Yang Yu


2022

pdf
Tiny-NewsRec: Effective and Efficient PLM-based News Recommendation
Yang Yu | Fangzhao Wu | Chuhan Wu | Jingwei Yi | Qi Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

News recommendation is a widely adopted technique to provide personalized news feeds for the user. Recently, pre-trained language models (PLMs) have demonstrated the great capability of natural language understanding and benefited news recommendation via improving news modeling. However, most existing works simply finetune the PLM with the news recommendation task, which may suffer from the known domain shift problem between the pre-training corpus and downstream news texts. Moreover, PLMs usually contain a large volume of parameters and have high computational overhead, which imposes a great burden on low-latency online services. In this paper, we propose Tiny-NewsRec, which can improve both the effectiveness and the efficiency of PLM-based news recommendation. We first design a self-supervised domain-specific post-training method to better adapt the general PLM to the news domain with a contrastive matching task between news titles and news bodies. We further propose a two-stage knowledge distillation method to improve the efficiency of the large PLM-based news recommendation model while maintaining its performance. Multiple teacher models originated from different time steps of our post-training procedure are used to transfer comprehensive knowledge to the student model in both its post-training stage and finetuning stage. Extensive experiments on two real-world datasets validate the effectiveness and efficiency of our method.

2021

pdf
NewsBERT: Distilling Pre-trained Language Model for Intelligent News Application
Chuhan Wu | Fangzhao Wu | Yang Yu | Tao Qi | Yongfeng Huang | Qi Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Pre-trained language models (PLMs) like BERT have made great progress in NLP. News articles usually contain rich textual information, and PLMs have the potentials to enhance news text modeling for various intelligent news applications like news recommendation and retrieval. However, most existing PLMs are in huge size with hundreds of millions of parameters. Many online news applications need to serve millions of users with low latency tolerance, which poses great challenges to incorporating PLMs in these scenarios. Knowledge distillation techniques can compress a large PLM into a much smaller one and meanwhile keeps good performance. However, existing language models are pre-trained and distilled on general corpus like Wikipedia, which has gaps with the news domain and may be suboptimal for news intelligence. In this paper, we propose NewsBERT, which can distill PLMs for efficient and effective news intelligence. In our approach, we design a teacher-student joint learning and distillation framework to collaboratively learn both teacher and student models, where the student model can learn from the learning experience of the teacher model. In addition, we propose a momentum distillation method by incorporating the gradients of teacher model into the update of student model to better transfer the knowledge learned by the teacher model. Thorough experiments on two real-world datasets with three tasks show that NewsBERT can empower various intelligent news applications with much smaller models.

pdf
HieRec: Hierarchical User Interest Modeling for Personalized News Recommendation
Tao Qi | Fangzhao Wu | Chuhan Wu | Peiru Yang | Yang Yu | Xing Xie | Yongfeng Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

User interest modeling is critical for personalized news recommendation. Existing news recommendation methods usually learn a single user embedding for each user from their previous behaviors to represent their overall interest. However, user interest is usually diverse and multi-grained, which is difficult to be accurately modeled by a single user embedding. In this paper, we propose a news recommendation method with hierarchical user interest modeling, named HieRec. Instead of a single user embedding, in our method each user is represented in a hierarchical interest tree to better capture their diverse and multi-grained interest in news. We use a three-level hierarchy to represent 1) overall user interest; 2) user interest in coarse-grained topics like sports; and 3) user interest in fine-grained topics like football. Moreover, we propose a hierarchical user interest matching framework to match candidate news with different levels of user interest for more accurate user interest targeting. Extensive experiments on two real-world datasets validate our method can effectively improve the performance of user modeling for personalized news recommendation.

2020

pdf
Affect inTweets: A Transfer Learning Approach
Linrui Zhang | Hsin-Lun Huang | Yang Yu | Dan Moldovan
Proceedings of the Twelfth Language Resources and Evaluation Conference

People convey sentiments and emotions through language. To understand these affectual states is an essential step towards understanding natural language. In this paper, we propose a transfer-learning based approach to inferring the affectual state of a person from their tweets. As opposed to the traditional machine learning models which require considerable effort in designing task specific features, our model can be well adapted to the proposed tasks with a very limited amount of fine-tuning, which significantly reduces the manual effort in feature engineering. We aim to show that by leveraging the pre-learned knowledge, transfer learning models can achieve competitive results in the affectual content analysis of tweets, compared to the traditional models. As shown by the experiments on SemEval-2018 Task 1: Affect in Tweets, our model ranking 2nd, 4th and 6th place in four of its subtasks proves the effectiveness of our idea.

2019

pdf
Out-of-Domain Detection for Low-Resource Text Classification Tasks
Ming Tan | Yang Yu | Haoyu Wang | Dakuo Wang | Saloni Potdar | Shiyu Chang | Mo Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Out-of-domain (OOD) detection for low-resource text classification is a realistic but understudied task. The goal is to detect the OOD cases with limited in-domain (ID) training data, since in machine learning applications we observe that training data is often insufficient. In this work, we propose an OOD-resistant Prototypical Network to tackle this zero-shot OOD detection and few-shot ID classification task. Evaluations on real-world datasets show that the proposed solution outperforms state-of-the-art methods in zero-shot OOD detection task, while maintaining a competitive performance on ID classification task.

2018

pdf
Improving Unsupervised Keyphrase Extraction using Background Knowledge
Yang Yu | Vincent Ng
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2016

pdf
User Embedding for Scholarly Microblog Recommendation
Yang Yu | Xiaojun Wan | Xinjie Zhou
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)