Supplementary Materials : Appendix

A Implementation

We provide an example pytorch implementa-
tion based on the fairseq code base in Fig-
ure 1-4, which consists of: (1) sampling A ~
Beta(a, «), (2) computing expected source sen-
tence in the encoder forward function (3) comput-
ing expected previous target token in the decoder
forward function, (4) computing cross entropy loss
on expected target sentence. Our code can be
found at: https://anonymous.4open.science/
r/388f9flc-aecee-4d84-8ac0-6d7b2391£3ab/

B Dataset Description

B.1 Machine Translation

There are 160k training examples for IWSLT” 14
German-English, and 176k, 174k training exam-
ples for IWSLT ’14 English-Spanish and English-
Italian datasets respectively.! The lager WMT’ 14
English-German dataset consists of 4.5M training
examples.” For IWSLT German-English, we use
the standard test set: concatenation of TED tst2010,
tst2011, tst2012, dev2010, and dev2012. For other
IWSLT datasets, we use TED dev2010 for vali-
dation and tst2010, tst2011, tst2012 for test. On
WMT, following previous work (Ott et al., 2018),
we use WMT ’16 as training dataset, and new-
stest2014 as test set. Following common practice,
for IWSLT ’14, we lowercase all words. All sen-
tences are preprocessed with byte-pair-encdoding
(BPE) (Sennrich et al., 2016). For IWSLT, we use
a joint source and target vocabulary with 10k BPE
types. For WMT, we built a BPE vocabulary with
40k types.

"https://wit3.fbk.eu/mt.php?release=
2014-01

https://drive.google.com/uc?export=
download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8

B.2 SCAN

We experiment with three different splits of
the SCAN dataset *: jump, turn left,
around right. There are approximately 14k,
21k, 15k training examples and 7k, 1k, 4k test ex-
amples respectively for the jump, turn left
and around right splits. We provide illustra-
tive examples for SCAN in Table 1 and Table 2.
In general, the turn left splitis the easiest
because the corresponding instruction token turn
left (i.e. LTURN) is still seen in training (e.g. in the
context of walk left). The around right split
is the hardest because the models must learn how
to compositionally apply around function to right
even though they are not seen together in training.

Split Train Command Test Command

jump jump; turn left turn left twice after
twice after look Jjump; run and jump

turn turn left; walk and turn

left run opposite left; left thrice

around jump around left; walk around right;

right turn opposite right look around right
twice and jump left

Table 1: Example commands from the different SCAN
dataset splits.

Command Instruction

turn around right 1. TURN_RIGHT L. TURN_RIGHT

and jump I_TURN_RIGHT L. TURN_RIGHT
1JUMP
jump left I_TURN_LEFT L TURN_LEFT

and turn left 1JUMP

Table 2: Input-output examples for the SCAN dataset.

Shttps://github.com/brendenlake/SCAN

https://anonymous.4open.science/r/388f9f1c-aeee-4d84-8ac0-6d7b2391f3ab/
https://anonymous.4open.science/r/388f9f1c-aeee-4d84-8ac0-6d7b2391f3ab/
https://wit3.fbk.eu/mt.php?release=2014-01
https://wit3.fbk.eu/mt.php?release=2014-01
https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8
https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8
https://github.com/brendenlake/SCAN

B.3 Semantic Parsing

We study two versions of the GeoQuery dataset:*
the query and question splits of SQL queries.
There are 880 English questions about United
States geography, paired with SQL queries. See
dataset examples provided by Andreas (2020) in
Figure 5. We follow Andreas (2020) for dataset
split and preprocessing steps. The standard train-
test split question ensures that there are no
natural language questions repeated between the
train and test sets. This standard split is limited
to test generalization (Andreas, 2020; Finegan-
Dollak et al., 2018) because many test examples
still have the same logical forms as some of the
training examples. The more difficult query split
ensures that neither question or logical forms (after
anonymizing named entities) are repeated.

