Abdelrahim Elmadany

Also published as: AbdelRahim Elmadany


2023

pdf
Octopus: A Multitask Model and Toolkit for Arabic Natural Language Generation
AbdelRahim Elmadany | El Moatez Billah Nagoudi | Muhammad Abdul-Mageed
Proceedings of ArabicNLP 2023

Understanding Arabic text and generating human-like responses is a challenging task. While many researchers have proposed models and solutions for individual problems, there is an acute shortage of a comprehensive Arabic natural language generation toolkit that is capable of handling a wide range of tasks. In this work, we present a robust Arabic text-to-text Transformer model, namely AraT5v2, methodically trained on extensive and diverse data, utilizing an extended sequence length of 2,048 tokens. We explore various pretraining strategies including unsupervised, supervised, and joint pertaining, under both single and multitask settings. Our models outperform competitive baselines with large margins. We take our work one step further by developing and publicly releasing OCTOPUS, a Python-based package and command-line toolkit tailored for eight Arabic generation tasks all exploiting a single model. We provide a link to the models and the toolkit through our public repository.

pdf
VoxArabica: A Robust Dialect-Aware Arabic Speech Recognition System
Abdul Waheed | Bashar Talafha | Peter Sullivan | AbdelRahim Elmadany | Muhammad Abdul-Mageed
Proceedings of ArabicNLP 2023

Arabic is a complex language with many varieties and dialects spoken by ~ 450 millions all around the world. Due to the linguistic diversity and vari-ations, it is challenging to build a robust and gen-eralized ASR system for Arabic. In this work, we address this gap by developing and demoing a system, dubbed VoxArabica, for dialect identi-fication (DID) as well as automatic speech recog-nition (ASR) of Arabic. We train a wide range of models such as HuBERT (DID), Whisper, and XLS-R (ASR) in a supervised setting for Arabic DID and ASR tasks. Our DID models are trained to identify 17 different dialects in addition to MSA. We finetune our ASR models on MSA, Egyptian, Moroccan, and mixed data. Additionally, for the re-maining dialects in ASR, we provide the option to choose various models such as Whisper and MMS in a zero-shot setting. We integrate these models into a single web interface with diverse features such as audio recording, file upload, model selec-tion, and the option to raise flags for incorrect out-puts. Overall, we believe VoxArabica will be use-ful for a wide range of audiences concerned with Arabic research. Our system is currently running at https://cdce-206-12-100-168.ngrok.io/.

pdf
NADI 2023: The Fourth Nuanced Arabic Dialect Identification Shared Task
Muhammad Abdul-Mageed | AbdelRahim Elmadany | Chiyu Zhang | El Moatez Billah Nagoudi | Houda Bouamor | Nizar Habash
Proceedings of ArabicNLP 2023

We describe the findings of the fourth Nuanced Arabic Dialect Identification Shared Task (NADI 2023). The objective of NADI is to help advance state-of-the-art Arabic NLP by creating opportunities for teams of researchers to collaboratively compete under standardized conditions. It does so with a focus on Arabic dialects, offering novel datasets and defining subtasks that allow for meaningful comparisons between different approaches. NADI 2023 targeted both dialect identification (Subtask1) and dialect-to-MSA machine translation (Subtask 2 and Subtask 3). A total of 58 unique teams registered for the shared task, of whom 18 teams have participated (with 76 valid submissions during test phase). Among these, 16 teams participated in Subtask 1, 5 participated in Subtask 2, and 3 participated in Subtask 3. The winning teams achieved 87.27 F1 on Subtask 1, 14.76 Bleu in Subtask 2, and 21.10 Bleu in Subtask 3, respectively. Results show that all three subtasks remain challenging, thereby motivating future work in this area. We describe the methods employed by the participating teams and briefly offer an outlook for NADI.

