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Abstract

Despite great scalability on large data and their

ability to understand correlations between top-

ics, spectral topic models have not been widely

used due to the absence of reliability in real

data and lack of practical implementations.

This paper aims to solidify the foundations of

spectral topic inference and provide a practical

implementation for anchor-based topic mod-

eling. Beginning with vocabulary curation,

we scrutinize every single inference step with

other viable options. We also evaluate our

matrix-based approach against popular alterna-

tives including a tensor-based spectral method

as well as probabilistic algorithms. Our quanti-

tative and qualitative experiments demonstrate

the power of Rectified Anchor Word algorithm

in various real datasets, providing a complete

guide to practical correlated topic modeling.

1 Introduction

Increasing access to massive data streams is useful

only if it is equipped with proper tools to discover

meaningful patterns. Topic models are capable

of learning low-dimensional latent structures from

groups of discrete observations, while being flexi-

bly applicable to a wide range of modalities without

human annotations. Users can assess consumer pro-

files by collecting purchase habits (Reisenbichler

and Reutterer, 2019), shared sentiments or topics

among comments in social networks (Nguyen et al.,

2015), hidden genres/preferences on movie or mu-

sic consumption (Lee et al., 2015), and latent com-

munities from network snapshots (Gerlach et al.,

2018). For clarity this paper sticks to the standard

terms — words, documents, and topics — but the

concepts generalize to various applications beyond

these examples.

Traditional algorithms for topic modeling lack

scalability. To learn quality topics, probabilistic

algorithms such as Variational Inference (VI) or

Markov Chain Monte Carlo (MCMC) require mul-

tiple passes through the input dataset until con-

vergence, and thus struggle to process millions

of documents. Online or stochastic algorithms

(Hoffman et al., 2010, 2013) achieve some scal-

ability but at the cost of sacrificing the quality of

topics. As a result, the basic Latent Dirichlet Al-

location (Blei et al., 2003) is still prevalent for

practitioners despite various recent advances (Sri-

vastava and Sutton, 2017; Xun et al., 2017; Xu

et al., 2018). However, topics are likely co-occur-

ring terms in essence. Spectral methods explicitly

construct word co-occurrence moments as statisti-

cally unbiased estimators, providing alternatives to

the probabilistic algorithms via moment-matching.

Once the co-occurrence statistics is built with a sin-

gle trivially parallelizable pass through the corpus,

topic inference no longer needs to revisit individual

training documents.

The Anchor Word algorithm (Arora et al., 2012,

2013; Lee et al., 2015) and tensor decomposition

algorithms (Anandkumar et al., 2012a,b, 2013) fac-

torize the second and third-order co-occurrence be-

tween pairs or triples of words, respectively, match-

ing the corresponding posterior moments. In con-

trast to VI or MCMC, these spectral algorithms do

not suffer from spurious local minima or slow mix-

ing problems, learning consistently with provable

guarantees under weak assumptions. However, in-

ference is known to be sensitive to statistical noise,

and its quality quickly degrades if the input data

does not agree well with the underlying models

similar to (Kulesza et al., 2014; Marinho, 2015).

As a result, these algorithms have not been popular

for real applications despite their great scalability.

This paper aims to provide a complete guide to

practical correlated topic modeling. We first ex-

plain theoretical insights for spectral topic models

based on the framework of Joint Stochastic Matrix

Factorization (JSMF) (Lee et al., 2015). Then we



introduce scalable implementations of the Recti-

fied Anchor Word (RAW) algorithm and various

evaluation metrics, investigating the impact of each

inference step from vocabulary curation to topic in-

ference. We also analyze quality of topics learned

from annotated non-textual datasets as well as un-

supervised textual corpora based on their top con-

tributing words to the individual topics. To the

best of our knowledge, this paper is the first com-

parative study that measures both quantitative and

qualitative performance across different spectral

topic models and their probabilistic counterparts.

The experimental results show that the rectifi-

cation step in RAW is crucial for overcoming the

model-data mismatch (Kulesza et al., 2014) but

only needs a few iterations. The learned topics

substantially outperform tensor-based methods and

online VI, being comparable to expensive MCMC.

Running RAW on a non-textual music dataset re-

veals quality genre topics, whereas the probabilistic

correlated model (Blei and Lafferty, 2007) often

learns overfitted topics that only maximize the co-

occurrence of popular songs. To better support the

community, we also provide scalable implementa-

tions in MATLAB1 and Python2.