C Experimental Details

C.1 Machine Translation

Our codebase is based on fairseq (Ott et al., 2019).
For IWSLT experiments, we use a 6-layer Trans-
former with 4 attention heads, embedding size 512
and FFN layer dimension 1024 (model configu-
ration transformer_iwslt_de_en). For WMT ex-
periments, we use a standard Transformer Base
(Vaswani et al., 2017), with 8 attention heads, em-
bedding size 512 and FFN layer dimension 2048
(model configuration transformer_wmt_en_de). We
use multi-bleu.pld for BLEU evaluation.
For IWSLT, we first tune the Transformer base-
lines (i.e. considering learning rate: {1e~%, 574},
max tokens per batch: {4096, 5120}, label smooth-
ing: {0.0,0.1,0.2}, dropout: {0.3,0.4}, weight
decay: {le~*,5¢7*}). Then, to compare different
methods, we fix these hyper-parameters and tune
the method-specific hyper-parameters (i.e. consid-
ering word drop out rate: {0.1, 0.2, 0.3}, switchout
rate: {0.4,0.8,1.2}, and SeqMix « parameter in
range [0.1,1.5]) on the validation set. We use
Adam optimizer with Beta (0.9, 0.98), and inverse
square root learning rate scheduler with initial
learning rate 5e-4 and 4, 000 warmup updates. We
use cross entropy loss with label smoothing rate
0.1 and max tokens 4096 per batch. For IWSLT
’14 (de<>en), we use dropout 0.4,° weight decay
‘nttps://github.com/jkkummerfeld/
text2sgl-data
Shttps://github.com/moses—smt/
mosesdecoder/blob/master/scripts/

generic/multi-bleu.perl
®Note that dropout here is different from word dropout.

5e~4, and beam search decoding with beam size 15.
For IWLST ’14 (en—{it, es}), we use dropout 0.3
and weight decay 1e~4, and beam search decoding
with beam size 5. For all SeqMix experiments, we
sample (X', Y”) uniformly from all examples with
similar target Y’ lengths (|Y| — |Y'| < 5). We train
all models until convergence. In practice, it takes
around 10 to 15 hours on a single Tesla P100 GPU.

For WMT ’14, we use Adam optimizer with
Beta (0.9, 0.98), and inverse square root learning
rate scheduler with initial learning rate 0.0007, min-
imum learning rate 1le~® and 8, 000. warmup up-
dates. We use cross entropy loss with label smooth-
ing rate 0.1 and max tokens per batch 3072 on per
GPU (4 GPUs in total). We use dropout 0.1 but
no weight decay nor norm clipping. Training takes
approximately 4 days on 4 Tesla P100 GPUs. Due
to its computational overhead, we only experiment
with SeqMix alpha 0.1, SwitchOut 0.8 and word
dropout 0.1, which did well based on our IWSLT
experiments. We average the last 5 epoch check-
points, and use beam search decoding with beam
size 4 and length penalty 0.6. We sample (X', Y”)
by shuffling the batch.

C.2 SCAN

For all SCAN experiments, following Andreas
(2020), we train a one-layer LSTM encoder-
decoder model with embedding size of 64, hidden
size of 512, a bidirectional encoder and an atten-
tional decoder. We train the model with the Adam
optimizer with Beta (0.9,0.98), and clip the gra-
dient norm at 1.0. We use learning rate 0.001 and
reduce the learning rate on plateau (shrink rate 0.5).
We use batch size 64, dropout 0.5, but no weight
decay nor label smoothing. We use greedy decod-
ing and use accuracy as evaluation metric. Note
that a predicted output is correct if and only if it
exactly matches with the ground truth. We tune
the method-specific hyper-parameters: we con-
sider word drop out rate {0.1,0.2, 0.3}, SwitchOut
rate {0.4,0.8,1.2}, SeqMix « € {0.1,0.5,1.0}
for both hard and soft variant. We report the
best test accuracy for each method. The best hy-
perparameter for SeqMix was: (without GECA)
0.5, 1.0, 0.1 and (with GECA) 1.0, 1.0, 1.0 re-
spectively for jump, around right, turn
left. For SeqMix, we approximate sampling
(X',Y") by shuffling the current batch, which are
already padded to the same length. For experiments
without GECA, if the sequence length of (X', Y”)

