Incorporating personal preference is crucial in advanced machine translation tasks. Despite the recent advancement of machine translation, it remains a demanding task to properly reflect personal style. In this paper, we introduce a personalized automatic post-editing framework to address this challenge, which effectively generates sentences considering distinct personal behaviors. To build this framework, we first collect post-editing data that connotes the user preference from a live machine translation system. Specifically, real-world users enter source sentences for translation and edit the machine-translated outputs according to the user’s preferred style. We then propose a model that combines a discriminator module and user-specific parameters on the APE framework. Experimental results show that the proposed method outperforms other baseline models on four different metrics (i.e., BLEU, TER, YiSi-1, and human evaluation).
Semantically meaningful sentence embeddings are important for numerous tasks in natural language processing. To obtain such embeddings, recent studies explored the idea of utilizing synthetically generated data from pretrained language models(PLMs) as a training corpus. However, PLMs often generate sentences different from the ones written by human. We hypothesize that treating all these synthetic examples equally for training can have an adverse effect on learning semantically meaningful embeddings. To analyze this, we first train a classifier that identifies machine-written sentences and observe that the linguistic features of the sentences identified as written by a machine are significantly different from those of human-written sentences. Based on this, we propose a novel approach that first trains the classifier to measure the importance of each sentence. The distilled information from the classifier is then used to train a reliable sentence embedding model. Through extensive evaluation on four real-world datasets, we demonstrate that our model trained on synthetic data generalizes well and outperforms the baselines.
During the fine-tuning phase of transfer learning, the pretrained vocabulary remains unchanged, while model parameters are updated. The vocabulary generated based on the pretrained data is suboptimal for downstream data when domain discrepancy exists. We propose to consider the vocabulary as an optimizable parameter, allowing us to update the vocabulary by expanding it with domain specific vocabulary based on a tokenization statistic. Furthermore, we preserve the embeddings of the added words from overfitting to downstream data by utilizing knowledge learned from a pretrained language model with a regularization term. Our method achieved consistent performance improvements on diverse domains (i.e., biomedical, computer science, news, and reviews).
Unsupervised machine translation, which utilizes unpaired monolingual corpora as training data, has achieved comparable performance against supervised machine translation. However, it still suffers from data-scarce domains. To address this issue, this paper presents a novel meta-learning algorithm for unsupervised neural machine translation (UNMT) that trains the model to adapt to another domain by utilizing only a small amount of training data. We assume that domain-general knowledge is a significant factor in handling data-scarce domains. Hence, we extend the meta-learning algorithm, which utilizes knowledge learned from high-resource domains, to boost the performance of low-resource UNMT. Our model surpasses a transfer learning-based approach by up to 2-3 BLEU scores. Extensive experimental results show that our proposed algorithm is pertinent for fast adaptation and consistently outperforms other baselines.