pdf
WojoodNER 2023: The First Arabic Named Entity Recognition Shared Task
Mustafa Jarrar | Muhammad Abdul-Mageed | Mohammed Khalilia | Bashar Talafha | AbdelRahim Elmadany | Nagham Hamad | Alaa’ Omar
Proceedings of ArabicNLP 2023

We present WojoodNER-2023, the first Arabic Named Entity Recognition (NER) Shared Task. The primary focus of WojoodNER 2023 is on Arabic NER, offering a novel NER datasets (i.e., Wojood) and the definition of subtasks designed to facilitate meaningful comparisons between different NER approaches. WojoodNER-2023 encompassed two Subtasks: FlatNER and NestedNER. A total of 45 unique teams registered for this shared task, with 11 of them actively participating in the test phase. Specifically, 11 teams participated in FlatNER, while 8 teams tackled NestedNER. The winning team achieved F1 score of 91.96 and 93.73 in FlatNER and NestedNER respectively.

pdf
SERENGETI: Massively Multilingual Language Models for Africa
Ife Adebara | AbdelRahim Elmadany | Muhammad Abdul-Mageed | Alcides Alcoba Inciarte
Findings of the Association for Computational Linguistics: ACL 2023

Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a set of massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research. Anonymous link

pdf
ORCA: A Challenging Benchmark for Arabic Language Understanding
AbdelRahim Elmadany | ElMoatez Billah Nagoudi | Muhammad Abdul-Mageed
Findings of the Association for Computational Linguistics: ACL 2023

Due to the crucial role pretrained language models play in modern NLP, several benchmarks have been proposed to evaluate their performance. In spite of these efforts, no public benchmark of diverse nature currently exists for evaluating Arabic NLU. This makes it challenging to measure progress for both Arabic and multilingual language models. This challenge is compounded by the fact that any benchmark targeting Arabic needs to take into account the fact that Arabic is not a single language but rather a collection of languages and language varieties. In this work, we introduce a publicly available benchmark for Arabic language understanding evaluation dubbed ORCA. It is carefully constructed to cover diverse Arabic varieties and a wide range of challenging Arabic understanding tasks exploiting 60 different datasets (across seven NLU task clusters). To measure current progress in Arabic NLU, we use ORCA to offer a comprehensive comparison between 18 multilingual and Arabic language models. We also provide a public leaderboard with a unified single-number evaluation metric (ORCA score) to facilitate future research.

pdf
Dolphin: A Challenging and Diverse Benchmark for Arabic NLG
El Moatez Billah Nagoudi | AbdelRahim Elmadany | Ahmed El-Shangiti | Muhammad Abdul-Mageed
Findings of the Association for Computational Linguistics: EMNLP 2023

We present Dolphin, a novel benchmark that addresses the need for a natural language generation (NLG) evaluation framework dedicated to the wide collection of Arabic languages and varieties. The proposed benchmark encompasses a broad range of 13 different NLG tasks, including dialogue generation, question answering, machine translation, summarization, among others. Dolphin comprises a substantial corpus of 40 diverse and representative public datasets across 50 test splits, carefully curated to reflect real-world scenarios and the linguistic richness of Arabic. It sets a new standard for evaluating the performance and generalization capabilities of Arabic and multilingual models, promising to enable researchers to push the boundaries of current methodologies. We provide an extensive analysis of Dolphin, highlighting its diversity and identifying gaps in current Arabic NLG research. We also offer a public leaderboard that is both interactive and modular and evaluate several Arabic and multilingual models on our benchmark, allowing us to set strong baselines against which researchers can compare.

