Jibril Frej


2020

pdf
WIKIR: A Python Toolkit for Building a Large-scale Wikipedia-based English Information Retrieval Dataset
Jibril Frej | Didier Schwab | Jean-Pierre Chevallet
Proceedings of the Twelfth Language Resources and Evaluation Conference

Over the past years, deep learning methods allowed for new state-of-the-art results in ad-hoc information retrieval. However such methods usually require large amounts of annotated data to be effective. Since most standard ad-hoc information retrieval datasets publicly available for academic research (e.g. Robust04, ClueWeb09) have at most 250 annotated queries, the recent deep learning models for information retrieval perform poorly on these datasets. These models (e.g. DUET, Conv-KNRM) are trained and evaluated on data collected from commercial search engines not publicly available for academic research which is a problem for reproducibility and the advancement of research. In this paper, we propose WIKIR: an open-source toolkit to automatically build large-scale English information retrieval datasets based on Wikipedia. WIKIR is publicly available on GitHub. We also provide wikIR59k: a large-scale publicly available dataset that contains 59,252 queries and 2,617,003 (query, relevant documents) pairs.

pdf
FlauBERT: Unsupervised Language Model Pre-training for French
Hang Le | Loïc Vial | Jibril Frej | Vincent Segonne | Maximin Coavoux | Benjamin Lecouteux | Alexandre Allauzen | Benoit Crabbé | Laurent Besacier | Didier Schwab
Proceedings of the Twelfth Language Resources and Evaluation Conference

Language models have become a key step to achieve state-of-the art results in many different Natural Language Processing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. This has been widely demonstrated for English using contextualized representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification, paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other pre-training approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream tasks, called FLUE (French Language Understanding Evaluation), are shared to the research community for further reproducible experiments in French NLP.

pdf
FlauBERT : des modèles de langue contextualisés pré-entraînés pour le français (FlauBERT : Unsupervised Language Model Pre-training for French)
Hang Le | Loïc Vial | Jibril Frej | Vincent Segonne | Maximin Coavoux | Benjamin Lecouteux | Alexandre Allauzen | Benoît Crabbé | Laurent Besacier | Didier Schwab
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles

Les modèles de langue pré-entraînés sont désormais indispensables pour obtenir des résultats à l’état-de-l’art dans de nombreuses tâches du TALN. Tirant avantage de l’énorme quantité de textes bruts disponibles, ils permettent d’extraire des représentations continues des mots, contextualisées au niveau de la phrase. L’efficacité de ces représentations pour résoudre plusieurs tâches de TALN a été démontrée récemment pour l’anglais. Dans cet article, nous présentons et partageons FlauBERT, un ensemble de modèles appris sur un corpus français hétérogène et de taille importante. Des modèles de complexité différente sont entraînés à l’aide du nouveau supercalculateur Jean Zay du CNRS. Nous évaluons nos modèles de langue sur diverses tâches en français (classification de textes, paraphrase, inférence en langage naturel, analyse syntaxique, désambiguïsation automatique) et montrons qu’ils surpassent souvent les autres approches sur le référentiel d’évaluation FLUE également présenté ici.