https://github.com/jkkummerfeld/text2sql-data
https://github.com/jkkummerfeld/text2sql-data
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

is much shorter than (X,Y’), we additionally re-
peat (X', Y”") to the same length (to ensure jump
will be mixed up with tokens at different positions).
We train for 50 epochs for runs without GECA and
150 epochs for runs with GECA. Training takes
approximately 30 minutes to 1 hour on single Tesla
P100 GPU.

C.3 Semantic Parsing

For all semantic parsing experiments, we train a
one-layer LSTM encoder-decoder model with an
embedding size of 64, a hidden size of 512, a bidi-
rectional encoder and an attentional decoder. Fol-
lowing Andreas (2020), we additionally introduce
a copy mechanism (Finegan-Dollak et al., 2018).
For SeqMix, like for SCAN, we approximate sam-
pling (X', Y”) by shuffling the current batch, and
use (exact) accuracy as evaluation metric. The final
best optimization setting for SeqMix with GECA is
« 0.6, batch size 32, no dropout nor weight decay,
learning rate 1e~3 and learning rate shrink ratio of
0.7 after plateau. The best hyperparameters without
GECA are the same as with GECA except we use
dropout 0.4. For all experiments, we train for 180
epochs, and report the test accuracy based on last
checkpoint. As experimental results on semantic
parsing have relatively high variance, we report the
average accuracy across 10 different seeds. Train-
ing in total takes approximately 15 hours on single
P100 GPU. We conduct t-test (two-tailed distribu-
tion, two-sample unequal variance heteroscedastic
test) to compare SeqMix (soft) with baseline (with
and without GECA).

References

Jacob Andreas. 2020. Good-Enough Compositional
Data Augmentation. In Proceedings ACL.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. pages 1-9.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for WMT 16. In Proceedings of the First

Conference on Machine Translation: Volume 2,

Shared Task Papers.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5998-6008. Curran
Associates, Inc.

https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/W18-6301
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

from torch.distributions.beta import Beta
def get_lambda(self,
batch_size):

Sample lambda given batch size.
dist = Beta(self.args.alpha, self.args.alpha)
lambda_ = dist.sample(sample_shape=[bsz]).to("cuda")
lambda_ = torch.max(lambda_, 1 — lambda_)
return lambda_

Figure 1: Example code snippet to sample lambda

def encoder_forward(self,

lambda_,

src_tokens_a,

src_lengths_a,

src_tokens_b,

src_lengths_b,

)
wnn

Args:
lambda_ (FloatTensor): lambda used to permute sentences of shape " (batch)®
src_tokens_a (LongTensor): tokens in the source sentence X of shape " (batch, src_len)’
src_lengths_a (LongTensor): lengths of each source sentence X of shape " (batch)®
src_tokens_b (LongTensor): tokens in the source sentence X' of shape *(batch, src_len)®

src_lengths_b (LongTensor): lengths of each source sentence X' of shape *(batch)’
wun

if self.layer_wise_attention:
return_all_hiddens = True

xa, encoder_embedding_a = self.forward_embedding(src_tokens_a)
xb, encoder_embedding_b = self.forward_embedding(src_tokens_b)

X = Xa * lambda_.reshape(-1, 1, 1) + xb % (1-lambda_).reshape(-1, 1, 1)

encoder_embedding = encoder_embedding_a * lambda_.reshape(-1, 1, 1) + \
encoder_embedding_b * (1 - lambda_).reshape(-1, 1, 1)

