Hirofumi Inaguma


2023

pdf
Speech-to-Speech Translation for a Real-world Unwritten Language
Peng-Jen Chen | Kevin Tran | Yilin Yang | Jingfei Du | Justine Kao | Yu-An Chung | Paden Tomasello | Paul-Ambroise Duquenne | Holger Schwenk | Hongyu Gong | Hirofumi Inaguma | Sravya Popuri | Changhan Wang | Juan Pino | Wei-Ning Hsu | Ann Lee
Findings of the Association for Computational Linguistics: ACL 2023

We study speech-to-speech translation (S2ST) that translates speech from one language into another language and focuses on building systems to support languages without standard text writing systems. We use English-Taiwanese Hokkien as a case study, and present an end-to-end solution from training data collection, modeling choices to benchmark dataset release. First, we present efforts on creating human annotated data, automatically mining data from large unlabeled speech datasets, and adopting pseudo-labeling to produce weakly supervised data. On the modeling, we take advantage of recent advances in applying self-supervised discrete representations as target for prediction in S2ST and show the effectiveness of leveraging additional text supervision from Mandarin, a language similar to Hokkien, in model training. Finally, we release an S2ST benchmark set to facilitate future research in this field.

pdf bib
FINDINGS OF THE IWSLT 2023 EVALUATION CAMPAIGN
Milind Agarwal | Sweta Agrawal | Antonios Anastasopoulos | Luisa Bentivogli | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | Mingda Chen | William Chen | Khalid Choukri | Alexandra Chronopoulou | Anna Currey | Thierry Declerck | Qianqian Dong | Kevin Duh | Yannick Estève | Marcello Federico | Souhir Gahbiche | Barry Haddow | Benjamin Hsu | Phu Mon Htut | Hirofumi Inaguma | Dávid Javorský | John Judge | Yasumasa Kano | Tom Ko | Rishu Kumar | Pengwei Li | Xutai Ma | Prashant Mathur | Evgeny Matusov | Paul McNamee | John P. McCrae | Kenton Murray | Maria Nadejde | Satoshi Nakamura | Matteo Negri | Ha Nguyen | Jan Niehues | Xing Niu | Atul Kr. Ojha | John E. Ortega | Proyag Pal | Juan Pino | Lonneke van der Plas | Peter Polák | Elijah Rippeth | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Yun Tang | Brian Thompson | Kevin Tran | Marco Turchi | Alex Waibel | Mingxuan Wang | Shinji Watanabe | Rodolfo Zevallos
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

pdf
Simple and Effective Unsupervised Speech Translation
Changhan Wang | Hirofumi Inaguma | Peng-Jen Chen | Ilia Kulikov | Yun Tang | Wei-Ning Hsu | Michael Auli | Juan Pino
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The amount of labeled data to train models for speech tasks is limited for most languages, however, the data scarcity is exacerbated for speech translation which requires labeled data covering two different languages. To address this issue, we study a simple and effective approach to build speech translation systems without labeled data by leveraging recent advances in unsupervised speech recognition, machine translation and speech synthesis, either in a pipeline approach, or to generate pseudo-labels for training end-to-end speech translation models. Furthermore, we present an unsupervised domain adaptation technique for pre-trained speech models which improves the performance of downstream unsupervised speech recognition, especially for low-resource settings. Experiments show that unsupervised speech-to-text translation outperforms the previous unsupervised state of the art by 3.2 BLEU on the Libri-Trans benchmark, on CoVoST 2, our best systems outperform the best supervised end-to-end models (without pre-training) from only two years ago by an average of 5.0 BLEU over five X-En directions. We also report competitive results on MuST-C and CVSS benchmarks.

