Emotion classification is a challenging task in NLP due to the inherent idiosyncratic and subjective nature of linguistic expression,especially with code-mixed data. Pre-trained language models (PLMs) have achieved high performance for many tasks and languages, but it remains to be seen whether these models learn and are robust to the differences in emotional expression across languages. Sociolinguistic studies have shown that Hinglish speakers switch to Hindi when expressing negative emotions and to English when expressing positive emotions. To understand if language models can learn these associations, we study the effect of language on emotion prediction across 3 PLMs on a Hinglish emotion classification dataset. Using LIME and token level language ID, we find that models do learn these associations between language choice and emotional expression. Moreover, having code-mixed data present in the pre-training can augment that learning when task-specific data is scarce. We also conclude from the misclassifications that the models may overgeneralise this heuristic to other infrequent examples where this sociolinguistic phenomenon does not apply.
In order to draw generalizable conclusions about the performance of multilingual models across languages, it is important to evaluate on a set of languages that captures linguistic diversity.Linguistic typology is increasingly used to justify language selection, inspired by language sampling in linguistics.However, justifications for ‘typological diversity’ exhibit great variation, as there seems to be no set definition, methodology or consistent link to linguistic typology.In this work, we provide a systematic insight into how previous work in the ACL Anthology uses the term ‘typological diversity’.Our two main findings are: 1) what is meant by typologically diverse language selection is not consistent and 2) the actual typological diversity of the language sets in these papers varies greatly.We argue that, when making claims about ‘typological diversity’, an operationalization of this should be included.A systematic approach that quantifies this claim, also with respect to the number of languages used, would be even better.
While information from the field of linguistic typology has the potential to improve performance on NLP tasks, reliable typological data is a prerequisite. Existing typological databases, including WALS and Grambank, suffer from inconsistencies primarily caused by their categorical format. Furthermore, typological categorisations by definition differ significantly from the continuous nature of phenomena, as found in natural language corpora. In this paper, we introduce a new seed dataset made up of continuous-valued data, rather than categorical data, that can better reflect the variability of language. While this initial dataset focuses on word-order typology, we also present the methodology used to create the dataset, which can be easily adapted to generate data for a broader set of features and languages.
Typological information has the potential to be beneficial in the development of NLP models, particularly for low-resource languages. Unfortunately, current large-scale typological databases, notably WALS and Grambank, are inconsistent both with each other and with other sources of typological information, such as linguistic grammars. Some of these inconsistencies stem from coding errors or linguistic variation, but many of the disagreements are due to the discrete categorical nature of these databases. We shed light on this issue by systematically exploring disagreements across typological databases and resources, and their uses in NLP, covering the past and present. We next investigate the future of such work, offering an argument that a continuous view of typological features is clearly beneficial, echoing recommendations from linguistics. We propose that such a view of typology has significant potential in the future, including in language modeling in low-resource scenarios.
Transformer-based language models (LMs) offer superior performance in a wide range of NLP tasks compared to previous paradigms. However, the vast majority of the world’s languages do not have adequate training data available for monolingual LMs (Joshi et al., 2020). While the use of multilingual LMs might address this data imbalance, there is evidence that multilingual LMs struggle when it comes to model adaptation to to resource-poor languages (Wu and Dredze, 2020), or to languages which have typological characteristics unseen by the LM (Üstün et al., 2022). Other approaches aim to adapt monolingual LMs to resource-poor languages that are related to the model language. However, there are conflicting findings regarding whether language relatedness correlates with successful adaptation (de Vries et al., 2021), or not (Ács et al., 2021). With gradual LM adaptation, our approach presented in this extended abstract, we add to the research direction of monolingual LM adaptation. Instead of direct adaptation to a target language, we propose adaptation in stages, first adapting to one or more intermediate languages before the final adaptation step. Inspired by principles of curriculum learning (Bengio et al., 2009), we search for an ideal ordering of languages that can result in improved LM performance on the target language. We follow evidence that typological similarity might correlate with the success of cross-lingual transfer (Pires et al., 2019; Üstün et al., 2022; de Vries et al., 2021) as we believe the success of this transfer is essential for successful model adaptation. Thus we order languages based on their relative typological similarity between them. In our approach, we quantify typological similarity using structural vectors as derived from counts of dependency links (Bjerva et al., 2019), as such fine-grained measures can give a more accurate picture of the typological characteristics of languages (Ponti et al., 2019). We believe that gradual LM adaptation may lead to improved LM performance on a range of resource-poor languages and typologically diverse languages. Additionally, it enables future research to evaluate the correlation between the success of cross-lingual transfer and various typological similarity measures.
