Nicholas Monath


2023

pdf
Longtonotes: OntoNotes with Longer Coreference Chains
Kumar Shridhar | Nicholas Monath | Raghuveer Thirukovalluru | Alessandro Stolfo | Manzil Zaheer | Andrew McCallum | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EACL 2023

Ontonotes has served as the most important benchmark for coreference resolution. However, for ease of annotation, several long documents in Ontonotes were split into smaller parts. In this work, we build a corpus of coreference-annotated documents of significantly longer length than what is currently available. We do so by providing an accurate, manually-curated, merging of annotations from documents that were split into multiple parts in the original Ontonotes annotation process. The resulting corpus, which we call LongtoNotes contains documents in multiple genres of the English language with varying lengths, the longest of which are up to 8x the length of documents in Ontonotes, and 2x those in Litbank.We evaluate state-of-the-art neural coreference systems on this new corpus, analyze the relationships between model architectures/hyperparameters and document length on performance and efficiency of the models, and demonstrate areas of improvement in long-document coreference modelling revealed by our new corpus.

pdf
Unsupervised Opinion Summarization Using Approximate Geodesics
Somnath Basu Roy Chowdhury | Nicholas Monath | Kumar Dubey | Amr Ahmed | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: EMNLP 2023

Opinion summarization is the task of creating summaries capturing popular opinions from user reviews. In this paper, we introduce Geodesic Summarizer (GeoSumm), a novel system to perform unsupervised extractive opinion summarization. GeoSumm consists of an encoder-decoder based representation learning model that generates topical representations of texts. These representations capture the underlying semantics of the text as a distribution over learnable latent units. GeoSumm generates these topical representations by performing dictionary learning over pre-trained text representations at multiple layers of the decoder. We then use these topical representations to quantify the importance of review sentences using a novel approximate geodesic distance-based scoring mechanism. We use the importance scores to identify popular opinions in order to compose general and aspect-specific summaries. Our proposed model, GeoSumm, achieves strong performance on three opinion summarization datasets. We perform additional experiments to analyze the functioning of our model and showcase the generalization ability of GeoSumm across different domains.

pdf
Efficient k-NN Search with Cross-Encoders using Adaptive Multi-Round CUR Decomposition
Nishant Yadav | Nicholas Monath | Manzil Zaheer | Andrew McCallum
Findings of the Association for Computational Linguistics: EMNLP 2023

Cross-encoder models, which jointly encode and score a query-item pair, are prohibitively expensive for direct k-nearest neighbor (k-NN) search. Consequently, k-NN search typically employs a fast approximate retrieval (e.g. using BM25 or dual-encoder vectors), followed by reranking with a cross-encoder; however, the retrieval approximation often has detrimental recall regret. This problem is tackled by ANNCUR (Yadav et al., 2022), a recent work that employs a cross-encoder only, making search efficient using a relatively small number of anchor items, and a CUR matrix factorization. While ANNCUR’s one-time selection of anchors tends to approximate the cross-encoder distances on average, doing so forfeits the capacity to accurately estimate distances to items near the query, leading to regret in the crucial end-task: recall of top-k items. In this paper, we propose ADACUR, a method that adaptively, iteratively, and efficiently minimizes the approximation error for the practically important top-k neighbors. It does so by iteratively performing k-NN search using the anchors available so far, then adding these retrieved nearest neighbors to the anchor set for the next round. Empirically, on multiple datasets, in comparison to previous traditional and state-of-the-art methods such as ANNCUR and dual-encoder-based retrieve-and-rerank, our proposed approach ADACUR consistently reduces recall error—by up to 70% on the important k = 1 setting—while using no more compute than its competitors.

pdf
Unsupervised Opinion Summarization Using Approximate Geodesics
Somnath Basu Roy Chowdhury | Nicholas Monath | Kumar Dubey | Amr Ahmed | Snigdha Chaturvedi
Proceedings of the 4th New Frontiers in Summarization Workshop