#BxTxC->TxBxC
X = x.transpose(@, 1)

compute padding mask
encoder_padding_mask = src_tokens_a.eq(self.padding_idx)

Figure 2: Example code snippet of encoder forward function

def decoder_extract_features(self,
lambda_,
prev_output_tokens_a,
perv_output_tokens_b,

L)

Args:
lambda_ (FloatTensor): lambda used to permute sentences of shape *(batch)®
prev_output_tokens_a (LongTensors): previous decoder outputs of target sentence Y of shape ' (batch, tgt_len)®

prev_output_tokens_b (LongTensors): previous decoder outputs of target sentence Y' of shape °(batch, tgt_len)"
wun

def get_embedding(prev_output_tokens):

xa = get_embedding(prev_output_tokens_a)
xb = get_embedding(prev_output_tokens_b)

X = xa * lambda_.view(-1, 1, 1) + xb x (1-lambda_).view(-1, 1, 1)

Figure 3: Example code snippet of decoder extract features function, as part of the forward function

def labeled_smooth_cross_entropy_forward(self,
model,
sample,
lambda_,
reduce=True):

net_output = model(lambda_,
sample["net_input_a"] ["src_tokens"],
sample["net_input_a"]["src_lengths"],
sample["net_input_b"]["src_tokens"],
sample["net_input_b"]["src_lengths"],
sample["net_input_a"] ["prev_output_tokens"],
prev_output_tokens_b=sample["net_input_b"] ["prev_output_tokens"]1)
lprobs = model.get_normalized_probs(net_output, log_probs=True)
lprobs = lprobs.view(-1, lprobs.size(-1))
loss_a, nll_loss_a = label_smoothed_nll_loss(
lprobs, sample["target_a"].view(-1,1), self.eps, ignore_index=self.padding_idx, reduce=False,
)
loss_b, nll_loss_b = label_smoothed_nll_loss(
lprobs, sample["target_b"].view(-1,1), self.eps, ignore_index=self.padding_idx, reduce=False,

bsz, slen = sample["target_a"l.size()
loss_a = loss_a.reshape(bsz, slen)
nll_loss_a = nll_loss_a.reshape(bsz, slen)
loss_b = loss_b.reshape(bsz, slen)
nll_loss_b = nll_loss_b.reshape(bsz, slen)

loss = loss_a * lambda_.view(-1, 1) + loss_b * (1-lambda_).view(-1, 1)

nll_loss = nll_loss_a * lambda_.view(-1, 1) + nll_loss_b * (1-lambda_).view(-1, 1)
valid_indices = (sample['target_a"] != self.padding_idx)

loss = loss x valid_indices. float()

nll_loss = nll_loss * valid_indices.float()

if reduce:

loss = loss.sum()
nll_loss = nll_loss.sum()

Figure 4: Example code snippet of loss function

Logical forms

what is the lowest point in rhode island
(A, lowest (A, (place (A) , loc (A, B), const (B, stateid (rhode island) })))

what states does the florida run through
(A, (state (A) , const (B, riverid (florida)) , traverse (B, A)))

what state borders the state with the lowest population density
(A, (state (A), next_to (A, B) , smallest (C, (state (B) , density (B, C)))))

SQL queries

what rivers run through west wyoming
SELECT RIVER®.NAME FROM RIVER AS RIVER® WHERE RIVER®.TRAVERSE = " west wyoming "

which states have towns major named springfield
SELECT CITY®.STATE_NAME FROM CITY AS CITY® WHERE CITY®.NAME = " springfield " AND CITY®.POP > 150008

what is the population of the area of the largest state
SELECT CITY®.POP FROM CITY AS CITY® WHERE CITY®.NAME = (SELECT STATE®.AREA FROM STATE AS STATE®
WHERE STATE®.AREA = (SELECT MAX (STATE1.AREA) FROM STATE AS STATE1))

Figure 5: GeoQuery SQL Queries data examples provided by Andreas et al (Andreas, 2020)

