Existing knowledge-enhanced methods have achieved remarkable results in certain Q&A tasks via obtaining diverse knowledge from different knowledge bases. However, limited by the properties of retrieved knowledge, they still have trouble benefiting from both the knowledge relevance and distinguishment simultaneously. To address the challenge, we propose CPACE, a Concept-centric Prompt-bAsed Contrastive Explanation Generation model, which aims to convert obtained symbolic knowledge into the contrastive explanation for better distinguishing the differences among given candidates. Firstly, following previous works, we retrieve different types of symbolic knowledge with a concept-centric knowledge extraction module. After that, we generate corresponding contrastive explanation using acquired symbolic knowledge and prompt as guidance for better modeling the knowledge distinguishment and interpretability. Finally, we regard the generated contrastive explanation as external knowledge for downstream task enhancement. We conduct a series of experiments on three widely-used question-answering datasets: CSQA, QASC, and OBQA. Experimental results demonstrate that with the help of generated contrastive explanation, our CPACE model achieves new SOTA on CSQA (89.8% on the testing set, 0.9% higher than human performance), and gains impressive improvement on QASC and OBQA (4.2% and 3.5%, respectively).
Text is ubiquitous in our visual world, conveying crucial information, such as in documents, websites, and everyday photographs. In this work, we propose UReader, a first exploration of universal OCR-free visually-situated language understanding based on the Multimodal Large Language Model (MLLM). By leveraging the shallow text recognition ability of the MLLM, we only finetuned 1.2% parameters and the training cost is much lower than previous work following domain-specific pretraining and finetuning paradigms. Concretely, UReader is jointly finetuned on a wide range of Visually-situated Language Understanding tasks via a unified instruction format. To enhance the visual text and semantic understanding, we further apply two auxiliary tasks with the same format, namely text reading and key points generation tasks. We design a shape-adaptive cropping module before the encoder-decoder architecture of MLLM to leverage the frozen low-resolution vision encoder for processing high-resolution images. Without downstream finetuning, our single model achieves state-of-the-art ocr-free performance in 8 out of 10 visually-situated language understanding tasks, across 5 domains: documents, tables, charts, natural images, and webpage screenshots. Codes and instruction-tuning datasets will be released.
Large language models (LLMs) have showcased remarkable capabilities in complex reasoning through chain of thought (CoT) prompting. Recently, there has been a growing interest in transferring these reasoning abilities from LLMs to smaller models. However, achieving both the diversity and consistency in rationales presents a challenge. In this paper, we focus on enhancing these two aspects and propose Multi-CoT Consistent Knowledge Distillation (MCC-KD) to efficiently distill the reasoning capabilities. In MCC-KD, we generate multiple rationales for each question and enforce consistency among their predictions by minimizing the bidirectional KL-divergence between the answer distributions. We conduct comprehensive experiments to investigate the effectiveness of MCC-KD with different model architectures (LLaMA/FlanT5) and various model scales (3B/7B/11B/13B) on both mathematical reasoning and commonsense reasoning benchmarks. The empirical results demonstrate that MCC-KD achieves superior performance on in-distribution datasets and exhibits a strong generalization ability on out-of-distribution datasets.
Large language models (LLMs) have recently demonstrated remarkable capabilities to comprehend human intentions, engage in reasoning, and design planning-like behavior. To further unleash the power of LLMs to accomplish complex tasks, there is a growing trend to build agent frameworks that equips LLMs, such as ChatGPT, with tool-use abilities to connect with massive external APIs. In this work, we introduce ModelScope-Agent, a general and customizable agent framework for real-world applications, based on open-source LLMs as controllers. It provides a user-friendly system library, with a customizable engine design to support model training on multiple open-source LLMs, while also enabling seamless integration with both model APIs and common APIs in a unified way. To equip the LLMs with tool-use abilities, a comprehensive framework has been proposed spanning tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation for practical real-world applications. Finally, we showcase ModelScopeGPT, a real-world intelligent assistant of ModelScope Community based on the ModelScope-Agent framework, which is able to connect open-source LLMs with more than 1000 public AI models and localized community knowledge in ModelScope. The ModelScope-Agent online demo, library are now publicly available.
Eye movements are known to reflect cognitive processes in reading, and psychological reading research has shown that eye gaze patterns differ between readers with and without dyslexia. In recent years, researchers have attempted to classify readers with dyslexia based on their eye movements using Support Vector Machines (SVMs). However, these approaches (i) are based on highly aggregated features averaged over all words read by a participant, thus disregarding the sequential nature of the eye movements, and (ii) do not consider the linguistic stimulus and its interaction with the reader’s eye movements. In the present work, we propose two simple sequence models that process eye movements on the entire stimulus without the need of aggregating features across the sentence. Additionally, we incorporate the linguistic stimulus into the model in two ways—contextualized word embeddings and manually extracted linguistic features. The models are evaluated on a Mandarin Chinese dataset containing eye movements from children with and without dyslexia. Our results show that (i) even for a logographic script such as Chinese, sequence models are able to classify dyslexia on eye gaze sequences, reaching state-of-the-art performance, and (ii) incorporating the linguistic stimulus does not help to improve classification performance.
