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Abstract

Deep NLP models benefit from underlying

structures in the data—e.g., parse trees—

typically extracted using off-the-shelf parsers.

Recent attempts to jointly learn the latent struc-

ture encounter a tradeoff: either make factor-

ization assumptions that limit expressiveness,

or sacrifice end-to-end differentiability. Using

the recently proposed SparseMAP inference,

which retrieves a sparse distribution over latent

structures, we propose a novel approach for

end-to-end learning of latent structure predic-

tors jointly with a downstream predictor. To

the best of our knowledge, our method is the

first to enable unrestricted dynamic computa-

tion graph construction from the global latent

structure, while maintaining differentiability.

1 Introduction

Latent structure models are a powerful tool for

modeling compositional data and building NLP

pipelines (Smith, 2011). An interesting emerging

direction is to dynamically adapt a network’s com-

putation graph, based on structure inferred from

the input; notable applications include learning to

write programs (Bosnjak et al., 2017), answering

visual questions by composing specialized modules

(Hu et al., 2017; Johnson et al., 2017), and compos-

ing sentence representations using latent syntactic

parse trees (Yogatama et al., 2017).

But how to learn a model that is able to condi-

tion on such combinatorial variables? The ques-

tion then becomes: how to marginalize over all

possible latent structures? For tractability, exist-

ing approaches have to make a choice. Some of

them eschew global latent structure, resorting to

computation graphs built from smaller local deci-

sions: e.g., structured attention networks use lo-

cal posterior marginals as attention weights (Kim

et al., 2017; Liu and Lapata, 2018), and Mail-

lard et al. (2017) construct sentence representa-

tions from parser chart entries. Others allow more

flexibility at the cost of losing end-to-end differ-

entiability, ending up with reinforcement learning

problems (Yogatama et al., 2017; Hu et al., 2017;

Johnson et al., 2017; Williams et al., 2018). More

traditional approaches employ an off-line structure

predictor (e.g., a parser) to define the computation

graph (Tai et al., 2015; Chen et al., 2017), some-

times with some parameter sharing (Bowman et al.,

2016). However, these off-line methods are unable

to jointly train the latent model and the downstream

classifier via error gradient information.

We propose here a new strategy for building dy-

namic computation graphs with latent structure,

through sparse structure prediction. Sparsity al-

lows selecting and conditioning on a tractable num-

ber of global structures, eliminating the limitations

stated above. Namely, our approach is the first that:

A) is fully differentiable;

B) supports latent structured variables;

C) can marginalize over full global structures.

This contrasts with off-line and with reinforcement

learning-based approaches, which satisfy B and

C but not A; and with local marginal-based meth-

ods such as structured attention networks, which

satisfy A and B, but not C. Key to our approach

is the recently proposed SparseMAP inference

(Niculae et al., 2018), which induces, for each data

example, a very sparse posterior distribution over

the possible structures, allowing us to compute the

expected network output efficiently and explicitly

in terms of a small, interpretable set of latent struc-

tures. Our model can be trained end-to-end with

gradient-based methods, without the need for pol-

icy exploration or sampling.

We demonstrate our strategy on inducing latent

dependency TreeLSTMs, achieving competitive

results on sentence classification, natural language

inference, and reverse dictionary lookup.

2 Sparse Latent Structure Prediction

We describe our proposed approach for learning

with combinatorial structures (in particular, non-

projective dependency trees) as latent variables.
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Figure 1: Our method computes a sparse probability distribution over all possible latent structures: here, only

two have nonzero probability. For each selected tree h, we evaluate pξ(y | h, x) by dynamically building the

corresponding computation graph (e.g., a TreeLSTM). The final, posterior prediction is a sparse weighted average.

2.1 Latent Structure Models

Let x and y denote classifier inputs and outputs,

and h ∈ H(x) a latent variable; for example, H(x)
can be the set of possible dependency trees for x.