2 Spectral Topic Inference

Topic modeling assumes a document representa-

tion that is sufficiently simple to allow tractable

inference but also realistic to be useful. Each topic

k is defined as a distribution pX|Z(·|k) over words

where pX|Z(i|k) is a probability to choose a word

i given the topic k. Assuming there are N words

in the vocabulary and K prepared topics, all top-

ics can be compactly represented by the column-

stochastic matrix B ∈ R
N×K , where each column

vector bk ∈∆N−1 stands for the topic k. Suppose

there are M documents in a corpus which are all

written by admixing some of these K topics with re-

spect to a certain prior f. Then topic models explain

that each document m with length nm is written

by: 1) Select a topic composition wm∈∆K−1 with

respect to f; 2) Write nm words by repeatedly se-

lecting a topic z from the composition wm and a

word x from the topic bz .

Different models adopt different priors f to

better explain proper admixing of topics for the

given data. For example, LDA assumes f =
Dir(α) for α ∈ R

K
+ (Blei et al., 2003). In

1https://github.com/moontae/jsmf-raw
2https://github.com/sc782/pyJSMF-RAW

correlated topic models, f = Logit-Normal(µ,Σ)
(CTM) or Probit-Normal(µ,Σ) for µ∈RK−1,Σ∈
R
(K−1)×(K−1) (Blei and Lafferty, 2007; Yu and

Fokoue, 2014). These models differ only in ex-

plaining the stochastic generation of topic compo-

sition: wm ∼ f. Note that entries in every column

vector bk of B are parameters to recover in our

setting, whereas probabilistic topic models often

put another parametric prior g(β) from which each

bk is sampled. The form of g is not as crucial in

learning quality topics as the form of f (Asuncion

et al., 2012), and can be similarly incorporated in

spectral inference by putting additional regularizers

when recovering each bk (Nguyen et al., 2014).

Let H ∈ R
N×M be the word-document matrix

where the m-th column vector hm indicates the

observed term-frequencies in document m. Say H̃

is the column-normalized H where each column

is hm/nm. Topic compositions of individual docu-

ments can also be described compactly by another

column-stochastic matrix W ∈ R
K×M whose m-

th column vector is wm ∈∆K−1. Then the main

learning task of topic models is to find the word-

topic matrix B and topic-document matrix W that

approximates H̃ ≈ BW with the column-stochas-

tic constraints B ∈CSN×K ,W ∈CSK×M . While

this Non-negative Matrix factorization (NMF) is

identifiable under additional sparsity constraints

(Huang et al., 2014), directly applying NMF meth-

ods (Lee and Seung, 2001) produces incoherent

topics despite small approximation errors (Stevens

et al., 2012). H is too noisy and sparse to learn

quality topics B and plausible compositions W .

2.1 Joint Stochastic Matrix Factorization

Instead of directly decomposing H̃ , JSMF

decomposes smaller but aggregated statistics for

revealing the latent topics and their correlations.

Let C ∈ R
N×N be the empirical word co-occur-

rence matrix where Cij is the joint probability

pX1X2
(i, j) to observe a pair of words i and j in

the corpus. Define the topic co-occurrence matrix

A ∈ R
K×K where Akl is the joint probability

pZ1Z2
(k, l) between two latent topics k and l. Then

JSMF transforms the topic modeling objective

into a second-order NMF: C ≈BABT , which

is algebraically equivalent to p(X1, X2|A;B) =∑
z1

∑
z2
p(X1|Z1;B)p(Z1, Z2|A)p(X2|Z2;B).

The question is how this formulation provides

better hints to learn the latent topics B given C.

Define x1 ∈RN as a random basis vector where



only a single component corresponding to one ran-

domly drawn word from the document m is 1. Let

pm be the vector where its i-th component denotes

the probability for word i to occur in the document

m. Then pm =Bwm ∈ R
N , satisfying

x1 ∼ Categorical(pm)⇒ E[x1|wm] =Bwm.

Denote nm consecutive random draws of words by

{x1,x2, ...,xnm}, and let hm =
∑nm

t=1 xt. Then

hm ∼Mult(nm,pm)⇒ E[hm|wm] = nmBwm.

As explained earlier, assuming that each observed

hm follows this model does not produce statisti-

cally meaningful information toward recovering B.

Since different words in each document m share

the same topic composition wm, however, the cross

moments can provide useful information about

co-occurring words even within a single docu-

ment: E[hmhT
m|wm] = E[hm|wm]E[hm|wm]T +

Cov(hm|wm) = nm(nm − 1)BwmwT
mBT +

nm·diag(Bwm). Hence,

E[hmhT
m|wm]−nm·diag(Bwm)

nm(nm − 1)
=BwmwT

mBT .