Multimodal Entity Linking (MEL) which aims at linking mentions with multimodal contexts to the referent entities from a knowledge base (e.g., Wikipedia), is an essential task for many multimodal applications. Although much attention has been paid to MEL, the shortcomings of existing MEL datasets including limited contextual topics and entity types, simplified mention ambiguity, and restricted availability, have caused great obstacles to the research and application of MEL. In this paper, we present WikiDiverse, a high-quality human-annotated MEL dataset with diversified contextual topics and entity types from Wikinews, which uses Wikipedia as the corresponding knowledge base. A well-tailored annotation procedure is adopted to ensure the quality of the dataset. Based on WikiDiverse, a sequence of well-designed MEL models with intra-modality and inter-modality attentions are implemented, which utilize the visual information of images more adequately than existing MEL models do. Extensive experimental analyses are conducted to investigate the contributions of different modalities in terms of MEL, facilitating the future research on this task.
Vision Transformers (ViTs) have been widely used in large-scale Vision and Language Pre-training (VLP) models. Though previous VLP works have proved the effectiveness of ViTs, they still suffer from computational efficiency brought by the long visual sequence. To tackle this problem, in this paper, we propose an efficient vision-and-language pre-training model with Text-Relevant Image Patch Selection, namely TRIPS, which reduces the visual sequence progressively with a text-guided patch-selection layer in the visual backbone for efficient training and inference. The patch-selection layer can dynamically compute text-dependent visual attention to identify the attentive image tokens with text guidance and fuse inattentive ones in an end-to-end manner. Meanwhile, TRIPS does not introduce extra parameters to ViTs. Experimental results on a variety of popular benchmark datasets demonstrate that TRIPS gain a speedup of 40% over previous similar VLP models, yet with competitive or better downstream task performance.
Large-scale pre-trained foundation models have been an emerging paradigm for building artificial intelligence (AI) systems, which can be quickly adapted to a wide range of downstream tasks. This paper presents mPLUG, a new vision-language foundation model for both cross-modal understanding and generation. Most existing pre-trained models suffer from inefficiency and linguistic signal overwhelmed by long visual sequences in cross-modal alignment. To address both problems, mPLUG introduces an effective and efficient vision-language architecture with novel cross-modal skip-connections.mPLUG is pre-trained end-to-end on large-scale image-text pairs with both discriminative and generative objectives. It achieves state-of-the-art results on a wide range of vision-language downstream tasks, including image captioning, image-text retrieval, visual grounding and visual question answering. mPLUG also demonstrates strong zero-shot transferability on vision-language and video-language tasks. The code and pre-trained models are available at https://github.com/alibaba/AliceMind
We describe our systems of subtask1 and subtask3 for SemEval-2021 Task 6 on Detection of Persuasion Techniques in Texts and Images. The purpose of subtask1 is to identify propaganda techniques given textual content, and the goal of subtask3 is to detect them given both textual and visual content. For subtask1, we investigate transfer learning based on pre-trained language models (PLMs) such as BERT, RoBERTa to solve data sparsity problems. For subtask3, we extract heterogeneous visual representations (i.e., face features, OCR features, and multimodal representations) and explore various multimodal fusion strategies to combine the textual and visual representations. The official evaluation shows our ensemble model ranks 1st for subtask1 and 2nd for subtask3.
Vision-language pre-training (VLP) on large-scale image-text pairs has achieved huge success for the cross-modal downstream tasks. The most existing pre-training methods mainly adopt a two-step training procedure, which firstly employs a pre-trained object detector to extract region-based visual features, then concatenates the image representation and text embedding as the input of Transformer to train. However, these methods face problems of using task-specific visual representation of the specific object detector for generic cross-modal understanding, and the computation inefficiency of two-stage pipeline. In this paper, we propose the first end-to-end vision-language pre-trained model for both V+L understanding and generation, namely E2E-VLP, where we build a unified Transformer framework to jointly learn visual representation, and semantic alignments between image and text. We incorporate the tasks of object detection and image captioning into pre-training with a unified Transformer encoder-decoder architecture for enhancing visual learning. An extensive set of experiments have been conducted on well-established vision-language downstream tasks to demonstrate the effectiveness of this novel VLP paradigm.