We would like to train a neural network to model

p(y | x) :=
∑

h∈H(x)

pθ(h | x) pξ(y | h, x), (1)

where pθ(h | x) is a structured-output parsing

model that defines a distribution over trees, and

pξ(y | h, x) is a classifier whose computation

graph may depend freely and globally on the struc-

ture h (e.g., a TreeLSTM). The rest of this section

focuses on the challenge of defining pθ(h | x) such

that Eqn. 1 remains tractable and differentiable.

2.2 Global Inference

Denote by fθ(h; x) a scoring function, assigning

each tree a non-normalized score. For instance,

we may have an arc-factored score fθ(h;x) :=
∑

a∈h sθ(a;x), where we interpret a tree h as a

set of directed arcs a, each receiving an atomic

score sθ(a;x). Deriving pθ given fθ is known

as structured inference. This can be written as a

Ω-regularized optimization problem of the form

pθ(· | x) := argmax
q∈△|H(x)|

∑

h∈H(x)

q(h)fθ(h;x)−Ω(q),

where △|H(x)| is the set of all possible probability

distributions over H(x). Examples follow.

Marginal inference. With negative entropy reg-

ularization, i.e., Ω(q) :=
∑

h∈H(x) q(h) log q(h),

we recover marginal inference, and the probability

of a tree becomes (Wainwright and Jordan, 2008)

pθ(h | x) ∝ exp(fθ(h;x)).

This closed-form derivation, detailed in Ap-

pendix A, provides a differentiable expression

for pθ. However, crucially, since exp(·) > 0,

every tree is assigned strictly nonzero probabil-

ity. Therefore—unless the downstream pξ is con-

strained to also factor over arcs, as in Kim et al.

(2017); Liu and Lapata (2018)—the sum in Eqn. 1

requires enumerating the exponentially large H(x).
This is generally intractable, and even hard to ap-

proximate via sampling, even when pθ is tractable.

MAP inference. At the polar opposite, setting

Ω(q) := 0 yields maximum a posteriori (MAP)

inference (see Appendix A). MAP assigns a prob-

ability of 1 to the highest-scoring tree, and 0 to

all others, yielding a very sparse pθ. However,

since the top-scoring tree (or top-k, for fixed k)

does not vary with small changes in θ, error gra-

dients cannot propagate through MAP. This pre-

vents end-to-end gradient-based training for MAP-

based latent variables, which makes them more

difficult to use. Related reinforcement learning ap-

proaches also yield only one structure, but sidestep

non-differentiability by instead introducing more

challenging search problems.

2.3 Sparse Inference

In this work, we propose using SparseMAP in-

ference (Niculae et al., 2018) to sparsify the set

H while preserving differentiability. SparseMAP



uses a quadratic penalty on the posterior marginals

Ω(q) := ‖u(q)‖22 , where [u(q)]a :=
∑

h:a∈h

q(h).

Situated between marginal inference and MAP in-

ference, SparseMAP assigns nonzero probability

to only a small set of plausible trees H̄ ⊂ H, of size

at most equal to the number of arcs (Martins et al.,

2015, Proposition 11). This guarantees that the

summation in Eqn. 1 can be computed efficiently

by iterating over H̄: this is depicted in Figure 1 and

described in the next paragraphs.

Forward pass. To compute p(y | x) (Eqn. 1),

we observe that the SparseMAP posterior pθ is

nonzero only on a small set of trees H̄, and thus

we only need to compute pξ(y | h, x) for h ∈ H̄.

The support and values of pθ are obtained by solv-

ing the SparseMAP inference problem, as we de-

scribe in Niculae et al. (2018). The strategy, based

on the active set algorithm (Nocedal and Wright,

1999, chapter 16), involves a sequence of MAP

calls (here: maximum spanning tree problems.)

