Moral or ethical judgments rely heavily on the specific contexts in which they occur. Understanding varying shades of defeasible contextualizations (i.e., additional information that strengthens or attenuates the moral acceptability of an action) is critical to accurately represent the subtlety and intricacy of grounded human moral judgment in real-life scenarios. We introduce defeasible moral reasoning: a task to provide grounded contexts that make an action more or less morally acceptable, along with commonsense rationales that justify the reasoning. To elicit high-quality task data, we take an iterative self-distillation approach that starts from a small amount of unstructured seed knowledge from GPT-3 and then alternates between (1) self-distillation from student models; (2) targeted filtering with a critic model trained by human judgment (to boost validity) and NLI (to boost diversity); (3) self-imitation learning (to amplify the desired data quality). This process yields a student model that produces defeasible contexts with improved validity, diversity, and defeasibility. From this model we distill a high-quality dataset, 𝛿-Rules-of-Thumb, of 1.2M entries of contextualizations and rationales for 115K defeasible moral actions rated highly by human annotators 85.9% to 99.8% of the time. Using 𝛿-RoT we obtain a final student model that wins over all intermediate student models by a notable margin.
When people think of everyday things like an egg, they typically have a mental image associated with it. This allows them to correctly judge, for example, that “the yolk surrounds the shell” is a false statement. Do language models similarly have a coherent picture of such everyday things? To investigate this, we propose a benchmark dataset consisting of 100 everyday things, their parts, and the relationships between these parts, expressed as 11,720 “X relation Y?” true/false questions. Using these questions as probes, we observe that state-of-the-art pre-trained language models (LMs) like GPT-3 and Macaw have fragments of knowledge about these everyday things, but do not have fully coherent “parts mental models” (54-59% accurate, 19-43% conditional constraint violation). We propose an extension where we add a constraint satisfaction layer on top of the LM’s raw predictions to apply commonsense constraints. As well as removing inconsistencies, we find that this also significantly improves accuracy (by 16-20%), suggesting how the incoherence of the LM’s pictures of everyday things can be significantly reduced.
Figurative language (e.g., “he flew like the wind”) is challenging to understand, as it is hard to tell what implicit information is being conveyed from the surface form alone. We hypothesize that to perform this task well, the reader needs to mentally elaborate the scene being described to identify a sensible meaning of the language. We present DREAM-FLUTE, a figurative language understanding system that does this, first forming a “mental model” of situations described in a premise and hypothesis before making an entailment/contradiction decision and generating an explanation. DREAM-FLUTE uses an existing scene elaboration model, DREAM, for constructing its “mental model.” In the FigLang2022 Shared Task evaluation, DREAM-FLUTE achieved (joint) first place (Acc@60=63.3%), and can perform even better with ensemble techniques, demonstrating the effectiveness of this approach. More generally, this work suggests that adding a reflective component to pretrained language models can improve their performance beyond standard fine-tuning (3.3% improvement in Acc@60).
When people answer questions about a specific situation, e.g., “I cheated on my mid-term exam last week. Was that wrong?”, cognitive science suggests that they form a mental picture of that situation before answering. While we do not know how language models (LMs) answer such questions, we conjecture that they may answer more accurately if they are also provided with additional details about the question situation, elaborating the “scene”. To test this conjecture, we train a new model, DREAM, to answer questions that elaborate the scenes that situated questions are about, and then provide those elaborations as additional context to a question-answering (QA) model. We find that DREAM is able to create better scene elaborations (more accurate, useful, and consistent) than a representative state-of-the-art, zero-shot model (Macaw). We also find that using the scene elaborations as additional context improves the answer accuracy of a downstream QA system, including beyond that obtainable by simply further fine-tuning the QA system on DREAM’s training data. These results suggest that adding focused elaborations about a situation can improve a system’s reasoning about it, and may serve as an effective way of injecting new scenario-based knowledge into QA models. Finally, our approach is dataset-neutral; we observe improved QA performance across different models, with even bigger gains on models with fewer parameters.
We investigate English pronunciation patterns in Singaporean children in relation to their American and British counterparts by conducting archetypal analysis on selected vowel pairs. Given that Singapore adopts British English as the institutional standard, one might expect Singaporean children to follow British pronunciation patterns, but we observe that Singaporean children also present similar patterns to Americans for TRAP-BATH spilt vowels: (1) British and Singaporean children both produce these vowels with a relatively lowered tongue height. (2) These vowels are more fronted for American and Singaporean children (p < 0.001). In addition, when comparing /æ/ and /ε/ productions, British speakers show the clearest distinction between the two vowels; Singaporean and American speakers exhibit a higher and more fronted tongue position for /æ/ (p < 0.001), causing /æ/ to be acoustically more similar to /ε/.