In semantic typology, colexification refers to words with multiple meanings, either related (polysemy) or unrelated (homophony). Studies of cross-linguistic colexification have yielded insights into, e.g., psychology, historical linguistics and cognitive science (Xu et al., 2020; Brochhagen and Boleda, 2022; Schapper and Koptjevskaja-Tamm, 2022). While NLP research up until now has mainly focused on integrating syntactic typology (Naseem et al., 2012; Ponti et al., 2019; Chaudhary et al., 2019; Üstün et al., 2020; Ansell et al., 2021; Oncevay et al., 2022), we here investigate the potential of incorporating semantic typology, of which colexification is an example. We propose a framework for constructing a large-scale synset graph and learning language representations with node embedding algorithms. We demonstrate that cross-lingual colexification patterns provide a distinct signal for modelling language similarity and predicting typological features. Our representations achieve a 9.97% performance gain in predicting lexico-semantic typological features and expectantly contain a weaker syntactic signal. This study is the first attempt to learn language representations and model language similarities using semantic typology at a large scale, setting a new direction for multilingual NLP, especially for low-resource languages.
Colexification refers to the linguistic phenomenon where a single lexical form is used to convey multiple meanings. By studying cross-lingual colexifications, researchers have gained valuable insights into fields such as psycholinguistics and cognitive sciences (Jack- son et al., 2019; Xu et al., 2020; Karjus et al., 2021; Schapper and Koptjevskaja-Tamm, 2022; François, 2022). While several multilingual colexification datasets exist, there is untapped potential in using this information to bootstrap datasets across such semantic features. In this paper, we aim to demonstrate how colexifications can be leveraged to create such cross-lingual datasets. We showcase curation procedures which result in a dataset covering 142 languages across 21 language families across the world. The dataset includes ratings of concreteness and affectiveness, mapped with phonemes and phonological features. We further analyze the dataset along different dimensions to demonstrate potential of the proposed procedures in facilitating further interdisciplinary research in psychology, cognitive science, and multilingual natural language processing (NLP). Based on initial investigations, we observe that i) colexifications that are closer in concreteness/affectiveness are more likely to colexify ; ii) certain initial/last phonemes are significantly correlated with concreteness/affectiveness intra language families, such as /k/ as the initial phoneme in both Turkic and Tai-Kadai correlated with concreteness, and /p/ in Dravidian and Sino-Tibetan correlated with Valence; iii) the type-to-token ratio (TTR) of phonemes are positively correlated with concreteness across several language families, while the length of phoneme segments are negatively correlated with concreteness; iv) certain phonological features are negatively correlated with concreteness across languages. The dataset is made public online for further research.
Theoretical work in morphological typology offers the possibility of measuring morphological diversity on a continuous scale. However, literature in Natural Language Processing (NLP) typically labels a whole language with a strict type of morphology, e.g. fusional or agglutinative. In this work, we propose to reduce the rigidity of such claims, by quantifying morphological typology at the word and segment level. We consider Payne (2017)’s approach to classify morphology using two indices: synthesis (e.g. analytic to polysynthetic) and fusion (agglutinative to fusional). For computing synthesis, we test unsupervised and supervised morphological segmentation methods for English, German and Turkish, whereas for fusion, we propose a semi-automatic method using Spanish as a case study. Then, we analyse the relationship between machine translation quality and the degree of synthesis and fusion at word (nouns and verbs for English-Turkish, and verbs in English-Spanish) and segment level (previous language pairs plus English-German in both directions). We complement the word-level analysis with human evaluation, and overall, we observe a consistent impact of both indexes on machine translation quality.
Bridging the performance gap between high- and low-resource languages has been the focus of much previous work. Typological features from databases such as the World Atlas of Language Structures (WALS) are a prime candidate for this, as such data exists even for very low-resource languages. However, previous work has only found minor benefits from using typological information. Our hypothesis is that a model trained in a cross-lingual setting will pick up on typological cues from the input data, thus overshadowing the utility of explicitly using such features. We verify this hypothesis by blinding a model to typological information, and investigate how cross-lingual sharing and performance is impacted. Our model is based on a cross-lingual architecture in which the latent weights governing the sharing between languages is learnt during training. We show that (i) preventing this model from exploiting typology severely reduces performance, while a control experiment reaffirms that (ii) encouraging sharing according to typology somewhat improves performance.