Backward pass. We next show how to compute

end-to-end gradients efficiently. Recall from Eqn. 1

p(y | x) =
∑

h∈H pθ(h | x) pξ(y | h, x), where h
is a discrete index of a tree. To train the classifier,

we have ∂p(y|x)/∂ξ =
∑

h∈H pθ(h | x)∂pξ(y|h,x)/∂ξ,

therefore only the terms with nonzero probabil-

ity (i.e., h ∈ H̄) contribute to the gradient.
∂pξ(y|h,x)/∂ξ is readily available by implementing

pξ in an automatic differentiation library.1 To train

the latent parser, the total gradient ∂p(y|x)/θ is the

sum
∑

h∈H̄ pξ(y | h, x) ∂pθ(h|x)/∂θ. We derive the

expression of ∂pθ(h|x)/∂θ in Appendix B. Crucially,

the gradient sum is also sparse, like pθ, and ef-

ficient to compute, amounting to multiplying by a

|H̄(x)|-by-|H̄(x)| matrix. The proof, given in Ap-

pendix B, is a novel extension of the SparseMAP

backward pass (Niculae et al., 2018).

Generality. Our description focuses on proba-

bilistic classifiers, but our method can be readily

applied to networks that output any representa-

tion, not necessarily a probability. For this, we

define a function rξ(h, x), consisting of any auto-

differentiable computation w.r.t. x, conditioned on

1Here we assume θ and ξ to be disjoint, but weight sharing
is easily handled by automatic differentiation via the product
rule. Differentiation w.r.t. the summation index h is not neces-
sary: pξ may use the discrete structure h freely and globally.

subj. SST SNLI

left-to-right 92.71 82.10 80.98
flat 92.56 83.96 81.74

off-line 92.15 83.25 81.37
latent 92.25 84.73 81.87

Table 1: Accuracy scores for classification and NLI.

the discrete latent structure h in arbitrary, non-

differentiable ways. We then compute

r̄(x) :=
∑

h∈H(x)

pθ(h | x)rξ(h, x) = Eh∼pθrξ(h, x).

This strategy is demonstrated in our reverse-

dictionary experiments in §3.4. In addition, our

approach is not limited to trees: any structured

model with tractable MAP inference may be used.

3 Experiments

We evaluate our approach on three natural language

processing tasks: sentence classification, natural

language inference, and reverse dictionary lookup.

3.1 Common aspects

Word vectors. Unless otherwise mentioned, we

initialize with 300-dimensional GloVe word embed-

dings (Pennington et al., 2014) We transform every

sentence via a bidirectional LSTM encoder, to pro-

duce a context-aware vector vi encoding word i.

Dependency TreeLSTM. We combine the word

vectors vi in a sentence into a single vector using a

tree-structured Child-Sum LSTM, which allows an

arbitrary number of children at any node (Tai et al.,

2015). Our baselines consist in extreme cases of de-

pendency trees: where the parent of word i is word

i+1 (resulting in a left-to-right sequential LSTM),

and where all words are direct children of the root

node (resulting in a flat additive model). We also

consider off-line dependency trees precomputed by

Stanford CoreNLP (Manning et al., 2014).

Neural arc-factored dependency parsing. We

compute arc scores sθ(a;x) with one-hidden-layer

perceptrons (Kiperwasser and Goldberg, 2016).

Experimental setup. All networks are trained

via stochastic gradient with 16 samples per batch.

We tune the learning rate on a log-grid, using a

decay factor of 0.9 after every epoch at which the

validation performance is not the best seen, and

stop after five epochs without improvement. At test

time, we scale the arc scores sθ by a temperature t



seen unseen concepts

rank acc10 acc100 rank acc10 acc100 rank acc10 acc100

left-to-right 17 42.6 73.8 43 33.2 61.8 28 35.9 66.7
flat 18 45.1 71.1 31 38.2 65.6 29 34.3 68.2

latent 12 47.5 74.6 40 35.6 60.1 20 38.4 70.7

Maillard et al. (2017) 58 30.9 56.1 40 33.4 57.1 40 57.1 62.6
Hill et al. (2016) 12 48 28 22 41 70 69 28 54

Table 2: Results on the reverse dictionary lookup task (Hill et al., 2016). Following the authors, for an input

definition, we rank a shortlist of approximately 50k candidate words according to the cosine similarity to the

output vector, and report median rank of the expected word, accuracy at 10, and at 100.

chosen on the validation set, controlling the sparsity

of the SparseMAP distribution. All hidden layers

are 300-dimensional.2

3.2 Sentence classification

We evaluate our models for sentence-level subjec-

tivity classification (Pang and Lee, 2004) and for

binary sentiment classification on the Stanford Sen-

timent Treebank (Socher et al., 2013). In both

cases, we use a softmax output layer on top of the

Dependency TreeLSTM output representation.

