Rasmus Jørgensen


2023

pdf
MultiFin: A Dataset for Multilingual Financial NLP
Rasmus Jørgensen | Oliver Brandt | Mareike Hartmann | Xiang Dai | Christian Igel | Desmond Elliott
Findings of the Association for Computational Linguistics: EACL 2023

Financial information is generated and distributed across the world, resulting in a vast amount of domain-specific multilingual data. Multilingual models adapted to the financial domain would ease deployment when an organization needs to work with multiple languages on a regular basis. For the development and evaluation of such models, there is a need for multilingual financial language processing datasets. We describe MultiFin – a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families. The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class. We develop our annotation schema based on a real-world application and annotate our dataset using both ‘label by native-speaker’ and ‘translate-then-label’ approaches. The evaluation of several popular multilingual models, e.g., mBERT, XLM-R, and mT5, show that although decent accuracy can be achieved in high-resource languages, there is substantial room for improvement in low-resource languages.

2022

pdf
Are Multilingual Sentiment Models Equally Right for the Right Reasons?
Rasmus Jørgensen | Fiammetta Caccavale | Christian Igel | Anders Søgaard
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Multilingual NLP models provide potential solutions to the digital language divide, i.e., cross-language performance disparities. Early analyses of such models have indicated good performance across training languages and good generalization to unseen, related languages. This work examines whether, between related languages, multilingual models are equally right for the right reasons, i.e., if interpretability methods reveal that the models put emphasis on the same words as humans. To this end, we provide a new trilingual, parallel corpus of rationale annotations for English, Danish, and Italian sentiment analysis models and use it to benchmark models and interpretability methods. We propose rank-biased overlap as a better metric for comparing input token attributions to human rationale annotations. Our results show: (i) models generally perform well on the languages they are trained on, and align best with human rationales in these languages; (ii) performance is higher on English, even when not a source language, but this performance is not accompanied by higher alignment with human rationales, which suggests that language models favor English, but do not facilitate successful transfer of rationales.