pdf
JASMINE: Arabic GPT Models for Few-Shot Learning
El Moatez Billah Nagoudi | Muhammad Abdul-Mageed | AbdelRahim Elmadany | Alcides Inciarte | Md Tawkat Islam Khondaker
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Scholarship on generative pretraining (GPT) remains acutely Anglocentric, leaving serious gaps in our understanding of the whole class of autoregressive models. For example, we have little knowledge about the potential of these models and their societal impacts in diverse linguistic and cultural settings. We alleviate this issue for Arabic, a wide collection of languages and dialectal varieties with more than 400 million population, by introducing JASMINE. JASMINE is a suite of powerful Arabic autoregressive Transformer language models ranging in size between 300 million-6.7 billion parameters pretrained on a large and diverse dataset ( 235 GB of text). We also carefully design and release a comprehensive benchmark for both automated and human evaluation of Arabic autoregressive models, with coverage of potential social biases, harms, and toxicity. Using our novel benchmark, we evaluate JASMINE extensively showing powerful performance intrinsically as well as in few-shot learning on a wide range of NLP tasks. We aim to responsibly release our models and evaluation benchmark with interested researchers, along with code for experimenting with them.

pdf
UBC-DLNLP at SemEval-2023 Task 12: Impact of Transfer Learning on African Sentiment Analysis
Gagan Bhatia | Ife Adebara | Abdelrahim Elmadany | Muhammad Abdul-mageed
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

We describe our contribution to the SemEVAl 2023 AfriSenti-SemEval shared task, where we tackle the task of sentiment analysis in 14 different African languages. We develop both monolingual and multilingual models under a full supervised setting (subtasks A and B). We also develop models for the zero-shot setting (subtask C). Our approach involves experimenting with transfer learning using six language models, including further pretraining of some of these models as well as a final finetuning stage. Our best performing models achieve an F1-score of 70.36 on development data and an F1-score of 66.13 on test data. Unsurprisingly, our results demonstrate the effectiveness of transfer learning and finetuning techniques for sentiment analysis across multiple languages. Our approach can be applied to other sentiment analysis tasks in different languages and domains.

2022

pdf
A Benchmark Study of Contrastive Learning for Arabic Social Meaning
Md Tawkat Islam Khondaker | El Moatez Billah Nagoudi | AbdelRahim Elmadany | Muhammad Abdul-Mageed | Laks Lakshmanan, V.S.
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

Contrastive learning (CL) has brought significant progress to various NLP tasks. Despite such a progress, CL has not been applied to Arabic NLP. Nor is it clear how much benefits it could bring to particular classes of tasks such as social meaning (e.g., sentiment analysis, dialect identification, hate speech detection). In this work, we present a comprehensive benchmark study of state-of-the-art supervised CL methods on a wide array of Arabic social meaning tasks. Through an extensive empirical analysis, we show that CL methods outperform vanilla finetuning on most of the tasks. We also show that CL can be data efficient and quantify this efficiency, demonstrating the promise of these methods in low-resource settings vis-a-vis the particular downstream tasks (especially label granularity).

pdf
NADI 2022: The Third Nuanced Arabic Dialect Identification Shared Task
Muhammad Abdul-Mageed | Chiyu Zhang | AbdelRahim Elmadany | Houda Bouamor | Nizar Habash
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

We describe the findings of the third Nuanced Arabic Dialect Identification Shared Task (NADI 2022). NADI aims at advancing state-of-the-art Arabic NLP, including Arabic dialects. It does so by affording diverse datasets and modeling opportunities in a standardized context where meaningful comparisons between models and approaches are possible. NADI 2022 targeted both dialect identification (Subtask 1) and dialectal sentiment analysis (Subtask 2) at the country level. A total of 41 unique teams registered for the shared task, of whom 21 teams have participated (with 105 valid submissions). Among these, 19 teams participated in Subtask 1, and 10 participated in Subtask 2. The winning team achieved F1=27.06 on Subtask 1 and F1=75.16 on Subtask 2, reflecting that both subtasks remain challenging and motivating future work in this area. We describe the methods employed by the participating teams and offer an outlook for NADI.