Cross-lingual representations have the potential to make NLP techniques available to the vast majority of languages in the world. However, they currently require large pretraining corpora or access to typologically similar languages. In this work, we address these obstacles by removing language identity signals from multilingual embeddings. We examine three approaches for this: (i) re-aligning the vector spaces of target languages (all together) to a pivot source language; (ii) removing language-specific means and variances, which yields better discriminativeness of embeddings as a by-product; and (iii) increasing input similarity across languages by removing morphological contractions and sentence reordering. We evaluate on XNLI and reference-free MT evaluation across 19 typologically diverse languages. Our findings expose the limitations of these approaches—unlike vector normalization, vector space re-alignment and text normalization do not achieve consistent gains across encoders and languages. Due to the approaches’ additive effects, their combination decreases the cross-lingual transfer gap by 8.9 points (m-BERT) and 18.2 points (XLM-R) on average across all tasks and languages, however.
Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the world’s languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learning and linguistic probing. A major drawback hampering broader adoption of typological KBs is that they are sparsely populated, in the sense that most languages only have annotations for some features, and skewed, in that few features have wide coverage. As typological features often correlate with one another, it is possible to predict them and thus automatically populate typological KBs, which is also the focus of this shared task. Overall, the task attracted 8 submissions from 5 teams, out of which the most successful methods make use of such feature correlations. However, our error analysis reveals that even the strongest submitted systems struggle with predicting feature values for languages where few features are known.
Learning what to share between tasks has become a topic of great importance, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning: in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.
Subjectivity is the expression of internal opinions or beliefs which cannot be objectively observed or verified, and has been shown to be important for sentiment analysis and word-sense disambiguation. Furthermore, subjectivity is an important aspect of user-generated data. In spite of this, subjectivity has not been investigated in contexts where such data is widespread, such as in question answering (QA). We develop a new dataset which allows us to investigate this relationship. We find that subjectivity is an important feature in the case of QA, albeit with more intricate interactions between subjectivity and QA performance than found in previous work on sentiment analysis. For instance, a subjective question may or may not be associated with a subjective answer. We release an English QA dataset (SubjQA) based on customer reviews, containing subjectivity annotations for questions and answer spans across 6 domains.
It is challenging to automatically evaluate the answer of a QA model at inference time. Although many models provide confidence scores, and simple heuristics can go a long way towards indicating answer correctness, such measures are heavily dataset-dependent and are unlikely to generalise. In this work, we begin by investigating the hidden representations of questions, answers, and contexts in transformer-based QA architectures. We observe a consistent pattern in the answer representations, which we show can be used to automatically evaluate whether or not a predicted answer span is correct. Our method does not require any labelled data and outperforms strong heuristic baselines, across 2 datasets and 7 domains. We are able to predict whether or not a model’s answer is correct with 91.37% accuracy on SQuAD, and 80.7% accuracy on SubjQA. We expect that this method will have broad applications, e.g., in semi-automatic development of QA datasets.
The study of linguistic typology is rooted in the implications we find between linguistic features, such as the fact that languages with object-verb word ordering tend to have postpositions. Uncovering such implications typically amounts to time-consuming manual processing by trained and experienced linguists, which potentially leaves key linguistic universals unexplored. In this paper, we present a computational model which successfully identifies known universals, including Greenberg universals, but also uncovers new ones, worthy of further linguistic investigation. Our approach outperforms baselines previously used for this problem, as well as a strong baseline from knowledge base population.
A neural language model trained on a text corpus can be used to induce distributed representations of words, such that similar words end up with similar representations. If the corpus is multilingual, the same model can be used to learn distributed representations of languages, such that similar languages end up with similar representations. We show that this holds even when the multilingual corpus has been translated into English, by picking up the faint signal left by the source languages. However, just as it is a thorny problem to separate semantic from syntactic similarity in word representations, it is not obvious what type of similarity is captured by language representations. We investigate correlations and causal relationships between language representations learned from translations on one hand, and genetic, geographical, and several levels of structural similarity between languages on the other. Of these, structural similarity is found to correlate most strongly with language representation similarity, whereas genetic relationships—a convenient benchmark used for evaluation in previous work—appears to be a confounding factor. Apart from implications about translation effects, we see this more generally as a case where NLP and linguistic typology can interact and benefit one another.
