Ping Jian


2023

pdf
Prompt-based Logical Semantics Enhancement for Implicit Discourse Relation Recognition
Chenxu Wang | Ping Jian | Mu Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Implicit Discourse Relation Recognition (IDRR), which infers discourse relations without the help of explicit connectives, is still a crucial and challenging task for discourse parsing. Recent works tend to exploit the hierarchical structure information from the annotated senses, which demonstrate enhanced discourse relation representations can be obtained by integrating sense hierarchy. Nevertheless, the performance and robustness for IDRR are significantly constrained by the availability of annotated data. Fortunately, there is a wealth of unannotated utterances with explicit connectives, that can be utilized to acquire enriched discourse relation features. In light of such motivation, we propose a Prompt-based Logical Semantics Enhancement (PLSE) method for IDRR. Essentially, our method seamlessly injects knowledge relevant to discourse relation into pre-trained language models through prompt-based connective prediction. Furthermore, considering the prompt-based connective prediction exhibits local dependencies due to the deficiency of masked language model (MLM) in capturing global semantics, we design a novel self-supervised learning objective based on mutual information maximization to derive enhanced representations of logical semantics for IDRR. Experimental results on PDTB 2.0 and CoNLL16 datasets demonstrate that our method achieves outstanding and consistent performance against the current state-of-the-art models.

pdf
基于词频效应控制的神经机器翻译用词多样性增强方法(Improving Word-level Diversity in Neural Machine Translation by Controlling the Effects of Word Frequency)
Xuewen Shi (史学文) | Ping Jian (鉴萍) | Yikun Tang (唐翼琨) | Heyan HUang (黄河燕)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“通过最大似然估计优化的神经机器翻译(NMT)容易出现不可最大化的标记或低频词精度差等问题,这会导致生成的翻译缺乏词级别的多样性。词频在训练数据上的不均衡分布是造成上述现象的原因之一。本文旨在通过限制词频对 NMT 解码时估计概率的影响来缓解上述问题。具体地,我们采用了基于因果推断理论的半同胞回归去噪框架,并结合本文提出的自适应去噪系数来控制词频对模型估计概率的影响,以获得更准确的模型估计概率,并丰富 NMT 译文用词的多样性。本文的实验在四个代表不同资源规模的翻译任务上进行,分别是维吾尔语-汉语、汉语-英语、英语-德语和英语-法语。实验结果表明,本文所提出的方法在提升 NMT 译文词级别多样性的同时,不会损害译文的质量。另外,本文提出的方法还具有模型无关、可解释性强等优点。”

2021

pdf
Context Tracking Network: Graph-based Context Modeling for Implicit Discourse Relation Recognition
Yingxue Zhang | Fandong Meng | Peng Li | Ping Jian | Jie Zhou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Implicit discourse relation recognition (IDRR) aims to identify logical relations between two adjacent sentences in the discourse. Existing models fail to fully utilize the contextual information which plays an important role in interpreting each local sentence. In this paper, we thus propose a novel graph-based Context Tracking Network (CT-Net) to model the discourse context for IDRR. The CT-Net firstly converts the discourse into the paragraph association graph (PAG), where each sentence tracks their closely related context from the intricate discourse through different types of edges. Then, the CT-Net extracts contextual representation from the PAG through a specially designed cross-grained updating mechanism, which can effectively integrate both sentence-level and token-level contextual semantics. Experiments on PDTB 2.0 show that the CT-Net gains better performance than models that roughly model the context.

2020

pdf
Intra-Correlation Encoding for Chinese Sentence Intention Matching
Xu Zhang | Yifeng Li | Wenpeng Lu | Ping Jian | Guoqiang Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Sentence intention matching is vital for natural language understanding. Especially for Chinese sentence intention matching task, due to the ambiguity of Chinese words, semantic missing or semantic confusion are more likely to occur in the encoding process. Although the existing methods have enriched text representation through pre-trained word embedding to solve this problem, due to the particularity of Chinese text, different granularities of pre-trained word embedding will affect the semantic description of a piece of text. In this paper, we propose an effective approach that combines character-granularity and word-granularity features to perform sentence intention matching, and we utilize soft alignment attention to enhance the local information of sentences on the corresponding levels. The proposed method can capture sentence feature information from multiple perspectives and correlation information between different levels of sentences. By evaluating on BQ and LCQMC datasets, our model has achieved remarkable results, and demonstrates better or comparable performance with BERT-based models.