Opinion summarization is the task of creating summaries capturing popular opinions from user reviews.In this paper, we introduce Geodesic Summarizer (GeoSumm), a novel system to perform unsupervised extractive opinion summarization. GeoSumm consists of an encoder-decoder based representation learning model that generates topical representations of texts. These representations capture the underlying semantics of the text as a distribution over learnable latent units. GeoSumm generates these topical representations by performing dictionary learning over pre-trained text representations at multiple layers of the decoder. We then use these topical representations to quantify the importance of review sentences using a novel approximate geodesic distance-based scoring mechanism. We use the importance scores to identify popular opinions in order to compose general and aspect-specific summaries. Our proposed model, GeoSumm, achieves strong performance on three opinion summarization datasets. We perform additional experiments to analyze the functioning of our model and showcase the generalization ability of GeoSumm across different domains.

2022

pdf
Autoregressive Structured Prediction with Language Models
Tianyu Liu | Yuchen Eleanor Jiang | Nicholas Monath | Ryan Cotterell | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EMNLP 2022

Recent years have seen a paradigm shift in NLP towards using pretrained language models (PLM) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution.

pdf
Entity Linking via Explicit Mention-Mention Coreference Modeling
Dhruv Agarwal | Rico Angell | Nicholas Monath | Andrew McCallum
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Learning representations of entity mentions is a core component of modern entity linking systems for both candidate generation and making linking predictions. In this paper, we present and empirically analyze a novel training approach for learning mention and entity representations that is based on building minimum spanning arborescences (i.e., directed spanning trees) over mentions and entities across documents to explicitly model mention coreference relationships. We demonstrate the efficacy of our approach by showing significant improvements in both candidate generation recall and linking accuracy on the Zero-Shot Entity Linking dataset and MedMentions, the largest publicly available biomedical dataset. In addition, we show that our improvements in candidate generation yield higher quality re-ranking models downstream, setting a new SOTA result in linking accuracy on MedMentions. Finally, we demonstrate that our improved mention representations are also effective for the discovery of new entities via cross-document coreference.

pdf
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Nishant Yadav | Nicholas Monath | Rico Angell | Manzil Zaheer | Andrew McCallum
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or L2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders’ high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.

2021

pdf
Knowledge Informed Semantic Parsing for Conversational Question Answering
Raghuveer Thirukovalluru | Mukund Sridhar | Dung Thai | Shruti Chanumolu | Nicholas Monath | Sankaranarayanan Ananthakrishnan | Andrew McCallum
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

Smart assistants are tasked to answer various questions regarding world knowledge. These questions range from retrieval of simple facts to retrieval of complex, multi-hops question followed by various operators (i.e., filter, argmax). Semantic parsing has emerged as the state-of-the-art for answering these kinds of questions by forming queries to extract information from knowledge bases (KBs). Specially, neural semantic parsers (NSPs) effectively translate natural questions to logical forms, which execute on KB and give desirable answers. Yet, NSPs suffer from non-executable logical forms for some instances in the generated logical forms might be missing due to the incompleteness of KBs. Intuitively, knowing the KB structure informs NSP with changes of the global logical forms structures with respect to changes in KB instances. In this work, we propose a novel knowledge-informed decoder variant of NSP. We consider the conversational question answering settings, where a natural language query, its context and its final answers are available at training. Experimental results show that our method outperformed strong baselines by 1.8 F1 points overall across 10 types of questions of the CSQA dataset. Especially for the “Logical Reasoning” category, our model improves by 7 F1 points. Furthermore, our results are achieved with 90.3% fewer parameters, allowing faster training for large-scale datasets.