Define the co-occurrence Cm for a single docu-

ment m in terms of the observed hm:

Cm =
hmhT

m − diag(hm)

nm(nm − 1)
. (1)

If our observation hm follows the model, then

E[Cm|wm] =BwmwmBT by linearity of expec-

tation. Then by the Law of Iterated Expectation,

E[Cm]=Ewm [E[Cm|wm]]=BEwm [wmwT
m]BT .

We can now construct the empirical word co-oc-

currence by averaging Cm across M documents:

C := 1
M

∑M
m=1Cm. Denoting the posterior topic-

topic matrix by A∗ := 1
MWW T ∈ R

K×K , it is

proven that A is entry-wisely close to both A∗ and

the population moments Ew∼f[wwT ] when M is

sufficiently large (Arora et al., 2012). Thus

C ≈ E[C] =B
( 1

M

M∑

m=1

Ewm [wmwT
m]

)
BT

= BEw∼f[wwT ]BT ≈ BA∗BT ≈ BABT .

Once we construct the empirical moment C

from the input data as an unbiased estimator of

the underlying generative process, JSMF enables

users to recover the correct B and A up to some

precision by matching C to its posterior moments

BA∗BT . The separability assumption: every

topic has one specific anchor word that occurs only

in the context of that topic, allows the model to sat-

isfy non-negative-rank(B)=rank(B)=K, guaran-

teeing the existence of an identifiable factorization.

2.2 Tensor Decomposition

The separability assumption is necessary for JSMF

because having only up to the second moments

is not sufficient by itself to identify latent topics

(Anandkumar et al., 2013). While one can release

this assumption by adopting the sufficiently scat-

tered condition, it maps the factorization into an-

other NP-hard optimization problem (Huang et al.,

2016). Alternatively, one can leverage third-order

moments to provide sufficient statistics for identifi-

able topic inference (Anandkumar et al., 2012a,b).

In contrast to JSMF, tensor-based algorithms first

specify f as a tractable parametric prior like the

Dirichlet distribution. For example, if f=Dir(α)

with α0 =
∑

k αk, then E
(1st)
w∼f(α)[w] = α/α0, and

E
(2nd)
w∼f(α)[wkwl] =

{
αk(αk+1)
α0(α0+1) (k = l)

αkαl

α0(α0+1) (k 6= l)
. (2)

It makes the marginal expectations E[x1] and

E[x1x
T
2 ] further parametrized by α.

E[x1] = Ewm [x1|wm] = BE[wm] = Bα/α0

E[x1x
T
2 ] = Ewm [E[x1|wm]E[x2|wm]T ]

= BEwm [wmwT
m]BT = BE

(2nd)
w∼f(α)B

T

Similarly we can represent up to the third moments:

E[x1 ⊗ x2] = E
(2nd)
w∼f(α)[w ⊗w](B,B),

E[x1 ⊗ x2 ⊗ x3] = E
(3rd)
w∼f(α)[w

⊗3](B,B,B).

By assuming w ∼ Dir(α), we can fortunately at-

tain closed form expressions of all three population

moments only in terms of B and α, allowing the

non-central second and third moments to be fur-

ther represented by lower-order moments and α0

(Anandkumar et al., 2012a). Therefore, once users

construct the empirical moments given the training

data and choose α0, tensor decomposition allows

us to recover B and α up to some precision by

matching the empirical moments to these popula-



Algorithm 1a Alternating Projection

def RECTIFY-C AP(C,K)

1: CNN ← C

2: repeat

3: (U ,ΛK) = TRUNCATED-EIG(CNN ,K)
4: Λ

+
K ← diag(max{diag(ΛK), 0})

5: CPSD ← UΛ
+
KUT

6: CNOR ← CPSD +
1−∑

i,j CPSD(i,j)

N2 11
T

7: CNN ← max{CNOR, 0}
8: until the convergence of CNN
9: return C ← CNN /(

∑
i,j CNN (i, j))

diag(·) is the Matlab-style operation that maps the

input vector into the diagonal matrix or extracts the

diagonal vector from the input matrix.

tion moments.3 But there are several caveats.

First, finding such closed-form moment combi-

nations is not obvious. Normally all higher-order

moments are necessary for learning with the gen-

eral prior f (Arabshahi and Anandkumar, 2017).4

Second, E[w⊗3] should be a diagonal tensor in

order to apply the popular CP-decomposition for

learning topics B. It means that we need to assume

uncorrelated topics instead of the separability as-

sumption. Whereas most large topics models are

proven indeed separable (Ding et al., 2015), users

of CP-decomposition can only capture weak nega-

tive correlations via the learned α but depending on

the user choices of α0 and f=Dir. Tucker decom-

position is another option for learning correlated

topics, but it instead requires additional sparsity

constraints on B, demanding notably more param-

eters to be estimated (Anandkumar et al., 2013).

