Shuai Wang


2024

pdf
A Weak Supervision Approach for Few-Shot Aspect Based Sentiment Analysis
Robert Vacareanu | Siddharth Varia | Kishaloy Halder | Shuai Wang | Giovanni Paolini | Neha Anna John | Miguel Ballesteros | Smaranda Muresan
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

We explore how weak supervision on abundant unlabeled data can be leveraged to improve few-shot performance in aspect-based sentiment analysis (ABSA) tasks. We propose a pipeline approach to construct a noisy ABSA dataset, and we use it to adapt a pre-trained sequence-to-sequence model to the ABSA tasks. We test the resulting model on three widely used ABSA datasets, before and after fine-tuning. Our proposed method preserves the full fine-tuning performance while showing significant improvements (15.84 absolute F1) in the few-shot learning scenario for the harder tasks. In zero-shot (i.e., without fine-tuning), our method outperforms the previous state of the art on the aspect extraction sentiment classification (AESC) task and is, additionally, capable of performing the harder aspect sentiment triplet extraction (ASTE) task.

2023

pdf
Simple Yet Effective Synthetic Dataset Construction for Unsupervised Opinion Summarization
Ming Shen | Jie Ma | Shuai Wang | Yogarshi Vyas | Kalpit Dixit | Miguel Ballesteros | Yassine Benajiba
Findings of the Association for Computational Linguistics: EACL 2023

Opinion summarization provides an important solution for summarizing opinions expressed among a large number of reviews. However, generating aspect-specific and general summaries is challenging due to the lack of annotated data. In this work, we propose two simple yet effective unsupervised approaches to generate both aspect-specific and general opinion summaries by training on synthetic datasets constructed with aspect-related review contents. Our first approach, Seed Words Based Leave-One-Out (SW-LOO), identifies aspect-related portions of reviews simply by exact-matching aspect seed words and outperforms existing methods by 3.4 ROUGE-L points on Space and 0.5 ROUGE-1 point on Oposum+ for aspect-specific opinion summarization. Our second approach, Natural Language Inference Based Leave-One-Out (NLI-LOO) identifies aspect-related sentences utilizing an NLI model in a more general setting without using seed words and outperforms existing approaches by 1.2 ROUGE-L points on Space for aspect-specific opinion summarization and remains competitive on other metrics.

pdf
Contrastive Training Improves Zero-Shot Classification of Semi-structured Documents
Muhammad Khalifa | Yogarshi Vyas | Shuai Wang | Graham Horwood | Sunil Mallya | Miguel Ballesteros
Findings of the Association for Computational Linguistics: ACL 2023

We investigate semi-structured document classification in a zero-shot setting. Classification of semi-structured documents is more challenging than that of standard unstructured documents, as positional, layout, and style information play a vital role in interpreting such documents. The standard classification setting where categories are fixed during both training and testing falls short in dynamic environments where new classification categories could potentially emerge. We focus exclusively on the zero-shot learning setting where inference is done on new unseen classes. To address this task, we propose a matching-based approach that relies on a pairwise contrastive objective for both pretraining and fine-tuning. Our results show a significant boost in Macro F1 from the proposed pretraining step and comparable performance of the contrastive fine-tuning to a standard prediction objective in both supervised and unsupervised zero-shot settings.

pdf
Taxonomy Expansion for Named Entity Recognition
Karthikeyan K | Yogarshi Vyas | Jie Ma | Giovanni Paolini | Neha John | Shuai Wang | Yassine Benajiba | Vittorio Castelli | Dan Roth | Miguel Ballesteros
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Training a Named Entity Recognition (NER) model often involves fixing a taxonomy of entity types. However, requirements evolve and we might need the NER model to recognize additional entity types. A simple approach is to re-annotate entire dataset with both existing and additional entity types and then train the model on the re-annotated dataset. However, this is an extremely laborious task. To remedy this, we propose a novel approach called Partial Label Model (PLM) that uses only partially annotated datasets. We experiment with 6 diverse datasets and show that PLM consistently performs better than most other approaches (0.5 - 2.5 F1), including in novel settings for taxonomy expansion not considered in prior work. The gap between PLM and all other approaches is especially large in settings where there is limited data available for the additional entity types (as much as 11 F1), thus suggesting a more cost effective approaches to taxonomy expansion.