pdf
AraT5: Text-to-Text Transformers for Arabic Language Generation
El Moatez Billah Nagoudi | AbdelRahim Elmadany | Muhammad Abdul-Mageed
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transfer learning with a unified Transformer framework (T5) that converts all language problems into a text-to-text format was recently proposed as a simple and effective transfer learning approach. Although a multilingual version of the T5 model (mT5) was also introduced, it is not clear how well it can fare on non-English tasks involving diverse data. To investigate this question, we apply mT5 on a language with a wide variety of dialects–Arabic. For evaluation, we introduce a novel benchmark for ARabic language GENeration (ARGEN), covering seven important tasks. For model comparison, we pre-train three powerful Arabic T5-style models and evaluate them on ARGEN. Although pre-trained with ~49 less data, our new models perform significantly better than mT5 on all ARGEN tasks (in 52 out of 59 test sets) and set several new SOTAs. Our models also establish new SOTA on the recently-proposed, large Arabic language understanding evaluation benchmark ARLUE (Abdul-Mageed et al., 2021). Our new models are publicly available. We also link to ARGEN datasets through our repository: https://github.com/UBC-NLP/araT5.

pdf bib
TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation
El Moatez Billah Nagoudi | AbdelRahim Elmadany | Muhammad Abdul-Mageed
Proceedinsg of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools with Shared Tasks on Qur'an QA and Fine-Grained Hate Speech Detection

We present TURJUMAN, a neural toolkit for translating from 20 languages into Modern Standard Arabic (MSA). TURJUMAN exploits the recently-introduced text-to-text Transformer AraT5 model, endowing it with a powerful ability to decode into Arabic. The toolkit offers the possibility of employing a number of diverse decoding methods, making it suited for acquiring paraphrases for the MSA translations as an added value. To train TURJUMAN, we sample from publicly available parallel data employing a simple semantic similarity method to ensure data quality. This allows us to prepare and release AraOPUS-20, a new machine translation benchmark. We publicly release our translation toolkit (TURJUMAN) as well as our benchmark dataset (AraOPUS-20).

pdf
AfroLID: A Neural Language Identification Tool for African Languages
Ife Adebara | AbdelRahim Elmadany | Muhammad Abdul-Mageed | Alcides Inciarte
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Language identification (LID) is a crucial precursor for NLP, especially for mining web data. Problematically, most of the world’s 7000+ languages today are not covered by LID technologies. We address this pressing issue for Africa by introducing AfroLID, a neural LID toolkit for 517 African languages and varieties. AfroLID exploits a multi-domain web dataset manually curated from across 14 language families utilizing five orthographic systems. When evaluated on our blind Test set, AfroLID achieves 95.89 F_1-score. We also compare AfroLID to five existing LID tools that each cover a small number of African languages, finding it to outperform them on most languages. We further show the utility of AfroLID in the wild by testing it on the acutely under-served Twitter domain. Finally, we offer a number of controlled case studies and perform a linguistically-motivated error analysis that allow us to both showcase AfroLID’s powerful capabilities and limitations

2021

pdf
Mega-COV: A Billion-Scale Dataset of 100+ Languages for COVID-19
Muhammad Abdul-Mageed | AbdelRahim Elmadany | El Moatez Billah Nagoudi | Dinesh Pabbi | Kunal Verma | Rannie Lin
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We describe Mega-COV, a billion-scale dataset from Twitter for studying COVID-19. The dataset is diverse (covers 268 countries), longitudinal (goes as back as 2007), multilingual (comes in 100+ languages), and has a significant number of location-tagged tweets (~169M tweets). We release tweet IDs from the dataset. We also develop two powerful models, one for identifying whether or not a tweet is related to the pandemic (best F1=97%) and another for detecting misinformation about COVID-19 (best F1=92%). A human annotation study reveals the utility of our models on a subset of Mega-COV. Our data and models can be useful for studying a wide host of phenomena related to the pandemic. Mega-COV and our models are publicly available.