Overall, correlated topic modeling via tensor de-

composition is not as flexible as using JSMF even

if we factor out the trivial difference in time and

space complexities.

3 The Rectified Anchor Word Algorithm

Whereas probabilistic algorithms have an in-

trinsic capability to fit their models on the data

that does not necessarily follow their generative

processes, spectral algorithms are susceptible to

model-data mismatch (Kulesza et al., 2014). The

3JSMF does not ask users to specify α0, flexibly and trans-
parently modeling arbitrary pairwise correlations between top-
ics by the co-occurrence between pairs of the corresponding
anchor words.

4They recently discover that having up to third-order mo-
ments suffices to perform CP-decomposition when f is a class
of Normalized Infinitely Divisible (NID) prior.

Algorithm 1b Cyclic Douglas-Rachford Iteration

def RECTIFY-C DR(C,K)

1: C3 ← C

2: repeat

3: C1 ← I+RNORRPSD
2 C3

4: C2 ← I+RNNRNOR
2 C1

5: C3 ← I+RPSDRNN
2 C2

6: until the convergence of C3

7: return C ← C3/(
∑

i,j C3(i, j))

I is the identity mapping, RNORRPSD denotes

the composition of two reflection operators: the

matrix is first reflected onto the PSD space, then

onto the NOR space. RPSDC = 2CPSD − C,

and similarly for NOR and NN .

Rectified Anchor Word (RAW) algorithm (Lee

et al., 2015) is the first working formalism that can

learn quality topics and their correlations from real

data. The overall algorithm consists of five clearly

divided steps: 0) construct the word co-occurrence

matrix C; 1) rectify C; 2) find the set of anchor

words S; 3) recover the topics B; 4) recover the

topic correlations A. Each step has various algo-

rithmic decisions that have been previously unclear.

We carefully explore other viable options and pro-

vide details on efficient implementations.

Step 0: Create C. For spectral inference, we

first construct the empirical word co-occurrence

statistics as an unbiased estimator for the under-

lying generative process: C = (1/M)
∑M

m=1Cm

with Cm specified in Equation (1). Due to the

efficiency of anchor-based inference, the moment

construction often becomes the most expensive step

for large corpora, but it is trivially parallelizable as

the last averaging step is the only computation that

couples individual documents.

Instead of using the entire vocabulary, the stan-

dard procedure is to remove stop words and prune

off rare words based on either corpus frequencies or

tf-idf scores. Excluding words appearing on a ma-

jority of documents is also known to improve the

quality of topics (Schofield et al., 2017a,b). Mea-

suring the impact of vocabulary curation is not so

straightforward in probabilistic topic models due

to random draws in their algorithms. In contrast,

spectral topic models learn topics consistently with-

out any randomness. We later show how to pick

the plausible size of vocabulary in the experiment

section.



Algorithm 2 Sparse Implicit Column-pivoted QR

def FIND-S(C,K)

1: (P , Q, S, r)← (C
T
, 0N×K ,∅, 0K)

2: u← (‖p1‖22, ..., ‖pN‖22) ∈ R
1×N

3: for k = 1 to K do

4: n← argmax1≤i≤N ui
5: (S, qk, rk)← (S ∪ {n}, pn,

√
un)

6: qk ← (qk −
∑k−1

l=1 〈ql,pn〉ql)/rk
7: u← u− (qTk P ) ◦ (qTk P )
8: end for

9: return (S, r)

◦ : RN × R
N → R

N denotes entry-wise multipli-

cation of two vectors.

Algorithm 4 Diagonal Recovery

def RECOVER-A(C,B,S)

1: (CSS , D)← (C(S,S),B(S, ∗))
2: A←D−1CSSD

−1

3: return A

Set indexing extracts a principle submatrix whose

rows and columns correspond to the arguments.

Since B(S, ∗) is diagonal, we use the element-

wise reciprocal of D as D−1.

Step 1: Rectify C. Rectifying the co-occurrence

estimator is key to successful inference as low-

rank spectral learning is highly susceptible to the

mismatch between the model and the data (Lee

et al., 2015). Though C is shown to be more sta-

tistically robust than H̃ (Arora et al., 2012), its

empirical construction from real data hardly ex-

hibits the proper structures of the posterior mo-

ments BA∗BT : low-rank (LR), positive semidef-

inite (PSD), nonnegative (NN ), and normalized

(NOR).5 The rectification step transforms the

noisy C into a desirable estimator by alternatingly

projecting it to individual spaces (AP, Algorithm

1a) (Lee et al., 2015). We also discover that cyclic

Douglas-Rachford (DR, Algorithm 1b) iterations

can properly rectify C, but its computational cost

is almost twice as expensive as AP, and hence we

use AP as our default rectification scheme.