2019

pdf
Improving Neural Machine Translation by Achieving Knowledge Transfer with Sentence Alignment Learning
Xuewen Shi | Heyan Huang | Wenguan Wang | Ping Jian | Yi-Kun Tang
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Neural Machine Translation (NMT) optimized by Maximum Likelihood Estimation (MLE) lacks the guarantee of translation adequacy. To alleviate this problem, we propose an NMT approach that heightens the adequacy in machine translation by transferring the semantic knowledge learned from bilingual sentence alignment. Specifically, we first design a discriminator that learns to estimate sentence aligning score over translation candidates, and then the learned semantic knowledge is transfered to the NMT model under an adversarial learning framework. We also propose a gated self-attention based encoder for sentence embedding. Furthermore, an N-pair training loss is introduced in our framework to aid the discriminator in better capturing lexical evidence in translation candidates. Experimental results show that our proposed method outperforms baseline NMT models on Chinese-to-English and English-to-German translation tasks. Further analysis also indicates the detailed semantic knowledge transfered from the discriminator to the NMT model.

pdf
Induction Networks for Few-Shot Text Classification
Ruiying Geng | Binhua Li | Yongbin Li | Xiaodan Zhu | Ping Jian | Jian Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a small support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.

2017

pdf
BIT at SemEval-2017 Task 1: Using Semantic Information Space to Evaluate Semantic Textual Similarity
Hao Wu | Heyan Huang | Ping Jian | Yuhang Guo | Chao Su
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper presents three systems for semantic textual similarity (STS) evaluation at SemEval-2017 STS task. One is an unsupervised system and the other two are supervised systems which simply employ the unsupervised one. All our systems mainly depend on the (SIS), which is constructed based on the semantic hierarchical taxonomy in WordNet, to compute non-overlapping information content (IC) of sentences. Our team ranked 2nd among 31 participating teams by the primary score of Pearson correlation coefficient (PCC) mean of 7 tracks and achieved the best performance on Track 1 (AR-AR) dataset.

pdf
QLUT at SemEval-2017 Task 2: Word Similarity Based on Word Embedding and Knowledge Base
Fanqing Meng | Wenpeng Lu | Yuteng Zhang | Ping Jian | Shumin Shi | Heyan Huang
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper shows the details of our system submissions in the task 2 of SemEval 2017. We take part in the subtask 1 of this task, which is an English monolingual subtask. This task is designed to evaluate the semantic word similarity of two linguistic items. The results of runs are assessed by standard Pearson and Spearman correlation, contrast with official gold standard set. The best performance of our runs is 0.781 (Final). The techniques of our runs mainly make use of the word embeddings and the knowledge-based method. The results demonstrate that the combined method is effective for the computation of word similarity, while the word embeddings and the knowledge-based technique, respectively, needs more deeply improvement in details.

2016

pdf
Discourse Relation Sense Classification Systems for CoNLL-2016 Shared Task
Ping Jian | Xiaohan She | Chenwei Zhang | Pengcheng Zhang | Jian Feng
Proceedings of the CoNLL-16 shared task

2014

pdf
Introduction to BIT Chinese Spelling Correction System at CLP 2014 Bake-off
Min Liu | Ping Jian | Heyan Huang
Proceedings of the Third CIPS-SIGHAN Joint Conference on Chinese Language Processing

2011

pdf
Unsupervised Word Sense Disambiguation Using Neighborhood Knowledge
Heyan Huang | Zhizhuo Yang | Ping Jian
Proceedings of the 25th Pacific Asia Conference on Language, Information and Computation

2009

pdf
Layer-Based Dependency Parsing
Ping Jian | Chengqing Zong
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 1