Zhenya Huang
2023
Enhancing Hierarchical Text Classification through Knowledge Graph Integration
Ye Liu
|
Kai Zhang
|
Zhenya Huang
|
Kehang Wang
|
Yanghai Zhang
|
Qi Liu
|
Enhong Chen
Findings of the Association for Computational Linguistics: ACL 2023
Hierarchical Text Classification (HTC) is an essential and challenging subtask of multi-label text classification with a taxonomic hierarchy. Recent advances in deep learning and pre-trained language models have led to significant breakthroughs in the HTC problem. However, despite their effectiveness, these methods are often restricted by a lack of domain knowledge, which leads them to make mistakes in a variety of situations. Generally, when manually classifying a specific document to the taxonomic hierarchy, experts make inference based on their prior knowledge and experience. For machines to achieve this capability, we propose a novel Knowledge-enabled Hierarchical Text Classification model (K-HTC), which incorporates knowledge graphs into HTC. Specifically, K-HTC innovatively integrates knowledge into both the text representation and hierarchical label learning process, addressing the knowledge limitations of traditional methods. Additionally, a novel knowledge-aware contrastive learning strategy is proposed to further exploit the information inherent in the data. Extensive experiments on two publicly available HTC datasets show the efficacy of our proposed method, and indicate the necessity of incorporating knowledge graphs in HTC tasks.
RHGN: Relation-gated Heterogeneous Graph Network for Entity Alignment in Knowledge Graphs
Xukai Liu
|
Kai Zhang
|
Ye Liu
|
Enhong Chen
|
Zhenya Huang
|
Linan Yue
|
Jiaxian Yan
Findings of the Association for Computational Linguistics: ACL 2023
Entity Alignment, which aims to identify equivalent entities from various Knowledge Graphs (KGs), is a fundamental and crucial task in knowledge graph fusion. Existing methods typically use triple or neighbor information to represent entities, and then align those entities using similarity matching. Most of them, however, fail to account for the heterogeneity among KGs and the distinction between KG entities and relations. To better solve these problems, we propose a Relation-gated Heterogeneous Graph Network (RHGN) for entity alignment. Specifically, RHGN contains a relation-gated convolutional layer to distinguish relations and entities in the KG. In addition, RHGN adopts a cross-graph embedding exchange module and a soft relation alignment module to address the neighbor heterogeneity and relation heterogeneity between different KGs, respectively. Extensive experiments on four benchmark datasets demonstrate that RHGN is superior to existing state-of-the-art entity alignment methods.
Interventional Rationalization
Linan Yue
|
Qi Liu
|
Li Wang
|
Yanqing An
|
Yichao Du
|
Zhenya Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Selective rationalizations improve the explainability of neural networks by selecting a subsequence of the input (i.e., rationales) to explain the prediction results. Although existing methods have achieved promising results, they still suffer from adopting the spurious correlations in data (aka., shortcuts) to compose rationales and make predictions. Inspired by the causal theory, in this paper, we develop an interventional rationalization (Inter-RAT) to discover the causal rationales. Specifically, we first analyse the causalities among the input, rationales and results with a structural causal model. Then, we discover spurious correlations between the input and rationales, and between rationales and results, respectively, by identifying the confounder in the causalities. Next, based on the backdoor adjustment, we propose a causal intervention method to remove the spurious correlations between input and rationales. Further, we discuss reasons why spurious correlations between the selected rationales and results exist by analysing the limitations of the sparsity constraint in the rationalization, and employ the causal intervention method to remove these correlations. Extensive experimental results on three real-world datasets clearly validate the effectiveness of our proposed method. The source code of Inter-RAT is available at https://github.com/yuelinan/Codes-of-Inter-RAT.