By running a truncated eigenvalue decompo-

sition, the first step of AP only finds K largest

eigenvalues ΛK and the corresponding eigenvec-

tors U at minimal cost. It then projects C to the

intersection of PSDN and LRK by reconstructing

5Due to the diagonal penalty in (1) for the unbiased con-
struction and the variance of the generative process, C is
almost always full-rank and indefinite in finite real data.

Algorithm 3 ADMM

def RECOVER-B(C, c,S, λ, γ)

1: (U , B̆, B)← ((CS∗)T , 0K×N , 0N×K)
2: B̆∗S ← IK (IK =K ×K identity matrix)
3: F ← (γUTU + IK)−1

4: for each i ∈ {1, ..., N} \ S (in parallel) do

5: v ← (Ci∗)T

6: f ← γUTv

7: y(0) ← Π∆K−1

(
(UTU)−1(f/γ)

)

8: q(0) ← y(0)

9: repeat

10: p(t) ← F (2y(t−1) − q(t−1) + f)
11: q(t) ← q(t−1) + λ(p(t) − y(t−1))
12: y(t) ← Π∆K−1(q(t))
13: until the convergence of y(t)

14: B̆∗i ← y(t)

15: end for

16: for (i, k) ∈ {1, ..., N} × {1, ...,K} do

17: Bik ← (B̆kici)/(
∑N

i′=1 B̆ki′ci′)
18: end for

19: return B

Π∆K−1(·) is the orthogonal projection to the K−1
simplex.

UΛ
+
KUT . The next step orthogonally projects

C to NORN by subtracting the mean average

entry-wisely from the desired total, 1.0. The nega-

tive entries are then zeroed out in the subsequent

projection to NNN . While the order of projec-

tions in each iteration does not matter, performing

aNORN -projection after the loop ends helps with

feasibility.6 Note that tensor-based methods have

a similar step called whitening, which runs a full

SVD to transform the third-order moments into an

orthogonal tensor for CP-decomposition.

Step 2: Find S. Say C now indicates the recti-

fied co-occurrence. Then the next step is to find

the anchor words. Denoting the set of K anchor

words by S = {s1, ..., sK}, the separability as-

sumption suggests: pZ1|X1
(k′|sk) = 1 if k′ = k

and pZ1|X1
(k′|sk) = 0 if k′ 6= k. Let C be the row-

normalized version of C. Then by the conditional

independence between a pair of words given one

of their topics (X1⊥X2|Z1 or Z2) and separability,

Cij = pX2|X1
(j|i) =∑

k′ pX2|Z1
(j|k′)pZ1|X1

(k′|i).
Thus Cij=

∑
k pZ1|X1

(k|i)Csk,j , implying that ev-

ery row vector of C corresponding to a non-anchor

6Avoiding negative entries is useful because RAW is not a
purely algebraic algorithm but uses probabilistic conditions.
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Figure 2: Alternating Projection (AP) vs Douglas-Rachford (DR). X-axis: the number of iterations in rectification.
� AP+ADMM and ◦ DR+ADMM mostly agree each other and converge within 15-20 iterations. 5 iterations are often enough.

word can be represented by a convex combination:∑
k pZ1|X1

(k|i)=1 of the rows {Csk} correspond-

ing to the anchor words {sk}. Therefore, the in-

ference quality depends primarily on the choice of

the anchor words S, providing a clear metric for

diagnosis. Note that rectification is also crucial for

finding better anchors (Lee et al., 2015).

While using the pivoted QR (Arora et al., 2013)

substantially expedites the running time against

solving a number of LPs (Arora et al., 2012), its

explicit projection of each non-anchor row to the

current orthogonal complement quickly damages

the sparsity of C. As a result, random projections

are suggested for sizable vocabulary (Arora et al.,

2013), but such projections do not maintain the

joint-stochasticity of the rectified C, degrading the

topic quality (Lee and Mimno, 2014). Instead, we

develop a sparse implicit pivoted QR (shown in

Algorithm 2) that requires only O(NK) space to

store the basis rows and performs implicit updates

inO(nnz(C)K) time without modifying any entry

in the input C.