pdf
InsightPilot: An LLM-Empowered Automated Data Exploration System
Pingchuan Ma | Rui Ding | Shuai Wang | Shi Han | Dongmei Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Exploring data is crucial in data analysis, as it helps users understand and interpret the data more effectively. However, performing effective data exploration requires in-depth knowledge of the dataset, the user intent and expertise in data analysis techniques. Not being familiar with either can create obstacles that make the process time-consuming and overwhelming. To address this issue, we introduce InsightPilot, an LLM (Large Language Model)-based, automated data exploration system designed to simplify the data exploration process. InsightPilot features a set of carefully designed analysis actions that streamline the data exploration process. Given a natural language question, InsightPilot collaborates with the LLM to issue a sequence of analysis actions, explore the data and generate insights. We demonstrate the effectiveness of InsightPilot in a user study and a case study, showing how it can help users gain valuable insights from their datasets.

pdf
Dynamic Benchmarking of Masked Language Models on Temporal Concept Drift with Multiple Views
Katerina Margatina | Shuai Wang | Yogarshi Vyas | Neha Anna John | Yassine Benajiba | Miguel Ballesteros
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Temporal concept drift refers to the problem of data changing over time. In the field of NLP, that would entail that language (e.g. new expressions, meaning shifts) and factual knowledge (e.g. new concepts, updated facts) evolve over time. Focusing on the latter, we benchmark 11 pretrained masked language models (MLMs) on a series of tests designed to evaluate the effect of temporal concept drift, as it is crucial that widely used language models remain up-to-date with the ever-evolving factual updates of the real world. Specifically, we provide a holistic framework that (1) dynamically creates temporal test sets of any time granularity (e.g. month, quarter, year) of factual data from Wikidata, (2) constructs fine-grained splits of tests (e.g. updated, new, unchanged facts) to ensure comprehensive analysis, and (3) evaluates MLMs in three distinct ways (single-token probing, multi-token generation, MLM scoring). In contrast to prior work, our framework aims to unveil how robust an MLM is over time and thus to provide a signal in case it has become outdated, by leveraging multiple views of evaluation.

pdf
Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis
Siddharth Varia | Shuai Wang | Kishaloy Halder | Robert Vacareanu | Miguel Ballesteros | Yassine Benajiba | Neha Anna John | Rishita Anubhai | Smaranda Muresan | Dan Roth
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Aspect-based Sentiment Analysis (ABSA) is a fine-grained sentiment analysis task which involves four elements from user-generated texts:aspect term, aspect category, opinion term, and sentiment polarity. Most computational approaches focus on some of the ABSA sub-taskssuch as tuple (aspect term, sentiment polarity) or triplet (aspect term, opinion term, sentiment polarity) extraction using either pipeline or joint modeling approaches. Recently, generative approaches have been proposed to extract all four elements as (one or more) quadrupletsfrom text as a single task. In this work, we take a step further and propose a unified framework for solving ABSA, and the associated sub-tasksto improve the performance in few-shot scenarios. To this end, we fine-tune a T5 model with instructional prompts in a multi-task learning fashion covering all the sub-tasks, as well as the entire quadruple prediction task. In experiments with multiple benchmark datasets, we show that the proposed multi-task prompting approach brings performance boost (by absolute 8.29 F1) in the few-shot learning setting.

2022

pdf
DocEE: A Large-Scale and Fine-grained Benchmark for Document-level Event Extraction
MeiHan Tong | Bin Xu | Shuai Wang | Meihuan Han | Yixin Cao | Jiangqi Zhu | Siyu Chen | Lei Hou | Juanzi Li
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Event extraction aims to identify an event and then extract the arguments participating in the event. Despite the great success in sentence-level event extraction, events are more naturally presented in the form of documents, with event arguments scattered in multiple sentences. However, a major barrier to promote document-level event extraction has been the lack of large-scale and practical training and evaluation datasets. In this paper, we present DocEE, a new document-level event extraction dataset including 27,000+ events, 180,000+ arguments. We highlight three features: large-scale manual annotations, fine-grained argument types and application-oriented settings. Experiments show that there is still a big gap between state-of-the-art models and human beings (41% Vs 85% in F1 score), indicating that DocEE is an open issue. DocEE is now available at https://github.com/tongmeihan1995/DocEE.git.

