Supplementary Material

A Details on supervised methods

A.1 ADA (Shah et al., 2018)

We use the implementation provided by the origi-
nal authors, with default parameters unless stated
otherwise.'® As described in Section 4.3, we
pair every low-resource (target) forum with the
CQADupStack (source) forum with which it has
the highest word trigram overlap (see Table 9).

ADA involves a bidirectional LSTM sentence
encoder F' and a domain discriminator D. F'is
trained to (a) discriminate between true duplicate-
original question pairs and random pairs and (b)
make source and target domain representations in-
distinguishable to D. Objective (a) is optimized by
minimizing hinge,, (cos(F'(q), F'(¢)),y), where
(g,c) is a source domain question pair, y is its
label and m is the hinge loss margin. Objec-
tive (b) is optimized by gradient reversal (Ganin
et al., 2016). Objective (a) has access to all la-
beled duplicate-original pairs from the source do-
main, with 100 random pairs per true pair. Objec-
tive (b) has access to all unlabeled questions from
both domains.

The original authors use heldout labeled target
domain data for early stopping. Since individual
target datasets are too small for a dev / test split,
we take the (highly irregular) step of performing
early stopping directly on the test sets. Since this
works in favor of the baseline, we consider it ac-
ceptable for comparison with MV-DASE.

We do not use the word embeddings provided
by the original authors, as they do not cover our
vocabulary. Instead, we train FastText on the con-
catenation of source and target domain.'”

Bhttp://github.com/darshl0/qra_code
9We also tried GloVe, but did not achieve better results.

source | target

english | buddhism
gaming | chess
physics | cogsci

programmers | law
unix | networkengineering

gaming | outdoors
programmers | productivity
unix | reverseengineering
wordpress | sitecore
gaming | sports
programmers | sqa
android | windowsphone

Table 9: Source-target mappings for ADA.

bud che | cog law net out

|
ADA | 229 .164 | .161 | 250 .132 .207
BERT-MAN | .096 .066 | .175 .171 .051 .114
‘ pro rev sit spo sqa win
ADA | .117 147 225 299 .193 218
BERT-MAN | .088 .111 .118 .178 .096 .112

Table 10: MAP of ADA and BERT-MAN on low-
resource forums. bud and che are heldout forums.

A.2 MAN (Chen and Cardie, 2018)

We use and extend the implementation provided
by the original authors, with default parameters
unless stated otherwise.?’

The Multinomial Adversarial Network (MAN)
framework is designed for multi-source multi-
target domain-adaptation scenarios, so we train a
single model on all 24 forums. MAN involves
a shared encoder F, a set of private encoders
{Fu, ... Fy,} (one per source domain, here: N =
12), a shared classifier C and a shared domain dis-
criminator D. In the original framework, F and
{Fy} are implemented as LSTMs, Convolutional
Neural Networks or Deep Averaging Networks;
however, none of these worked well in initial ex-
periments.”! Since current State of the Art solu-
tions for many sentence-pair tasks involve Trans-
former architectures (e.g., Liu et al. (2019b)), we
instead instantiate Fs and {F,;} as BERT modules
(bert-base-uncased, downloaded from PyTorch-
Transformers??). All BERT modules are initial-
ized with the same pre-trained weights, but their
parameters can diverge during training. We denote
the resulting system as “BERT-MAN”.

Our data points are question pairs z = (g, ¢),
which may either be true pairs (y = 1), ran-
dom pairs (y = 0), or they may be unla-
beled. They are encoded with the standard
BERT tokenizer, using appropriate special tokens:
[CLS], ¢, [SEP], ¢, [SEP]. Sentence pair embed-
dings F'(x) are derived from the topmost layer of
the [CLS] token.

C is a feed-forward classifier that takes as input
concatenated shared and private representations:
C([Fs(z™); Fy (2(™)]), where (™ is a labeled
question pair from source domain n. C, Fy and

Dgithub.com/ccsasuke/man

2n another experiment, we also tried replacing C' with the
cosine similarity hinge loss classifier from Shah et al. (2018)
(see A.1).

2github.com/huggingface/
pytorch-transformers


http://github.com/darsh10/qra_code
github.com/ccsasuke/man
github.com/huggingface/pytorch-transformers
github.com/huggingface/pytorch-transformers

{Fy4} are trained to minimize negative log likeli-
hood. Fj; is also trained to make representations
from different domains indistinguishable to D, us-
ing gradient reversal. This objective is optimized
on unlabeled data from all domains, including the
target domains.

Early stopping is performed on the heldout tar-
get forums (buddhism and chess, see Table 3). At
test time, given query ¢™) and a set of potential
candidate questions {c(™)} from target domain n/,

we rank candidates by C/([F. S(xgn/));O]), where
") = (@), ™).

Since training 13 BERT encoders in parallel is
expensive, we use a reduced batch size of 4. We
also have to restrict the number of subwords per
question pair to 254, which results in truncation
for about 40% of question pairs. We make sure to
truncate both questions equally, i.e., we combine
the first 128 subwords of ¢ with the first 128 sub-
words of c. It is probable that BERT-MAN would
have performed better with more resources during
training, but this is beyond the scope of our work.

See Table 10 for a comparison of BERT-MAN
and ADA.