In the principles-and-parameters framework, the structural features of languages depend on parameters that may be toggled on or off, with a single parameter often dictating the status of multiple features. The implied covariance between features inspires our probabilisation of this line of linguistic inquiry—we develop a generative model of language based on exponential-family matrix factorisation. By modelling all languages and features within the same architecture, we show how structural similarities between languages can be exploited to predict typological features with near-perfect accuracy, outperforming several baselines on the task of predicting held-out features. Furthermore, we show that language embeddings pre-trained on monolingual text allow for generalisation to unobserved languages. This finding has clear practical and also theoretical implications: the results confirm what linguists have hypothesised, i.e. that there are significant correlations between typological features and languages.
Multi-task learning and self-training are two common ways to improve a machine learning model’s performance in settings with limited training data. Drawing heavily on ideas from those two approaches, we suggest transductive auxiliary task self-training: training a multi-task model on (i) a combination of main and auxiliary task training data, and (ii) test instances with auxiliary task labels which a single-task version of the model has previously generated. We perform extensive experiments on 86 combinations of languages and tasks. Our results are that, on average, transductive auxiliary task self-training improves absolute accuracy by up to 9.56% over the pure multi-task model for dependency relation tagging and by up to 13.03% for semantic tagging.
We approach the 2018 Shared Task on Complex Word Identification by leveraging a cross-lingual multitask learning approach. Our method is highly language agnostic, as evidenced by the ability of our system to generalize across languages, including languages for which we have no training data. In the shared task, this is the case for French, for which our system achieves the best performance. We further provide a qualitative and quantitative analysis of which words pose problems for our system.
Neural part-of-speech (POS) taggers are known to not perform well with little training data. As a step towards overcoming this problem, we present an architecture for learning more robust neural POS taggers by jointly training a hierarchical, recurrent model and a recurrent character-based sequence-to-sequence network supervised using an auxiliary objective. This way, we introduce stronger character-level supervision into the model, which enables better generalization to unseen words and provides regularization, making our encoding less prone to overfitting. We experiment with three auxiliary tasks: lemmatization, character-based word autoencoding, and character-based random string autoencoding. Experiments with minimal amounts of labeled data on 34 languages show that our new architecture outperforms a single-task baseline and, surprisingly, that, on average, raw text autoencoding can be as beneficial for low-resource POS tagging as using lemma information. Our neural POS tagger closes the gap to a state-of-the-art POS tagger (MarMoT) for low-resource scenarios by 43%, even outperforming it on languages with templatic morphology, e.g., Arabic, Hebrew, and Turkish, by some margin.
We take a multi-task learning approach to the shared Task 1 at SemEval-2018. The general idea concerning the model structure is to use as little external data as possible in order to preserve the task relatedness and reduce complexity. We employ multi-task learning with hard parameter sharing to exploit the relatedness between sub-tasks. As a base model, we use a standard recurrent neural network for both the classification and regression subtasks. Our system ranks 32nd out of 48 participants with a Pearson score of 0.557 in the first subtask, and 20th out of 35 in the fifth subtask with an accuracy score of 0.464.
Previous work has suggested that parameter sharing between transition-based neural dependency parsers for related languages can lead to better performance, but there is no consensus on what parameters to share. We present an evaluation of 27 different parameter sharing strategies across 10 languages, representing five pairs of related languages, each pair from a different language family. We find that sharing transition classifier parameters always helps, whereas the usefulness of sharing word and/or character LSTM parameters varies. Based on this result, we propose an architecture where the transition classifier is shared, and the sharing of word and character parameters is controlled by a parameter that can be tuned on validation data. This model is linguistically motivated and obtains significant improvements over a monolingually trained baseline. We also find that sharing transition classifier parameters helps when training a parser on unrelated language pairs, but we find that, in the case of unrelated languages, sharing too many parameters does not help.