pdf bib
DiaLex: A Benchmark for Evaluating Multidialectal Arabic Word Embeddings
Muhammad Abdul-Mageed | Shady Elbassuoni | Jad Doughman | AbdelRahim Elmadany | El Moatez Billah Nagoudi | Yorgo Zoughby | Ahmad Shaher | Iskander Gaba | Ahmed Helal | Mohammed El-Razzaz
Proceedings of the Sixth Arabic Natural Language Processing Workshop

Word embeddings are a core component of modern natural language processing systems, making the ability to thoroughly evaluate them a vital task. We describe DiaLex, a benchmark for intrinsic evaluation of dialectal Arabic word embeddings. DiaLex covers five important Arabic dialects: Algerian, Egyptian, Lebanese, Syrian, and Tunisian. Across these dialects, DiaLex provides a testbank for six syntactic and semantic relations, namely male to female, singular to dual, singular to plural, antonym, comparative, and genitive to past tense. DiaLex thus consists of a collection of word pairs representing each of the six relations in each of the five dialects. To demonstrate the utility of DiaLex, we use it to evaluate a set of existing and new Arabic word embeddings that we developed. Beyond evaluation of word embeddings, DiaLex supports efforts to integrate dialects into the Arabic language curriculum. It can be easily translated into Modern Standard Arabic and English, which can be useful for evaluating word translation. Our benchmark, evaluation code, and new word embedding models will be publicly available.

pdf
NADI 2021: The Second Nuanced Arabic Dialect Identification Shared Task
Muhammad Abdul-Mageed | Chiyu Zhang | AbdelRahim Elmadany | Houda Bouamor | Nizar Habash
Proceedings of the Sixth Arabic Natural Language Processing Workshop

We present the findings and results of theSecond Nuanced Arabic Dialect IdentificationShared Task (NADI 2021). This Shared Taskincludes four subtasks: country-level ModernStandard Arabic (MSA) identification (Subtask1.1), country-level dialect identification (Subtask1.2), province-level MSA identification (Subtask2.1), and province-level sub-dialect identifica-tion (Subtask 2.2). The shared task dataset cov-ers a total of 100 provinces from 21 Arab coun-tries, collected from the Twitter domain. A totalof 53 teams from 23 countries registered to par-ticipate in the tasks, thus reflecting the interestof the community in this area. We received 16submissions for Subtask 1.1 from five teams, 27submissions for Subtask 1.2 from eight teams,12 submissions for Subtask 2.1 from four teams,and 13 Submissions for subtask 2.2 from fourteams.

pdf
ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic
Muhammad Abdul-Mageed | AbdelRahim Elmadany | El Moatez Billah Nagoudi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large ( 3.4x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository.

pdf
Investigating Code-Mixed Modern Standard Arabic-Egyptian to English Machine Translation
El Moatez Billah Nagoudi | AbdelRahim Elmadany | Muhammad Abdul-Mageed
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

Recent progress in neural machine translation (NMT) has made it possible to translate successfully between monolingual language pairs where large parallel data exist, with pre-trained models improving performance even further. Although there exists work on translating in code-mixed settings (where one of the pairs includes text from two or more languages), it is still unclear what recent success in NMT and language modeling exactly means for translating code-mixed text. We investigate one such context, namely MT from code-mixed Modern Standard Arabic and Egyptian Arabic (MSAEA) into English. We develop models under different conditions, employing both (i) standard end-to-end sequence-to-sequence (S2S) Transformers trained from scratch and (ii) pre-trained S2S language models (LMs). We are able to acquire reasonable performance using only MSA-EN parallel data with S2S models trained from scratch. We also find LMs fine-tuned on data from various Arabic dialects to help the MSAEA-EN task. Our work is in the context of the Shared Task on Machine Translation in Code-Switching. Our best model achieves 25.72 BLEU, placing us first on the official shared task evaluation for MSAEA-EN.