pdf
Hybrid Transducer and Attention based Encoder-Decoder Modeling for Speech-to-Text Tasks
Yun Tang | Anna Sun | Hirofumi Inaguma | Xinyue Chen | Ning Dong | Xutai Ma | Paden Tomasello | Juan Pino
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transducer and Attention based Encoder-Decoder (AED) are two widely used frameworks for speech-to-text tasks. They are designed for different purposes and each has its own benefits and drawbacks for speech-to-text tasks. In order to leverage strengths of both modeling methods, we propose a solution by combining Transducer and Attention based Encoder-Decoder (TAED) for speech-to-text tasks. The new method leverages AED’s strength in non-monotonic sequence to sequence learning while retaining Transducer’s streaming property. In the proposed framework, Transducer and AED share the same speech encoder. The predictor in Transducer is replaced by the decoder in the AED model, and the outputs of the decoder are conditioned on the speech inputs instead of outputs from an unconditioned language model. The proposed solution ensures that the model is optimized by covering all possible read/write scenarios and creates a matched environment for streaming applications. We evaluate the proposed approach on the MuST-C dataset and the findings demonstrate that TAED performs significantly better than Transducer for offline automatic speech recognition (ASR) and speech-to-text translation (ST) tasks. In the streaming case, TAED outperforms Transducer in the ASR task and one ST direction while comparable results are achieved in another translation direction.

pdf
UnitY: Two-pass Direct Speech-to-speech Translation with Discrete Units
Hirofumi Inaguma | Sravya Popuri | Ilia Kulikov | Peng-Jen Chen | Changhan Wang | Yu-An Chung | Yun Tang | Ann Lee | Shinji Watanabe | Juan Pino
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Direct speech-to-speech translation (S2ST), in which all components can be optimized jointly, is advantageous over cascaded approaches to achieve fast inference with a simplified pipeline. We present a novel two-pass direct S2ST architecture, UnitY, which first generates textual representations and predicts discrete acoustic units subsequently. We enhance the model performance by subword prediction in the first-pass decoder, advanced two-pass decoder architecture design and search strategy, and better training regularization. To leverage large amounts of unlabeled text data, we pre-train the first-pass text decoder based on the self-supervised denoising auto-encoding task. Experimental evaluations on benchmark datasets at various data scales demonstrate that UnitY outperforms a single-pass speech-to-unit translation model by 2.5-4.2 ASR-BLEU with 2.83x decoding speed-up. We show that the proposed methods boost the performance even when predicting spectrogram in the second pass. However, predicting discrete units achieves 2.51x decoding speed-up compared to that case.

pdf
ESPnet-ST-v2: Multipurpose Spoken Language Translation Toolkit
Brian Yan | Jiatong Shi | Yun Tang | Hirofumi Inaguma | Yifan Peng | Siddharth Dalmia | Peter Polák | Patrick Fernandes | Dan Berrebbi | Tomoki Hayashi | Xiaohui Zhang | Zhaoheng Ni | Moto Hira | Soumi Maiti | Juan Pino | Shinji Watanabe
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

ESPnet-ST-v2 is a revamp of the open-source ESPnet-ST toolkit necessitated by the broadening interests of the spoken language translation community. ESPnet-ST-v2 supports 1) offline speech-to-text translation (ST), 2) simultaneous speech-to-text translation (SST), and 3) offline speech-to-speech translation (S2ST) – each task is supported with a wide variety of approaches, differentiating ESPnet-ST-v2 from other open source spoken language translation toolkits. This toolkit offers state-of-the-art architectures such as transducers, hybrid CTC/attention, multi-decoders with searchable intermediates, time-synchronous blockwise CTC/attention, Translatotron models, and direct discrete unit models. In this paper, we describe the overall design, example models for each task, and performance benchmarking behind ESPnet-ST-v2, which is publicly available at https://github.com/espnet/espnet.

2021

pdf
Source and Target Bidirectional Knowledge Distillation for End-to-end Speech Translation
Hirofumi Inaguma | Tatsuya Kawahara | Shinji Watanabe
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

A conventional approach to improving the performance of end-to-end speech translation (E2E-ST) models is to leverage the source transcription via pre-training and joint training with automatic speech recognition (ASR) and neural machine translation (NMT) tasks. However, since the input modalities are different, it is difficult to leverage source language text successfully. In this work, we focus on sequence-level knowledge distillation (SeqKD) from external text-based NMT models. To leverage the full potential of the source language information, we propose backward SeqKD, SeqKD from a target-to-source backward NMT model. To this end, we train a bilingual E2E-ST model to predict paraphrased transcriptions as an auxiliary task with a single decoder. The paraphrases are generated from the translations in bitext via back-translation. We further propose bidirectional SeqKD in which SeqKD from both forward and backward NMT models is combined. Experimental evaluations on both autoregressive and non-autoregressive models show that SeqKD in each direction consistently improves the translation performance, and the effectiveness is complementary regardless of the model capacity.