2021

pdf
Detecting Domain Polarity-Changes of Words in a Sentiment Lexicon
Shuai Wang | Guangyi Lv | Sahisnu Mazumder | Bing Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Multi-Task Learning and Adapted Knowledge Models for Emotion-Cause Extraction
Elsbeth Turcan | Shuai Wang | Rishita Anubhai | Kasturi Bhattacharjee | Yaser Al-Onaizan | Smaranda Muresan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Sequential Cross-Document Coreference Resolution
Emily Allaway | Shuai Wang | Miguel Ballesteros
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Relating entities and events in text is a key component of natural language understanding. Cross-document coreference resolution, in particular, is important for the growing interest in multi-document analysis tasks. In this work we propose a new model that extends the efficient sequential prediction paradigm for coreference resolution to cross-document settings and achieves competitive results for both entity and event coreference while providing strong evidence of the efficacy of both sequential models and higher-order inference in cross-document settings. Our model incrementally composes mentions into cluster representations and predicts links between a mention and the already constructed clusters, approximating a higher-order model. In addition, we conduct extensive ablation studies that provide new insights into the importance of various inputs and representation types in coreference.

pdf
Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recognition
Meihan Tong | Shuai Wang | Bin Xu | Yixin Cao | Minghui Liu | Lei Hou | Juanzi Li
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Few-shot Named Entity Recognition (NER) exploits only a handful of annotations to iden- tify and classify named entity mentions. Pro- totypical network shows superior performance on few-shot NER. However, existing prototyp- ical methods fail to differentiate rich seman- tics in other-class words, which will aggravate overfitting under few shot scenario. To address the issue, we propose a novel model, Mining Undefined Classes from Other-class (MUCO), that can automatically induce different unde- fined classes from the other class to improve few-shot NER. With these extra-labeled unde- fined classes, our method will improve the dis- criminative ability of NER classifier and en- hance the understanding of predefined classes with stand-by semantic knowledge. Experi- mental results demonstrate that our model out- performs five state-of-the-art models in both 1- shot and 5-shots settings on four NER bench- marks. We will release the code upon accep- tance. The source code is released on https: //github.com/shuaiwa16/OtherClassNER.git.

2020

pdf
Automatic recognition of abdominal lymph nodes from clinical text
Yifan Peng | Sungwon Lee | Daniel C. Elton | Thomas Shen | Yu-xing Tang | Qingyu Chen | Shuai Wang | Yingying Zhu | Ronald Summers | Zhiyong Lu
Proceedings of the 3rd Clinical Natural Language Processing Workshop

Lymph node status plays a pivotal role in the treatment of cancer. The extraction of lymph nodes from radiology text reports enables large-scale training of lymph node detection on MRI. In this work, we first propose an ontology of 41 types of abdominal lymph nodes with a hierarchical relationship. We then introduce an end-to-end approach based on the combination of rules and transformer-based methods to detect these abdominal lymph node mentions and classify their types from the MRI radiology reports. We demonstrate the superior performance of a model fine-tuned on MRI reports using BlueBERT, called MriBERT. We find that MriBERT outperforms the rule-based labeler (0.957 vs 0.644 in micro weighted F1-score) as well as other BERT-based variations (0.913 - 0.928). We make the code and MriBERT publicly available at https://github.com/ncbi-nlp/bluebert, with the hope that this method can facilitate the development of medical report annotators to produce labels from scratch at scale.

pdf
Severing the Edge Between Before and After: Neural Architectures for Temporal Ordering of Events
Miguel Ballesteros | Rishita Anubhai | Shuai Wang | Nima Pourdamghani | Yogarshi Vyas | Jie Ma | Parminder Bhatia | Kathleen McKeown | Yaser Al-Onaizan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we propose a neural architecture and a set of training methods for ordering events by predicting temporal relations. Our proposed models receive a pair of events within a span of text as input and they identify temporal relations (Before, After, Equal, Vague) between them. Given that a key challenge with this task is the scarcity of annotated data, our models rely on either pretrained representations (i.e. RoBERTa, BERT or ELMo), transfer and multi-task learning (by leveraging complementary datasets), and self-training techniques. Experiments on the MATRES dataset of English documents establish a new state-of-the-art on this task.

pdf
A Knowledge-Driven Approach to Classifying Object and Attribute Coreferences in Opinion Mining
Jiahua Chen | Shuai Wang | Sahisnu Mazumder | Bing Liu
Findings of the Association for Computational Linguistics: EMNLP 2020

Classifying and resolving coreferences of objects (e.g., product names) and attributes (e.g., product aspects) in opinionated reviews is crucial for improving the opinion mining performance. However, the task is challenging as one often needs to consider domain-specific knowledge (e.g., iPad is a tablet and has aspect resolution) to identify coreferences in opinionated reviews. Also, compiling a handcrafted and curated domain-specific knowledge base for each domain is very time consuming and arduous. This paper proposes an approach to automatically mine and leverage domain-specific knowledge for classifying objects and attribute coreferences. The approach extracts domain-specific knowledge from unlabeled review data and trains a knowledgeaware neural coreference classification model to leverage (useful) domain knowledge together with general commonsense knowledge for the task. Experimental evaluation on realworld datasets involving five domains (product types) shows the effectiveness of the approach

pdf
Resource-Enhanced Neural Model for Event Argument Extraction
Jie Ma | Shuai Wang | Rishita Anubhai | Miguel Ballesteros | Yaser Al-Onaizan
Findings of the Association for Computational Linguistics: EMNLP 2020