Step 3: Recover B. Provided with the set of an-

chor words S and the convex coefficients B̆ki =
{pZ1|X1

(k|i)}, one can easily recover B by apply-

ing Bayes’ rule: Bik = (B̆kici)/(
∑N

i′=1 B̆ki′ci′),
where ci := pX1

(i) is the unigram probability of

the word i, which is equal to
∑

j Cij . Hence the

core of this step is to find the coefficient matrix B̆

by solving a Simplex-Constrained Least Squares

(SCLS) that satisfy Cij =
∑

k B̆kiCsk,j for each i.
While the exponentiated gradient algorithm (Exp-

Grad) used in previous work (Arora et al., 2013;

Lee et al., 2015) converges quickly, it is unclear

how to tune the learning rate, weakening confi-

dence in the learned topics. We propose another

algorithm based on Alternating Direction Method

of Multipliers (ADMM, Algorithm 3), which is not

sensitive to different parameter settings. Note that

we also provide the Active-Set method that can

solve SCLS within machine precision in our imple-

mentation, but our practical choice is ADMM due

to the much higher cost of running the Active-Set

method.

Step 4: Recover A. The final step is to re-

cover the topic correlation matrix A, which

summarizes the latent topic compositions W

by A = (1/M)WW T . Instead of learning W ,

Anchor Word algorithms learn the correlations A

by again leveraging the separability assumption:∑
l′
(∑

k′ pX1|Z1
(sk|k′)pZ1Z2

(k′, l′)
)
pX2|Z2

(sl|l′)
= pX1|Z1

(sk|k)
(∑

l′ pZ1Z2
(k, l′)pX2|Z2

(sl|l′)
)

= pX1|Z1
(sk|k)pZ1Z2

(k, l)pX2|Z2
(sl|l). Thus

pZ1Z2
(k, l)=p−1

X1|Z1
(sk|k)pX1X2

(sk, sl)p
−1
X2|Z2

(sl|l),
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Figure 3: Quantitative results from various methods. Tensor (CP-decomposition (Anandkumar et al., 2012a)) performs better
than the Baseline (Anchor Word algorithm with ExpGrad without any rectification (Arora et al., 2013)) and OVI (Online
Variational Inference (Hoffman et al., 2010)), but much poorer than the AP+ExpGrad (AP-rectified Anchor Word algorithm
(Lee et al., 2015)) and Gibbs (Collapsed Gibbs Sampling (Yao et al., 2009)). Surprisingly the tensor algorithm does not show
consistent behavior for increasing number of topics in X-axis. Closer to Gibbs is generally better in Y-axis.

which can be simplified to A = B−1
S∗CSSB

−1
S∗ .

Therefore the co-occurrence of anchor words

sk and sl transparently captures the correlation

between the pair of topics k and l. Note that this

process of recovering topic correlations shown in

Algorithm 4 guarantees positive semi-definiteness

and non-negativity of A. It is also worth noting

that the selected anchor words are generally

rare words — in order to be the vertices of an

underlying convex hull of the word co-occurrence

space — whose co-occurrences are even rarer and

noisier. The rectification step in JSMF effectively

balances these entries (Lee et al., 2015), thereby

realizing robust and transparent correlated topic

inference.

4 Experimental Results

We evaluate our models of interest on two standard

textual corpora: NeurIPS and NYTimes. Full pa-

pers in NeurIPS are generally longer but share a

smaller vocabulary (12k), whereas massive news

articles in NYTimes have medium length with the

largest vocabulary (103k). Due to high complexi-

ties of tensor decompositions, we prepare two rel-

atively smaller textual datasets as well: Blog and

Yelp. They consist of political blogs (Eisenstein

et al., 2011) and business reviews (Lee and Mimno,

2014) with the smallest vocabulary (4.4k, 1.6k),

respectively. Finally, we adopt two non-textual

preference datasets: Movies and Songs. They in-

clude 10m movie reviews7 and music playlists from

Yes.com.8 In contrast to textual datasets, we can

retrieve genre information for Movies and Songs.9

You can find the exact statistics of each dataset in

our figures.

Evaluating topic models with held-out likeli-

hoods or perplexities only is often misleading

(Passos et al., 2011; Lee and Mimno, 2014). In-

stead we follow six metrics used on (Lee et al.,

2015) for fair and comprehensive evaluations.

Recovery ( 1
N

∑
i ‖Ci −

∑
k B̆kiCsk‖2) evalu-

ates how successfully anchor words reconstruct

the word co-occurrence space. Approximation

(‖C − BABT ‖F ) measures the closeness be-

tween the learned factorization and the unbiased co-

occurrence statistics. Note that they are measured

against the original C rather than the rectified one,

and are visualized in logarithms of base 1.8 for

readability. Dominancy ( 1
K

∑
k Akk) is the aver-

age self-correlations, indirectly gauging the loss

7Movies has a vocabulary of 10.7k movies. https://
grouplens.org/datasets/movielens/10m/