2020

pdf
Toward Micro-Dialect Identification in Diaglossic and Code-Switched Environments
Muhammad Abdul-Mageed | Chiyu Zhang | AbdelRahim Elmadany | Lyle Ungar
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Although prediction of dialects is an important language processing task, with a wide range of applications, existing work is largely limited to coarse-grained varieties. Inspired by geolocation research, we propose the novel task of Micro-Dialect Identification (MDI) and introduce MARBERT, a new language model with striking abilities to predict a fine-grained variety (as small as that of a city) given a single, short message. For modeling, we offer a range of novel spatially and linguistically-motivated multi-task learning models. To showcase the utility of our models, we introduce a new, large-scale dataset of Arabic micro-varieties (low-resource) suited to our tasks. MARBERT predicts micro-dialects with 9.9% F1, 76 better than a majority class baseline. Our new language model also establishes new state-of-the-art on several external tasks.

pdf
Leveraging Affective Bidirectional Transformers for Offensive Language Detection
AbdelRahim Elmadany | Chiyu Zhang | Muhammad Abdul-Mageed | Azadeh Hashemi
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection

Social media are pervasive in our life, making it necessary to ensure safe online experiences by detecting and removing offensive and hate speech. In this work, we report our submission to the Offensive Language and hate-speech Detection shared task organized with the 4th Workshop on Open-Source Arabic Corpora and Processing Tools Arabic (OSACT4). We focus on developing purely deep learning systems, without a need for feature engineering. For that purpose, we develop an effective method for automatic data augmentation and show the utility of training both offensive and hate speech models off (i.e., by fine-tuning) previously trained affective models (i.e., sentiment and emotion). Our best models are significantly better than a vanilla BERT model, with 89.60% acc (82.31% macro F1) for hate speech and 95.20% acc (70.51% macro F1) on official TEST data.

pdf
Machine Generation and Detection of Arabic Manipulated and Fake News
El Moatez Billah Nagoudi | AbdelRahim Elmadany | Muhammad Abdul-Mageed | Tariq Alhindi
Proceedings of the Fifth Arabic Natural Language Processing Workshop

Fake news and deceptive machine-generated text are serious problems threatening modern societies, including in the Arab world. This motivates work on detecting false and manipulated stories online. However, a bottleneck for this research is lack of sufficient data to train detection models. We present a novel method for automatically generating Arabic manipulated (and potentially fake) news stories. Our method is simple and only depends on availability of true stories, which are abundant online, and a part of speech tagger (POS). To facilitate future work, we dispense with both of these requirements altogether by providing AraNews, a novel and large POS-tagged news dataset that can be used off-the-shelf. Using stories generated based on AraNews, we carry out a human annotation study that casts light on the effects of machine manipulation on text veracity. The study also measures human ability to detect Arabic machine manipulated text generated by our method. Finally, we develop the first models for detecting manipulated Arabic news and achieve state-of-the-art results on Arabic fake news detection (macro F1=70.06). Our models and data are publicly available.

2019

pdf
Arabic Tweet-Act: Speech Act Recognition for Arabic Asynchronous Conversations
Bushra Algotiml | AbdelRahim Elmadany | Walid Magdy
Proceedings of the Fourth Arabic Natural Language Processing Workshop

Speech acts are the actions that a speaker intends when performing an utterance within conversations. In this paper, we proposed speech act classification for asynchronous conversations on Twitter using multiple machine learning methods including SVM and deep neural networks. We applied the proposed methods on the ArSAS tweets dataset. The obtained results show that superiority of deep learning methods compared to SVMs, where Bi-LSTM managed to achieve an accuracy of 87.5% and a macro-averaged F1 score 61.5%. We believe that our results are the first to be reported on the task of speech-act recognition for asynchronous conversations on Arabic Twitter.

2018

pdf
Improving Dialogue Act Classification for Spontaneous Arabic Speech and Instant Messages at Utterance Level
AbdelRahim Elmadany | Sherif Abdou | Mervat Gheith
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)