3.3 Natural language inference (NLI)

We apply our strategy to the SNLI corpus (Bow-

man et al., 2015), which consists of classify-

ing premise-hypothesis sentence pairs into entail-

ment, contradiction or neutral relations. In this

case, for each pair (xP , xH ), the running sum is

over two latent distributions over parse trees, i.e.,
∑

hP∈H(xP )

∑

hH∈H(xH) pξ(y | x{P,H}, h{P,H})
pθ(hP | xP )pθ(hH | xH). For each pair of trees,

we independently encode the premise and hypothe-

sis using a TreeLSTM. We then concatenate the two

vectors, their difference, and their element-wise

product (Mou et al., 2016). The result is passed

through one tanh hidden layer, followed by the

softmax output layer.3

3.4 Reverse dictionary lookup

The reverse dictionary task aims to compose a dic-

tionary definition into an embedding that is close

to the defined word. We therefore used fixed in-

put and output embeddings, set to unit-norm 500-

dimensional vectors provided, together with train-

ing and evaluation data, by Hill et al. (2016). The

2Our dynet (Neubig et al., 2017) implementation is avail-
able at https://github.com/vene/sparsemap.

3For NLI, our architecture is motivated by our goal of eval-
uating the impact of latent structure for learning compositional
sentence representations. State-of-the-art models condition-
ally transform the sentences to achieve better performance,
e.g., 88.6% accuracy in Chen et al. (2017).
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Figure 2: Three of the sixteen trees with nonzero prob-

ability for an SST test example. Flat representations,

such as the first tree, perform well on this task, as re-

flected by the baselines. The second tree, marked with

X, agrees with the off-line parser.

network output is a projection of the TreeLSTM

encoding back to the dimension of the word embed-

dings, normalized to unit ℓ2 norm. We maximize

the cosine similarity of the predicted vector with

the embedding of the defined word.

4 Discussion

Experimental performance. Classification and

NLI results are reported in Table 1. Compared to

the latent structure model of Yogatama et al. (2017),

our model performs better on SNLI (80.5%) but

worse on SST (86.5%). On SNLI, our model also

outperforms Maillard et al. (2017) (81.6%). To our

knowledge, latent structure models have not been

tested on subjectivity classification. Surprisingly,

the simple flat and left-to-right baselines are very

strong, outperforming the off-line dependency tree

models on all three datasets. The latent TreeLSTM

model reaches the best accuracy on two out of the

three datasets. On reverse dictionary lookup (Ta-

https://github.com/vene/sparsemap
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Figure 3: Examples of coordinate structures where our model assigns high probability to a symmetric parse

(marked †). While not consistent with the standard asymmetrical parse produced by CoreNLP (marked with X),

the symmetric analysis may be more appropriate for TreeLSTM composition.

ble 2), our model also performs well, especially

on concept classification, where the input defini-

tions are more different from the ones seen during

training. For context, we repeat the scores of the

CKY-based latent TreeLSTM model of Maillard

et al. (2017), as well as of the LSTM from Hill et al.

(2016); these different-sized models are not entirely

comparable. We attribute our model’s performance

to the latent parser’s flexibility, investigated below.

Selected latent structures. We analyze the la-

tent structures selected by our model on SST, where

the flat composition baseline is remarkably strong.

We find that our model, to maximize accuracy,

prefers flat or nearly-flat trees, but not exclusively:

the average posterior probability of the flat tree

is 28.9%. In Figure 2, the highest-ranked tree is

flat, but deeper trees are also selected, including

the projective CoreNLP parser output. Syntax is

not necessarily an optimal composition order for

a latent TreeLSTM, as illustrated by the poor per-

formance of the off-line parser (Table 1). Conse-

quently, our (fully unsupervised) latent structures

tend to disagree with CoreNLP: the average prob-

ability of CoreNLP arcs is 5.8%; Williams et al.