8Songs has a vocabulary of 75.3k songs. http://

csinpi.github.io/lme/data_page.html
9Genre information are already annotated as tags in these

two non-textual datasets. If missing, we scrape the information
from IMDB and Discogs.com, respectively.
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Figure 4: ExpGrad vs ADMM vs ActiveSet. Our △ AP+ADMM and ◦ AP+ActiveSet algorithms outperform the previous
state-of-the-art rectified algorithm ⋄ AP+ExpGrad, being more comparable to probabilistic ▽ Gibbs sampling. Columns 1, 2:
lower is better / 3, 4, 6: higher is better / 5: closer to Gibbs is better.

of correlations between different topics. Speci-

ficity ( 1
K

∑
k KL(bk||

∑
iC∗i)) measures the aver-

age KL-distance of each topic from the unigram

distribution of the corpus. Dissimilarity counts the

mean number of top words in each topic that do

not belong to the top 20 words of other topics. Co-

herence ( 1
K

∑
k

∑x1,x2∈Topk
x1 6=x2

log D2(x1,x2)+ǫ
D1(x2)

) pe-

nalizes any pair of top words in each topic that do

not appear together in the training documents.10

While we report Coherence, the metric could be

deceptive if a model learns many duplicated topics

whose top words are mostly frequent words (Huang

et al., 2016). Thus following the trends of Gibbs

generally implies better performance. We newly

add Sparsity ( 1
K

∑
k

√
N−(‖bk‖1/‖bk‖2)√

N−1
) (Hoyer,

2004) to gauge the average sparsity of the topics.

Vocab pruning: We experiment different docu-

ment frequency cut-offs. Figure 1 shows that re-

moving all the words that occur more than 10% the

documents is too aggressive, thus showing incon-

sistent behavior as the number of topics grows. In

contrast, using 90% cut-off saves too many words.

We process vocabulary identically to (Lee et al.,

2015) for fair comparison, discarding the words

that appear in more than 50% of the documents.

The title on top of each figure indicates the size of

the pruned vocabulary with the specific statistics.

10D2(x1, x2) means the number of training documents
where two words x1 and x2 jointly appear. D1(x2) counts the
number of training documents that include the word x2.

Quantitative analysis: After constructing C

(Step 0), the Baseline method (Arora et al., 2013)

skips to finding the anchor words (Step 2) without

any rectification. While we use the exponentiated

gradient (ExpGrad) method adopted in the previous

work (Arora et al., 2013), we do not perform any

random projection or pseudo-inverse recovery of

A in order to prevent further degradation of learn-

ing quality. For methods within the framework of

JSMF, we execute 150 iterations of AP or DR recti-

fications (Step 1), which is equivalent to (Lee et al.,

2015). However, Figure 2 shows that running only

5 iterations of AP or DR sufficiently rectifies C,

and 15-20 iterations yields almost identical results

to 150 iterations.

While our new anchor-finding method only im-

proves the time/space complexities, the method

choice for SCLS (in Step 3) actually affects the

quality of topics. For ExpGrad, we set the learning

rate as 50.0, which is the best-known from (Lee

et al., 2015). For our ADMM, we set λ= 1.9 and

γ=3.0, but we also find that the algorithm is not at

all sensitive to different settings. For probabilistic

inference, we adopt a sufficiently mixed collapsed

Gibbs Sampling (Gibbs) from the standard Mallet

library11, using 1,000 iterations after discarding the

initial 200 burn-in samples. We also run Online

Variational Inference (OVI) (Hoffman et al., 2010)

11Gibbs is run on Java Mallet that implements time- and
memory-efficient sampling with optimized multicore controls.
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Figure 5: AP+ADMM (left) vs CTM (right). The column 0 shows the genre distribution of the entire corpus. Each column 1-15
stands for k-th topic where two most prominent genres are of orange colors. The size of each box is proportional to the relative
intensity. Fractional value below each topic number on the X-axis indicates the marginal probability pZ1

(k) of the latent topic k.
AP+ADMM learns better topics that capture more coherent information about music genres.

in the standard Gensim package. Finally, we run

CP-decomposition for the Tensor algorithm.12

Figure 3 shows that Tensor decomposition out-

performs Baseline and OVI, but evaluation met-

rics fluctuate as the number of topics increases.

We also observe that the topic distribution given a

word becomes closer to uniform over growing num-

ber of topics. In contrast, AP+ExpGrad exhibits

consistent behaviors as expected in spectral infer-

ence, being most comparable to Gibbs. Though

SCLS (Step 3) is a convex problem, Figure 4 shows

that AP+ADMM and AP+ActiveSet improve Speci-

ficity and Sparsity over AP+ExpGrad, making the

learned topics even more comparable to Gibbs. We

choose ADMM as our main optimization method

especially because it is not only insensitive to its

parameters, but also notably faster than ActiveSet.

Users of ExpGrad must search through less intu-

itive learning rates for optimal performance, which

can be different for each dataset.