Event argument extraction (EAE) aims to identify the arguments of an event and classify the roles that those arguments play. Despite great efforts made in prior work, there remain many challenges: (1) Data scarcity. (2) Capturing the long-range dependency, specifically, the connection between an event trigger and a distant event argument. (3) Integrating event trigger information into candidate argument representation. For (1), we explore using unlabeled data. For (2), we use Transformer that uses dependency parses to guide the attention mechanism. For (3), we propose a trigger-aware sequence encoder with several types of trigger-dependent sequence representations. We also support argument extraction either from text annotated with gold entities or from plain text. Experiments on the English ACE 2005 benchmark show that our approach achieves a new state-of-the-art.

pdf
Improving Event Detection via Open-domain Trigger Knowledge
Meihan Tong | Bin Xu | Shuai Wang | Yixin Cao | Lei Hou | Juanzi Li | Jun Xie
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Event Detection (ED) is a fundamental task in automatically structuring texts. Due to the small scale of training data, previous methods perform poorly on unseen/sparsely labeled trigger words and are prone to overfitting densely labeled trigger words. To address the issue, we propose a novel Enrichment Knowledge Distillation (EKD) model to leverage external open-domain trigger knowledge to reduce the in-built biases to frequent trigger words in annotations. Experiments on benchmark ACE2005 show that our model outperforms nine strong baselines, is especially effective for unseen/sparsely labeled trigger words. The source code is released on https://github.com/shuaiwa16/ekd.git.

pdf
Bayes-enhanced Lifelong Attention Networks for Sentiment Classification
Hao Wang | Shuai Wang | Sahisnu Mazumder | Bing Liu | Yan Yang | Tianrui Li
Proceedings of the 28th International Conference on Computational Linguistics

The classic deep learning paradigm learns a model from the training data of a single task and the learned model is also tested on the same task. This paper studies the problem of learning a sequence of tasks (sentiment classification tasks in our case). After each sentiment classification task is learned, its knowledge is retained to help future task learning. Following this setting, we explore attention neural networks and propose a Bayes-enhanced Lifelong Attention Network (BLAN). The key idea is to exploit the generative parameters of naive Bayes to learn attention knowledge. The learned knowledge from each task is stored in a knowledge base and later used to build lifelong attentions. The constructed lifelong attentions are then used to enhance the attention of the network to help new task learning. Experimental results on product reviews from Amazon.com show the effectiveness of the proposed model.

2019

pdf
Lifelong and Interactive Learning of Factual Knowledge in Dialogues
Sahisnu Mazumder | Bing Liu | Shuai Wang | Nianzu Ma
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Dialogue systems are increasingly using knowledge bases (KBs) storing real-world facts to help generate quality responses. However, as the KBs are inherently incomplete and remain fixed during conversation, it limits dialogue systems’ ability to answer questions and to handle questions involving entities or relations that are not in the KB. In this paper, we make an attempt to propose an engine for Continuous and Interactive Learning of Knowledge (CILK) for dialogue systems to give them the ability to continuously and interactively learn and infer new knowledge during conversations. With more knowledge accumulated over time, they will be able to learn better and answer more questions. Our empirical evaluation shows that CILK is promising.

2018

pdf
Target-Sensitive Memory Networks for Aspect Sentiment Classification
Shuai Wang | Sahisnu Mazumder | Bing Liu | Mianwei Zhou | Yi Chang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Aspect sentiment classification (ASC) is a fundamental task in sentiment analysis. Given an aspect/target and a sentence, the task classifies the sentiment polarity expressed on the target in the sentence. Memory networks (MNs) have been used for this task recently and have achieved state-of-the-art results. In MNs, attention mechanism plays a crucial role in detecting the sentiment context for the given target. However, we found an important problem with the current MNs in performing the ASC task. Simply improving the attention mechanism will not solve it. The problem is referred to as target-sensitive sentiment, which means that the sentiment polarity of the (detected) context is dependent on the given target and it cannot be inferred from the context alone. To tackle this problem, we propose the target-sensitive memory networks (TMNs). Several alternative techniques are designed for the implementation of TMNs and their effectiveness is experimentally evaluated.

2014

pdf
Personal Attributes Extraction in Chinese Text Bakeoff in CLP 2014: Overview
Ruifeng Xu | Shuai Wang | Feng Shi | Jian Xu
Proceedings of the Third CIPS-SIGHAN Joint Conference on Chinese Language Processing