(2018) make related observations. Indeed, some

syntactic conventions may be questionable for re-

cursive composition. Figure 3 shows two examples

where our model identifies a plausible symmetric

composition order for coordinate structures: this

analysis disagrees with CoreNLP, which uses the

asymmetrical Stanford / UD convention of assign-

ing the left-most conjunct as head (Nivre et al.,

2016). Assigning the conjunction as head instead

seems preferable in a Child-Sum TreeLSTM.

Training efficiency. Our model must evaluate

at least one TreeLSTM for each sentence, mak-

ing it necessarily slower than the baselines, which

evaluate exactly one. Thanks to sparsity and auto-

batching, the actual slow-down is not problematic;

moreover, as the model trains, the latent parser

gets more confident, and for many unambiguous

sentences there may be only one latent tree with

nonzero probability. On SST, our average training

epoch is only 4.7× slower than the off-line parser

and 6× slower than the flat baseline.

5 Conclusions and future work

We presented a novel approach for training latent

structure neural models, based on the key idea

of sparsifying the set of possible structures, and

demonstrated our method with competitive latent

dependency TreeLSTM models. Our method’s gen-

erality opens up several avenues for future work:

since it supports any structure for which MAP in-

ference is available (e.g., matchings, alignments),

and we have no restrictions on the downstream

pξ(y | h, x), we may design latent versions of

more complicated state-of-the-art models, such as

ESIM for NLI (Chen et al., 2017). In concurrent

work, Peng et al. (2018) proposed an approximate

MAP backward pass, relying on a relaxation and a

gradient projection. Unlike our method, theirs does

not support multiple latent structures; we intend to

further study the relationship between the methods.
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Supplementary Material
A Variational formulations of marginal and MAP inference.

In this section, we provide a brief explanation of the known result that marginal and MAP inference can

be expressed as optimization problems of the form

pθ(· | x) := argmax
q∈△|H(x)|

∑

h∈H(x)

q(h)fθ(h;x)− Ω(q), (2)

where △|H(x)| is the set of all possible probability distributions over H(x), i.e., △|H(x)| := {q ∈

R
|H(x)| :

∑|H(x)|
i=1 qi = 1, and qi ≥ 0 ∀ i}.

Marginal inference. We set Ω(q) :=
∑

h∈H(x) q(h) log q(h), i.e., the negative Shannon entropy (with

base e). The resulting problem is well-studied (Boyd and Vandenberghe, 2004, Example 3.25). Its

Lagrangian is

L(q, µ, τ) =
∑

h∈H(x)

(

q(h) log q(h)− q(h)(fθ(h;x) + µ(h))
)

− τ
(

1−
∑

h∈H(x)

q(h)
)

. (3)

The KKT conditions for optimality are

∇L(q, µ, τ) = 0

q(h)µ(h) = 0 ∀h ∈ H(x)

µ(h) ≥ 0
∑

h∈H(x)

q(h) = 1

(4)

The gradient takes the form

∇q(h)L(q, µ, τ) = 1 + log q(h)− fθ(h;x)− µ(h) + τ, (5)

and setting ∇L(q, µ, τ) = 0 yields the condition

log q(h) = fθ(h;x) + µ(h)− τ − 1. (6)

The above implies q(h) > 0, which, by complementary slackness, means µ(h) = 0 ∀h ∈ H(x). Therefore

q(h) = exp
(

fθ(h;x)− τ − 1
)

=
exp

(

fθ(h;x)
)

Z
(7)

where we introduced Z := exp(τ + 1) > 0. From the primal feasibility condition, we have

1 =
∑

h∈H(x)

q(h) =
1

Z

∑

h∈H(x)

exp
(

fθ(h;x)
)

, (8)

and thus

Z =
∑

h∈H(x)

exp
(

fθ(h;x)
)

, (9)

yielding the desired result: pθ(h | x) = Z−1 exp(fθ(h;x)).

