2022
pdf
abs
PLANET: Dynamic Content Planning in Autoregressive Transformers for Long-form Text Generation
Zhe Hu
|
Hou Pong Chan
|
Jiachen Liu
|
Xinyan Xiao
|
Hua Wu
|
Lifu Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Despite recent progress of pre-trained language models on generating fluent text, existing methods still suffer from incoherence problems in long-form text generation tasks that require proper content control and planning to form a coherent high-level logical flow. In this work, we propose PLANET, a novel generation framework leveraging autoregressive self-attention mechanism to conduct content planning and surface realization dynamically. To guide the generation of output sentences, our framework enriches the Transformer decoder with latent representations to maintain sentence-level semantic plans grounded by bag-of-words. Moreover, we introduce a new coherence-based contrastive learning objective to further improve the coherence of output. Extensive experiments are conducted on two challenging long-form text generation tasks including counterargument generation and opinion article generation. Both automatic and human evaluations show that our method significantly outperforms strong baselines and generates more coherent texts with richer contents.
pdf
abs
MOCHA: A Multi-Task Training Approach for Coherent Text Generation from Cognitive Perspective
Zhe Hu
|
Hou Pong Chan
|
Lifu Huang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Teaching neural models to generate narrative coherent texts is a critical problem. Recent pre-trained language models have achieved promising results, but there is still a gap between human written texts and machine-generated outputs. In this work, we propose a novel multi-task training strategy for long text generation grounded on the cognitive theory of writing, which empowers the model to learn essential subskills needed for writing including planning and reviewing besides end-to-end generation. We extensively evaluate our model on three open-ended generation tasks including story generation, news article writing and argument generation. Experiments show that our model achieves better results on both few-shot and fully-supervised settings than strong baselines, and human evaluations confirm that our model can generate more coherent outputs.
2021
pdf
abs
Context-Aware Interaction Network for Question Matching
Zhe Hu
|
Zuohui Fu
|
Yu Yin
|
Gerard de Melo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Impressive milestones have been achieved in text matching by adopting a cross-attention mechanism to capture pertinent semantic connections between two sentence representations. However, regular cross-attention focuses on word-level links between the two input sequences, neglecting the importance of contextual information. We propose a context-aware interaction network (COIN) to properly align two sequences and infer their semantic relationship. Specifically, each interaction block includes (1) a context-aware cross-attention mechanism to effectively integrate contextual information when aligning two sequences, and (2) a gate fusion layer to flexibly interpolate aligned representations. We apply multiple stacked interaction blocks to produce alignments at different levels and gradually refine the attention results. Experiments on two question matching datasets and detailed analyses demonstrate the effectiveness of our model.
2020
pdf
abs
Enhanced Sentence Alignment Network for Efficient Short Text Matching
Zhe Hu
|
Zuohui Fu
|
Cheng Peng
|
Weiwei Wang
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
Cross-sentence attention has been widely applied in text matching, in which model learns the aligned information between two intermediate sequence representations to capture their semantic relationship. However, commonly the intermediate representations are generated solely based on the preceding layers and the models may suffer from error propagation and unstable matching, especially when multiple attention layers are used. In this paper, we pro-pose an enhanced sentence alignment network with simple gated feature augmentation, where the model is able to flexibly integrate both original word and contextual features to improve the cross-sentence attention. Moreover, our model is less complex with fewer parameters compared to many state-of-the-art structures. Experiments on three benchmark datasets validate our model capacity for text matching.
2019
pdf
abs
Argument Generation with Retrieval, Planning, and Realization
Xinyu Hua
|
Zhe Hu
|
Lu Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Automatic argument generation is an appealing but challenging task. In this paper, we study the specific problem of counter-argument generation, and present a novel framework, CANDELA. It consists of a powerful retrieval system and a novel two-step generation model, where a text planning decoder first decides on the main talking points and a proper language style for each sentence, then a content realization decoder reflects the decisions and constructs an informative paragraph-level argument. Furthermore, our generation model is empowered by a retrieval system indexed with 12 million articles collected from Wikipedia and popular English news media, which provides access to high-quality content with diversity. Automatic evaluation on a large-scale dataset collected from Reddit shows that our model yields significantly higher BLEU, ROUGE, and METEOR scores than the state-of-the-art and non-trivial comparisons. Human evaluation further indicates that our system arguments are more appropriate for refutation and richer in content.
pdf
abs
An Entity-Driven Framework for Abstractive Summarization
Eva Sharma
|
Luyang Huang
|
Zhe Hu
|
Lu Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Abstractive summarization systems aim to produce more coherent and concise summaries than their extractive counterparts. Popular neural models have achieved impressive results for single-document summarization, yet their outputs are often incoherent and unfaithful to the input. In this paper, we introduce SENECA, a novel System for ENtity-drivEn Coherent Abstractive summarization framework that leverages entity information to generate informative and coherent abstracts. Our framework takes a two-step approach: (1) an entity-aware content selection module first identifies salient sentences from the input, then (2) an abstract generation module conducts cross-sentence information compression and abstraction to generate the final summary, which is trained with rewards to promote coherence, conciseness, and clarity. The two components are further connected using reinforcement learning. Automatic evaluation shows that our model significantly outperforms previous state-of-the-art based on ROUGE and our proposed coherence measures on New York Times and CNN/Daily Mail datasets. Human judges further rate our system summaries as more informative and coherent than those by popular summarization models.