Large pre-trained language models achieve state-of-the-art results when fine-tuned on downstream NLP tasks. However, they almost exclusively focus on text-only representation, while neglecting cell-level layout information that is important for form image understanding. In this paper, we propose a new pre-training approach, StructuralLM, to jointly leverage cell and layout information from scanned documents. Specifically, we pre-train StructuralLM with two new designs to make the most of the interactions of cell and layout information: 1) each cell as a semantic unit; 2) classification of cell positions. The pre-trained StructuralLM achieves new state-of-the-art results in different types of downstream tasks, including form understanding (from 78.95 to 85.14), document visual question answering (from 72.59 to 83.94) and document image classification (from 94.43 to 96.08).
Recently, question answering (QA) based on machine reading comprehension has become popular. This work focuses on generative QA which aims to generate an abstractive answer to a given question instead of extracting an answer span from a provided passage. Generative QA often suffers from two critical problems: (1) summarizing content irrelevant to a given question, (2) drifting away from a correct answer during generation. In this paper, we address these problems by a novel Rationale-Enriched Answer Generator (REAG), which incorporates an extractive mechanism into a generative model. Specifically, we add an extraction task on the encoder to obtain the rationale for an answer, which is the most relevant piece of text in an input document to a given question. Based on the extracted rationale and original input, the decoder is expected to generate an answer with high confidence. We jointly train REAG on the MS MARCO QA+NLG task and the experimental results show that REAG improves the quality and semantic accuracy of answers over baseline models.
Self-supervised pre-training, such as BERT, MASS and BART, has emerged as a powerful technique for natural language understanding and generation. Existing pre-training techniques employ autoencoding and/or autoregressive objectives to train Transformer-based models by recovering original word tokens from corrupted text with some masked tokens. The training goals of existing techniques are often inconsistent with the goals of many language generation tasks, such as generative question answering and conversational response generation, for producing new text given context. This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus, specifically designed for generating new text conditioned on context. The new scheme alleviates the mismatch introduced by the existing denoising scheme between pre-training and fine-tuning where generation is more than reconstructing original text. An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks covering generative question answering (Rank 1 on the official MARCO leaderboard), abstractive summarization on CNN/DailyMail as well as Gigaword, question generation on SQuAD, and conversational response generation on Cornell Movie Dialogues.
Multiple-choice question answering (MCQA) is one of the most challenging tasks in machine reading comprehension since it requires more advanced reading comprehension skills such as logical reasoning, summarization, and arithmetic operations. Unfortunately, most existing MCQA datasets are small in size, which increases the difficulty of model learning and generalization. To address this challenge, we propose a multi-source meta transfer (MMT) for low-resource MCQA. In this framework, we first extend meta learning by incorporating multiple training sources to learn a generalized feature representation across domains. To bridge the distribution gap between training sources and the target, we further introduce the meta transfer that can be integrated into the multi-source meta training. More importantly, the proposed MMT is independent of backbone language models. Extensive experiments demonstrate the superiority of MMT over state-of-the-arts, and continuous improvements can be achieved on different backbone networks on both supervised and unsupervised domain adaptation settings.
Commonsense and background knowledge is required for a QA model to answer many nontrivial questions. Different from existing work on knowledge-aware QA, we focus on a more challenging task of leveraging external knowledge to generate answers in natural language for a given question with context. In this paper, we propose a new neural model, Knowledge-Enriched Answer Generator (KEAG), which is able to compose a natural answer by exploiting and aggregating evidence from all four information sources available: question, passage, vocabulary and knowledge. During the process of answer generation, KEAG adaptively determines when to utilize symbolic knowledge and which fact from the knowledge is useful. This allows the model to exploit external knowledge that is not explicitly stated in the given text, but that is relevant for generating an answer. The empirical study on public benchmark of answer generation demonstrates that KEAG improves answer quality over models without knowledge and existing knowledge-aware models, confirming its effectiveness in leveraging knowledge.
This paper describes a novel hierarchical attention network for reading comprehension style question answering, which aims to answer questions for a given narrative paragraph. In the proposed method, attention and fusion are conducted horizontally and vertically across layers at different levels of granularity between question and paragraph. Specifically, it first encode the question and paragraph with fine-grained language embeddings, to better capture the respective representations at semantic level. Then it proposes a multi-granularity fusion approach to fully fuse information from both global and attended representations. Finally, it introduces a hierarchical attention network to focuses on the answer span progressively with multi-level soft-alignment. Extensive experiments on the large-scale SQuAD, TriviaQA dataset validate the effectiveness of the proposed method. At the time of writing the paper, our model achieves state-of-the-art on the both SQuAD and TriviaQA Wiki leaderboard as well as two adversarial SQuAD datasets.