pdf
Scaling Within Document Coreference to Long Texts
Raghuveer Thirukovalluru | Nicholas Monath | Kumar Shridhar | Manzil Zaheer | Mrinmaya Sachan | Andrew McCallum
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Clustering-based Inference for Biomedical Entity Linking
Rico Angell | Nicholas Monath | Sunil Mohan | Nishant Yadav | Andrew McCallum
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Due to large number of entities in biomedical knowledge bases, only a small fraction of entities have corresponding labelled training data. This necessitates entity linking models which are able to link mentions of unseen entities using learned representations of entities. Previous approaches link each mention independently, ignoring the relationships within and across documents between the entity mentions. These relations can be very useful for linking mentions in biomedical text where linking decisions are often difficult due mentions having a generic or a highly specialized form. In this paper, we introduce a model in which linking decisions can be made not merely by linking to a knowledge base entity but also by grouping multiple mentions together via clustering and jointly making linking predictions. In experiments on the largest publicly available biomedical dataset, we improve the best independent prediction for entity linking by 3.0 points of accuracy, and our clustering-based inference model further improves entity linking by 2.3 points.

pdf
Event and Entity Coreference using Trees to Encode Uncertainty in Joint Decisions
Nishant Yadav | Nicholas Monath | Rico Angell | Andrew McCallum
Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference

Coreference decisions among event mentions and among co-occurring entity mentions are highly interdependent, thus motivating joint inference. Capturing the uncertainty over each variable can be crucial for inference among multiple dependent variables. Previous work on joint coreference employs heuristic approaches, lacking well-defined objectives, and lacking modeling of uncertainty on each side of the joint problem. We present a new approach of joint coreference, including (1) a formal cost function inspired by Dasgupta’s cost for hierarchical clustering, and (2) a representation for uncertainty of clustering of event and entity mentions, again based on a hierarchical structure. We describe an alternating optimization method for inference that when clustering event mentions, considers the uncertainty of the clustering of entity mentions and vice-versa. We show that our proposed joint model provides empirical advantages over state-of-the-art independent and joint models.

2020

pdf
Probabilistic Case-based Reasoning for Open-World Knowledge Graph Completion
Rajarshi Das | Ameya Godbole | Nicholas Monath | Manzil Zaheer | Andrew McCallum
Findings of the Association for Computational Linguistics: EMNLP 2020

A case-based reasoning (CBR) system solves a new problem by retrieving ‘cases’ that are similar to the given problem. If such a system can achieve high accuracy, it is appealing owing to its simplicity, interpretability, and scalability. In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs). Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB. Our probabilistic model estimates the likelihood that a path is effective at answering a query about the given entity. The parameters of our model can be efficiently computed using simple path statistics and require no iterative optimization. Our model is non-parametric, growing dynamically as new entities and relations are added to the KB. On several benchmark datasets our approach significantly outperforms other rule learning approaches and performs comparably to state-of-the-art embedding-based approaches. Furthermore, we demonstrate the effectiveness of our model in an “open-world” setting where new entities arrive in an online fashion, significantly outperforming state-of-the-art approaches and nearly matching the best offline method.

2019

pdf
Optimal Transport-based Alignment of Learned Character Representations for String Similarity
Derek Tam | Nicholas Monath | Ari Kobren | Aaron Traylor | Rajarshi Das | Andrew McCallum
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

String similarity models are vital for record linkage, entity resolution, and search. In this work, we present STANCE–a learned model for computing the similarity of two strings. Our approach encodes the characters of each string, aligns the encodings using Sinkhorn Iteration (alignment is posed as an instance of optimal transport) and scores the alignment with a convolutional neural network. We evaluate STANCE’s ability to detect whether two strings can refer to the same entity–a task we term alias detection. We construct five new alias detection datasets (and make them publicly available). We show that STANCE (or one of its variants) outperforms both state-of-the-art and classic, parameter-free similarity models on four of the five datasets. We also demonstrate STANCE’s ability to improve downstream tasks by applying it to an instance of cross-document coreference and show that it leads to a 2.8 point improvement in Bˆ3 F1 over the previous state-of-the-art approach.