A core part of linguistic typology is the classification of languages according to linguistic properties, such as those detailed in the World Atlas of Language Structure (WALS). Doing this manually is prohibitively time-consuming, which is in part evidenced by the fact that only 100 out of over 7,000 languages spoken in the world are fully covered in WALS. We learn distributed language representations, which can be used to predict typological properties on a massively multilingual scale. Additionally, quantitative and qualitative analyses of these language embeddings can tell us how language similarities are encoded in NLP models for tasks at different typological levels. The representations are learned in an unsupervised manner alongside tasks at three typological levels: phonology (grapheme-to-phoneme prediction, and phoneme reconstruction), morphology (morphological inflection), and syntax (part-of-speech tagging). We consider more than 800 languages and find significant differences in the language representations encoded, depending on the target task. For instance, although Norwegian Bokmål and Danish are typologically close to one another, they are phonologically distant, which is reflected in their language embeddings growing relatively distant in a phonological task. We are also able to predict typological features in WALS with high accuracies, even for unseen language families.
We present the RUG-SU team’s submission at the Native Language Identification Shared Task 2017. We combine several approaches into an ensemble, based on spelling error features, a simple neural network using word representations, a deep residual network using word and character features, and a system based on a recurrent neural network. Our best system is an ensemble of neural networks, reaching an F1 score of 0.8323. Although our system is not the highest ranking one, we do outperform the baseline by far.
In this paper, we explore the performance of a linear SVM trained on language independent character features for the NLI Shared Task 2017. Our basic system (GRONINGEN) achieves the best performance (87.56 F1-score) on the evaluation set using only 1-9 character n-grams as features. We compare this against several ensemble and meta-classifiers in order to examine how the linear system fares when combined with other, especially non-linear classifiers. Special emphasis is placed on the topic bias that exists by virtue of the assessment essay prompt distribution.
The Parallel Meaning Bank is a corpus of translations annotated with shared, formal meaning representations comprising over 11 million words divided over four languages (English, German, Italian, and Dutch). Our approach is based on cross-lingual projection: automatically produced (and manually corrected) semantic annotations for English sentences are mapped onto their word-aligned translations, assuming that the translations are meaning-preserving. The semantic annotation consists of five main steps: (i) segmentation of the text in sentences and lexical items; (ii) syntactic parsing with Combinatory Categorial Grammar; (iii) universal semantic tagging; (iv) symbolization; and (v) compositional semantic analysis based on Discourse Representation Theory. These steps are performed using statistical models trained in a semi-supervised manner. The employed annotation models are all language-neutral. Our first results are promising.
Shared Task 1 at SemEval-2017 deals with assessing the semantic similarity between sentences, either in the same or in different languages. In our system submission, we employ multilingual word representations, in which similar words in different languages are close to one another. Using such representations is advantageous, since the increasing amount of available parallel data allows for the application of such methods to many of the languages in the world. Hence, semantic similarity can be inferred even for languages for which no annotated data exists. Our system is trained and evaluated on all language pairs included in the shared task (English, Spanish, Arabic, and Turkish). Although development results are promising, our system does not yield high performance on the shared task test sets.
Computational linguistic approaches to sign languages could benefit from investigating how complexity influences structure. We investigate whether morphological complexity has an effect on the order of Verb (V) and Object (O) in Swedish Sign Language (SSL), on the basis of elicited data from five Deaf signers. We find a significant difference in the distribution of the orderings OV vs. VO, based on an analysis of morphological weight. While morphologically heavy verbs exhibit a general preference for OV, humanness seems to affect the ordering in the opposite direction, with [+human] Objects pushing towards a preference for VO.
We report on our system for the shared task on discriminating between similar languages (DSL 2016). The system uses only byte representations in a deep residual network (ResNet). The system, named ResIdent, is trained only on the data released with the task (closed training). We obtain 84.88% accuracy on subtask A, 68.80% accuracy on subtask B1, and 69.80% accuracy on subtask B2. A large difference in accuracy on development data can be observed with relatively minor changes in our network’s architecture and hyperparameters. We therefore expect fine-tuning of these parameters to yield higher accuracies.
We propose a novel semantic tagging task, semtagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations, and includes a novel residual bypass architecture. We evaluate the tagset both intrinsically on the new task of semantic tagging, as well as on Part-of-Speech (POS) tagging. Our system, consisting of a ResNet and an auxiliary loss function predicting our semantic tags, significantly outperforms prior results on English Universal Dependencies POS tagging (95.71% accuracy on UD v1.2 and 95.67% accuracy on UD v1.3).