MAP inference. Setting Ω(h) = 0 results in a linear program over a polytope

max
q∈△|H(x)|

∑

h∈H(x)

q(h)fθ(h;x). (10)

According to the fundamental theorem of linear programming (Dantzig et al., 1955, Theorem 6), this

maximum is achieved at a vertex of △|H(x)|. The vertices of △|H(x)| are peaked “indicator” distributions,

therefore a solution is given by finding any highest-scoring structure, which is precisely MAP inference

pθ(h | x) =

{

1, h = h⋆

0, h 6= h⋆
, where h⋆ achieves fθ(h

⋆;x) = max
h∈H(x)

fθ(h;x). (11)



B Derivation of the backward pass.

Using a small variation of the method described by Niculae et al. (2018), we can compute the gradient of

p(h) with respect to θ. This gradient is sparse, therefore both the forward and the backward passes only

involve the small set of active trees H̄. For this reason, the entire latent model can be efficiently trained

end-to-end using gradient-based methods such as stochastic gradient descent.

Proposition 1 Let pθ(h | x) denote the SparseMAP posterior probability distribution,4 i.e., the

solution of Equation 2 for Ω(q) = ‖u(q)‖22, where ua(q) =
∑

h:a∈h q(h) =
∑

hma,h q(h) for an

appropriately defined indicator matrix M . Define Z :=
(

M |⊤
H̄(x)

M |H̄(x)

)−1
∈ R

|H̄|×|H̄|, where

we denote by M |H̄(x) the column-subset of M indexed by the support H̄(x). Denote the sum of

column h of Z by ς(h) :=
∑

h′∈H̄(x) zh′,h, and the overall sum of Z by ζ :=
∑

h′∈H̄(x) ς(h
′).

Then, for any h ∈ H(x), we have

∂pθ(h | x)

∂θ
=

{

∑

h′∈H̄(x)

(

zh,h′ − ζ−1ς(h)ς(h′)
)

∂fθ(h
′; x)/∂θ, pθ(h | x) > 0

0, pθ(h | x) = 0.

Proof. As in the backward step of Niculae et al. (2018, Appendix B), a solution pθ satisfies

pθ(h | x) =
∑

h′∈H̄(x)

zh,h′(fθ(h
′;x)− τ⋆), for any h ∈ H̄(x), (12)

where we denote

τ⋆ =
−1 +

∑

{h′′,h′}∈H̄(x) zh′′,h′fθ(h
′;x)

ζ
. (13)

To simplify notation, we denote pθ(h | x) = p1(θ)− p2(θ) where

p1(θ) :=
∑

h′∈H̄(x)

zh,h′ fθ(h
′;x),

p2(θ) :=
(

∑

h′

zh,h′

)

· τ⋆

= ς(h) · ζ−1
(

∑

h′′,h′

zh′′,h′fθ(h
′;x)

)

− const.

(14)

Differentiation yields
∂p1
∂θ

=
∑

h′∈H̄(x)

zh,h′
∂fθ(h

′;x)

∂θ
,

∂p2
∂θ

=
∑

h′∈H̄(x)

ς(h) · ζ−1
(

∑

h′′

zh′′,h′

)∂fθ(h
′;x)

∂θ
.

=
∑

h′∈H̄(x)

ς(h) · ζ−1ς(h′)
∂fθ(h

′;x)

∂θ
.

(15)

Putting it all together, we obtain

∂pθ(h | x)

∂θ
=

∑

h′∈H̄(x)

(

zh,h′ − ζ−1ς(h)ς(h′)
) ∂fθ(h

′)

∂θ
, (16)

which is the top branch of the conditional. For the other branch, observe that the support H̄(x) is constant

within a neighborhood of θ, yielding h /∈ H̄(x), ∂p(h)∂θ = 0. Importantly, since Z is computed as a

side-effect of the SparseMAP forward pass, the backward pass computation is efficient.

4For a measure-zero set of pathologic inputs there may be more than one optimal distribution p(h). This did not pose any
problems in practice, where any ties can be broken at random.


