Samer Al Moubayed


2014

pdf
The Tutorbot Corpus — A Corpus for Studying Tutoring Behaviour in Multiparty Face-to-Face Spoken Dialogue
Maria Koutsombogera | Samer Al Moubayed | Bajibabu Bollepalli | Ahmed Hussen Abdelaziz | Martin Johansson | José David Aguas Lopes | Jekaterina Novikova | Catharine Oertel | Kalin Stefanov | Gül Varol
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

This paper describes a novel experimental setup exploiting state-of-the-art capture equipment to collect a multimodally rich game-solving collaborative multiparty dialogue corpus. The corpus is targeted and designed towards the development of a dialogue system platform to explore verbal and nonverbal tutoring strategies in multiparty spoken interactions. The dialogue task is centered on two participants involved in a dialogue aiming to solve a card-ordering game. The participants were paired into teams based on their degree of extraversion as resulted from a personality test. With the participants sits a tutor that helps them perform the task, organizes and balances their interaction and whose behavior was assessed by the participants after each interaction. Different multimodal signals captured and auto-synchronized by different audio-visual capture technologies, together with manual annotations of the tutor’s behavior constitute the Tutorbot corpus. This corpus is exploited to build a situated model of the interaction based on the participants’ temporally-changing state of attention, their conversational engagement and verbal dominance, and their correlation with the verbal and visual feedback and conversation regulatory actions generated by the tutor.