Paraphrase detection is useful in many natural language understanding applications. Current works typically formulate this problem as a sentence pair binary classification task. However, this setup is not a good fit for many of the intended applications of paraphrase models. In particular, such applications often involve finding the closest paraphrases of the target sentence from a group of candidate sentences where they exhibit different degrees of semantic overlap with the target sentence. To apply models to this paraphrase retrieval scenario, the model must be sensitive to the degree to which two sentences are paraphrases of one another. However, many existing datasets ignore and fail to test models in this setup. In response, we propose adversarial paradigms to create evaluation datasets, which could examine the sensitivity to different degrees of semantic overlap. Empirical results show that, while paraphrase models and different sentence encoders appear successful on standard evaluations, measuring the degree of semantic overlap still remains a big challenge for them.
Paraphrase identification involves identifying whether a pair of sentences express the same or similar meanings. While cross-encoders have achieved high performances across several benchmarks, bi-encoders such as SBERT have been widely applied to sentence pair tasks. They exhibit substantially lower computation complexity and are better suited to symmetric tasks. In this work, we adopt a bi-encoder approach to the paraphrase identification task, and investigate the impact of explicitly incorporating predicate-argument information into SBERT through weighted aggregation. Experiments on six paraphrase identification datasets demonstrate that, with a minimal increase in parameters, the proposed model is able to outperform SBERT/SRoBERTa significantly. Further, ablation studies reveal that the predicate-argument based component plays a significant role in the performance gain.
Previous works have demonstrated the effectiveness of utilising pre-trained sentence encoders based on their sentence representations for meaning comparison tasks. Though such representations are shown to capture hidden syntax structures, the direct similarity comparison between them exhibits weak sensitivity to word order and structural differences in given sentences. A single similarity score further makes the comparison process hard to interpret. Therefore, we here propose to combine sentence encoders with an alignment component by representing each sentence as a list of predicate-argument spans (where their span representations are derived from sentence encoders), and decomposing the sentence-level meaning comparison into the alignment between their spans for paraphrase identification tasks. Empirical results show that the alignment component brings in both improved performance and interpretability for various sentence encoders. After closer investigation, the proposed approach indicates increased sensitivity to structural difference and enhanced ability to distinguish non-paraphrases with high lexical overlap.
Recently, impressive performance on various natural language understanding tasks has been achieved by explicitly incorporating syntax and semantic information into pre-trained models, such as BERT and RoBERTa. However, this approach depends on problem-specific fine-tuning, and as widely noted, BERT-like models exhibit weak performance, and are inefficient, when applied to unsupervised similarity comparison tasks. Sentence-BERT (SBERT) has been proposed as a general-purpose sentence embedding method, suited to both similarity comparison and downstream tasks. In this work, we show that by incorporating structural information into SBERT, the resulting model outperforms SBERT and previous general sentence encoders on unsupervised semantic textual similarity (STS) datasets and transfer classification tasks.