Payam Karisani


2023

pdf
Neural Networks Against (and For) Self-Training: Classification with Small Labeled and Large Unlabeled Sets
Payam Karisani
Findings of the Association for Computational Linguistics: ACL 2023

We propose a semi-supervised text classifier based on self-training using one positive and one negative property of neural networks. One of the weaknesses of self-training is the semantic drift problem, where noisy pseudo-labels accumulate over iterations and consequently the error rate soars. In order to tackle this challenge, we reshape the role of pseudo-labels and create a hierarchical order of information. In addition, a crucial step in self-training is to use the classifier confidence prediction to select the best candidate pseudo-labels. This step cannot be efficiently done by neural networks, because it is known that their output is poorly calibrated. To overcome this challenge, we propose a hybrid metric to replace the plain confidence measurement. Our metric takes into account the prediction uncertainty via a subsampling technique. We evaluate our model in a set of five standard benchmarks, and show that it significantly outperforms a set of ten diverse baseline models. Furthermore, we show that the improvement achieved by our model is additive to language model pretraining, which is a widely used technique for using unlabeled documents.

2022

pdf
Multi-View Active Learning for Short Text Classification in User-Generated Data
Payam Karisani | Negin Karisani | Li Xiong
Findings of the Association for Computational Linguistics: EMNLP 2022

Mining user-generated data often suffers from the lack of enough labeled data, short document lengths, and the informal user language. In this paper, we propose a novel active learning model to overcome these obstacles in the tasks tailored for query phrases–e.g., detecting positive reports of natural disasters. Our model has three novelties: 1) It is the first approach to employ multi-view active learning in this domain. 2) It uses the Parzen-Rosenblatt window method to integrate the representativeness measure into multi-view active learning. 3) It employs a query-by-committee strategy, based on the agreement between predictors, to address the usually noisy language of the documents in this domain. We evaluate our model in four publicly available Twitter datasets with distinctly different applications. We also compare our model with a wide range of baselines including those with multiple classifiers. The experiments testify that our model is highly consistent and outperforms existing models.

2021

pdf bib
View Distillation with Unlabeled Data for Extracting Adverse Drug Effects from User-Generated Data
Payam Karisani | Jinho D. Choi | Li Xiong
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

We present an algorithm based on multi-layer transformers for identifying Adverse Drug Reactions (ADR) in social media data. Our model relies on the properties of the problem and the characteristics of contextual word embeddings to extract two views from documents. Then a classifier is trained on each view to label a set of unlabeled documents to be used as an initializer for a new classifier in the other view. Finally, the initialized classifier in each view is further trained using the initial training examples. We evaluated our model in the largest publicly available ADR dataset. The experiments testify that our model significantly outperforms the transformer-based models pretrained on domain-specific data.