
A Proofs

A.1 Support inverse reverses k-hyponymy

Theorem 1. For two density matrices A and B,
k-hyponymy is reversed by support inverse when
rank(A) = rank(B):

A vk B⇐⇒ ¬suppB vk ¬suppA (21)

Proof. From (Baksalary et al., 1989), ¬supp re-
verses Löwner order when rank(A) = rank(B):

A v B⇐⇒ ¬suppB v ¬suppA (22)

Thus, letting “≥ 0” denote the operator is positive:

A vk B⇐⇒ B− kA ≥ 0 (23)

⇐⇒ (kA)−1 − B−1 ≥ 0 (24)

⇐⇒ 1

k
A−1 − B−1 ≥ 0 (25)

⇐⇒ A−1 − kB−1 ≥ 0 (26)

⇐⇒ B−1 vk A−1 (27)

using Equations 5 and 22 from Equation 23 to 24.

Corollary 1. For two invertible density matrices A
and B, k-hyponymy is reversed by matrix inverse:

A vk B⇐⇒ B−1 vk A−1 (28)

A.2 Matrix inverse reverses kBA in same
basis case

Theorem 2. For two density matrices A and B
with the same eigenbasis, kBA is reversed by matrix
inverse:

kBA(B−1,A−1) = kBA(A,B) (29)

Proof.
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using Equation 13 from Equation 30 to 31.

A.3 Composing with ¬sub or ¬inv gives
maximally mixed support

Theorem 3. When composing a density matrix X
with ¬suppX via spider, fuzz, or phaser, the result-
ing density matrix has the desired property of being
a maximally mixed state on the support with zeroes
on the kernel.

Proof. ¬suppX and X have the same eigenbasis.
From Equation 13, all nonzero eigenvalues of
¬suppX are multiplicative inverses of the corre-
sponding eigenvalue of X.
We use definitions of spider, fuzz, and phaser from
Equations 1, 2, and 3. The summation indices are
over eigenvectors with nonzero eigenvalue.
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Corollary 2. When composing a density matrix X
with ¬invX via spider, fuzz, or phaser, the resulting
density matrix has the desired property of being a
maximally mixed state on the support with zeroes
on the kernel.


