Mo El-Haj


2023

pdf
Unifying Emotion Analysis Datasets using Valence Arousal Dominance (VAD)
Mo El-Haj | Ryutaro Takanami
Proceedings of the 4th Conference on Language, Data and Knowledge

pdf
FinAraT5: A text to text model for financial Arabic text understanding and generation
Nadhem Zmandar | Mo El-Haj | Paul Rayson
Proceedings of the 4th Conference on Language, Data and Knowledge

pdf
Open-Source Thesaurus Development for Under-Resourced Languages: a Welsh Case Study
Nouran Khallaf | Elin Arfon | Mo El-Haj | Jonathan Morris | Dawn Knight | Paul Rayson | Tymaa Hasanain Hammouda | Mustafa Jarrar
Proceedings of the 4th Conference on Language, Data and Knowledge

pdf
Exploring Abstractive Text Summarisation for Podcasts: A Comparative Study of BART and T5 Models
Parth Saxena | Mo El-Haj
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Podcasts have become increasingly popular in recent years, resulting in a massive amount of audio content being produced every day. Efficient summarisation of podcast episodes can enable better content management and discovery for users. In this paper, we explore the use of abstractive text summarisation methods to generate high-quality summaries of podcast episodes. We use pre-trained models, BART and T5, to fine-tune on a dataset of Spotify’s 100K podcast. We evaluate our models using automated metrics and human evaluation, and find that the BART model fine-tuned on the podcast dataset achieved a higher ROUGE-1 and ROUGE-L score compared to other models, while the T5 model performed better in terms of semantic meaning. The human evaluation indicates that both models produced high-quality summaries that were well received by participants. Our study demonstrates the effectiveness of abstractive summarisation methods for podcast episodes and offers insights for improving the summarisation of audio content.