicature and Conversational rEasoning
Zilong Zheng
|
Shuwen Qiu
|
Lifeng Fan
|
Yixin Zhu
|
Song-Chun Zhu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021