Qualitative analysis: We first verify the learned

topics in the NeurIPS dataset. As given in Figure

6, AP+ADMM and Gibbs learn comparable topics,

while the topics learned from OVI and Tensor are

not sufficiently separated: OVI repeats ‘cell’ and

‘neuron’ in different topics. Similarly, ‘neuron’ and

‘layer’ contribute to nearly every topic in Tensor

regardless of hidden differences in their themes.

When running Variational CTM (Blei and Laf-

ferty, 2007) with default parameters, the resulting

topics do not show distinguishable genre associa-

12https://github.com/FurongHuang/

TensorDecomposition4TopicModeling

tions. Most topics involve Pop and Rock, emulating

the overall genre distribution of the corpus as illus-

trated in Figure 5. In contrast, our AP+ADMM cap-

tures three Jazz topics (T1: Electronic, T5: Pure,

T9: Blues style) and four specific Rock topics (T3:

Folk Rock, T4: Rock n Roll, T12: Pop style, T15:

Alternative Rock). While both models discover

Reggae and Latin genres, CTM’s associate more

with generic Other genres, whereas AP+ADMM’s

associate more with Folk/Country or Pop.

In addition, CTM puts spuriously high marginal

topic probability on T1, which is the topic clos-

est to the corpus genre distribution. While it can

highly contribute to maximizing the likelihood of

the data, an unseen playlist would most likely be

classified as a mixture of Pop and Rock even if it

only contains a couple of Pop or Rock songs. This

also happens in Movies, explaining why we prefer

using various metrics than merely measuring the

held-out likelihood or perplexity. Genre associa-

tion in Movies turns out to be less clear than in

Songs. While songs within a playlist are likely to

share a genre-specific theme, people often watch

and review recently released movies rather than

coherently consume movies within related genres.

Thus topics inferred from Movies consist of year-

specific topics as well as Fantasy or Sci-Fi.

5 Discussion

Runtime analyses on RAW alongside other meth-

ods demonstrate its strong scalability. In our ex-

periment, the tensor algorithm takes 5 hours for

learning 5 topics on NeurIPS and 48 days for 25
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repeat top words across different topics, whereas AP+ADMM discovers distinctive and meaningful topics similar to Gibbs.
(Right) Scalability of the methods measured in log10(seconds). Compared to ◦ OVI and ▽ Gibbs, our △ AP+ADMM can infer
quality topics while being more scalable to large corpora.

topics on Yelp. It runs indefinitely for 20-25 topics

on Blog, which explains two missing data points in

Figure 3. Topic learning with RAW takes less than

a minute on these toy datasets and less than an hour

on the largest NYTimes when using 15 iterations

of AP with ADMM.

Two plots in Figure 6 further verify that RAW

with AP+ADMM is approximately 4 times faster

than OVI (in addition to learning better topics),

and 40 times faster than Gibbs (but showing com-

parable results across various numbers of topics)

on the NYTimes dataset. While OVI runs faster

on NeurIPS, the superior quality of topics inferred

with RAW far outweighs the additional cost. As

running the entire pipeline of RAW takes less than

5 minutes in NeurIPS, OVI is not as competitive

as RAW.13 Lastly, the Variational CTM takes 15

minutes to learn 15 topics on Songs, but 6 hours

for 50 topics. In contrast, our RAW method takes

less than 10 minutes to find 50 topics on Songs.

6 Conclusion

By removing the dependency on the training doc-

uments, spectral topic modeling provides scal-

able formalisms for finding compact high-level

structures in sparse and discrete data such as text

and user-preference. The Rectified Anchor Word

(RAW) algorithm enjoys its transparent and con-

sistent behaviors, working seamlessly on various

types of textual and non-textual real datasets. In

particular, our AP+ADMM algorithm outperforms

13Note that slight fluctuations in Figure 6 are due to the
load-balancing from the job queue on our high-performance
computing cluster. For precision, we draw these two panels
by averaging the running times from 10 different trials.

the previous AP+ExpGrad (Lee et al., 2015), be-

ing more comparable to Gibbs sampling and less

sensitive to parameters.

Through this paper, we closely investigate each

step of inference with various algorithmic deci-

sions. Proper pruning of vocabulary is shown neces-

sary, and rectification is proven crucial for reliable

topic inference under the model-data mismatch.

Joint Stochastic Matrix Factorization (JSMF) with

the rectification better models arbitrary pairwise

topic correlations at lower cost than probabilistic

correlated topic model and tensor decomposition.

We hope that our work, built upon the theoreti-

cal insights on spectral inference, provide a com-

plete guide to correlated topic modeling for both

researchers and practitioners.
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