pdf
ESPnet-ST IWSLT 2021 Offline Speech Translation System
Hirofumi Inaguma | Brian Yan | Siddharth Dalmia | Pengcheng Guo | Jiatong Shi | Kevin Duh | Shinji Watanabe
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

This paper describes the ESPnet-ST group’s IWSLT 2021 submission in the offline speech translation track. This year we made various efforts on training data, architecture, and audio segmentation. On the data side, we investigated sequence-level knowledge distillation (SeqKD) for end-to-end (E2E) speech translation. Specifically, we used multi-referenced SeqKD from multiple teachers trained on different amounts of bitext. On the architecture side, we adopted the Conformer encoder and the Multi-Decoder architecture, which equips dedicated decoders for speech recognition and translation tasks in a unified encoder-decoder model and enables search in both source and target language spaces during inference. We also significantly improved audio segmentation by using the pyannote.audio toolkit and merging multiple short segments for long context modeling. Experimental evaluations showed that each of them contributed to large improvements in translation performance. Our best E2E system combined all the above techniques with model ensembling and achieved 31.4 BLEU on the 2-ref of tst2021 and 21.2 BLEU and 19.3 BLEU on the two single references of tst2021.

2020

pdf
ESPnet-ST: All-in-One Speech Translation Toolkit
Hirofumi Inaguma | Shun Kiyono | Kevin Duh | Shigeki Karita | Nelson Yalta | Tomoki Hayashi | Shinji Watanabe
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present ESPnet-ST, which is designed for the quick development of speech-to-speech translation systems in a single framework. ESPnet-ST is a new project inside end-to-end speech processing toolkit, ESPnet, which integrates or newly implements automatic speech recognition, machine translation, and text-to-speech functions for speech translation. We provide all-in-one recipes including data pre-processing, feature extraction, training, and decoding pipelines for a wide range of benchmark datasets. Our reproducible results can match or even outperform the current state-of-the-art performances; these pre-trained models are downloadable. The toolkit is publicly available at https://github.com/espnet/espnet.

2019

pdf
ESPnet How2 Speech Translation System for IWSLT 2019: Pre-training, Knowledge Distillation, and Going Deeper
Hirofumi Inaguma | Shun Kiyono | Nelson Enrique Yalta Soplin | Jun Suzuki | Kevin Duh | Shinji Watanabe
Proceedings of the 16th International Conference on Spoken Language Translation

This paper describes the ESPnet submissions to the How2 Speech Translation task at IWSLT2019. In this year, we mainly build our systems based on Transformer architectures in all tasks and focus on the end-to-end speech translation (E2E-ST). We first compare RNN-based models and Transformer, and then confirm Transformer models significantly and consistently outperform RNN models in all tasks and corpora. Next, we investigate pre-training of E2E-ST models with the ASR and MT tasks. On top of the pre-training, we further explore knowledge distillation from the NMT model and the deeper speech encoder, and confirm drastic improvements over the baseline model. All of our codes are publicly available in ESPnet.

2018

pdf
The JHU/KyotoU Speech Translation System for IWSLT 2018
Hirofumi Inaguma | Xuan Zhang | Zhiqi Wang | Adithya Renduchintala | Shinji Watanabe | Kevin Duh
Proceedings of the 15th International Conference on Spoken Language Translation

This paper describes the Johns Hopkins University (JHU) and Kyoto University submissions to the Speech Translation evaluation campaign at IWSLT2018. Our end-to-end speech translation systems are based on ESPnet and implements an attention-based encoder-decoder model. As comparison, we also experiment with a pipeline system that uses independent neural network systems for both the speech transcription and text translation components. We find that a transfer learning approach that bootstraps the end-to-end speech translation system with speech transcription system’s parameters is important for training on small datasets.
Search
Co-authors